2016届贵州省黔东南州中考数学

合集下载

2016年贵州省黔南州中考数学试卷-答案

2016年贵州省黔南州中考数学试卷-答案

贵州省黔南州2016年初中毕业生学业(升学)统一考试数学答案解析 第Ⅰ卷一、选择题1.【答案】D【解析】因为正数大于0,正数大于负数,所以3025>>->-,所以最大的数为3,故选D.【提示】根据正数大于0,正数大于负数,两个负数绝对值大的小,进行比例大小即可求得答案.握有理数的大小关系是解题的关键. 【考点】有理数大小比较2.【答案】B【解析】1∠、2∠是邻补角,12180∠+∠=︒,故选项A 错误;1∠、2∠是对顶角,根据其定义,故选项B 正确;根据平行线的性质:同位角相等,同旁内角互补,内错角相等;故选项C 错误;根据三角形的外角一定大于与它不相邻的内角;故选项D 错误.B.【提示】本题运用对顶角、邻补角、平行线的性质及三角形的外角性质,熟记其定义,是解析的基础。

【考点】对顶角、邻补角,平行线的性质,三角形的外角性质 3.【答案】C【解析】从正面看三棱柱笔筒,得出主视图即可.下图是一个三棱柱笔筒,则该物体的主视图是,故选C.【提示】主视图是从物体的正面看得到的视图.【考点】简单几何体的三视图4.【答案】C【解析】因为数据:1,1-,3,x ,4有唯一的众数是3,所以3x =,所以这组数据按大小排序后为:1-,1,3,3,4。

即这组数据的中位数为3.选C.【提示】求一组数据的众数的方法是找出出现次数最多的数据。

将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.【考点】众数,中位数5.【答案】D【解析】34a a a ⋅=,选项A 错误;236(2)6a a =--,选项B 错误;5552a a a +=,选项C 错误;5232824ab a b a b ÷=,故选项D 正确.【提示】根据同底数幂的乘法、积的乘方、合并同类项以及多项式的除法法则判断即可。

掌握相关的法则是解题的关键.【考点】最简二次根式,平方根,立方根,分母有理化7.【答案】B【解析】根据题意得,20x ->,解得:2x >,故选B.【提示】关于函数自变量的范围,一般从三个方面考虑:当函数表达式是整式时,自变量可取全体实数;当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数非负。

2016年贵州省黔南州中考数学试卷(含答案与解析)

2016年贵州省黔南州中考数学试卷(含答案与解析)

数学试卷 第1页(共20页) 数学试卷 第2页(共20页)绝密★启用前贵州省黔南州2016年初中毕业生学业(升学)统一考试数 学本试卷满分150分,考试时间120分钟.第Ⅰ卷(选择题 共52分)一、选择题(本大题共13小题,每小题4分,共52分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.一组数据:5-,2-,0,3,则该组数据中最大的数为( )A .5-B .2-C .0D .3 2.下面四个图形中,12∠=∠一定成立的是( )ABC D3.左下图是一个三棱柱笔筒,则该物体的主视图是( )ABCD4.一组数据:1,1-,3,x ,4,它有唯一的众数是3,则这组数据的中位数为 ( )A .1-B .1C .3D .4 5.下列运算正确的是( )A .33a a a =B .235(2)6a a -=-C .5510a a a +=D .5232824a b a b a b ÷=6.下列说法中正确的是( )A .12化简后的结果是22B .9的平方根为3C .8是最简二次根式D .27-没有立方根 7.函数22y x =-的自变量x 的取值范围在数轴上表示正确的是 ( )ABCD 8.王杰同学在解决问题“已知A ,B 两点的坐标为(3,2)A -,(6,5)B -求直线AB 关于x轴的对称直线A B ''的解析式”时,解法如下:先是建立平面直角坐标系(如图),标出A ,B 两点,并利用轴对称性质求出A ',B '的坐标分别为(3,2)A ',(6,5)B ';然后设直线A B ''的解析式为(0)y kx b k =+≠,并将(3,2)A ',(6,5)B '代入y kx b =+中,得方程组:32,65,k b k b +=⎧⎨+=⎩解得1,1,k b =⎧⎨=-⎩最后求得直线A B ''的解析式为1y x =-,则在解题过程中他运用到的数学思想是( )A .分类讨论与转化思想B .分类讨论与方程思想C .数形结合与整体思想D .数形结合与方程思想9.如图,O 是坐标原点,菱形OABC 的顶点A 的坐标为(3,4)-,顶点C 在x 轴的负半轴上,函数(0)ky x x =<的图象经过顶点B ,则k 的值为( )A .12-B .27-C .32-D .36-毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共20页) 数学试卷 第4页(共20页)10.如图,AB 是O 的直径,弦CD AB ⊥于点E ,30CDB ∠=,O 的半径为5cm ,则圆心O 到弦CD 的距离为 ( ) A.5cm 2B .3cm C.33cmD .6cm11.11y k x =-+是关于x 的一次函数,则一元二次方程2210kx x ++=的根的情况为( )A .没有实数根B .有一个实数根C .有两个不相等的实数根D .有两个相等的实数根12.如图,边长分别为1和2的两个等边三角形,开始它们在左边重合,大三角形固定不动,然后把小三角形自左向右平移直至移出大三角形外停止.设小三角形移动的距离为x ,两个三角形重叠面积为y ,则y 关于x 的函数图象是( )ABCD13.已知二次函数2(0)y ax bx c a =++≠的图象如图所示,则下列结论: ①0b <,0c >; ②0a b c ++<;③方程的两根之和大于0; ④0a b c -+<. 其中正确的个数是( )A .4个B .3个C .2个D .1个第Ⅱ卷(非选择题 共98分)二、填空题(本大题共6小题,每小题4分,共24分.请把答案填在题中的横线上)14.若2ab =,1a b -=-,则代数式22a b ab -的值等于 .15.计算:01112(2016π)()|2|cos303-+--+--= .16.如图,在ABC △中,90C ∠=,30B ∠=,AB 边的垂直平分线ED 交AB 于点E ,交BC 于点D ,若3CD =,则BD 的长为 .17.如图,矩形ABCD 的对角线AC 的中点为O ,过点O 作OE BC ⊥于点E ,连接OD ,已知6AB =,8BC =,则四边形OECD 的周长为 .18.函数在平面直角坐标系中,对于平面内任一点(,)a b ,若规定以下三种变换: ①△(,)(,)a b a b =-△;②(,)(,)O a b a b =--;③(,)(,)a b a b Ω=-. 按照以上变换例如:((1,2))(1,2)O =-△,则3,(())4O Ω= .19.为解决都匀市停车难的问题,计划在一段长为56米的路段规划处如图所示的停车位,已知每个车位是长为5米、宽为2米的矩形,且矩形的宽与路的边缘成45角,则该路段最多可以划出 个这样的停车位.(取2 1.4=,结果保留整数)数学试卷 第5页(共20页) 数学试卷 第6页(共20页)三、解答题(本大题共7小题,共74分.解答应写出文字说明、证明过程或演算步骤) 20.(本小题满分10分,每题5分)(1)如图所示,正方形网格中,ABC △为格点三角形(即三角形的顶点都在格点上).①把ABC △沿BA 方向平移,请在网格中画出当点A 移动到点1A 时的111A B C △;②把111A B C △绕点1A 按逆时针方向旋转90后得到222A B C △,如果网格中小正方形的边长为1,求点1B 旋转到2B 的路径长.(2)解方程:281242x x x x -=--+.21.(本小题满分10分)“2016国际大数据产业博览会”于5月25日至5月29日在贵阳举行.参展内容为A ——经济和社会发展;B ——产业与应用;C ——技术与趋势;D ——安全和隐私保护;E ——电子商务,共五大板块.为了解观众对五大板块的“关注情况”,某机构进行了随机问卷调查,并将调查结果绘制成如下两幅统计图(均不完整),请根据统计图中提供的信息,解答下列问题:(1)本次随机调查了多少名观众?(2)请补全统计图,并求出扇形统计图中“D ——安全和隐私保护”所对应的扇形圆心角的度数;(3)据相关报道,本次博览会共吸引力90000名观众前来参观,请估计关注“E ——电子商务”的人数是多少? 22.(本小题满分6分)为弘扬中华传统文化,黔南州近期举办了中小学生“国学经典大赛”.比赛项目为:A .唐诗;B .宋词;C .论语;D .三字经.比赛形式分“单人组”和“双人组”.(1)小丽参加“单人组”,她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率是多少?(2)小红和小明组成一个小组参加“双人组”比赛,比赛规则是:同一小组的两名队员的比赛项目不能相同,且每人只能随机抽取一次,则恰好小红抽中“唐诗”且小明抽中“宋词”的概率是多少?请用画树状图或列表的方法进行说明.23.(本小题满分10分)已知二次函数2y x bx c =++的图象与y 轴交于点(0,6)C -,与x 轴的一个交点坐标是(2,0)A -.(1)求二次函数的解析式,并写出顶点D 的坐标;(2)将二次函数的图象沿x 轴向左平移52个单位长度,当0y <时,求x 的取值范围.24.(本小题满分12分)毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第7页(共20页) 数学试卷 第8页(共20页)如图,AB 是O 的直径,点D 是AE 上一点,且BDE CBE ∠=∠,BD 与AE 交于点F .(1)求证:BC 是O 的切线;(2)若BD 平分ABE ∠,求证:2DE DF DB =;(3)在(2)的条件下,延长ED ,BA 交于点P ,若PA AO =,2DE =,求PD 的长.25.(本小题满分12分)都匀某校准备组织学生及家长代表到桂林进行社会实践活动,为便于管理,所有人员必须乘坐同一列高铁.高铁单程票价格如下表所示,二等座学生票可打7.5折.已知所有人员都买一等座单程火车票需6175元,都买二等座单程火车票需3150元;如运行区间 票价起点站 终点站 一等座 二等座 都匀桂林95(元)60(元)(1)参加社会实践活动的老师、家长代表与学生各有多少人?(2)由于各种原因,二等座单程火车票只能买x 张(x <参加社会实践的总人数),其余的须买一等座单程火车票,在保证所有人员都有座位的前提下,请你设计最经济的购票方案,并写出购买单程火车票的总费用y 与x 之间的函数关系式; (3)在(2)的方案下,请求出当30x =时,购买单程火车票的总费用. 26.(本小题满分14分)如图,在四边形OABC 是边长为4的正方形,点P 为OA 边上任意一点(与点O ,A 不重合),连接CP ,过点P 作PM CP ⊥交AB 于点D ,且PM CP =,过点M 作MN AO ∥,交BO 于点N ,连结ND ,BM ,设OP t =.(1)求点M 的坐标(用含t 的代数式表示);(2)试判断线段MN 的长度是否随点P 的位置的变化而改变?并说明理由; (3)当t 为何值时,四边形BNDM 的面积最小;(4)在x 轴正半轴上存在点Q ,使得QMN △是等腰三角形.请直接写出不少于4个符合条件的点Q 的坐标(用含t 的式子表示).贵州省黔南州2016年初中毕业生学业(升学)统一考试数学答案解析第Ⅰ卷一、选择题1.【答案】D【解析】因为正数大于0,正数大于负数,所以3025>>->-,所以最大的数为3,故选D.【提示】根据正数大于0,正数大于负数,两个负数绝对值大的小,进行比例大小即可求得答案.握有理数的大小关系是解题的关键. 【考点】有理数大小比较 2.【答案】B数学试卷 第9页(共20页) 数学试卷 第10页(共20页)【解析】1∠、2∠是邻补角,12180∠+∠=︒,故选项A 错误;1∠、2∠是对顶角,根据其定义,故选项B 正确;根据平行线的性质:同位角相等,同旁内角互补,内错角相等;故选项C 错误;根据三角形的外角一定大于与它不相邻的内角;故选项D 错误.B. 【提示】本题运用对顶角、邻补角、平行线的性质及三角形的外角性质,熟记其定义,是解析的基础。

