2014年高考解析几何模拟试题

合集下载

2014年高考数学-解析几何-

2014年高考数学-解析几何-

2014高考数学 解析几何 李远敬1(新课标10.)已知抛物线C :28y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一交点,若4FP FQ =,则||QF =A .72 B .52C .3D .2 2.(湖北9.)已知12,F F 是椭圆和双曲线的公共焦点,P 是他们的一个公共点,且123F PF π∠=,则椭圆和双曲线的离心率的倒数之和的最大值为( ) A.433 B.233C.3D.2 3.(安徽14)设21,F F 分别是椭圆)10(1:222<<=+b by x E 的左、右焦点,过点1F 的直线交椭圆E 于B A ,两点,若x AF BF AF ⊥=211,3轴,则椭圆E 的方程为__________4.(山东(10))已知a b >,椭圆1C 的方程为22221x y a b +=,双曲线2C 的方程为22221x y a b -=,1C 与2C 的离心率之积为32,则2C 的渐近线方程为 (A )20x y ±=(B )20x y ±=(C )20x y ±=(D )20x y ±=5.(天津6)已知双曲线)0,0(12222>>=-b a by a x 的一条渐近线平行于直线,102:+=x y l 双曲线的一个焦点在直线l 上,则双曲线的方程为( )A.120522=-y x B.152022=-y x C.1100325322=-y x D.1253100322=-y x6.(新课标2。

10.)设F 为抛物线C:23y x =的焦点,过F 且倾斜角为30°的直线交C 于A,B 两点,O 为坐标原点,则△OAB 的面积为( ) A. 334B.938 C. 6332 D. 947.(湖北21)(满分14分)在平面直角坐标系xOy 中,点M 到点()1,0F 的距离比它到y 轴的距离多1,记点M 的轨迹为C.(1)求轨迹为C 的方程(2)设斜率为k 的直线l 过定点()2,1p -,求直线l 与轨迹C 恰好有一个公共点,两个公共点,三个公共点时k 的相应取值范围。

2014届高考数学(文)分项模拟解析几何(含详解)

2014届高考数学(文)分项模拟解析几何(含详解)

解析几何一、选择题1.“m >n >0”是“方程mx 2+ny 2=1表示焦点在y 轴上的椭圆”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件解析:方程mx 2+ny 2=1可以变形为x 21m +y 21n =1,则m >n >0⇔0<1m <1n ,故选C.答案:C2.已知圆的方程为x 2+y 2-6x -8y =0,设该圆中过点M (3,5)的最长弦、最短弦分别为AC 、BD ,则以点A ,B ,C ,D 为顶点的四边形ABCD 的面积为( )A .10 6B .20 6C .30 6D .40 6解析:已知圆的圆心为(3,4),半径为5,则最短的弦长为252-12=46,最长的弦为圆的直径为10,则四边形的面积为12×46×10=206,故应选B.答案:B3.若直线l 被圆x 2+y 2=4所截得的弦长为23,则直线l 与下列曲线一定有公共点的是( )A .y 2=x B.x22-y 2=1C .(x -2)2+y 2=4 D.x 23+y 2=1 解析:依题意得,圆心(0,0)到直线l 的距离等于4-⎝⎛⎭⎪⎫2322=1,即直线l 必是圆x 2+y 2=1的切线.对于A ,圆x 2+y 2=1的切线x =-1与曲线y 2=x 没有公共点;对于B ,圆x 2+y 2=1的切线x =-1与曲线x 22-y 2=1没有公共点;对于C ,圆x 2+y 2=1的切线x =-1与曲线(x -2)2+y 2=4没有公共点;对于D ,由于圆x 2+y 2=1上的所有点均不在椭圆x 23+y 2=1外,因此圆x 2+y 2=1的切线与曲线x 23+y 2=1一定有公共点.综上所述,选D.答案:D4.已知双曲线y 22-x 23=1的两个焦点分别为F 1、F 2,则满足△PF 1F 2的周长为6+25的动点P 的轨迹方程为( )A.x 24+y 29=1B.x 29+y 24=1 C.x 24+y 29=1(x ≠0) D.x 29+y 24=1(x ≠0)解析:依题意得,|F 1F 2|=22+3=25,|PF 1|+|PF 2|=6>|F 1F 2|,因此满足△PF 1F 2的周长为6+25的动点P 的轨迹是以点F 1、F 2为焦点,长轴长是6的椭圆(除去长轴的端点),即动点P 的轨迹方程是x 24+y 29=1(x ≠0),选C.答案:C5.以抛物线y 2=4x 的焦点为圆心,且过坐标原点的圆的方程为( ) A .x 2+y 2+2x =0 B .x 2+y 2+x =0 C .x 2+y 2-x =0 D .x 2+y 2-2x =0解析:抛物线y 2=4x 的焦点坐标为(1,0),选项A 中圆的圆心坐标为(-1,0),排除A ;选项B 中圆的圆心坐标为(-0.5,0),排除B ;选项C 中圆的圆心坐标为(0.5,0),排除C.答案:D6.直线4kx -4y -k =0与抛物线y 2=x 交于A 、B 两点,若|AB |=4,则弦AB的中点到直线x +12=0的距离等于( )A.74 B .2 C.94 D .4解析:直线4kx -4y -k =0,即y =k ⎝ ⎛⎭⎪⎫x -14,即直线4kx -4y -k =0过抛物线y 2=x 的焦点⎝ ⎛⎭⎪⎫14,0.设A (x 1,y 1),B (x 2,y 2),则|AB |=x 1+x 2+12=4,故x 1+x 2=72,则弦AB 的中点的横坐标是74,弦AB 的中点到直线x +12=0的距离是74+12=94.答案:C7.已知A (-2,0),B (0,2),实数k 是常数,M ,N 是圆x 2+y 2+kx =0上两个不同点,P 是圆x 2+y 2+kx =0上的动点,如果M ,N 关于直线x -y -1=0对称,则△P AB 面积的最大值是( )A .3- 2B .4C .3+ 2D .6解析:依题意得圆x 2+y 2+kx =0的圆心⎝ ⎛⎭⎪⎫-k 2,0位于直线x -y -1=0上,于是有-k2-1=0,即k =-2,因此圆的圆心坐标是(1,0)、半径是1.由题意可得|AB |=22,直线AB 的方程是x -2+y2=1,即x -y +2=0,圆心(1,0)到直线AB 的距离等于|1-0+2|2=322,点P 到直线AB 的距离的最大值是322+1,△P AB 面积的最大值为12×22×32+22=3+2,选C.答案:C8.已知P 是抛物线y 2=4x 上一动点,则点P 到直线l :2x -y +3=0和y 轴的距离之和的最小值是( )A. 3B. 5 C .2 D.5-1解析:由题意知,抛物线的焦点为F (1,0).设点P 到直线l 的距离为d ,由抛物线的定义知,点P 到y 轴的距离为|PF |-1,所以点P 到直线l 的距离与到y 轴的距离之和为d +|PF |-1.易知d +|PF |的最小值为点F 到直线l 的距离,故d +|PF |的最小值为|2+3|22+(-1)2=5,所以d +|PF |-1的最小值为5-1. 答案:D9.已知双曲线x 2a 2-y 2b 2=1(a >1,b >0)的焦距为2c ,离心率为e ,若点(-1,0)与点(1,0)到直线x a -y b =1的距离之和为S ,且S ≥45c ,则离心率e 的取值范围是( )A.⎣⎢⎡⎦⎥⎤52,5 B .[2,7] C.⎣⎢⎡⎦⎥⎤52,7 D.[]2,5 解析:由题意得S =|-b -ab |a 2+b 2+|b -ab |a 2+b 2=2ab c ≥45c ,所以2c 2≤5ab ,即4c 4≤25a 2(c 2-a 2),整理得4c 4-25a 2c 2+25a 4≤0,所以4e 4-25e 2+25≤0,解得54≤e 2≤5,即52≤e ≤ 5.答案:A10.已知椭圆x 22a 2+y 2b 2=1(a >b >0)和双曲线x 2a 2-y 2b 2=1(a >0,b >0)有相同的焦点F 1、F 2,则椭圆和双曲线离心率的平方和为( )A.94B.74 C .2 D .3解析:依题意得2a 2-b 2=a 2+b 2,即a 2=2b 2,因此该椭圆和双曲线的离心率分别是2a 2-b 22a 2和 a 2+b 2a 2,该椭圆与双曲线的离心率的平方和为2a 2-b 22a 2+a 2+b 2a 2=4b 2-b 24b 2+2b 2+b 22b 2=94,选A. 答案:A11.若P 是双曲线C 1:x 2a 2-y 2b 2=1(a >0,b >0)和圆C 2:x 2+y 2=a 2+b 2的一个交点且∠PF 2F 1=2∠PF 1F 2,其中F 1、F 2是双曲线C 1的两个焦点,则双曲线C 1的离心率为( )A.3-1B.3+1 C .2 D .3解析:依题意得,∠F 1PF 2=90°,又∠PF 2F 1=2∠PF 1F 2,因此∠PF 1F 2=30°,|PF 2|=12|F 1F 2|=c ,|PF 1|=32|F 1F 2|=3c ,双曲线C 1的离心率等于|F 1F 2||PF 1|-|PF 2|=2c3c -c=3+1,选B. 答案:B12.设平面区域D 是由双曲线y 2-x 24=1的两条渐近线和抛物线y 2=-8x 的准线所围成的三角形(含边界与内部).若点(x ,y )∈D ,则x +y 的最小值为( )A .-1B .0C .1D .3解析:由题意知,双曲线的渐近线方程为y =±12x ,抛物线的准线方程为x =2,设z =x +y ,得y =-x +z ,平移y =-x ,可知当直线过点O (0,0)时,直线y =-x +z 的纵截距最小,故z min =0.答案:B 二、填空题 13.已知正三角形OAB 的三个顶点都在抛物线y 2=2x 上,其中O 为坐标原点,则△OAB 的外接圆的方程是________.解析:由题意知A ,B 两点关于x 轴对称,所以外接圆的圆心C 在x 轴上.设圆C 的半径为r (r >0),则圆心坐标为(r,0),A 点坐标为⎝ ⎛⎭⎪⎫32r ,32r ,于是有⎝ ⎛⎭⎪⎫32r 2=2×32r ,解得r =4,所以圆C 的方程为(x -4)2+y 2=16.答案:(x -4)2+y 2=1614.若直线l :4x +3y -8=0过圆C :x 2+y 2-ax =0的圆心且交圆C 于A 、B 两点,O 为坐标原点,则△OAB 的面积为__________.解析:由题易知,圆C :x 2+y 2-ax =0的圆心为⎝ ⎛⎭⎪⎫a 2,0.又直线l :4x +3y -8=0过圆C 的圆心⎝ ⎛⎭⎪⎫a 2,0,∴4×a 2+3×0-8=0,∴a =4,∴圆C 的方程为x 2+y 2-4x =0,即(x -2)2+y 2=4.∴|AB |=2r =4.又点O (0,0)到直线l :4x +3y -8=0的距离d =|0+0-8|42+32=85,∴S △OAB=12|AB |·d =12×4×85=165. 答案:16515.F 是抛物线y 2=2x 的焦点,A 、B 是该抛物线上的两点,|AF |+|BF |=6,则线段AB 的中点到y 轴的距离为__________.解析:设A (x 1,y 1),B (x 2,y 2),由抛物线的定义可知:|AF |+|BF |=p 2+x 1+p2+x 2=x 1+x 2+p =6,∵p =1,∴x 1+x 2=5,∵线段AB 的中点的横坐标为x 1+x 22=52,∴线段AB 的中点到y 轴的距离为52.答案:5216.设点A 1、A 2分别为椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右顶点,若在椭圆上存在异于点A 1、A 2的点P ,使得PO ⊥P A 2,其中O 为坐标原点,则椭圆的离心率e 的取值范围是__________.解析:由题设知∠OP A 2=90°,设P (x ,y )(x >0),以OA 2为直径的圆的方程为⎝ ⎛⎭⎪⎫x -a 22+y 2=a 24,与椭圆方程联立,得⎝ ⎛⎭⎪⎫1-b 2a 2x 2-ax +b 2=0.易知,此方程有一实根a ,且由题设知,此方程在区间(0,a )上还有一实根,由此得0<b 2a ⎝ ⎛⎭⎪⎫1-b 2a 2<a ,化简得0<a 2-c 2c 2<1,即0<1-e 2e 2<1,得e 2>12,所以e 的取值范围为⎝ ⎛⎭⎪⎫22,1.答案:⎝ ⎛⎭⎪⎫22,1三、解答题17.已知椭圆C 的中心在坐标原点,焦点在x 轴上且过点P ⎝ ⎛⎭⎪⎫3,12,离心率是32.(1)求椭圆C 的标准方程;(2)直线l 过点E (-1,0)且与椭圆C 交于A ,B 两点,若|EA |=2|EB |,求直线l 的方程.解析:(1)设椭圆C 的标准方程为x 2a 2+y 2b 2=1(a >b >0).由已知可得⎩⎪⎨⎪⎧c a =32,3a 2+14b 2=1,a 2=b 2+c 2,解得a 2=4,b 2=1.故椭圆C 的标准方程为x 24+y 2=1. (2)由已知,若直线l 的斜率不存在,则过点E (-1,0)的直线l 的方程为x =-1,此时令A ⎝ ⎛⎭⎪⎫-1,32,B ⎝⎛⎭⎪⎫-1,-32,显然|EA |=2|EB |不成立.若直线l 的斜率存在,则设直线l 的方程为y =k (x +1).联立⎩⎪⎨⎪⎧x 24+y 2=1,y =k (x +1),整理得(4k 2+1)x 2+8k 2x +4k 2-4=0.由Δ=(8k 2)2-4(4k 2+1)(4k 2-4)=48k 2+16>0. 设A (x 1,y 1),B (x 2,y 2).即x 1+x 2=-8k 24k 2+1,x 1x 2=4k 2-44k 2+1.①由|EA |=2|EB |,得x 1+2x 2=-3.②①②联立解得k =±156.所以直线l 的方程为15x +6y +15=0或15x -6y +15=0.18.已知圆C :(x -4)2+(y -m )2=16(m ∈N *),直线4x -3y -16=0过椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点,且被圆C 所截得的弦长为325,点A (3,1)在椭圆E 上.(1)求m 的值及椭圆E 的方程;(2)设Q 为椭圆E 上的一个动点,求AC →·AQ →的取值范围.解析:(1)因为直线4x -3y -16=0被圆C 所截得的弦长为325,所以圆心C (4,m )到直线4x -3y -16=0的距离为42-⎝ ⎛⎭⎪⎫1652=125,即|4×4-3×m -16|5=125,解m =4或m =-4(舍去).又因为直线4x -3y -16=0过椭圆E 的右焦点,所以椭圆E 的右焦点F 2的坐标为(4,0),则其左焦点F 1的坐标为(-4,0).因为椭圆E 过A 点,所以|AF 1|+|AF 2|=2a ,所以2a =52+2=62,所以a=32,a 2=18,b 2=2,故椭圆E 的方程为x 218+y 22=1.(2)由(1)知C (4,4),又A (3,1),所以AC →=(1,3),设Q (x ,y ),则AQ →=(x -3,y-1),则AC →·AQ →=x +3y -6.令x +3y =n ,则由⎩⎪⎨⎪⎧x 218+y 22=1,x +3y =n ,消去x 得18y 2-6ny+n 2-18=0,由于直线x +3y =n 与椭圆E 有公共点,所以Δ=(6n )2-4×18×(n 2-18)≥0,解得-6≤n ≤6,故AC →·AQ →=x +3y -6的取值范围为[-12,0].19.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率e =22,左、右焦点分别为F 1、F 2,抛物线y 2=42x 的焦点F 恰好是该椭圆的一个顶点.(1)求椭圆C 的方程;(2)已知圆M :x 2+y 2=23的切线l 与椭圆相交于A 、B 两点,那么以AB 为直径的圆是否经过定点?如果是,求出定点的坐标;如果不是,请说明理由.解析:(1)设椭圆C 的焦距为2c .∵椭圆C 的离心率e =22, ∴c a =22,即a =2c .∵抛物线y 2=42x 的焦点F (2,0)恰好是该椭圆的一个顶点, ∴a = 2.∴c =1,b =1.∴椭圆C 的方程为x 22+y 2=1. (2)①当直线l 的斜率不存在时, ∵直线l 与圆M 相切,∴其中的一条切线的方程为x =63.由⎩⎪⎨⎪⎧x =63,x 22+y 2=1,解得⎩⎪⎨⎪⎧x =63y =63或⎩⎪⎨⎪⎧x =63,y =-63,不妨设A ⎝ ⎛⎭⎪⎫63,63,B ⎝ ⎛⎭⎪⎫63,-63,则以AB 为直径的圆的方程为⎝⎛⎭⎪⎫x -632+y 2=23.②当直线l 的斜率为零时,∵直线l 与圆M 相切,∴其中的一条切线的方程为y =-63.由⎩⎪⎨⎪⎧y =-63,x 22+y 2=1,解得⎩⎪⎨⎪⎧x =63y =-63或⎩⎪⎨⎪⎧x =-63,y =-63,不妨设A ⎝ ⎛⎭⎪⎫63 ,-63,B ⎝ ⎛⎭⎪⎫-63,-63,则以AB 为直径的圆的方程为x 2+⎝⎛⎭⎪⎫y +632=23.显然以上两圆的一个交点为O (0,0).③当直线l 的斜率存在且不为零时,设直线l 的方程为y =kx +m . 由⎩⎪⎨⎪⎧y =kx +m ,x 22+y 2=1,消去y 得(2k 2+1)x 2+4kmx +2m 2-2=0,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-4km 2k 2+1,x 1x 2=2m 2-22k 2+1.∴y 1y 2=(kx 1+m )(kx 2+m )=k 2x 1x 2+km (x 1+x 2)+m 2=m 2-2k 22k 2+1.∴OA →·OB →=x 1x 2+y 1y 2=3m 2-2k 2-22k 2+1.①∵直线l 和圆M 相切,∴圆心到直线l 的距离d =|m |1+k 2=63,整理得m 2=23(1+k 2),②将②式代入①式,得OA →·OB →=0,显然以AB 为直径的圆经过定点O (0,0). 综上可知,以AB 为直径的圆过定点(0,0).20.在平面直角坐标系xOy 中,动点P 到两点(-3,0),(3,0)的距离之和等于4,设点P 的轨迹为曲线C ,直线l 过点E (-1,0)且与曲线C 交于A ,B 两点.(1)求曲线C 的轨迹方程;(2)是否存在△AOB 面积的最大值?若存在,求出△AOB 的面积;若不存在,说明理由.解析:(1)由椭圆定义可知,点P 的轨迹C 是以点(-3,0),(3,0)为焦点,长半轴长为2的椭圆,故曲线C 的轨迹方程为x 24+y 2=1. (2)存在△AOB 面积的最大值. 因为直线l 过点E (-1,0),所以可设直线l 的方程为x =my -1或y =0(舍).由条件得⎩⎪⎨⎪⎧x 24+y 2=1,x =my -1,整理得(m 2+4)y 2-2my -3=0,Δ=(-2m )2+12(m 2+4)>0.设A (x 1,y 1),B (x 2,y 2),其中y 1>y 2.解得y 1=m +2m 2+3m 2+4,y 2=m -2m 2+3m 2+4,则|y 2-y 1|=4m 2+3m 2+4,则S △AOB =12|OE |·|y 1-y 2|=2m 2+3m 2+4=2m 2+3+1m 2+3.设g (t )=t +1t ,t =m 2+3,t ≥3,则g (t )在区间[3,+∞)上为增函数,所以g (t )≥433.所以S △AOB ≤32,当且仅当m =0时等号成立,即(S △AOB )max =32.所以S △AOB 的最大值为32.21.在直角坐标系xOy 中,点M ⎝ ⎛⎭⎪⎫2,-12,点F 为抛物线C :y =mx 2(m >0)的焦点,线段MF 恰被抛物线C 平分.(1)求m 的值;(2)过点M 作直线l 交抛物线C 于A 、B 两点,设直线F A 、FM 、FB 的斜率分别为k 1、k 2、k 3,问k 1、k 2、k 3能否成公差不为零的等差数列?若能,求直线l 的方程;若不能,请说明理由.解析:(1)由题得抛物线C 的焦点F 的坐标为⎝ ⎛⎭⎪⎫0,14m ,线段MF 的中点N ⎝ ⎛⎭⎪⎫1,18m -14在抛物线C 上, ∴18m -14=m,8m 2+2m -1=0,∴m =14⎝ ⎛⎭⎪⎫m =-12舍去.(2)由(1)知抛物线C :x 2=4y ,F (0,1).设直线l 的方程为y +12=k (x -2),A (x 1,y 1)、B (x 2,y 2),由⎩⎪⎨⎪⎧y +12=k (x -2),x 2=4y ,得x 2-4kx +8k +2=0, Δ=16k 2-4(8k +2)>0,∴k <2-62或k >2+62.⎩⎨⎧x 1+x 2=4k ,x 1x 2=8k +2, 假设k 1、k 2、k 3能成公差不为零的等差数列,则k 1+k 3=2k 2.而k 1+k 3=y 1-1x 1+y 2-1x 2=x 2y 1+x 1y 2-x 2-x 1x 1x 2=x 2x 214+x 1x 224-x 2-x 1x 1x 2=⎝ ⎛⎭⎪⎫x 1x 24-1(x 1+x 2)x 1x 2=⎝ ⎛⎭⎪⎫8k +24-1·4k 8k +2=4k 2-k 4k +1,k 2=-34,∴4k 2-k 4k +1=-32,8k 2+10k +3=0,解得k =-12(符合题意)或k =-34(不合题意,舍去).∴直线l 的方程为y +12=-12(x -2),即x +2y -1=0.∴k 1、k 2、k 3能成公差不为零的等差数列,此时直线l 的方程为x +2y -1=0. 22.已知平面上的动点P (x ,y )及两定点A (-2,0),B (2,0),直线P A ,PB 的斜率分别是k 1,k 2,且k 1·k 2=-14.(1)求动点P 的轨迹C 的方程;(2)设直线l :y =kx +m 与曲线C 交于不同的两点M 、N . ①若OM ⊥ON (O 为坐标原点),证明点O 到直线l 的距离为定值,并求出这个定值;②若直线BM ,BN 的斜率都存在并满足k BM ·k BN =-14,证明直线l 过定点,并求出这个定点.解析:(1)由题意得y x +2·y x -2=-14(x ≠±2),即x 2+4y 2-4=0(x ≠±2),所以P 点的轨迹C 的方程为x24+y 2=1(x ≠±2).(2)设M (x 1,y 1),N (x 2,y 2),联立方程,得⎩⎪⎨⎪⎧y =kx +m ,x 24+y 2=1,化简得(4k 2+1)x 2+8kmx +4m 2-4=0.所以x 1+x 2=-8km 4k 2+1,x 1x 2=4m 2-44k 2+1.所以y 1y 2=(kx 1+m )(kx 2+m )=k 2x 1x 2+km (x 1+x 2)+m 2.①若OM ⊥ON ,则x 1x 2+y 1y 2=0,即(1+k 2)x 1x 2+km (x 1+x 2)+m 2=0,即(1+k 2)4m 2-44k 2+1+km -8km 4k 2+1+m 2=0,化简得m 2=45(1+k 2),此时点O 到直线l 的距离为d =|m |1+k 2=255,即点O 到直线l 距离为定值255.②k BM ·k BN =-14,即y 1x 1-2·y 2x 2-2=-14.即x 1x 2-2(x 1+x 2)+4+4y 1y 2=0,即x 1x 2-2(x 1+x 2)+4+4k 2x 1x 2+4km (x 1+x 2)+4m 2=0,即4m 2-4-8km (4km -2)4k 2+1+4m 2+4=0, 化简得m (m +2k )=0,解得m =0或m =-2k .当m =0时,直线l 恒过原点;当m =-2k 时,直线l 恒过点(2,0),此时直线l 与曲线C 最多只有一个公共点,不符合题意.所以,直线l 恒过定点,定点坐标是(0,0).。

