中考数学试卷精选合辑60之9-市初中毕业生学业考试试题及答案
初中毕业生学业考试数学试题及答案(2)
九年级生学业考试数 学 试 题题号一二三总分1718 19 20 21 22 23 24 25 26 得分...一、填空题:本大题共10小题,1-6题,每小题3分,7-10 题,每小题4分,计34分.把答案填在题中横线上.1.比较大小:5- 0. 2.分解因式:23a a -= .3.为了解全国初中生的睡眠状况,比较适合的调查方式是 (填“普查”或“抽样调查”).4. 计算:01(5)2-+= .5. 我国最长的河流——长江全长约为6300千米,用科学记数法可表示为 千米. 6. 六边形的内角和等于 度.7. 某班有40名学生,其中男、女生所占比例如图所示,则该班男生有 人. 8. 函数6y x =-x 的取值范围是 .9. 如图,圆锥的底面半径为4cm ,母线长为6cm ,那么这个圆锥的侧面积是 2cm . 10.如图,三角形纸片ABC ,10cm 7cm 6cm AB BC AC ===,,,沿过点B 的直线折叠这个三角形,使顶点C 落在AB 边上的点E 处,折痕为BD ,则AED △的周长为 cm .二、选择题:本大题共6小题,每小题4分,计24分.在每小题给出的四个选项中,只有一项是符合题目要求的.11.15-的绝对值是( )A .15 B .15- C .5 D .5- 12.下列运算中正确的是( )A .22x x x +=B .326x x x =C .428()x x =D .22(2)4x x -=- 13.如图是由5个相同的小正方体搭成的一个几何体,它的俯视图是( )A .B .C .D .14.学校开展为贫困地区捐书活动,以下是5名同学捐书的册数:2,2,x ,4,9.已知这组数据的平均数是4,则这组数据的中位数和众数分别是( ) A .2和2 B .4和2 C .2和3 D .3和2 15.已知反比例函数ky x=的图象经过点(3)m m ,,则此反比例函数的图象在( ) A .第一、二象限 B .第一、三象限 C .第二、四象限 D .第三、四象限16.用含30角的两块同样大小的直角三角板拼图形,下列四种图形:①平行四边形,②菱形,③矩形,④直角梯形.其中可以被拼成的图形是( ) A .①② B .①③ C .③④ D .①②③三、解答题:本大题共10小题,计92分.解答应写出说理、证明过程或演算步骤. 17.(本小题满分6分) 先化简,再求值:22(3)(2)(2)2x x x x +++--,其中13x =-. 解:18.(本小题满分6分) 解分式方程:21233x x x -+=--. 解:已知:如图,在ABCD 中,BD 是对角线,AE BD CF BD ⊥⊥,,垂足分别为E ,F . 求证:AE CF =. 证:20.(本小题满分8分)燕尾槽的横断面是等腰梯形.如图是一燕尾槽的横断面,其中燕尾角B 是55,外口宽AD 是16cm ,燕尾槽的深度是6cm ,求它的里口宽BC (精确到0.1cm ). 解:21.(本小题满分8分)在试制某种洗发液新品种时,需要选用两种不同的添加剂.现有芳香度分别为0,1,2,3,4,5的六种添加剂可供选用.根据试验设计原理,通常要先从芳香度为0,1,2的三种添加剂中随机选取一种,再从芳香度为3,4,5的三种添加剂中随机选取一种,进行搭配试验.请你利用树状图(树形图)或列表的方法,表示所选取两种不同添加剂所有可能出现的结果,并求出芳香度之和等于4的概率.在如图的方格纸中,每个小方格都是边长为1个单位的正方形,ABC △的三个顶点 都在格点上(每个小方格的顶点叫格点). (1)画出ABC △向平移4个单位后的111A B C △;(4分)(2)画出ABC △绕点O 顺时针旋转90后的222A B C △,并求点A 旋转到2A 所经过的路线长.(6分) 解:23.(本小题满分10分)如图,抛物线223y x x =--与x 轴分别交于A ,B 两点.(1)求A ,B 两点的坐标;(4分) (2)求 抛物线顶点M 关于x 轴对称的点M '的坐标,并判断四边形AMB M '是何特殊平行四边形(不要求说明理由).(6分)[注:抛物线2y ax bx c =++的顶点坐标为2424b ac b aa ⎛⎫-- ⎪⎝⎭,.]解:为了鼓励节能降耗,某市规定如下用电收费标准:每户每月的用电量不超过120度时,电价为a 元/度;超过120度时,不超过部分仍为a 元/度,超过部分为b 元/度.已知某用户五月份用电115度,交电费69元,六月份用电140度,交电费94元. (1)求a ,b 的值;(4分)(2)设该用户每月用电量为x (度),应付电费为y (元). ①分别求出0120x ≤≤和x >120时,y 与x 之间的函数关系式;(4分)①若该用户计划七月份所付电费不超过83元,问该用户七月份最多可用电多少度?(4分) 解:25.(本小题满分12分)已知:如图①,①,在矩形ABCD 中,AB =4,BC =8,P ,Q 分别是边BC ,CD 上的点.(1)如图①,若AP PQ ⊥,BP =2,求CQ 的长;(6分)(2)如图①,若2BPCQ=,且E ,F ,G 分别为AP ,PQ ,PC 的中点,求四边形EPGF 的面积. (6分) 解:如图①,①,在平面直角坐标系xOy 中,点A 的坐标为(4,0),以点A 为圆心,4为半径的圆与x 轴交于O ,B 两点,OC 为弦,60AOC ∠=,P 是x 轴上的一动点,连结CP . (1)求OAC ∠的度数;(2分) (2)如图①,当CP 与A 相切时,求PO 的长;(3分) (3)如图①,当点P 在直径OB 上时,CP 的延长线与A 相交于点Q ,问PO 为何值时,OCQ △是等腰三角形?(7分)附加题:(本题满分10分)温馨提示:同学们做完上面考题后,再认真检查一遍,估计一下你的得分.如果全卷得分低于90分(及格分),请完成下面题目.1.当2x =-时,求2x +的值;(5分)2.已知:如图,a b ∥,140∠=,求2∠的度数.(5分)2007年福建省三明市初中毕业生学业考试数学参考答案及评分说明说明:以下各题除本卷提供的解法外,若还有其他解法,本标准不一一例举,评卷时可参考评分标准,按相应给分段评分.用计算器计算的部分,列式后可直接得到结果. 一、填空题:本大题共10小题,1~6题,每小题3分,7~10题,每小题4分,计34分.1.<; 2.(3)a a -; 3.抽样调查; 4.112; 5.36.310⨯; 6. 720; 7.22; 8.6x ≤; 9.24π; 10.9 二、选择题:本大题共6小题,每小题4分,计24分.11.A 12.C 13.D 14.D 15.B 16.B 三、解答题:本大题共10小题,计92分.17.解:原式=2226942x x x x +++-- ······················································· 2分 =65x +. ············································································· 4分 当13x =-时,原式=16()52533⨯-+=-+=. ······································· 6分 18.解:方程两边同乘以3x -,得22(3)1x x -+-=. ·········································································· 2分2261x x -+-=.5x =. ········································································· 5分 经检验:原方程的解是5x =. ······························································· 6分 19.证:在ABCD 中,//AB CD AB CD =,, ········· 2分 ①ABE CDF ∠=∠. ················································· 3分 又①AE BD CF BD ⊥⊥,,①90AEB CFD ∠=∠=.……4分 ①ABE △①CDF △. ·············································· 6分① AE CF =. ······················································································· 8分 20.解:作AE BC DF BC ⊥⊥,,垂足分别为E ,F , ································ 1分 在Rt ABE △中,tan AEB BE=, ······························· 2分 ① tan AE BE B ==6tan55. ········································ 4分 ∴6221624.4tan55BC BE AD =+=⨯+≈(cm ). ······· 7分 答:燕尾槽的里口宽BC 约为24.4c m . ················· 8分1 2 3 3 3 4 5 4 5 4521.解: (列表法) 或 (树状图)………………………………………………4分所有可能出现的结果共有9种,芳香度之和等于4的结果有两种. ①所选取两种不同添加剂的芳香度之和等于4的概率为29. ·································· 8分 22. 解:(1)画出111A B C △. ·····························4分 (2)画出①222A B C . ···········································7分 连结OA ,2OA ,222313OA =+=. ·········································8分 点A 旋转到2A 所经过的路线长为90π1313π180l ==. ······································· 10分 23.解:(1)由0y =得2230x x --=.解得 1213x x =-=,. ····································· 2分 ①点A 的坐标(1-,0), 点B 的坐标(3,0). ········· 4分(2)①12b a-=,2444ac b a -=-,①M (1,4-). ····· 6分 ① M '(1,4). ··············································· 8分 四边形AMBM '是菱形. ······································· 10分24. 解:(1)根据题意,得 115691202094a a b =⎧⎨+=⎩,. ············································································· 2分解这个方程组,得 0.61.1a b =⎧⎨=⎩,.···································································· 4分(2)①当0120x ≤≤时,0.6y x =. ··························································· 6分当x >120时,1200.6 1.1(120)y x =⨯+-, 即 1.160y x =-. ······························ 8分 ① ①831200.672>⨯=, ①y 与x 之间的函数关系式为 1.160y x =-.由题意,得1.16083x -≤. ·········································································· 10分130x ≤.第一次第二次1 23 34 54 45 65567①该用户七月份最多可用电130度. ································································ 12分25.解:(1)①四边形ABCD 是矩形,①90B C ∠=∠=. ①90CPQ PQC ∠+∠=.①AP PQ ⊥ ,①90CPQ APB ∠+∠=. ①APB PQC ∠=∠. ①ABP ∆①PCQ ∆. ·············································· 3分①BP CQ AB PC =,即2482CQ=- . ①3CQ =. ······················································· 6分(2)解法一:取BP 的中点H ,连结EH ,由2BPCQ=, 设CQ a =,则2BP a = , ①E ,F ,G ,H 分别为AP ,PQ ,PC ,BP 的中点, ①EH ∥AB ,FG ∥CD ,又①AB ∥CD ,90B C ∠=∠=, ①EH ∥FG ,EH BC FG BC ⊥⊥,. ①四边形EHGF 是直角梯形. ①1112222EH AB FG CQ a ====,, 12HP BP a ==, 142HG HP PG BC =+==. ··········································· 9分 ①12EHGF S EH FG HG =+梯形()=1124422a a ⎛⎫+=+ ⎪⎝⎭,11222EHP S HP EH a a ===△.①44EHP EPGF EHGF S S S a a =-=+-=△四边形梯形. ············································· 12分 解法二: 连结AQ ,由2BPCQ=,设CQ a =,则2BP a =, 4DQ a =-,82PC a =-, APQ ABP PCQ ADQ ABCD S S S S S =---△△△△矩形=1114824(82)8(4)222a a a a ⨯----⨯- =2416a a -+. ·································································· 9分 ①E ,F ,G 分别是AP ,PQ ,PC 的中点,①12EF AQ EF AQ =∥,. ①PEF PAQ △∽△.①14PEF APQ S S =△△,211(416)44PEF APQ S S a a ==-+△△. 同理:11(82)48PFG PCQ S S a a ==-△△. ①PEF PFG EPGF S S S =+△△四边形=211416)(82)48a a a a -++-(=4. ·································································· 12分 26.解:(1)①60AOC ∠=,AO AC =, ①AOC △是等边三角形.①60OAC ∠=. ··········································2分 (2)①CP 与A 相切,①90ACP ∠=. ①9030APC OAC ∠=-∠=.又①A (4,0),①4AC AO ==.①28PA AC ==. ①844PO PA OA =-=-=. ·····························5分 (3)①过点C 作1CP OB ⊥,垂足为1P ,延长1CP 交A 于1Q ,①OA 是半径, ①1OC OQ =,①1OC OQ =,①1OCQ △是等腰三角形. ················································································ 6分 又①AOC △是等边三角形,①112PO OA ==2 . ·················································· 7分 ①解法一:过A 作AD OC ⊥,垂足为D ,延长DA 交A 于2Q ,2CQ 与x 轴交于2P ,①A 是圆心, ①2DQ 是OC 的垂直平分线. ①22CQ OQ =.①2OCQ △是等腰三角形, ··········································································· 8分 过点2Q 作2Q E x ⊥轴于E ,在2Rt AQ E △中,①21302Q AE OAD OAC ∠=∠=∠=, ①2212232Q E AQ AE ===,①点2Q 的坐标(4+32-). 在1Rt COP △中,①1260POAOC =∠=,, ①123CP =.①C 点坐标(2,23. ························································ 10分 设直线2CQ 的关系式为:y kx b =+,则有第11页 共11页 2(423)232k b k b ⎧-=++⎪⎨=+⎪⎩,. 解得:1223k b =-⎧⎪⎨=+⎪⎩,.①223y x =-++.当0y =时,223x =+①2223P O =+. ··················································································· 12分 解法二: 过A 作AD OC ⊥,垂足为D ,延长DA 交A 于2Q ,2CQ 与x 轴交于2P , ①A 是圆心, ①2DQ 是OC 的垂直平分线. ①22CQ OQ =.①2OCQ △是等腰三角形. ············································································ 8分 ①60OAC ∠=,①21302OQ C OAC ∠=∠=. ①2DQ 平分22,OQ C AC AQ ∠=,①2215ACQ AQ C ∠=∠=.①AOC △是等边三角形,1CP OA ⊥, ①11302PCA ACO ∠=∠=. ①1212301545PCP PCA ACQ ∠=∠+∠=+=. ①12CPP △是等腰直角三角形. ······································································· 10分 ①12123PP CP == ①2112223P O PO PP =+=+········································································ 12分 附加题:1.解:当2x =-时,2220x +=-+=. ························································· 5分2.解:①a b ∥,①2140∠=∠=. ························································· 5分 本题的评分说明:如果全卷总分低于90分,那么本题得分计入全卷总分,但不超过90分;如果全卷总分已经达到或超过90分,那么本题不再计分.。
中考初三九年级数学考试试卷试题(含详细答案)
数学试卷 第1页(共78页) 数学试卷 第2页(共78页)绝密★启用前初中毕业生学业暨升学统一考试数 学本试卷满分150分,考试时间120分钟.第Ⅰ卷(选择题 共40分)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.计算24-的结果等于( ) A .8-B .16-C .16D .82.如图,ABC △的顶点均在O 上,若36A ∠=,则BOC ∠的度数为( ) A .18 B .36 C .60D .723.如图,AB CD ∥CB DE ∥,若72B ∠=,则D ∠的度数为( ) A .36B .72C .108D .1184.如图,点B ,F ,C ,E 在一条直线上AB ED ∥,AC FD ∥,那么添加下列一个条件后,仍无法判ABC DEF ∆∆≌的是 ( ) A .AB DE = B .AC DF = C .A D ∠=∠D .BF EC =5.如图,在ABC △中,点D 在AB 上,2BD AD =,DE BC ∥交AC 于E ,则下列结论不正确的是( )A .3BC DE =B .BD CEBA CA=C .ADE ABC △∽△D .13ADEABCSS =6.甲、乙、丙三人站成一排拍照,则甲站在中间的概率是( ) A .16B .13C .12D .237.某校在国学文化进校园活动中,随机统计50名学生一周的课外阅读时间如下表所示,这组数据的众数和中位数分别是( )学生数(人) 5 8 14 19 4 时间(小时) 6 7 8 9 10 A .14,9B .9,9C .9,8D .8,98.如图,是由几个完全相同的小正方体搭建的几何体,它的左视图是( )ABCD9.如图,反比例函数2y x=的图象经过矩形OABC 的边AB 的中点D ,则矩形OABC 的面积为( )A .2B .4C .5D .810.如图,矩形ABCD 绕点B 逆时针旋转30后得到矩形111A BC D ,11C D 与AD 交于点M ,延长DA 交11A D 于F ,若1AB =,3BC =,则AF 的长度为( )A .23-B .313- C .333-D .31-毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共78页) 数学试卷 第4页(共78页)第Ⅱ卷(非选择题 共110分)二、填空题(本大题共10小题,每小题3分,共30分.请把答案填写在题中的横线上) 11.计算:2(2)ab -= .12.0.0000156用科学记数法表示为 .13.分解因式:34x x -= .14.若一个多边形的内角和为1080,则这个多边形的边数为 . 15.函数y 自变量x 的取值范围是 .16.如图,AB 是O 的直径,CD 为弦,CD AB ⊥于E ,若6CD =,1BE =,则O的直径为 .17.关于x 的两个方程260x x --=与213x m x =+-有一个解相同,则m = .18.已知1O 和2O 的半径分别为m ,n ,且m ,n满足2(2)0n -=,圆心距1252O O =,则两圆的位置关系为 .19.如图,小明购买一种笔记本所付款金额y (元)与购买量x (本)之间的函数图象由线段OB 和射线BE 组成,则一次购买8个笔记本比分8次购买每次购买1个可节省 元.20.阅读材料并解决问题:求23201412222+++++的值.令23201412222S =+++++,等式两边同时乘以2,则2320142015222222S =+++++.两式相减,得2015221S S -=-所以201521S =-. 依据以上计算方法,计算23201513333+++++= .三、解答题(本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤) 21.(本小题满分12分,每题6分) (1)计算:101π|2cos45()(tan80)22016---+-.(2)化简:2222(2)211x x x x x x +---÷-++,再代入一个合适的x 求值.22.(本小题满分12分)如图,点A 是O 直径BD 延长线上的一点,点C 在O 上,AC BC =,AD CD =.(1)求证:AC 是O 的切线;(2)若O 的半径为2,求ABC △的面积.23.(本小题满分14分)知识竞赛结束后,通过网上查询,某校一名班主任对本班成绩(成绩取整数,数学试卷 第5页(共78页) 数学试卷 第6页(共78页)满分100分)做了统计分析,绘制成如下频数分布表和频数分布直方图,请你根据图表提供的信息,解答下列问题.频数分布表分组(分) 频数 频率 5060x <≤ 2 0.046070x <≤ 12a 7080x <≤b 0.36 8090x <≤ 14 0.2890100x <≤c 0.08 合计 50 1(1)频数分布表中a = ,b = ,c = ; (2)补全频数分布直方图;(3)为了激励学生增强安全意识,班主任准备从超过90分的学生中选2人介绍学习经验,那么取得100分的小亮和小华同时被选上的概率是多少?请用列表法或画树状图加以说明,并列出所有等可能结果.24.(本小题满分14分)黔西南州某养殖场计划购买甲、乙两种鱼苗600条,甲种鱼苗每条16元,乙种鱼苗每条20元.相关资料表明:甲、乙两种鱼苗的成活率为80%,90%.(1)若购买这两种鱼苗共用去11000元,则甲、乙两种鱼苗各购买多少条? (2)若要使这批鱼苗的总成活率不低于85%,则乙种鱼苗至少购买多少条?(3)在(2)的条件下,应如何选购鱼苗,使购买鱼苗的总费用最低?最低费用是多少?25.(本小题满分12分)求两个正整数的最大公约数是常见的数学问题,中国古代数学专著《九章算术》中便记载了求两个正整数最大公约数的一种方法——更相减损术,术曰:“可半者半之,不可半者,副置分母、子之数,以少成多,更相减损,求其等也.以等数约之.”意思是说,要求两个正整数的最大公约数,先用较大的数减去较小的数,得到差,然后用减数与差中的较大数减去较小数,以此类推,当减数与差相等时,此时的差(或减数)即为这两个正整数的最大公约数.例如:求91与56的最大公约数解:请用以上方法解决下列问题: (1)求108与45的最大公约数. (2)求三个数78,104,143的最大公约数.26.(本小题满分16分)如图,二次函数23y x x m =-++的图象与x 轴的一个交点为(4,0)B ,另一个交点为A ,且与y 轴相交于C 点. (1)求m 的值及C 点坐标;915635-=563521-= 352114-= 21147-= 1477-=所以91与56的最大公约数是7._____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题------------------数学试卷 第7页(共78页) 数学试卷 第8页(共78页)(2)在直线BC 上方的抛物线上是否存在一点M ,使得它与B ,C 两点构成的三角形面积最大?若存在,求出此时M 点坐标;若不存在,请简要说明理由;(3)P 为抛物线上一点,它关于直线BC 的对称点为Q . ①当四边形PBQC 为菱形时,求点P 的坐标;②点P 的横坐标为(04)t t <<,当t 为何值时,四边形PBQC 的面积最大,请说明理由.数学试卷 第9页(共78页) 数学试卷 第10页(共78页)初中毕业生学业暨升学统一考试数学答案解析 第Ⅰ卷一、选择题 1.【答案】B【解析】24(44)16-=-⨯=-,故选B.【提示】乘方就是求几个相同因数积的运算,24(44)16-=-⨯=-. 【考点】有理数的乘方 2.【答案】D【解析】由题意得2BOC ∠=,272BOC A ∠=∠=︒,故选D.【提示】在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半,由此可得出答案. 【考点】圆周角定理 3.【答案】C【解析】∵AB ∥CD ,CB ∥DE ,72B ∠=︒,∴72C B ∠=∠=︒,180D C ∠+∠=︒,∴18072108D ∠=︒-︒=︒;故选C.【提示】由平行线的性质得出72C B ∠=∠=︒,180D C ∠+∠=︒,即可求出结果. 【考点】平行线的性质 4.【答案】C【解析】添加AB DE =可用AAS 进行判定,故本选项A 错误;添加AC DF=可用AAS 进行判定,故本选项B 错误;添加A D ∠=∠不能判定ABC DEF △≌△,故本选项C 正确;添加BF EC =可得出BC EF =,然后可用ASA 进行判定,故本选项D 错误;故选C.【提示】分别判断选项所添加的条件,根据三角形的判定定理:SSS 、SAS 、AAS 进行判断即可.【考点】全等三角形的判定 5.【答案】D632OA OD=.∵2=OA AB AD22=⨯OA【提示】由反比例函数的系数k的几何意义可知:2OA OD=,然后可求得的值,从而可求得矩形【考点】反比例函数系数k的几何意义BD,如图所示,在矩形90=︒,CD13==2DF BD==,∴23AF DF AD=-=-;故选:A.【解析】222(2)4ab a b-=.故答案为:224a b.【提示】直接利用积的乘方运算法则以及幂的乘方运算法则求出答案.【考点】幂的乘方与积的乘方12.【答案】51.5610-⨯【解析】50.0000156 1.5610-=⨯,故答案为:51.5610-⨯.【提示】绝对值小于1的正数也可以利用科学记数法表示,一般形式为10na-⨯,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定【考点】科学记数法—表示较小的数13.【答案】(2)(2)x x x+-【解析】324(4)(2)(2)x x xx x x x--=+-=;故答案为:(2)(2)x x x+-.【提示】应先提取公因式x,再对余下的多项式利用平方差公式继续分解.【考点】提公因式法与公式法的综合运用14.【答案】8【解析】根据n边形的内角和公式,得(2) 1801080n-=,解得8n=;∴这个多边形的边数是8;故答案为:8.【提示】n边形的内角和是(2) 180n-,如果已知多边形的边数,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.【考点】多边形内角与外角15.【答案】1x<【解析】根据题意得:10x->,解可得1x<;故答案为1x<.【提示】根据二次根式有意义的条件就是被开方数大于或等于0,分式有意义的条件是分母不为0;可得关系式10x->,解不等式即可.【考点】函数自变量的取值范围16.【答案】10【解析】如图,,∵AB是O的直径,而且CD AB⊥于E,∴1226DE CE==÷=,在Rt△ODE中,设OD x=,222(1)3x x=-+,解得5x=,∵5210⨯=,∴数学试卷第11页(共78页)数学试卷第12页(共78页)数学试卷 第13页(共78页) 数学试卷 第14页(共78页)O 的直径为10.故答案为:10.的长,即可求出O 的直径为多少60x --=2x =-时,1(2)(2)12 222212x x x x x x x x x x x ++-+-=-=+---+-)根据特殊角的三角函数值、负整数整数幂和零指数幂的意义计)先把括号内通分,再把除法运算化为乘法运算,然后约分后合并得到原数学试卷 第15页(共78页) 数学试卷 第16页(共78页)22图形如图;列表如下:或画树状图如图:数学试卷 第17页(共78页) 数学试卷 第18页(共78页)【提示】(1)根据频数、频率和样本容量的关系可分别求得a 、b 、c ; (2)由(1)中求得的b 、c 的值可补全图形;(3)由题可知超过90分的学生人数有4人,再利用树状图可求得概率. 【考点】列表法与树状图法;频数(率)分布表;频数(率)分布直方图 24.【答案】(1)设购买甲种鱼苗x 条,乙种鱼苗y 条, 根据题意得:600162011000x y x y +=⎧⎨+=⎩,解得:250350x y =⎧⎨=⎩,答:购买甲种鱼苗250条,乙种鱼苗350条;(2)设购买乙种鱼苗m 条,则购买甲种鱼苗(600)m -条, 根据题意得:90%80%(600)85%600m m +-≥⨯, 解得:300m ≥,答:购买乙种鱼苗至少300条;(3)设购买鱼苗的总费用为w 元,则2016(600)49600w m m m =+-=+, ∵40>,∴w 随m 的增大而增大, 又∵300m ≥,∴当300m =时,w 取最小值,4300960010800w =⨯+=最小值(元).