2016年贵州省黔东南州中考数学试卷(含详细答案)

2016年贵州省黔东南州中考数学试卷(含详细答案)

数学试卷 第1页(共26页) 数学试卷 第2页(共26页)绝密★启用前贵州省黔东南州2016年初中毕业升学统一考试数 学本试卷满分150分,考试时间120分钟.第Ⅰ卷(选择题 共40分)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.2-的相反数是( ) A .2B .2-C .12D .12-2.如图,直线a b ∥,若140∠=,255∠=,则3∠等于( ) A .85 B .95 C .105 D .1153.已知一元二次方程2210x x --=的两根分别为m ,n ,则m n +的值为( )A .2-B .1-C .1D .24.如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,若2AB =,60ABC ∠=,则BD 的长为( )A .2B .3 CD.5若小丽需要购买3个商品A 和2个商品B ,则她要花费( ) A .64元B .65元C .66元D .67元6.已知一次函数1y ax c =+和反比例函数2by x=的图象如图所示,则二次函数23y ax bx c =++的大致图象是( )ABC D 7.不等式组,3x a x >⎧⎨<⎩的整数解有三个,则a 的取值范围是( ) A .10a -≤<B .10a -<≤C .10a -≤≤D .10a -<<8.2002年8月在北京召开的国际数学家大会会徽取材于我国古代数学家赵爽的弦图,它是由四个全等的直角三角形和中间的小正方形拼成的大正方形,如图所示,如果大正方形的面积是13,小正方形的面积为1,直角三角形的较短直角边长为a ,较长直角边长为b,那么2()a b +的值为( ) A .13 B .19 C .25D .1699.将一个棱长为1的正方体水平放于桌面(始终保持正方体的一个面落在桌面上),则该正方体正视图面积的最大值为( ) A .2B 1CD .110.如图,在等腰直角三角形ABC 中,90C ∠=,点O 是AB 的中点,且AB =将一块直角三角板的直角顶点放在点O 处,始终保毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共26页) 数学试卷 第4页(共26页)持该直角三角板的两直角边分别与AC ,BC 相交,交点分别为D ,E ,则CD CE +等于( )ABC .2D第Ⅱ卷(非选择题 共110分)二、填空题(本大题共6小题,每小题4分,共24分.请把答案填写在题中的横线上) 11.tan 60= .12.分解因式:3220x x x --= .13.在一个不透明的箱子中装有4件同型号的产品,其中合格品3件、不合格品1件,现从这4件产品中随机抽取2件检测,则抽到的都是合格品的概率是 . 14.如图,在ACB △中,50BAC ∠=,2AC =,3AB =,现将ACB △绕点A 逆时针旋转50得到11AC B △,则阴影部分的面积为 .15.如图,点A 是反比例函数11y x=(0)x >图象上一点,过点A 作x 轴的平行线,交反比例函数2ky x=(0)x >的图象于点B ,连接OA ,OB ,若OAB △的面积为2,则k 的值为 .16.如图,在平面直角坐标系xOy 中,矩形OABC 的边OA ,OC 分别在x 轴和y 轴上,3OC =,OA =D 是BC 的中点,将OCD △沿直线OD 折叠后得到OGD △,延长OG 交AB 于点E ,连接DE ,则点G 的坐标为 .三、解答题(本大题共8小题,共86分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分8分)计算:201()(π 3.14)2|2cos302-+--.18.(本小题满分10分)先化简:22111()21x x x x x x x-+÷--+,然后x 在1-,0,1,2四个数中选一个你认为合适的数代入求值.19.(本小题满分8分) 解方程:214111x x x ++=--.20.(本小题满分12分)黔东南州某中学为了解本校学生平均每天的课外学习时间情况,随机抽取部分学生进行问卷调查,并将调查结果分为A ,B ,C ,D 四个等级,设学习时间为t (小时),:1A t <,:1 1.5B t ≤<,:1.52C t ≤<,:2D t ≥,根据调查结果绘制了如图所示的两幅不完整的统计图.请你根据图中信息解答下列问题:数学试卷 第5页(共26页) 数学试卷 第6页(共26页)(1)本次抽样调查共抽取了多少名学生?并将条形统计图补充完整; (2)本次抽样调查中,学习时间的中位数落在哪个等级内? (3)表示B 等级的扇形圆心角α的度数是多少?(4)在此次问卷调查中,甲班有2人平均每天课外学习时间超过2小时,乙班有3人平均每天课外学习时间超过2小时,若从这5人中任选2人去参加座谈,试用列表或画树状图的方法求选出的2人来自不同班级的概率.21.(本小题满分10分)黔东南州某校吴老师组织九(1)班同学开展数学活动,带领同学们测量学校附近一电线杆的高.已知电线杆直立于地面上,某天在太阳光的照射下,电线杆的影子(折线BCD )恰好落在水平地面和斜坡上,在D 处测得电线杆顶端A 的仰角为30,在C 处测得电线杆顶端A 得仰角为45,斜坡与地面成60角,4m CD =,请你根据这些数据求电线杆的高()AB .(结果精确到1m ,1.41.7).22.(本小题满分12分) 如图,AB 是O 的直径,点P 在BA 的延长线上,弦CD AB ⊥,垂足为E ,且2PC PE PO =.(1)求证:PC 是O 的切线.(2)若12OE EA =::,6PA =,求O 的半径.23.(本小题满分12分)凯里市某文具店某种型号的计算器每只进价12元,售价20元,多买优惠,优惠方法是:凡是一次买10只以上的,每多买一只,所买的的全部计算器每只就降价0.1元,例如:某人18只计算器,于是每只只降价0.1(1810)0.8⨯-=(元),因此所买的18只计算器都按每只19.2元的价格购买,但是每只计算器的最低售价为16元. (1)求一次至少购买多少只计算器,才能以最低价购买?(2)写出该文具店一次销售(0)x x >1只时,所获利润y (元)与x (只)之间的函数关系式,并写出自变量x 的取值范围;(3)一天,甲顾客购买了46只,乙顾客购买了50只,店主发现卖46只赚的钱反而比卖50只赚的钱多,请你说明发生这一现象的原因;当1050x <≤时,为了获得最大利润,店家一次应卖多少只?这时的售价是多少?24.(本小题满分14分)如图,直线3y x =-+与x 轴、y 轴分别相交于点B ,C ,经过B ,C 两点的抛物线2y ax bx c =++与x 轴的另一个交点为A ,顶点为P ,且对称轴为直线2x =.(1)求该抛物线的解析式;(2)连接PB ,PC ,求PBC ∆的面积;(3)连接AC ,在x 轴上是否存在一点Q ,使得以点P ,B ,Q 为顶点的三角形与ABC △相似?若存在,求出点Q 的坐标;若不存在,请说明理由.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题------------------------------------数学试卷 第7页(共26页)数学试卷 第8页(共26页)贵州省黔东南州2016年初中毕业升学统一考试数学答案解析第Ⅰ卷一、选择题 1.【答案】A【解析】根据相反数的定义,2-的相反数是2.选A.【提示】根据相反数的意义,只有符号不同的数为相反数,0的相反数是0. 【考点】相反数 2.【答案】B【解析】如下图,因为直线a b ∥,所以43∠=∠。