2014年高考立体几何(解析版)

2014年高考立体几何(解析版)

2014年高考真题立体几何汇编解析版16.(2014江苏)(本小题满分14 分)如图,在三棱锥P ABC -中,D E F ,,分别为棱PC AC AB ,,的中点.已知6PA AC PA ⊥=,,8BC =,5DF =.(1)求证:直线P A ∥平面DEF ; (2)平面BDE ⊥平面ABC .【答案】本小题主要考查直线与直线、直线与平面以及平面与平面的位置关系, 考查空间想象能力和推理论证能力.满分14分. (1)∵D E ,为PC AC ,中点 ∴DE ∥P A ∵PA ⊄平面DEF ,DE ⊂平面DEF ∴P A ∥平面DEF (2)∵D E ,为PC AC ,中点 ∴13DE PA == ∵E F ,为AC AB ,中点 ∴142EF BC == ∴222DE EF DF += ∴90DEF ∠=°,∴DE ⊥EF∵//DE PA PA AC ⊥,,∴DE AC ⊥ ∵AC EF E = ∴DE ⊥平面ABC∵DE ⊂平面BDE , ∴平面BDE ⊥平面ABC .17.(2014山东)(本小题满分12分)如图,在四棱柱1111ABCD A B C D -中,底面ABCD 是等腰梯形,60,DAB ∠=22AB CD ==,M 是线段AB 的中点.(I )求证:111//C M A ADD 平面;B 1C 1D 1A 1DCBMA(II )若1CD 垂直于平面ABCD且1CD 平面11C D M 和平面ABCD 所成的角(锐角)的余弦值. 解:(Ⅰ)连接1AD1111D C B A ABCD - 为四棱柱,11//D C CD ∴ 11D C CD =又M 为AB 的中点,1=∴AM AM CD //∴,AM CD =11//D C AM ∴,11D C AM =11D AMC ∴为平行四边形 11//MC AD ∴又111ADD A M C 平面⊄ 111A D D A AD 平面⊂111//ADD A AD 平面∴(Ⅱ)方法一:11//B A AB 1111//D C B A共面与面1111D ABC M C D ∴作AB CN ⊥,连接N D 1 则NC D 1∠即为所求二面角在ABCD 中, 60,2,1=∠==DAB AB DC 23=∴CN 在CN D Rt 1∆中,31=CD ,23=CN 2151=∴N D 方法二:作AB CP ⊥于p 点以C 为原点,CD 为x 轴,CP 为y 轴,1CD 为z 轴建立空间坐标系,)0,23,21(),3,0,0(),3,0,1(11M D C -∴)3,23,21(),0,0,1(111-==∴M D D C设平面M D C 11的法向量为),,(111z y x =⎪⎩⎪⎨⎧=-+=∴03232101111z y x x )1,2,0(1=∴n 显然平面ABCD 的法向量为)0,0,1(2=n5551,cos 21==<∴n n 显然二面角为锐角,所以平面M D C 11和平面ABCD 所成角的余弦值为555515321523cos 11====∠∴N D NC CN D18.三棱锥A BCD -及其侧视图、俯视图如图所示。

(安徽专用)2014届高考数学 专题阶段评估模拟卷5 解析几何 文

(安徽专用)2014届高考数学 专题阶段评估模拟卷5 解析几何 文

题阶段评估(五) 解析几何【说明】 本试卷分为第Ⅰ、Ⅱ卷两部分,请将第Ⅰ卷选择题的答案填入答题格内,第Ⅱ卷可在各题后直接作答,共150分,考试时间120分钟.第Ⅰ卷 (选择题 共50分)只有一项是符合题目要求的)1.已知点P (3,2)与点Q (1,4)关于直线l 对称,则直线l 的方程为( ) A .x -y +1=0 B .x -y =0 C .x +y +1=0D .x +y =02.已知双曲线y 2a 2-x 2b2=1(a >0,b >0)的离心率为3,则双曲线的渐近线方程为( )A .y =±22x B .y =±2x C .y =±2xD .y =±12x3.(2013·某某卷)已知点M (a ,b )在圆O :x 2+y 2=1外,则直线ax +by =1与圆O 的位置关系是( )A .相切B .相交C .相离D .不确定4.已知双曲线x 2a 2-y 2b 2=1和椭圆x 2m 2+y 2b 2=1(a >0,m >b >0)的离心率互为倒数,那么以a ,b ,m 为边长的三角形是( )A .锐角三角形B .直角三角形C .钝角三角形D .锐角或钝角三角形5.(2013·某某省某某市调研)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一个焦点与抛物线y 2=410x 的焦点重合,且双曲线的离心率等于103,则该双曲线的方程为( ) A .x 2-y 29=1B .x 2-y 2=15 C.x 29-y 2=1 D.x 29-y 29=1 6.(2013·某某市调研)已知抛物线y 2=2px (p >0)与双曲线x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线交于一点M (1,m ),点M 到抛物线焦点的距离为3,则双曲线的离心率等于( )A .3B .4 C.13D.147.(2013·某某卷)过点(3,1)作圆(x -1)2+y 2=1的两条切线,切点分别为A ,B ,则直线AB 的方程为( )A .2x +y -3=0B .2x -y -3=0C .4x -y -3=0D .4x +y -3=08.(2013·某某省“江南十校”联考)已知直线l 过抛物线y 2=4x 的焦点F ,交抛物线于A 、B 两点,且点A 、B 到y 轴的距离分别为m ,n ,则m +n +2的最小值为( )A .4 2B .6 2C .4D .69.(2013·全国卷Ⅰ)已知椭圆E :x 2a 2+y 2b2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的方程为( )A.x 245+y 236=1B.x 236+y 227=1 C.x 227+y 218=1 D.x 218+y 29=1 10.过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左焦点F (-c,0)(c >0)作圆x 2+y 2=a 24的切线,交双曲线右支于点P ,切点为E ,若OE →=12(OF →+OP →),则双曲线的离心率为( )A.10B.105C.102D. 2第Ⅱ卷 (非选择题 共100分)11.已知直线l 1:ax -y +2a +1=0和l 2:2x -(a -1)y +2=0(a ∈R ),则l 1⊥l 2的充要条件是a =________.12.圆x 2+y 2-ax +2=0与直线l 相切于点A (3,1),则直线l 的方程为________. 13.在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点F 1,F 2在x 轴上,离心率为22.过F 1的直线l 交C 于A ,B 两点,且△ABF 2的周长为16,那么C 的方程为________. 14.(2013·某某市调研)圆x 2+y 2+2x +4y -15=0上到直线x -2y =0的距离为5的点的个数是________.15.已知双曲线x 2-y 23=1的左顶点为A 1,右焦点为F 2,P 为双曲线右支上一点,则PA 1→·PF 2→的最小值为________.三、解答题(本大题共6小题,共75分.解答应写出必要的文字说明、证明过程或演算步骤)16.(本小题满分12分)已知圆C 经过点A (-2,0),B (0,2),且圆心C 在直线y =x 上,又直线l :y =kx +1与圆C 相交于P 、Q 两点.(1)求圆C 的方程;(2)若OP →·OQ →=-2,某某数k 的值.17.(本小题满分12分)已知抛物线C :y 2=2px (p >0)的焦点为F ,抛物线C 与直线l 1:y =-x 的一个交点的横坐标为8.(1)求抛物线C 的方程;(2)不过原点的直线l 2与l 1垂直,且与抛物线交于不同的两点A 、B ,若线段AB 的中点为P ,且|OP |=|PB |,求△FAB 的面积.18.(本小题满分12分)(2013·东城期末)已知椭圆C 的中心在原点,一个焦点为F (0,2),且长轴长与短轴长的比是2∶1. (1)求椭圆C 的方程;(2)若椭圆C 上在第一象限的一点P 的横坐标为1,过点P 作倾斜角互补的两条不同的直线PA ,PB 分别交椭圆C 于另外两点A ,B ,求证:直线AB 的斜率为定值.19.(本小题满分13分)(2013·某某某某二模)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的右焦点为F (c,0).(1)若双曲线的一条渐近线方程为y =x 且c =2,求双曲线的方程;(2)以原点O 为圆心,c 为半径作圆,该圆与双曲线在第一象限的交点为A ,过A 作圆的切线,斜率为-3,求双曲线的离心率.20.(本小题满分13分)(2013·皖南八校三模)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0),F 1(-c,0),F 2(c,0)为椭圆的两个焦点,M 为椭圆上任意一点,且|MF 1|,|F 1F 2|,|MF 2|构成等差数列,点F 2(c,0)到直线l :x =a 2c的距离为3.(1)求椭圆E 的方程;(2)若存在以原点为圆心的圆,使该圆的任意一条切线与椭圆E 恒有两个交点A ,B ,且OA →⊥OB →,求出该圆的方程.21.(本小题满分13分)(2013·某某第一次模拟)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的离心率为22,其左、右焦点分别是F 1、F 2,过点F 1的直线l 交椭圆C 于E 、G 两点,且△EGF 2的周长为4 2.(1)求椭圆C 的方程;(2)若过点M (2,0)的直线与椭圆C 相交于两点A 、B ,设P 为椭圆上一点,且满足OA →+OB →=tOP →(O 为坐标原点),当|PA →-PB →|<253时,某某数t 的取值X 围.详解答案专题阶段评估(五)一、选择题1.A 由题意知直线l 与直线PQ 垂直, 所以k l =-1k PQ =-14-21-3=1, 又因为直线l 经过PQ 的中点(2,3),所以直线l 的方程为y -3=x -2,即x -y +1=0. 2.A 由题意得,双曲线的离心率e =c a =3,故a b =22,故双曲线的渐近线方程为y =±22x ,选A. 3.B 由题意知点在圆外,则a 2+b 2>1,圆心到直线的距离d =1a 2+b 2<1,故直线与圆相交.4.B 双曲线x 2a 2-y 2b2=1的离心率e 1=1+b 2a 2,椭圆x 2m 2+y 2b 2=1的离心率e 2= 1-b 2m2, 则1+b 2a 2·1-b 2m2=1,即m 2=a 2+b 2. 5.C 由已知可得抛物线y 2=410x 的焦点坐标为(10,0),a 2+b 2=10.又双曲线的离心率e =10a =103,a =3,b =1,∴双曲线的方程为x 29-y 2=1.故选C.6.A 点M 到抛物线焦点的距离为p2+1=3,∴p =4,∴抛物线方程为y 2=8x ,∴m 2=8.双曲线的渐近线方程y =±b a x ,两边平方得y 2=b 2a2x 2,把(1,m )代入上式得8=b 2a2,即b 2=8a 2.∴双曲线的离心率e =c a =a 2+b 2a=a 2+8a 2a 2=3. 7.A 设P (3,1),圆心C (1,0),切点为A 、B ,则P 、A 、C 、B 四点共圆,且PC 为圆的直径,∴四边形PACB 的外接圆方程为(x -2)2+⎝ ⎛⎭⎪⎫y -122=54①,圆C :(x -1)2+y 2=1②,①-②得2x +y -3=0,此即为直线AB 的方程.8.C 因为m +n +2=(m +1)+(n +1)表示点A 、B 到准线的距离之和,所以m +n +2表示焦点弦AB 的长度,因为抛物线焦点弦的最小值是其通径的长度,所以m +n +2的最小值为4.9.D 设A (x 1,y 1),B (x 2,y 2),则⎩⎪⎨⎪⎧x 21a 2+y 21b2=1, ①x 22a 2+y22b 2=1. ②①-②得x 1+x 2x 1-x 2a2=-y 1-y 2y 1+y 2b2,∴y 1-y 2x 1-x 2=-b 2x 1+x 2a 2y 1+y 2. ∵x 1+x 2=2,y 1+y 2=-2,∴k AB =b 2a2.而k AB =0--13-1=12,∴b 2a 2=12,∴a 2=2b 2,∴c 2=a 2-b 2=b 2=9,∴b =c =3,a =32, ∴E 的方程为x 218+y 29=1. 10.C如图所示,设F ′为双曲线的右焦点,连接PF ′,由题意,知OE ⊥PF ,|OE |=a2,又因为OE →=12(OF →+OP →),所以E 为PF 中点,所以|OP |=|OF |=c ,|EF |=c 2-a 24.所以|PF |=2c 2-a 24.又因为|OF |=|OF ′|,|EF |=|PE |, 所以PF ′∥OE ,|PF ′|=2|OE |=a . 因为|PF |-|PF ′|=2a ,所以2c 2-a 24-a =2a ,即c =102a ,故e =c a =102. 二、填空题11.解析: l 1⊥l 2的充要条件是2a +(a -1)=0, 解得a =13.答案: 1312.解析: 由已知条件可得32+12-3a +2=0,解得a =4,此时圆x 2+y 2-4x +2=0的圆心为C (2,0),半径为2,则直线l 的方程为y -1=-1k AC(x -3)=-x +3,即x +y -4=0.答案: x +y -4=013.解析: 设椭圆方程为x 2a 2+y 2b2=1(a >b >0),因为AB 过F 1且A ,B 在椭圆上,如图,则△ABF 2的周长为|AB |+|AF 2|+|BF 2|=|AF 1|+|AF 2|+|BF 1|+|BF 2|=4a =16,解得a =4.又离心率e =c a =22,故c =2 2. 所以b 2=a 2-c 2=8,所以椭圆C 的方程为x 216+y 28=1.答案: x 216+y 28=1 14.解析: 圆的方程x 2+y 2+2x +4y -15=0化为标准式为(x +1)2+(y +2)2=20,其圆心坐标为(-1,-2),半径r =25,由点到直线的距离公式得圆心到直线x -2y =0的距离d =|-1-2×-2|12+-22=355,如图所示,圆到直线x -2y =0的距离为5的点有4个. 答案: 415.解析: 由题可知A 1(-1,0),F 2(2,0),设P (x ,y )(x ≥1),则PA 1→=(-1-x ,-y ),PF 2→=(2-x ,-y ),PA 1→·PF 2→=(-1-x )(2-x )+y 2=x 2-x -2+y 2=x 2-x -2+3(x 2-1)=4x 2-x -5,∵x ≥1,函数f (x )=4x 2-x -5的图象的对称轴为x =18,∴当x =1时,PA 1→·PF 2→取最小值-2.答案: -2 三、解答题16.解析: (1)设圆心C (a ,a ),半径为r . 因为圆C 经过点A (-2,0),B (0,2), 所以|AC |=|BC |=r ,易得a =0,r =2, 所以圆C 的方程是x 2+y 2=4.(2)因为OP →·OQ →=2×2×cos〈OP →,OQ →〉=-2,且OP →与OQ →的夹角为∠POQ , 所以cos ∠POQ =-12,∠POQ =120°,所以圆心C 到直线l :kx -y +1=0的距离d =1, 又d =1k 2+1,所以k =0. 17.解析: (1)易知直线与抛物线的交点坐标为(8,-8),∴82=2p ×8,∴2p =8,∴抛物线方程为y 2=8x .(2)直线l 2与l 1垂直,故可设l 2:x =y +m ,A (x 1,y 1),B (x 2,y 2),且直线l 2与x 轴的交点为M .由⎩⎪⎨⎪⎧y 2=8x x =y +m得y 2-8y -8m =0,Δ=64+32m >0,∴m >-2. y 1+y 2=8,y 1y 2=-8m ,∴x 1x 2=y 1y 2264=m 2.由题意可知OA ⊥OB ,即x 1x 2+y 1y 2=m 2-8m =0,∴m =8或m =0(舍), ∴l 2:x =y +8,M (8,0),故S △FAB =S △FMB +S △FMA =12·|FM |·|y 1-y 2|=3 y 1+y 22-4y 1y 2=24 5.18.解析: (1)设椭圆C 的方程为y 2a 2+x 2b2=1(a >b >0).由题意得⎩⎨⎧a 2=b 2+c 2,a ∶b =2∶1,c =2,解得a 2=4,b 2=2.所以椭圆C 的方程为y 24+x 22=1.(2)证明:由题意知,两直线PA ,PB 的斜率必存在,设PB 的斜率为k .又由(1)知,P (1,2),则直线PB 的方程为y -2=k (x -1).由⎩⎪⎨⎪⎧y -2=k x -1,y 24+x 22=1,得(2+k 2)x 2+2k (2-k )x +(2-k )2-4=0. 设A (x A ,y A ),B (x B ,y B ),则x B =1·x B =k 2-22k -22+k 2, 同理可得x A =k 2+22k -22+k2, 则x A -x B =42k 2+k 2,y A -y B =-k (x A -1)-k (x B -1)=8k2+k2.所以k AB =y A -y Bx A -x B=2为定值. 19.解析: (1)∵双曲线的渐近线为y =±b ax ,∴a =b , ∴c 2=a 2+b 2=2a 2=4,∴a 2=b 2=2, ∴双曲线方程为x 22-y 22=1.(2)设点A 的坐标为(x 0,y 0),∴直线AO 的斜率满足y 0x 0·(-3)=-1, ∴x 0=3y 0.①依题意,圆的方程为x 2+y 2=c 2,将①代入圆的方程得3y 20+y 20=c 2,即y 0=12c ,∴x 0=32c , ∴点A 的坐标为⎝ ⎛⎭⎪⎫32c ,c 2,代入双曲线方程得 34c 2a2-14c 2b 2=1,即34b 2c 2-14a 2c 2=a 2b 2,② 又∵a 2+b 2=c 2,∴将b 2=c 2-a 2代入②式,整理得 34c 4-2a 2c 2+a 4=0, ∴3⎝ ⎛⎭⎪⎫c a 4-8⎝ ⎛⎭⎪⎫c a 2+4=0,∴(3e 2-2)(e 2-2)=0,∵e >1,∴e =2, ∴双曲线的离心率为 2.20.解析: (1)由题知2|F 1F 2|=|MF 1|+|MF 2|, 即2×2c =2a ,得a =2c .又由a 2c-c =3,解得c =1,a =2,b = 3.∴椭圆E 的方程为x 24+y 23=1.(2)假设以原点为圆心,r 为半径的圆满足条件.(ⅰ)若圆的切线的斜率存在,并设其方程为y =kx +m ,则r =|m |k 2+1,r 2=m 2k 2+1,①由⎩⎪⎨⎪⎧x 24+y 23=1,y =kx +m 消去y ,整理得(3+4k 2)x 2+8kmx +4(m 2-3)=0,设A (x 1,y 1),B (x 2,y 2),有⎩⎪⎨⎪⎧x 1+x 2=-8km 3+4k 2,x 1x 2=4m 2-33+4k 2.又∵OA →⊥OB →,∴x 1x 2+y 1y 2=0,即4(1+k 2)(m 2-3)-8k 2m 2+3m 2+4k 2m 2=0,化简得m 2=127(k 2+1),②由①②求得r 2=127.所求圆的方程为x 2+y 2=127.(ⅱ)若AB 的斜率不存在,设A (x 1,y 1),则B (x 1,-y 1),∵OA →⊥OB →,∴OA →·OB →=0,有x 21-y 21=0,x 21=y 21,代入x 214+y 213=1,得x 21=127.此时仍有r 2=|x 21|=127. 综上,总存在以原点为圆心的圆x 2+y 2=127满足题设条件.21.解析: (1)由题意知椭圆的离心率e =c a =22,∴e 2=c 2a 2=a 2-b 2a 2=12,即a 2=2b 2.又△EGF 2的周长为42,即4a =42,∴a 2=2,b 2=1. ∴椭圆C 的方程为x 22+y 2=1.(2)由题意知直线AB 的斜率存在,即t ≠0.设直线AB 的方程为y =k (x -2),A (x 1,y 1),B (x 2,y 2),P (x ,y ),由⎩⎪⎨⎪⎧y =k x -2x 22+y 2=1,得(1+2k 2)x 2-8k 2x +8k 2-2=0.由Δ=64k 4-4(2k 2+1)(8k 2-2)>0,得k 2<12.x 1+x 2=8k 21+2k 2,x 1x 2=8k 2-21+2k2,∵OA →+OB →=tOP →,∴(x 1+x 2,y 1+y 2)=t (x ,y ),x =x 1+x 2t =8k 2t 1+2k 2,y =y 1+y 2t =1t[k (x 1+x 2)-4k ]=-4kt1+2k2. ∵点P 在椭圆C 上,∴8k22[t 1+2k 2]2+2-4k2[t1+2k 2]2=2, ∴16k 2=t 2(1+2k 2).∵|PA →-PB →|<253,∴1+k 2|x 1-x 2|<253,∴(1+k 2)[(x 1+x 2)2-4x 1x 2]<209,∴(1+k 2)⎣⎢⎡⎦⎥⎤64k 41+2k22-4·8k 2-21+2k 2<209, ∴(4k 2-1)(14k 2+13)>0,∴k 2>14.∴14<k 2<12. ∵16k 2=t 2(1+2k 2),∴t 2=16k 21+2k 2=8-81+2k2,又32<1+2k 2<2,∴83<t 2=8-81+2k 2<4, ∴-2<t <-263或263<t <2,∴实数t 的取值X 围为⎝ ⎛⎭⎪⎫-2,-263∪⎝ ⎛⎭⎪⎫263,2.。