答:当购买甲种鱼苗300条,乙种鱼苗300条时,总费用最低,最低费用为10800元.【提示】(1)设购买甲种鱼苗x 条,乙种鱼苗y 条,根据“购买甲、乙两种鱼苗600条,甲种鱼苗每条16元,乙种鱼苗每条20元”即可列出关于x 、y 的二元一次方程组,解方程组即可得出结论;(2)设购买乙种鱼苗m 条,则购买甲种鱼苗(600)m -条,根据“甲、乙两种鱼苗的成活率为80%,90%,要使这批鱼苗的总成活率不低于85%”即可列出关于m 的一元一次不等式,解不等式即可得出m 的取值范围; (3)设购买鱼苗的总费用为w 元,根据“总费用=甲种鱼苗的单价×购买数量+乙种鱼苗的单价×购买数量”即可得出w 关于m 的函数关系式,根据一次函数的性质结合m 的取值范围,即可解决最值问题.【考点】一次函数的应用;二元一次方程组的应用;一元一次不等式的应用25.【答案】(1)1084563-=,634518-=, 451827-=, 27189-=, 1899-=,所以108与45的最大公约数是9; (2)先求104与78的最大公约数,1047826-=, 782652-=, 522626-=,所以104与78的最大公约数是26; 再求26与143的最大公约数,14326117-=, 1172691-=, 912665-=, 652639-=, 392613-=, 261313-=,所以,26与143的最大公约数是13, ∴78、104、143的最大公约数是13.【提示】(1)根据题目,首先弄懂题意,然后根据例子写出答案即可; (2)可以先求出104与78的最大公约数为26,再利用辗转相除法,我们可以求出26与143的最大公约数为13,进而得到答案. 【考点】有理数的混合运算26.【答案】(1)将(4,0)B 代入23y x x m =-++,解得:4m =, ∴二次函数解析式为234y x x =-++, 令0x =,得4y =,数学试卷 第19页(共78页)数学试卷 第20页(共78页)∴或;t∵04t <<,∴当2t =时,16PBQC S =四边形最大.【提示】(1)用待定系数法求出抛物线解析式;(2)先判断出面积最大时,平移直线BC 的直线和抛物线只有一个交点,从而求出点M 坐标;(3)①先判断出四边形PBQC 时菱形时,点P 是线段BC 的垂直平分线,利用该特殊性建立方程求解;②先求出四边形PBCQ 的面积与t 的函数关系式,从而确定出它的最大值. 【考点】二次函数综合题2中考数学试卷一、选择题(每小题3分,满分30分,在每小题给出的四个选项中,只有一项是正确的,请将正确选项的代号填写在答题卷相应的空格内)1.(3.00分)下列实数中,无理数是()A.﹣2B.0C.πD .2.(3.00分)把不等式组的解集表示在数轴上,正确的是()A .B .C .D .3.(3.00分)如图是正方体的一个平面展开图,如果叠成原来的正方体,与“创”字相对的字是()A.都B.美C.好D.凉4.(3.00分)已知两圆的半径分别为1和2,圆心距为5,那么这两个圆的位置关系是()A.内切B.相交C.外离D.外切5.(3.00分)下列运算中,结果正确的是()A.(a﹣b)2=a2﹣b2B.(﹣a4)3=a7C.2a+4b=6ab D.﹣(1﹣a)=a﹣1 6.(3.00分)下列事件是必然事件的是()A.若a>b,则ac>bcB.在正常情况下,将水加热到100℃时水会沸腾C.投掷一枚硬币,落地后正面朝上D.长为3cm、3cm、7cm的三条线段能围成一个三角形7.(3.00分)如图,火车匀速通过隧道(隧道长等于火车长)时,火车进入隧道的时间x与火车在隧道内的长度y之间的关系用图象描述大致是()A .B . C.D .8.(3.00分)若点(﹣3,y1)、(﹣2,y2)、(1,y3)在反比例函数的图象上,则下列结论正确的是()A.y1>y2>y3B.y2>y1>y3C.y3>y1>y2D.y3>y2>y19.(3.00分)“标准对数视力表”对我们来说并不陌生,如图是视力表的一部分,其中最上面较大的“E”与下面四个较小“E”中的哪一个是位似图形()A.左上B.左下C.右下D.以上选项都正确10.(3.00分)如图,在菱形ABCD中,对角线AC=6,BD=8,点E、F分别是边AB、BC的中点,点P在AC上运动,在运动过程中,存在PE+PF 的最小值,则这个最小值是()A.3B.4C.5D.6二、填空题(每小题4分,满分32分,请将答案填写在答题卷相应题号后的横线上)11.(4.00分)如果上升10米记作+10米,那么下降5米记作米.12.(4.00分)通过第六次全国人口普查得知,六盘水市人口总数约为2851180人,这个数用科学记数法表示是人(保留两个有效数字).13.(4.00分)请写出两个既是轴对称图形又是中心对称图形的平面几何图形名称(写出两个即可)14.(4.00分)在平面直角坐标系中,点P(2,3)与点P′(2a+b,a+2b)关于原点对称,则a﹣b的值为.15.(4.00分)一个正方形的面积是20,通过估算,它的边长在整数与之间.16.(4.00分)小明将两把直尺按如图所示叠放,使其中一把直尺的一个顶点恰好落在另一把直尺的边上,则∠1+∠2=度.17.(4.00分)从美学角度来说,人的上身长与下身长之比为黄金比时,可以给人一种协调的美感.某女老师上身长约61.80cm,下身长约93.00cm,她要穿约cm的高跟鞋才能达到黄金比的美感效果(精确到0.01cm).18.(4.00分)有一列数:,,,…,则它的第7个数是;第n个数是.三、解答题(本大题共7道题,满分88分,请在答题卷中作答,必须写出运算步骤,推理过程,文字说明或作图痕迹)19.(9.00分)计算:.20.(9.00分)先化简代数式:,再从你喜欢的数中选择一个恰当的作为x的值,代入求出代数式的值.21.(14.00分)在我市举行的“祖国好,家乡美”唱红歌比赛活动中,共有40支参赛队.市教育局对本次活动的获奖情况进行了统计,并根据收集的数据绘制了图1、图2两幅不完整的统计图,请你根据图中提供的信息解答下面的问题:(1)获一、二、三等奖各有多少参赛队?(2)在答题卷上将统计图图1补充完整;(3)计算统计图图2中“没获将”部分所对应的圆心角的度数;(4)求本次活动的获奖概率.22.(14.00分)小明家有一块长8m、宽6m的矩形空地,妈妈准备在该空地上建造一个花园,并使花园面积为空地面积的一半,小明设计了如下的四种方案供妈妈挑选,请你选择其中的一种方案帮小明求出图中的x值.23.(14.00分)如图,已知:△ABC是⊙O的内接三角形,D是OA延长线上的一点,连接DC,且∠B=∠D=30°.(1)判断直线CD与⊙O的位置关系,并说明理由.(2)若AC=6,求图中弓形(即阴影部分)的面积.24.(12.00分)某一特殊路段规定:汽车行驶速度不超过36千米/时.一辆汽车在该路段上由东向西行驶,如图所示,在距离路边10米O处有一“车速检测仪”,测得该车从北偏东60°的A点行驶到北偏东30°的B点,所用时间为1秒.(1)试求该车从A点到B点的平均速度.(2)试说明该车是否超速.(、)25.(16.00分)如图所示,Rt△ABC是一张放在平面直角坐标系中的纸片,点C与原点O重合,点A在x轴的正半轴上,点B在y轴的正半轴上,已知OA=3,OB=4.将纸片的直角部分翻折,使点C落在AB边上,记为D点,AE为折痕,E在y轴上.(1)在如图所示的直角坐标系中,求E点的坐标及AE的长.(2)线段AD上有一动点P(不与A、D重合)自A点沿AD方向以每秒1个单位长度向D点作匀速运动,设运动时间为t秒(0<t<3),过P点作PM∥DE交AE于M点,过点M作MN∥AD交DE于N点,求四边形PMND的面积S与时间t之间的函数关系式,当t取何值时,S有最大值?最大值是多少?(3)当t(0<t<3)为何值时,A、D、M三点构成等腰三角形?并求出点M 的坐标.中考数学试卷参考答案与试题解析一、选择题(每小题3分,满分30分,在每小题给出的四个选项中,只有一项是正确的,请将正确选项的代号填写在答题卷相应的空格内)1.(3.00分)下列实数中,无理数是()A.﹣2B.0C.πD .【分析】根据无理数的定义进行解答即可.【解答】解:∵=2是整数,∴﹣2、0、2是整数,故是有理数;π是无理数.故选:C.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.2.(3.00分)把不等式组的解集表示在数轴上,正确的是()A .B .C .D .【分析】先把不等式组的解集在数轴上表示出来,再找出符合条件的选项即可.【解答】解:不等式组的解集在数轴上表示为:故选:B.【点评】本题考查的是在数轴上表示不等式组的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.3.(3.00分)如图是正方体的一个平面展开图,如果叠成原来的正方体,与“创”字相对的字是()A.都B.美C.好D.凉【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,∴与“创”字相对的字是“都”.故选:A.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.4.(3.00分)已知两圆的半径分别为1和2,圆心距为5,那么这两个圆的位置关系是()A.内切B.相交C.外离D.外切【分析】由两圆的半径分别为1和2,圆心距为5,根据两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系即可得出两圆位置关系.【解答】解:∵两圆的半径分别为1和2,圆心距为5,又∵1+2=3<5,∴这两个圆的位置关系是外离.故选:C.【点评】此题考查了圆与圆的位置关系.解题的关键是掌握两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系.5.(3.00分)下列运算中,结果正确的是()A.(a﹣b)2=a2﹣b2B.(﹣a4)3=a7C.2a+4b=6ab D.﹣(1﹣a)=a﹣1【分析】根据去括号法则、合并同类项、幂的乘方与积的乘方和完全平方公式计算后利用排除法求解.【解答】解:A、(a﹣b)2=a2﹣2ab+b2,故本选项错误;B、(﹣a4)3=﹣a12,故本选项错误;C、不是同类项,不能合并,故本选项错误;D、﹣(1﹣a)=a﹣1,故本选项正确.故选:D.【点评】本题考查了去括号法则、合并同类项、幂的乘方与积的乘方和完全平方公式,需熟练掌握且区分清楚,才不容易出错.6.(3.00分)下列事件是必然事件的是()A.若a>b,则ac>bcB.在正常情况下,将水加热到100℃时水会沸腾C.投掷一枚硬币,落地后正面朝上D.长为3cm、3cm、7cm的三条线段能围成一个三角形【分析】根据事件的分类对四个选项进行逐一分析即可.【解答】解:A、若a>b,则ac>bc是随机事件,故本选项错误;B、在正常情况下,将水加热到100℃时水会沸腾是必然事件,故本选项正确;C、掷一枚硬币,落地后正面朝上是随机事件,故本选项错误;D、长为3cm、3cm、7cm的三条线段能围成一个三角形,是不可能事件,故本选项错误.故选:B.【点评】本题主要考查必然事件、不可能事件、随机事件的概念,理解概念是解决基础题的主要方法.用到的知识点为:必然事件指在一定条件下一定发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.7.(3.00分)如图,火车匀速通过隧道(隧道长等于火车长)时,火车进入隧道的时间x与火车在隧道内的长度y之间的关系用图象描述大致是()A .B .C .D .【分析】先分析题意,把各个时间段内y与x之间的关系分析清楚,本题是分段函数,分为二段.【解答】解:根据题意可知火车进入隧道的时间x与火车在隧道内的长度y 之间的关系具体可描述为:当火车开始进入时y逐渐变大,当火车完全进入隧道,由于隧道长等于火车长,此时y最大,当火车开始出来时y逐渐变小.故选:B.【点评】主要考查了根据实际问题作出函数图象的能力.解题的关键是要知道本题是分段函数,分情况讨论y与x之间的函数关系.8.(3.00分)若点(﹣3,y1)、(﹣2,y2)、(1,y3)在反比例函数的图象上,则下列结论正确的是()A.y1>y2>y3B.y2>y1>y3C.y3>y1>y2D.y3>y2>y1【分析】把点的坐标代入函数解析式,分别求出函数值,即可比较大小.【解答】解:根据题意,y1==﹣,y2==﹣1,y3==2,∵2>﹣>﹣1,∴y3>y1>y2.故选:C.【点评】本题考查了反比例函数图象上点的坐标特征,利用把点的坐标代入函数解析式求函数值比较简单.9.(3.00分)“标准对数视力表”对我们来说并不陌生,如图是视力表的一部分,其中最上面较大的“E”与下面四个较小“E”中的哪一个是位似图形()A.左上B.左下C.右下D.以上选项都正确【分析】开口向上的两个“E”形状相似,但大小不同,因此它们之间的变换属于位似变换,故最上面较大的“E”与右上和左下的“E“是位似图形.【解答】解:根据位似变换的特点可知:最上面较大的“E”与右上和左下的“E“是位似图形.故选:B.【点评】本题考查了位似变换的相关知识,位似是相似的特殊形式,平移、旋转、对称的图形都是全等形.10.(3.00分)如图,在菱形ABCD中,对角线AC=6,BD=8,点E、F分别是边AB、BC的中点,点P在AC上运动,在运动过程中,存在PE+PF 的最小值,则这个最小值是()A.3B.4C.5D.6【分析】先根据菱形的性质求出其边长,再作E关于AC的对称点E′,连接E′F,则E′F即为PE+PF的最小值,再根据菱形的性质求出E′F的长度即可.【解答】解:∵四边形ABCD是菱形,对角线AC=6,BD=8,∴AB==5,作E关于AC的对称点E′,连接E′F,则E′F即为PE+PF的最小值,∵AC是∠DAB的平分线,E是AB的中点,∴E′在AD上,且E′是AD的中点,∵AD=AB,∴AE=AE′,∵F是BC的中点,∴E′F=AB=5.故选:C.【点评】本题考查的是轴对称﹣最短路线问题及菱形的性质,熟知菱形的性质是解答此题的关键.二、填空题(每小题4分,满分32分,请将答案填写在答题卷相应题号后的横线上)11.(4.00分)如果上升10米记作+10米,那么下降5米记作﹣5米.【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:“正”和“负”相对,所以,如果上升10米记作+10米,那么下降5米记作﹣5米.故答案为:﹣5.【点评】此题考查的知识点是正数和负数,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.12.(4.00分)通过第六次全国人口普查得知,六盘水市人口总数约为2851180人,这个数用科学记数法表示是 2.9×106人(保留两个有效数字).【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于2851180有7位,所以可以确定n=7﹣1=6.有效数字的计算方法是:从左边第一个不是0的数字起,后面所有的数字都是有效数字.用科学记数法表示的数的有效数字只与前面的a有关,与10的多少次方无关.【解答】解:2851180=2.851180×106≈2.9×106.故答案为2.9×106.【点评】此题考查科学记数法的表示方法,以及用科学记数法表示的数的有效数字的确定方法.13.(4.00分)请写出两个既是轴对称图形又是中心对称图形的平面几何图形名称正方形、矩形(写出两个即可)【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:正方形和矩形都是中心对称图形和轴对称图形.故本题答案为:正方形;矩形.【点评】本题考查了中心对称图形和轴对称图形的知识,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合.注意本题答案不唯一.14.(4.00分)在平面直角坐标系中,点P(2,3)与点P′(2a+b,a+2b)关于原点对称,则a﹣b 的值为1.【分析】平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),即求关于原点的对称点时,横、纵坐标都变成原数的相反数.【解答】解:根据两个点关于原点对称,则横、纵坐标都是原数的相反数,得:2a+b=﹣2,a+2b=﹣3,解得:a=﹣,b=﹣,a﹣b=1.故答案为:1.【点评】本题考查了关于原点对称的点的坐标,这一类题目是需要识记的基础题,记忆方法是结合平面直角坐标系的图形记忆.15.(4.00分)一个正方形的面积是20,通过估算,它的边长在整数4与5之间.【分析】本题需要先算出4的平方为16与5的平方为25,所以16的算术平方根是4,25的算术平方根是5,进而得出20的算术平方根在4与5之间.【解答】解:∵正方形的面积是20,∴它的边长为20的算术平方根,即,∵<<,∴它的边长在整数:在4与5之间.故答案为:4,5.【点评】本题主要考查了估算无理数的大小,解题关键是确定无理数的整数部分即可解决问题.16.(4.00分)小明将两把直尺按如图所示叠放,使其中一把直尺的一个顶点恰好落在另一把直尺的边上,则∠1+∠2=90度.【分析】首先过点E作EF∥AB,根据题意可得:AB∥CD,∠MEN=90°,即可证得AB∥CD∥EF,然后根据两直线平行,内错角相等,即可求得答案.【解答】解:过点E作EF∥AB,根据题意得:AB∥CD,∠MEN=90°,∴AB∥CD∥EF,∴∠3=∠2,∠4=∠1,∴∠1+∠2=∠3+∠4=∠MEN=90°.故答案为:90.【点评】此题考查了平行线的性质.解题的关键是注意掌握两直线平行,内错角相等定理的应用.17.(4.00分)从美学角度来说,人的上身长与下身长之比为黄金比时,可以给人一种协调的美感.某女老师上身长约61.80cm,下身长约93.00cm,她要穿约7.00cm的高跟鞋才能达到黄金比的美感效果(精确到。
初中毕业生学业考试(试考)数学试卷及答案
九年级生学业考试(试考)数 学一、选择题(每小题3分,共24分) 1、下列各数中,在1与2之间的数是 A .-1B .3C .37 D .32、下列运算正确的是 A .632a a a =⋅ B .532)(a a = C .a a a 532=+D .23a a a =-3、正视图、左视图和俯视图完全相同的几何体是4、如图,阴影部分的面积是 A .xy 27 B .xy 29 C .xy 4 D .xy 25、如图,等腰梯形ABCD 中,AD ∥BC ,若将腰AB 沿A →D 的方向平移到DE 的位置,则图中与∠C 相等的角(不包括∠C )有 A .1个 B .2个 C .3个 D .4个6、若一组数据1,2,3,x 的极差为6,则x 的值是 A .7 B .8 C .9 D .7或-37、如图,任意四边形ABCD 各边中点分别是E 、F 、G 、H ,若对角线AC 、BD 的长都为20cm ,则四边形EFGH 的周长是 A .80cm B .40cm C .20cm D .10cm8、如图,在正方形网格上,若使△ABC ∽△PBD ,则点P 应在 A .P 1处 B .P 2处 C .P 3处 D .P 4处二、填空题(每小题3分,共18分) 9、计算:54-= _____________。
10、不等式组⎪⎩⎪⎨⎧-+≥-12312152>x ,x x 的解集是_____________________。
11、甲、乙两个水桶内水面的高度y (cm )与放水(或注水)的时间x (分)之间的函数图象如图所示,当两个水桶内水面高度相同时,x 约为____________分。
(精确到0.1分) 12、将一矩形纸条,按如图所示折叠,则∠1 = ________________________度。
13、晓明玩转盘游戏,当他转动如图所示的转盘,转盘停止时指针指向2的概率是_________。
14、如图,直线l 与双曲线交于A 、C 两点,将直线l 绕点O 顺时针旋转α度角(0°<α≤45°),与双曲线交于B 、D 两点,则四边形ABCD 的形状一定是_________________形。
2023中考数学考试试卷试题中考数学初三真题及答案解析(含答案和解析) (3)
2023中考数学考试试卷试题中考数学初中学业水平考试 初三真题及答案解析(含答案和解析)一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案用2B 铅笔涂在答题卡相应位置上.1.在下列四个实数中,最小的数是( )A. 2−B.13C. 0D.【答案】A 【解析】 【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【详解】解:根据实数大小比较的方法,可得-2<0<13所以四个实数中,最小的数是-2. 故选:A .【点睛】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.2.某种芯片每个探针单元的面积为20.00000164cm ,0.00000164用科学记数法可表示为( ) A. 51.6410−⨯B. 61.6410−⨯C. 716.410−⨯D.50.16410−⨯【答案】B 【解析】 【分析】绝对值小于1的数利用科学记数法表示的一般形式为a×10-n ,指数n 由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】解:0.00000164=1.64×10-6, 故选:B .【点睛】本题考查用科学记数法表示较小数的方法,写成a×10n 的形式是关键. 3.下列运算正确的是( )A. 236a a a ⋅=B. 33a a a ÷=C. ()325a a =D.()2242a b a b =【答案】D 【解析】 【分析】根据幂的运算法则逐一计算可得.【详解】解: A 、235a a a ⋅=,此选项错误; B 、32a a a ÷=,此选项错误; C 、()326a a =,此选项错误;D 、()2242a ba b =,此选项正确;故选:D .【点睛】本题主要考查幂的运算,解题的关键是掌握幂的运算法则. 4.如图,一个几何体由5个相同的小正方体搭成,该几何体的俯视图是( )A. B. C. D.【答案】C 【解析】 【分析】根据组合体的俯视图是从上向下看的图形,即可得到答案. 【详解】组合体从上往下看是横着放的三个正方形. 故选C .【点睛】本题主要考查组合体三视图,熟练掌握三视图的概念,是解题的关键.5.不等式213x −≤的解集在数轴上表示正确的是( )A.B.C.D.【答案】C【解析】 【分析】先求出不等式的解集,再在数轴上表示出来即可. 【详解】解:移项得,2x≤3+1, 合并同类项得,2x≤4, 系数化为1得,x≤2, 在数轴上表示为:故选:C .【点睛】本题考查的是在数轴上表示不等式的解集,熟知“小于向左,大于向右,在表示解集时≥,≤要用实心圆点表示;<,>要用空心圆点表示”是解答此题的关键. 6.某手表厂抽查了10只手表的日走时误差,数据如下表所示(单位:s ):则这10只手表的平均日走时误差(单位:s )是( ) A. 0 B. 0.6C. 0.8D. 1.1【答案】D 【解析】 【分析】根据加权平均数的概念,列出算式,即可求解. 【详解】由题意得:(0×3+1×4+2×2+3×1)÷10=1.1(s ) 故选D .【点睛】本题主要考查加权平均数,熟练掌握加权平均数的计算方法,是解题的关键. 7.如图,小明想要测量学校操场上旗杆AB 的高度,他作了如下操作:(1)在点C 处放置测角仪,测得旗杆顶的仰角ACE α∠=;(2)量得测角仪的高度CD a =;(3)量得测角仪到旗杆的水平距离DB b =.利用锐角三角函数解直角三角形的知识,旗杆的高度可表示为( )A. tan a b α+B. sin a b α+C. tan ba α+D.sin b a α+【答案】A 【解析】 【分析】延长CE 交AB 于F ,得四边形CDBF 为矩形,故CF=DB=b ,FB=CD=a ,在直角三角形ACF 中,利用CF 的长和已知的角的度数,利用正切函数可求得AF 的长,从而可求出旗杆AB 的长.【详解】延长CE 交AB 于F ,如图,根据题意得,四边形CDBF 为矩形, ∴CF=DB=b ,FB=CD=a ,在Rt △ACF 中,∠ACF=α,CF=b , tan ∠ACF=AFCF∴AF=tan tan CF ACF b α∠=, AB=AF+BF=tan a b α+, 故选:A .【点睛】主要考查了利用了直角三角形的边角关系来解题,通过构造直角三角形,将实际问题转化为数学问题是解答此类题目的关键所在.8.如图,在扇形OAB 中,已知90AOB ∠=︒,OA =AB 的中点C 作CD OA ⊥,CE OB ⊥,垂足分别为D 、E ,则图中阴影部分的面积为( )A. 1π−B.12π−C.12π−D.122π−【答案】B 【解析】 【分析】连接OC ,易证CDO CEO ≅△△,进一步可得出四边形CDOE 为正方形,再根据正方形的性质求出边长即可求得正方形的面积,根据扇形面积公式得出扇形AOB 的面积,最后根据阴影部分的面积等于扇形AOB 的面积剪去正方形CDOE 的面积就可得出答案. 【详解】连接OC 点C 为AB 的中点AOC BOC ∠=∠∴在CDO 和CEO 中90AOC BOC CDO CEO CO CO ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩()CDO CEO AAS ∴≅△△,OD OE CD CE ∴==又90CDO CEO DOE ∠=∠=∠=︒∴四边形CDOE 为正方形OC OA ==1OD OE ∴== =11=1CDOE S ∴⨯正方形由扇形面积公式得290==3602AOBSππ⨯扇形==12CDOE AOB S S S π∴−−阴影正方形扇形故选B .【点睛】本题考查了扇形面积的计算、正方形的判定及性质,熟练掌握扇形面积公式是解题的关键.9.如图,在ABC ∆中,108BAC ∠=︒,将ABC ∆绕点A 按逆时针方向旋转得到AB C ''∆.若点B '恰好落在BC 边上,且AB CB ''=,则C '∠的度数为( )A. 18︒B. 20︒C. 24︒D. 28︒【答案】C 【解析】 【分析】根据旋转的性质得出边和角相等,找到角之间的关系,再根据三角形内角和定理进行求解,即可求出答案. 【详解】解:设C '∠=x°.根据旋转的性质,得∠C=∠'C = x°,'AC =AC, 'AB =AB. ∴∠'AB B =∠B.∵AB CB ''=,∴∠C=∠CA 'B =x°. ∴∠'AB B =∠C+∠CA 'B =2x°. ∴∠B=2x°.∵∠C+∠B+∠CAB=180°,108BAC ∠=︒, ∴x+2x+108=180. 解得x=24.∴C '∠的度数为24°. 故选:C.【点睛】本题考查了三角形内角和定理,旋转的性质的应用及等腰三角形得性质. 10.如图,平行四边形OABC 的顶点A 在x 轴的正半轴上,点()3,2D 在对角线OB 上,反比例函数()0,0k y k x x =>>的图像经过C 、D 两点.已知平行四边形OABC 的面积是152,则点B 的坐标为( )A. 84,3⎛⎫ ⎪⎝⎭B. 9,32⎛⎫⎪⎝⎭C. 105,3⎛⎫⎪⎝⎭D.2416,55⎛⎫ ⎪⎝⎭【答案】B 【解析】 【分析】根据题意求出反比例函数解析式,设出点C 坐标6,a a ⎛⎫⎪⎝⎭,得到点B 纵坐标,利用相似三角形性质,用a 表示求出OA ,再利用平行四边形OABC 的面积是152构造方程求a 即可. 【详解】解:如图,分别过点D 、B 作DE ⊥x 轴于点E ,DF ⊥x 轴于点F ,延长BC 交y 轴于点H∵四边形OABC 是平行四边形 ∴易得CH=AF∵点()3,2D 在对角线OB 上,反比例函数()0,0ky k x x=>>的图像经过C 、D 两点 ∴236k =⨯= 即反比例函数解析式为6y x= ∴设点C 坐标为6,a a ⎛⎫ ⎪⎝⎭∵DEBF∴ODE OBF △△∴DE OEBF OF=∴236OF a=∴6392a OF a⨯== ∴9OA OF AF OF HC a a =−=−=−,点B 坐标为96,a a ⎛⎫⎪⎝⎭∵平行四边形OABC 的面积是152∴96152a a a ⎛⎫−⋅=⎪⎝⎭ 解得122,2a a ==−(舍去) ∴点B 坐标为9,32⎛⎫⎪⎝⎭故应选:B【点睛】本题是反比例函数与几何图形的综合问题,涉及到相似三角形的的性质、反比例函数的性质,解答关键是根据题意构造方程求解. 二、填空题(本题有6小题,每小题4分,共24分) 11.(4分)计算:﹣2﹣1= ﹣3 .【分析】本题需先根据有理数的减法法则,判断出结果的符号,再把绝对值合并即可. 【解答】解:﹣2﹣1 =﹣3 故答案为:﹣3 12.(4分)化简:=.【分析】直接将分母分解因式,进而化简得出答案. 【解答】解:==.故答案为:.13.(4分)如图,已知AB 是半圆O 的直径,弦CD ∥AB ,CD =8,AB =10,则CD 与AB 之间的距离是 3 .【分析】过点O 作OH ⊥CD 于H ,连接OC ,如图,根据垂径定理得到CH =DH =4,再利用勾股定理计算出OH =3,从而得到CD 与AB 之间的距离.【解答】解:过点O 作OH ⊥CD 于H ,连接OC ,如图,则CH =DH =CD =4, 在Rt △OCH 中,OH ==3,所以CD 与AB 之间的距离是3. 故答案为3.14.(4分)在一个布袋里放有1个白球和2个红球,它们除颜色外其余都相同,从布袋里摸出1个球,记下颜色后放回,搅匀,再摸出1个球.将2个红球分别记为红Ⅰ,红Ⅱ,两次摸球的所有可能的结果如表所示,则两次摸出的球都是红球的概率是.【分析】根据图表可知共有9种等可能的结果,再找出两次摸出的球都是红球的情况数,然后根据概率公式即可得出答案.【解答】解:根据图表给可知,共有9种等可能的结果,两次摸出的球都是红球的有4种, 则两次摸出的球都是红球的概率为; 故答案为:.15.(4分)在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点,顶点都是格点的三角形称为格点三角形.如图,已知Rt△ABC是6×6网格图形中的格点三角形,则该图中所有与Rt△ABC相似的格点三角形中.面积最大的三角形的斜边长是5.【分析】根据Rt△ABC的各边长得出与其相似的三角形的两直角边之比为1:2,在6×6的网格图形中可得出与Rt△ABC相似的三角形的短直角边长应小于4,在图中尝试可画出符合题意的最大三角形,从而其斜边长可得.【解答】解:∵在Rt△ABC中,AC=1,BC=2,∴AB=,AC:BC=1:2,∴与Rt△ABC相似的格点三角形的两直角边的比值为1:2,若该三角形最短边长为4,则另一直角边长为8,但在6×6网格图形中,最长线段为6,但此时画出的直角三角形为等腰直角三角形,从而画不出端点都在格点且长为8的线段,故最短直角边长应小于4,在图中尝试,可画出DE=,EF=2,DF=5的三角形,∵===,∴△ABC∽△DEF,∴∠DEF=∠C=90°,∴此时△DEF的面积为:×2÷2=10,△DEF为面积最大的三角形,其斜边长为:5.故答案为:5.16.(4分)如图,已知在平面直角坐标系xOy中,Rt△OAB的直角顶点B在x轴的正半轴上,点A在第一象限,反比例函数y=(x>0)的图象经过OA的中点C.交AB于点D,连结CD.若△ACD的面积是2,则k的值是.【分析】作辅助线,构建直角三角形,利用反比例函数k的几何意义得到S△OCE=S△OBD=k,根据OA的中点C,利用△OCE∽△OAB得到面积比为1:4,代入可得结论.【解答】解:连接OD,过C作CE∥AB,交x轴于E,∵∠ABO=90°,反比例函数y=(x>0)的图象经过OA的中点C,∴S△COE=S△BOD=,S△ACD=S△OCD=2,∵CE∥AB,∴△OCE∽△OAB,∴,∴4S△OCE=S△OAB,∴4×k=2+2+k,∴k=,故答案为:.三、解答题(本题有8小题,共66分)17.(6分)计算:+|﹣1|.【分析】首先利用二次根式的性质化简二次根式,利用绝对值的性质计算绝对值,然后再算加减即可.