贵州省黔东南州中考数学试卷

贵州省黔东南州中考数学试卷

一、选择题(每个小题4分,10个小题共40分)1.﹣2的相反数是()A.2 B.﹣2 C. D.﹣2.如图,直线a∥b,若∠1=40°,∠2=55°,则∠3等于()A.85° B.95° C.105°D.115°3.已知一元二次方程x2﹣2x﹣1=0的两根分别为m、n,则m+n的值为()A.﹣2 B.﹣1 C.1 D.24.如图,在菱形ABCD中,对角线AC与BD相交于点O,若AB=2,∠ABC=60°,则BD的长为()A.2 B.3 C. D.25.小明在某商店购买商品A、B共两次,这两次购买商品A、B的数量和费用如表:购买商品A的数量(个)购买商品B的数量(个)购买总费用(元)第一次购物4393第二次购物66162若小丽需要购买3个商品A和2个商品B,则她要花费()A.64元B.65元C.66元D.67元6.已知一次函数y1=ax+c和反比例函数y2=的图象如图所示,则二次函数y3=ax2+bx+c的大致图象是()A. B. C. D.7.不等式组的整数解有三个,则a的取值范围是()A.﹣1≤a<0 B.﹣1<a≤0 C.﹣1≤a≤0 D.﹣1<a<08.2002年8月在北京召开的国际数学家大会会徽取材于我国古代数学家赵爽的弦图,它是由四个全等的直角三角形和中间的小正方形拼成的大正方形,如图所示,如果大正方形的面积是13,小正方形的面积为1,直角三角形的较短直角边长为a,较长直角边长为b,那么(a+b)2的值为()A.13 B.19 C.25 D.1699.将一个棱长为1的正方体水平放于桌面(始终保持正方体的一个面落在桌面上),则该正方体正视图面积的最大值为()A.2 B. +1 C. D.110.如图,在等腰直角△ABC中,∠C=90°,点O是AB的中点,且AB=,将一块直角三角板的直角顶点放在点O处,始终保持该直角三角板的两直角边分别与AC、BC相交,交点分别为D、E,则CD+CE=()A. B. C.2 D.二、填空题(每个小题4分,6个小题共24分)11.tan60°=.12.分解因式:x3﹣x2﹣20x= .13.在一个不透明的箱子中装有4件同型号的产品,其中合格品3件、不合格品1件,现在从这4件产品中随机抽取2件检测,则抽到的都是合格品的概率是.14.如图,在△ACB中,∠BAC=50°,AC=2,AB=3,现将△ACB绕点A逆时针旋转50°得到△AC1B1,则阴影部分的面积为.15.如图,点A是反比例函数y1=(x>0)图象上一点,过点A作x轴的平行线,交反比例函数y2=(x>0)的图象于点B,连接OA、OB,若△OAB的面积为2,则k的值为.16.如图,在平面直角坐标系xOy中,矩形OABC的边OA、OC分别在x轴和y轴上,OC=3,OA=2,D是BC的中点,将△OCD沿直线OD折叠后得到△OGD,延长OG交AB于点E,连接DE,则点G的坐标为.三、解答题(8个小题,共86分)17.计算:()﹣2+(π﹣)0﹣||﹣2cos30°.18.先化简:•(x),然后x在﹣1,0,1,2四个数中选一个你认为合适的数代入求值.19.解方程: +=1.20.黔东南州某中学为了解本校学生平均每天的课外学习实践情况,随机抽取部分学生进行问卷调查,并将调查结果分为A,B,C,D四个等级,设学生时间为t(小时),A:t<1,B:1≤t<,C:≤t<2,D:t≥2,根据调查结果绘制了如图所示的两幅不完整的统计图.请你根据图中信息解答下列问题:(1)本次抽样调查共抽取了多少名学生?并将条形统计图补充完整;(2)本次抽样调查中,学习时间的中位数落在哪个等级内?(3)表示B等级的扇形圆心角α的度数是多少?(4)在此次问卷调查中,甲班有2人平均每天课外学习时间超过2小时,乙班有3人平均每天课外学习时间超过2小时,若从这5人中任选2人去参加座谈,试用列表或化树状图的方法求选出的2人来自不同班级的概率.21.黔东南州某校吴老师组织九(1)班同学开展数学活动,带领同学们测量学校附近一电线杆的高.已知电线杆直立于地面上,某天在太阳光的照射下,电线杆的影子(折线BCD)恰好落在水平地面和斜坡上,在D处测得电线杆顶端A的仰角为30°,在C处测得电线杆顶端A得仰角为45°,斜坡与地面成60°角,CD=4m,请你根据这些数据求电线杆的高(AB).(结果精确到1m,参考数据:≈,≈)22.如图,AB是⊙O的直径,点P在BA的延长线上,弦CD⊥AB,垂足为E,且PC2=PE•PO.(1)求证:PC是⊙O的切线.(2)若OE:EA=1:2,PA=6,求⊙O的半径.23.凯里市某文具店某种型号的计算器每只进价12元,售价20元,多买优惠,优势方法是:凡是一次买10只以上的,每多买一只,所买的全部计算器每只就降价元,例如:某人买18只计算器,于是每只降价×(18﹣10)=(元),因此所买的18只计算器都按每只元的价格购买,但是每只计算器的最低售价为16元.(1)求一次至少购买多少只计算器,才能以最低价购买?(2)求写出该文具店一次销售x(x>10)只时,所获利润y(元)与x(只)之间的函数关系式,并写出自变量x的取值范围;(3)一天,甲顾客购买了46只,乙顾客购买了50只,店主发现卖46只赚的钱反而比卖50只赚的钱多,请你说明发生这一现象的原因;当10<x≤50时,为了获得最大利润,店家一次应卖多少只?这时的售价是多少?24.如图,直线y=﹣x+3与x轴、y轴分别相交于点B、C,经过B、C两点的抛物线y=ax2+bx+c 与x轴的另一个交点为A,顶点为P,且对称轴为直线x=2.(1)求该抛物线的解析式;(2)连接PB、PC,求△PBC的面积;(3)连接AC,在x轴上是否存在一点Q,使得以点P,B,Q为顶点的三角形与△ABC相似?若存在,求出点Q的坐标;若不存在,请说明理由.2016年贵州省黔东南州中考数学试卷参考答案与试题解析一、选择题(每个小题4分,10个小题共40分)1.﹣2的相反数是()A.2 B.﹣2 C. D.﹣【考点】相反数.【分析】根据相反数的意义,只有符号不同的数为相反数.【解答】解:根据相反数的定义,﹣2的相反数是2.故选:A.2.如图,直线a∥b,若∠1=40°,∠2=55°,则∠3等于()A.85° B.95° C.105°D.115°【考点】平行线的性质.【分析】根据平行线的性质得出∠4=∠3,然后根据三角形外角的性质即可求得∠3的度数.【解答】解:∵直线a∥b,∴∠4=∠3,∵∠1+∠2=∠4,∴∠3=∠1+∠2=95°.故选B.3.已知一元二次方程x2﹣2x﹣1=0的两根分别为m、n,则m+n的值为()A.﹣2 B.﹣1 C.1 D.2【考点】根与系数的关系.【分析】根据一元二次方程的系数结合根与系数的关系即可得出m+n的值,由此即可得出结论.【解答】解:∵方程x2﹣2x﹣1=0的两根分别为m、n,∴m+n=﹣=2.故选D.4.如图,在菱形ABCD中,对角线AC与BD相交于点O,若AB=2,∠ABC=60°,则BD的长为()A.2 B.3 C. D.2【考点】菱形的性质.【分析】首先根据菱形的性质知AC垂直平分BD,再证出△ABC是正三角形,由三角函数求出BO,即可求出BD的长.【解答】解:∵四边形ABCD菱形,∴AC⊥BD,BD=2BO,∵∠ABC=60°,∴△ABC是正三角形,∴∠BAO=60°,∴BO=sin60°•AB=2×=,∴BD=2.故选:D.5.小明在某商店购买商品A、B共两次,这两次购买商品A、B的数量和费用如表:购买商品A的数量(个)购买商品B的数量(个)购买总费用(元)第一次购物4393第二次购物66162若小丽需要购买3个商品A和2个商品B,则她要花费()A.64元B.65元C.66元D.67元【考点】二元一次方程组的应用.【分析】设商品A的标价为x元,商品B的标价为y元,由题意得等量关系:①4个A的花费+3个B的花费=93元;②6个A的花费+6个B的花费=162元,根据等量关系列出方程组,再解即可.【解答】解:设商品A的标价为x元,商品B的标价为y元,根据题意,得,解得:.答:商品A的标价为12元,商品B的标价为15元;所以3×12+2×15=66元,故选C6.已知一次函数y1=ax+c和反比例函数y2=的图象如图所示,则二次函数y3=ax2+bx+c的大致图象是()A. B. C. D.【考点】反比例函数的图象;一次函数的图象;二次函数的图象.【分析】根据一次函数与反比例函数图象找出a、b、c的正负,再根据抛物线的对称轴为x=﹣,找出二次函数对称轴在y轴左侧,比对四个选项的函数图象即可得出结论.【解答】解:∵一次函数y1=ax+c图象过第一、二、四象限,∴a<0,c>0,∴二次函数y3=ax2+bx+c开口向下,与y轴交点在x轴上方;∵反比例函数y2=的图象在第二、四象限,∴b<0,∴﹣<0,∴二次函数y3=ax2+bx+c对称轴在y轴左侧.满足上述条件的函数图象只有B选项.故选B.7.不等式组的整数解有三个,则a的取值范围是()A.﹣1≤a<0 B.﹣1<a≤0 C.﹣1≤a≤0 D.﹣1<a<0【考点】一元一次不等式组的整数解.【分析】根据不等式组的整数解有三个,确定出a的范围即可.【解答】解:不等式组的解集为a<x<3,由不等式组的整数解有三个,即x=0,1,2,得到﹣1≤a<0,故选A8.2002年8月在北京召开的国际数学家大会会徽取材于我国古代数学家赵爽的弦图,它是由四个全等的直角三角形和中间的小正方形拼成的大正方形,如图所示,如果大正方形的面积是13,小正方形的面积为1,直角三角形的较短直角边长为a,较长直角边长为b,那么(a+b)2的值为()A.13 B.19 C.25 D.169【考点】勾股定理的证明.【分析】根据题意,结合图形求出ab与a2+b2的值,原式利用完全平方公式化简后代入计算即可求出值.【解答】解:根据题意得:c2=a2+b2=13,4×ab=13﹣1=12,即2ab=12,则(a+b)2=a2+2ab+b2=13+12=25,故选C9.将一个棱长为1的正方体水平放于桌面(始终保持正方体的一个面落在桌面上),则该正方体正视图面积的最大值为()A.2 B. +1 C. D.1【考点】简单几何体的三视图.【分析】先求得正方体的一个面的上的对角线的长度,然后可求得正方体视图面积的最大值.【解答】解:正方体正视图为正方形或矩形.∵正方体的棱长为1,∴边长为1.∴每个面的对角线的长为=.∴正方体的正视图(矩形)的长的最大值为.∵始终保持正方体的一个面落在桌面上,∴正视图(矩形)的宽为1.∴最大值面积=1×=.故选:C.10.如图,在等腰直角△ABC中,∠C=90°,点O是AB的中点,且AB=,将一块直角三角板的直角顶点放在点O处,始终保持该直角三角板的两直角边分别与AC、BC相交,交点分别为D、E,则CD+CE=()A. B. C.2 D.【考点】全等三角形的判定与性质;等腰直角三角形.【分析】连接OC构建全等三角形,证明△ODC≌△OEB,得DC=BE;把CD+CE转化到同一条线段上,即求BC的长;通过等腰直角△ABC中斜边AB的长就可以求出BC=,则CD+CE=AB=.【解答】解:连接OC,∵等腰直角△ABC中,AB=,∴∠B=45°,∴cos∠B=,∴BC=×cos45°=×=,∵点O是AB的中点,∴OC=AB=OB,OC⊥AB,∴∠COB=90°,∵∠DOC+∠COE=90°,∠COE+∠EOB=90°,∴∠DOC=∠EOB,同理得∠ACO=∠B,∴△ODC≌△OEB,∴DC=BE,∴CD+CE=BE+CE=BC=,故选B.二、填空题(每个小题4分,6个小题共24分)11.tan60°=.【考点】特殊角的三角函数值.【分析】根据特殊角的三角函数值直接得出答案即可.【解答】解:tan60°的值为.故答案为:.12.分解因式:x3﹣x2﹣20x= x(x+4)(x﹣5).【考点】因式分解-十字相乘法等;因式分解-提公因式法.【分析】先提取公因式,再利用十字相乘法把原式因式分解即可.【解答】解:原式=x(x2﹣x﹣20)=x(x+4)(x﹣5).故答案为:x(x+4)(x﹣5).13.在一个不透明的箱子中装有4件同型号的产品,其中合格品3件、不合格品1件,现在从这4件产品中随机抽取2件检测,则抽到的都是合格品的概率是.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与抽到的都是合格品的情况,再利用概率公式求解即可求得答案.【解答】解:画树状图得:∵共有12种等可能的结果,抽到的都是合格品的有6种情况,∴抽到的都是合格品的概率是: =.故答案为:.14.如图,在△ACB中,∠BAC=50°,AC=2,AB=3,现将△ACB绕点A逆时针旋转50°得到△AC1B1,则阴影部分的面积为π.【考点】旋转的性质.【分析】根据旋转的性质可知,由此可得S阴影=,根据扇形面积公式即可得出结论.【解答】解:∵,∴S阴影==πAB2=π.