2014全国高考数学解析几何大题汇编答案

2014全国高考数学解析几何大题汇编答案

2014全国高考数学解析几何大题汇编1.[2014·江西卷] 如图1-7所示,已知双曲线C :x 2a 2-y 2=1(a >0)的右焦点为F ,点A ,B 分别在C 的两条渐近线上,AF ⊥x 轴,AB ⊥OB ,BF ∥OA (O 为坐标原点).图1-7(1)求双曲线C 的方程;(2)过C 上一点P (x 0,y 0)(y 0≠0)的直线l :x 0x a 2-y 0y =1与直线AF 相交于点M ,与直线x =32相交于点N .证明:当点P在C 上移动时,|MF ||NF |恒为定值,并求此定值.1.解:(1)设F (c ,0),因为b =1,所以c =a 2+1.由题意,直线OB 的方程为y =-1a x ,直线BF 的方程为y =1a (x-c ),所以B ⎝⎛⎭⎫c 2,-c 2a .又直线OA 的方程为y =1a x ,则A ⎝⎛⎭⎫c ,c a ,所以k AB =c a -⎝⎛⎭⎫-c 2a c -c 2=3a.又因为AB ⊥OB ,所以3a ·⎝⎛⎭⎫-1a =-1,解得a 2=3,故双曲线C 的方程为x 23-y 2=1.(2)由(1)知a =3,则直线l 的方程为x 0x3-y 0y =1(y 0≠0),即y =x 0x -33y 0(y 0≠0).因为直线AF 的方程为x =2,所以直线l 与AF 的交点为M ⎝⎛⎭⎫2,2x 0-33y 0,直线l 与直线x =32的交点为N 32,32x 0-33y 0,则|MF |2|NF |2=(2x 0-3)2(3y 0)214+⎝⎛⎭⎫32x 0-32(3y 0)2=(2x 0-3)29y 204+94(x 0-2)2=43·(2x 0-3)23y 20+3(x 0-2)2.又P (x 0,y 0)是C 上一点,则x 203-y 20=1, 代入上式得|MF |2|NF |2=43·(2x 0-3)2x 20-3+3(x 0-2)2=43·(2x 0-3)24x 20-12x 0+9=43,所以|MF ||NF |=23=233,为定值. 2.[2014·四川卷] 已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.(1)求椭圆C 的标准方程.(2)设F 为椭圆C 的左焦点,T 为直线x =-3上任意一点,过F 作TF 的垂线交椭圆C 于点P ,Q . ①证明:OT 平分线段PQ (其中O 为坐标原点);②当|TF ||PQ |最小时,求点T 的坐标.2.解:(1)由已知可得⎩⎨⎧a 2+b 2=2b ,2c =2a 2-b 2=4,解得a 2=6,b 2=2,所以椭圆C 的标准方程是x 26+y 22=1. (2)①证明:由(1)可得,F 的坐标是(-2,0),设T 点的坐标为(-3,m ),则直线TF 的斜率k TF =m -0-3-(-2)=-m .当m ≠0时,直线PQ 的斜率k PQ =1m .直线PQ 的方程是x =my -2.当m =0时,直线PQ 的方程是x =-2,也符合x =my -2的形式.设P (x 1,y 1),Q (x 2,y 2),将直线PQ 的方程与椭圆C 的方程联立,得⎩⎪⎨⎪⎧x =my -2,x 26+y 22=1.消去x ,得(m 2+3)y 2-4my -2=0,其判别式Δ=16m 2+8(m 2+3)>0.所以y 1+y 2=4mm 2+3,y 1y 2=-2m 2+3, x 1+x 2=m (y 1+y 2)-4=-12m 2+3.设M 为PQ 的中点,则M 点的坐标为⎝ ⎛⎭⎪⎫-6m 2+3,2m m 2+3.所以直线OM 的斜率k OM =-m 3,又直线OT 的斜率k OT =-m3,所以点M 在直线OT 上,因此OT 平分线段PQ .②由①可得,|TF |=m 2+1,|PQ |=(x 1-x 2)2+(y 1-y 2)2=(m 2+1)[(y 1+y 2)2-4y 1y 2]=(m 2+1)⎣⎢⎡⎦⎥⎤⎝⎛⎭⎫4m m 2+32-4·-2m 2+3=24(m 2+1)m 2+3.所以|TF ||PQ |=124·(m 2+3)2m 2+1=124⎝⎛⎭⎫m 2+1+4m 2+1+4≥124(4+4)=33. 当且仅当m 2+1=4m 2+1,即m =±1时,等号成立,此时|TF ||PQ |取得最小值.故当|TF ||PQ |最小时,T 点的坐标是(-3,1)或(-3,-1).3.[2014·全国卷] 已知抛物线C :y 2=2px (p >0)的焦点为F ,直线y =4与y 轴的交点为P ,与C 的交点为Q ,且|QF |=54|PQ |.(1)求C 的方程;(2)过F 的直线l 与C 相交于A ,B 两点,若AB 的垂直平分线l ′与C 相交于M ,N 两点,且A ,M ,B ,N 四点在同一圆上,求l 的方程.3.解:(1)设Q (x 0,4),代入y 2=2px ,得x 0=8p ,所以|PQ |=8p ,|QF |=p 2+x 0=p 2+8p .由题设得p 2+8p =54×8p,解得p =-2(舍去)或p =2,所以C 的方程为y 2=4x .(2)依题意知l 与坐标轴不垂直,故可设l 的方程为x =my +1(m ≠0).代入y 2=4x ,得y 2-4my -4=0. 设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=4m ,y 1y 2=-4.故线段的AB 的中点为D (2m 2+1,2m ), |AB |=m 2+1|y 1-y 2|=4(m 2+1).又直线l ′的斜率为-m ,所以l ′的方程为x =-1my +2m 2+3.将上式代入y 2=4x ,并整理得y 2+4m y -4(2m 2+3)=0.设M (x 3,y 3),N (x 4,y 4),则y 3+y 4=-4m ,y 3y 4=-4(2m 2+3).故线段MN 的中点为E ⎝⎛⎭⎫2m2+2m 2+3,-2m ,|MN |=1+1m 2|y 3-y 4|=4(m 2+1)2m 2+1m 2.由于线段MN 垂直平分线段AB ,故A ,M ,B ,N 四点在同一圆上等价于|AE |=|BE |=12|MN |,从而14|AB |2+|DE |2=14|MN |2,即4(m 2+1)2+⎝ ⎛⎭⎪⎫2m +2m 2+⎝ ⎛⎭⎪⎫2m 2+22=4(m 2+1)2(2m 2+1)m 4,化简得m 2-1=0,解得m =1或m =-1,故所求直线l 的方程为x -y -1=0或x +y -1=0.4.[2014·北京卷] 已知椭圆C :x 2+2y 2=4.(1)求椭圆C 的离心率;(2)设O 为原点,若点A 在椭圆C 上,点B 在直线y =2上,且OA ⊥OB ,试判断直线AB 与圆x 2+y 2=2的位置关系,并证明你的结论.4.解:(1)由题意,椭圆C 的标准方程为x 24+y 22=1.所以a 2=4,b 2=2,从而c 2=a 2-b 2=2.因此a =2,c = 2.故椭圆C 的离心率e =c a =22.(2)直线AB 与圆x 2+y 2=2相切.证明如下:设点A ,B 的坐标分别为(x 0,y 0),(t ,2),其中x 0≠0.因为OA ⊥OB ,所以OA →·OB →=0,即tx 0+2y 0=0,解得t =-2y 0x 0.当x 0=t 时,y 0=-t 22,代入椭圆C 的方程,得t =±2,故直线AB 的方程为x =±2.圆心O 到直线AB 的距离d =2,此时直线AB 与圆x 2+y 2=2相切.当x 0≠t 时,直线AB 的方程为y -2=y 0-2x 0-t (x -t ),即(y 0-2)x -(x 0-t )y +2x 0-ty 0=0.圆心O 到直线AB 的距离d =|2x 0-ty 0|(y 0-2)2+(x 0-t )2.又x 20+2y 2=4,t =-2y 0x 0,故 d =⎪⎪⎪⎪2x 0+2y 20x 0x 20+y 20+4y 20x 20+4=⎪⎪⎪⎪4+x 20x 0x 40+8x 20+162x 20= 2.此时直线AB 与圆x 2+y 2=2相切.5.[2014·重庆卷] 如图1-4所示,设椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,点D 在椭圆上,DF 1⊥F 1F 2,|F 1F 2||DF 1|=22,△DF 1F 2的面积为22.(1)求椭圆的标准方程; (2)设圆心在y 轴上的圆与椭圆在x 轴的上方有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点,求圆的半径.5.解:(1)设F 1(-c ,0),F 2(c ,0),其中c 2=a 2-b 2.由|F 1F 1||DF 1|=22得|DF 1|=|F 1F 2|22=22c .从而S △DF 1F 2=12|DF 1||F 1F 2|=22c 2=22,故c =1.从而|DF 1|=22,由DF 1⊥F 1F 2得|DF 2|2=|DF 1|2+|F 1F 2|2=92,因此|DF 2|=322,所以2a =|DF 1|+|DF 2|=22,故a =2,b 2=a 2-c 2=1.因此,所求椭圆的标准方程为x 22+y 2=1.(2)如图所示,设圆心在y 轴上的圆C 与椭圆x22+y 2=1相交,P 1(x 1,y 1),P 2(x 2,y 2)是两个交点,y 1>0,y 2>0,F 1P 1,F 2P 2是圆C 的切线,且F 1P 1⊥F 2P 2.y 1=y 2,|P 1P 2|=2|x 1|.由(1)知F 1(-1,0),F 2(1,0),所以F 1P 1→=(x 1+1,y 1),F 2P 2=(-x 1-1,y 1).再由F 1P 1⊥F 2P 2得-(x 1+1)2+y 21=0.由椭圆方程得1-x 212=(x 1+1)2,即3x 21+4x 1=0,解得x 1=-43或x 1=0. 当x 1=0时,P 1,P 2重合,此时题设要求的圆不存在.当x 1=-43时,过P 1,P 2分别与F 1P 1,F 2P 2垂直的直线的交点即为圆心C .由F 1P 1,F 2P 2是圆C 的切线,且F 1P 1⊥F 2P 2,知CP 1⊥CP 2.又|CP 1|=|CP 2|,故圆C 的半径|CP 1|=22|P 1P 2|=2|x 1|=423.6.[2014·湖南卷] 如图1-7,O 为坐标原点,椭圆C 1:x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,离心率为e 1;双曲线C 2:x 2a 2-y 2b 2=1的左、右焦点分别为F 3,F 4,离心率为e 2.已知e 1e 2=32,且|F 2F 4|=3-1.(1)求C 1,C 2的方程;(2)过F 1作C 1的不垂直于y 轴的弦AB ,M 为AB 的中点.当直线OM 与C 2交于P ,Q 两点时,求四边形APBQ 面积的最小值.6.解: (1)因为e 1e 2=32,所以a 2-b 2a ·a 2+b 2a =32,即a 4-b 4=34a 4,因此a 2=2b 2,从而F 2(b ,0),F 4(3b ,0),于是3b -b =|F 2F 4|=3-1,所以b =1,a 2=2.故C 1,C 2的方程分别为x 22+y 2=1,x 22-y 2=1.(2)因AB 不垂直于y 轴,且过点F 1(-1,0),故可设直线AB 的方程为x =my -1,由⎩⎪⎨⎪⎧x =my -1,x 22+y 2=1得(m 2+2)y 2-2my -1=0.易知此方程的判别式大于0.设A (x 1,y 1),B (x 2,y 2),则y 1,y 2是上述方程的两个实根,所以y 1+y 2=2mm 2+2,y 1y 2=-1m 2+2.因此x 1+x 2=m (y 1+y 2)-2=-4m 2+2,于是AB 的中点为M ⎝ ⎛⎭⎪⎫-2m 2+2,m m 2+2,故直线PQ 的斜率为-m 2,PQ 的方程为y =-m 2x ,即mx +2y =0.由⎩⎨⎧y =-m 2x ,x22-y 2=1得(2-m 2)x 2=4,所以2-m 2>0,且x 2=42-m 2,y 2=m 22-m 2,从而|PQ |=2x 2+y 2=2m 2+42-m 2.设点A 到直线PQ 的距离为d ,则点B 到直线PQ 的距离也为d ,所以2d =|mx 1+2y 1|+|mx 2+2y 2|m 2+4.因为点A ,B 在直线mx +2y =0的异侧,所以(mx 1+2y 1)(mx 2+2y 2)<0,于是|mx 1+2y 1|+|mx 2+2y 2|=|mx 1+2y 1-mx 2-2y 2|,从而2d =(m 2+2)|y 1-y 2|m 2+4.又因为|y 1-y 2|=(y 1+y 2)2-4y 1y 2=22·1+m 2m 2+2,所以2d =22·1+m 2m 2+4.故四边形APBQ 的面积S =12|PQ |·2d =22·1+m 22-m 2=22·-1+32-m 2.而0<2-m 2≤2,故当m =0时,S 取最小值2.综上所述,四边形APBQ 面积的最小值为2. 7.[2014·辽宁卷] 圆x 2+y 2=4的切线与x 轴正半轴,y 轴正半轴围成—个三角形,当该三角形面积最小时,切点为P (如图1-6所示).双曲线C 1:x 2a 2-y 2b2=1过点P 且离心率为 3.(1)求C 1的方程;(2)椭圆C 2过点P 且与C 1有相同的焦点,直线l 过C 2的右焦点且与C 2交于A ,B 两点.若以线段AB 为直径的圆过点P ,求l 的方程.7.解:(1)设切点坐标为(x 0,y 0)(x 0>0,y 0>0),则切线斜率为-x 0y 0,切线方程为y -y 0=-x 0y 0(x -x 0),即x 0x +y 0y =4,此时两个坐标轴的正半轴与切线的交点分别为⎝⎛⎭⎫4x 0,0,⎝⎛⎭⎫0,4y 0.故其围成的三角形的面积S =12·4x 0·4y 0=8x 0y 0.由x 20+y 20=4≥2x 0y 0知,当且仅当x 0=y 0=2时x 0y 0有最大值2,此时S 有最小值4,因此点P 的坐标为(2,2).由题意知⎩⎪⎨⎪⎧2a 2-2b 2=1,a 2+b 2=3a 2,解得a 2=1,b 2=2,故C 1的方程为x 2-y 22=1.(2)由(1)知C 2的焦点坐标为(-3,0),(3,0),由此可设C 2的方程为x 23+b 21+y 2b 21=1,其中b 1>0.由P (2,2)在C 2上,得23+b 21+2b 21=1,解得b 21=3,因此C 2的方程为x 26+y 23=1.显然,l 不是直线y =0. 设直线l 的方程为x =my +3,点A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧x =my +3,x 26+y 23=1,得(m 2+2)y 2+2 3my -3=0.又y 1,y 2是方程的根,因此⎩⎪⎨⎪⎧y 1+y 2=-2 3mm 2+2, ①y 1y 2=-3m 2+2,②由x 1=my 1+3,x 2=my 2+3,得⎩⎪⎨⎪⎧x 1+x 2=m (y 1+y 2)+2 3=4 3m 2+2, ③x 1x 2=m 2y 1y 2+3m (y 1+y 2)+3=6-6m2m 2+2. ④因为AP →=(2-x 1,2-y 1),BP →=(2-x 2,2-y 2),由题意知AP →·BP →=0,所以x 1x 2-2(x 1+x 2)+y 1y 2-2(y 1+y 2)+4=0,⑤将①②③④代入⑤式整理得2m 2-2 6m +4 6-11=0,解得m =3 62-1或m =-62+1.因此直线l 的方程为x -(3 62-1)y -3=0或x +(62-1)y -3=0.8.[2014·新课标全国卷Ⅰ] 已知点A (0,-2),椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,F 是椭圆E 的右焦点,直线AF 的斜率为233,O 为坐标原点.(1)求E 的方程;(2)设过点A 的动直线l 与E 相交于P ,Q 两点,当△OPQ 的面积最大时,求l 的方程.8.解:(1)设F (c ,0),由条件知,2c =233,得c = 3.又c a =32,所以a =2,b 2=a 2-c 2=1.故E 的方程为x 24+y 2=1.(2)当l ⊥x 轴时不合题意,故可设l :y =kx -2,P (x 1,y 1),Q (x 2,y 2).将y =kx -2代入x 24+y 2=1得(1+4k 2)x 2-16kx+12=0,当Δ=16(4k 2-3)>0,即k 2>34时,x 1,2=8k ±24k 2-34k 2+1,从而|PQ |=k 2+1|x 1-x 2|=4k 2+1·4k 2-34k 2+1.又点O 到直线l 的距离d =2k 2+1.所以△OPQ 的面积S △OPQ =12d ·|PQ |=44k 2-34k 2+1.设4k 2-3=t ,则t >0,S △OPQ =4tt 2+4=4t +4t .因为t +4t ≥4,当且仅当t =2,即k =±72时等号成立,满足Δ>0,所以,当△OPQ 的面积最大时,k =±72,l 的方程为y =72x -2或y =-72x -2. 9.[2014·新课标全国卷Ⅱ] 设F 1,F 2分别是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,M 是C 上一点且MF 2与x轴垂直,直线MF 1与C 的另一个交点为N .(1)若直线MN 的斜率为34,求C 的离心率;(2)若直线MN 在y 轴上的截距为2,且|MN |=5|F 1N |,求a ,b .9.解:(1)根据c =a 2-b 2及题设知M ⎝⎛⎭⎫c ,b 2a ,2b 2=3ac .将b 2=a 2-c 2代入2b 2=3ac ,解得c a =12,c a=-2(舍去).故C 的离心率为12.(2)由题意知,原点O 为F 1F 2的中点,MF 2∥y 轴,所以直线MF 1与y 轴的交点D (0,2)是线段MF 1的中点,故b 2a=4,即b 2=4a .①由|MN |=5|F 1N |得|DF 1|=2|F 1N |.设N (x 1,y 1),由题意知y 1<0,则⎩⎪⎨⎪⎧2(-c -x 1)=c ,-2y 1=2,即⎩⎪⎨⎪⎧x 1=-32c ,y 1=-1.代入C 的方程,得9c 24a 2+1b 2=1.②将①及c =a 2-b 2代入②得9(a 2-4a )4a 2+14a =1,解得a =7,b 2=4a =28,故a =7,b =27.10.[2014·陕西卷] 如图1-5所示,曲线C 由上半椭圆C 1:y 2a 2+x 2b 2=1(a >b >0,y ≥0)和部分抛物线C 2:y =-x 2+1(y ≤0)连接而成,C 1与C 2的公共点为A ,B ,其中C 1的离心率为32. (1)求a ,b 的值;(2)过点B 的直线l 与C 1,C 2分别交于点P ,Q (均异于点A ,B ),若AP ⊥AQ ,求直线l 的方程.图1-510.解:(1)在C 1,C 2的方程中,令y =0,可得b =1,且A (-1,0),B (1,0)是上半椭圆C 1的左、右顶点. 设C 1的半焦距为c ,由c a =32及a 2-c 2=b 2=1得a =2,∴a =2,b =1.(2)方法一:由(1)知,上半椭圆C 1的方程为y 24+x 2=1(y ≥0).易知,直线l 与x 轴不重合也不垂直,设其方程为y =k (x -1)(k ≠0),代入C 1的方程,整理得(k 2+4)x 2-2k 2x +k 2-4=0.(*)设点P 的坐标为(x P ,y P ), ∵直线l 过点B ,∴x =1是方程(*)的一个根.由求根公式,得x P =k 2-4k 2+4,从而y P =-8kk 2+4,∴点P 的坐标为⎝ ⎛⎭⎪⎫k 2-4k 2+4,-8k k 2+4.同理,由⎩⎪⎨⎪⎧y =k (x -1)(k ≠0),y =-x 2+1(y ≤0),得点Q 的坐标为(-k -1,-k 2-2k ). ∴AP →=2k k 2+4(k ,-4),AQ →=-k (1,k +2).∵AP ⊥AQ ,∴AP ·AQ =0,即-2k 2k 2+4[k -4(k +2)]=0,∵k ≠0,∴k -4(k +2)=0,解得k =-83.经检验,k =-83符合题意,故直线l 的方程为y =-83(x -1).方法二:若设直线l 的方程为x =my +1(m ≠0),比照方法一给分.11.[2014·天津卷] 设椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,右顶点为A ,上顶点为B .已知|AB |=32|F 1F 2|.(1)求椭圆的离心率;(2)设P 为椭圆上异于其顶点的一点,以线段PB 为直径的圆经过点F 1,经过原点O 的直线l与该圆相切,求直线l 的斜率.11.解:(1)设椭圆右焦点F 2的坐标为(c ,0).由|AB |=32|F 1F 2|,可得a 2+b 2=3c 2.又b 2=a 2-c 2,则c 2a 2=12,所以椭圆的离心率e =22. (2)由(1)知a 2=2c 2,b 2=c 2.故椭圆方程为x 22c 2+y 2c2=1.设P (x 0,y 0).由F 1(-c ,0),B (0,c ),有F 1P →=(x 0+c ,y 0),F 1B →=(c ,c ).由已知,有F 1P →·F 1B →=0,即(x 0+c )c +y 0c =0.又c ≠0,故有x 0+y 0+c =0.①又因为点P 在椭圆上,所以x 202c 2+y 20c 2=1.②由①和②可得3x 20+4cx 0=0.而点P 不是椭圆的顶点,故x 0=-43c .代入①得y 0=c 3,即点P 的坐标为⎝⎛⎭⎫-4c 3,c 3.设圆的圆心为T (x 1,y 1),则x 1=-43c +02=-23c ,y 1=c3+c 2=23c ,进而圆的半径r =(x 1-0)2+(y 1-c )2=53c .设直线l 的斜率为k ,依题意,直线l 的方程为y =kx .由l 与圆相切,可得|kx 1-y 1|k 2+1=r ,即⎪⎪⎪⎪k ⎝⎛⎭⎫-2c 3-2c 3k 2+1=53c ,整理得k 2-8k +1=0,解得k =4±15,所以直线l 的斜率为4+15或4-15. 12.[2014·浙江卷] 如图1-6,设椭圆C :x 2a 2+y 2b2=1(a >b >0),动直线l 与椭圆C 只有一个公共点P ,且点P 在第一象限.(1)已知直线l 的斜率为k ,用a ,b ,k 表示点P 的坐标;(2)若过原点O 的直线l 1与l 垂直,证明:点P 到直线l的距离的最大值为a -b .12.解:(1)设直线l 的方程为y =kx +m (k <0),由⎩⎪⎨⎪⎧y =kx +m ,x 2a 2+y 2b 2=1,消去y 得(b 2+a 2k 2)x 2+2a 2kmx +a 2m 2-a 2b 2=0.由于l 与C 只有一个公共点,故Δ=0,即b 2-m 2+a 2k 2=0,解得点P 的坐标为⎝⎛⎭⎫-a 2km b 2+a 2k 2,b 2m b 2+a 2k 2. 又点P 在第一象限,故点P 的坐标为P ⎝ ⎛⎭⎪⎫-a 2k b 2+a 2k2,b 2m b 2+a 2k 2.(2)由于直线l 1过原点O 且与l 垂直,故直线l 1的方程为x +ky =0,所以点P 到直线l 1的距离d =⎪⎪⎪⎪⎪⎪-a 2k b 2+a 2k2+b 2k b 2+a 2k 21+k 2,整理得d =a 2-b 2b 2+a 2+a 2k 2+b 2k2.因为a 2k 2+b 2k 2≥2ab ,所以a 2-b 2b 2+a 2+a 2k 2+b 2k2≤a 2-b 2b 2+a 2+2ab =a -b ,当且仅当k 2=b a 时等号成立. 所以,点P 到直线l 1的距离的最大值为a -b .13.[2014·福建卷] 已知双曲线E :x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线分别为l 1:y =2x ,l 2:y =-2x .(1)求双曲线E 的离心率.(2)如图1-6,O 为坐标原点,动直线l 分别交直线l 1,l 2于A ,B 两点(A ,B 分别在第一、四象限),且△OAB 的面积恒为8.试探究:是否存在总与直线l 有且只有一个公共点的双曲线E ?若存在,求出双曲线E 的方程;若不存在,说明理由.图1-613.解:方法一:(1)因为双曲线E 的渐近线分别为y =2x ,y =-2x ,所以ba =2,所以c 2-a 2a =2,故c =5a ,从而双曲线E 的离心率e =c a = 5.(2)由(1)知,双曲线E 的方程为x 2a 2-y 24a2=1.设直线l 与x 轴相交于点C .当l ⊥x 轴时,若直线l 与双曲线E 有且只有一个公共点,则|OC |=a ,|AB |=4a .又因为△OAB的面积为8,所以12|OC |·|AB |=8,因此12a ·4a =8,解得a =2,此时双曲线E 的方程为x 24-y 216=1.若存在满足条件的双曲线E ,则E 的方程只能为x 24-y 216=1.以下证明:当直线l 不与x 轴垂直时,双曲线E :x 24-y 216=1也满足条件.设直线l 的方程为y =kx +m ,依题意,得k >2或k <-2,则C ⎝⎛⎭⎫-mk ,0.记A (x 1,y 1),B (x 2,y 2). 由⎩⎪⎨⎪⎧y =kx +m ,y =2x 得y 1=2m 2-k ,同理得y 2=2m 2+k .由S △OAB =12|OC |·|y 1-y 2|,得12⎪⎪⎪⎪-m k ·⎪⎪⎪⎪2m 2-k -2m 2+k =8,即m 2=4||4-k 2=4(k 2-4).由⎩⎪⎨⎪⎧y =kx +m ,x 24-y 216=1得(4-k 2)x 2-2kmx -m 2-16=0. 因为4-k 2<0,所以Δ=4k 2m 2+4(4-k 2)(m 2+16)=-16(4k 2-m 2-16).又因为m 2=4(k 2-4),所以Δ=0,即l 与双曲线E 有且只有一个公共点.因此,存在总与l 有且只有一个公共点的双曲线E ,且E 的方程为x 24-y 216=1.方法二:(1)同方法一.(2)由(1)知,双曲线E 的方程为x 2a 2-y 24a2=1.设直线l 的方程为x =my +t ,A (x 1,y 1),B (x 2,y 2).依题意得-12<m <12.由⎩⎪⎨⎪⎧x =my +t ,y =2x得y 1=2t1-2m , 同理得y 2=-2t 1+2m .设直线l 与x 轴相交于点C ,则C (t ,0).由S △OAB =12|OC |·|y 1-y 2|=8,得12|t |·⎪⎪⎪⎪2t 1-2m +2t 1+2m =8.所以t 2=4|1-4m 2|=4(1-4m 2).由⎩⎪⎨⎪⎧x =my +t ,x 2a 2-y 24a 2=1得(4m 2-1)y 2+8mty +4(t 2-a 2)=0.因为4m 2-1<0,直线l 与双曲线E 有且只有一个公共点当且仅当Δ=64m 2t 2-16(4m 2-1)(t 2-a 2)=0,即4m 2a 2+t 2-a 2=0, 即4m 2a 2+4(1-4m 2)-a 2=0,即(1-4m 2)(a 2-4)=0,所以a 2=4, 因此,存在总与l 有且只有一个公共点的双曲线E ,且E 的方程为x 24-y 216=1.方法三:(1)同方法一.(2)当直线l 不与x 轴垂直时,设直线l 的方程为y =kx +m ,A (x 1,y 1),B (x 2,y 2).依题意得k >2或k <-2.由⎩⎪⎨⎪⎧y =kx +m ,4x 2-y 2=0得(4-k 2)x 2-2kmx -m 2=0,因为4-k 2<0,Δ>0,所以x 1x 2=-m 24-k 2,又因为△OAB 的面积为8,所以12 |OA |·|OB |· sin ∠AOB =8,又易知sin ∠AOB =45,所以25x 21+y 21·x 22+y 22=8,化简得x 1x 2=4. 所以-m 24-k2=4,即m 2=4(k 2-4).由(1)得双曲线E 的方程为x 2a 2-y 24a 2=1,由⎩⎪⎨⎪⎧y =kx +m ,x 2a 2-y 24a 2=1得(4-k 2)x 2-2kmx -m 2-4a 2=0.因为4-k 2<0,直线l 与双曲线E 有且只有一个公共点当且仅当Δ=4k 2m 2+4(4-k 2)(m 2+4a 2)=0, 即(k 2-4)(a 2-4)=0,所以a 2=4,所以双曲线E 的方程为x 24-y 216=1.当l ⊥x 轴时,由△OAB 的面积等于8可得l :x =2,又易知l :x =2与双曲线E :x 24-y 216=1有且只有一个公共点.综上所述,存在总与l 有且只有一个公共点的双曲线E ,且E 的方程为x 24-y 216=1.14.[2014·安徽卷] 如图1-4,已知两条抛物线E 1:y 2=2p 1x (p 1>0)和E 2:y 2=2p 2x (p 2>0),过原点O 的两条直线l 1和l 2,l 1与E 1,E 2分别交于A 1,A 2两点,l 2与E 1,E 2分别交于B 1,B 2两点.图1-4(1)证明:A 1B 1∥A 2B 2;(2)过O 作直线l (异于l 1,l 2)与E 1,E 2分别交于C 1,C 2两点,记△A 1B 1C 1与△A 2B 2C 2的面积分别为S 1与S 2,求S 1S 2的值.14.解:(1)证明:设直线l 1,l 2的方程分别为y =k 1x ,y =k 2x (k 1,k 2≠0),则由⎩⎪⎨⎪⎧y =k 1x ,y 2=2p 1x , 得A 1⎝⎛⎭⎫2p 1k 21,2p 1k 1,由⎩⎪⎨⎪⎧y =k 1x ,y 2=2p 2x ,得A 2⎝⎛⎭⎫2p 2k 21,2p 2k 1.同理可得B 1⎝⎛⎭⎫2p 1k 22,2p 1k 2,B 2⎝⎛⎭⎫2p 2k 22,2p 2k 2.所以A 1B 1→=⎝⎛⎭⎫2p 1k 22-2p 1k 21,2p 1k 2-2p 1k 1=2p 1⎝⎛⎭⎫1k 22-1k 21,1k 2-1k 1, A 2B 2→=⎝⎛⎭⎫2p 2k 22-2p 2k 21,2p 2k 2-2p 2k 1=2p 2⎝⎛⎭⎫1k 22-1k 21,1k 2-1k 1.故A 1B 1→=p 1p 2A 2B 2→,所以A 1B 1∥A 2B 2 (2)由(1)知A 1B 1∥A 2B 2,同理可得B 1C 1∥B 2C 2,C 1A 1∥C 2A 2,所以△A 1B 1C 1∽△A 2B 2C 2,因此S 1S 2=⎝ ⎛⎭⎪⎫|A 1B 1→||A 2B 2→|2.又由(1)中的A 1B 1→=p 1p 2|A 2B 2→|知,|A 1B 1→||A 2B 2→|=p 1p 2,故S 1S 2=p 21p 22.15.[2014·湖北卷] 在平面直角坐标系xOy 中,点M 到点F (1,0)的距离比它到y 轴的距离多1.记点M 的轨迹为C . (1)求轨迹C 的方程;(2)设斜率为k 的直线l 过定点P (-2,1),求直线l 与轨迹C 恰好有一个公共点、两个公共点、三个公共点时k 的相应取值范围.15.解:(1)设点M (x ,y ),依题意得|MF |=|x |+1,即(x -1)2+y 2=|x |+1,化简整理得y 2=2(|x |+x ).故点M 的轨迹C 的方程为y 2=⎩⎪⎨⎪⎧4x ,x ≥0,0,x <0.(2)在点M 的轨迹C 中,记C 1:y 2=4x ,C 2:y =0(x <0).依题意,可设直线l 的方程为y -1=k (x +2).由方程组⎩⎪⎨⎪⎧y -1=k (x +2),y 2=4x ,可得ky 2-4y +4(2k +1)=0.①当k =0时,y =1.把y =1代入轨迹C 的方程,得x =14.故此时直线l :y =1与轨迹C 恰好有一个公共点⎝⎛⎭⎫14,1.当k ≠0时,方程①的判别式Δ=-16(2k 2+k -1).② 设直线l 与x 轴的交点为(x 0,0),则由y -1=k (x +2),令y =0,得x 0=-2k +1k.③(i)若⎩⎪⎨⎪⎧Δ<0,x 0<0,由②③解得k <-1或k >12.即当k ∈(-∞,-1)∪⎝⎛⎭⎫12,+∞时,直线l 与C 1没有公共点,与C 2有一个公共点.故此时直线l 与轨迹C 恰好有一个公共点.(ii)若⎩⎪⎨⎪⎧Δ=0,x 0<0,或⎩⎪⎨⎪⎧Δ>0,x 0≥0,由②③解得k ∈⎩⎨⎧⎭⎬⎫-1,12或-12≤k <0.即当k ∈⎩⎨⎧⎭⎬⎫-1,12时,直线l 与C 1只有一个公共点.当k ∈⎣⎡⎭⎫-12,0时,直线l 与C 1有两个公共点,与C 2没有公共点.故当k ∈⎣⎡⎭⎫-12,0∪⎩⎨⎧⎭⎬⎫-1,12时,直线l 与轨迹C 恰好有两个公共点. (iii)若⎩⎪⎨⎪⎧Δ>0,x 0<0,由②③解得-1<k <-12或0<k <12.即当k ∈⎝⎛⎭⎫-1,-12∪⎝⎛⎭⎫0,12时,直线l 与C 1有两个公共点,与C 2有一个公共点,故此时直线l 与轨迹C 恰好有三个公共点.综上可知,当k ∈()-∞,-1∪⎝⎛⎭⎫12,+∞∪{0}时,直线l 与轨迹C 恰好有一个公共点;当k ∈⎣⎡⎭⎫-12,0∪⎩⎨⎧⎭⎬⎫-1,12时,直线l 与轨迹C 恰好有两个公共点;当k ∈⎝⎛⎭⎫-1,-12∪⎝⎛⎭⎫0,12时,直线l 与轨迹C 恰好有三个公共点.16.[2014·山东卷] 已知抛物线C :y 2=2px (p >0)的焦点为F ,A 为C 上异于原点的任意一点,过点A 的直线l 交C 于另一点B ,交x 轴的正半轴于点D ,且有|F A |=|FD |.当点A 的横坐标为3时,△ADF 为正三角形. (1)求C 的方程.(2)若直线l 1∥l ,且l 1和C 有且只有一个公共点E .①证明直线AE 过定点,并求出定点坐标.②△ABE 的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.16.解:(1)由题意知F ⎝⎛⎭⎫p 2,0.设D (t ,0)(t >0),则FD 的中点为⎝⎛⎭⎫p +2t 4,0.因为|F A |=|FD |,由抛物线的定义知3+p 2=⎪⎪⎪⎪t -p 2,解得t =3+p 或t =-3(舍去).由p +2t 4=3,解得p =2,所以抛物线C 的方程为y 2=4x .(2)①证明:由(1)知F (1,0).设A (x 0,y 0)(x 0y 0≠0),D (x D ,0)(x D >0).因为|F A |=|FD |,则|x D -1|=x 0+1, 由x D >0得x D =x 0+2,故D (x 0+2,0).故直线AB 的斜率k AB =-y 02.因为直线l 1和直线AB 平行,设直线l 1的方程为y =-y 02x +b ,代入抛物线方程得y 2+8y 0y -8b y 0=0,由题意Δ=64y 20+32b y 0=0,得b =-2y 0.设E (x E ,y E ),则y E =-4y 0,x E =4y 20.当y 20≠4时,k AE =y E -y 0x E -x 0=-4y 0+y04y 20-y 204=4y 0y 20-4,可得直线AE 的方程为y -y 0=4y 0y 20-4(x -x 0),由y 20=4x 0,整理可得y =4y 0y 20-4(x -1),直线AE 恒过点F (1,0).当y 20=4时,直线AE 的方程为x =1,过点F (1,0).所以直线AE 过定点F (1,0).②由①知,直线AE 过焦点F (1,0),所以|AE |=|AF |+|FE |=(x 0+1)+⎝⎛⎭⎫1x 0+1=x 0+1x 0+2.设直线AE 的方程为x =my +1,因为点A (x 0,y 0)在直线AE 上,故m =x 0-1y 0.设B (x 1,y 1).直线AB 的方程为y -y 0=-y 02(x -x 0),由y 0≠0,得x =-2y 0y +2+x 0.代入抛物线方程得y 2+8y 0y -8-4x 0=0,所以y 0+y 1=-8y 0,可求得y 1=-y 0-8y 0,x 1=4x 0+x 0+4.所以点B 到直线AE 的距离为d =⎪⎪⎪⎪4x 0+x 0+4+m ⎝⎛⎭⎫y 0+8y 0-11+m 2=4(x 0+1)x 0=4⎝⎛⎭⎫x 0+1x 0, 则△ABE 的面积S =12×4⎝⎛⎭⎫x 0+1x 0x 0+1x 0+2≥16,当且仅当1x 0=x 0,即x 0=1时,等号成立.所以△ABE 的面积的最小值为16.。