【解答】解:原式=2+﹣1=3﹣1.18.(6分)解不等式组.【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分即可求解.【解答】解:,解①得x<1;解②得x<﹣6.故不等式组的解集为x<﹣6.19.(6分)有一种升降熨烫台如图1所示,其原理是通过改变两根支撑杆夹角的度数来调整熨烫台的高度.图2是这种升降熨烫台的平面示意图.AB和CD是两根相同长度的活动支撑杆,点O是它们的连接点,OA=OC,h(cm)表示熨烫台的高度.(1)如图2﹣1.若AB=CD=110cm,∠AOC=120°,求h的值;(2)爱动脑筋的小明发现,当家里这种升降熨烫台的高度为120cm时,两根支撑杆的夹角∠AOC是74°(如图2﹣2).求该熨烫台支撑杆AB的长度(结果精确到1cm).(参考数据:sin37°≈0.6,cos37°≈0.8,sin53°≈0.8,cos53°≈0.6.)【分析】(1)过点B作BE⊥AC于E,根据等腰三角形的性质得到∠OAC=∠OCA==30°,根据三角函数的定义即可得到结论;(2)过点B作BE⊥AC于E,根据等腰三角形的性质和三角函数的定义即可得到结论.【解答】解:(1)过点B作BE⊥AC于E,∵OA=OC,∠AOC=120°,∴∠OAC=∠OCA==30°,∴h=BE=AB•sin30°=110×=55;(2)过点B作BE⊥AC于E,∵OA=OC,∠AOC=74°,∴∠OAC=∠OCA==53°,∴AB=BE÷sin53°=120÷0.8=150(cm),即该熨烫台支撑杆AB的长度约为150cm.20.(8分)为了解学生对网上在线学习效果的满意度,某校设置了:非常满意、满意、基本满意、不满意四个选项,随机抽查了部分学生,要求每名学生都只选其中的一项,并将抽查结果绘制成如图统计图(不完整).请根据图中信息解答下列问题:(1)求被抽查的学生人数,并补全条形统计图;(温馨提示:请画在答题卷相对应的图上)(2)求扇形统计图中表示“满意”的扇形的圆心角度数;(3)若该校共有1000名学生参与网上在线学习,根据抽查结果,试估计该校对学习效果的满意度是“非常满意”或“满意”的学生共有多少人?【分析】(1)从两个统计图中可知,在抽查人数中,“非常满意”的人数为20人,占调查人数的40%,可求出调查人数,进而求出“基本满意”的人数,即可补全条形统计图;(2)样本中“满意”占调查人数的,即30%,因此相应的圆心角的度数为360°的30%;(3)样本中“非常满意”或“满意”的占调查人数的(+),进而估计总体中“非常满意”或“满意”的人数.【解答】解:(1)抽查的学生数:20÷40%=50(人),抽查人数中“基本满意”人数:50﹣20﹣15﹣1=14(人),补全的条形统计图如图所示:(2)360°×=108°,答:扇形统计图中表示“满意”的扇形的圆心角度数为108°;(3)1000×(+)=700(人),答:该校共有1000名学生中“非常满意”或“满意”的约有700人.21.(8分)如图,已知△ABC是⊙O的内接三角形,AD是⊙O的直径,连结BD,BC平分∠ABD.(1)求证:∠CAD=∠ABC;(2)若AD=6,求的长.【分析】(1)由角平分线的性质和圆周角定理可得∠DBC=∠ABC=∠CAD;(2)由圆周角定理可得,由弧长公式可求解.【解答】解:(1)∵BC平分∠ABD,∴∠DBC=∠ABC,∵∠CAD=∠DBC,∴∠CAD=∠ABC;(2)∵∠CAD=∠ABC,∴=,∵AD是⊙O的直径,AD=6,∴的长=××π×6=π.22.(10分)某企业承接了27000件产品的生产任务,计划安排甲、乙两个车间的共50名工人,合作生产20天完成.已知甲、乙两个车间利用现有设备,工人的工作效率为:甲车间每人每天生产25件,乙车间每人每天生产30件.(1)求甲、乙两个车间各有多少名工人参与生产?(2)为了提前完成生产任务,该企业设计了两种方案:方案一甲车间租用先进生产设备,工人的工作效率可提高20%,乙车间维持不变.方案二乙车间再临时招聘若干名工人(工作效率与原工人相同),甲车间维持不变.设计的这两种方案,企业完成生产任务的时间相同.①求乙车间需临时招聘的工人数;②若甲车间租用设备的租金每天900元,租用期间另需一次性支付运输等费用1500元;乙车间需支付临时招聘的工人每人每天200元.问:从新增加的费用考虑,应选择哪种方案能更节省开支?请说明理由.【分析】(1)设甲车间有x名工人参与生产,乙车间各有y名工人参与生产,由题意得关于x和y的方程组,求解即可.(2)①设方案二中乙车间需临时招聘m名工人,由题意,以企业完成生产任务的时间为等量关系,列出关于m的分式方程,求解并检验即可;②用生产任务数量27000除以方案一中甲和乙完成的生产任务之和可得企业完成生产任务的时间,然后分别按方案一和方案二计算费用并比较大小即可.【解答】解:(1)设甲车间有x名工人参与生产,乙车间各有y名工人参与生产,由题意得:,解得.∴甲车间有30名工人参与生产,乙车间各有20名工人参与生产.(2)①设方案二中乙车间需临时招聘m名工人,由题意得:=,解得m=5.经检验,m=5是原方程的解,且符合题意.∴乙车间需临时招聘5名工人.②企业完成生产任务所需的时间为:=18(天).∴选择方案一需增加的费用为900×18+1500=17700(元).选择方案二需增加的费用为5×18×200=18000(元).∵17700<18000,∴选择方案一能更节省开支.23.(10分)已知在△ABC中,AC=BC=m,D是AB边上的一点,将∠B沿着过点D的直线折叠,使点B落在AC边的点P处(不与点A,C重合),折痕交BC边于点E.(1)特例感知如图1,若∠C=60°,D是AB的中点,求证:AP=AC;(2)变式求异如图2,若∠C=90°,m=6,AD=7,过点D作DH⊥AC于点H,求DH和AP的长;(3)化归探究如图3,若m=10,AB=12,且当AD=a时,存在两次不同的折叠,使点B 落在AC边上两个不同的位置,请直接写出a的取值范围.【分析】(1)证明△ADP是等边三角形即可解决问题.(2)分两种情形:情形一:当点B落在线段CH上的点P1处时,如图2﹣1中.情形二:当点B落在线段AH上的点P2处时,如图2﹣2中,分别求解即可.(3)如图3中,过点C作CH⊥AB于H,过点D作DP⊥AC于P.求出DP=DB时AD的值,结合图形即可判断.【解答】(1)证明:∵AC=BC,∠C=60°,∴△ABC是等边三角形,∴AC=AB,∠A=60°,由题意,得DB=DP,DA=DB,∴DA=DP,∴△ADP使得等边三角形,∴AP=AD=AB=AC.(2)解:∵AC=BC=6,∠C=90°,∴AB===12,∵DH⊥AC,∴DH∥BC,∴△ADH∽△ABC,∴=,∵AD=7,∴=,∴DH=,将∠B沿过点D的直线折叠,情形一:当点B落在线段CH上的点P1处时,如图2﹣1中,∵AB=12,∴DP1=DB=AB﹣AD=5,∴HP1===,∴A1=AH+HP1=4,情形二:当点B落在线段AH上的点P2处时,如图2﹣2中,同法可证HP2=,∴AP2=AH﹣HP2=3,综上所述,满足条件的AP的值为4或3.(3)如图3中,过点C作CH⊥AB于H,过点D作DP⊥AC于P.∵CA=CB,CH⊥AB,∴AH=HB=6,∴CH===8,当DB=DP时,设BD=PD=x,则AD=12﹣x,∵tan A==,∴=,∴x=,∴AD=AB﹣BD=,观察图形可知当6<a<时,存在两次不同的折叠,使点B落在AC边上两个不同的位置.24.(12分)如图,已知在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c(c>0)的顶点为D,与y轴的交点为C.过点C的直线CA与抛物线交于另一点A(点A在对称轴左侧),点B在AC的延长线上,连结OA,OB,DA和DB.(1)如图1,当AC∥x轴时,①已知点A的坐标是(﹣2,1),求抛物线的解析式;②若四边形AOBD是平行四边形,求证:b2=4c.(2)如图2,若b=﹣2,=,是否存在这样的点A,使四边形AOBD是平行四边形?若存在,求出点A的坐标;若不存在,请说明理由.【分析】(1)①先确定出点C的坐标,再用待定系数法即可得出结论;②先确定出抛物线的顶点坐标,进而得出DF=,再判断出△AFD≌△BCO,得出DF=OC,即可得出结论;(2)先判断出抛物线的顶点坐标D(﹣1,c+1),设点A(m,﹣m2﹣2m+c)(m<0),判断出△AFD≌△BCO(AAS),得出AF=BC,DF=OC,再判断出△ANF∽△AMC,得出=,进而求出m的值,得出点A的纵坐标为c﹣<c,进而判断出点M的坐标为(0,c﹣),N(﹣1,c﹣),进而得出CM=,DN=,FN=﹣c,进而求出c=,即可得出结论.【解答】解:(1)①∵AC∥x轴,点A(﹣2,1),∴C(0,1),将点A(﹣2,1),C(0,1)代入抛物线解析式中,得,∴,∴抛物线的解析式为y=﹣x2﹣2x+1;②如图1,过点D作DE⊥x轴于E,交AB于点F,∵AC∥x轴,∴EF=OC=c,∵点D是抛物线的顶点坐标,∴D(,c+),∴DF=DE﹣EF=c+﹣c=,∵四边形AOBD是平行四边形,∴AD=DO,AD∥OB,∴∠DAF=∠OBC,∵∠AFD=∠BCO=90°,∴△AFD≌△BCO(AAS),∴DF=OC,∴=c,即b2=4c;(2)如图2,∵b=﹣2.∴抛物线的解析式为y=﹣x2﹣2x+c,∴顶点坐标D(﹣1,c+1),假设存在这样的点A使四边形AOBD是平行四边形,设点A(m,﹣m2﹣2m+c)(m<0),过点D作DE⊥x轴于点E,交AB于F,∴∠AFD=∠EFC=∠BCO,∵四边形AOBD是平行四边形,∴AD=BO,AD∥OB,∴∠DAF=∠OBC,∴△AFD≌△BCO(AAS),∴AF=BC,DF=OC,过点A作AM⊥y轴于M,交DE于N,∴DE∥CO,∴△ANF∽△AMC,∴=,∵AM=﹣m,AN=AM﹣NM=﹣m﹣1,∴,∴,∴点A的纵坐标为﹣(﹣)2﹣2×(﹣)+c=c﹣<c,∵AM∥x轴,∴点M的坐标为(0,c﹣),N(﹣1,c﹣),∴CM=c﹣(c﹣)=,∵点D的坐标为(﹣1,c+1),∴DN=(c+1)﹣(c﹣)=,∵DF=OC=c,∴FN=DN﹣DF=﹣c,∵=,∴,∴c=,∴c﹣=,∴点A纵坐标为,∴A(﹣,),∴存在这样的点A,使四边形AOBD是平行四边形.。
中考数学试卷精选合辑60之15初中毕业生学业考试试卷及参考答案
中考数学试卷精选合辑60之15初中毕业生学业考试试卷及参考答案初中毕业生学业考试数学试卷友情提示:1.全卷分卷Ⅰ和卷Ⅱ两部分,共8页.考试时间为100分钟.2.第四题为自选题,供考生选做,本题分数将计入本学科的总分,但考生所得总分最多为120分.3.卷Ⅰ中试题(第1-12小题)的答案填涂在答题卡上,写在试卷上无效.4.请仔细审题,细心答题,相信你一定会有出色的表现!5.参考公式:抛物线y =ax 2+bx +c 的顶点坐标是2424b ac b a a ⎛⎫-- ⎪⎝⎭,.卷Ⅰ一、选择题(本题有12小题,每小题3分,共36分)下面每小题给出的四个选项中,只有一个是正确的.请选出各题中一个最符合题意的选项,并在答题卡上将相应题次中对应字母的方框涂黑,不选、多选、错选均不给分.1.2的相反数是()A.2-B.2C.1-D.1222.当1x=时,代数式1x+的值是()A.1B.2C.3D,43.数据2,4,4,5,3的众数是()A.2 B.3 C.4 D.54.已知35α∠=,则α∠的余角的度数是()A.55B.45C.145D.1355.计算23-所得的结果是()()x xA.5x B.5x-C.6x D.6x-6.一个布袋里装有3个红球、2个白球,每个球除颜色外均相同,从中任意摸出一个球,则摸出的球是红球的概率是()A.15B.25C.35D.237.已知两圆的半径分别为3cm和2cm,圆心距为5cm,则两圆的位置关系是()A.外离B.外切C.相交D.内切8.下列各数中,可以用来证明命题“任何偶数都是8的整数倍”是假命题的反例是()A.32 B.16 C.8 D.49.如图,已知圆心角78BOC∠=,则圆周角BAC∠的度数是()A.156B.78C.39D.1210.如图,已知直角三角形ABC中,斜边AB的长为m,40B∠=,则直角边BC的长是()A.sin40m B.cos40m C.tan40m D.tan40m11.解放军某部接到上级命令,乘车前往四川地震灾区抗震救灾.前进一段路程后,由于道路受阻,汽车无法通行,部队通过短暂休整后决定步行前往.若部队离开驻地的时间为t(小时),离开驻地的距离为S(千米),则能反映S与t之间函数关系的大致图象是()12.已知点A的坐标为(),,O为坐标原点,连结a bOA,将线段OA绕点O按逆时针方向旋转90得1OA,则点A的坐标为()1A.()-,D.()b a-,b aa b-,C.()-,B.()a b卷Ⅱ二、填空题(本题有6小题,每小题4分,共24分)13.计算:12-+=.14.已知等腰三角形的一个底角为70,则它的顶角为度.15.利用图(1)或图(2)两个图形中的有关面积的等量关系都能证明数学中一个十分著名的定理,这个定理称为,该定理的结论其数学表达式是.16.如图,AB是O的直径,CB切O于B,连结AC 交O于D,若8cm⊥,则O的半径OA=BC=,DO ABcm.17.一个长、宽、高分别为15cm,10cm,5cm 的长方体包装盒的表面积为cm2.18.将自然数按以下规律排列,则2008所在的位置是第行第列.三、解答题(本题有6小题,共60分)19.(本题有2小题,每小题5分,共10分)(12008(1)2sin 30--;(2)解不等式组:2113110.x x x ->+⎧⎨+>⎩,①②20.(本小题8分)如图,在ABC △中,D 是BC 边的中点,F E ,分别是AD及其延长线上的点,CF BE ∥.(1)求证:BDE CDF △≌△.(2)请连结BF CE ,,试判断四边形BECF 是何种特殊四边形,并说明理由.21.(本小题10分)为了解九年级学生每周的课外阅读情况,某校语文组调查了该校九年级部分学生某周的课外阅读量(精确到千字),将调查数据经过统计整理后,得到如下频数分布直方图.请根据该频数分布直方图,回答下列问题:(1)填空:①该校语文组调查了名学生的课外阅读量;②左边第一组的频数=,频率=.(2)求阅读量在14千字及以上的人数.(3)估计被调查学生这一周的平均阅读量(精确到千字).22.(本小题10分)为了支援四川人民抗震救灾,某休闲用品有限公司主动承担了为灾区生产2万顶帐篷的任务,计划10天完成.(1)按此计划,该公司平均每天应生产帐篷顶;(2)生产2天后,公司又从其它部门抽调了50名工人参加帐篷生产,同时,通过技术革新等手段使每位工人....的工作效率比原计划提高了25%,结果提前2天完成了生产任务.求该公司原计划安排多少名工人生产帐篷?23.(本小题10分)如图甲,在等腰直角三角形OAB 中,90OAB ∠=,B 点在第一象限,A 点坐标为(10),.OCD △与OAB △关于y 轴对称.(1)求经过D O B ,,三点的抛物线的解析式;(2)若将OAB △向上平移(0)k k >个单位至O A B '''△(如图乙),则经过D O B ',,三点的抛物线的对称轴在y 轴的 .(填“左侧”或“右侧”)(3)在(2)的条件下,设过D O B ',,三点的抛物线的对称轴为直线x m =.求当k 为何值时,13m =?24.(本小题12分)已知:在矩形AOBC 中,4OB =,3OA =.分别以OB OA ,所在直线为x 轴和y 轴,建立如图所示的平面直角坐标系.F 是边BC 上的一个动点(不与B C ,重合),过F 点的反比例函数(0)k y k x =>的图象与AC 边交于点E .(1)求证:AOE △与BOF △的面积相等; (2)记OEFECFS SS =-△△,求当k 为何值时,S 有最大值,最大值为多少?(3)请探索:是否存在这样的点F ,使得将CEF△沿EF对折后,C点恰好落在OB上?若存在,求出点F的坐标;若不存在,请说明理由.四、自选题(本题5分)请注意:本题为自选题,供考生选做.自选题得分将计入本学科总分,但考试总分最多为120分.25.对于二次函数2y ax bx c=++,如果当x取任意整数时,函数值y都是整数,那么我们把该函数的图象叫做整点抛物线(例如:222y x x=++).(1)请你写出一个二次项系数的绝对值小于1的整点抛物线的解析式.(不必证明)(2)请探索:是否存在二次项系数的绝对值小的整点抛物线?若存在,请写出其中一条抛于12物线的解析式;若不存在,请说明理由.浙江省2008年初中毕业生学业考试(湖州市)数学试卷参考答案一、选择题(每小题3分,共36分)二、填空题(每小题4分,共24分)13.1 14.40 15.勾股定理,222a b c +=16.417.550 18.18,45 三、解答题(共60分)19.(本题有2小题,每小题5分,共10分) (1)解:原式15122=+-⨯5= (2)解:由①得2x > 由②得3x >所以不等式组的解集为3x >. 20.(本小题8分) (1)证明:CF BE∥,EBD FCD ∴∠=∠.又BDE CDF ∠=∠,BD CD =,BDE CDF∴△≌△.(2)四边形BECF 是平行四边形. 由BDE CDF △≌△,得ED FD =.BD CD=,∴四边形BECF 是平行四边形.21.(本小题10分)(1)①40;②4,0.1(每答对一个得2分) (2)由图知,阅读量在14千字及以上的学生人数为12820+=人.(3)估计被调查学生这一周的平均阅读量为:1(466910*********)1340⨯+⨯+⨯+⨯+⨯≈(千字).答:被调查学生这一周的平均阅读量约为13千字.22.(本小题10分) 解:(1)2000(2)设该公司原计划安排x 名工人生产帐篷,则由题意得:20002000022000(125)(1022)(50)x x -⨯+=--+%,5163(50)x x ∴=+.∴解这个方程,得750x =.经检验,750x =是所列方程的根,且符合题意. 答:该公司原计划安排750名工人生产帐篷. 23.(本小题10分)解:(1)由题意可知:经过D O B ,,三点的抛物线的顶点是原点,故可设所求抛物线的解析式为2y ax =.OA AB=,B ∴点坐标为(11),.……(11)B ,在抛物线上,211a ∴=⨯,…1a =,∴经过D O B ,,三点的抛物线解析式是2y x =.(2)左侧.(3)由题意得:点B '的坐标为(11)k +,,抛物线过原点,故可设抛物线解析式为211y a x b x=+,抛物线经过点(11)D -,和点(11)B k '+,,111111a b k a b =-⎧∴⎨+=+⎩ 得122k a +=,12kb =. 抛物线对称轴必在y 轴的左侧,0m ∴<,而13m =,13m ∴=-,122322kk ∴-=-+⨯,4k ∴=.即当4k =时,13m =. 24.(本小题12分)(1)证明:设11()E x y ,,22()F x y ,,AOE △与FOB △的面积分别为1S ,2S ,由题意得11kyx =,22k yx =. 1111122S x y k ∴==,2221122Sx y k ==.12S S ∴=,即AOE △与FOB △的面积相等.(2)由题意知:E F ,两点坐标分别为33k E ⎛⎫ ⎪⎝⎭,,44k F ⎛⎫⎪⎝⎭,, 1111432234ECF S EC CF k k ⎛⎫⎛⎫∴==-- ⎪⎪⎝⎭⎝⎭△,11121222EOF AOE BOF ECF ECF ECFAOBC S S S S S k k S k S ∴=---=---=--△△△△△△矩形11112212243234OEF ECF ECF S S S k S k k k ⎛⎫⎛⎫∴=-=--=--⨯-- ⎪⎪⎝⎭⎝⎭△△△2112S k k ∴=-+.当161212k =-=⎛⎫⨯- ⎪⎝⎭时,S 有最大值.131412S -==⎛⎫⨯- ⎪⎝⎭最大值.(3)解:设存在这样的点F ,将CEF △沿EF 对折后,C 点恰好落在OB 边上的M 点,过点E 作EN OB ⊥,垂足为N .由题意得:3EN AO ==,143EM EC k ==-,134MF CF k ==-,90EMN FMB FMB MFB ∠+∠=∠+∠=,EMN MFB ∴∠=∠.又90ENM MBF ∠=∠=,ENM MBF ∴△∽△.EN EMMB MF∴=,11414312311331412k k MB k k ⎛⎫-- ⎪⎝⎭∴==⎛⎫-- ⎪⎝⎭,94MB ∴=.222MB BF MF+=,222913444k k ⎛⎫⎛⎫⎛⎫∴+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,解得218k =. 21432k BF ∴==.∴存在符合条件的点F ,它的坐标为21432⎛⎫⎪⎝⎭,. 四、自选题(共5分) 25.(1)如:21122y xx =+,21122y xx =--等等(只要写出一个符合条件的函数解析式) (2)解:假设存在符合条件的抛物线,则对于抛物线2y axbx c=++当0x =时y c =,当1x =时y a b c =++,由整点抛物线定义知:c 为整数,a b c ++为整数,a b∴+必为整数.又当2x =时,4222()y a b c a a b c =++=+++是整数,2a∴必为整数,从而a 应为12的整数倍, 0a ≠,12a ∴≥.∴不存在二次项系数的绝对值小于12的整点抛物线.。
九年级学业测试数学试卷【含答案】
九年级学业测试数学试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若 a > b,则下列哪个选项一定成立?A. a c > b cB. a + c > b + cC. ac > bcD. a/c > b/c2. 下列哪个函数是奇函数?A. y = x^2B. y = |x|C. y = x^3D. y = x^2 + 13. 在直角坐标系中,点(3, -4)位于?A. 第一象限B. 第二象限C. 第三象限D. 第四象限4. 若一个等差数列的前三项分别是2, 5, 8,则第10项是?A. 29B. 30C. 31D. 325. 下列哪个数是既约分数?A. 2/4B. 3/6C. 4/8D. 5/7二、判断题(每题1分,共5分)6. 任何两个奇数之和都是偶数。
()7. 平方根的定义是:一个数的平方根是另一个数,其平方等于这个数。
()8. 任何两个负数相乘的结果都是正数。
()9. 一元二次方程 ax^2 + bx + c = 0(a ≠ 0)的判别式是 b^2 4ac。
()10. 在等差数列中,任何两个相邻项的差是常数。
()三、填空题(每题1分,共5分)11. 若 a = 3,b = -2,则 |a + b| = _______。
12. 函数 y = 2x + 3 的图像是一条_________。
13. 若一个等差数列的公差是3,第5项是14,则第1项是_______。
14. 平方根的算术平方根是_______。
15. 一元二次方程 x^2 5x + 6 = 0 的解是 x = _______ 和 x = _______。
四、简答题(每题2分,共10分)16. 解释等差数列和等比数列的定义。
17. 什么是算术平方根?如何计算一个数的算术平方根?18. 描述如何解一元二次方程。
19. 解释函数图像的斜率是什么,如何计算斜率?20. 什么是绝对值?请给出一个例子。
中考数学试卷精选合辑60之50-初中毕业、升学考试数学试题及参考答案
初中毕业、升学考试数 学 试 题本试卷分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷1至2页,第Ⅱ卷3至8页.全卷共120分,考试时间120分钟.第Ⅰ卷注意事项:1.答Ⅰ第卷前考生务必将自己的考试证号、考试科目用2B 铅笔填涂在答题卡上.2.作答选择题必须用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其它答案.不能答在第Ⅰ卷上.一、选择题(每小题2分,共20分.在每小题给出的四个选项中,有且只有....一个是正确的) 1.4的平方根是A.2±B.2C. -2 D 162.一方有难、八方支援,截至5月26日12时,徐州巿累计为汶川地震灾区捐款约为11 180万元,该笔善款可用科学记数法表示为A. 11.18×103万元B. 1.118×104万元C. 1.118×105万元D. 1.118×108万元 3.函数11y x =+中自变量x 的取值范围是A. x ≥-1B. x ≤-1C. x ≠-1D. x =-1 4.下列运算中,正确的是A.x 3+x 3=x 6B. x 3·x 9=x 27C.(x 2)3=x 5D. x ÷x 2=x -1 5.如果点(3,-4)在反比例函数k y x=的图象上,那么下列各点中,在此图象上的是A.(3,4)B. (-2,-6)C.(-2,6)D.(-3,-4)6.下列平面展开图是由5个大小相同的正方形组成,其中沿正方形的边不能..折成无盖..小方盒的是ABC D7.⊙O 1和⊙O 2的半径分别为5和2,O 1O 2=3,则⊙O 1和⊙O 2的位置关系是A.内含B. 内切C.相交D.外切 8.下列图形中,是轴对称图形但不是中心对称图形的是A.正三角形B.菱形C.直角梯形D.正六边形 9.下列事件中,必然事件是A.抛掷1个均匀的骰子,出现6点向上B.两直线被第三条直线所截,同位角C.366人中至少有2人的生日相同D.实数的绝对值是非负数10.如图,小明随意向水平放置的大正方形内部区域抛一个小球,则小球停在小正方形内部(阴影)区域的概率为A.34B.13C.12D.14二、填空题(每小题3分,共18分.请将答案填写在第Ⅱ卷相应的位置上................) 11.因式分解:2x 2-8=______▲________12.徐州巿部分医保定点医院2008年第一季度的人均住院费用(单位:元)约为:12 320,11 880,10 370,8 570,10 640, 10240.这组数据的极差是_____▲_______元. 13.若12,x x 为方程210x x +-=的两个实数根,则12x x +=___▲___. 14.边长为a 的正三角形的面积等于______▲______.15.如图,AB 是⊙O 的直径,点C 在AB 的延长线上,CD 与⊙O 相切于点D.若,若∠C =18°,则∠CDA =______▲_______.16.如图,Rt △ABC 中,∠B =90°,AB =3cm ,AC =5cm ,将△ABC 折叠,使点C 与A 重合,得折痕DE ,则△ABE 的周长等于____▲_____cm.第Ⅱ卷三、解答题(每小题5分,共20分)(第10题图)(第15题图)(第16题图)17.计算:2008011(1)()3π--+-+.18.已知21,23.x xx =+--求的值19.解不等式组12215(1)xx x ⎧>-⎪⎨⎪+≥-⎩,并写出它的所有整数解.20.如图,一座堤坝的横截面是梯形,根据图中给出的数据,求坝高和坝底宽(精确到0.1m )1.4141.732四、解答题(本题有A 、B 两类题,A 类题4分,B 类题6分,你可以根据自己的学习情况,在两类题中任意选做一题......,如果两类题都做,则以A 类题计分) 21.(A 类)已知如图,四边形ABCD 中,AB =BC ,AD =CD ,求证:∠A =∠C.(B 类)已知如图,四边形ABCD 中,AB =BC ,∠A =∠C ,求证:AD =CD.五、解答题(每小题7分,共21分)22.从称许到南京可乘列车A 与列车B ,已知徐州至南京里程约为350km ,A 与B 车的平均速度之比为10∶7,A 车的行驶时间比B 车的少1h ,那么两车的平均速度分别为多少? 23.小王某月手机话费中的各项费用统计情况见下列图表,请你根据图表信息完成下列各题:DCBAB(第20题图)(第21题图)(1) 该月小王手机话费共有多少元?(2) 扇形统计图中,表示短信费的扇形的圆心角为多少度? (3) 请将表格补充完整; (4) 请将条形统计图补充完整.24.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC 的顶点均在格点上,点B 的坐标为(1,0) ①画出△ABC 关于x 轴对称的△A 1B 1C 1,②画出将△ABC 绕原点O 按逆时针旋转90°所得的△A 2B 2C 2,③△A 1B 1C 1与△A 2B 2C 2成轴对称图形吗?若成轴对称图形,画出所有的对称轴;④△A 1B 1C 1与△A 2B 2C 2成中心对称图形吗?若成中心对称图形,写出所有的对称中心的坐标.短信费长途话费基本话费月功能费50403020100项目金额/元六、解答题(每小题8分,共16分)25.为缓解油价上涨给出租车待业带来的成本压力,某巿自2007年11月17日起,调整出租车运价,调整方案见下列表格及图像(其中a,b,c 为常数)设行驶路程xkm 时,调价前的运价y 1(元),调价后的运价为y 2(元)如图,折线ABCD 表示y 2与x 之间的函数关系式,线段EF 表示当0≤x ≤3时,y 1与x 的函数关系式,根据图表信息,完成下列各题: ①填空:a=______,b=______,c=_______.②写出当x >3时,y 1与x 的关系,并在上图中画出该函数的图象.③函数y 1与y 2的图象是否存在交点?若存在,求出交点的坐标,并说明该点的实际意义,若不存在请说明理由.26.已知四边形ABCD的对角线AC与BD交于点O,给出下列四个论断①OA=OC②AB=CD③∠BAD=∠DCB④AD∥BC请你从中选择两个论断作为条件,以“四边形ABCD为平行四边形”作为结论,完成下列各题:①构造一个真命题...,画图并给出证明;②构造一个假命题...,举反例加以说明.七、解答题(第27题8分,第28题10分,共18分)27.已知二次函数的图象以A(-1,4)为顶点,且过点B(2,-5)①求该函数的关系式;②求该函数图象与坐标轴的交点坐标;③将该函数图象向右平移,当图象经过原点时,A、B两点随图象移至A′、B′,求△O A′B′的面积.28.如图1,一副直角三角板满足AB=BC,AC=DE,∠ABC=∠DEF=90°,∠EDF=30°【操作】将三角板DEF的直角顶点E放置于三角板ABC的斜边AC上,再将三角板....DEF...绕点..,并使边DE与边AB交于点P,边EF与边BC于点Q..E.旋转【探究一】在旋转过程中,(1)如图2,当C E1=时,EP与EQ满足怎样的数量关系?并给出证明.E A(2)如图3,当C E2=时EP与EQ满足怎样的数量关系?,并说明理由.E A(3)根据你对(1)、(2)的探究结果,试写出当C E=m时,EP与EQ满足的数量关E A系式为_________,其中m 的取值范围是_______(直接写出结论,不必证明)【探究二】若,AC =30cm ,连续PQ ,设△EPQ 的面积为S(cm 2),在旋转过程中: (1) S 是否存在最大值或最小值?若存在,求出最大值或最小值,若不存在,说明理由.(2) 随着S 取不同的值,对应△EPQ 的个数有哪些变化?不出相应S 值的取值范围.FC(E)A(D)QPDEFC BAQPDEFCBA(图1) (图2) (图3)徐州巿2008年初中毕业、升学考试数 学 试 题 参 考 答 案1.A2.B3.C4.D5.C6.B7.B8.C9.D 10.C 11. 2(2)(2)x x -+ 12. 3750元 13.-1 14.24a15.126°16.7cm17.解:原式=1+1-3+2=118.解:223(3)(1)x x x x --=-+,将1x =+代入到上式,则可得223111)2)1x x --=+-+==-19.解:12215(1)xx x ⎧>-⎪⎨⎪+≥-⎩222221552x x x x x x >->-⎧⎧⇒⇒-<≤⎨⎨+≥-≤⎩⎩ 20.解:如图所示,过点A 、D 分别作BC 的垂线AE、DF 分别交BC 于点E 、F , 所以△ABE 、△CDF 均为Rt △,又因为CD =14,∠DCF =30°,所以DF =7=AE ,且FC =7 12.1 所以BC =7+6+12.1=25.1m. 21.证明:(A )连结AC ,因为AB =AC ,所以∠BAC =∠BCA ,同理AD =CD 得∠DAC =∠DCA所以∠A =∠BAC +∠DAC =∠BCA +∠DCA =∠C(B )如(A )只须反过来即可.22.解方程的思想.A 车150km/h ,B 车125km/h. 23.解:(1)125元的总话费 (2)72° (3)CBE FDCBA(4) 解:如下图所示,24.(4)对称中心是(0,0) 25.解:(1) a=7, b=1.4, c=2.1 (2)1 2.10.3y x =- (3)有交点为31(,9)7其意义为当317x <时是方案调价前合算,当317x >时方案调价后合算.26.解:(1)②③为论断时,(2)②④为论断时,此时可以构成一梯形. 27.解:(1)223y x x =--+ (2) (0,3),(-3,0),(1,0) (3)略短信费长途话费基本话费月功能费50403020100项目金额/元。