故答案为:π.15.如图,点A是反比例函数y1=(x>0)图象上一点,过点A作x轴的平行线,交反比例函数y2=(x>0)的图象于点B,连接OA、OB,若△OAB的面积为2,则k的值为 5 .【考点】反比例函数系数k的几何意义.【分析】延长BA,与y轴交于点C,由AB与x轴平行,得到BC垂直于y轴,利用反比例函数k的几何意义表示出三角形AOC与三角形BOC面积,由三角形BOC面积减去三角形AOC 面积表示出三角形AOB面积,将已知三角形AOB面积代入求出k的值即可.【解答】解:延长BA,与y轴交于点C,∵AB∥x轴,∴BC⊥y轴,∵A是反比例函数y1=(x>0)图象上一点,B为反比例函数y2=(x>0)的图象上的点,∴S△AOC =,S△BOC=,∵S△AOB=2,即﹣=2,解得:k=5,故答案为:516.如图,在平面直角坐标系xOy中,矩形OABC的边OA、OC分别在x轴和y轴上,OC=3,OA=2,D是BC的中点,将△OCD沿直线OD折叠后得到△OGD,延长OG交AB于点E,连接DE,则点G的坐标为(,).【考点】翻折变换(折叠问题);坐标与图形性质;矩形的性质.【分析】过点G作GF⊥OA于点F,根据全等直角三角形的判定定理(HL)证出Rt△DGE≌Rt △DBE,从而得出BE=GE,根据勾股定理可列出关于AE长度的方程,解方程可得出AE的长度,再根据平行线的性质即可得出比例关系,代入数据即可求出点G的坐标.【解答】解:过点G作GF⊥OA于点F,如图所示.∵点D为BC的中点,∴DC=DB=DG,∵四边形OABC是矩形,∴AB=OC,OA=BC,∠C=∠OGD=∠ABC=90°.在Rt△DGE和Rt△DBE中,,∴Rt△DGE≌Rt△DBE(HL),∴BE=GE.设AE=a,则BE=3﹣a,DE==,OG=OC=3,∴OE=OG++GE,即=3+3﹣a,解得:a=1,∴AE=1,OE=5.∵GF⊥OA,EA⊥OA,∴GF∥EA,∴,∴OF===,GF===,∴点G的坐标为(,).故答案为:(,).三、解答题(8个小题,共86分)17.计算:()﹣2+(π﹣)0﹣||﹣2cos30°.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】本题涉及零指数幂、负整数指数幂、特殊角的三角函数值、二次根式化简四个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则计算.【解答】解:原式=4+1﹣(2﹣)﹣2×=5﹣2+﹣=3.18.先化简:•(x),然后x在﹣1,0,1,2四个数中选一个你认为合适的数代入求值.【考点】分式的化简求值.【分析】利用分解因式、完全平方公式以及通分法化简原分式,再分析给定的数据中使原分式有意义的x的值,将其代入化简后的算式中即可得出结论.【解答】解:原式=••,=•,=x+1.∵在﹣1,0,1,2四个数中,使原式有意义的值只有2,∴当x=2时,原式=2+1=3.19.解方程: +=1.【考点】解分式方程.【分析】观察可得最简公分母是(x﹣1)(x+1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:方程的两边同乘(x﹣1)(x+1),得(x+1)2﹣4=(x﹣1)(x+1),解得x=1.检验:把x=1代入(x﹣1)(x+1)=0.所以原方程的无解.20.黔东南州某中学为了解本校学生平均每天的课外学习实践情况,随机抽取部分学生进行问卷调查,并将调查结果分为A,B,C,D四个等级,设学生时间为t(小时),A:t<1,B:1≤t <,C :≤t <2,D :t ≥2,根据调查结果绘制了如图所示的两幅不完整的统计图.请你根据图中信息解答下列问题:(1)本次抽样调查共抽取了多少名学生?并将条形统计图补充完整;(2)本次抽样调查中,学习时间的中位数落在哪个等级内?(3)表示B 等级的扇形圆心角α的度数是多少?(4)在此次问卷调查中,甲班有2人平均每天课外学习时间超过2小时,乙班有3人平均每天课外学习时间超过2小时,若从这5人中任选2人去参加座谈,试用列表或化树状图的方法求选出的2人来自不同班级的概率.【考点】列表法与树状图法;扇形统计图;条形统计图;中位数.【分析】(1)根据B 类的人数和所占的百分比即可求出总数;求出C 的人数从而补全统计图;(2)根据中位数定义:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数可得答案;(3)用B 的人数除以总人数再乘以360°,即可得到圆心角α的度数;(4)先设甲班学生为A 1,A 2,乙班学生为B 1,B 2,B 3根据题意画出树形图,再根据概率公式列式计算即可.【解答】解:(1)共调查的中学生数是:80÷40%=200(人),C 类的人数是:200﹣60﹣80﹣20=40(人),如图1:(2)本次抽样调查中,学习时间的中位数落在C 等级内;(3)根据题意得:α=×360°=54°,(4)设甲班学生为A 1,A 2,乙班学生为B 1,B 2,B 3,一共有20种等可能结果,其中2人来自不同班级共有12种,∴P (2人来自不同班级)==.21.黔东南州某校吴老师组织九(1)班同学开展数学活动,带领同学们测量学校附近一电线杆的高.已知电线杆直立于地面上,某天在太阳光的照射下,电线杆的影子(折线BCD)恰好落在水平地面和斜坡上,在D处测得电线杆顶端A的仰角为30°,在C处测得电线杆顶端A得仰角为45°,斜坡与地面成60°角,CD=4m,请你根据这些数据求电线杆的高(AB).(结果精确到1m,参考数据:≈,≈)【考点】解直角三角形的应用-方向角问题;解直角三角形的应用-仰角俯角问题.【分析】延长AD交BC的延长线于G,作DH⊥BG于H,由三角函数求出求出CH、DH的长,得出CG,设AB=xm,根据正切的定义求出BG,得出方程,解方程即可.【解答】解:延长AD交BC的延长线于G,作DH⊥BG于H,如图所示:在Rt△DHC中,∠DCH=60°,CD=4,则CH=CD•cos∠DCH=4×cos60°=2,DH=CD•sin∠DCH=4×sin60°=2,∵DH⊥BG,∠G=30°,∴HG===6,∴CG=CH+HG=2+6=8,设AB=xm,∵AB⊥BG,∠G=30°,∠BCA=45°,∴BC=x,BG===x,∵BG﹣BC=CG,∴x﹣x=8,解得:x≈11(m);答:电线杆的高为11m.22.如图,AB是⊙O的直径,点P在BA的延长线上,弦CD⊥AB,垂足为E,且PC2=PE•PO.(1)求证:PC是⊙O的切线.(2)若OE:EA=1:2,PA=6,求⊙O的半径.【考点】相似三角形的判定与性质;垂径定理;切线的判定.【分析】(1)连结OC,如图,由PC2=PE•PO和公共角可判断△PCE∽△POC,则∠PEC=∠PCO=90°,然后根据切线的判定定理可判断PC是⊙O的切线;(2)设OE=x,则EA=2x,OA=OC=3x,证明△OCE∽△OPC,利用相似比可表示出OP,则可列方程3x+6=9x,然后解出x即可得到⊙O的半径.【解答】(1)证明:连结OC,如图,∵CD⊥AB,∴∠PEC=90°,∵PC2=PE•PO,∴PC:PO=PE:PC,而∠CPE=∠OPC,∴△PCE∽△POC,∴∠PEC=∠PCO=90°,∴OC⊥PC,∴PC是⊙O的切线;(2)解:设OE=x,则EA=2x,OA=OC=3x,∵∠COE=∠POC,∠OEC=∠OCP,∴△OCE∽△OPC,∴OC:OP=OE:OC,即3x:OP=x:3x,解得OP=9x,∴3x+6=9x,解得x=1,∴OC=3,即⊙O的半径为3.23.凯里市某文具店某种型号的计算器每只进价12元,售价20元,多买优惠,优势方法是:凡是一次买10只以上的,每多买一只,所买的全部计算器每只就降价元,例如:某人买18只计算器,于是每只降价×(18﹣10)=(元),因此所买的18只计算器都按每只元的价格购买,但是每只计算器的最低售价为16元.(1)求一次至少购买多少只计算器,才能以最低价购买?(2)求写出该文具店一次销售x(x>10)只时,所获利润y(元)与x(只)之间的函数关系式,并写出自变量x的取值范围;(3)一天,甲顾客购买了46只,乙顾客购买了50只,店主发现卖46只赚的钱反而比卖50只赚的钱多,请你说明发生这一现象的原因;当10<x≤50时,为了获得最大利润,店家一次应卖多少只?这时的售价是多少?【考点】二次函数的应用.【分析】(1)设一次购买x只,由于凡是一次买10只以上的,每多买一只,所买的全部计算器每只就降低元,而最低价为每只16元,因此得到20﹣(x﹣10)=16,解方程即可求解;(2)由于根据(1)得到x≤50,又一次销售x(x>10)只,因此得到自变量x的取值范围,然后根据已知条件可以得到y与x的函数关系式;(3)首先把函数变为y=﹣+9x=﹣(x﹣45)2+,然后可以得到函数的增减性,再结合已知条件即可解决问题.【解答】解:(1)设一次购买x只,则20﹣(x﹣10)=16,解得:x=50.答:一次至少买50只,才能以最低价购买;(2)当10<x≤50时,y=[20﹣(x﹣10)﹣12]x=﹣+9x,当x>50时,y=(16﹣12)x=4x;综上所述:y=;(3)y=﹣+9x=﹣(x﹣45)2+,①当10<x≤45时,y随x的增大而增大,即当卖的只数越多时,利润更大.②当45<x≤50时,y随x的增大而减小,即当卖的只数越多时,利润变小.且当x=46时,y1=,当x=50时,y2=200.y 1>y2.即出现了卖46只赚的钱比卖50只赚的钱多的现象.当x=45时,最低售价为20﹣(45﹣10)=(元),此时利润最大.24.如图,直线y=﹣x+3与x轴、y轴分别相交于点B、C,经过B、C两点的抛物线y=ax2+bx+c 与x轴的另一个交点为A,顶点为P,且对称轴为直线x=2.(1)求该抛物线的解析式;(2)连接PB、PC,求△PBC的面积;(3)连接AC,在x轴上是否存在一点Q,使得以点P,B,Q为顶点的三角形与△ABC相似?若存在,求出点Q的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)根据二次函数的对称性,已知对称轴的解析式以及B点的坐标,即可求出A的坐标,利用抛物线过A、B、C三点,可用待定系数法来求函数的解析式(2)首先利用各点坐标得出得出△PBC是直角三角形,进而得出答案;(3)本题要先根据抛物线的解析式求出顶点P的坐标,然后求出BP的长,进而分情况进行讨论:①当=,∠PBQ=∠ABC=45°时,根据A、B的坐标可求出AB的长,根据B、C的坐标可求出BC的长,已经求出了PB的长度,那么可根据比例关系式得出BQ的长,即可得出Q的坐标.②当=,∠QBP=∠ABC=45°时,可参照①的方法求出Q的坐标.③当Q在B点右侧,即可得出∠PBQ≠∠BAC,因此此种情况是不成立的,综上所述即可得出符合条件的Q的坐标.【解答】解:(1)∵直线y=﹣x+3与x轴相交于点B,∴当y=0时,x=3,∴点B的坐标为(3,0),∵y=﹣x+3过点C,易知C(0,3),∴c=3.又∵抛物线过x轴上的A,B两点,且对称轴为x=2,根据抛物线的对称性,∴点A的坐标为(1,0).又∵抛物线y=ax2+bx+c过点A(1,0),B(3,0),∴解得:∴该抛物线的解析式为:y=x2﹣4x+3;(2)如图1,∵y=x2﹣4x+3=(x﹣2)2﹣1,又∵B(3,0),C(0,3),∴PC===2,PB==,∴BC===3,又∵PB2+BC2=2+18=20,PC2=20,∴PB2+BC2=PC2,∴△PBC是直角三角形,∠PBC=90°,∴S=PB•BC=××3=3;△PBC(3)如图2,由y=x2﹣4x+3=(x﹣2)2﹣1,得P(2,﹣1),设抛物线的对称轴交x轴于点M,∵在Rt△PBM中,PM=MB=1,∴∠PBM=45°,PB=.由点B(3,0),C(0,3)易得OB=OC=3,在等腰直角三角形OBC中,∠ABC=45°,由勾股定理,得BC=3.假设在x轴上存在点Q,使得以点P,B,Q为顶点的三角形与△ABC相似.①当=,∠PBQ=∠ABC=45°时,△PBQ ∽△ABC . 即=,解得:BQ=3,又∵BO=3,∴点Q 与点O 重合,∴Q 1的坐标是(0,0).②当=,∠QBP=∠ABC=45°时,△QBP ∽△ABC . 即=,解得:QB=.∵OB=3,∴OQ=OB ﹣QB=3﹣,∴Q 2的坐标是(,0).③当Q 在B 点右侧,则∠PBQ=180°﹣45°=135°,∠BAC <135°, 故∠PBQ ≠∠BAC .则点Q 不可能在B 点右侧的x 轴上,综上所述,在x 轴上存在两点Q 1(0,0),Q 2(,0), 能使得以点P ,B ,Q 为顶点的三角形与△ABC 相似.2016年8月10日。