2014年高考数学(理)三轮冲刺模拟:解析几何(含新题详解)

2014年高考数学(理)三轮冲刺模拟:解析几何(含新题详解)

【最后一搏典型题推荐】解析几何本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟.第Ⅰ卷一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2013·济南模拟)若k,-1,b三个数成等差数列,则直线y=kx+b必经过定点()A.(1,-2)B.(1,2)C.(-1,2) D.(-1,-2)【解析】依题意,k+b=-2,∴b=-2-k,∴y=kx+b=k(x-1)-2,∴直线y=k(x-1)-2必过定点(1,-2).【答案】 A2.(2013·福建高考)已知集合A={1,a},B={1,2,3},则“a=3”是“A⊆B”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【解析】∵A={1,a},B={1,2,3},A⊆B,∴a∈B且a≠1,∴a=2或3,∴“a=3”是“A⊆B”的充分而不必要条件.【答案】 A3.(2013·陕西高考)设z1,z2是复数,则下列命题中的假.命题是()A.若|z1-z2|=0,则z1=z2B.若z1=z2,则z1=z2C.若|z1|=|z2|,则z1·z1=z2·z2D.若|z1|=|z2|,则z21=z22【解析】A,|z1-z2|=0⇒z1-z2=0⇒z1=z2⇒z1=z2,真命题;B ,z 1=z 2⇒z 1=z 2=z 2,真命题;C ,|z 1|=|z 2|⇒|z 1|2=|z 2|2⇒z 1·z 1=z 2·z 2,真命题;D ,当|z 1|=|z 2|时,可取z 1=1,z 2=i ,显然z 21=1,z 22=-1,即z 21≠z 22,假命题.【答案】 D4.若圆心在x 轴上、半径为5的圆O 位于y 轴左侧,且与直线x +2y =0相切,则圆O 的方程是( )A .(x -5)2+y 2=5B .(x +5)2+y 2=5C .(x -5)2+y 2=5D .(x +5)2+y 2=5【解析】 设圆心为(a,0)(a <0),则r =|a +2×0|12+22=5,解得a =-5,所以,所求圆的方程为:(x +5)2+y 2=5,故选D.【答案】 D5.(2013·北京高考)若双曲线x 2a 2-y 2b 2=1的离心率为3,则其渐近线方程为( )A .y =±2xB .y =±2xC .y =±12xD .y =±22x【解析】 ∵e =3,∴ca =3,即a 2+b 2a 2=3,∴b 2=2a 2,∴双曲线方程为x 2a 2-y22a 2=1,∴渐近线方程为y =±2x . 【答案】 B6.(2013·课标全国卷Ⅱ)设抛物线C :y 2=2px (p ≥0)的焦点为F ,点M 在C 上,|MF |=5.若以MF 为直径的圆过点(0,2),则C 的方程为( )A .y 2=4x 或y 2=8xB .y 2=2x 或y 2=8xC .y 2=4x 或y 2=16xD .y 2=2x 或y 2=16x【解析】 设M (x 0,y 0),A (0,2),MF 的中点为N .由y 2=2px ,F ⎝ ⎛⎭⎪⎫p 2,0,∴N 点的坐标为x 0+p22,y 02. 由抛物线的定义知,x 0+p2=5, ∴x 0=5-p2.∴y 0=2p ⎝ ⎛⎭⎪⎫5-p 2. ∵|AN |=|MF |2=52,∴|AN |2=254. ∴x 0+p 222+y 02-22=254.即⎝ ⎛⎭⎪⎫5-p 2+p 224+2p ⎝ ⎛⎭⎪⎫5-p 22-22=254. ∴2p ⎝ ⎛⎭⎪⎫5-p 22-2=0.整理得p 2-10p +16=0. 解得p =2或p =8.∴抛物线方程为y 2=4x 或y 2=16x . 【答案】 C7.若变量x ,y 满足约束条件⎩⎨⎧x +y ≤2,x ≥1,y ≥0,则z =2x +y 的最大值和最小值分别为( )A .4和3B .4和2C .3和2D .2和0【解析】 作直线2x +y =0,并向右上平移,过点A 时z 取最小值,过点B 时z 取最大值,可求得A (1,0),B (2,0),∴z min =2,z max =4. 【答案】 B8.(2013·北京高考)直线l 过抛物线C :x 2=4y 的焦点且与y 轴垂直,则l 与C 所围成的图形的面积等于( )A.43 B .2C.83D.1623【解析】 由C :x 2=4y ,知焦点P (0,1). 直线l 的方程为y =1. 所求面积S =⎠⎛2-2⎝ ⎛⎭⎪⎫1-x 24d x =⎪⎪⎪⎝ ⎛⎭⎪⎫x -x 3122-2=83.【答案】 C9.(2013·皖南八校联考)双曲线x 2m -y 2n =1(m >0,n >0)的离心率为2,有一个焦点与抛物线y 2=4mx 的焦点重合,则n 的值为( )A .1B .4C .8D .12 【解析】 抛物线焦点F (m,0)为双曲线的一个焦点, ∴m +n =m 2.又双曲线离心率为2, ∴1+nm =4,即n =3m .所以4m =m 2,可得m =4,n =12. 【答案】 D10.(2013·杭州质检)已知椭圆C 的方程为x 216+y 2m 2=1(m >0),如果直线y =22x 与椭圆的一个交点M 在x 轴上的射影恰好是椭圆的右焦点F ,则m 的值为( )A .2B .2 2C .8D .2 3 【解析】 根据已知条件c =16-m 2,则点(16-m 2,2216-m 2)在椭圆x 216+y 2m 2=1(m >0)上,∴16-m 216+16-m 22m 2=1,可得m =2 2. 【答案】 B第Ⅱ卷二、填空题(本大题共5小题,每小题5分,共25分,把答案填在题中横线上)11.已知点M (3,0),椭圆x 24+y 2=1与直线y =k (x +3)交于点A 、B ,则△ABM 的周长为________.【解析】 因为直线过椭圆的左焦点(-3,0),所以△ABM 的周长为|AB |+|AM |+|BM |=4a =8.【答案】 812.l 1,l 2是分别经过A (1,1),B (0,-1)两点的两条平行直线,当l 1,l 2间的距离最大时,直线l 1的方程是________.【解析】 当AB ⊥l 1,且AB ⊥l 2时,l 1与l 2间的距离最大. 又k AB =-1-10-1=2, ∴直线l 1的斜率k =-12,则l 1的方程是y -1=-12(x -1),即x +2y -3=0. 【答案】 x +2y -3=013.(2013·福建高考改编)双曲线x 24-y 2=1的顶点到其渐近线的距离等于________.【解析】 由x 24-y 2=1知顶点(2,0),渐近线x ±2y =0,∴顶点到渐近线的距离d =25=255. 【答案】25514.执行如图1所示的程序框图,若输入n 的值为4,则输出s 的值为________.图1【解析】 i =1,s =1→s =1,i =2→s =2,i =3→s =4,i =4→s =7,i =5结束.【答案】 715.三角形ABC 中,已知AB →·BC →+BC →·CA →+CA →·AB →=-6,且角C 为直角,则角C 的对边c 的长为__________.【解析】 由AB →·BC →+BC →·CA →+CA →·AB →=-6, 得AB →·(BC →+CA →)+BC →·CA →=-6, 即AB →·BA →+BC →·CA →=-6, ∵C =90°,∴-c 2=-6,c = 6. 【答案】6三、解答题(本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤)16.(本小题满分12分)已知圆C 的方程为:x 2+y 2-2mx -2y +4m -4=0(m ∈R ).(1)试求m 的值,使圆C 的面积最小;(2)求与满足(1)中条件的圆C 相切,且过点(1,-2)的直线方程. 【解】 圆C 的方程:(x -m )2+(y -1)2=(m -2)2+1. (1)当m =2时,圆的半径有最小值1,此时圆的面积最小. (2)当m =2时,圆的方程为(x -2)2+(y -1)2=1, 设所求的直线方程为y +2=k (x -1), 即kx -y -k -2=0,由直线与圆相切,得|2k -1-k -2|k 2+1=1,k =43, 所以切线方程为y +2=43(x -1),即4x -3y -10=0, 又因为过点(1,-2)且与x 轴垂直的直线x =1与圆也相切, 所以所求的切线方程为x =1或4x -3y -10=0.17.(本小题满分12分)(2013·山东高考改编)在平面直角坐标系xOy 中,已知椭圆C 的中心在原点O ,焦点在x 轴上,短轴长为2,离心率为22.(1)求椭圆C 的方程;(2)设A ,B 是椭圆C 上的两点,△AOB 的面积为64.若A 、B 两点关于x 轴对称,E 为线段AB 的中点,射线OE 交椭圆C 于点P .如果OP →=tOE →,求实数t的值.【解】 (1)设椭圆C 的方程为:x 2a 2+y 2b 2=1(a >b >0),则⎩⎪⎨⎪⎧c 2=a 2-b 2,c a =22,2b =2,解得a =2,b =1,故椭圆C 的方程为x 22+y 2=1.(2)由于A 、B 两点关于x 轴对称,可设直线AB 的方程为x =m (-2<x <2,且m ≠0).将x =m 代入椭圆方程得|y |=2-m 22,所以S △AOB =|m |2-m 22=64.解得m 2=32或m 2=12.①又OP→=tOE →=12t (OA →+OB →)=12t (2m,0)=(mt,0), 又点P 在椭圆上,所以(mt )22=1.②由①②得t 2=4或t 2=43.又因为t >0,所以t =2或t =233.18.(本小题满分12分)如图2,四棱柱ABCD -A 1B 1C 1D 1的底面ABCD 是正方形,O 为底面中心,A 1O ⊥平面ABCD ,AB =AA 1= 2.图2(1)证明:A 1C ⊥平面BB 1D 1D ;(2)求平面OCB 1与平面BB 1D 1D 的夹角θ的大小.【解】 (1)证明 法一:由题设易知OA ,OB ,OA 1两两垂直,以O 为原点建立如图所示的空间直角坐标系.∵AB =AA 1=2, ∴OA =OB =OA 1=1,∴A (1,0,0),B (0,1,0),C (-1,0,0),D (0,-1,0),A 1(0,0,1). 由A 1B 1→=AB →,易得B 1(-1,1,1).∵A 1C →=(-1,0,-1),BD →=(0,-2,0),BB 1→=(-1,0,1), ∴A 1C →·BD →=0,A 1C →·BB 1→=0, ∴A 1C ⊥BD ,A 1C ⊥BB 1,又BD ∩BB 1=B ,A 1C ⊄平面BB 1D 1D , ∴A 1C ⊥平面BB 1D 1D .法二:∵A 1O ⊥平面ABCD ,∴A 1O ⊥BD .又∵ABCD 是正方形,∴BD ⊥AC ,∴BD ⊥平面A 1OC ,∴BD ⊥A 1C . 又OA 1是AC 的中垂线,∴A 1A =A 1C =2,且AC =2,∴AC 2=AA 21+A 1C 2,∴△AA 1C 是直角三角形,∴AA 1⊥A 1C . 又BB 1∥AA 1,∴A 1C ⊥BB 1, ∴A 1C ⊥平面BB 1D 1D .(2)设平面OCB 1的法向量n =(x ,y ,z ). ∵OC →=(-1,0,0),OB 1→=(-1,1,1), ∴⎩⎪⎨⎪⎧n ·OC →=-x =0,n ·OB 1→=-x +y +z =0,∴⎩⎨⎧x =0,y =-z .取n =(0,1,-1),由(1)知,A 1C →=(-1,0,-1)是平面BB 1D 1D 的法向量, ∴cos θ=|cos 〈n ,A 1C →〉|=12×2=12. 又∵0≤θ≤π2,∴θ=π3.19.(本小题满分12分)(2013·广东高考)设各项均为正数的数列{a n }的前n 项和为S n ,满足4S n =a 2n +1-4n -1,n ∈N *,且a 2,a 5,a 14构成等比数列.(1)证明:a 2=4a 1+5; (2)求数列{a n }的通项公式;(3)证明:对一切正整数n ,有1a 1a 2+1a 2a 3+…+1a n a n +1<12.【解】 (1)证明:由4S n =a 2n +1-4n -1,得4S 1=a 22-4-1, 即4a 1=a 22-4-1,所以a 22=4a 1+5.因为a n >0,所以a 2=4a 1+5. (2)因为4S n =a 2n +1-4n -1,①所以当n ≥2时,4S n -1=a 2n -4(n -1)-1,②由①-②得4a n =a 2n +1-a 2n -4, 即a 2n +1=a 2n +4a n +4=(a n +2)2(n ≥2).因为a n >0,所以a n +1=a n +2,即a n +1-a n =2(n ≥2). 因为a 2,a 5,a 14成等比数列,所以a 25=a 2a 14,即(a 2+3×2)2=a 2(a 2+12×2),解得a 2=3.又由(1)知a 2=4a 1+5,所以a 1=1,所以a 2-a 1=2. 综上知a n +1-a n =2(n ∈N *),所以数列{a n }是首项为1,公差为2的等差数列. 所以a n =1+2(n -1)=2n -1.所以数列{a n }的通项公式为a n =2n -1(n ∈N *). (3)证明:由(2)知1a n a n +1=1(2n -1)(2n +1)=12⎝ ⎛⎭⎪⎫12n -1-12n +1, 所以1a 1a 2+1a 2a 3+…+1a n a n +1=12⎝ ⎛⎭⎪⎫1-13+13-15+…+12n -1-12n +1=12⎝⎛⎭⎪⎫1-12n +1=12-14n +2<12. 20.(本小题满分13分)(2013·安徽高考)设椭圆E :x 2a 2+y 21-a 2=1的焦点在x轴上.(1)若椭圆E 的焦距为1,求椭圆E 的方程;(2)设F 1、F 2分别是椭圆E 的左、右焦点,P 为椭圆E 上第一象限内的点,直线F 2P 交y 轴于点Q ,并且F 1P ⊥F 1Q .证明:当a 变化时,点P 在某定直线上.【解】 (1)因为椭圆的焦点在x 轴上且焦距为1,所以2a 2-1=14,解得a 2=58.故椭圆E 的方程为8x 25+8y 23=1.(2)证明 设P (x 0,y 0),F 1(-c,0),F 2(c,0),其中c =2a 2-1. 由题设知x 0≠c ,则直线F 1P 的斜率kF 1P =y 0x 0+c ,直线F 2P 的斜率kF 2P =y 0x 0-c.故直线F2P的方程为y=y0x0-c(x-c).当x=0时,y=cy0c-x0,即点Q坐标为⎝⎛⎭⎪⎫0,cy0c-x0.因此,直线F1Q的斜率为kF1Q=y0c-x0.由于F1P⊥F1Q,所以kF1P·kF1Q=y0x0+c·y0c-x0=-1.化简得y20=x20-(2a2-1).①将①代入椭圆E的方程,由于点P(x0,y0)在第一象限,解得x0=a2,y0=1-a2,即点P在定直线x+y=1上.21.(本小题满分14分)在平面直角坐标系xOy中,F是抛物线C:x2=2py(p>0)的焦点,M是抛物线C上位于第一象限内的任意一点,过M,F,O三点的圆的圆心为Q,点Q到抛物线C的准线的距离为3 4.(1)求抛物线C的方程;(2)是否存在点M,使得直线MQ与抛物线C相切于点M?若存在,求出点M的坐标;若不存在,说明理由.【解】(1)依题意知F(0,p2),圆心Q在线段OF的垂直平分线y=p4上,因为抛物线C的准线方程为y=-p 2,所以3p4=34,即p=1.因此抛物线C的方程为x2=2y.(2)假设存在点M(x0,x202)(x0>0)满足条件,抛物线C在点M处的切线斜率为y′|x=x0=(x22)′|x=x0=x0,所以直线MQ的方程为y-x202=x0(x-x0).令y=14得x Q=x02+14x0,所以Q(x02+14x0,14).又|QM |=|OQ |,故(14x 0-x 02)2+(14-x 202)2=(14x 0+x 02)2+116, 因此(14-x 202)2=916.又x 0>0,所以x 0=2,此时M (2,1).故存在点M (2,1),使得直线MQ 与抛物线C 相切于点M .。