初中毕业生学业考试数学试卷及参考答案 (2)
初中毕业生学业考试数学考生须知:1、全卷满分为150分,考试时间为120分钟.2、全卷分“卷Ⅰ”和“卷Ⅱ”两部分,其中“卷Ⅰ”为选择题卷;“卷Ⅱ”为非选择题卷.3、答题前,请在答题卡上先填写姓名和准考证号,再用铅笔将准考证号和科目对应的括号或方框涂黑.4、请在“卷二”上填写座位号并在密封线内填写县(市、区)学校、姓名和准考证号.5、答题时,允许使用计算器.温馨提示:带着愉悦的心情,载着自信与细心,凭着沉着与冷静,迈向理想的彼岸!试卷Ⅰ请用铅笔将答卷Ⅰ上的准考证号和学科名称所对应的括号或方框内涂黑,然后开始答题.一、选择题(本题有10小题,每小题4分,共40分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1. 2的相反数是A. 2B.-2C.1 2D.-122.如图,AB∥CD,若∠1=45°,则∠2的度数是A.45°B.90°C.30°D.135°3.下列图形中,不是..轴对称图形的是A.B.C.D. 4.已知反比例函数2yx,则这个函数的图象一定经过A. (2,1)B. (2,-1)C. (2,4)D. (-12,2)5.据丽水市统计局公报:2006年我市生产总值约35 300 000 000元,那么用科学记数法表示为(第2题)A BC D12A . 3.53×1011元B . 3.53×1010元C . 3.53×109元D . 35.3×108元6.方程组5210x y x y +=⎧⎨+=⎩ ,由②-①,得正确的方程是A . 310x =B . 5x =C . 35x =-D . 5x =-7.国家实行一系列“三农”优惠政策后,农民收入 大幅度增加,右图是我省2001年至2006年农村 居民人均年收入统计图,则这6年中农村居民 人均年收入的中位数是A . 5132B . 6196C . 5802D .5664 8.请根据图中给出的信息,可得正确的方程是 A .2286()()(5)22x x ππ⨯=⨯⨯+ B .2286()()(5)22x x ππ⨯=⨯⨯-C .2286(5)x x ππ⨯=⨯⨯+ D .22865x ππ⨯=⨯⨯9.“两龙”高速公路是目前我省高速公路隧道和桥梁最多的路段.如图,是一个单心圆曲隧道的截面,若路面AB 宽为10米,净高CD 为7米,则此隧道单心圆的半径OA 是 A . 5 B . 377C . 375D . 710.如图,直线443y x =-+与x 轴、y 轴分别交于A 、B 两点,把△AOB 绕点A 顺时针旋转90°后得到△AO B '',则点B '的坐标是A . (3,4)B . (4,5)C . (7,4)D . (7,3)浙江省2007年初中毕业生学业考试(丽水市卷)2001年至2006年浙江省农村居民人均收入统计图①②ABOxyO ' B ' (第10题) x ㎝5㎝ 6㎝ 8㎝ 老乌鸦,我喝不到大量筒中的水!x ㎝ ODAB C(第9题) 小乌鸦,你飞到装有相同水量的小量筒,就可以喝到水了!数 学试卷Ⅱ大题号 二三卷Ⅱ总分小题号 11~161718192021222324得 分说明:本卷有二大题,14小题,共110分,请用蓝黑墨水的钢笔或圆珠笔直接在试卷上答题.二、填空题(本题有6小题,每小题5分,共30分) 11.因式分解:29a -= . 12.当x = 时,分式21x -无意义. 13.等腰三角形的一个底角为030,则顶角的度数是 度. 14.如图,一架梯子斜靠在墙上,若梯子到墙的距离AC =3米,3cos 4BAC ∠=,则梯子AB 的长度为 米.15. 如果一个立体图形的主视图为矩形,则这个立体图形可能是 (•只需填上一个立体图形).16.廊桥是我国古老的文化遗产.如图,是某座抛物线型的廊桥示意图,已知抛物线的函数表达式为211040y x =-+,为保护廊桥的安全,在该抛物线上距水面AB 高为8米的点E 、F 处要安装两盏警示灯,则这两盏灯的水平距离EF 是 米(精确到1米).三、解答题(本题有8小题,第17~20题每题8分,第21题10分,第22、23题每题12分,第24题14分,共80分)17.(本题8分)(1)计算:21632sin 30-+. (2)解不等式:47x -<31x -.18.(本题8分)得分 评卷人得分评卷人得分评卷人yO (第14题)ABC如图,矩形ABCD 中,AC 与BD 交于点O ,BE ⊥AC , CF ⊥BD ,垂足分别为E ,F .求证:BE CF .19.(本题8分)如图所示,在4×4的菱形斜网格图中(每一个小菱形的边长为1,有一个角是60°),菱形ABCD 的边长为2,E 是AD 的中点,按CE 将菱形ABCD 剪成①、②两部分,用这两部分可以分别拼成直角三角形、等腰梯形、矩形,要求所拼成图形的顶点均落在格点上.(1)在下面的菱形斜网格中画出示意图;(2)判断所拼成的三种图形的面积(s )、周长(l )的大小关系(用“=”、“>”或“<”连接):面积关系是 ;周长关系是.20.(本题8分)小明在复习数学知识时,针对“求一元二次方程的解”,整理了以下的几种方法,请你复习日记卡片得分评卷人得分评卷人A BCDEF O(直角三角形)(等腰梯形) (矩形)内容:一元二次方程解法归纳 时间:2007年6月×日 举例:求一元二次方程210x x --=的两个解方法一:选择合适的一种方法(公式法、配方法、分解因式法)求解解方程:210x x --=. 解:方法二:利用二次函数图象与坐标轴的交点求解如图所示,把方程210x x --=的解看成是二次 函数y = 的图象与x 轴交点的 横坐标,即12,x x 就是方程的解.方法三:利用两个函数图象的交点求解(1)把方程210x x --=的解看成是一个二次函数y = 的图象与一个一次函数y = 图象交点的横坐标; (2)画出这两个函数的图象,用12,x x 在x 轴上标出方程的解.21.(本题10分)在课外活动时间,小王、小丽、小华做“互相踢踺子”游戏,踺子从一人传到另一人就记为踢一次.(1)若从小丽开始,经过两次踢踺后,踺子踢到小华处的概率是多少?(用树状图或列表法说明)得分 评卷人 xy1x2xOxy O -1 3 213 -1 -212 4 -2-3(2)若经过三次踢踺后,踺子踢到小王处的可能性最小,应确定从谁开始踢,并说明理由.锻炼22.(本题12分)为了开展阳光体育运动,坚持让中小学生“每天锻炼一小时”,某县教研室体育组搞了一个随机调查,调查内容是:“每天锻炼是否超过1小时及锻炼未超过1小时的原因”,他们随机调查了720名学生,所得的数据制成了如下的扇形统计图和频数分布直方图.根据图示,请你回答以下问题: (1)“没时间”的人数是 ,并补全频数分布直方图; (2)2006年丽水市中小学生约32万人,按此调查,可以估计2006年全市中小学生每天锻炼未超过1小时约有 万人;(3)如果计划2008年丽水市中小学生每天锻炼未超过1小时的人数降到3.84 万人,求2006年至2008年锻炼未超过1小时人数的年平均...降低..的百分率是多少?23.(本题12分)如图,⊙O 的直径AB =6cm ,P 是AB 延长线上的一点,过P 点作⊙O 的切线,切点为C ,连接AC .(1) 若CPA ∠=30°,求PC 的长;(2)若点P 在AB 的延长线上运动,CPA ∠的平分线交AC 于点M ,你认为∠CMP 的大小是否发生变化?若变化,请说明理由;若不变,求出∠CMP 的值.得分评卷人得分 评卷人270︒超过1小时未超过1小时不喜欢没时间 其它 原因 锻炼未超过1小时人数频数分布直方图 人数 CPAB O·如图,在平面直角坐标系中,直角梯形ABCO的边OC落在x轴的,AB=4,BC=6,OC=8.正方形ODEF的两正半轴上,且AB∥OC,BC OC边分别落在坐标轴上,且它的面积等于直角梯形ABCO面积.将正方形ODEF沿x轴的正半轴平行移动,设它与直角梯形ABCO的重叠部分面积为S.(1)分析与计算:求正方形ODEF的边长;(2)操作与求解:①正方形ODEF平行移动过程中,通过操作、观察,试判断S(S>0)的变化情况是;A.逐渐增大 B.逐渐减少 C.先增大后减少D.先减少后增大②当正方形ODEF顶点O移动到点C时,求S的值;(3)探究与归纳:设正方形ODEF的顶点O向右移动的距离为x,求重叠部分面积S与x的函数关系式.初中毕业生学业考试数学试卷参考答案一. 选择题(本题共10小题,每小题4分,共40分)二、填空题(本题有6小题,每小题5分,共30分)11.(3)(3)a a +-; 12.1;13.100; 14.4;15.答案不唯一如:长方体、圆柱等; 16.18.三、解答题 (本题有8小题,第17~20题每题8分,第21题10分,第22、23题每题12分,第24题14分,共80分) 17.(本题8分) 解:(1)原式=4-9+1 ……………………………………………………………………3分 =-4. …………………………………………………………………………1分 (2)移项,得43x x -<-1+7.…………………………………………………………………2分合并同类项,得(备用图)x <6. ………………………………………………………………………………2分 18.(本题8分)证明:∵四边形ABCD 为矩形,∴AC =BD ,则BO =CO .………………………………………………………………2分 ∵BE ⊥AC 于E ,CF ⊥BD 于F , ∴∠BEO =∠CFO =90°.………………………………………………………………2分又∵∠BOE =∠COF ,…………………………………………………………………1分 ∴△BOE ≌△COF .……………………………………………………………………2分 ∴BE =CF .………………………………………………………………………………1分 19.(本题8分)(1)每画一个正确给2分. ………………………………………………………………6分(2) =S =S S 矩形直角三角形等腰梯形;…………………………………………………………1分l 直角三角形>l 等腰梯形 > l 矩形. ………………………………………………………1分20.(本题8分)(1)解:∵1,1,1a b c ==-=-, ∴245b ac -=.∴152x ±=.∴原方程的解是1x =152+,2x =152-. ………………………………………2分(2)21x x --. ………………………………………………………………………………2分 (3)2x 与1x +或21x -与x 等. ……………………………………………………………2分 每画出一个正确函数图象给1分. …………………………………………………2分21.(本题10分) 解:(1)踺子踢到小华处的概率是14.………………………………………………………2分 树状图如下:小王 小华 小丽小丽小华小王 小丽…………………………………………3分(2)小王.…………………………………………………………………………………3分 理由:若从小王开始踢,三次踢踺后,踺子踢到小王处的概率是14,踢到其它两人处的概率都是38,因此,踺子踢到小王处的可能性是最小. ……………2分 22.(本题12分) 解:(1)400;…………………………………………………………………………………2分频数分布图正确. ……………………………………………………………………2分(2)24.……………………………………………………………………………………3分 (3)设年平均降低的百分率为x , 根据题意,得224(1) 3.84x -=. ……………………………………………………………………3分 解得:x =0.6 , x =1.4(舍去) . ………………………………………………………2分 答:年平均降低的百分率是60%. 23.(本题12分) 解:(1)连接OC , PC 是⊙O 的切线,∴∠OCP=Rt ∠.∵CPA ∠=30°,OC=2AB=3, ∴03tan 30PC=,即PC=5分 (2)∠CMP 的大小不发生变化.…………………………………………………………2分∵PM 是∠CPA 的平分线, ∴∠CPM=∠MPA . ∵OA=OC ,∴∠A=∠ACO .在△APC 中, ∵∠A +∠ACP +∠CPA=180°,∴2∠A +2∠MPA=90°,∠A +∠MPA=45°.∴∠CMP=∠A +∠MPA=45°.………………………………………………………5分 即∠CMP 的大小不发生变化. 24.(本题14分)(1)∵ODEF 1S =(48)6362ABCO S =+⨯=,…………2分 设正方形的边长为x ,∴236x =,6x =或6x =-(舍去). (2)(2)C . (1)(36)264332S =+⨯+⨯=.…………………(3)①当0≤x <4 可得△OMO '∽△OAN, ∴64MO x '=,MO '=32x .∴2133224S x x x =⨯⋅=.……………………②当4≤x <6 1(4)66122S x x x =-+⨯⨯=-. ………1 ③当6≤x <8 可得,3(6)2MD x =-,4AF x =-.113(4)6(6)(6)222S x x x x =⨯-+⨯-⨯--=2315394x x -+-. (1)④当8≤x <10231539(4AFO DM BFO CS S S x x x ''=-=-+--- =23994x x -++...............................1⑤当10≤x ≤14[]6(8)6684S x x =--⨯=-+. (1)(用其它方法求解正确,相应给分)。
中考数学试卷精选合辑60之12-初中毕业生学业考试题试题及答案
初中毕业生学业考试 数学试卷(六三制)*考试时间120分钟 试卷满分150分一、选择题(下列各题的备选答案中,只有一个是正确的,请将正确答案的序号填入下面表格内,每小题3分,共1.截止2008年6月7日12时,全国各地支援四川地震灾区的临时安置房已经安装了40600套.这个数用科学记数法表示为(B ) A .50.40610⨯套 B .44.0610⨯套C .340.610⨯套D .240610⨯套2.如图1,直线12l l ∥,l 分别与12l l ,相交,如果2120∠=, 那么1∠的度数是( C ) A .30B .45C .60D .753.下列事件中是必然事件的是( D ) A .阴天一定下雨B .随机掷一枚质地均匀的硬币,正面朝上C .男生的身高一定比女生高D .将油滴在水中,油会浮在水面上4.图2是由几个相同的小正方体搭成的一个几何体,它的俯视图是( D )5.下列命题中正确的是(A )A .两条对角线互相平分的四边形是平行四边形B .两条对角线相等的四边形是矩形C .两条对角线互相垂直的四边形是菱形D .两条对角线互相垂直且平分的四边形是正方形 6.若反比例函数(0)kyk x=≠的图象经过点(21)-,,则这个函数的图象一定经过点( D ) A .122⎛⎫- ⎪⎝⎭,B .(12),C .112⎛⎫- ⎪⎝⎭,D .(12)-,7.不等式组2133x x +⎧⎨>-⎩≤的解集在数轴上表示正确的是( A )A .B .C .D .图2A .B .C .D .l l 1 l 212图18.图3是对称中心为点O 的正八边形.如果用一个含45 角的直角三角板的角,借助点O (使角的顶点落在点O 处)把这个正八边形的面积n 等分. 那么n 的所有可能的值有( B )选择全对 A .2个 B .3个 C .4个 D .5个 二、填空题(每小题3分,共24分)9.分解因式:34x y xy -= XY(X+2)(X-2) 对 .10.体育老师对甲、乙两名同学分别进行了8次跳高测试,经计算这两名同学成绩的平均数相同,甲同学的方差是26.4S =甲,乙同学的方差是28.2S =乙,那么这两名同学跳高成绩比较稳定的是 甲 对 同学.11.一元二次方程2210x x -+=的解是 X=1 对 .12.如图4,D E ,分别是ABC △的边AB AC ,上的点,DE BC ∥,2ADDB=,则:A D E A B CS S =△△ 4/9错 .13.如图5,假设可以在图中每个小正方形内任意取点(每个小正方形除颜色外完全相同),那么这个点取在阴影部分的概率是 7/25 对 .14.一个圆锥底面周长为4πcm ,母线长为5cm ,则这个圆锥的侧面积是10平方厘米 .15.如图6,观察下列图案,它们都是由边长为1cm 的小正方形按一定规律拼接而成的,依此规律,则第16个图案中的小正方形有 136 对 个.图616.如图7,直线y x =与x 轴、y 轴分别相交于A B , 两点,圆心P 的坐标为(10),,P 与y 轴相切于点O .若将P 沿x 轴向左移动,当P 与该直线相交时,横坐标为整数的点P 有 3 对 个. 三、(每小题8分,共16分)17.先化简,再求值:23111aa a a a a -⎛⎫- ⎪-+⎝⎭,其中2a =.AE CD B图4图案1图案2图案3 图案4……图5图318.如图8所示,在网格中建立了平面直角坐标系,每个小正方形的边长均为1个单位长度,将四边形ABCD 绕坐标原点O 按顺时针方向旋转180 后得到四边形1111A B C D .(1)直接写出1D 点的坐标;(2)将四边形1111A B C D 平移,得到四边形2222A B C D ,若2(45)D ,,画出平移后的图形.(友情提示:画图时请不要涂错阴影的位置哦!)四、(每小题10分,共20分)19.如图9,有四张背面相同的纸牌A B C D ,,,,其正面分别画有四个不同的图形,小明将这四张纸牌背面朝上洗匀后随机摸出一张,放回后洗匀再随机摸出一张.(1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌用A B C D ,,,表示); (2)求两次摸牌的牌面图形既是中心对称图形又是轴对称图形的概率.20.如图10,AB 为O 的直径,D 为弦BE 的中点,连接OD 并延长交O 于点F ,与过B 点的切线相交于点C .若点E 为 AF 的中点,连接AE . 求证:ABE OCB △≌△.图8图9图10ODB CF EA五、(每小题10分,共20分)21.某中学开展以“我最喜欢的职业”为主题的调查活动.通过对学生的随机抽样调查得到一组数据,下面两图(如图11、图12)是根据这组数据绘制的两幅不完整的统计图.请你根据图中所提供的信息解答下列问题:(1)求在这次活动中一共调查了多少名学生?(2)在扇形统计图中,求“教师”所在扇形的圆心角的度数. (3)补全两幅统计图.22.在“汶川地震”捐款活动中,某同学对甲、乙两班捐款情况进行了统计:甲班捐款人数比乙班捐款人数多3人,甲班共捐款2400元,乙班共捐款1800元,乙班平均每人捐款的钱数是甲班平均每人捐款钱数的45倍.求甲、乙两班各有多少人捐款? 六、(每小题10分,共20分)23.如图13,某数学兴趣小组在活动课上测量学校旗杆高度.已知小明的眼睛与地面的距离()AB 是1.7m ,看旗杆顶部M 的仰角为45;小红的眼睛与地面的距离()CD 是1.5m ,看旗杆顶部M 的仰角为30.两人相距28米且位于旗杆两侧(点B N D ,,在同一条直线上).请求出旗杆MN 的高度.1.41.7,结果保留整数)其它 教师 医生公务员 军人10% 20%15% 图11 图12 MN BA DC30° 45°图1324.2008年6月1日起,我国实施“限塑令”,开始有偿使用环保购物袋.为了满足市场需求,某厂家生产A B ,两种款式的布质环保购物袋,每天共生产4500个,两种购物袋的成本和售价如下表,设每天生产A 种购物袋x 个,每天共获利y 元.(1)求出y 与x (2)如果该厂每天最多投入成本10000元,那么每天最多获利多少元? 七、(本题12分)25.如图14,在Rt ABC △中,90A ∠=,AB AC =,BC =另有一等腰梯形DEFG (GF DE ∥)的底边DE 与BC 重合,两腰分别落在AB AC ,上,且G F ,分别是AB AC ,的中点. (1)求等腰梯形DEFG 的面积;(2)操作:固定ABC △,将等腰梯形DEFG 以每秒1个单位的速度沿BC 方向向右运动,直到点D 与点C 重合时停止.设运动时间为x 秒,运动后的等腰梯形为DEF G''(如图15).探究1:在运动过程中,四边形BDG G '能否是菱形?若能,请求出此时x 的值;若不能,请说明理由.探究2:设在运动过程中ABC △与等腰梯形DEFG 重叠部分的面积为y ,求y 与x 的函数关系式.八、(本题14分)26.如图16,在平面直角坐标系中,直线y =与x 轴交于点A ,与y 轴交于点C ,抛物线A F G (D )BC (E ) 图14F G A F ' G ' B D CE 图152(0)3y ax x c a =-+≠经过A B C ,,三点. (1)求过A B C ,,三点抛物线的解析式并求出顶点F 的坐标;(2)在抛物线上是否存在点P ,使ABP △为直角三角形,若存在,直接写出P 点坐标;若不存在,请说明理由;(3)试探究在直线AC 上是否存在一点M ,使得MBF △的周长最小,若存在,求出M 点的坐标;若不存在,请说明理由.2008年辽宁省十二市初中毕业生学业考试数学试卷(六三制)答案一、选择题(每小题3分,共24分)二、填空题(每小题3分,共24分) 9.(2)(2)xy x x +-10.甲11.121x x ==12.4:913.72514.210cm π(丢单位扣1分) 15.13616.3三、(每小题8分,共16分)17.解法一:原式223(1)(1)11a a a a a a a+---=⨯- ································································ 2分24a =+ ·································································································································· 6分 当2a =时,原式2248=⨯+= ··························································································· 8分解法二:原式3(1)(1)(1)(1)11a a a a a a a a a a +-+-=⨯-⨯-+ ··············································· 2分 24a =+ ·································································································································· 6分 当2a =时,原式2248=⨯+= ··························································································· 8分 18.解:(1)1(31)D -, ······················································································································ 2分(2)2A ,222B C D ,,描对一个点给1分. ······································································ 6分 画出正确图形(见图1) ········································································································ 8分x四、(每小题10分,共20分) 19.(1························································ 6分(2)从表中可以得到,两次摸牌所有可能出现的结果共有16种,其中既是中心对称图形又是轴对称图形的有9种. ······························································································································ 8分 故所求概率是916. ··············································································································· 10分 19.(1)解法二:所以可能出现的结果:(A ,A ),(A ,B ),(A ,C ),(A ,D ),(B ,A ),(B ,B ),(B ,C ),(B ,D ),(C ,A ),(C ,B ),(C ,C ),(C ,D ),(D ,A ),(D ,B ),(D ,C ),(D ,D ). ·························································································· 6分 (2)以下同解法1. 20.解:(1)证明:如图2. AB 是O 的直径.90E ∴∠=··············································································· 1分又BC 是O 的切线,90OBC ∴∠=A B C DA ABC DB A BC DC A B C DD 开始第一次牌面的字母第二次牌面的字母 图1图2OD BC F EAE OBC ∴∠=∠ ········································································ 3分 OD 过圆心,BD DE =,EFFB ∴= BOC A ∴∠=∠. ·················································································································· 6分 E 为 AF 中点, EF BF AE ∴==30ABE ∴∠= ······················································································································· 8分 90E ∠=12AE AB OB ∴==··············································································································· 9分 ABE OCB ∴△≌△. ········································································································· 10分 五、(每小题10分,共20分)21.(1)被调查的学生数为4020020=%(人) ········································································· 2分 (2)“教师”所在扇形的圆心角的度数为70115201010036072200⎛⎫----⨯⨯= ⎪⎝⎭%%%% ··························································· 5分 (3)如图3,补全图 ·············································································································· 8分如图4,补全图 ····················································································································· 10分22.解法一:设乙班有x 人捐款,则甲班有(3)x +人捐款. ············································· 1分 根据题意得:24004180035x x⨯=+ ··················································································································· 5分 解这个方程得45x =. ·········································································································· 8分 经检验45x =是所列方程的根. ··························································································· 9分 348x ∴+=(人)答:甲班有48人捐款,乙班有45人捐款. ······································································· 10分 解法二:设甲班有x 人捐款,则乙班有(3)x -人捐款. ····················································· 1分 根据题意得:其它 教师医生 公务员军人10% 20%15%图3图435%20%24004180053x x ⨯=- ··················································································································· 5分 解这个方程得48x =. ·········································································································· 8分 经检验48x =是所列方程的根. ··························································································· 9分 345x ∴-=(人)答:甲班有48人捐款,乙班有45人捐款. ······································································· 10分 六、(每小题10分,共20分) 23.解法一:解:过点A 作AE MN ⊥于E ,过点C 作CF MN ⊥于F , ··········································· 1分 则 1.7 1.50.2EF AB CD =-=-= ······················································································ 2分 在Rt AEM △中,90AEM ∠=,45MAE ∠=AE ME ∴= ··························································································································· 3分 设AE ME x ==(不设参数也可) 0.2MF x ∴=+,28FC x =- (5)分 在Rt MFC △中,90MFC ∠=,30MCF ∠=tan MF CF MCF ∴=∠0.2)3x x ∴+=- ····················································· 7分10.0x ∴≈12MN ∴≈···························································································································· 9分 答:旗杆高约为12米. ······································································································· 10分解法二:解:过点A 作AE MN ⊥于E ,过点C 作CF MN ⊥于F , ···························· 1分 则 1.7 1.50.2EF AB CD =-=-= ······················································································ 2分 在Rt AEM △中,90AEM ∠=,45MAE ∠=AE ME ∴=设AE x =,则0.2MF x =+ ································································································ 3分在Rt MFC △中,90MFC ∠=,30MCF ∠=tan 600.2)CF MF x ==+ ························································································· 5分BN ND BD +=0.2)28x x ∴+= ·········································································································· 7分解得10.2x ≈12MN ∴≈···························································································································· 9分 答:旗杆高约为12米. ······································································································· 10分 (注:其他方法参照给分) 24.解:(1)根据题意得:(2.32)(3.53)(4500)0.22250y x x x =-+--=-+ ························· 2分 (2)根据题意得:23(4500)10000x x +-≤ ··································································· 5分MN BA DC30° 45°图5EF。