2016年贵州省黔南州中考真题数学

2016年贵州省黔南州中考真题数学

2016年贵州省黔南州中考真题数学一、选择题(共13小题,每小题4分,满分52分)1.一组数据:-5,-2,0,3,则该组数据中最大的数为( )A.-5B.-2C.0D.3解析:∵正数>0>负数,∴3>0>-2>-5,∴最大的数为3.答案:D.2.下面四个图形中,∠1=∠2一定成立的是( )A.B.C.D.解析:A、∠1、∠2是邻补角,∠1+∠2=180°;故本选项错误;B、∠1、∠2是对顶角,根据其定义;故本选项正确;C、根据平行线的性质:同位角相等,同旁内角互补,内错角相等;故本选项错误;D、根据三角形的外角一定大于与它不相邻的内角;故本选项错误.答案:B.3.如图是一个三棱柱笔筒,则该物体的主视图是( )A.B.C.D.解析:如图是一个三棱柱笔筒,则该物体的主视图是答案:C.4. 一组数据:1,-1,3,x ,4,它有唯一的众数是3,则这组数据的中位数为( ) A.-1 B.1 C.3 D.4解析:∵数据:1,-1,3,x ,4有唯一的众数是3, ∴x=3,∴这组数据按大小排序后为:-1,1,3,3,4, ∴这组数据的中位数为3. 答案:C.5. 下列运算正确的是( ) A.a 3·a=a 3B.(-2a 2)3=-6a 5C.a 5+a 5=a 10D.8a 5b 2÷2a 3b=4a 2b解析:根据同底数幂的乘法、积的乘方、合并同类项以及多项式的除法法则判断即可. 答案:D.6. 下列说法中正确的是( )化简后的结果是2B.9的平方根为3D.-27没有立方根解析:根据平方根、立方根的定义、最简二次根式的定义、二次根式的化简法则一一判断即可.答案:A.7. 函数y =x 的取值范围在数轴上表示正确的是( ) A. B. C.D. 解析:根据题意得,x-2>0, 解得:x >2. 答案:B.8. 王杰同学在解决问题“已知A 、B 两点的坐标为A(3,-2)、B(6,-5)求直线AB 关于x 轴的对称直线A ′B ′的解析式”时,解法如下:先是建立平面直角坐标系(如图),标出A 、B 两点,并利用轴对称性质求出A ′、B ′的坐标分别为A ′(3,2),B ′(6,5);然后设直线A ′B ′的解析式为y=kx+b(k ≠0),并将A ′(3,2)、B ′(6,5)代入y=kx+b 中,得方程组3265k b k b +=⎧⎨+=⎩,解得11k b =⎧⎨=-⎩,最后求得直线A ′B ′的解析式为y=x-1.则在解题过程中他运用到的数学思想是( )A.分类讨论与转化思想B.分类讨论与方程思想C.数形结合与整体思想D.数形结合与方程思想解析:根据轴对称的性质属于形,点的坐标属于数,可知运用了数形结合的数学思想;根据解方程组,求得未知数的值,可知运用了方程思想. 答案:D.9. 如图,O 是坐标原点,菱形OABC 的顶点A 的坐标为(-3,4),顶点C 在x 轴的负半轴上,函数y=kx(x <0)的图象经过顶点B ,则k 的值为( )A.-12B.-27C.-32D.-36解析:根据点C的坐标以及菱形的性质求出点B的坐标,然后利用待定系数法求出k的值即可.答案:C.10.如图,AB是⊙O的直径,弦CD⊥AB于点E,∠CDB=30°,⊙O的半径为5cm,则圆心O 到弦CD的距离为( )A.52cmB.3cmD.6cm解析:根据垂径定理知圆心O到弦CD的距离为OE;由圆周角定理知∠COB=2∠CDB=60°,已知半径OC的长,即可在Rt△OCE中求OE的长度.答案:A.11.1y+是关于x的一次函数,则一元二次方程kx2+2x+1=0的根的情况为( )A.没有实数根B.有一个实数根C.有两个不相等的实数根D.有两个相等的实数根解析:由一次函数的定义可求得k的取值范围,再根据一元二次方程的判别式可求得答案. 答案:A.12.如图,边长分别为1和2的两个等边三角形,开始它们在左边重合,大三角形固定不动,然后把小三角形自左向右平移直至移出大三角形外停止.设小三角形移动的距离为x,两个三角形重叠面积为y,则y关于x的函数图象是( )A.B.C.D.解析:根据题目提供的条件可以求出函数的解析式,根据解析式判断函数的图象的形状. 答案:B.13.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论:①b<0,c>0;②a+b+c <0;③方程的两根之和大于0;④a-b+c<0,其中正确的个数是( )A.4个B.3个C.2个D.1个解析:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.答案:B.二、填空题(共6小题,每小题4分,满分24分)14.若ab=2,a-b=-1,则代数式a2b-ab2的值等于_____.解析:∵ab=2,a-b=-1, ∴a 2b-ab 2=ab(a-b)=2×(-1)=-2. 答案:-2.15. π)0-(13)-1+|-2|-cos30°=_____.解析:原式2=5+2.答案:16. 如图,在△ABC 中,∠C=90°,∠B=30°,AB 的垂直平分线ED 交AB 于点E ,交BC 于点D ,若CD=3,则BD 的长为_____.解析:∵DE 是AB 的垂直平分线, ∴AD=BD ,∴∠DAE=∠B=30°, ∴∠ADC=60°, ∴∠CAD=30°,∴AD 为∠BAC 的角平分线, ∵∠C=90°,DE ⊥AB , ∴DE=CD=3, ∵∠B=30°, ∴BD=2DE=6. 答案:6.17. 如图,矩形ABCD 的对角线AC 的中点为O ,过点O 作OE ⊥BC 于点E ,连接OD ,已知AB=6,BC=8,则四边形OECD 的周长为_____.解析:先根据勾股定理求得AC 长,再根据平行线分线段成比例定理,求得OE 、CE 的长,最后计算四边形OECD 的周长. 答案:18.18.在平面直角坐标系中,对于平面内任一点(a,b),若规定以下三种变换:①△(a,b)=(-a,b);②○(a,b)=(-a,-b);③Ω(a,b)=(a,-b),按照以上变换例如:△(○(1,2))=(1,-2),则○(Ω(3,4))等于_____.解析:○(Ω(3,4))=○(3,-4)=(-3,4).答案:(-3,4).19.为解决都匀市停车难的问题,计划在一段长为56米的路段规划处如图所示的停车位,已知每个车位是长为5米,宽为2米的矩形,且矩形的宽与路的边缘成45°角,则该路段最多可以划出_____个这样的停车位.(,结果保留整数)解析:如图,根据三角函数可求BC,CE,设至多可划x个车位,依题意可列不等式2x+(5-2)×≤56,解不等式即可求解.2答案:19.三、解答题(本大题共8小题,满分74分)20.如图所示,正方形网格中,△ABC为格点三角形(即三角形的顶点都在格点上):①把△ABC沿BA方向平移,请在网格中画出当点A移动到点A1时的△A1B1C1;②把△A1B1C1绕点A1按逆时针方向旋转90°后得到△A2B2C2,如果网格中小正方形的边长为1,求点B1旋转到B2的路径长.解析:①根据△ABC沿BA方向平移,在网格中画出当点A移动到点A1时的△A1B1C1即可;②画出△A1B1C1绕点A1按逆时针方向旋转90°后得到△A2B2C2,求出点B1旋转到B2的路径长即可.答案:①如图所示,△A 1B 1C 1为所求三角形;②画出图形,如图所示,∵A 1B 1=,∴点B 1旋转到B 2的路径长l=901802π=.21. 解方程:281242x x x x -=--+. 解析:观察可得最简公分母是(x-2)(x+2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.答案:方程两边乘(x-2)(x+2), 得x(x+2)-8=x-2, x 2+x-6=0,(x+3)(x-2)=0, 解得x 1=-3,x 2=2.经检验:x 1=-3是原方程的根,x 2=2是增根. ∴原方程的根是x=-3.22. “2016国际大数据产业博览会”于5月25日至5月29日在贵阳举行.参展内容为:A-经济和社会发展;B-产业与应用;C-技术与趋势;D-安全和隐私保护;E-电子商务,共五大板块,为了解观众对五大板块的“关注情况”,某机构进行了随机问卷调查,并将调查结果绘制成如下两幅统计图(均不完整),请根据统计图中提供的信息,解答下列问题:(1)本次随机调查了多少名观众?(2)请补全统计图,并求出扇形统计图中“D-安全和隐私保护”所对应的扇形圆心角的度数.(3)据相关报道,本次博览会共吸引力90000名观众前来参观,请估计关注“E-电子商务”的人数是多少?解析:(1)根据A-经济和社会发展在扇形统计图所占的比例和条形图中的数据,得出结论;(2)根据扇形统计图和条形图统计图的对应数据补全统计图;(3)根据样本估计总体,得出结论.答案:(1)随机调查的人数为80÷8%=1000(名);(2)补全图形如图所示,在扇形统计图中“D-安全和隐私保护”所对应的扇形圆心角的度数为20100×360°=72°.(3)∵32100×90000=28800,∴关注“E-电子商务”的人数是28800名.23.为弘扬中华传统文化,黔南州近期举办了中小学生“国学经典大赛”.比赛项目为:A.唐诗;B.宋词;C.论语;D.三字经.比赛形式分“单人组”和“双人组”.(1)小丽参加“单人组”,她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率是多少?(2)小红和小明组成一个小组参加“双人组”比赛,比赛规则是:同一小组的两名队员的比赛项目不能相同,且每人只能随机抽取一次,则恰好小红抽中“唐诗”且小明抽中“宋词”的概率是多少?请用画树状图或;列表的方法进行说明.解析:(1)直接利用概率公式求解;(2)先画树状图展示所有12种等可能的结果数,再找出恰好小红抽中“唐诗”且小明抽中“宋词”的结果数,然后根据概率公式求解.答案:(1)她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率=14;(2)画树状图为:共有12种等可能的结果数,其中恰好小红抽中“唐诗”且小明抽中“宋词”的结果数为1,所以恰好小红抽中“唐诗”且小明抽中“宋词”的概率=1 12.24.已知二次函数y=x2+bx+c的图象与y轴交于点C(0,-6),与x轴的一个交点坐标是A(-2,0).(1)求二次函数的解析式,并写出顶点D的坐标;(2)将二次函数的图象沿x轴向左平移52个单位长度,当 y<0时,求x的取值范围.解析:(1)将点A和点C的坐标代入抛物线的解析式可求得b、c的值,从而得到抛物线的解析式,然后依据配方法可求得抛物线的顶点坐标;(2)依据抛物线的解析式与平移的规划规律,写出平移后抛物线的解析式,然后求得抛物线与x轴的交点坐标,最后依据y<0可求得x的取值范围.答案:(1)∵把C(0,-6)代入抛物线的解析式得:C=-6,把A(-2,0)代入y=x2+bx-6得:b=-1,∴抛物线的解析式为y=x2-x-6.∴y=(x-12)2-254.∴抛物线的顶点坐标D(12,-254).(2)二次函数的图形沿x轴向左平移52个单位长度得:y=(x+2)2-254.令y=0得:(x+2)2-254=0,解得:x1=12,x2=-92.∵a>0,∴当y<0时,x的取值范围是-92<x<12.25.如图,AB是⊙O的直径,点D是AE上一点,且∠BDE=∠CBE,BD与AE交于点F.(1)求证:BC是⊙O的切线;(2)若BD平分∠ABE,求证:DE2=DF·DB;(3)在(2)的条件下,延长ED、BA交于点P,若PA=AO,DE=2,求PD的长.解析:(1)利用圆周角定理得到∠AEB=90°,∠EAB=∠BDE,而∠BDE=∠CBE,则∠CBE+∠ABE=90°,则根据切线的判定方法可判断BC是⊙O的切线;(2)证明△DFE∽△DEB,然后利用相似比可得到结论;(3)连结DE,先证明OD∥BE,则可判断△POD∽△PBE,然后利用相似比可得到关于PD的方程,再解方程求出PD即可.答案:(1)证明:∵AB是⊙O的直径,∴∠AEB=90°,∴∠EAB+∠ABE=90°,∵∠EAB=∠BDE,∠BDE=∠CBE,∴∠CBE+∠ABE=90°,即∠ABC=90°,∴AB⊥BC,∴BC是⊙O的切线;(2)证明:∵BD平分∠ABE,∴∠1=∠2,而∠2=∠AED,∴∠AED=∠1,∵∠FDE=∠EDB,∴△DFE∽△DEB,∴DE:DF=DB:DE,∴DE2=DF·DB;(3)连结OD,如图,∵OD=OB,∴∠2=∠ODB,而∠1=∠2,∴∠ODB=∠1,∴OD∥BE,∴△POD∽△PBE,∴PD PO PE PB=,∵PA=AO,∴PA=AO=BO,∴23PDPE=,即223PDPD=+,∴PD=4.26.都匀某校准备组织学生及家长代表到桂林进行社会实践活动,为便于管理,所有人员必须乘坐同一列高铁,高铁单程票价格如表所示,二等座学生票可打7.5折,已知所有人员都买一等座单程火车票需6175元,都买二等座单程火车票需3150元;如果家长代表与教师的人数之比为2:1.(1)参加社会实践活动的老师、家长代表与学生各有多少人?(2)由于各种原因,二等座单程火车票只能买x张(x<参加社会实践的总人数),其余的须买一等座单程火车票,在保证所有人员都有座位的前提下,请你设计最经济的购票方案,并写出购买单程火车票的总费用y与x之间的函数关系式.(3)在(2)的方案下,请求出当x=30时,购买单程火车票的总费用.解析:(1)设参加社会实践的老师有m人,学生有n人,则学生家长有2m人,若都买二等座单程火车票且花钱最少,则全体学生都需买二等座学生票,根据题意得到方程组,求出方程组的解即可;(2)有两种情况:①当50≤x<65时,学生都买学生票共50张,(x-50)名成年人买二等座火车票,(65-x)名成年人买一等座火车票,得到解析式:y=60×0.75×50+60(x-50)+95(65-x);②当0<x<50时,一部分学生买学生票共x张,其余的学生与家长老师一起购买一等座火车票共(65-x)张,得到解析式是y=-50x+6175;(3)由(2)小题知:当x=30时,y=-50x+6175,代入求解即可求得答案.答案:(1)设参加社会实践的老师有m人,学生有n人,则学生家长有2m人,根据题意得:()()9536175602600.753150 m nm m n+=⎧⎪⎨++⨯=⎪⎩,解得:550mn=⎧⎨=⎩,则2m=10.答:参加社会实践的老师、家长与学生各有5、10与50人.(2)由(1)知所有参与人员总共有65人,其中学生有50人,①当50≤x<65时,最经济的购票方案为:学生都买学生票共50张,(x-50)名成年人买二等座火车票,(65-x)名成年人买一等座火车票.∴火车票的总费用(单程)y与x之间的函数关系式为:y=60×0.75×50+60(x-50)+95(65-x),即y=-35x+5425(50≤x<65);②当0<x <50时,最经济的购票方案为:一部分学生买学生票共x 张,其余的学生与家长老师一起购买一等座火车票共(65-x)张.∴火车票的总费用(单程)y 与x 之间的函数关系式为:y=60×0.75x+95(65-x), 即y=-50x+6175(0<x <50)∴购买单程火车票的总费用y 与x 之间的函数关系式为:y=50617505035542()(55065)x x x x -+⎧⎨-+≤⎩<<<. (3)∵x=30<50,∴y=-50x+6175=-50×30+6185=4675,答:当x=30时,购买单程火车票的总费用为4675元.27. 如图,四边形OABC 是边长为4的正方形,点P 为OA 边上任意一点(与点O 、A 不重合),连接CP ,过点P 作PM ⊥CP 交AB 于点D ,且PM=CP ,过点M 作MN ∥AO ,交BO 于点N ,连结ND 、BM ,设OP=t.(1)求点M 的坐标(用含t 的代数式表示);(2)试判断线段MN 的长度是否随点P 的位置的变化而改变?并说明理由.(3)当t 为何值时,四边形BNDM 的面积最小;(4)在x 轴正半轴上存在点Q ,使得△QMN 是等腰三角形,请直接写出不少于4个符合条件的点Q 的坐标(用含t 的式子表示).解析:(1)作ME ⊥OA 于点E ,要求点M 的坐标只要证明△OPC ≌△EM 即可,根据题目中的条件可证明两个三角形全等,从而可以得到点M 的坐标;(2)首先判断是否变化,然后针对判断结合题目中的条件说明理由即可解答本题;(3)要求t 为何值时,四边形BNDM 的面积最小,只要用含t 的代数式表示出四边形的面积,然后化为顶点式即可解答本题;(4)首先写出符合要求的点Q 的坐标,然后根据写出的点的坐标写出推导过程即可解答本题. 答案:(1)如图1所示,作ME ⊥OA 于点E ,∴∠MEP=∠POC=90°,∵PM⊥CP,∴∠CPM=90°,∴∠OPC+∠MPE=90°,又∵∠OPC+∠PCO=90°,∴∠MPE=∠PCO,∵PM=CP,∴△MPE≌△PCO(AAS),∴PE=CO=4,ME=PO=t,∴OE=4+t,∴点M的坐标为(4+t,t)(0<t<4);(2)线段MN长度不变,理由:∵OA=AB=4,∴点B(4,4),∴直线OB的解析式为:y=x,∵点N在直线OB上,MN∥OA,M(4+t,t),∴点N(t,t),∵MN∥OA,M(4+t,t),∴MN=|(4+t)-t|=4,即MN的长度不变;(3)由(1)知,∠MPE=∠PCO,又∵∠DAP=∠POC=90°,∴△DAP∽△POC,∴AD AP OP OC=,∵OP=t,OC=4,∴AP=4-t,∴44AD tt-=,得AD=()44t t-,∴BD=4-()44t t-=24164t t-+,∵MN∥OA,AB⊥OA,∴MN⊥BD,∵S四边形BNDM=12MN·BD=12×4×24164t t-+=12(t-2)2+6,∴当t=2时,四边形BNDM的面积最小,最小值6;(4)在x轴正半轴上存在点Q,使得△QMN是等腰三角形,此时点Q的坐标为:Q1(t+2,0),Q2,0),Q30)Q4,0)其中(0<t<4),Q50)理由:当(2)可知,OP=t(0<t<4),MN=PE=4,MN∥x轴,所以共分为以下几种请:第一种情况:当MN为底边时,作MN的垂直平分线,与x轴的交点为Q1,如图2所示PQ1=12PE=12MN=2,∴OQ1=t+2,∴Q1(t+2,0)第二种情况:如图3所示,当MN为腰时,以M为圆心,MN的长为半径画弧交x轴于点Q2、Q3,连接MQ2、MQ3,则MQ2=MQ3=4,∴Q2=∴OQ2=OE-Q2∴Q2,0),∵Q3E=Q2E,∵OQ3=OE+Q3∴Q3,0);第三种情况,当MN为腰时,以N为圆心,MN长为半径画圆弧交x轴正半轴于点Q4,当0<t<4所示,则PQ4==∴OQ4=OP+PQ4即Q4,0).当ON=4,此时Q点与O点重合,舍去;当t<4时,如图5,以N为圆心,MN为半径画弧,与x轴的交点为Q4,Q5.Q4的坐标为:Q40).OQ5∴Q5,0)所以,综上所述,当0<t<4时,在x轴的正半轴上存在5个点Q,分别为Q1(t+2,0),Q2(4+t-,0),Q3,0)Q40),Q50)使△QMN是等腰三角形.。