2014年全国高考试卷解析几何部分汇编(下)

2014年全国高考试卷解析几何部分汇编(下)

2014年全国高考试卷解析几何部分汇编(下)1. (2014理10)已知0a b >>,椭圆1C 的方程为22221x y a b +=,双曲线2C 的方程为22221x y a b-=,1C 与2C 的离,则2C 的渐近线方程为( ) A.0x ±= B0y ±= C .20x y ±= D .20x y ±=【解析】 A2. (2014理21)已知抛物线2:2(0)C y px p =>的焦点为F ,A 为C 上异于原点的任意一点,过点A 的直线l 交C 于另一点B ,交x 轴的正半轴于点D ,且有||||FA FD =.当点A 的横坐标为3时,ADF△为正三角形. ⑴求C 的方程;⑵若直线1l l ∥,且1l 和C 有且只有一个公共点E ,①证明直线AE 过定点,并求出定点坐标;②ABE △的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.【解析】 ⑴当A 的横坐标为3时,过A 作AG x ⊥轴于G ,3pAF =+32pFD AF ∴==+AFD △为等边三角形13224pFG FD ∴==+又32pFG =-33242p p∴+=-,2p ∴=,2:4C y x ∴= ⑵(ⅰ)设11()A x y ,,11FD AF x ==+ ()120D x ∴+,,12AB y k ∴=-1//AB l l ,1112l k y ∴=-又1l 与C 相切,设切点()E E E x y ,, 214x y =,12x y '=,1122E y y -∴=,14E y y ∴=- 22111444E x y y ⎛⎫=-= ⎪⎝⎭,211211444y E A y y y ⎛⎫⎛⎫∴- ⎪ ⎪⎝⎭⎝⎭,,, 1211121214:444AEy y y l y y x y y +⎛⎫∴-=- ⎪⎝⎭-即()121414y y x y =--恒过点()10,∴直线AE 过定点()10,.(ⅱ)2111:24AB y y l y y x ⎛⎫-=-- ⎪⎝⎭,即21122244y x y y y x ⎧=-++⎪⎨⎪=⎩,得()2211880y y y y +-+= 1218y y y +=-,2118y y y ∴=--12118+AB y y y y =-= 点E 到AB的距离d =32311121111184222222162242y y S AB d y y y y ∴=⋅=+++=+⨯=≥,当且仅当12y =±时,“=”成立.3. (2014文14)圆心在直线20x y -=上的圆C 与y 轴的正半轴相切,圆C 截x轴所得弦的长为,则圆C 的标准方程为.【解析】 ()()22214x y -+-= 4. (2014文15)已知双曲线22221(0,0)x y a b a b-=>>的焦距为2c ,右顶点为A ,抛物线22(0)x py p =>的焦点为F ,若双曲线截抛物线的准线所得线段长为2c ,且||FA c =,则双曲线的渐近线方程为.【解析】 y x =±由已知得2p b ==,抛物线准线与双曲线的一个交点坐标为2p c ⎛⎫- ⎪⎝⎭,,即()c b -,代入双曲线方程为22221c b a b -=得222c a=,1b a ∴=∴渐近线方程为y x =±.故答案为y x =±.5. (2014文21)在平面直角坐标系xOy 中,椭圆2222:1(0)x y C a b a b+=>>,直线y x =被椭圆C⑴求椭圆C 的方程;⑵过原点的直线与椭圆C 交于A B ,两点(A B ,不是椭圆C 的顶点). 点D 在椭圆C 上,且AD AB ⊥,直线BD 与x 轴、y 轴分别交于M ,N 两点.①设直线BD ,AM 的斜率分别为12,k k ,证明存在常数λ使得12k k λ=,并求出λ的值; ②求OMN ∆面积的最大值.【解析】⑴c e a ==,设2c a n ==,,则b n =,椭圆方程为2224x y n +=设y x =与椭圆在第一象限的交点为()00x y ,则00x y =000x y ⎧=⎪⎪=∴⎨⎪=⎪⎩将代入椭圆得1n =,2214x y ∴+=⑵方法一:(ⅰ)设AB l :y kx =2244y kx A B x y =⎛⎫⎛⎫⎧⇒⎨+=⎩, AD l:2211k y x y x k k +⎛⎫=-⇒=- ⎝2222222442242482402114x y k k k k x k k k k y x k ⎧+=⎛⎫++ ⎪⎪+⎪⎝⎭⇒++-=+⎨+⎪=--⎪⎩222216164D D k x k +=⇒=+3D y =3124kk -∴==+BD l:4k y x ⎛⎫-=⎝ 令0y=0m x M ⎛⎫⇒=⇒⎪⎭22k k ∴==-121122k k λ∴=-∴=-,(ⅱ)0⎛⎫⎪⎭,对BD l:4k y x ⎛⎫=- ⎝ 令0x =得3N k y319121224OMNkSkk∴==⨯+△14kk+≥4当且仅当12k=±时取等号[]max919248OMNS∴=⨯=△方法二:(ⅰ)设()()1122B x y D x y,,,则()11A x y--,1212ADy ykx x+=+221122221414xyxy⎧+=⎪⎪⎨⎪+=⎪⎩()()()()121212124x x x xy y y y+-++-=即1212121214y y y yx x x x-+⋅=--+114ADk k∴⋅=-又AB AD⊥1AB ADk k∴⋅=-14ABk k∴=()111:BDl y y k x x-=-令0y=,111yx xk=-+令0x=,111y y k x=-()11111100yM x N y k xk⎛⎫∴-+-⎪⎝⎭,,,111211111111211222ABAByy x kk ky ykxkk x k====--⋅--⋅1212k k∴=-12λ∴=-(ⅱ)()11111112OMNyS x y k xk⎛⎫=-+-⎪⎝⎭△1114ykx=11999888 OMNS x y∴===△[]max 98OMN S ∴=△当且仅当1x ==”成立.6. (2014理12)若圆C 的半径为1,其圆心与点(1,0)关于直线y x =对称,则圆C 的标准方程为_________________.【解析】 22(1)1x y +-=根据题意得点(10),关于直线y x =对称的点(01),为圆心,又半径1r =,所以圆C 的标准方程为22(1)1x y +-=.7. (2014理20)如图,曲线C 由上半椭圆1C :()2222100y x a b y a b+=>>,≥和部分抛物线2C :()210y x y =-+≤连接而成,1C 与2C 的公共点为A B ,其中1C.⑴求a b ,的值;⑵过点B 的直线l 与12C C ,别交于点P Q ,(均异于点A B ,),若AP AQ ⊥,求直线l 的方程.【解析】 ⑴在12C C ,的方程中,令0y =,可得1b =,且(10)(10)A B -,,,是上半椭圆1C 的 左,右顶点.设1C 的半焦距为c,由c a =及2221a c b -==得2a =. 21a b ∴==,.⑵解法一:由⑴知,上半椭圆1C 的方程为221(0)4y x y +=≥.易知,直线l 与x 轴不重合也不垂直,设其方程(1)(0)y k x k =-≠,代入1C 的方程,整理得2222(4)240k x k x k +-+-=*() 设点P 的坐标为()p p x y ,, 直线l 过点B ,1x ∴=是方程*()的一个根. 由求根公式,得2244p k x k -=+,从而284p k y k -=+,∴点P 的坐标为22248()44k kk k --++,.同理,由2(1)(0)1(0)y k x k y x y =-≠⎧⎨=-+⎩≤,,得点Q 的坐标为2(12)k k k ----,. 22(4)(12)4kAP k AQ k k k ∴=-=-++,,,.0Ap AQ AP AQ ∴⊥∴⋅=,,即222[4(2)]04k k k k --+=+,04(2)0k k k ∴≠∴-+=,解得83k =-.经检验,83k =-符合题意,故直线l 的方程为8(1)3y x =--.解法二:若设直线l 的方程为1(0)x my m =+≠,比照解法一给分.8. (2014文11)抛物线24y x =的准线方程为____________.【解析】 1x =- 9. (2014文20)已知椭圆22221(0)x y a b a b+=>>经过点(0,离心率为12,左右焦点分别为12(0)(0)F c F c -,,,. ⑴求椭圆的方程;⑵若直线1:2l x m =-+与椭圆交于点A B ,,与以12F F 为直径的圆交于C D ,两点,且满足AB CD =求直线l 的方程.【解析】 ⑴由题设知2221,2,b c a b a c ⎧=⎪⎪=⎨⎪⎪=-⎩解得2a =,b =1c =,∴椭圆的方程为22143x y +=.⑵由⑴知,以12F F 为直径的圆的方程为221x y +=, ∴圆心到直线l的距离d =,由1d <得5||2m <.(*)∴||CD ==.设()()1122A x y B x y ,,由2212143y x m x y ⎧=-+⎪⎪⎨⎪+=⎪⎩ 得22=0x mx m -+ 有212123x x m x x m +==-,AB =由||||AB CD =1=,解得m =,满足(*) ∴直线l的方程为12y x =-+或12y x =-.10. (2014理22)在平面直角坐标系xoy 中,对于直线:0l ax by c ++=和点111(,)P x y ,222(,)P x y记1122()()ax by c ax by c η=++++,若0η<,则称点12,P P 被直线l 分隔。