初中毕业生学业暨高中招生考试数学试卷及答案
九年级生学业暨高中招生考试一、选择题:1.3的倒数是( )A.-3B.3C.13 D.13- 2.计算232(3)x x ⋅-的结果是( )A.56x -B.56xC.62x -D.62x3.⊙O 的半径为4,圆心O 到直线l 的距离为3,则直线l 与⊙O 的位置关系是( )A.相交B.相切C.相离D. 无法确定 4.使分式24xx -有意义的x 的取值范围是( ) A. 2x = B.2x ≠ C.2x =- D.2x ≠-5.不等式组2030x x ->⎧⎨-<⎩的解集是( )A.2x >B.3x <C.23x <<D.无解 6.如图,⊙O 的直径CD 过弦EF 的中点G ,∠EOD=40°,则∠DCF 等于( )A.80°B. 50°C. 40°D. 20°7.(课改)如图,是有几个相同的小正方体搭成的几何体的三种视图,则搭成这个几何体的小正方体的个数是.( ) A.3 B.4 C. 5 D. 6 (非课改)分式方程1421x x x -=+-的解是( ) A.127,1x x == B. 127,1x x ==- C. 127,1x x =-=- D. 127,1x x =-=8.观察市统计局公布的“十五”时期重庆市农村居民人均 收入每年比上一年增长率的统计图,下列说法正确的是( )A.农村居民人均收入低于B.农村居民人均收入比上年增长率低于9%的有2年C.农村居民人均收入最多时D.农村居民人均收入每年比上一年的增 长率有大有小,但农村居民人均收入在持续增加9.免交农业税,大大提高了农民的生产积极性,镇政府引导农民对生产的耨中土特产进行加工后,分为甲、乙、丙三种不同包装推向市场进行销售,其相关信息如下表:O CFGDE俯视图左视图主视图20052004200320022001质量(克/袋) 销售价(元/袋) 包装成本费用(元/袋) 甲 400 4.8 0.5 乙 300 3.6 0.4 丙2002.50.3春节期间,这三种不同的包装的土特产都销售了1200千克,那么本次销售中,这三种包装的土特产获得利润最大是( )A.甲B. 乙C.丙D. 不能确定10.(课改)现有A 、B 两枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).用小莉掷A 立方体朝上的数字为x 、小明掷B 立方体朝上的数字为y 来确定点P (x y ,),那么它们各掷一次所确定的点P 落在已知抛物线24y x x =-+上的概率为( ) A.118 B.112 C.19 D.16(非课改)已知αβ、是关于x 的一元二次方程22(23)0x m x m +++=的两个不相等的实数根,且满足111αβ+=-,则m 的值是( )A. 3或-1B.3C. 1D. –3或1二、填空题:11.重庆市某天的最高气温是17℃,最低气温是5℃,那么当天的最大温差是 ℃. 12.分解因式:24x -=13.如图,已知直线12l l ∥,∠1=40°,那么∠2= 度. 14.圆柱的底面周长为2π,高为1,则圆柱的侧面展开图的面积为 .15.废旧电池对环境的危害十分巨大,一粒纽扣电池能污染600立方米的水(相当于一个人一生的饮水量).某班有50名学生,如果每名学生一年丢弃一粒纽扣电池,且都没有被回收,那么被该班学生一年丢弃的纽扣电池能污染的水用科学计数法表示为 立方米. 16.(课改区)如图,已知函数y ax b =+和y kx =的图象交于点P, 则根据图象可得,关于y ax by kx=+⎧⎨=⎩的二元一次方程组的解是 (非课改)化简:(232)23-+-=17.如图所示,A 、B 是4×5网络中的格点,网格中的每个小正方形的边长为1,请在图中清晰标出使以A、B、C为顶点的三角形是等腰三角形的所有格点C的位置.18.按一定的规律排列的一列数依次为:111111,,,,,2310152635┅┅,按此规律排列下去,这列数中的第7个数是 . 19.如图,矩形AOCB 的两边OC 、OA 分别位于x 轴、y 轴上,点B 的坐标为B (20,53-),D 是AB 边上的一点.将△ADO 沿直线OD 翻折,使A 点恰好落在对角线OB 上的点E 处,若点E 在一反比例函数的图像上,那么该函数的解析式是 20.如图,△ABC 内接于⊙O ,∠A 所对弧的度数为120°. ∠ABC 、∠ACB 的角平分线分别交于AC 、AB 于点D 、E ,CE 、BD 相交于点 F.以下四个结论:①1cos 2BFE ∠=;②BC BD =;③EF FD =;④2BF DF =.其中结论一定正确的序号数是 三、解答题:(本大题6个小题,共60分) 21.(每小题5分,共10分)(1)计算:12tan 60(51)3--︒+-+-;(2)解方程组:2328y xy x =⎧⎨+=⎩22.如图,A 、D 、F 、B 在同一直线上,AD=BF,AE=BC,且 AE ∥BC.求证:(1)△AEF ≌△BCD ;(2) EF ∥CD.23.(10分)在暑期社会实践活动中,小明所在小组的同学与一 家玩具生产厂家联系,给该厂组装玩具,该厂同意他们组装240套玩具.这些玩具分为A 、B 、C 三种型号,它们的数量比例以及每人每小时组装各种型号玩具的数量如图所示: 若每人组装同一种型号玩具的速度都相同,根据以上信息,完成下列填空:(1)从上述统计图可知,A 型玩具有 套,B 型玩具有 套,C 型玩具有 套. (2)若每人组装A 型玩具16套与组装C 型玩具12套所画的时间相同,那么a 的值为 ,每人每小时能组装C 型玩具 套.FDE ACBBC FD A E82a-2aCB A 项目套/小时↑→C 型25%B 型A 型55%24.(10分)农科所向农民推荐渝江Ⅰ号和渝江Ⅱ号两种新型良种稻谷.在田间管理和土质相同的条件下,Ⅱ号稻谷单位面积的产量比Ⅰ号到谷低20%,但Ⅱ号稻谷的米质好,价格比Ⅰ号高.已知Ⅰ号稻谷国家的收购价是1.6元/千克.(1) 当Ⅱ号稻谷的国家收购价是多少时,在田间管理、图纸和面积相同的两块田丽分别种植Ⅰ号、Ⅱ号稻谷的收益相同?(2) 去年小王在土质、面积相同的两块田里分别种植Ⅰ号、Ⅱ号稻谷,且进行了相同的田间管理.收获后,小王把稻谷全部卖给国家.卖给国家时,Ⅱ号稻谷的国家收购价定为2.2元/千克,Ⅰ号稻谷国家的收购价未变,这样小王卖Ⅱ号稻谷比卖Ⅰ号稻谷多收入1040元,那么小王去年卖给国家的稻谷共有多少千克?25.如图,在梯形ABCD 中,AB ∥CD ,∠BCD=90°,且AB=1,BC=2,tan ∠ADC=2.(1) 求证:DC=BC;(2) E 是梯形内一点,F 是梯形外一点,且∠E DC=∠F BC ,DE=BF ,试判断△E CF 的形状,并证明你的结论;(3) 在(2)的条件下,当BE :CE=1:2,∠BEC=135°时,求sin ∠BFE 的值.26.机械加工需要拥有进行润滑以减少摩擦,某企业加工一台大型机械设备润滑用油90千克,用油的重复利用率为60%,按此计算,加工一台大型机械设备的实际耗油量为36千克.为了建设节约型社会,减少油耗,该企业的甲、乙两个车间都组织了人员为减少实际耗油量进行攻关.(1) 甲车间通过技术革新后,加工一台大型机械设备润滑用油量下降到70千克,用油的重复利用率仍然为60%.问甲车间技术革新后,加工一台大型机械设备的实际耗油量是多少千克?(2) 乙车间通过技术革新后,不仅降低了润滑用油量,同时也提高了用油的重复利用率,并且发现在技术革新的基础上,润滑用油量每减少1千克,用油量的重复利用率将增加1.6%. 这样乙车间加工一台大型机械设备的实际耗油量下降到12千克. 问乙车间技术革新后,加工一台大型机械设备润滑用油量是多少千克?用油的重复利用率是多少?四、解大题:27.已知:m n 、是方程2650x x -+=的两个实数根,且m n <,抛物线2y x bx c =-++的图像经过点A(,0m )、B(0n ,).EB FCD A(1) 求这个抛物线的解析式;(2) 设(1)中抛物线与x 轴的另一交点为C,抛物线的顶点为D ,试求出点C 、D 的坐标和△BCD 的面积;(注:抛物线2y ax bx c =++(0)a ≠的顶点坐标为(24(,)24b ac b a a--) (3) P 是线段OC 上的一点,过点P 作PH ⊥x 轴,与抛物线交于H 点,若直线BC 把△PCH 分成面积之比为2:3的两部分,请求出P 点的坐标.28.如图28-1所示,一张三角形纸片ABC ,∠ACB=90°,AC=8,BC=6.沿斜边AB 的中线CD 把这张纸片剪成11AC D ∆和22BC D ∆两个三角形(如图28-2所示).将纸片11AC D ∆沿直线2D B (AB )方向平移(点12,,,A D D B 始终在同一直线上),当点1D 于点B 重合时,停止平移.在平移过程中,11C D 与2BC 交于点E,1AC 与222C D BC 、分别交于点F 、P. (1) 当11AC D ∆平移到如图28-3所示的位置时,猜想图中的1D E 与2D F 的数量关系,并证明你的猜想;(2) 设平移距离21D D 为x ,11AC D ∆与22BC D ∆重叠部分面积为y ,请写出y 与x 的函数关系式,以及自变量的取值范围;(3) 对于(2)中的结论是否存在这样的x 的值;若不存在,请说明理由.CB D A 28-1图P E F A D 1B C 1D 2C 228-3图 C 2D 2C 1B D 1A 28-2图答案:一选择题:1—5 CAABC 6—10 DBDCB二、填空题:11.12;12.(2)(2)x x +-;13.40;14.2π;15.4310⨯;16.(课改)42x y =-⎧⎨=-⎩,(非课改)17. 如图,18.150;19.12y x =-;20.①②.三.21.(1)32;(2)12x y =⎧⎨=⎩ 22.(1)因为AE ∥BC,所以∠A=∠B.又因AD=BF,所以AF=AD+DF=BF+FD=BD 又因AE=BC,所以△AEF ≌△BCD.(2)因为△AEF ≌△BCD,所以∠EFA=∠CDB.所以EF ∥CD. 23.(1) 132,48,60,(2) 4,6, 24.(1)由题意,得1.62120%=-(元); (2)设卖给国家的Ⅰ号稻谷x 千克,根据题意,得(120%) 2.2 1.61040x x -⨯=+. 解得,6500x =(千克)(120%) 1.811700x x x +-==(千克)答:(1)当Ⅱ号稻谷的国家收购价是2元时,种植Ⅰ号、Ⅱ号稻谷的收益相同; (2)小王去年卖给国家的稻谷共为11700千克. 25.(1)过A 作DC 的垂线AM 交DC 于M, 则AM=BC=2.又tan ∠ADC=2,所以212DM ==.即DC=BC. (2)等腰三角形.证明:因为,,DE DF EDC FBC DC BC =∠=∠=. 所以,△DEC ≌△BFC所以,,CE CF ECD BCF =∠=∠.所以,90ECF BCF BCE ECD BCE BCD ∠=∠+∠=∠+∠=∠=︒ 即△ECF 是等腰直角三角形.(3)设BE k =,则2CE CF k ==,所以EF =. 因为135BEC ∠=︒,又45CEF ∠=︒,所以90BEF ∠=︒. 所以3BF k ==所以1sin 33k BFE k ∠==. 28-2图26.(1)由题意,得70(160%)7040%28⨯-=⨯=(千克) (2)设乙车间加工一台大型机械设备润滑用油量为x 千克, 由题意,得[1(90) 1.6%60%]12x x ⨯--⨯-= 整理,得2657500x x --= 解得:1275,10x x ==-(舍去)(9075) 1.6%60%84%-⨯+=答:(1)技术革新后,甲车间加工一台大型机械设备的实际耗油量是28千克.(2)技术革新后,乙车间加工一台大型机械设备润滑用油量是75千克?用油的重复利用率是84%.27.(1)解方程2650,x x -+=得125,1x x == 由m n <,有1,5m n ==所以点A 、B 的坐标分别为A (1,0),B (0,5). 将A (1,0),B (0,5)的坐标分别代入2y x bx c =-++.得105b c c -++=⎧⎨=⎩解这个方程组,得45b c =-⎧⎨=⎩所以,抛物线的解析式为245y x x =--+(2)由245y x x =--+,令0y =,得2450x x --+= 解这个方程,得125,1x x =-=所以C 点的坐标为(-5,0).由顶点坐标公式计算,得点D (-2,9). 过D 作x 轴的垂线交x 轴于M.则1279(52)22DMC S ∆=⨯⨯-=12(95)142MDBO S =⨯⨯+=梯形,1255522BOC S ∆=⨯⨯=所以,2725141522BCD DMC BOC MDBO S S S S ∆∆∆=+-=+-=梯形.(3)设P 点的坐标为(,0a )因为线段BC 过B 、C 两点,所以BC 所在的值线方程为5y x =+. 那么,PH 与直线BC 的交点坐标为(,5)E a a +,PH 与抛物线245y x x =--+的交点坐标为2(,45)H a a a --+.由题意,得①32EH EP =,即23(45)(5)(5)2a a a a --+-+=+ 解这个方程,得32a =-或5a =-(舍去)②23EH EP =,即22(45)(5)(5)3a a a a --+-+=+解这个方程,得23a =-或5a =-(舍去)P 点的坐标为3(,0)2-或2(,0)3-.28.(1)12D E D F =.因为1122C D C D ∥,所以12C AFD ∠=∠. 又因为90ACB ∠=︒,CD 是斜边上的中线,所以,DC DA DB ==,即112221C D C D BD AD === 所以,1C A ∠=∠,所以2AFD A ∠=∠ 所以,22AD D F =.同理:11BD D E =.又因为12AD BD =,所以21AD BD =.所以12D E D F =(2)因为在Rt ABC ∆中,8,6AC BC ==,所以由勾股定理,得10.AB = 即1211225AD BD C D C D ====又因为21D D x =,所以11225D E BD D F AD x ====-.所以21C F C E x == 在22BC D ∆中,2C 到2BD 的距离就是ABC ∆的AB 边上的高,为245. 设1BED ∆的1BD 边上的高为h ,由探究,得221BC D BED ∆∆∽,所以52455h x-=. 所以24(5)25x h -=.121112(5)225BED S BD h x ∆=⨯⨯=- 又因为1290C C ∠+∠=︒,所以290FPC ∠=︒.又因为2C B ∠=∠,43sin ,cos 55B B ==. 所以234,55PC x PF x == ,22216225FC P S PC PF x ∆=⨯=而2212221126(5)22525BC D BED FC P ABC y S S S S x x ∆∆∆∆=--=---所以21824(05)255y x x x =-+≤≤ (3) 存在.当14ABC y S ∆=时,即218246255x x -+=整理,得2320250.x x -+=解得,125,53x x ==.即当53x =或5x =时,重叠部分的面积等于原ABC ∆面积的14.。
2024年贵州省(初三学业水平考试)中考数学真题试卷含详解
贵州省2024年初中学业水平考试(中考)试卷卷数学一、选择题(本大题共12题,每题3分,共36分.每小题均有A 、B 、C 、D 四个选项,其中只有一个选项正确,请用2B 铅笔在答题卡相应位置填涂)1.下列有理数中最小的数是()A.2- B.0C.2D.42.“黔山秀水”写成下列字体,可以看作是轴对称图形的是()A. B. C. D.3.计算23a a +的结果正确的是()A.5aB.6aC.25a D.26a 4.不等式1x <的解集在数轴上的表示,正确的是()A.B. C.D.5.一元二次方程220x x -=的解是()A .13x =,21x = B.12x =,20x = C.13x =,22x =- D.12x =-,21x =-6.为培养青少年的科学态度和科学思维,某校创建了“科技创新”社团.小红将“科”“技”“创”“新”写在如图所示的方格纸中,若建立平面直角坐标系,使“创”“新”的坐标分别为()2,0-,()0,0,则“技”所在的象限为()A.第一象限B.第二象限C.第三象限D.第四象限7.为了解学生的阅读情况,某校在4月23日世界读书日,随机抽取100名学生进行阅读情况调查,每月阅读两本以上经典作品的有20名学生,估计该校800名学生中每月阅读经典作品两本以上的人数为()A.100人B.120人C.150人D.160人8.如图,ABCD Y 的对角线AC 与BD 相交于点O ,则下列结论一定正确的是()A.AB BC =B.AD BC =C.OA OB =D.AC BD⊥9.小星同学通过大量重复的定点投篮练习,用频率估计他投中的概率为0.4,下列说法正确的是()A.小星定点投篮1次,不一定能投中B.小星定点投篮1次,一定可以投中C.小星定点投篮10次,一定投中4次D.小星定点投篮4次,一定投中1次10.如图,在扇形纸扇中,若150AOB ∠=︒,24OA =,则 AB 的长为()A.30πB.25πC.20πD.10π11.小红学习了等式的性质后,在甲、乙两台天平的左右两边分别放入“■”“●”“▲”三种物体,如图所示,天平都保持平衡.若设“■”与“●”的质量分别为x ,y ,则下列关系式正确的是()A.x y= B.2x y = C.4x y = D.5x y=12.如图,二次函数2y ax bx c =++的部分图象与x 轴的一个交点的横坐标是3-,顶点坐标为()1,4-,则下列说法正确的是()A.二次函数图象的对称轴是直线1x =B.二次函数图象与x 轴的另一个交点的横坐标是2C.当1x <-时,y 随x 的增大而减小D.二次函数图象与y 轴的交点的纵坐标是3二、填空题(本大题共4题,每题4分,共16分)13.计算23的结果是________.14.如图,在ABC 中,以点A 为圆心,线段AB 的长为半径画弧,交BC 于点D ,连接AD .若5AB =,则AD 的长为______.15.在元朝朱世杰所著的《算术启蒙》中,记载了一道题,大意是:快马每天行240里,慢马每天行150里,慢马先行12天,则快马追上慢马需要的天数是______.16.如图,在菱形ABCD 中,点E ,F 分别是BC ,CD 的中点,连接AE ,AF .若4sin 5EAF ∠=,5AE =,则AB 的长为______.三、解答题(本大题共9题,共98分.解答应写出必要的文字说明、证明过程或演算步骤)17.(1)在①22,②2-,③()01-,④122⨯中任选3个代数式求和;(2)先化简,再求值:()21122x x -⋅+,其中3x =.18.已知点()1,3在反比例函数ky x=的图象上.(1)求反比例函数的表达式;(2)点()3,a -,()1,b ,()3,c 都在反比例函数的图象上,比较a ,b ,c 的大小,并说明理由.19.根据《国家体质健康标准》规定,七年级男生、女生50米短跑时间分别不超过7.7秒、8.3秒为优秀等次.某校在七年级学生中挑选男生、女生各5人进行集训,经多次测试得到10名学生的平均成绩(单位:秒)记录如下:男生成绩:7.61,7.38,7.65,7.38,7.38女生成绩:8.23,8.27,8.16,8.26,8.32根据以上信息,解答下列问题:(1)男生成绩的众数为______,女生成绩的中位数为______;(2)判断下列两位同学的说法是否正确.(3)教练从成绩最好的3名男生(设为甲,乙,丙)中,随机抽取2名学生代表学校参加比赛,请用画树状图或列表的方法求甲被抽中的概率.20.如图,四边形ABCD 的对角线AC 与BD 相交于点O ,AD BC ∥,90ABC ∠=︒,有下列条件:①AB CD ∥,②AD BC =.(1)请从以上①②中任选1个作为条件,求证:四边形ABCD 是矩形;(2)在(1)的条件下,若3AB =,5AC =,求四边形ABCD 的面积.21.为增强学生的劳动意识,养成劳动的习惯和品质,某校组织学生参加劳动实践.经学校与劳动基地联系,计划组织学生参加种植甲、乙两种作物.如果种植3亩甲作物和2亩乙作物需要27名学生,种植2亩甲作物和2亩乙作物需要22名学生.根据以上信息,解答下列问题:(1)种植1亩甲作物和1亩乙作物分别需要多少名学生?(2)种植甲、乙两种作物共10亩,所需学生人数不超过55人,至少种植甲作物多少亩?22.综合与实践:小星学习解直角三角形知识后,结合光的折射规律进行了如下综合性学习.【实验操作】第一步:将长方体空水槽放置在水平桌面上,一束光线从水槽边沿A 处投射到底部B 处,入射光线与水槽内壁AC 的夹角为A ∠;第二步:向水槽注水,水面上升到AC 的中点E 处时,停止注水.(直线NN '为法线,AO 为入射光线,OD 为折射光线.)【测量数据】如图,点A ,B ,C ,D ,E ,F ,O ,N ,N '在同一平面内,测得20cm AC =,45A ∠=︒,折射角32DON ∠=︒.【问题解决】根据以上实验操作和测量的数据,解答下列问题:(1)求BC 的长;(2)求B ,D 之间的距离(结果精确到0.1cm ).(参考数据:sin 320.52︒≈,cos320.84︒≈,tan 320.62︒≈)23.如图,AB 为半圆O 的直径,点F 在半圆上,点P 在AB 的延长线上,PC 与半圆相切于点C ,与OF 的延长线相交于点D ,AC 与OF 相交于点E ,DC DE =.(1)写出图中一个与DEC ∠相等的角:______;(2)求证:OD AB ⊥;(3)若2OA OE =,2DF =,求PB 的长.24.某超市购入一批进价为10元/盒的糖果进行销售,经市场调查发现:销售单价不低于进价时,日销售量y (盒)与销售单价x (元)是一次函数关系,下表是y 与x 的几组对应值.销售单价x /元…1214161820…销售量y /盒…5652484440…(1)求y 与x 的函数表达式;(2)糖果销售单价定为多少元时,所获日销售利润最大,最大利润是多少?(3)若超市决定每销售一盒糖果向儿童福利院赠送一件价值为m 元的礼品,赠送礼品后,为确保该种糖果日销售获得的最大利润为392元,求m 的值.25.综合与探究:如图,90AOB ∠=︒,点P 在AOB ∠的平分线上,PA OA ⊥于点A .(1)【操作判断】如图①,过点P 作PC OB ⊥于点C ,根据题意在图①中画出PC ,图中APC ∠的度数为______度;(2)【问题探究】如图②,点M 在线段AO 上,连接PM ,过点P 作PN PM ⊥交射线OB 于点N ,求证:2OM ON PA +=;(3)【拓展延伸】点M 在射线AO 上,连接PM ,过点P 作PN PM ⊥交射线OB 于点N ,射线NM 与射线PO 相交于点F ,若3ON OM =,求OPOF的值.贵州省2024年初中学业水平考试(中考)试卷卷数学一、选择题(本大题共12题,每题3分,共36分.每小题均有A 、B 、C 、D 四个选项,其中只有一个选项正确,请用2B 铅笔在答题卡相应位置填涂)1.下列有理数中最小的数是()A.2-B.0C.2D.4【答案】A【分析】本题考查有理数的大小比较,解题的关键是掌握比较有理数大小的方法.根据有理数的大小比较选出最小的数.【详解】解:∵2024-<<<,∴最小的数是2-,故选:A .2.“黔山秀水”写成下列字体,可以看作是轴对称图形的是()A. B. C. D.【答案】B【分析】本题考查了轴对称图形概念,一个图形沿着某条直线折叠后直线两旁的部分能够完全重合,这个图形就叫轴对称图形.根据轴对称图形概念,结合所给图形即可得出答案.【详解】解:A .不是轴对称图形,不符合题意;B .是轴对称图形,符合题意;C .不是轴对称图形,不符合题意;D .不是轴对称图形,不符合题意;故选:B .3.计算23a a +的结果正确的是()A.5aB.6aC.25a D.26a 【答案】A【分析】本题主要考查合并同类项,根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变即可得.【详解】解:235a a a +=,故选:A .4.不等式1x <的解集在数轴上的表示,正确的是()A. B. C.D.【答案】C【分析】根据小于向左,无等号为空心圆圈,即可得出答案.本题考查在数轴上表示不等式的解集,熟知“小于向左,大于向右”是解题的关键.【详解】不等式1x <的解集在数轴上的表示如下:.故选:C .5.一元二次方程220x x -=的解是()A.13x =,21x =B.12x =,20x = C.13x =,22x =- D.12x =-,21x =-【答案】B【分析】本题考查了解一元二次方程,利用因式分解法求解即可.【详解】解∶220x x -=,∴()20x x -=,∴0x =或20x -=,∴12x =,20x =,故选∶B .6.为培养青少年的科学态度和科学思维,某校创建了“科技创新”社团.小红将“科”“技”“创”“新”写在如图所示的方格纸中,若建立平面直角坐标系,使“创”“新”的坐标分别为()2,0-,()0,0,则“技”所在的象限为()A.第一象限B.第二象限C.第三象限D.第四象限【答案】A【分析】本题考查坐标与图形,先根据题意确定平面直角坐标系,然后确定点的位置.【详解】解:如图建立直角坐标系,则“技”在第一象限,故选A .7.为了解学生的阅读情况,某校在4月23日世界读书日,随机抽取100名学生进行阅读情况调查,每月阅读两本以上经典作品的有20名学生,估计该校800名学生中每月阅读经典作品两本以上的人数为()A.100人B.120人C.150人D.160人【答案】D【分析】本题考查用样本反映总体,利用样本百分比乘以总人数计算即可解题.【详解】解:20800160100⨯=(人),故选D .8.如图,ABCD Y 的对角线AC 与BD 相交于点O ,则下列结论一定正确的是()A.AB BC= B.AD BC = C.OA OB = D.AC BD⊥【答案】B【分析】本题主要考查平行四边形的性质,掌握平行四边形的对边平行且相等,对角线互相平分是解题的关键.【详解】解:∵ABCD 是平行四边形,∴AB CD AD BC AO OC BO OD ====,,,,故选B .9.小星同学通过大量重复的定点投篮练习,用频率估计他投中的概率为0.4,下列说法正确的是()A.小星定点投篮1次,不一定能投中B.小星定点投篮1次,一定可以投中C.小星定点投篮10次,一定投中4次D.小星定点投篮4次,一定投中1次【答案】A【分析】本题主要考查了概率的意义,概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生,据此求解即可.【详解】解:小星同学通过大量重复的定点投篮练习,用频率估计他投中的概率为0.4,则由概率的意义可知,小星定点投篮1次,不一定能投中,故选项A 正确,选项B 错误;小星定点投篮10次,不一定投中4次,故选项C 错误;小星定点投篮4次,不一定投中1次,故选项D 错误故选;A .10.如图,在扇形纸扇中,若150AOB ∠=︒,24OA =,则 AB 的长为()A.30πB.25πC.20πD.10π【答案】C【分析】本题考查了弧长,根据弧长公式∶π180n rl =求解即可.