2016年贵州黔东南州中考数学考试含答案

2016年贵州黔东南州中考数学考试含答案

2016年贵州黔东南州中考数学考试含答案————————————————————————————————作者:————————————————————————————————日期:绝密★启用前贵州省黔东南州2016年初中毕业升学统一考试数学本试卷满分150分,考试时间120分钟.第Ⅰ卷(选择题 共40分)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.2-的相反数是( )A .2B .2-C .12D .12-2.如图,直线a b ∥,若140∠=,255∠=,则3∠等于( )A .85B .95C .105D .1153.已知一元二次方程2210x x --=的两根分别为m ,n ,则m n +的值为( )A .2-B .1-C .1D .24.如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,若2AB =,60ABC ∠=,则BD 的长为( )A .2B .3C .3D .235.小明在某商店购买商品A 、B 共两次,这两次购买商品A 、B 的数量和费用如下表.购买商品A 的数量(个) 购买商品B 的数量(个) 购买总费用(元) 第一次购物 4 393第二次购物6 6 162若小丽需要购买3个商品A 和2个商品B ,则她要花费( )A .64元B .65元C .66元D .67元6.已知一次函数1y ax c =+和反比例函数2by x=的图象如图所示,则二次函数23y ax bx c =++的大致图象是( )ABCD7.不等式组,3x a x >⎧⎨<⎩的整数解有三个,则a 的取值范围是( )A .10a -≤<B .10a -<≤C .10a -≤≤D .10a -<<8.2002年8月在北京召开的国际数学家大会会徽取材于我国古代数学家赵爽的弦图,它是由四个全等的直角三角形和中间的小正方形拼成的大正方形,如图所示,如果大正方形的面积是13,小正方形的面积为1,直角三角形的较短直角边长为a ,较长直角边长为b ,那么2()a b +的值为( )毕业学校_____________姓名________________-------------在--------------------此--------------------卷A .13B .19C .25D .1699.将一个棱长为1的正方体水平放于桌面(始终保持正方体的一个面落在桌面上),则该正方体正视图面积的最大值为( ) A .2B .21+C .2D .110.如图,在等腰直角三角形ABC 中,90C ∠=,点O 是AB 的中点,且6AB =,将一块直角三角板的直角顶点放在点O 处,始终保持该直角三角板的两直角边分别与AC ,BC 相交,交点分别为D ,E ,则CD CE +等于( ) A .2B .3C .2D .6第Ⅱ卷(非选择题 共110分)二、填空题(本大题共6小题,每小题4分,共24分.请把答案填写在题中的横线上) 11.tan60= .12.分解因式:3220x x x --= .13.在一个不透明的箱子中装有4件同型号的产品,其中合格品3件、不合格品1件,现从这4件产品中随机抽取2件检测,则抽到的都是合格品的概率是 .14.如图,在ACB △中,50BAC ∠=,2AC =,3AB =,现将ACB △绕点A 逆时针旋转50得到11AC B △,则阴影部分的面积为 .15.如图,点A 是反比例函数11y x=(0)x >图象上一点,过点A 作x 轴的平行线,交反比例函数2ky x=(0)x >的图象于点B ,连接OA ,OB ,若OAB △的面积为2,则k 的值为 .16.如图,在平面直角坐标系xOy 中,矩形OABC 的边OA ,OC 分别在x 轴和y 轴上,3OC =,26OA =,D 是BC 的中点,将OCD △沿直线OD 折叠后得到OGD △,延长OG 交AB 于点E ,连接DE ,则点G 的坐标为 .三、解答题(本大题共8小题,共86分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分8分)计算:201()(π 3.14)|32|2cos302-+----.18.(本小题满分10分)先化简:22111()21x x x x x x x-+÷--+,然后x 在1-,0,1,2四个数中选一个你认为合适的数代入求值.19.(本小题满分8分)解方程:214111x x x ++=--.20.(本小题满分12分)黔东南州某中学为了解本校学生平均每天的课外学习时间情况,随机抽取部分学生进行问卷调查,并将调查结果分为A ,B ,C ,D 四个等级,设学习时间为t (小时),:1A t <,:1 1.5B t ≤<,:1.52C t ≤<,:2D t ≥,根据调查结果绘制了如图所示的两幅不完整的统计图.请你根据图中信息解答下列问题:(1)本次抽样调查共抽取了多少名学生?并将条形统计图补充完整; (2)本次抽样调查中,学习时间的中位数落在哪个等级内? (3)表示B 等级的扇形圆心角α的度数是多少?(4)在此次问卷调查中,甲班有2人平均每天课外学习时间超过2小时,乙班有3人平均每天课外学习时间超过2小时,若从这5人中任选2人去参加座谈,试用列表或画树状图的方法求选出的2人来自不同班级的概率.21.(本小题满分10分)黔东南州某校吴老师组织九(1)班同学开展数学活动,带领同学们测量学校附近一电线杆的高.已知电线杆直立于地面上,某天在太阳光的照射下,电线杆的影子(折线BCD )恰好落在水平地面和斜坡上,在D 处测得电线杆顶端A 的仰角为30,在C 处测得电线杆顶端A 得仰角为45,斜坡与地面成60角,4m CD =,请你根据这些数据求电线杆的高()AB .(结果精确到1m ,参考数据:2 1.4≈,3 1.7≈).22.(本小题满分12分)如图,AB 是O 的直径,点P 在BA 的延长线上,弦CD AB ⊥,垂足为E ,且2PC PE PO =.(1)求证:PC 是O 的切线.(2)若12OE EA =::,6PA =,求O 的半径.23.(本小题满分12分)凯里市某文具店某种型号的计算器每只进价12元,售价20元,多买优惠,优惠方法是:凡是一次买10只以上的,每多买一只,所买的的全部计算器每只就降价0.1元,例如:某人18只计算器,于是每只只降价0.1(1810)0.8⨯-=(元),因此所买的18只计算器都按每只19.2元的价格购买,但是每只计算器的最低售价为16元.________________-------------在-------------(1)求一次至少购买多少只计算器,才能以最低价购买?(2)写出该文具店一次销售(0)x x >1只时,所获利润y (元)与x (只)之间的函数关系式,并写出自变量x 的取值范围;(3)一天,甲顾客购买了46只,乙顾客购买了50只,店主发现卖46只赚的钱反而比卖50只赚的钱多,请你说明发生这一现象的原因;当1050x <≤时,为了获得最大利润,店家一次应卖多少只?这时的售价是多少?24.(本小题满分14分)如图,直线3y x =-+与x 轴、y 轴分别相交于点B ,C ,经过B ,C 两点的抛物线2y ax bx c =++与x 轴的另一个交点为A ,顶点为P ,且对称轴为直线2x =.(1)求该抛物线的解析式;(2)连接PB ,PC ,求PBC ∆的面积;(3)连接AC ,在x 轴上是否存在一点Q ,使得以点P ,B ,Q 为顶点的三角形与ABC △相似?若存在,求出点Q 的坐标;若不存在,请说明理由.贵州省黔东南州2016年初中毕业升学统一考试数学答案解析第Ⅰ卷一、选择题 1.【答案】A【解析】根据相反数的定义,2-的相反数是2.选A.【提示】根据相反数的意义,只有符号不同的数为相反数,0的相反数是0. 【考点】相反数 2.【答案】B【解析】如下图,因为直线a b ∥,所以43∠=∠。