高考数学专题复习2014年高三一模汇编——解析几何

高考数学专题复习2014年高三一模汇编——解析几何

2014年高三一模汇编——解析几何一、填空题1.(2014杨浦一模理2文2)若直线013=--x y 的倾斜角是θ,则=θ (结果用反三角函数值表示). 【答案】3arctan2.(2014杨浦一模理5文5)双曲线2221(0)y x b b-=>的一条渐近线方程为y =,则b =________.【答案】33.(2014杨浦一模理13)设a ,b 随机取自集合{1,2,3},则直线30ax by ++=与圆221x y +=有公共点的概率是 . 【答案】95 4.(2014松江一模理6文8)将直线1l :30x y +-=绕着点(1,2)P 按逆时针方向旋转45︒后得到直线2l ,则2l 的方程为 .【答案】2y =5.(2014松江一模理9文10)若圆222(0)x y R R +=>和曲线||||134x y +=恰有六个公共点,则R 的值是 . 【答案】36.(2014松江一模理12文13)设12,F F 是双曲线2222:1(0,0)x y C a b a b -=>>的两个焦点,P 是C 上一点,若126PF PF a +=,且12PF F ∆的最小内角为30o,则C 的渐近线方程为 .【答案】y =7.(2014嘉定一模理7文7)已知双曲线(,)满足,且双曲线的右焦点与抛物线的焦点重合,则该双曲线的方程为______________.【答案】8.(2014嘉定一模理11文12)在平面直角坐标系中,动点到两条直线与的距离之和等于,则到原点距离的最小值为_________.12222=-by a x 0>a 0>b 021=b a x y 342=1222=-y x P 03=-y x 03=+y x 4P【答案】9.(2014嘉定一模理12文13)设集合,若存在实数,使得,则实数的取值范围是___________. 【答案】 10.(2014普陀一模理文5)若圆1)1(22=-+y x 的圆心到直线:n l 0=+ny x (*N n ∈)的距离为n d ,则=∞→n n d lim .【答案】111.(2014普陀一模理文7)已知椭圆13422=+y x 的左、右两个焦点分别为1F 、2F ,若经过1F 的直线l 与椭圆相交于A 、B 两点,则△2ABF 的周长等于 . 【答案】812.(2014奉贤一模理8)已知定点()0,4A 和圆2x +2y =4上的动点B ,动点()y x P ,满足2=+,则点P 的轨迹方程为 ;【答案】()1222=+-y x(2014奉贤一模文8)已知定点()0,4A 和圆2x +2y =4上的动点B ,点()y x P ,是线段AB 的中点,则点P 的轨迹方程为 ;【答案】()1222=+-y x13.(2014闸北一模理文2)已知双曲线的右焦点与抛物线的焦点重合,则.【答案】614.(2014闸北一模理文5)已知直线的一个法向量,其中,则的倾斜角为 .【答案】 15.(2014闸北一模理10)设曲线:,则曲线所围封闭图形的面积为_______.22}1)4(),{(22=+-=y x y x A }1)2()(),{(22=+-+-=at y t x y x B t ∅≠B A I a ⎥⎦⎤⎢⎣⎡34,0204522=-y x px y 22==p l ()b a n ,=0>ab l ⎪⎭⎫⎝⎛-+b a arctan πC )(32222y x y x +=++C【答案】(2014闸北一模文10)由曲线所围成的封闭图形的面积为_______. 【答案】16.(2014虹口一模理文5)双曲线19422=-y x 的焦点到渐近线的距离等于 . 【答案】317.(2014虹口一模理文9)已知椭圆的中心在原点,一个焦点与抛物线x y 82=的焦点重合,一个顶点的坐标为)2,0(,则此椭圆方程为 .【答案】14822=+y x 18.(2014青浦一模理文1)在直角坐标系中,到点)0,1(和直线1-=x 距离相等的点的轨迹方程是 ; 【答案】x y 42=19.(2014青浦一模理文13)已知直角坐标平面上任意两点),(),(2211y x Q y x P 、,定义 121212121212||||||(,)||||||x x x x y y d P Q y y x x y y --≥-⎧=⎨--<-⎩,,为Q P 、两点的“非常距离”.当平面上动点),(y x M到定点(,)A a b 的距离满足||3MA =时,则(,)d M A 的取值范围是 ;【答案】⎥⎦⎤⎢⎣⎡3223, 20.(2014金山一模理文13)如图,已知直线063-4:=+y x l ,抛物线x y C 4:2=图像上的一个动点P 到直线l 与y 轴的距离之和的最小值是 . 【答案】121.(2014宝山一模理文9)若双曲线的渐近线方程为x y 3±=,它的一个焦点与抛物线x y 1042=的焦点重合,则双曲线的标准方程为 .38332+πy x y x +=+222+π【答案】2219y x -=22.(2014徐汇一模理5文6)直线()1:330l a x y ++-=与直线()2:5340l x a y +-+=,若1l 的方向向量是2l 的法向量,则实数a= . 【答案】2-23.(2014徐汇一模理9文10)双曲线221mx y +=的虚轴长是实轴长的2倍,则m= . 【答案】41-24.(2014徐汇一模理10文12)在平面直角坐标系中,动点P 和点M(-2,0)、N(2,0)满足0MN MP MN NP ⋅+⋅=u u u u r u u u r u u u u r u u u r,则动点P(x,y)的轨迹方程为 .【答案】x y 82-=25.(2014闵行一模理文6)已知双曲线2221(0)k x y k -=>的一条渐近线的法向量是(1,2),那么k = . 【答案】1226.(2014闵行一模理文12)设i j r r、依次表示平面直角坐标系x 轴、y 轴上的单位向量,且2a i a j -+-=r r r r 2a i +r r的取值范围是 .【答案】⎤⎥⎣⎦27.(2014崇明一模理文3)直线12+=y x 的一个法向量可以是 . 【答案】()1,2-28.(2014崇明一模理文12)已知双曲线()222210,0x y a b a b -=>>的左右焦点分别是21,F F ,设P 是双曲线右支上一点,21F F 在P F 1上的投影的大小恰好为1F P u u u r ,且它们的夹角为54arccos ,则双曲线的渐近线方程为 .【答案】y =±29.(2014静安一模理文10)设某抛物线mx y =2的准线与直线1=x 之间的距离为3,则该抛物线的方程为 .【答案】x y 82=或x y 162-=30.(2014静安一模理12)已知椭圆142:22=+y x C 的上、下焦点分别为1F 、2F ,过椭圆C 上一点)2,1(P 作倾斜角互补的两条直线PA 、PB ,分别交椭圆C 于A 、B 两点.则直线AB 的斜率为 . 【答案】231.(2014静安一模文11)椭圆C 的焦点在x 轴上,焦距为2,直线l :01=--y x 与椭圆C 交于A 、B 两点,F 1是左焦点,且B F A F 11⊥,则椭圆C 的标准方程是 .【答案】1313222=+++y x32.(2014静安一模理13)若圆6)()(:22=-+-b y a x M 与圆5)1()1(:22=+++y x N 的两个交点始终为圆5)1()1(:22=+++y x N 的直径两个端点,则动点),(b a M 的轨迹方程为 . 【答案】1)1()1(22=+++b a33.(2014静安一模文14)设与圆1)1()1(22=-+-y x 相切的直线l 经过两点),0(),0,(b B a A ,其中a>2,b>2,O 为坐标原点,则△AOB 面积的最小值为 . 【答案】322+二、选择题1.(2014奉贤一模理文17)椭圆22221(0)x y a b a b+=>>的内接三角形ABC (顶点A 、B 、C 都在椭圆上)的边,AB AC 分别过椭圆的焦点1F 和2F ,则ABC ∆周长( )(A )总大于6a (B )总等于6a (C )总小于6a (D )与6a 的大小不确定 【答案】C2.(2014奉贤一模理文18)设双曲线22*(1)1()nx n y n N -+=∈上动点P 到定点(1,0)Q 的距离的最小值为n d ,则lim n n d →+∞的值为( )第17题图(A(B )12(C ) 0 (D )1【答案】A3.(2014闸北一模理文12)在平面内,设,为两个不同的定点,动点满足:(为实常数),则动点的轨迹为【 】A .圆B .椭圆C .双曲线D .不确定 【答案】A4.(2014青浦一模理文16)直线2(1)210a x ay +-+=的倾斜角的取值范围是( ) A. ]4,0[πB. ]2,4[ππ C. ]43,4[ππD. ),43[]4,0[πππY【答案】C5.(2014金山一模理文18)已知有相同两焦点21F F 、的椭圆221(1)x y m m +=>和双曲线221(0)x y n n-=>,点P 是它们的一个交点,则21ΔPF F 面积的大小是( ). (A )21 (B )22 (C )1 (D )2 【答案】C6.(2014宝山一模理文18)记()1X xy =,00A D T A E D E F ⎛⎫ ⎪=- ⎪ ⎪⎝⎭,1x X y ⎛⎫⎪'= ⎪ ⎪⎝⎭,则方程0='X XT 表示的曲线只可能是( )(A )圆 (B )椭圆 (C )双曲线 (D )抛物线 【答案】C7.(2014徐汇一模理15)直线()0,0bx ay ab a b +=<<的倾斜角是---------------------( ) (A) arctan a b π- (B) arctan b a π- (C) arctan a b ⎛⎫- ⎪⎝⎭ (D) arctan b a ⎛⎫- ⎪⎝⎭【答案】B(2014徐汇一模文16)直线()0,0bx ay ab a b +=<<的倾斜角是-------------------------( )A B P 2k PB PA =⋅k P(A) arctan a b π- (B) arctan a b ⎛⎫- ⎪⎝⎭ (C) arctan b a π- (D) arctan b a ⎛⎫- ⎪⎝⎭【答案】C8.(2014崇明一模理文18)已知圆O 的半径为1,PA PB ,为该圆的两条切线,A B 、为两切点,那么⋅的最小值等于.........................................................( )A .24+-B .23+-C .224+-D .223+- 【答案】D9.(2014静安一模理15)“21=m ”是“直线013)2(=+++my x m 与直线03)2()2(=-++-y m x m 互相垂直”的( )A .充要条件;B .充分不必要条件;C .必要不充分条件;D .既不充分也不必要条件. 【答案】B三、解答题1.(2014杨浦一模理21)(本题满分14分)本题共有2个小题,第(1)小题满分5分,第(2)小题满分9分 .某校同学设计一个如图所示的“蝴蝶形图案(阴影区域)”,其中AC 、BD 是过抛物线Γ焦点F 的两条弦,且其焦点)1,0(F ,0=⋅,点E 为y 轴上一点,记α=∠EFA ,其中α为锐角. (1)求抛物线Γ方程;(2)如果使“蝴蝶形图案”的面积最小,求α的大小?【答案】(1) 由抛物线Γ焦点)1,0(F 得,抛物线Γ方程为y x 42= ……5分 (2) 设m AF =,则点)1cos ,sin (+-ααm m A ……6分所以,)cos 1(4)sin (2ααm m +=-,既04cos 4sin 22=--ααm m ……7分解得 αα2sin )1(cos 2+=AF ……8分 同理: αα2cos )sin 1(2-=BF ……9分αα2cos )sin 1(2+=DF ……10分 αα2sin )cos 1(2-=CF ……11分“蝴蝶形图案”的面积2)cos (sin cos sin 442121αααα-=⋅+⋅=+=∆∆DF CF BF AF S S S CFD AFB 令 ⎝⎛⎥⎦⎤∈=21,0,cos sin t t αα, [)+∞∈∴,21t ……12分则121141422-⎪⎭⎫⎝⎛-=-=t t t S , 21=∴t 时,即4πα=“蝴蝶形图案”的面积为8 ……14分(2014杨浦一模文21)(本题满分14分)本题共有2个小题,第(1)小题满分5分,第(2)小题满分9分 .某校同学设计一个如图所示的“蝴蝶形图案(阴影区域)”,其中AC 、BD 是过抛物线Γ焦点F 的两条弦,且其焦点)1,0(F ,0=⋅BD AC ,点E 为y 轴上一点,记α=∠EFA ,其中α为锐角. (1)求抛物线Γ方程; (2)求证:αα2sin )1(cos 2+=AF . 【答案】(1) 由抛物线Γ焦点)1,0(F 得,抛物线Γ方程为y x 42= ……5分 (2) 设m AF =,则点)1cos ,sin (+-ααm m A ……8分 所以,)cos 1(4)sin (2ααm m +=-,既04cos 4sin 22=--ααm m ……11分 解得 αα2sin )1(cos 2+=AF ……14分2.(2014杨浦一模理22)(本题满分16分)本题共有3个小题,第(1)小题满分10分,第①问5分,第②问5分,第(2)小题满分6分.已知椭圆Γ:2214x y +=. (1)椭圆Γ的短轴端点分别为B A ,(如图),直线BM AM ,分别与椭圆Γ交于F E ,两点,其中点⎪⎭⎫⎝⎛21,m M 满足0m ≠,且3m ≠ ① 证明直线F E 与y 轴交点的位置与m 无关; ② 若∆BME 面积是∆AMF 面积的5倍,求m 的值;(2)若圆ψ:422=+y x .21,l l 是过点)1,0(-P 的两条互相垂直的直线,其中1l 交圆ψ于T 、 R 两点,2l交椭圆Γ于另一点Q .求TRQ ∆面积取最大值时直线1l 的方程. 【答案】(1)①因为)1,0(),1,0(-B A ,M (m,12),且0m ≠, ∴直线AM 的斜率为k 1=m 21-,直线BM 斜率为k 2=m23,∴直线AM 的方程为y=121+-x m,直线BM 的方程为y=123-x m , ……2分由⎪⎩⎪⎨⎧+-==+,121,1422x m y y x 得()22140m x mx +-=,240,,1m x x m ∴==+22241,,11m m E m m ⎛⎫-∴ ⎪++⎝⎭由⎪⎩⎪⎨⎧-==+,123,1422x m y y x 得()229120m x mx +-=,2120,,9m x x m ∴==+222129,99m m F m m ⎛⎫-∴ ⎪++⎝⎭; ……4分 据已知,20,3m m ≠≠,∴直线EF 的斜率22222222219(3)(3)194124(3)19m m m m m m k m m m m m m---+-++===---++23,4m m +- ∴直线EF 的方程为 2222134141m m m y x m m m -+⎛⎫-=-- ⎪++⎝⎭, 令x=0,得,2=y ∴ EF 与y 轴交点的位置与m 无关. ……5分 ②1||||sin 2AMF S MA MF AMF ∆=∠,1||||sin 2BME S MB ME BME ∆=∠,AMF BME ∠=∠, 5AMF BME S S ∆∆=,∴5||||||||MA MF MB ME =,∴5||||||||MA MB ME MF =, ……7分∴225,41219m m m mm m m m =--++Θ 0m ≠,∴整理方程得22115119m m =-++,即22(3)(1)0m m --=,又有m ≠∴230m -≠, 12=∴m ,1m ∴=±为所求. ……10分 (2) 因为直线12l l ⊥,且都过点(0,1)P -,所以设直线1:110l y kx kx y =-⇒--=, 直线21:10l y x x ky k k=--⇒++=, ……12分 所以圆心(0,0)到直线1:110l y kx kx y =-⇒--=的距离为d =,所以直线1l 被圆224x y +=所截的弦222143242kk d TR ++=-=;由22222048014x ky k k x x kx x y ++=⎧⎪⇒++=⎨+=⎪⎩,所以482+-=+k kx x P Q 所以 418)4(64)11(222222++=++=k k k k k QP ……14分 所以 13131613232341334324348212222=≤+++=++==∆k k k k TR QP S TRQ22251043243k k k k +=⇒=⇒=+时等号成立,此时直线110:1l y x =-……16分(2014杨浦一模文23)(本题满分18分)本题共有3个小题,第(1)小题满分10分,第①问5分,第②问5分,第(2)小题满分8分.已知椭圆Γ:2214x y +=. (1)椭圆Γ的短轴端点分别为B A ,(如图),直线BM AM ,分别与椭圆Γ交于F E ,两点,其中点⎪⎭⎫⎝⎛21,m M 满足0m ≠,且3m ≠ ① 用m 表示点F E ,的坐标;② 若∆BME 面积是∆AMF 面积的5倍,求m 的值;(2)若圆ψ:422=+y x .21,l l 是过点)1,0(-P 的两条互相垂直的直线,其中1l 交圆ψ于T 、 R 两点,2l 交椭圆Γ于另一点Q .求TRQ ∆面积取最大值时直线1l 的方程. 【答案】(1)①因为)1,0(),1,0(-B A ,M (m,12),且0m ≠,∴直线AM 的斜率为k 1=m21-,直线BM 斜率为k 2=m23, ∴直线AM 的方程为y=121+-x m,直线BM 的方程为y=123-x m , ……2分由⎪⎩⎪⎨⎧+-==+,121,1422x m y y x 得()22140m x mx +-=,240,,1m x x m ∴==+22241,,11m m E m m ⎛⎫-∴ ⎪++⎝⎭ ……4分由⎪⎩⎪⎨⎧-==+,123,1422x m y y x 得()229120m x mx +-=,2120,,9m x x m ∴==+222129,99m m F m m ⎛⎫-∴ ⎪++⎝⎭; ……5分 ②1||||sin 2AMF S MA MF AMF ∆=∠,1||||sin 2BME S MB ME BME ∆=∠,AMF BME ∠=∠, 5AMF BME S S ∆∆=,∴5||||||||MA MF MB ME =,∴5||||||||MA MB ME MF =, ……7分∴225,41219m m m mm m m m =--++ 0m ≠,∴整理方程得22115119m m =-++,即22(3)(1)0m m --=,又有m ≠∴230m -≠, 12=∴m ,1m ∴=±为所求. ……10分 (2) 因为直线12l l ⊥,且都过点(0,1)P -,所以设直线1:110l y kx kx y =-⇒--=, 直线21:10l y x x ky k k=--⇒++=, ……12分 所以圆心(0,0)到直线1:110l y kx kx y =-⇒--=的距离为d =,所以直线1l 被圆224x y +=所截的弦222143242kk d TR ++=-=;由22222048014x ky k k x x kx x y ++=⎧⎪⇒++=⎨+=⎪⎩,所以482+-=+k kx x P Q 所以 418)4(64)11(222222++=++=k k k k k QP ……15分 所以 13131613232341334324348212222=≤+++=++==∆k k k k TR QP S TRQ252k k =⇒=⇒=时等号成立,此时直线1:1l y x =- ……18分3.(2014松江一模理20文20)(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分过椭圆1222=+y x 的左焦点1F 的直线l 交椭圆于A 、B 两点. (1)求1AO AF ⋅u u u r u u u r的范围;(2)若OA OB ⊥u u u r u u u r,求直线l 的方程.【答案】(1)易知1,1,2===c b a ∴)0,1(1-F , …………1分设),(11y x A ,则221111AO AF x x y ⋅=++u u u r u u u r ……………………… 3分∵122121=+y x ∴222211*********(1)222AO AF x x y x x x ⋅=++=++=++u u u r u u u r ………5分 ∵]2,2[1-∈x ∴11[,22]2AO AF ⋅∈+u u u r u u u r , ……………………… 6分(2)设A 、B 两点的坐标为11(,)A x y 、22(,)B x y①当l 平行于y 轴时,点2(1,)2A -、2(1,)2B --,此时102OA OB ⋅=≠u u u r u u u r ……8分 ②当l 不平行于y 轴时,设直线l 的斜率为k ,则直线l 方程为(1)y k x =+,由22(1)12y k x x y =+⎧⎪⎨+=⎪⎩ 得 2222(12)4220k x k x k +++-= ………………… 9分2122412k x x k +=-+,21222212k x x k-=+ ………………… 11分 22212121212(1)()OA OB x x y y k x x k x x k ⋅=+=++++u u u r u u u r=22222(1)12k k k -+⋅+22224012k k k k-⋅+=+ 得 22k =,2k =±………… 13分 故所求的直线方程为2(1)y x =±+ ………… 14分4.(2014松江一模理21文21)本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分如图,相距200海里的A 、B 两地分别有救援A 船和B 船.在接到求救信息后,A 船能立即出发, B 船因港口原因需2小时后才能出发,两船的航速都是30海里/小时.在同时收到求救信息后,A 船早于B 船到达的区域称为A 区,否则称为B 区.若在A 地北偏东45︒方向,距A 地1502海里处的M 点有一艘遇险船正以10海里/小时的速度向正北方向漂移.(1)求A 区与B 区边界线(即A 、B 两船能同时到达的点的轨迹)方程; (2)问:① 应派哪艘船前往救援?② 救援船最快需多长时间才能与遇险船相遇?(精确到0.1小时)【答案】⑴设点P 为边界线上的点,由题意知23030PA PB=+,即60PA PB -=, 即动点P 到两定点A 、B 的距离之差为常数,∴点P 的轨迹是双曲线中的一支。