【详解】解∵150AOB ∠=︒,24OA =,∴ AB 的长为150π2420π180⨯=,故选∶C .11.小红学习了等式的性质后,在甲、乙两台天平的左右两边分别放入“■”“●”“▲”三种物体,如图所示,天平都保持平衡.若设“■”与“●”的质量分别为x ,y ,则下列关系式正确的是()A.x y =B.2x y =C.4x y =D.5x y=【答案】C【分析】本题考查等式的性质,设“▲”的质量为a ,根据题意列出等式2x y y a +=+,2x a x y +=+,然后化简代入即可解题.【详解】解:设“▲”的质量为a ,由甲图可得2x y y a +=+,即2x a =,由乙图可得2x a x y +=+,即2a y =,∴4x y =,故选C .12.如图,二次函数2y ax bx c =++的部分图象与x 轴的一个交点的横坐标是3-,顶点坐标为()1,4-,则下列说法正确的是()A.二次函数图象的对称轴是直线1x =B.二次函数图象与x 轴的另一个交点的横坐标是2C.当1x <-时,y 随x 的增大而减小D.二次函数图象与y 轴的交点的纵坐标是3【答案】D【分析】本题考查了二次函数的性质,待定系数法求二次函数解析式,利用二次函数的性质,对称性,增减性判断选项A 、B 、C ,利用待定系数法求出二次函数的解析式,再求出与y 轴的交点坐标即可判定选项D .【详解】解∶∵二次函数2y ax bx c =++的顶点坐标为()1,4-,∴二次函数图象的对称轴是直线=1x -,故选项A 错误;∵二次函数2y ax bx c =++的图象与x 轴的一个交点的横坐标是3-,对称轴是直线=1x -,∴二次函数图象与x 轴的另一个交点的横坐标是1,故选项B 错误;∵抛物线开口向下,对称轴是直线=1x -,∴当1x <-时,y 随x 的增大而增大,故选项C 错误;设二次函数解析式为()214y a x =++,把()3,0-代入,得()20314a =-++,解得1a =-,∴()214y x =-++,当0x =时,()20143y =-++=,∴二次函数图象与y 轴的交点的纵坐标是3,故选项D 正确,故选D .二、填空题(本大题共4题,每题4分,共16分)13.计算23的结果是________.【答案】6【分析】利用二次根式的乘法运算法则进行计算.【详解】解:原式23⨯6,.=(a ≥0,b >0)是解题关键.14.如图,在ABC 中,以点A 为圆心,线段AB 的长为半径画弧,交BC 于点D ,连接AD .若5AB =,则AD 的长为______.【答案】5【分析】本题考查了尺规作图,根据作一条线段等于已知线段的作法可得出AD AB =,即可求解.【详解】解∶由作图可知∶AD AB =,∵5AB =,∴5AD =,故答案为∶5.15.在元朝朱世杰所著的《算术启蒙》中,记载了一道题,大意是:快马每天行240里,慢马每天行150里,慢马先行12天,则快马追上慢马需要的天数是______.【答案】20【分析】本题考查了一元一次方程的应用,设快马追上慢马需要x 天,根据快马走的路程等于慢马走的总路程,列方程求解即可.【详解】解∶设快马追上慢马需要x 天,根据题意,得()24015012x x =+,解得20x =,故答案为:20.16.如图,在菱形ABCD 中,点E ,F 分别是BC ,CD 的中点,连接AE ,AF .若4sin 5EAF ∠=,5AE =,则AB 的长为______.##2653【分析】延长BC ,AF 交于点M ,根据菱形的性质和中点性质证明ABE ADF ≌,ADF MCF ≌,过E 点作EN AF ⊥交N 点,根据三角函数求出EN ,AN ,NF ,MN ,在Rt ENM △中利用勾股定理求出EM ,根据菱形的性质即可得出答案.【详解】延长BC ,AF 交于点M,在菱形ABCD 中,点E ,F 分别是BC ,CD 的中点,AB BC CD AD ∴===,BE EC CF DF ===,AD BC ,D FCM ∠=∠,B D∠=∠在ABE 和ADF △中AB AD B D BE DF =⎧⎪∠=∠⎨⎪=⎩,∴()SAS ABE ADF ≌,∴AE AF =,在ADF △和MCF △中D FCM DF CF AFD MFC ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()ASA ADF MCF ≌,∴CM AD =,AF MF =,5AE = ,5AE AF MF ∴===,过E 点作EN AF ⊥于N 点,90ANE ∴∠=︒ 4sin 5EAF ∠=,5AE =,4EN ∴=,3AN =,∴2NF AF AN =-=,527MN ∴=+=,在Rt ENM △中EM ===,即12EM EC CM BC BC =+=+=AB BC CD AD === ,AB BC ∴==,.【点睛】本题考查了菱形的性质,全等三角形的判定和性质,运用三角函数解直角三角形,勾股定理等,正确添加辅助线构造直角三角形是解本题的关键.三、解答题(本大题共9题,共98分.解答应写出必要的文字说明、证明过程或演算步骤)17.(1)在①22,②2-,③()01-,④122⨯中任选3个代数式求和;(2)先化简,再求值:()21122x x -⋅+,其中3x =.【答案】(1)见解析(2)12x -,1【分析】本题考查分式的化简求值和实数的混合运算,掌握运算法则是解题的关键.(1)利用实数的混合运算的法则和运算顺序解题即可;(2)先把分式的分子、分母分解因式,然后约分化为最简分式,最后代入数值解题即可.【详解】(1)解:选择①,②,③,2022(1)+-+-421=++7=;选择①,②,④,212222+-+⨯421=++7=;选择①,③,④,()0212122+-+⨯411=++6=;选择②,③,④,()012122-+-+⨯211=++4=;(2)解:()21122x x -⋅+()()11(1)21x x x =-+⋅+12x -=;当3x =时,原式3112-==.18.已知点()1,3在反比例函数k y x=的图象上.(1)求反比例函数的表达式;(2)点()3,a -,()1,b ,()3,c 都在反比例函数的图象上,比较a ,b ,c 的大小,并说明理由.【答案】(1)3y x=(2)a c b <<,理由见解析【分析】本题主要考查了反比例函数的性质,以及函数图象上点的坐标特点,待定系数法求反比例函数解析式,关键是掌握凡是函数图象经过的点必能满足解析式.(1)把点()1,3代入k y x=可得k 的值,进而可得函数的解析式;(2)根据反比例函数表达式可得函数图象位于第一、三象限,再根据点A 、点B 和点C 的横坐标即可比较大小.【小问1详解】解:把()1,3代入k y x=,得31k =,∴3k =,∴反比例函数的表达式为3y x =;【小问2详解】解:∵30k =>,∴函数图象位于第一、三象限,∵点()3,a -,()1,b ,()3,c 都在反比例函数的图象上,3013-<<<,∴0a c b <<<,∴a c b <<.19.根据《国家体质健康标准》规定,七年级男生、女生50米短跑时间分别不超过7.7秒、8.3秒为优秀等次.某校在七年级学生中挑选男生、女生各5人进行集训,经多次测试得到10名学生的平均成绩(单位:秒)记录如下:男生成绩:7.61,7.38,7.65,7.38,7.38女生成绩:8.23,8.27,8.16,8.26,8.32根据以上信息,解答下列问题:(1)男生成绩的众数为______,女生成绩的中位数为______;(2)判断下列两位同学的说法是否正确.(3)教练从成绩最好的3名男生(设为甲,乙,丙)中,随机抽取2名学生代表学校参加比赛,请用画树状图或列表的方法求甲被抽中的概率.【答案】(1)7.38,8.26(2)小星的说法正确,小红的说法错误(3)2 3【分析】本题考查用树状图或列表法求概率,众数和中位数的定义,掌握列表法或树状图求概率是解题的关键.(1)利用中位数和众数的定义解题即可;(2)根据优秀等次的要求进行比较解题即可;(3)列表格得到所有可能的结果数n,找出符合要求的数量m,根据概率公式计算即可.【小问1详解】解:男生成绩7.38出现的次数最多,即众数为7.38,女生成绩排列为:8.16,8.23,8.26,8.27,8.32,居于中间的数为8.26,故中位数为8.26,故答案为:7.38,8.26;【小问2详解】解:∵用时越少,成绩越好,∴7.38是男生中成绩最好的,故小星的说法正确;∵女生8.3秒为优秀成绩,8.328.3,∴有一人成绩达不到优秀,故小红的说法错误;【小问3详解】列表为:甲乙丙甲甲,乙甲,丙乙乙,甲乙,丙丙丙,甲丙,乙由表格可知共有6种等可能结果,其中抽中甲的有4种,故甲被抽中的概率为4263=.20.如图,四边形ABCD 的对角线AC 与BD 相交于点O ,AD BC ∥,90ABC ∠=︒,有下列条件:①AB CD ∥,②AD BC =.(1)请从以上①②中任选1个作为条件,求证:四边形ABCD 是矩形;(2)在(1)的条件下,若3AB =,5AC =,求四边形ABCD 的面积.【答案】(1)见解析(2)12【分析】本题考查矩形的判定,勾股定理,掌握矩形的判定定理是解题的关键.(1)先根据条件利用两组对边平行或一组对边平行且相等证明ABCD 是平行四边形,然后根据矩形的定义得到结论即可;(2)利用勾股定理得到BC 长,然后利用矩形的面积公式计算即可.【小问1详解】选择①,证明:∵AB CD ∥,AD BC ∥,∴ABCD 是平行四边形,又∵90ABC ∠=︒,∴四边形ABCD 是矩形;选择②,证明:∵AD BC =,AD BC ∥,∴ABCD 是平行四边形,又∵90ABC ∠=︒,∴四边形ABCD 是矩形;【小问2详解】解:∵90ABC ∠=︒,∴4BC ===,∴矩形ABCD 的面积为3412⨯=.21.为增强学生的劳动意识,养成劳动的习惯和品质,某校组织学生参加劳动实践.经学校与劳动基地联系,计划组织学生参加种植甲、乙两种作物.如果种植3亩甲作物和2亩乙作物需要27名学生,种植2亩甲作物和2亩乙作物需要22名学生.根据以上信息,解答下列问题:(1)种植1亩甲作物和1亩乙作物分别需要多少名学生?(2)种植甲、乙两种作物共10亩,所需学生人数不超过55人,至少种植甲作物多少亩?【答案】(1)种植1亩甲作物和1亩乙作物分别需要5、6名学生(2)至少种植甲作物5亩【分析】本题考查了二元一次方程组的应用,一元一次不等式的应用,(1)设种植1亩甲作物和1亩乙作物分别需要x 、y 名学生,根据“种植3亩甲作物和2亩乙作物需要27名学生,种植2亩甲作物和2亩乙作物需要22名”列方程组求解即可;(2)设种植甲作物a 亩,则种植乙作物()10a -亩,根据“所需学生人数不超过55人”列不等式求解即可.【小问1详解】解:设种植1亩甲作物和1亩乙作物分别需要x 、y 名学生,根据题意,得32272222x y x y +=⎧⎨+=⎩,解得56x y =⎧⎨=⎩,答:种植1亩甲作物和1亩乙作物分别需要5、6名学生;【小问2详解】解:设种植甲作物a 亩,则种植乙作物()10a -亩,根据题意,得:()561055a a +-≤,解得5a ≥,答:至少种植甲作物5亩.22.综合与实践:小星学习解直角三角形知识后,结合光的折射规律进行了如下综合性学习.【实验操作】第一步:将长方体空水槽放置在水平桌面上,一束光线从水槽边沿A 处投射到底部B 处,入射光线与水槽内壁AC 的夹角为A ∠;第二步:向水槽注水,水面上升到AC 的中点E 处时,停止注水.(直线NN '为法线,AO 为入射光线,OD 为折射光线.)【测量数据】如图,点A ,B ,C ,D ,E ,F ,O ,N ,N '在同一平面内,测得20cm AC =,45A ∠=︒,折射角32DON ∠=︒.【问题解决】根据以上实验操作和测量的数据,解答下列问题:(1)求BC 的长;(2)求B ,D 之间的距离(结果精确到0.1cm ).(参考数据:sin 320.52︒≈,cos320.84︒≈,tan 320.62︒≈)【答案】(1)20cm(2)3.8cm【分析】本题考查解直角三角形的应用,解答本题的关键是明确题意,利用数形结合的思想解答.(1)根据等腰三角形的性质计算出的值;(2)利用锐角三角函数求出DN 长,然后根据BD BN DN =-计算即可.【小问1详解】解:在Rt ABC 中,45A ∠=︒,∴45B ∠=︒,∴20cm BC AC ==,【小问2详解】解:由题可知110cm 2ON EC AC ===,∴10cm NB ON ==,又∵32DON ∠=︒,∴tan 10tan 32100.62 6.2cm DN ON DON =⋅∠=⨯︒≈⨯=,∴10 6.2 3.8cm BD BN DN =-=-=.23.如图,AB 为半圆O 的直径,点F 在半圆上,点P 在AB 的延长线上,PC 与半圆相切于点C ,与OF 的延长线相交于点D ,AC 与OF 相交于点E ,DC DE =.(1)写出图中一个与DEC ∠相等的角:______;(2)求证:OD AB ⊥;(3)若2OA OE =,2DF =,求PB 的长.【答案】(1)DCE ∠(答案不唯一)(2)163(3)163【分析】(1)利用等边对等角可得出DCE DEC ∠=∠,即可求解;(2)连接OC ,利用切线的性质可得出90DCE ACO ∠+∠=︒,利用等边对等角和对顶角的性质可得出AOE DCE ∠=∠,等量代换得出90AEO CAO ∠+∠=︒,然后利用三角形内角和定理求出90AOE ∠=︒,即可得证;(3)设2OE =,则可求2AO OF BO x ===,EF x =,22OD x =+,2DC DE x ==+,在Rt ODC △中,利用勾股定理得出()()()2222222x x x +=++,求出x 的值,利用tan OP OC D OD CD==可求出OP ,即可求解.【小问1详解】解:∵DC DE =,∴DCE DEC ∠=∠,故答案为:DCE ∠(答案不唯一);【小问2详解】证明:连接OC ,,∵PC 是切线,∴OC CD ⊥,即90DCE ACO ∠+∠=︒,∵OA OC =,∴OAC ACO ∠=∠,∵DCE DEC ∠=∠,AEO DEC ∠=∠,∴90AEO CAO ∠+∠=︒,∴90AOE ∠=︒,∴OD AB ⊥;【小问3详解】解:设OE x =,则2AO OF BO x ===,∴EF OF OE x =-=,22OD OF DF x =+=+,∴2DC DE DF EF x ==+=+,在Rt ODC △中,222OD CD OC =+,∴()()()2222222x x x +=++,解得14x =,20x =(舍去)∴10OD =,6CD =,8OC =,∵tan OP OC D OD CD ==,∴8106OP =,解得403OP =,∴163BP OP OB =-=.【点睛】本题考查了等腰三角形的性质,切线的性质,勾股定理,解直角三角形的应用等知识,灵活运用以上知识是解题的关键.24.某超市购入一批进价为10元/盒的糖果进行销售,经市场调查发现:销售单价不低于进价时,日销售量y (盒)与销售单价x (元)是一次函数关系,下表是y 与x 的几组对应值.销售单价x /元…1214161820…销售量y /盒…5652484440…(1)求y 与x 的函数表达式;(2)糖果销售单价定为多少元时,所获日销售利润最大,最大利润是多少?(3)若超市决定每销售一盒糖果向儿童福利院赠送一件价值为m 元的礼品,赠送礼品后,为确保该种糖果日销售获得的最大利润为392元,求m 的值.【答案】(1)280y x =-+(2)糖果销售单价定为25元时,所获日销售利润最大,最大利润是450元(3)2【分析】本题考查了二次函数的应用,解题的关键是:(1)利用待定系数法求解即可;(2)设日销售利润为w 元,根据利润=单件利润×销售量求出w 关于x 的函数表达式,然后利用二次函数的性质求解即可;(3)设日销售利润为w 元,根据利润=单件利润×销售量-m ×销售量求出w 关于x 的函数表达式,然后利用二次函数的性质求解即可.【小问1详解】解∶设y 与x 的函数表达式为y kx b =+,把12x =,56y =;20x =,40y =代入,得12562040k b k b +=⎧⎨+=⎩,解得280k b =-⎧⎨=⎩,∴y 与x 的函数表达式为280y x =-+;【小问2详解】解:设日销售利润为w 元,根据题意,得()10w x y=-⋅()()10280x x =--+22100800x x =-+-()2225450x =--+,∴当25x =时,w 有最大值为450,∴糖果销售单价定为25元时,所获日销售利润最大,最大利润是450元;【小问3详解】解:设日销售利润为w 元,根据题意,得()10w x m y =--⋅()()10280x m x =---+()22100280080x m x m =-++--,∴当()100250222m m x ++=-=⨯-时,w 有最大值为()25050210028008022m m m m ++⎛⎫⎛⎫-++-- ⎪ ⎪⎝⎭⎝⎭,∵糖果日销售获得的最大利润为392元,∴()25050210028008039222m m m m ++⎛⎫⎛⎫-++--= ⎪ ⎪⎝⎭⎝⎭,化简得2601160m m -+=解得12m =,258m =当58m =时,542b x a=-=,则每盒的利润为:5410580--<,舍去,∴m 的值为2.25.综合与探究:如图,90AOB ∠=︒,点P 在AOB ∠的平分线上,PA OA ⊥于点A .(1)【操作判断】如图①,过点P 作PC OB ⊥于点C ,根据题意在图①中画出PC ,图中APC ∠的度数为______度;(2)【问题探究】如图②,点M 在线段AO 上,连接PM ,过点P 作PN PM ⊥交射线OB 于点N ,求证:2OM ON PA +=;(3)【拓展延伸】点M 在射线AO 上,连接PM ,过点P 作PN PM ⊥交射线OB 于点N ,射线NM 与射线PO 相交于点F ,若3ON OM =,求OP OF的值.【答案】(1)画图见解析,90(2)见解析(3)23或83【分析】(1)依题意画出图形即可,证明四边形OAPC 是矩形,即可求解;(2)过P 作PC OB ⊥于C ,证明矩形OAPC 是正方形,得出OA AP PC OC ===,利用ASA 证明APM CPN △≌△,得出AM CN =,然后利用线段的和差关系以及等量代换即可得证;(3)分M 在线段AO ,线段AO 的延长线讨论,利用相似三角形的判定与性质求解即可;【小问1详解】解:如图,PC 即为所求,∵90AOB ∠=︒,PA OA ⊥,PC OB ⊥,∴四边形OAPC 是矩形,∴90APC ∠=︒,故答案为:90;【小问2详解】证明:过P 作PC OB ⊥于C ,由(1)知:四边形OAPC 是矩形,∵点P 在AOB ∠的平分线上,PA OA ⊥,PC OB ⊥,∴PA PC =,∴矩形OAPC 是正方形,∴OA AP PC OC ===,90APC ∠=︒,∵PN PM ⊥,∴90APM CPN MPC ∠=∠=︒-∠,又90A PCN ∠=∠=︒,AP CP =,∴APM CPN △≌△,∴AM CN =,∴OM ON OM CN OC+=++OM AM AP=++OA AP=+2AP =;【小问3详解】解:①当M 在线段AO 上时,如图,延长NM 、PA 相交于点G ,由(2)知2OM ON PA +=,设OM x =,则3ON x =,2AO PA x ==,∴AM AO OM x OM =-==,∵90AOB MAG ︒∠=∠=,AMG OMN ∠=∠,∴()ASA AMG OMN ≌,∴3AG ON x ==,∵90AOB ∠=︒,PA OA ⊥,∴AP OB ∥,∴ONF PGF ∽ ,∴33325OF ON x PF PG x x ===+,∴53PF OF =,∴53833OP OF +==;②当M 在AO 的延长线上时,如图,过P 作PC OB ⊥于C ,并延长交MN 于G由(2)知:四边形OAPC 是正方形,∴OA AP PC OC ===,90APC ∠=︒,PC AO ∥,∵PN PM ⊥,∴90APM CPN MPC ∠=∠=︒-∠,又90A PCN ∠=∠=︒,AP CP =,∴APM CPN △≌△,∴AM CN =,∴ON OM-OC CN OM=+-AO AM OM=+-AO AO=+2AO =,∵33ON OM x==∴AO x =,2CN AM x ==,∵PC AO ∥,∴CGN OMN ∽,∴CG CN OM ON=,即23CG x x x =,∴23CG x =,∵PC AO ∥,∴OMF PGF ∽ ,∴3253OF OM x PF PG x x ===+,∴53PF OF =,∴53233OP OF -==;综上,OP OF 的值为23或83.【点睛】本题考查了矩形的判定与性质,正方形的判定与性质,角平分线的性质,全等三角形的判断与性质,相似三角形的判断与性质等知识,明确题意,添加合适辅助线,构造全等三角形、相似三角形,合理分类讨论是解题的关键.。
九年级学业测试数学试卷【含答案】
九年级学业测试数学试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若 a > b,则下列哪个选项一定成立?A. a c > b cB. a + c > b + cC. ac > bcD. a/c > b/c (c ≠ 0)2. 下列哪个函数是奇函数?A. y = x^2B. y = |x|C. y = x^3D. y = sin(x)3. 若一组数据的方差为0,那么这组数据一定?A. 有很多不同的数B. 都相等C. 都是正数D. 都是负数4. 一个长方体的长、宽、高分别是2cm、3cm、4cm,那么它的对角线长度是?A. 5cmB. 6cmC. 7cmD. 9cm5. 若一个等差数列的前三项分别是2、5、8,那么第10项是?A. 29B. 30C. 31D. 32二、判断题(每题1分,共5分)1. 任何两个奇数之和都是偶数。
()2. 平方根的定义是:一个数的平方根是它的二次方根。
()3. 一组数据的平均数一定大于或等于中位数。
()4. 对角线互相垂直的四边形一定是矩形。
()5. 两个等腰三角形的面积相等,则它们的底边和高也相等。
()三、填空题(每题1分,共5分)1. 若一个数的平方是49,那么这个数是______。
2. 一个正方形的边长是6cm,那么它的面积是______cm²。
3. 若sin(α) = 0.6,且α 是锐角,那么cos(α) = ______。
4. 一个等差数列的第5项是23,公差是4,那么第1项是______。
5. 若 x + y = 5 且 x y = 3,那么 x = ______,y = ______。
四、简答题(每题2分,共10分)1. 解释什么是等差数列。
2. 简述勾股定理的内容。
3. 解释二次函数的标准形式。
4. 什么是算术平均数?5. 如何计算一个圆的面积?五、应用题(每题2分,共10分)1. 一个长方形的长是10cm,宽是5cm,求它的面积。
2023年初中学业水平考试(中考)数学试题及答案
2023年初中学业水平考试(中考)数学试题及答案注意事项:1.本试题共24个题,考试时间120分钟.2.请把答案写在答题卡上,选择题用2B 铅笔填涂,非选择题用0.5毫米黑色签字笔书写在答题卡的指定区域内,写在其他区域不得分.一、选择题(本大题共8个小题,在每小题给出的四个选项中,只有一个选项是正确的,请把正确选项的序号涂在答题卡的相应位置.)1.下列各数中,绝对值最小的数是()A.5- B.12 C.1- D.2.函数5y x =-的自变量x 的取值范围是()A.5x ≠ B.2x >且5x ≠ C.2x ≥ D.2x ≥且5x ≠3.在平面直角坐标系中,将点()3,2P -向右平移3个单位得到点P ',则点P '关于x 轴的对称点的坐标为()A.()0,2- B.()0,2 C.()6,2- D.()6,2--4.一个几何体由大小相同的小立方块搭成,它的俯视图如图所示,其中小正方形中的数字表示在该位置小立方块的个数,则该几何体的主视图为()A. B. C. D.5.如果顺次连接四边形的各边中点得到的四边形是矩形,那么原来四边形的对角线一定满足的条件是()A.互相平分 B.相等 C.互相垂直 D.互相垂直平分6.如图,将ABC 绕点A 顺时针旋转角α,得到ADE ,若点E 恰好在CB 的延长线上,则BED ∠等于()A.2αB.23αC.αD.180α︒-7.等腰三角形的一边长是3,另两边的长是关于x 的方程240x x k -+=的两个根,则k 的值为()A.3 B.4 C.3或4 D.78.一次函数y ax b =+与二次函数2y ax bx c =++在同一平面直角坐标系中的图象可能是()A. B. C. D.二、填空题(本大题共6个小题,只要求把最后结果填写在答题卡的相应区域内)9.计算)44-+的结果是_______.10.方程111x x x x -+=-的解是______.11.如图,在ABC 中,90ACB ∠=︒,点D 为AB 边的中点,连接CD ,若4BC =,3CD =,则cos DCB ∠的值为______.12.从1-,2,3-,4这四个数中任取两个不同的数分别作为a ,b 的值,得到反比例函数ab y x=,则这些反比例函数中,其图象在二、四象限的概率是______.13.如图,在菱形OABC 中,OB 是对角线,2OA OB ==,⊙O 与边AB 相切于点D ,则图中阴影部分的面积为_______.14.如图,矩形ABCD 中,5AB =,12AD =,点P 在对角线BD 上,且BP BA =,连接AP 并延长,交DC 的延长线于点Q ,连接B Q ,则B Q 的长为_______.三、解答题(把解答或证明过程写在答题卡的相应区域内.)15.计算:2020120201263|345(2)2-⎛⎫+-+︒--⋅ ⎪⎝⎭.16.先化简,再求值:21242244a a a a a a -⎛⎫-÷ ⎪+++⎝⎭,其中a 满足2230a a +-=.17.如图,在ABC 中,90ACB ∠=︒,点E 在AC 的延长线上,ED AB ⊥于点D ,若BC ED =,求证:CE DB =.18.某兴趣小组为了测量大楼CD 的高度,先沿着斜坡AB 走了52米到达坡顶点B 处,然后在点B 处测得大楼顶点C 的仰角为53︒,已知斜坡AB 的坡度为1:2.4i =,点A 到大楼的距离AD 为72米,求大楼的高度CD .(参考数据:sin 5345︒≈,cos5335︒≈,tan 5343︒≈)19.某中学全校学生参加了“交通法规”知识竞赛,为了解全校学生竞赛成绩的情况,随机抽取了一部分学生的成绩,分成四组:A:6070x ≤<;B:7080x ≤<;C:8090x ≤<;D:90100x ≤≤,并绘制出如下不完整的统计图.(1)求被抽取的学生成绩在C:18090x ≤<组的有多少人;(2)所抽取学生成绩的中位数落在哪个组内;(3)若该学校有1500名学生,估计这次竞赛成绩在A:6070x ≤<组的学生有多少人.20.如图,一次函数y kx b =+的图象与反比例函数m y x=的图象相交于()1,2A ,(),1B n -两点.(1)求一次函数和反比例函数的表达式;(2)直线AB 交x 轴于点C ,点P 是x 轴上的点,若ACP △的面积是4,求点P 的坐标.21.今年史上最长的寒假结束后,学生复学,某学校为了增强学生体质,鼓励学生在不聚集的情况下加强体育锻炼,决定让各班购买跳绳和毽子作为活动器材.已知购买2根跳绳和5个毽子共需32元;购买4根跳绳和3个毽子共需36元.(1)求购买一根跳绳和一个毽子分别需要多少元;(2)某班需要购买跳绳和毽子的总数量是54,且购买的总费用不能超过260元;若要求购买跳绳的数量多于20根,通过计算说明共有哪几种购买跳绳的方案.22.如图,在ABC 中,AB AC ,以AB 为直径的⊙O 与BC 相交于点D ,过点D 作⊙O 的切线交AC 于点E .(1)求证:DE AC ⊥;(2)若⊙O 的半径为5,16BC =,求DE 的长.23.如图1,四边形ABCD 的对角线AC ,BD 相交于点O ,OA OC =,OB OD CD =+.(1)过点A 作//AE DC 交BD 于点E ,求证:AE BE =;(2)如图2,将ABD △沿AB 翻折得到ABD '△.①求证://BD CD ';②若//AD BC ',求证:22CD OD BD =⋅.图1图224.如图,抛物线26y ax bx =+-与x 轴相交于A ,B 两点,与y 轴相交于点C ,2OA =,4OB =,直线l 是抛物线的对称轴,在直线l 右侧的抛物线上有一动点D ,连接AD ,BD ,BC ,CD .(1)求抛物线的函数表达式;(2)若点D 在x 轴的下方,当BCD 的面积是92时,求ABD △的面积;(3)在(2)的条件下,点M 是x 轴上一点,点N 是抛物线上一动点,是否存在点N ,使得以点B ,D ,M ,N 为顶点,以BD 为一边的四边形是平行四边形,若存在,求出点N 的坐标;若不存在,请说明理由.2023年初中学业水平考试(中考)数学试题及答案一、选择题1.B 【解析】55-=,1122=,11-==,∵1512>>>,∴绝对值最小的数是12;故选B.2.D 【解析】由题意,得20,50x x -≥⎧⎨-≠⎩解得2x ≥且 5.x ≠故选D.3.A 【解析】∵将点()3,2P -向右平移3个单位,∴点P '的坐标为:(0,2),∴点P '关于x 轴的对称点的坐标为:(0,-2).故选A.4.A 【解析】从正面看所得到的图形为A 选项中的图形.故选A .5.C 【解析】根据题意画出图形如下:答:AC 与BD 的位置关系是互相垂直.证明:∵四边形EFGH 是矩形,∴∠FEH=90°,又∵点E、F、分别是AD、AB、各边的中点,∴EF 是三角形ABD 的中位线,∴EF∥BD,∴∠FEH=∠OMH=90°,又∵点E、H 分别是AD、CD 各边的中点,∴EH 是三角形ACD 的中位线,∴EH∥AC,∴∠OMH=∠COB=90°,即AC⊥BD.故选C.6.D 【解析】由旋转的性质,得∠BAD=α,∠ABC=∠ADE,∵∠ABC+∠ABE=180º,∴∠ADE+∠ABE=180º,∵∠ABE+∠BED+∠ADE+∠BAD=360º,∠BAD=α∴∠BED=180º-α,故选D.7.C 【解析】①当3为等腰三角形的底边,根据题意得△=(-4)2−4k=0,解得k=4,此时,两腰的和=x 1+x 2=4>3,满足三角形三边的关系,所以k=4;②当3为等腰三角形的腰,则x=3为方程的解,把x=3代入方程得9−12+k=0,解得k=3;综上,k 的值为3或4,故选C.8.B 【解析】A、∵二次函数图象开口向上,对称轴在y 轴右侧,∴a>0,b<0,∴一次函数图象应该过第一、三、四象限,A 错误;B、∵二次函数图象开口向上,对称轴在y 轴左侧,∴a>0,b>0,∴一次函数图象应该过第一、二、三象限,B 正确;C、∵二次函数图象开口向下,对称轴在y 轴右侧,∴a<0,b>0,∴一次函数图象应该过第一、二、四象限,C 错误;D、∵二次函数图象开口向下,对称轴在y 轴左侧,∴a<0,b<0,∴一次函数图象应该过第二、三、四象限,D 错误.故选B.二、填空题(本大题共6个小题,只要求把最后结果填写在答题卡的相应区域内)9.﹣13【解析】)244431613=-=-=-.10.13x =【解析】方程两边都乘以(1)x x -,得:2(1)(1)x x x -=+,解得:13x =,检验:13x =时,2(1)09x x -=-≠,所以分式方程的解为13x =,11.23【解析】∵∠ACB=90°,BC=4,CD=3,点D 是AB 边的中点,∴DC=DB,∴∠DCB=∠B,AB=2CD=6,∴42cos DCB cos B 63BC AB ∠∠====,12.23【解析】从1-,2,3-,4中任取两个数值作为a ,b 的值,其基本事件总数有:共计12种;其中积为负值的共有:8种,∴其概率为:82123=13.π-【解析】如图,连接OD,∵AB 是切线,则OD⊥AB,在菱形OABC 中,∴2AB OA OB ===,∴△AOB 是等边三角形,∴∠AOB=∠A=60°,∴OD=2sin 60⨯︒=,∴122AOB S ∆=⨯=,∴扇形的面积为260(3)3602ππ︒⨯⨯=︒,∴阴影部分的面积为2)2ππ⨯-=;14.