2016年贵州省黔南州中考数学试卷-答案

2016年贵州省黔南州中考数学试卷-答案

贵州省黔南州2016年初中毕业生学业(升学)统一考试数学答案解析 第Ⅰ卷一、选择题1.【答案】D【解析】因为正数大于0,正数大于负数,所以3025>>->-,所以最大的数为3,故选D.【提示】根据正数大于0,正数大于负数,两个负数绝对值大的小,进行比例大小即可求得答案.握有理数的大小关系是解题的关键. 【考点】有理数大小比较2.【答案】B【解析】1∠、2∠是邻补角,12180∠+∠=︒,故选项A 错误;1∠、2∠是对顶角,根据其定义,故选项B 正确;根据平行线的性质:同位角相等,同旁内角互补,内错角相等;故选项C 错误;根据三角形的外角一定大于与它不相邻的内角;故选项D 错误.B.【提示】本题运用对顶角、邻补角、平行线的性质及三角形的外角性质,熟记其定义,是解析的基础。

【考点】对顶角、邻补角,平行线的性质,三角形的外角性质 3.【答案】C【解析】从正面看三棱柱笔筒,得出主视图即可.下图是一个三棱柱笔筒,则该物体的主视图是,故选C.【提示】主视图是从物体的正面看得到的视图.【考点】简单几何体的三视图4.【答案】C【解析】因为数据:1,1-,3,x ,4有唯一的众数是3,所以3x =,所以这组数据按大小排序后为:1-,1,3,3,4。

即这组数据的中位数为3.选C.【提示】求一组数据的众数的方法是找出出现次数最多的数据。

将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.【考点】众数,中位数5.【答案】D【解析】34a a a ⋅=,选项A 错误;236(2)6a a =--,选项B 错误;5552a a a +=,选项C 错误;5232824ab a b a b ÷=,故选项D 正确.【提示】根据同底数幂的乘法、积的乘方、合并同类项以及多项式的除法法则判断即可。

掌握相关的法则是解题的关键.【考点】最简二次根式,平方根,立方根,分母有理化7.【答案】B【解析】根据题意得,20x ->,解得:2x >,故选B.【提示】关于函数自变量的范围,一般从三个方面考虑:当函数表达式是整式时,自变量可取全体实数;当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数非负。

2016年贵州省黔东南州中考数学试卷-答案

2016年贵州省黔东南州中考数学试卷-答案

贵州省黔东南州2016年初中毕业升学统一考试数学答案解析第Ⅰ卷一、选择题 1.【答案】A【解析】根据相反数的定义,2-的相反数是2.选A.【提示】根据相反数的意义,只有符号不同的数为相反数,0的相反数是0. 【考点】相反数 2.【答案】B【解析】如下图,因为直线a b ∥,所以43∠=∠。

因为124∠+∠=∠,所以31295∠=∠+∠=︒.选B.【提示】本题运用了平行线的性质和三角形外角的性质,熟练掌握性质定理是解题的关键. 【考点】平行线的性质 3.【答案】D【解析】因为方程2x 2x 10--=的两根分别为m 、n ,所以bm n 2a+=-=.选D. 【提示】解题的关键是找出m n 2+=.题属于基础题,难度不大,解决该题型题目时,利用根与系数的关系找出两根之和与两根之积是关键. 【考点】根与系数的关系 4.【答案】D【解析】因为四边形ABCD 菱形,所以AC BD ⊥,BD 2BO =,因为ABC 60∠=︒,所以ABC △是正三角形,所以BAO 60∠=︒,所以BO sin60AB 2=︒⋅==BD =选D. 【提示】本题主要运用解直角三角形和菱形的性质的知识点,解析本题的关键是熟记菱形的对角线垂直平分,本题难度一般. 【考点】菱形的性质5.【答案】C【解析】设商品A 的标价为x 元,商品B 的标价为y 元,根据题意,得4x 3y 936x 6y 162+=⎧⎨+=⎩,解得:x 12y 15=⎧⎨=⎩.品A 的标价为12元,商品B 的标价为15元. 所以31221566⨯+⨯=元,故选C.【提示】此题是二元一次方程组的应用,关键是正确理解题意,找出题目中的等量关系,设出未知数,列出方程组.【考点】二元一次方程组的应用 6.【答案】B【解析】因为一次函数1y ax c =+图象过第一、二、四象限,所以a 0<,c 0>,所以二次函数23y ax =+bx c +开口向下,与y 轴交点在x 轴上方。

16-中考数学试卷(贵州黔东南专用)(原卷版)

16-中考数学试卷(贵州黔东南专用)(原卷版)