2014年高考数学(理)三轮专项模拟(通用)试卷立体几何(含新题详解)

2014年高考数学(理)三轮专项模拟(通用)试卷立体几何(含新题详解)

立体几何本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟.第Ⅰ卷一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2013·肇庆模拟)在△ABC 中,已知|AB →|=|BC →|=|CA →|=2,则向量AB →·BC→=( )A .2B .-2C .23D .-2 3【解析】 向量AB →与BC →的夹角为2π3,则AB →·BC→=2×2×cos 23π=-2. 【答案】 B2.(2013·东营模拟)已知等比数列{a n },若存在两项a m ,a n 使得a m ·a n =a 23,则1m +4n的最小值为( ) A.32 B .53 C.94D.76【解析】 由等比数列的性质知m +n =6,则1m +4n =16⎝ ⎛⎭⎪⎫1m +4n (m +n )=16⎝⎛⎭⎪⎫5+4m n +n m ≥32,当且仅当4m n =n m ,即m =2,n =4时等号成立. 【答案】 A3.在正四面体P -ABC 中,D ,E ,F 分别是AB ,BC ,CA 的中点,下面四个结论中不成立的( )A .BC ∥平面PDFB .DF ⊥平面P AEC .平面PDE ⊥平面ABCD .平面P AE ⊥平面ABC【解析】 若平面PDF ⊥平面ABC ,则顶点P 在底面的射影在DF 上,又因为正四面体的顶点在底面的射影是底面的中心,因此结论不成立,故选C.【答案】 C4.(2013·济宁模拟)点M 、N 分别是正方体ABCD —A 1B 1C 1D 1的棱A 1B 1、A 1D 1的中点,用过A 、M 、N 和D 、N 、C 1的两个截面截去正方体的两个角后得到的几何体如下图1,则该几何体的正(主)视图、侧(左)视图、俯视图依次为( )图1A .①②③B .②③④C .①③④D .②④③【解析】 根据三视图的定义可知选B. 【答案】 B5.(2013·枣庄模拟)设z =x +y ,其中实数x ,y 满足⎩⎨⎧x +2y ≥0,x -y ≤0,0≤y ≤k ,若z 的最大值为6,则z 的最小值为( )A .-3B .-2C .-1D .0【解析】由z =x +y 得y =-x +z ,作出⎩⎪⎨⎪⎧x +2y ≥0,x -y ≤0,0≤y ≤k ,的区域BCO ,平移直线y =-x +z ,由图象可知当直线经过C 时,直线的截距最大,此时z =6,由⎩⎪⎨⎪⎧ y =x ,y =-x +6,解得⎩⎪⎨⎪⎧x =3,y =3,所以k =3,解得B (-6,3),代入z =x +y 得最小值为z =-6+3=-3,选A.【答案】 A6.(2013·课标全国卷Ⅰ)如图2,有一个水平放置的透明无盖的正方体容器,容器高8 cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm ,如果不计容器厚度,则球的体积为( )图2A.500π3 cm 3 B .866π3 cm 3 C.1 372π3cm 3D.2 048π3cm 3【解析】 如图,作出球的一个截面,则MC =8-6=2(cm),BM =12AB =12×8=4(cm).设球的半径为R cm ,则R 2=OM 2+MB 2=(R -2)2+42,∴R =5,∴V 球=43π×53=5003π(cm 3). 【答案】 A7.(2013·临汾模拟)已知平面α⊥平面β,α∩β=l ,点A ∈α,A ∉l ,直线AB ∥l ,直线AC ⊥l ,直线m ∥α,m ∥β,则下列四种位置关系中,不一定成立的是( )A .AB ∥m B .AC ⊥m C .AB ∥βD .AC ⊥β【解析】 因为m ∥α,m ∥β,α∩β=l ,所以m ∥l . 因为AB ∥l ,所以AB ∥m ,故A 一定正确. 因为AC ⊥l ,m ∥l ,所以AC ⊥m ,从而B 一定正确. 因为AB ∥l ,l ⊂β,AB ⊄β. 所以AB ∥β.故C 也正确.因为AC ⊥l ,当点C 在平面α内时,AC ⊥β成立,当点C 不在平面α内时,AC ⊥β不成立,故D 不一定成立.【答案】 D8.在正三棱柱ABC —A 1B 1C 1中,D 是AC 的中点,AB 1⊥BC 1,则平面DBC 1与平面CBC 1所成的角为( )A .30°B .45°C .60°D .90°【解析】 以A 为坐标原点,AC →,AA 1→的方向分别为y 轴和z 轴的正方向建立空间直角坐标系.设底面边长为2a ,侧棱长为2b ,则A (0,0,0),C (0,2a,0),D (0,a,0),B (3a ,a,0),C 1(0,2a,2b ),B 1(3a ,a,2b ). 由AB 1→⊥BC 1→,得AB 1→·BC 1→=0,即2b 2=a 2. 设n 1=(x ,y ,z )为平面DBC 1的一个法向量, 则n 1·DB →=0,n 1·DC 1→=0.即⎩⎪⎨⎪⎧3ax =0,ay +2bz =0.又2b 2=a 2,令z =1, 解得n 1=(0,-2,1).同理可求得平面CBC 1的一个法向量为n 2=(1,3,0). 利用公式cos θ=|n 1·n 2||n 1||n 2|=22,得θ=45°.【答案】 B第Ⅱ卷二、填空题(本大题共6小题,每小题5分,共30分,把答案填在题中横线上) 9.已知函数f (x )=A sin ⎝ ⎛⎭⎪⎫ωx +π6(A >0,ω>0)的最小正周期为2,且f (0)=3,则函数f (3)=________.【解析】 ω=2π2=π,由f (0)=A sin π6=3得A =23, 所以f (x )=23sin ⎝ ⎛⎭⎪⎫πx +π6,所以f (3)=23sin ⎝ ⎛⎭⎪⎫3π+π6=- 3.【答案】 - 310.设三棱柱的侧棱垂直于底面,所有棱的长都为a ,顶点都在一个球面上,则该球的表面积为________.【解析】 设球心为O ,正三棱柱上底面为△ABC ,中心为O ′,因为三棱柱所有棱的长都为a ,则可知OO ′=a 2,O ′A =33a ,又由球的相关性质可知,球的半径R =OO ′2+O ′A 2=216a ,所以球的表面积为4πR 2=73πa 2. 【答案】 73πa 211.(2013·南通模拟)关于直线m ,n 和平面α,β有以下四个命题: ①若m ∥α,n ∥β,α∥β,则m ∥n ; ②若m ∥n ,m ⊂α,n ⊥β,则α⊥β; ③若α∩β=m ,m ∥n ,则n ∥α且n ∥β; ④若m ⊥n ,α∩β=m ,则n ⊥α或n ⊥β. 其中假命题的序号是________.【解析】 命题①m 与n 也可相交或异面,所以①是假命题;命题②由条件可得m ⊥β,又m ⊂α,故α⊥β,所以②是真命题;命题③也可得到n ⊂α或n ⊂β,所以③错;命题④由已知只能得到n 垂直α与β内的一条直线,无法判定n ⊥α或n ⊥β,所以命题④错.【答案】 ①③④12.(2013·陕西高考)某几何体的三视图如图3所示,则其体积为________.图3【解析】 原几何体可视为圆锥的一半,其底面半径为1,高为2, ∴其体积为13×π×12×2×12=π3. 【答案】 π313.对大于或等于2的自然数m 的n 次方幂有如下分解方式: 22=1+3 23=3+5 32=1+3+5 33=7+9+11 42=1+3+5+7 43=13+15+17+19 52=1+3+5+7+953=21+23+25+27+29根据上述分解规律,若m 3(m ∈N *)的分解中最小的数是73,则m 的值为________.【解析】 由所给等式知,m 3分解中第1个数为数列3,5,7,…中第2+3+4+…+(m -1)+1项,即m 2-m2项,从而m 3分解中第1个数为m 2-m +1,由m 2-m +1=73得m =9.【答案】 914.(2013·南昌模拟)三棱锥S —ABC 中,∠SBA =∠SCA =90°,△ABC 是斜边AB =a 的等腰直角三角形,则以下结论中:图4①异面直线SB与AC所成的角为90°.②直线SB⊥平面ABC;③平面SBC⊥平面SAC;④点C到平面SAB的距离是1 2a.其中正确结论的序号是________.【解析】由题意知AC⊥平面SBC,故AC⊥SB,SB⊥平面ABC,平面SBC⊥平面SAC,①②③正确;取AB的中点E,连接CE,可证得CE⊥平面SAB,故CE的长度即为C到平面SAB的距离12a,④正确.【答案】①②③④三、解答题(本大题共6小题,共80分,解答应写出文字说明、证明过程或演算步骤)15.(本小题满分12分)(2013·深圳模拟)在△ABC中,角A,B,C所对边的边长分别是a,b,c.(1)若c=2,C=π3且△ABC的面积等于3,求cos(A+B)和a,b的值;(2)若B是钝角,且cos A=35,sin B=1213,求sin C的值.【解】(1)∵A+B+C=π,C=π3,∴A+B=π-C,∴cos(A+B)=cos(π-C)=-cos C=-cos π3=-12.由余弦定理及已知条件得,a2+b2-ab=4,又因为△ABC的面积等于3,所以12ab sin C=3,得ab=4.联立方程组⎩⎪⎨⎪⎧a 2+b 2-ab =4,ab =4,解得a =2,b =2.(2)∵B 是钝角,且cos A =35,sin B =1213, ∴sin A =1-cos 2A = 1-⎝ ⎛⎭⎪⎫352=45,cos B =-1-sin 2B =-1-⎝ ⎛⎭⎪⎫12132=-513,∴sin C =sin[π-(A +B )]=sin(A +B )=sin A cos B +cos A sin B =45×⎝ ⎛⎭⎪⎫-513+35×1213=1665.16.(本小题满分12分)(2013·青岛模拟)在如图5所示的多面体ABCDE 中,AB ⊥平面ACD ,DE ⊥平面ACD ,且AC =AD =CD =DE =2,AB =1.图5(1)请在线段CE 上找到点F 的位置,使得恰有直线BF ∥平面ACD ,并证明这一结论;(2)求多面体ABCDE 的体积.【解】 (1)如图所示,由已知AB ⊥平面ACD ,DE ⊥平面ACD ,∴AB ∥ED ,设F 为线段CE 的中点,H 是线段CD 的中点,连接BF 、FH 、AH ,则FH 綊12ED ,又AB =12ED ,∴FH 綊AB ,∴四边形ABFH 是平行四边形,∴BF ∥AH ,又因为BF ⊄平面ACD ,AH ⊂平面ACD ,∴BF ∥平面ACD . (2)取AD 中点G ,连接CG . 因为AB ⊥平面ACD ,∴CG ⊥AB , 又CG ⊥AD ,∴CG ⊥平面ABED ,即CG 为四棱锥C —ABED 的高,求得CG =3, ∴V C —ABED =13·(1+2)2·2·3= 3.17.(本小题满分14分)(2013·黄冈模拟)如图6,三棱柱ABC —A 1B 1C 1的侧面AA 1B 1B 为正方形,侧面BB 1C 1C 为菱形,∠CBB 1=60°,AB ⊥B 1C .(1)求证:平面AA 1B 1B ⊥平面BB 1C 1C ; (2)若AB =2,求三棱柱ABC —A 1B 1C 1的体积.图6【解】 (1)由侧面AA 1B 1B 为正方形,知AB ⊥BB 1. 又AB ⊥B 1C ,BB 1∩B 1C =B 1,所以AB ⊥平面BB 1C 1C , 又AB ⊂平面AA 1B 1B ,所以平面AA 1B 1B ⊥平面BB 1C 1C .(2)由题意,CB =CB 1,设O 是BB 1的中点,连接CO ,则CO ⊥BB 1.由(1)知,CO ⊥平面AA 1B 1B ,且CO =32BC =32AB = 3. 连结AB 1,则VC —ABB 1=13S △ABB 1·CO =16AB 2·CO =233. 因为VB 1—ABC =VC —ABB 1=13VABC —A 1B 1C 1=233, 故三棱柱ABC —A 1B 1C 1的体积VABC —A 1B 1C 1=2 3.18.(本小题满分14分)已知数列{a n }的前n 项和为S n ,且S n =2a n -2,数列{b n }满足b 1=1,且b n +1=b n +2.(1)求数列{a n },{b n }的通项公式;(2)设c n =1-(-1)n 2a n -1+(-1)n2b n ,求数列{c n }的前2n 项和T 2n .【解】 (1)当n =1,a 1=2;当n ≥2时,a n =S n -S n -1=2a n -2a n -1, ∴a n =2a n -1.∴{a n }是等比数列,公比为2,首项a 1=2,∴a n =2n . 由b n +1=b n +2,得{b n }是等差数列,公差为2. 又首项b 1=1,∴b n =2n -1.(2)c n =⎩⎪⎨⎪⎧2n n 为奇数,-(2n -1) n 为偶数,∴T 2n =2+23+…+22n -1-[3+7+…+(4n -1)] =22n +1-23-2n 2-n .19.(本小题满分14分)如图7所示,P A⊥平面ABC,点C在以AB为直径的⊙O上,∠CBA=30°,P A=AB=2,点E为线段PB的中点,点M在弧AB上,且OM∥AC.图7(1)求证:平面MOE∥平面P AC.(2)求证:平面P AC⊥平面PCB.(3)设二面角M—BP—C的大小为θ,求cos θ的值.【解】(1)因为点E为线段PB的中点,点O为线段AB的中点,所以OE∥P A.因为P A⊂平面P AC,OE⊄平面P AC,所以OE∥平面P AC.因为OM∥AC,因为AC⊂平面P AC,OM⊄平面P AC,所以OM∥平面P AC.因为OE⊂平面MOE,OM⊂平面MOE,OE∩OM=O,所以平面MOE∥平面P AC.(2)因为点C在以AB为直径的⊙O上,所以∠ACB=90°,即BC⊥AC.因为P A⊥平面BAC,BC⊂平面ABC,所以P A⊥BC.因为AC⊂平面P AC,P A⊂平面P AC,P A∩AC=A,所以BC ⊥平面P AC . 因为BC ⊂平面PCB , 所以平面P AC ⊥平面PCB .(3)如图,以C 为原点,CA 所在的直线为x 轴,CB 所在的直线为y 轴,建立空间直角坐标系C —xyz .因为∠CBA =30°,P A =AB =2, 所以CB =2cos 30°=3,AC =1. 延长MO 交CB 于点D . 因为OM ∥AC ,所以MD ⊥CB ,MD =1+12=32, CD =12CB =32.所以P (1,0,2),C (0,0,0),B (0,3,0),M ⎝ ⎛⎭⎪⎫32,32,0.所以CP→=(1,0,2),CB →=(0,3,0).设平面PCB 的法向量m =(x ,y ,z ). 因为⎩⎨⎧m ·CP →=0,m ·CB →=0.所以⎩⎪⎨⎪⎧ (x ,y ,z )·(1,0,2)=0,(x ,y ,z )·(0,3,0)=0,即⎩⎪⎨⎪⎧x +2z =0,3y =0.令z =1,则x =-2,y =0. 所以m =(-2,0,1).同理可求平面PMB 的一个法向量n =(1,3,1). 所以cos 〈m ,n 〉=m·n |m|·|n|=-15.因为二面角M —BP —C 为锐二面角,所以cos θ=15.图820.(本小题满分14分)(2013·天津高考)如图8,四棱柱ABCD —A 1B 1C 1D 1中,侧棱A 1A ⊥底面ABCD ,AB ∥DC ,AB ⊥AD ,AD =CD =1,AA 1=AB =2,E 为棱AA 1的中点.(1)证明B 1C 1⊥CE ;(2)求二面角B 1-CE -C 1的正弦值;(3)设点M 在线段C 1E 上,且直线AM 与平面ADD 1A 1所成角的正弦值为26,求线段AM 的长.【解】 如图,以点A 为原点,以AD ,AA 1,AB 所在直线为x 轴、y 轴、z 轴建立空间直角坐标系,依题意得A (0,0,0),B (0,0,2),C (1,0,1),B 1(0,2,2),C 1(1,2,1),E (0,1,0).(1)证明:易得B 1C 1→=(1,0,-1),CE →=(-1,1-1),于是B 1C 1→·CE →=0,所以B 1C 1⊥CE .(2)B 1C →=(1,-2,-1).设平面B 1CE 的法向量m =(x ,y ,z ),则⎩⎪⎨⎪⎧m ·B 1C →=0,m ·CE →=0,即⎩⎨⎧x -2y -z =0,-x +y -z =0.消去x ,得y +2z =0,不妨令z =1,可得一个法向量为m =(-3,-2,1). 由(1)知,B 1C 1⊥CE ,又CC 1⊥B 1C 1, 可得B 1C 1⊥平面CEC 1,故B 1C 1→=(1,0,-1)为平面CEC 1的一个法向量.于是cos 〈m ,B 1C 1→〉=m ·B 1C 1→|m ||B 1C 1→|=-414×2=-277,从而sin 〈m ,B 1C 1→〉=217.所以二面角B 1—CE —C 1的正弦值为217. (3)AE →=(0,1,0),EC 1→=(1,1,1). 设EM →=λEC 1→=(λ,λ,λ),0≤λ≤1,有AM →=AE →+EM →=(λ,λ+1,λ). 可取AB →=(0,0,2)为平面ADD 1A 1的一个法向量. 设θ为直线AM 与平面ADD 1A 1所成的角,则 sin θ=|cos 〈AM →,AB →〉|=|AM →·AB →||AM →||AB →|=2λλ2+(λ+1)2+λ2×2=λ3λ2+2λ+1, 于是λ3λ2+2λ+1=26,解得λ=13(负值舍去),所以AM= 2.。