解析∵四边形ABCD 是矩形,5AB =,12AD =,∴∠BAD=∠BCD=90º,AB=CD=5,BC=AD=12,AB∥CD,∴13BD ==,又BP BA ==5,∴PD=8,∵AB∥DQ,∴BP AB AB PD DQ CD CQ ==+,即5558CQ =+解得CQ=3,在Rt△BCQ 中,BC=12,CQ=3,BQ ===.三、解答题15.解:202012020123|45(2)2-⎛⎫+-+︒--⋅ ⎪⎝⎭2020121(3(2222=++--⨯1312=+52=.16.解:原式=2224124()+22(2)a a a a a a a +--÷++=22284+2(2)a a a a a --÷+=22(4)(+2)+24a a a a a -⨯-=2a(a+2)=2a 2+4a.∵2230a a +-=,∴a 2+2a=3.∴原式=2(a 2+2a)=6.17.证明:∵ED AB ⊥,∴∠ADE=90°,∵90ACB ∠=︒,∴∠ACB=∠ADE,在AED ∆和ABC ∆中ACB ADE A A BC ED ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴AED ABC ∆≅∆,∴AE=AB,AC=AD,∴AE-AC=AB-AD,即EC=BD.18.解:如下图,过点B作BE⊥AD于点E,作BF⊥CD于点F,在Rt△ABE中,AB=52,∵1:2.4i=∴tan∠BAE=BEAE=12.4,∴AE=2.4BE,又∵BE2+AE2=AB2,∴BE2+(2.4BE)2=522,解得:BE=20,∴AE=2.4BE=48;∵∠BED=∠D=∠BFD=90°,∴四边形BEDF是矩形,∴FD=BE=20,BF=ED=AD-AE=72-48=24;在Rt△BCF中,tan∠CBF=CF BF,即:tan53°=CF BF=43∴CF=43BF=32,∴CD=CF+FD=32+20=52.答:大楼的高度CD为52米.19.解:(1)由图可知:B组人数为12;B组所占的百分比为20%,∴本次抽取的总人数为:1220%60÷=(人),∴抽取的学生成绩在C:8090x≤<组的人数为:606121824---=(人);(2)∵总人数为60人,∴中位数为第30,31个人成绩的平均数,∵6121830+=<,且612244230++=>∴中位数落在C 组;(3)本次调查中竞赛成绩在A:6070x ≤<组的学生的频率为:616010=,故该学校有1500名学生中竞赛成绩在A:6070x ≤<组的学生人数有:1150015010⨯=(人).20.解:(1)将点A(1,2)坐标代入m y x =中得:m=1×2=2,∴反比例函数的表达式为2y x =,将点B(n,-1)代入2y x=中得:21n -=,∴n=﹣2,∴B(-2,-1),将点A(1,2)、B(-2,-1)代入y kx b =+中得:221k b k b +=⎧⎨-+=-⎩解得:11k b =⎧⎨=⎩,∴一次函数的表达式为1y x =+;(2)设点P(x,0),∵直线AB 交x 轴于点C ,∴由0=x+1得:x=﹣1,即C(-1,0),∴PC=∣x+1∣,∵ACP △的面积是4,∴11242x ⨯+⨯=∴解得:123,5x x ==-,∴满足条件的点P 坐标为(3,0)或(-5,0).21.解:(1)设购买一根跳绳需要x 元,一个毽子需要y 元,依题意,得25324336x y x y +=⎧⎨+=⎩,解得64x y =⎧⎨=⎩,答:购买一根跳绳需要6元,一个毽子需要4元;(2)设学校购进跳绳m 根,则购进毽子(54-m)根,根据题意,得:64(54)260m m +-≤,解得:m≤22,又m﹥20,且m 为整数,∴m=21或22,∴共有两种购买跳绳的方案,方案一:购买跳绳21根;方案二:购买跳绳22根.22.解:连接OD,如图:∵AB=AC,∴∠B=∠C,∵OB=OD,∴∠B=∠ODB,∴∠B=∠ODB=∠C,∴OD∥AC,∵DE 是切线,∴OD⊥DE,∴AC⊥DE;(2)连接AD,如(1)图,∵AB 为直径,AB=AC,∴AD 是等腰三角形ABC 的高,也是中线,∴CD=BD=1116822BC =⨯=,∠ADC=90°,∵AB=AC=2510⨯=,由勾股定理,得:6AD ==,∵11861022ACD S DE ∆=⨯⨯=⨯⨯,∴ 4.8DE =;23.解:(1)连接CE,∵//AE DC ,∴OAE OCD ∠=∠,∵OAE OCD ∠=∠,OA OC =,AOE COD ∠=∠,∴△OAE≌△OCD,∴AE=CD,∴四边形AECD 为平行四边形,∴AE=CD,OE=OD,∵==+B OB OD CD OE E +,∴CD=BE,∴AE BE =;(2)①过A 作AE∥CD 交BD 于E,交BC 于F,连接CE,由(1)得,AE BE =,∴ABE BAE ∠=∠,由翻折的性质得D BA ABE '∠=∠,∴D BA BAE '∠=∠,∴//BD AF ',∴//BD CD ';②∵//AD BC ',//BD AF ',∴四边形AFBD '为平行四边形,∴=D AFB '∠∠,'BD AF =,∴AF BD =,∵AE BE =,∴EF=DE,∵四边形AECD 是平行四边形,∴CD=AE=BE,∵AF∥CD,∴BEF CDE ∠=∠,∵EF=DE,CD=BE,BEF CDE ∠=∠,∴△BEF≌△CDE(SAS),∴BFE CED ∠=∠,∵BFE BCD ∠=∠,∴∠CED=∠BCD,又∵∠BDC=∠CDE,∴△BCD∽△CDE,∴CD DEBD CD =,即2CD BD DE =⨯,∵DE=2OD,∴22CD OD BD =⋅.24.解:(1)∵OA=2,OB=4,∴A(-2,0),B(4,0),将A(-2,0),B(4,0)代入26y ax bx =+-得:426016460a b a b --=⎧⎨+-=⎩,解得:33,42a b ==-∴抛物线的函数表达式为233642y x x =--;(2)由(1)可得抛物线233642y x x =--的对称轴l:1x =,(0,6)C -,设直线BC:y kx m =+,可得:406k m m +=⎧⎨=-⎩解得3,62k m ==-,∴直线BC 的函数表达式为:362y x =-,如图1,过D 作DE⊥OB 交OB 于点F,交BC 于点E,设233(,6)42D d d d --,则3(,6)2E d d -,∴2334DE d d =-+,由题意可得213934242d d ⎛⎫-+⨯= ⎪⎝⎭整理得2430d d -+=解得11d =(舍去),23d =∴153,4D ⎛⎫- ⎪⎝⎭,∴15,64DF AB ==∴12ABD S AB DF = 115624=⨯⨯154=;(3)存在由(1)可得抛物线233642y x x =--的对称轴l:1x =,由(2)知153,4D ⎛⎫- ⎪⎝⎭,①如图2当//ND MB=ND ,MB 时,四边形BDNM 即为平行四边形,此时MB=ND=4,点M 与点O 重合,四边形BDNM 即为平行四边形,∴由对称性可知N 点横坐标为-1,将x=-1代入233642y x x =--解得154y=-∴此时151,4N ⎛⎫-- ⎪⎝⎭,四边形BDNM 即为平行四边形.②如图3当//BD MN=BD ,MN 时,四边形BDMN 为平行四边形,过点N 做NP⊥x 轴,过点D 做DF⊥x 轴,由题意可得NP=DF ∴此时N 点纵坐标为154将y=154代入233642y x x =--,得233156=424x x --,解得:x 1=∴此时1514,N ⎛⎫- ⎪⎝⎭或154,N ⎛⎫ ⎪⎝⎭,四边形BDMN 为平行四边形.综上所述,151,4N ⎛⎫-- ⎪⎝⎭或1514,N ⎛⎫ ⎪⎝⎭或154,N ⎛⎫ ⎪⎝⎭.。
中考数学试卷精选合辑60之9-市初中毕业生学业考试试题及答案
初中毕业生学业考试数学试题亲爱的同学,相信在本场考试中,你的数学知识水平和探究能力一定会有很好的发挥 特别提醒你要仔细审题,先易后难•祝你取得好成绩!并请你注意以下几点:1•答卷前,请你用钢笔(圆珠笔)将自己的姓名、准考证号填在密封线内2•答选择题时,请将答案直接填在选择题答题表中3.试卷共8页,满分120分,考试时间120分钟.、选择题(本大题共有 8个小题,每小题3分,满分24分.) 在下列各小题中,均给出四个答案,其中有且只有一个正确答案,请将正确答案的字母代号填入上面选择题答题表中相应题号下的方格内, 零分. 1. - 2的倒数是1 1 A. 2B. 2C. -2D.2.2008年5月12 日,四川汶川发生里氏8.0级地震,国内外社会各界纷纷向灾区捐款捐物,抗震救灾.截止6月4日12时,全国共接收捐款约为 43 681 000 000元人民币.这笔款额填错或不填均为用科学记数法表示(保留三个有效数字)正确的是 11A. 0.437 10113.在下面的四个几何体中, 10 10B. 4.4 1010C. 4.37 10它们各自的左视图与主视图不相同的是4.对于反比例函数k 2 (k =0),下列说法不正确的是xA. C. 它的图象分布在第一、三象限 它的图象是中心对称图形 四边形ABCD 是菱形,过点 5.如图,的延长线于点E ,则下列式子不成立的是A 作BD 的平行线交CD AA长方体B圆柱 CDDB.点(k ,k )在它的图象上D. y 随x 的增大而增大(第5题图)元的运动服,打折后他比按标价购买节省了 元.9.分解因式:2小x -9 =10.化简丄 _____________ J 的结果是C. . EAC =90D. . ABC =2. E26.如图,抛物线 y 二ax bx c (a 0)的对称轴是直线 x =1,且经过点P (3, 0),则a —b +c 的值为 A. 0B. -1C. 1D. 27•如图,三个大小相同的正方形拼成六边形ABCDEF ,一动点P从点A 出发沿着A T B T C T D T E 方向匀速运动,最后到 达点E .运动过程中 PEF 的面积(s )随时间(t )变化的图 象大致是E8.如图,小明从半径为 5cm 的圆形纸片中剪下 40%圆周的 一个扇形,然后利用剪下的扇形制作成一个圆锥形玩具纸 帽(接缝处不重叠),那么这个圆锥的高为 A.3 cm B.4 cm C. 21 cm D. 2 6 cm得分 评卷人二、填空题(本大题共 填写在每题的横线上.8个小题,每小题 (第8题图)3分,满分24分)将结果直接x X -X11. 五一”期间,某服装商店举行促销活动,全部商品八折销售.小华购买一件标价为180元的运动服,打折后他比按标价购买节省了元.212. 关于x 的一元二次方程 x 「mx - 2m = 0的一个根为1,则方程的另一根为13•如图是我们生活中经常接触的小刀,刀柄外形是一个直角梯形(下底挖去一小半圆)刀片上、下是平行的,转动刀片时会形成/1、/ 2,则/ 1+ / 2 =火炬手所跑的路程(单位:米)如下: 数据的中位数是15. 如图,矩形ABCD 的面积为5,它的两条对角线交于点 O 1,以AB 、AO 1为两邻边作平行四边形 ABC 1O 1,平行四边形 ABC 1O 1的对角线交于点 。
初中毕业生学业考试数学试卷及答案(1)
九年级生学业考试数 学 试 卷(非课改实验区使用)(考试形式:闭卷 全卷共五大题25小题 卷面分数:120分 考试时限:120分钟) 考生注意:本试卷分为两卷,解答第I 卷(1~2页)时请将解答结果填写在第II 卷(3~8页)上指定的位置,否则答案无效,交卷时只交第II 卷. 以下公式供参考:二次函数y =ax 2+bx +c 图象的顶点坐标是)44,2(2ab ac a b --. 第Ⅰ卷(选择题、填空题 共45分)一、选择题:(下列各小题都给出了四个选项,其中只有一项是符合题目要求的,请将符合要求的选项前面的字母代号填写在第II 卷上指定的位置. 本大题共10小题,每小题3分,计30分)1.如果a 与2互为倒数,则下列结论正确的为( ).(A )a =12 (B )a =-2 (C )a =-21(D )a =2 2.下列运算正确的是( ).(A ) 632·a a a = (B )248a a a =÷ (C ) 6332a a a =+ (D )623)(a a = 3.如图,将三个相同的三角尺不重叠不留空隙地拼在一起,观察图形,在线段AB 、AC 、AE 、ED 、EC 、DB 中,相互平行的线段有( ).(A )4组 (B )3组 (C )2组 (D )1组 4.如图,在△ABC 中,D 、E 、F 分别是AB 、AC 、BC 的中点 ,则△DEF 与△ABC 的周长之比为( ). (A )1:2 (B )1:2 (C )1:3 (D )1:4 5.下列四边形①等腰梯形,②正方形,③矩形,④菱形的对角线一定相等的为( ).(A )①②③ (B )①②③④ (C )①② (D )②③6.国家统计局发布的统计公报显示:到, 我国GDP 增长率分别为8.3%,9.1%,10.0%,10.1%,9.9%.经济学家评论说:这五年的GDP 增长率之间相当平稳.从统计学角度看,“增长率之间相当平稳”说明这组数据的( )比较小. (A )中位数 (B )方差 (C )平均数 (D )众数 7.宜昌市财政总收入达到105.5亿元.用科学记数法(保留三位有效数字)表示105.5(第3题)(第4题)亿元约为( )元.(A ) 1.055×1010 (B ) 1. 06 ×1010 (C ) 1. 05×1011 (D ) 1. 06×10118.已知方程22121x x x x--=-,若设21xa x =-,则原方程变形并整理为( ). (A )2210a a -+= (B )220a a +-= (C )2210a a --= (D )2210a a +-=9. 如图,在△ABC 中,点O 是∠ABC 与∠ACB 平分线的交点, 若∠BAC =80o,则∠BOC =( ).(A )130o (B )100o (C )50o (D )65o10.函数 y =x m与y =mx -m (m ≠0)在同一平面直角坐标系中的大致图象是( ).二、填空题:(本大题共5小题,每小题3分,计15分) 11. 函数2y x =-的自变量x 取值范围为 .12.如图,AB =CD ,AD 、BC 相交于点O ,要使△ABO ≌△DCO , 应添加的条件为 . (添加一个条件即可) 13.2、6是一元二次方程20x ax b ++=的两根, 则b 的值为 .14.如图,用6个全等的等腰梯形纸板不重叠不留空隙地拼成 一个边框为正六边形的纸环,则等腰梯形的四个角中最小的角 为 .15.数字解密:若第一个数是3=2+1,第二个数是5=3+2, 第三个数是9=5+4,第四个数是17=9+8,……观察并猜想第五个数应是 .(第9题) (第14题)(第10题) (D )(A ) (B ) (C ) (第12题)湖北省宜昌市初中毕业生学业考试数学试卷(非课改实验区)题 号 一二三四五总分得 分第Ⅱ卷 (解答题 共75分)一、选择题答案栏:(请将第I 卷中选择题的答案填写在下表中)二、填空题答案栏:(请将第I 卷中填空题的答案填写在下表中)得分 题 号 11 12 13 14 15评卷人 答 案16.计算:(4a a -)÷2a a+.17.如图,在等腰梯形ABCD 中,AD ∥BC ,AB =CD .(1)利用尺规作底边AD 的中点 E.(保留作图痕迹,不写作法和证明) (2)连结EB 、EC ,求证:∠A BE=∠DCE .得分 题 号 1 2 3 4 5 6 7 8 9 10 评卷人答 案得 分 三、解答题:(本大题共4小题,每小题6分,计24分)评卷人(第17题)18.深受海内外关注的沪杭磁悬浮交通项目近日获得国务院批准,沪杭磁悬浮线建成后,分为中心城区段与郊区段两部分,其中中心城区段的长度为60千米占全程的40%,沪杭磁悬浮的票价预定为0.65元/千米~0.75元/千米,请你估计沪杭磁悬浮的全程票价的范围.19. 如图,王明站在地面B 处用测角仪器测得楼顶点E 的仰角为45°,楼顶上旗杆顶点F 的仰角为55°,已知测角仪器高AB=1.5米,楼高CE=14.5米,求旗杆EF 的高度(精确到1米).(供参考数据:sin 55°≈0.8,cos 55°≈0.57,tan 55°≈1.4.)20. 某汽车生产厂家对其生产的A 型汽车进行耗油量实验,实验中油箱中的余油量y (升)与行驶时间t (小时)的关系如下表,与行驶路程x (千米)的关系如下图.请你根据这些信息求此型车在实验中的平均速度.得 分 四、解答题:(本大题共3小题,每小题7分,计21分)评卷人行驶时间t (小时) 0 1 2 3油箱余油量y (升) 100 84 68 52 (第20题)(第18题) (第19题)21.如图,⊙O 、⊙P 交于点A 、B ,连结OP 交AB 于点H ,交两圆于点C 、D ,∠OAP =90°,AP =3,CP =1.求⊙O 的半径和AB 的长.22.初三(1)班50人进行了一次1分钟跳绳比赛(个数在60至119之间),根据比赛结果制成了如下的成绩等级分布表和频率分布直方图.完成下列问题:(1)A 等成绩的人数为多少?(2)已知图中长方形②的高是长方形①的高的2倍, 请在表中填上D 等、C 等成绩的人数比例. (3)在A 等中,成绩在110—119个的学生占试补全频率分布直方图.五、解答题:(本大题共3小题,每小题10分,计30分)等级 A (119—100个) B (99—90个)C (89—80个)D (79—70个)E (69—60个)人数比例20%30%6%(第21题)(第22题)组距频率 个数23.小资料:财政预计,三峡工程投资需亿元,由静态投资901亿元、贷款利息成本a亿元、物价上涨价差(a+360)亿元三部分组成.但事实上,因国家调整利率,使贷款利息减少了15.4%;因物价上涨幅度比预测要低,使物价上涨价差减少了18.7%.三峡电站发电量为392亿度,预计的发电量为564.48亿度,这两年的发电量年平均增长率相同.若发电量按此幅度增长,到全部机组投入发电时,当年的发电量刚好达到三峡电站设计的最高年发电量.从起,拟将三峡电站和葛洲坝电站的发电收益全部用于返还三峡工程投资成本.葛洲坝年发电量为270亿度,国家规定电站出售电价为0.25元/度.(1)因利息调整和物价上涨幅度因素使三峡工程总投资减少多少亿元?(结果精确到1亿元)(2)请你通过计算预测:大约到哪一年可以收回三峡工程的投资成本?评卷人24.如图,⊙O的直径BC=4,过点C作⊙O的切线m,D是直线m上一点,且DC=2,A是线段BO上一动点,连接AD交⊙O于G,过点A作AD的垂线交直线m于点F,交⊙O于点H,连接GH交BC于E.(1)当点A是BO的中点时,求AF的长;(2)若∠AGH=∠AFD,求△AGH的面积.得分25. 如图,点O是坐标原点,点A(n,0)是x轴上一动点(n<0)以AO为一边作矩形AOBC,点C在第二象限,且OB=2OA.矩形AOBC绕点A逆时针旋转90o得矩形AGDE.过点A的直线y=kx+m交y轴于点F,FB=F A.抛物线y=ax2+b⊥.(1)求k的值;(2)点A位置改变时,△AMH的面积和矩形AOBC的面积的比值是否改变?说明你的理由.湖北省宜昌市(非课改实验区)初中学业考试数学试卷参考答案及评分说明(一)阅卷评分说明1.正式阅卷前先进行试评,在试评中认真阅读参考答案,明确评分标准,不得随意拔高或降低评分标准. 试评的试卷必须在阅卷后期全部予以复查,防止阅卷前后期评分标准宽严不一致.2.评分方式为分步累计评分,解答过程的某一步骤发生笔误,只要不降低后继部分的难度,而后继部分再无新的错误,后继部分可评应得分数的50%;若是几个相对独立的得分点,其中一处错误不影响其它得分点的评分.3.最小记分单位为1分,不得将评分标准细化至1分以下(即不得记小数分).4.解答题题头一律记该题的实际得分,不得用记负分的方式记分. 对解题中的错误须用红笔标出,并继续评分,直至将解题过程评阅完毕,并在最后得分点处标上该题实际得分.5.本参考答案只给出一至两种解法,凡有其它正确解法都应参照本评分说明分步确定得分点,并同样实行分步累计评分.6.合理精简解题步骤者,其简化的解题过程不影响评分.(二)参考答案及评分标准26或评2分.16.(方法一)解:法一:原式=24()2a aa a-+……3分(合并2分,除法转化为乘法1分)=(2)(2)2a a aa a+-+………5分=2a-.………6分(省略1-2个步骤,但结果正确不扣分)法二: 原式=4()2aaa a-+……1分=422a aaa a a-++……2分=2422aa a-++……3分=242aa-+=(2)(2)2a aa+-+……5分=2a-.……6分(省略1-2个步骤,但结果正确不扣分)17.解:⑴两段弧的两个交点(各1分,不连结AD的中垂线不扣分),作出E点(1分)⑵法一:证明:在△ABE和△DCE中,∵等腰梯形ABCD中,AB=DC, ∠A=∠D. …………4分又∵ A E=DE, ∴ △ABE≌△D CE ............5分∴∠EBC=∠ECB. (6)分法二:证明: ∵E为AD的中垂线上一点,∴EB=EC, ∴∠EBC=∠ECB.…………4分又∵等腰梯形ABCD中,∠ABC=∠DCB,…………5分∴∠ABE=∠DCE.…………6分18.解法一:总长度为60÷40%…………1分=150千米;…………2分设票价为x,那么:x≥150×0.65,…………4分x≤150×0.75,…………5分(上述两个不等式一个1分)解得:97.5≤x≤112.5即票价范围是97.5元~112.5元…………6分解法二:总长度为60÷40%…………1分=150千米;…………2分预定票价按照0.65元/公里计算,票价为150×0.65=97.5…………4分预定票价按照0.75元/公里计算,票价为150×0.75=112.5…………5分(上述两个算式一个1分)即票价范围是97.5元~112.5元…………6分19.解:易知四边形ABCD为矩形,CD=AB=1.5米,……1分在等腰直角三角形ADE中,AD=DE=13米, ……2分在直角三角形ADF 中,DF=AD tan55°, ……4分即13+EF=13×1.4,∴EF=5.2≈5(米). ……6分20. 解:方法一:因余油量与行驶时间关系的图像是一条直线,设关系式是y =kx +b (1分)由图像可知y =kx +b 经过两点(0,100)和(500,20),……… 2分则有⎩⎨⎧+=b k b 50020100=………3分 解得:k =-254,b =100 . ………4分∴直线解析式为:y =-254x +100. ………5分 当y =100时,x =0;当y =84时,x =100. ………6分由图表可知:余油量从100升到84升,行驶时间是1小时,行驶路程是100千米∴A 型汽车的平均速度为:100千米/小时. ………7分方法二:由图表可知:A 型汽车每行驶1小时的路程耗油16升,……… 1分由图像可知:A 型汽车耗油80升所行驶的路程为500千米,……… 2分可设汽车耗油16升所行驶的路程为x 千米, ………3分则80∶500=16∶x (4分) 解得:x =100.………5分∴A 型汽车1小时行驶的路程为100千米, ………6分∴即它的平均速度为100千米/小时. ……… 7分)21.解:设⊙O 的半径为x ,由题意,有PA 为⊙O 的切线, ………1分有2(2)PA PC PC x =⨯+,………2分 ∴x =4. ………3分法一:由∠P=∠P,∠AHP=∠OAP,得△AHP ∽△OAP,从而有AH:OA=AP:OP, ………4分法二:S △OAP =1122OA AP OP AH =………4分 法三:在Rt △AHP 和Rt △OA P 中,sinP=AH OA AP OP=……4分 ∴AH=2.4, ………5分∵OP 为连心线,AB 为公共弦,∴OP 垂直平分AB. ………6分∴AB=4.8.………7分 22.解:(1)10.…………2分.(2) D 等成绩的人数比例为12%.…………3分,C 等成绩的人数比例为32%.…………4分.(3)成绩在99.5—109.5个的学生有6人,H D C P OB A占总人数的12%,成绩在110—119.5个的学生有4人,占总人数的8%.………5分补全频率分布直方图如右.………7分.说明:以上各问为独立得分点.第(3)问中,补图正确,但无分析过程,评3分.无分析过程,但补对99.5—109.5和109.5—119.5中的一组,评2分.23.解:⑴由题意可知:901+a +(a +360)= . ………1分解得:a =389. …2分三峡工程总投资减少得资金为:15.4%a +18.7%(a +360)=0.154×389×0.187×(389+360)………3分=199.969≈200(亿元)………4分⑵设到这两年的发电量平均增长率为x ,……… 5分,则依题意可知:392(1+x )2=573 . ………6分解得:x 1≈21%,……… 7分,x 2≈-2.21%(应舍去)(无此结论不扣分)的发电量(即三峡电站的最高年发电量):573(1+21%)2=839(亿度)………8分起,三峡电站和葛洲坝电站的年发电总收益为:(839+270)×0.25=277.25(亿元)………9分收回三峡电站工程的投资成本大约需要的年数:25.2772002039-≈6.6(年) ∴到可以收回三峡电站工程的投资成本. ………10分注:学生因简单叙述或无文字叙述直接得出计算结果不扣分.24. 解:⑴∵BC =4,A 是OB 的中点,∴AC =3………1分又∵DC 为⊙O 的切线,∴∠ACD =∠ACF =90o ,∵AD ⊥AF ,∴∠ADC 、∠CAF 都和∠DAC 互余;∴∠ADC =∠CAF∴△ACD ∽△FCA∴CD ∶AC =AC ∶FC ………2分(注:这步为独立得分点)解得:FC =29.………3分 AF =22329+)(=2133………4分. (注:结果未化为最简根式扣1分) (2)∵∠AGH =∠AFD ,∠DAF =∠HAG ,∴△AGH ∽△AFD …………4分∴∠AGH =∠F =∠CAG ,∠AHG =∠D =∠CAF ,∴AE =GE =HE .…………5分①如果GH 是直径,那么GH =2,而DF=5,∴△AGH 与△AFD 的相似比为2∶5,…………6分∴△AGH 与△AFD 的面积比为4∶25,而△AFD 面积为0.5×5×2=5,∴△AGH 面积=4÷25×5=0.8.…………7分②如果GH 不是直径,那么根据垂径定理推论得到GH ⊥BC ,…………8分∴AC 垂直平分GH ,AG=AH ,且GH ∥DF ,而∠GAH =90o ,∴∠AGH =45o ,…………9分∴∠D =∠AGH =45o ,那么Rt △ACD 中,∠DAC =45o ,∴AC=DC =1,而OC=1,∴A 、O 重合,那么AG =AH =1,∴△AGH 面积为0.5.……10分25.(1)根据题意得到:E (3n ,0), G (n ,-n )…………1分当=m ,∴点F 坐标为(0,m ) ∵Rt △AOF 中,AF 2=m 2+n 2, ∵FB =AF , ∴m 2+n 2=(-2n -m)2, 化简得:m =-0.75n ,…………2分 对于y =kx +m ,当x =n 时,y =0,∴0=kn -0.75n ,∴k =0.75…………3分 (2)∵抛物线y=ax 2+bx+c 过点E 、F 、G ,∴ ⎪⎩⎪⎨⎧=-++=-++=c c nb a n n c nb a n 75.039022 ………5分(列出第1、2个方程各给1分,只列出第3个不给分)解得:a =n 41,b =-21,c =-0.75n ∴抛物线为y=n 41x 2-21x -0.75n ………6分 解方程组:⎪⎩⎪⎨⎧-=--=nx y n x x n y 75.075.075.021412……7分 得:x 1=5n ,y 1=3n ;x 2=0,y 2=-0.75n ………8分∴H 坐标是:(5n ,3n ),HM =-3n ,AM =n -5n =-4n ,∴△AMH 的面积=0.5×HM ×AM =6n 2;…………9分而矩形AOBC 的面积=2n2,∴△AMH的面积∶矩形AOBC 的面积=3:1,不随着点A 的位置的改变而改变.…………10分。
(整理)中考数学试卷精选合辑60之14初中毕业生学业考试试题及参考答案