备战2021中考数学全真模拟卷(贵州黔东南专用)黄金卷16(总分:150分时间:120分钟)一、选择题(本题共计10小题,每题4分,共计40分)1.(2020-2021·广东·中考模拟)下列运算正确的是()A.a5÷a2=a3B.3a2+a=3a3C.(a2)3=a5D.a(a+1)=a2+12.(2020-2021·四川·期末试卷)2020年10月29日,中国共产党第十九届中央委员会第五次全体会议审议通过了《中共中央关于制定国民经济和社会发展第十四个五年规划和二〇三五年远景目标的建议》,其中提到“脱贫攻坚成果举世瞩目,5575万农村贫困人口实现脱贫”.请用科学记数法表示5575万为()A.5.575×109B.5.575×108C.5.575×107D.0.5575×1093.(2020·山东·中考模拟)根据规定,郑州市将垃圾分为可回收物、厨余垃圾、有害垃圾和其他垃圾四大类.现有投放这四类垃圾的垃圾桶各1个,若将两袋不同垃圾(用不透明垃圾袋分类打包)随机投进两个不同的垃圾桶,则投放正确的概率是()A.16B.18C.112D.1164.(2020-2021·广东·中考模拟)如图所示的几何体是由几个大小相同的小正方体搭成的,其俯视图是()A. B. C. D.5.(2020-2021·河南·中考模拟)若关于x的一元二次方程x2−x+m=0有两个不相等的实数根,则m的值可能是()A.0B.1C.2D.20206.(2019-2020·贵州·期末试卷)将三角板与直尺按如图所示的方式叠放在一起.在图中标记的角中,与∠1互余的角共有()A.1个B.2个C.3个D.4个7.(2020-2021·广东·中考模拟)如图,AB为⊙O的直径,C,D为⊙O上两点,∠BCD=30∘,BD=2,则AB的长度为()A.3B.4C.5D.68.(2020-2021·广东·中考模拟)如图,一次函数y=x+1的图象与反比例函数y=kx的图象的一个交点为A(2,m),则不等式kx>3的解集是()A.x>2B.0<x<2C.x>0D.x<−3或0<x<29.(2020-2021·广东·中考模拟)若关于x的不等式组{x−12≤1+x3,4x−a>x+1,有且只有8个整数解,关于y的方程2y+a+1y+9+99+y=1的解为非负数,则满足条件的整数a的值为()A.−8B.−10C.−8或−10D.−8或−9或−1010.(2020·广东·中考模拟)如图,平面直角坐标系中,点A 1的坐标为(1, 2),以O 为圆心,OA 1的长为半径画弧,交直线y =12x 于点B 1.过点B 1作B 1A 2 // y 轴交直线y =2x 于点A 2,以O 为圆心,OA 2长为半径画弧,交直线y =12x 于点B 2;过点B 2作B 2A 3 // y 轴交直线y =2x 于点A 3,以点O 为圆心,OA 3长为半径画弧,交直线y =12x 于点B 3;……按如此规律进行下去,点B 2021的坐标为( )A.(22021,22021)B.(22021,22020)C.(22020,22021)D.(22022,22021) 二、填空题(本题共计10小题 ,每题3 ,共计30分) 11.(2020-2021·河南·中考模拟) 5的平方根是________.12.(2020·辽宁·中考模拟)分解因式:x 3−6x 2+9x =________.13.(2021·黑龙江·中考模拟)函数y =2xx−1的自变量的取值范围是________. 14.(2014·辽宁·中考真卷)不等式组{2x +3>53x −2<4的解集是________.15.(2019-2020·江苏·月考试卷)若将二次函数y =x 2−2x +3配方为y =(x −ℎ)2+k 的形式,则y =________.16.(2021·黑龙江·中考模拟)如图,在△ABC 中,∠ACB =90∘,AC =BC ,点D 在AB 上,AD =9,BD =3,EA =EC ,∠ECD =45∘,则BE 的长为________.17.(2018·广东·中考模拟)如图,在⊙O 中,弦CD 垂直于直径AB 于点E ,若∠BAD =30∘,且BE =2,则CD =________.18.(2020-2021·河南·中考模拟)如图,四边形ABCD 是矩形, BC =2AB ,A ,B 两点的坐标分别是 (−1,0), (0,1),C ,D 两点在反比例函数y =kx (x <0) 的图象上,则k的值是________.19.(2020-2021·河南·中考模拟)如图,Rt △ABC 中,∠ACB =90∘,∠ABC =30∘,AC =2,将△ABC 绕点C 顺时针旋转,点A ,B 的对应点分别为A 1,B 1,当点A 1恰好落在线段AB 上时,弧BB 1与线段A 1B,A 1B 1围成的阴影部分的面积为________.20.(2020-2021·河南·月考试卷)如图,在菱形ABCD 中,∠B =60∘,AB =2,M 为边AB 的中点,N 为边BC 上一动点(不与点B 重合),将△BMN 沿直线MN 折叠,使点B 落在点E 处,连接DE ,CE ,当△CDE 为等腰三角形时,线段BN 的长为________. 三、解答题(本题共计6大题、共计80分) 21.(2020-2021·河南·中考模拟)(1)计算:(π−3.14)0+√12+(−12)−2−3tan60∘+|1−√3|.(2)先化简,再求值:x 2−1x+2÷(3x+2−1),其中x =−√2−1.22.(2020-2021·河北·中考模拟)为了能够帮助武汉疫情,某公司通过武汉市慈善总会二维码给武汉捐款,根据捐款情况制成不完整的扇形统计图(图1)、条形统计图(图2).(1)根据以上信息可知参加捐款总人数为________,m=________,捐款金额中位数为________,请补全条形统计图;(2)若从捐款的人中,随机选一人代表公司去其它公司做捐款宣传,求选中捐款不低于150元的人的概率;(3)若其它公司有几人参与了捐款活动,把新捐款数与原捐款数合并成一组新数据,发现众数发生改变,请求出至少有几人参与捐款.23.(2020-2021·云南·中考模拟)某校运动会需购买A,B两种奖品,若购买A种奖品3件和B种奖品2件,共需60元;若购买A种奖品5件和B种奖品3件,共需95元.(1)求A,B两种奖品的单价分别是多少元?(2)学校计划购买A,B两种奖品共100件,且A种奖品的数量不大于B种奖品数量的3倍,如何设计购买方案能使费用最少,最少费用是多少?24.(2019-2020·河北·月考试卷)如图,AB 是圆O 的直径,C 是半圆上任意一点,连接BC 并延长到点D ,使得CD =CB ,连接AD ,点E 是AC ⌢的中点.(1)证明:△ABC ≅△ADC ;(2)①当∠E =________∘时,△ABD 是直角三角形; ②当∠D =________∘时,四边形OAEC 是菱形.25.(2020·浙江·中考真卷)如图,在平面直角坐标系中,已知二次函数y =−12(x −m)2+4图象的顶点为A ,与y 轴交于点B ,异于顶点A 的点C(1, n)在该函数图象上. (1)当m =5时,求n 的值;(2)当n =2时,若点A 在第一象限内,结合图象,求当y ≥2时,自变量x 的取值范围;(3)作直线AC 与y 轴相交于点D .当点B 在x 轴上方,且在线段OD 上时,求m 的取值范围.26.(2020-2021·河南·中考模拟)(1)问题发现:如图1,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=50∘,连接BD,CE交于点F.填空:①BD的值为________,②∠BFC的度数CE为________;(2)类比探究:如图2,在矩形ABCD和△DEF中,AD=√3AB,∠EDF=90∘,∠DEF=60∘,连的值及∠APC的度数,并说明理由;接AF交CE的延长线于点P.求AFCE(3)拓展延伸:在(2)的条件下,将△DEF绕点D在平面内旋转,AF,CE所在直线交于点P,若DF=√3,AB=√7,当点P与点E重合时,请直接写出线段AF的长.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016届贵州省黔东南州中考数学
一、选择题(共10小题;共50分)
1. 的相反数是
A. B. C. D.
2. 如图,直线,若,,则等于
A. B. C. D.
3. 已知一元二次方程的两根分别为,,则的值为
A. B. C. D.
4. 如图,在菱形中,对角线与相交于点,若,,则的长

A. B. C. D.
5. 小明在某商店购买商品,共两次,这两次购买商品,的数量和费用如下表:
A. 元
B. 元
C. 元
D. 元
6. 已知一次函数和反比例函数的图象如图所示,则二次函数
的大致图象是
A. B.
C. D.
7. 不等式组的整数解有三个,则的取值范围是
A. B. C. D.
8. 2002年8月在北京召开的国际数学家大会会徽取材于我国古代数学家赵爽的弦图,它是由四个全
等的直角三角形和中间的小正方形拼成的大正方形,如图所示.如果大正方形的面积是,小正方形的面积为,直角三角形的较短直角边长为,较长直角边为,那么的值为
A. B. C. D.
9. 将一个棱长为的正方体水平放于桌面(始终保持正方体的一个面落在桌面上),则该正方体正
视图面积的最大值为
A. B. C. D.
10. 如图,在等腰直角中,,点是的中点,且,将一块直角三角
板的直角顶点放在点处,始终保持该直角三角板的两直角边分别与,相交,交点分别为,,则等于
A. B. C. D.
二、填空题(共6小题;共30分)
11. .
12. 分解因式:.
13. 在一个不透明的箱子中装有件同型号的产品,其中合格品件、不合格品件,现从这件
产品中随机抽取件检测,则抽到的都是合格品的概率是.
14. 如图,在中,,,,现将绕点逆时针旋转得到
,则阴影部分的面积为.
15. 如图,点是反比例函数图象上一点,过点作轴的平行线,交反比例函数
的图象交于点,连接,,若的面积为,则的值为.
16. 如图,在平面直角坐标系中,矩形的边,分别在轴和轴上,,
,是的中点,将沿直线折叠后得到,延长交于点,连接 .则点的坐标为.
三、解答题(共8小题;共104分)
17. 计算: .
18. 先化简:,然后在,,,四个数中选一个你认为合适的数代入
求值.
19. 解方程 .
20. 黔东南州某中学为了解本校学生平均每天的课外学习时间情况,随机抽取部分学生进行问卷调
查,并将调查结果分为A,B,C,D 四个等级,设学习时间为(小时),,,,,根据调查结果绘制了如图所示的两副不完整的统计图.请你根据图中信息解答下列问题:
(1)本次抽样调查共抽取了多少名学生?并将调整统计图补充完整;
(2)本次抽样调查中,学习时间的中位数落在哪个等级内?
(3)表示 B等级的扇形圆心角的度数是多少?
(4)在此次问卷调查中,甲班有人平均每天课外学习时间超过小时,乙班有人平均每天课外学习时间超过小时,若从这人中任选人去参加座谈,试用列表或画树状图的方法求选出的人来自不同班级的概率.
21. 黔东南州某校吴老师组织九(1)班同学开展数学活动,带领同学们测量学校附近一电线杆的
高.已知电线杆直立于地面上,某天在太阳光的照射下,电线杆的影子(折线)恰好落在水平地面和斜坡上,在处测得电线杆顶端的仰角为,在处测得电线杆顶端的仰角为,斜坡与地面成角,,请你根据这些数据求电线杆的高().
(结果精确到,参考数据:,)
22. 如图,是的直径,点在的延长线上,弦,垂足为,且.
(1)求证:是的切线.
(2)若,,求的半径.
23. 凯里市某文具店某种型号的计算器每只进价元,售价元,多买优惠,优惠方法是:凡是
一次买只以上的,每多买一只,所买的全部计算器每只就降价元,例如:某人买只计算器,于是每只降价(元),因此所买的只计算器都按每只元的价格购买,但是每只计算器的最低售价为元.
(1)求一次至少购买多少只计算器,才能以最低售价购买?
(2)写出该文具店一次销售只时,所获利润(元)与(只)之间的函数关系式,并写出自变量的取值范围;
(3)一天,甲顾客购买了只,乙顾客购买了只,店主发现卖只赚的钱反而比卖只赚的多,请你说明这一现象发生的原因;当时,为了获得最大利润,店家一次应卖多少只?这时的售价是多少?
24. 如图,直线与轴,轴分别相交于点,,经过,两点的抛物线
与轴的另一个交点为,顶点为,且对称轴为直线 .
(1)求该抛物线的解析式;
(2)连接,,求的面积;
(3)连接,在轴上是否存在一点,使得以点,,为顶点的三角形与相似,若存在,求出点的坐标;若不存在,请说明理由.
答案
第一部分
1. A
2. B
3. D
4. D
5. C
6. B
7. A
8. C
9. C 10. B
【解析】提示:
连接 .可证得 .所以 .即.
第二部分
11.
12.
13.
14.
15.
16.
【解析】
过作轴于点 .
根据轴对称的性质,知 . .
根据直角三角形全等的性质, .
设 .则, .
在中,根据勾股定理,求得 .
因为 .
所以求得,.
第三部分
原式
17.
原式
18.
因为在,,,四个数中,使原式有意义的值只有,
所以当时,原式 .
19. 原方程可变为:
两边同时乘以,得:
解得:
检验:把代入得:
所以不是方程的解,即原方程无解.
20. (1)本次抽样调查的人数为:(名)
条形统计图补充完整如图.
(2)本次抽样调查中,学习时间的中位数落在 C 等级内.
(3)因为等级所占的比为:

所以 .
(4)设甲班的名同学分别用,表示,乙班名同学分别用,,表示,随机选出两人参加座谈的树状图如下:
共有种等可能结果,而选出人来自不同班级的有种,
所以选出的人来自不同班级 .
21. 延长交的延长线于点,过点作,垂足为点,则
在中,,,
所以
又因为,,
所以,
所以,
设,
又因为,,,
所以,

因为,
所以,
解得:,
答:电线杆的高约为.
22. (1)连接,
因为,
所以.
又因为,
所以,
所以.
因为,

即,
所以是的切线.
(2)设,则,,
因为,
所以,
在中,,
所以,
所以,
即,
解得:,
所以,
即的半径为 .
23. (1)设一次至少购买只,才能以最低价购买,
根据题意,得:
解得:
答:一次至少购买只,才能以最低价购买.
(2),
即.
(3)当时,.
当时,随的增大而减少,故卖只赚的钱反而比卖只赚的钱多.店家一次卖只时,所获利润最大,此时售价为:(元).
24. (1)直线与两坐标的交点坐标为,.
由抛物线的对称性知,
又因为抛物线与轴交于,两点,
所以可设抛物线的解析式为:,
把代入上式,得:,
解得: .
所以所求抛物线的解析式为:,即 .
(2)因为,所以,
又因为,,
所以,,

第11页(共11 页) 又因为 , ,
所以 ,
所以 是 , ,
所以 .
(3) 存在.
设 ,分两种情况讨论:
第一种情况:当点 在点 的左侧时, ,
因为抛物线对称轴 与 轴的交点为 ,又 , , 所以 ,所以 是等腰直角三角形,
所以 .
因为 , ,所以
所以 ,
所以当 或 时, ,
①当
时,即
,解得: ,此时 . ②当 时,即 ,解得: ,此时 .
第二种情况:当点 在点 的右侧时,
因为 ,
所以 或 ,符合条件的 不存在. 综上:点 的坐标为
或 .。

相关文档
最新文档