初中毕业生学业考试数学试卷(闭卷 考试时间:120分钟 满分120分)一、单项选择题(本大题共12个小题,每小题3分,满分36分) 1.3-的相反数是( ) A .13- B .13C .3D .3--2.在实数23-,0π) A .1个B .2个C .3个D .4个3.如图,AB CD ∥,AD 和BC 相交于点O ,35A ∠=,75AOB ∠=, 则C ∠等于( ) A .35B .75C .70D .804.下列图形中既是轴对称图形,又是中心对称图形的是( )A .B .C .D .5.若不等式组5300x x m -⎧⎨-⎩≥≥有实数解,则实数m 的取值范围是( )A .53m ≤B .53m <C .53m >D .53m ≥6.在反比例函数a y x=中,当0x >时,y 随x 的增大而减小,则二次函数2y ax ax =-的图象大致是下图中的( )7.下面左图所示的几何体的俯视图是( )A .B .C .8.如图,每个小正方形边长均为1,则下列图中的三角形(阴影部分)与左图中ABC △相似的是( )9.若一组数据2,4,x ,6,8的平均数是6,则这组数据的方差是( ) A.B .8C.D .4010.若23132a b a b +->+,则a b ,的大小关系为( ) A .a b < B .a b > C .a b = D .不能确定 11.已知a b ,是关于x 的一元二次方程210x nx +-=的两实数根,则式子b aa b+的值是( ) A .22n +B .22n -+C .22n -D .22n --12.如图,在等腰三角形ABC 中,120ABC ∠=,点P 是底 边AC 上一个动点,M N ,分别是AB BC ,的中点,若 PM PN +的最小值为2,则ABC △的周长是( ) A .2B.2C .4D.4+二、填空题(本大题共6个小题,每小题3分,满分18分) 13.分解因式:216ax a -= .14.已知y 是x 的一次函数,右表列出了部分对应值, 则m = .15.如图,在Rt ABC △中,90BAC ∠=,6BC =,点D 为BC 中点,将ABD △绕点A按逆时针方向旋转120得到A BD ''△,则点D 在旋转过程中所经过的路程为 .(结果保留π)A .B .C .D .ABA .B .C .D .AB CPM NB A CD D ' B ' B16.如图,AB 为O 的直径,点C D ,在O 上,50BAC ∠=,则ADC ∠= .17.下图是根据某初中为地震灾区捐款的情况而制作的统计图,已知该校在校学生有2000人,请根据统计图计算该校共捐款 元.18.若实数a b ,满足21a b +=,则2227a b +的最小值是 . 三、解答题(本大题共9个小题,满分66分) 19.(本小题满分6分)9327(1)2cos 60(2)2--++.20.(本小题满分6分)如图,D 是AB 上一点,DF 交AC 于点E ,AE EC =,CF AB ∥. 求证:AD CF =.21.(本小题满分6分)先化简后求值.222212ab a b ab b a ab ab ⎛⎫+⎛⎫-÷+ ⎪ ⎪--⎝⎭⎝⎭,其中1a =-+1b =-. 22.(本小题满分7分)如图,甲船在港口P 的北偏西60方向,距港口80海里的A 处,沿AP 方向以12海里/时的速度驶向港口P .乙船从港口P 出发,沿北偏东45方向匀速驶离港口P ,现两船同时出发,2小时后乙船在甲船的正东方向.求乙船的航行速度.(精确到0.1海里/时,参考数1.411.73)初三 初二 初一 32% 33%35%人数统计ABC D EF 北23.(本小题满分7分)某车间要生产220件产品,做完100件后改进了操作方法,每天多加工10件,最后总共用4天完成了任务.求改进操作方法后,每天生产多少件产品?24.(本小题满分7分)在一个口袋中有n个小球,其中两个是白球,其余为红球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,从袋中随机地取出一个球,它是红球的概率是35.(1)求n的值;(2)把这n个球中的两个标号为1,其余分别标号为2,3,…,1n ,随机地取出一个小球后不放回,再随机地取出一个小球,求第二次取出小球标号大于第一次取出小球标号的概率.25.(本小题满分8分)某公司有A型产品40件,B型产品60件,分配给下属甲、乙两个商店销售,其中70件给甲店,30(1)设分配给甲店A型产品件,这家公司卖出这100件产品的总利润为W(元),求W 关于x的函数关系式,并求出x的取值范围;(2)若公司要求总利润不低于17560元,说明有多少种不同分配方案,并将各种方案设计出来;(3)为了促销,公司决定仅对甲店A型产品让利销售,每件让利a元,但让利后A型产品的每件利润仍高于甲店B型产品的每件利润.甲店的B型产品以及乙店的A B,型产品的每件利润不变,问该公司又如何设计分配方案,使总利润达到最大?26.(本小题满分9分)如图,ABM ∠为直角,点C 为线段BA 的中点,点D 是射线BM 上的一个动点(不与点B 重合),连结AD ,作B E A D ⊥,垂足为E ,连结CE ,过点E 作EF CE ⊥,交BD 于F . (1)求证:BF FD =;(2)A ∠在什么范围内变化时,四边形ACFE 是梯形,并说明理由; (3)A ∠在什么范围内变化时,线段DE 上存在点G ,满足条件14DG DA =,并说明理由. 27.(本小题满分10分)如图,已知抛物线与x 轴交于点(20)A -,,(40)B ,,与y 轴交于点(08)C ,.(1)求抛物线的解析式及其顶点D 的坐标;(2)设直线CD 交x 轴于点E .在线段OB 的垂直平分线上是否存在点P ,使得点P 到直线CD 的距离等于点P 到原点O 的距离?如果存在,求出点P 的坐标;如果不存在,请说明理由;(3)过点B 作x 轴的垂线,交直线CD 于点F ,将抛物线沿其对称轴平移,使抛物线与线段EF 总有公共点.试探究:抛物线向上最多可平移多少个单位长度?向下最多可平移多少个单位长度?黄石市2008数学试卷答案及评分标准一、单项选择题(每小题3分,满分36分) ABC D FEM13.(4)(4)a x x +- 14.115.2π 16.4017.2518018.2三、解答题(本大题共9小题,满分66分) 19.解:原式672(1)122-=---++ ··························································· (4分)76122=··············································································· (5分) 2=. ·················································································· (6分) 20.证明:AB CF ∥,A ECF ∴∠=∠. ················································· (2分)又AED CEF ∠=∠,AE CE =,AED CEF ∴△≌△. ······························································· (5分) AD CF ∴=.·········································································· (6分) 21.解:原式222()()2a b ab a b b a b a a b ab ⎡⎤++=-÷⎢⎥--⎣⎦2222()()a b ab ab a b a b -=-+ ······························································ (2分) 2()()2()()a b a b abab a b a b +-=-+ 2a b=+. ·············································································· (4分) 当1a =-+1b =- 原式212==--. ······································································· (6分) 22.依题意,设乙船速度为x 海里/时,2小时后甲船在点B 处,乙船在点C 处,作PQ BC ⊥于Q ,则8021256BP =-⨯=海里,2PC x =海里. 在Rt PQB △中,60BPQ ∠=,1cos6056282PQ BP ∴==⨯=.····························································· (2分)在Rt PQC △中,45QPC ∠=,2cos 45222PQ PC x x ∴===. ························································ (4分) P 东28=,x =.19.7x ∴≈.答:乙船的航行速度约为19.7海里/时. ························································ (7分) 23.设改进操作方法后每天生产x 件产品,则改进前每天生产(10)x -件产品. 依题意有220100100410x x -+=-. ······························································ (3分) 整理得2653000x x -+=.解得5x =或60x =. ··············································································· (5分)5x =时,1050x -=-<,5x ∴=舍去. 60x ∴=.答:改进操作方法后每天生产60件产品. ····················································· (7分) 24.(1)依题意2355n n n -==. ······························································· (3分) (2)当5n =时,这5个球两个标号为1,其余标号分别为2,3,4.两次取球的小球标号出现的所有可能的结果如下表:∴由上表知所求概率为920P =. ································································ (7分) 25.依题意,甲店B 型产品有(70)x -件,乙店A 型有(40)x -件,B 型有(10)x -件,则 (1)200170(70)160(40)150(10)W x x x x =+-+-+-2016800x =+.第2个球的标号由0700400100x x x x ⎧⎪-⎪⎨-⎪⎪-⎩≥≥≥≥,,,.解得1040x ≤≤. ······························································ (2分) (2)由201680017560W x =+≥, 38x ∴≥.3840x ∴≤≤,38x =,39,40. ∴有三种不同的分配方案.①38x =时,甲店A 型38件,B 型32件,乙店A 型2件,B 型28件. ②39x =时,甲店A 型39件,B 型31件,乙店A 型1件,B 型29件. ③40x =时,甲店A 型40件,B 型30件,乙店A 型0件,B 型30件. (3)依题意:(200)170(70)160(40)150(10)W a x x x x =-+-+-+- (20)16800a x =-+.①当020a <<时,40x =,即甲店A 型40件,B 型30件,乙店A 型0件,B 型30件,能使总利润达到最大.②当20a =时,1040x ≤≤,符合题意的各种方案,使总利润都一样.③当2030a <<时,10x =,即甲店A 型10件,B 型60件,乙店A 型30件,B 型0件,能使总利润达到最大. ·············································································· (8分) 26.(1)在Rt AEB △中,AC BC =,12CE AB ∴=,CB CE ∴=,CEB CBE ∴∠=∠.90CEF CBF ∠=∠=,BEF EBF ∴∠=∠,EF BF ∴=.90BEF FED ∠+∠=,90EBD EDB ∠+∠=,FED EDF ∴∠=∠. EF FD =.BF FD ∴=. ························································································· (3分) (2)由(1)BF FD =,而BC CA =, CF AD ∴∥,即AE CF ∥.若AC EF ∥,则AC EF =,BC BF ∴=.BA BD ∴=,45A ∠=.ABC DMG H∴当045A <∠<或4590A <∠<时,四边形ACFE 为梯形. ····················· (6分)(3)作GH BD ⊥,垂足为H ,则GH AB ∥.14DG DA =,14DH DB ∴=.又F 为BD 中点,H ∴为DF 的中点.GH ∴为DF 的中垂线. GDF GFD ∴∠=∠.点G 在ED h 上,EFD GFD ∴∠∠≥.180EFD FDE DEF ∠+∠+∠=, 180GFD FDE DEF ∴∠+∠+∠≤. 3180EDF ∴∠≤. 60EDF ∴∠≤.又90A EDF ∠+∠=,3090A ∴∠<≤.∴当3090A ∠<≤时,DE 上存在点G ,满足条件14DG DA =. ·················· (9分) 27.(1)设抛物线解析式为(2)(4)y a x x =+-,把(08)C ,代入得1a =-. 228y x x ∴=-++2(1)9x =--+,顶点(19)D , ····························································································· (2分)(2)假设满足条件的点P 存在,依题意设(2)P t ,,由(08)(19)C D ,,,求得直线CD 的解析式为8y x =+, 它与x 轴的夹角为45,设OB 的中垂线交CD 于H ,则(210)H ,.则10PH t =-,点P 到CD 的距离为d PH t ==-.又PO =. ···································································· (4分)t=-.平方并整理得:220920t t+-=10t=-±∴存在满足条件的点P,P的坐标为(210-±,.····································(6分)(3)由上求得(80)(412)E F-,,,.①若抛物线向上平移,可设解析式为228y x x=-+++当8x=-时,72y m=-+.当4x=时,y m=.720m∴-+≤或12m≤.072m∴<≤. ···················(8分)②若抛物线向下移,可设解析式为228y x x m=-++-由2288y x x my x⎧=-++-⎨=+⎩,有20x x m-+=.140m∴=-≥△,14m∴<≤.∴向上最多可平移72个单位长,向下最多可平移14个单位长. ·······················(10分)。
中考数学真题试题含答案试题_5(共12页)
2021年初中毕业学业程度考试(kǎoshì)试卷数学一、选择题〔在以下各题的四个选项里面,只有一项是哪一项符合题意的,请在答题卡中填涂符合题意的选项,本大题一一共12个小题,每一小题3分,一共36分〕1、以下实数中,为无理数的是〔〕A.0.2B.C.2、以下运算中,正确的选项是〔〕A. B.C. D.3、2021年,地铁2号线的开通运营,极大地缓解了城中心的交通压力,为我再次获评“中国最具幸福感城〞提供了有力支撑,据统计,地铁2号线每天承运力约为185000人次,那么数据185000用科学计数法表示为〔〕A. B.C. D.4、以下图形中,是轴对称图形,但不是中心对称图形的是〔〕5、以下命题中,为真命题的是〔〕A.6、在数轴上表示不等式组的解集,正确的选项是〔〕7、一家鞋店在一段时间是内销售了某种女鞋30双,各种尺码的销售量如下表所示,你认为(rènwéi)商家更应该关注鞋子尺码的〔〕尺码/cm 22 23 24 25 销售量/双 4 6 6 10 2 1 1A.8、以下说法中正确的选项是〔〕A.“翻开电视机,正在播?动物世界?〞是必然事件B.某种彩票的中奖概率为千分之一,说明每买1000张彩票,一定有一张中奖C.抛掷一枚质地均匀的硬币一次,出现正面朝上的概率为三分之一D.想理解所有城镇居民的人均年收入程度,宜采用抽样调查9、一次函数y=-2x+1的图像不经过〔〕A.第一象限B.第二象限C.第三象限D.第四象限10、如图,过△ABC的顶点A,作BC边上的高,以下作法正确的选项是〔〕11、如图,为测量一颗与地面垂直的树OA的高度,在间隔树的底端30米的B处,测得树顶A的仰角(yǎngjiǎo)∠ABO为α,那么树OA的高度为〔〕12、红星大场某种高端品牌的家用电器,假设按标价打八折销售该电器一件,那么可获纯利润500元,其利润率为20%,现假如按同一标价打九折销售该电器一件,那么获得的纯利润为〔〕A.562.5元B.875元C.550元D.750元二、填空题13.一个不透明的袋子中装有3个黑球,2个白球,这些球的形状、大小、质地完全一样,即除颜色外无其他差异,在看不见球的条件下,随机从袋中摸出1个球,那么摸出白球的概率是。
初中毕业生学业考试数学试题及参考答案11份中考试卷
卜人入州八九几市潮王学校2021年初中毕业生学业考试(数学试题)数学试题、参考答案一.仔细选一选(此题有10个小题。
每一小题4分。
一共40分)下面每一小题给出的四个选项里面,只有一个是正确的,请把正确选项前的宇母填在答题卷中相应的格子内.注意可以用多种不同的方法来选取正确答案.1.以下运算的结果中,是正数的是()(A)(-2021)-1(B)(-1)2021(C)(-1)×(-2021)(D)(-2021)÷20212.点P在第二象限内,P到x轴的间隔是4,到y轴的间隔是3,那么点P的坐标为()(A)(-4,3)(B)(-3,-4)(C)(-3,4)(D)(3,-4)3.如图,用放大镜将图形放大,应该属于()(A)相似变换(B)平移变换(C)对称变换(D)旋转变换4.有一组数据如下:3,6,5,2,3,4,3,6.那么,这组数据的中位数是()(A)3或者4(B)4(C)3(D)3.55.因式分解(x-1)2-9的结果是()(A)(x+8)(x+1)(B)(x+2)(x-4)(C)(x-2)(x+4)(D)(x-10)(x+8)6.如图,正三角形ABC内接于圆0,动点P在圆周的劣弧AB上,且不与A,B重合,那么∠BPC等于()(A)30o(B)60o(C)90o(D)45o7.如图,在高楼前D点测得楼顶的仰角为30o,向高楼前进60米到C点,又测得仰角为45o,那么该高楼的高度大约为().(A)82米(B)163米(C)52米(D)30米8.假设函数y=ax+b(a<0,b<O)和y=kx(k>0)的图象交于点P,那么点P应该位于()(A)第一象限(B)第二象限(C)第三象限(D)第四象限9.右图背景中的点均为大小一样的小正方形的顶点,其中画有两个四边形,以下表达中正确的选项是()(A)这两个四边形面积和周长都不一样(B)这两个四边形面积和周长都一样(C)这两个四边形有一样的面积,但I的周长大于Ⅱ的周长(D)这两个四边形有一样的面积,但I的周长小于Ⅱ的周长10.将三粒均匀的分别标有1,2,3,4,5,6的正六面体骰子同时掷出,出现的数字分别为a,b,c,那么a,b,c正好是直角三角形三边长的概率是()(A)1216(B)172(C)136(D)112二.认真填一填(此题有6个小题,每一小题5分,一共30分)要注意认真看清题目的条件和要填写上的内容。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A BCDEO(第5题图) 2121-初中毕业生学业考试数学试题亲爱的同学,相信在本场考试中,你的数学知识水平和探究能力一定会有很好的发挥.特别提醒你要仔细审题,先易后难.祝你取得好成绩!并请你注意以下几点:1.答卷前,请你用钢笔(圆珠笔)将自己的姓名、准考证号填在密封线内.2.答选择题时,请将答案直接填在选择题答题表中.3.试卷共8页,满分120分,考试时间120分钟.一、选择题(本大题共有8个小题,每小题3分,满分24分.)在下列各小题中,均给出四个答案,其中有且只有一个正确答案,请将正确答案的字母代号填入上面选择题答题表中相应题号下的方格内,填错或不填均为零分.1.2-的倒数是A. 2B.C. 2-D.2.2008年5月12日,四川汶川发生里氏8.0级地震,国内外社会各界纷纷向灾区捐款捐物,抗震救灾.截止6月4日12时,全国共接收捐款约为43 681 000 000元人民币.这笔款额用科学记数法表示(保留三个有效数字)正确的是A. 1110437.0⨯ B. 10104.4⨯ C. 101037.4⨯ D. 9107.43⨯ 3.在下面的四个几何体中,它们各自的左视图与主视图不相同的是4.对于反比例函数xk y 2=(0≠k ),下列说法不正确...的是 A. 它的图象分布在第一、三象限B. 点(k ,k )在它的图象上C. 它的图象是中心对称图形D. y 随x 的增大而增大5.如图,四边形ABCD 是菱形,过点A 作BD 的平行线交CD 的延长线于点E ,则下列式子不成立...的是 正方体 长方体 圆柱 圆锥 A B C D(第8题图)A. DE DA =B. CE BD =C. 90=∠EAC °D. E ABC ∠=∠26.如图,抛物线)0(2>++=a c bx ax y 的对称轴是直线1=x ,且经过点P (3,0),则c b a +-的值为 A. 0 B. -1 C. 1 D. 27.如图,三个大小相同的正方形拼成六边形ABCDEF ,一动点P 从点A 出发沿着A →B →C →D →E 方向匀速运动,最后到 达点E .运动过程中PEF ∆的面积(s )随时间(t )变化的图 象大致是8.如图,小明从半径为5cm 的圆形纸片中剪下40%圆周的一个扇形,然后利用剪下的扇形制作成一个圆锥形玩具纸 帽(接缝处不重叠),那么这个圆锥的高为 A.3cm B.4cmC.21cmD.62cm 二、填空题(本大题共8个小题,每小题3分,满分24分)将结果直接填写在每题的横线上.9.分解因式:92-x = . 10.化简211xx x -÷的结果是 . 11. “五一”期间,某服装商店举行促销活动,全部商品八折销售.小华购买一件标价为180 元的运动服,打折后他比按标价购买节省了 元.40%5=R(图1) (图2)60% ABDC(第7题图) A BC DE. F.P .·12. 关于x 的一元二次方程022=+-m mx x 的一个根为1,则方程的另一根为13.如图是我们生活中经常接触的小刀,刀柄外形是一个直角梯形(下底挖去一小半圆),刀片上、下是平行的,转动刀片时会形成∠1、∠2,则∠1+∠2= 度.14.2008年6月2日,奥运火炬在荆州古城传递,208名火炬手参加了火炬传递,其中8位火炬手所跑的路程(单位:米)如下:60,70,100,60,80,70,90,100,则这组数据的中位数是 .15.如图,矩形ABCD 的面积为5,它的两条对角线交于点1O ,以AB 、1AO 为两邻边作 平行四边形11O ABC ,平行四边形11O ABC 的对角线交于点2O ,同样以AB 、2AO 为两邻边作平行四边形22O ABC ,……,依次类推,则平行四边形n n O ABC 的面积 为 .16.如图,ABC ∆中,点A 的坐标为(0,1),点C 的坐标为(4,3),如果要使ABD ∆与ABC ∆D 的坐标是 .三、解答题(本大题共9个小题,满分72分.) 17.(本题满分5分)计算:20)21(8)21(3--+-+-(第13题图)A BC1OD 1C 2O2C ……(第15题图)y18.(本题满分5分)解不等式组⎪⎪⎨⎧>+-≥+x xx 1102 并把解集表示在下面的数轴上.19. (本题满分7分)为了降低能源消耗,减少环境污染,国务院办公厅下发了“关于限制生产销售使用塑料购物袋的通知”(简称“限塑令”),并从2008年6月1日起正式实施.小宇同学为了了解“限塑令”后使用购物袋的情况,6月8日到某集贸市场对部分购物者进行了调查,据了解该市场按塑料购物袋的承重能力提供了0.1元,0.2元,0.3元三种质量不同的塑料袋.下面两幅图是这次调查得到的不完整的统计图(若每人每次只使用一个购物袋),请你根据图中的信息,回答下列问题: (1)这次调查的购物者总人数是 ;(2)请补全条形统计图,并说明扇形统计图中20⋅元部分所对应的圆心角是 度0.3元部分所对应的圆心角是 度;(3)若6月8日到该市场购物的人数有3000人次,则该市场需销售塑料购物袋多少个?并根据调查情况,谈谈你的看法.类别AB CD 20.(本题满分7分)在数学活动课上,九年级(1)班数学兴趣小组的同学们测量校园内一棵大树的高度,设计的方案及测量数据如下:(1)在大树前的平地上选择一点A ,测得由点A 看大树顶端C 的仰角为35°; (2)在点A 和大树之间选择一点B (A 、B 、D 在同一直线上),测得由点B 看大树顶端C 的仰角恰好为45°; (3)量出A 、B 两点间的距离为4.5米. 请你根据以上数据求出大树CD 的高度.(可能用到的参考数据:sin35°≈0.57 cos35°≈0.82 tan35°≈0.70)21. (本题满分8分)A 箱中装有3张相同的卡片,它们分别写有数字1,2,4;B 箱中也装有3张相同的卡片,它们分别写有数字2,4,5;现从A 箱、B 箱中各随机 地取出1张卡片,请你用画树形(状)图或列表的方法求: (1)两张卡片上的数字恰好相同的概率.(2)如果取出A 箱中卡片上的数字作为十位上的数字,取出B 箱中卡片上的数字作为个位上的数字,求两张卡片组成的两位数能被3整除的概率.22. (本题满分8分)如图,AB 为半圆O 的直径,点C 在半圆O 上,过点O 作BC 的平D行线交AC 于点E ,交过点A 的直线于点D ,且BAC D ∠=∠.(1)求证:AD 是半圆O 的切线; (2)若2=BC ,2=CE ,求AD 的长.23.(本题满分10分)小华将一张矩形纸片(如图1)沿对角线CA 剪开,得到两张三角形纸片(如图2),其中α=∠ACB ,然后将这两张三角形纸片按如图3所示的位置摆放,∆EFD 纸片的直角顶点D 落在∆ACB 纸片的斜边AC 上,直角边DF 落在AC 所在的直线上.(1) 若ED 与BC 相交于点G ,取AG 的中点M ,连接MB 、MD ,当∆EFD 纸片沿CA 方向平移时(如图3),请你观察、测量MB 、MD 的长度,猜想并写出MB 与MD 的数量关系,然后证明你的猜想;(2) 在(1)的条件下,求出BMD ∠的大小(用含α的式子表示),并说明当45=α°时, BMD ∆是什么三角形?(3) 在图3的基础上,将∆EFD 纸片绕点C 逆时针旋转一定的角度(旋转角度小于90°),此时CGD ∆变成CHD ∆,同样取AH 的中点M ,连接MB 、MD (如图4),请继续探究MB 与MD 的数量关系和BMD ∠的大小,直接写出你的猜想,不需要证明,并说明α为何值时,BMD ∆为等边三角形.A B A BCD EF图1图2ABCDEFGM 图3ABCDEFMH 图424.(本题满分10分)华宇公司获得授权生产某种奥运纪念品,经市场调查分析,该纪念品的销售量1y (万件)与纪念品的价格x (元/件)之间的函数图象如图所示,该公司纪念品的生产数量2y (万件)与纪念品的价格x (元/件)近似满足函数关系式85232+-=x y .,若每件纪念品的价格不小于20元,且不大于40元.请解答下列问题:(1) 求1y 与x 的函数关系式,并写出x 的取值范围;(2) 当价格x 为何值时,使得纪念品产销平衡(生产量与销售量相等); (3) 当生产量低于销售量时,政府常通过向公司补贴纪念品的价格差来提高生产量,促成新的产销平衡.若要使新的产销平衡时销售量达到46万件,政府应对该纪念品每件补贴多少元?x (元/件))25.(本题满分12分)如图,直角梯形OABC 中,AB ∥OC ,O 为坐标原点,点A 在y 轴正半轴上,点C 在x轴正半轴上,点B 坐标为(2,23),∠BCO = 60°,BC OH ⊥于点H .动点P 从点H 出发,沿线段HO 向点O 运动,动点Q 从点O 出发,沿线段OA 向点A 运动,两点同时出发,速度都为每秒1个单位长度.设点P 运动的时间为t 秒.(1) 求OH 的长;(2) 若OPQ ∆的面积为S (平方单位). 求S 与t 之间的函数关系式.并求t 为何值时,OPQ ∆的面积最大,最大值是多少?(3) 设PQ 与OB 交于点M .①当△OPM 为等腰三角形时,求(2)中S 的值. ②探究线段OM 长度的最大值是多少,直接写出结论.参考答案及评分标准说明:本试卷中的解答题一般只给出一种解法,对于其它解法,只要推理严谨、运算合理、结果正确,均给满分.对部分正确的,参照本评分说明酌情给分.一、选择题(每小题3分,共24分) 1—8 D C B D B A B C 二、填空题(每小题3分,共24分)9. )3)(3(-+x x 10.x -1 11. 36 12.2- 13. 90 14. 75 15.n2516.)14(-,)31(,- )1,1(-- (第14题不写单位不扣分) 三、解答题(共72分)17.(5分)解:原式=42213-++ ………………………………………………(3分)=22………………………………………………………………(5分) 18.(5分)解:02≥+x 的解集是:2-≥xx x >+-121的解集是:1<x 所以原不等式的解集是:12<≤-x ………………………………………(3分)解集表示如图…………………………………………………………………(5分)19.(7分)解:(1)120……………………………………………………………………(1分)(2)条形统计图,如图所示,…………………………………………………… (2分)0.2元的圆心角是99°,0.3元的圆心角是36°…………………(4分)(3)该市场需销售塑料购物袋的个数是1875120753000=⨯………………(6分) 只要谈的看法涉及环保、节能等方面,且观念积极向上,即可给分……(7分)20.(7分)(1)解:在ACD Rt ∆中,035tan CDAD =类别在BCD Rt ∆中,045tan CDBD =而5.4=-BD AD即5.445tan 35tan 00=-CDCD …………………………………………(5分)解得:5.10=CD所以大树的高为5.10米………………………………………………(7分)21.(8分)解:(1)由题意可列表:∴两张卡片上的数字恰好相同的概率是92.………………………(4分) (2)由题意可列表:∴两张卡片组成的两位数能被3整除的概率是95………………(8分) (画树状图略)22.(8分)(1)证明:∵AB 为半⊙O 的直径∴90=∠BCA又∵BC ∥OD , ∴AC OE ⊥∴090=∠+∠DAE D 而D ∠=∠∴090=∠+∠DAE OAE∴AD 是半圆O 分)(2)∵AC OE ⊥ ∴222==CE AC 在ABC Rt ∆中,22=+=BC AC AB 分)由DOA ∆∽ABC ∆可得:BC OA AC AD = 即2322=AD ∴6=AD …………………………………………………………(8分)23. (10分)解:(1)MB =MD ………………………………………………………(1分)证明:∵AG 的中点为M ∴在ABG Rt ∆中, AG MB 21=1 2 4 2 (1,2) (2,2) (4,2) 4 (1,4) (2,4) (4,4) 5 (1,5) (2,5) (4,5) 1 2 4 2 12 22 42 4 14 24 44 5 15 2545A B A B在ADG Rt ∆中,AG MD 21=∴MB =MD ………………………………………………(3分)(2)∵BAM ABM BAM BMG ∠=∠+∠=∠2同理DAM ADM DAM DMG ∠=∠+∠=∠2 ∴BMD ∠=DAM BAM ∠+∠22=BAC ∠2 而α-=∠090BAC∴α21800-=∠BMD …………………………………………(6分)∴当045=α时,090=∠BMD ,此时BMD ∆为等腰直角三角形.…(8分)(3)当CGD ∆绕点C 逆时针旋转一定的角度,仍然存在MB =MD , α21800-=∠BMD ………………………………………………(9分) 故当060=α时,BMD ∆为等边三角形.…………………………(10分) 24. (10分)解:(1)设y 与x 的函数解析式为:b kx y +=,将点)60,20(A 、)28,36(B代入b kx y +=得:⎩⎨⎧+=+=b k bk 36282060解得:⎩⎨⎧=-=1002b k∴1y 与x 的函数关系式为:⎩⎨⎧≤<=≤≤+-=)4028(28)2820(100211x y x x y ……(3分)(2)当2820≤≤x 时,有⎪⎩⎪⎨⎧+-=+-=10028523x y x y 解得:⎩⎨⎧==4030y x ……………………………………………………(5分)当4028≤≤x 时,有⎪⎩⎪⎨⎧=+-=288523y x y 解得:⎩⎨⎧==2838y x∴当价格为30元或38元,可使公司产销平衡.…………………(7分)(3)当461=y 时,则8523461+-=x ,∴261=x 当462=y 时,则1002462+-=x ,∴272=x∴112=-x x∴政府对每件纪念品应补贴25.(12分)解:(1)∵AB ∥OC ∴ 090=∠=∠AOC OAB 在OAB Rt ∆中,2=AB ,=AO∴4=OB , 060=∠ABO∴060=∠BOC 而060=∠BCO∴BOC ∆为等边三角形 ∴3223430cos 0=⨯==OB OH …(3分) (2)∵t PH OH OP -=-=32∴t OP x p 23330cos 0-== 2330sin 0t OP y p -==∴)233(2121t t x OQ S p -⋅⋅=⋅⋅==t t 23432+- (320<<t )…………………………(6分)即433)3(432+--=t S ∴当3=t 时,=最大S 433………………………………………(7分)(3)①若OPM ∆为等腰三角形,则:(i )若PM OM =,MOP MPO ∠=∠=∠ ∴PQ ∥OC∴p y OQ= 即23tt -= 解得:332=t此时33233223)332(432=⨯+⨯-=S (ii )若OM OP =,75=∠=∠OMP OPM ∴045=∠OQP过P 点作OA PE ⊥,垂足为E ,则有: EP EQ =即t t t 233)213(-=-- 解得:2=t 此时332232432-=⨯+⨯-=S (iii )若PM OP =,AOB PMO POM ∠=∠=∠∴PQ ∥OA 此时Q 在AB 上,不满足题意.……………………………………………(10分)3②线段OM长的最大值为……………………………………………………(12分)2。