2014高考数学真题汇编(解析几何)部分

2014高考数学真题汇编(解析几何)部分

2014解析几何部分:一选择题1(2014全国大纲卷)6.已知椭圆C :22221x y a b+=(0)a b >>的左、右焦点为1F 、2F,离心率为2F 的直线l 交C 于A 、B 两点,若1AF B ∆的周长为C 的方程为 A .22132x y += B .2213x y += C .221128x y += D .221124x y += 2(全国大纲卷)9.已知双曲线C 的离心率为2,焦点为1F 、2F ,点A 在C 上,若122F A F A =,则21cos AF F ∠=( ) A .14 B .13 CD3(2014课标1)4.已知F 是双曲线C :223(0)x my m m -=>的一个焦点,则点F 到C 的一条渐近线的距离为AB .3 CD .3m4(2014课标1)10.已知抛物线C :28y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若4FP FQ =,则||QF =A .72 B .52C .3D .2 5(2014新课标2)10.设F 为抛物线C:23y x =的焦点,过F 且倾斜角为30°的直线交C 于A,B 两点,O 为坐标原点,则△OAB 的面积为( )A.B.C. 6332D. 946(2014辽宁卷)10.已知点(2,3)A -在抛物线C :22y px =的准线上,学 科网过点A 的直线与C在第一象限相切于点B ,记C 的焦点为F ,则直线BF 的斜率为( ) A .12 B .23 C .34 D .437(2014福建卷)10设Q P ,分别为()2622=-+y x 和椭圆11022=+y x 上的点,则Q P ,两点间的最大距离是( ) A.25 B.246+ C.27+ D.268(2014广东卷)4.若实数k 满足09,k <<则曲线221259x y k -=-与曲线221259x y k -=-的A .离心率相等 B.虚半轴长相等 C. 实半轴长相等 D.焦距相等9(2014四川卷)10、已知F 为抛物线2y x =的焦点,点A ,B 在该抛物线上且位于x 轴的两侧,2OA OB ⋅=(其中O 为坐标原点),则ABO ∆与AFO ∆面积之和的最小值是( )A 、2B 、3 CD二填空题1(2014全国大纲卷)15.直线1l 和2l 是圆222x y +=的两条切线,若1l 与2l 的交点为()1,3,则1l 与2l 的夹角的正切值等于 .2(2014新课标2)16.设点M (0x ,1),若在圆O:221x y +=上存在点N ,使得∠OMN=45°,则0x 的取值范围是________.3(2014陕西卷)12若圆C 的半径为1,其圆心与点)0,1(关于直线x y =对称,则圆C 的标准方程为_______.4(2014辽宁卷)15.已知椭圆C :22194x y +=,点M 与C 的焦点不重合,若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则||||AN BN += .5(2014广东卷)14.(坐标与参数方程选做题)在极坐标系中,曲线C 1和C 2的方程分别为2sin cos ρθθ=和sin ρθ=1,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,则曲线C 1和C 2的交点的直角坐标为__6(2014湖南卷)15.如图4,正方形ABCD 和正方形DEFG 的边长分别为(),a b a b <,原点O 为AD 的中点,抛物线)0(22>=p px y 经过F C ,两点,则_____=ab.7(2014四川卷)14设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则||||PA PB ⋅的最大值是____________8(2014上海卷)3若抛物线y 2=2px 的焦点与椭圆15922=+y x 的右焦点重合,则该抛物线的准线方程为___________.9(2014上海卷)14.已知曲线C:x =l :x=6。

2014年高考数学六大题之六解析几何下

2014年高考数学六大题之六解析几何下
(2)若 m
→ → 2 2、已知抛物线 x =4y 的焦点为 F,A、B 是抛物线上的两动点,且 AF =λ FB (λ>0) .过 A、B 两点分别作抛物线的切线,设其交点为M. → → (1)证明 FM · AB 为定值; (2)设△ABM 的面积为 S,写出 S=f(λ)的表达式,并求 S 的最小值.
高考数学六大题之六: 解析几何题型预测(下)
1、已知 M(-3,0)﹑N(3,0),P 为坐标平面上的动点,且直线 PM 与直线 PN 的斜率之积为常数 m(m -1,m 0). (1)求 P 点的轨迹方程并讨论轨迹是什么曲线?
5 , P 点的轨迹为曲线 C,过点 Q(2,0)斜率为 k1 的直线 1 与曲线 C 交于不同的两 9 点 A﹑B,AB 中点为 R,直线 OR(O 为坐标原点)的斜率为 k2 ,求证 k1k2 为定值; (3)在(2)的条件下,设 QB AQ ,且 [2,3] ,求 1 在 y 轴上的截距的变化范围.
x2 y 2 1 交于 A, B 两点,记 AOB 的面积为 S . 6、如图,直线 y kx b 与椭圆 4 (I)求在 k 0 , 0 b 1 的条件下, S 的最大值; (II)当 | AB | 2 , S 1 时,求直线 AB 的方程. y
A
O
B
x
图1
x2 y 2 1 ,抛物线 C2: ( y m)2 2 px( p 0) ,且 C1、C2 的公共弦 AB 过椭 3、已知椭圆 C1: 4 3
圆 C1 的右焦点. (1)当 AB⊥ x 轴时,求 m 、 p 的值,并判断抛物线 C2 的焦点是否在直线 AB 上; (2)是否存在 m 、 p 的值,使抛物线 C2 的焦点恰在直线 AB 上?若存在,求出符合条件),B(0,-1),C(1,0)。动点 P 满足: AP BP k | PC |2 。 (1)求动点 P 的轨迹方程,并说明方程表示的曲线; (2)当 k 2时, 求 | 2 AP BP | 的最大值和最小值。

2014高考题解析几何

2014高考题解析几何

6. [2014·福建卷] 已知直线l 过圆22(3)4x y +-=的圆心,且与直线10x y ++=垂直,则l 的方程是( )A. 20x y +-=B.20x y --=C. 30x y +-=D. 30x y -+=20. [2014·全国新课标卷Ⅰ] 已知点(2,2)P ,圆22:80C x y y +-=,过点P 的动直线l 与圆C 交于,A B 两点,线段AB 的中点为M ,O 为坐标原点.(Ⅰ)求M 的轨迹方程;(Ⅱ)当||||OP OM =时,求l 的方程及POM ∆的面积.21.[2014·重庆卷] 如图1­5,设椭圆22221(0)x y a b a b+=>>的左、右焦点分别为12,F F ,点D 在椭圆上,12112121||,22,||F F DF F F DF F DF ⊥=∆,的面积为22. (Ⅰ)求该椭圆的标准方程.(Ⅱ)是否存在圆心在y 轴上的圆,使圆在x 轴的上方与椭圆有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点?若存在,求出圆的方程;若不存在,请说明理由.图1­ 5 图1­ 618.[2014·江苏卷] 如图1­6所示,为保护河上古桥OA ,规划建一座新桥BC ,同时设立一个圆形保护区.规划要求:新桥BC 与河岸AB 垂直;保护区的边界为圆心M 在线段OA 上并与BC 相切的圆,且古桥两端O 和A 到该圆上任意一点的距离均不少于80m .经测量,点A 位于点O 正北方向60m 处,点C 位于点O 正东方向170m 处(OC 为河岸),4tan 3BCO ∠=.(Ⅰ)求新桥BC 的长.(Ⅱ)当OM 多长时,圆形保护区的面积最大?22.[2014·全国卷] 已知抛物线2:2(0)C y px p =>的焦点为F ,直线4y =与y 轴的交点为P ,与C 的交点为Q ,且5||||4QF PQ =. (Ⅰ)求C 的方程;(Ⅱ)过F 的直线l 与C 相交于,A B 两点,若AB 的垂直平分线l '与C 相交于,M N 两点,且,,,A M B N 四点在同一圆上,求l 的方程.17.[2014·湖北卷] 已知圆1:22=+y x O 和点)0,2(-A ,若定点)2)(0,(-≠b b B 和常数λ满足:对圆O 上任意一点M ,都有||||MA MB λ=,则(Ⅰ)=b ________; (Ⅱ)=λ________.20.[2014·辽宁卷] 圆422=+y x 的切线与x 轴正半轴,y 轴正半轴围成一个三角形,当该三 角形面积最小时,切点为P (如图1­5所示).(Ⅰ)求点P 的坐标; (Ⅱ)焦点在x 轴上的椭圆C 过点P ,且与直线3:+=x y l 交于B A ,两点,若PAB ∆的面积为2,求C 的标准方程. 5.[2014·浙江卷] 已知圆02222=+-++a y x y x 截直线02=++y x 所得弦的长度为4,则实数a 的值是( )A .2-B .4-C .6-D .8-6.[2014·安徽卷] 过点)1,3(--P 的直线l 与圆122=+y x 有公共点,则直线l 的倾斜角的取值范围是( )A. ]6,0(πB. ]3,0(πC. ]6,0[πD. ]3,0[π7.[2014·北京卷] 已知圆1)4()3(:22=-+-y x C 和两点)0)(0,(),0,(>-m m B m A .若圆C 上存在点P ,使得︒=∠90APB ,则m 的最大值为( ) A .7 B .6 C .5 D .411.[2014·福建卷] 已知圆1)()(:22=-+-b y a x C ,平面区域⎪⎩⎪⎨⎧≥≥+-≤-+Ω.0,03,07:y y x y x 若圆心Ω∈C ,且圆C 与x 轴相切,则22b a +的最大值为( )A .5B .29C .37D .4921.[2014·福建卷] 已知曲线Γ上的点到点)1,0(F 的距离比它到直线3-=y 的距离小2.(Ⅰ)求曲线Γ的方程.(Ⅱ)曲线Γ在点P 处的切线l 与x 轴交于点A ,直线3=y 分别与直线l 及y 轴交于点N M ,.以MN 为直径作圆C ,过点A 作圆C 的切线,切点为B .试探究:当点P 在曲线Γ上运动(点P 与原点不重合)时,线段AB 的长度是否发生变化?证明你的结论.6.[2014·湖南卷] 若圆1:221=+y x C 与圆086:222=+--+m y x y x C 外切,则=m ( )A .21B .19C .9D .11- 9.[2014·江苏卷] 在平面直角坐标系xOy 中,直线032=-+y x 被圆4)1()2(22=++-y x 截得的弦长为________.16.[2014·全国卷] 直线1l 和2l 是圆222=+y x 的两条切线.若1l 与2l 的交点为)3,1(,则1l 与2l 的夹角的正切值等于________.12.[2014·新课标全国卷Ⅱ] 设点)1,(0x M ,若在圆1:22=+y x O 上存在点N ,使得︒=∠45OMN ,则0x 的取值范围是( )A. ]1,1[-B. ]21,21[- C. ]2,2[- D. ]22,22[-14.[2014·山东卷] 圆心在直线02=-y x 上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为32,则圆C 的标准方程为________.14.[2014·重庆卷] 已知直线0=+-a y x 与圆心为C 的圆044222=--++y x y x 相交于B A ,两点,且BC AC ⊥,则实数a 的值为________.9.[2014·四川卷] 设R m ∈,过定点A 的动直线0=+my x 和过定点B 的动直线03=+--m y mx 交于点),(y x P ,则||||PB PA +的取值范围是( )A .]52,5[B .]52,10[C .]54,10[D .]54,52[ 20.[2014·安徽卷] 设函数32)1(1)(x x x a x f --++=,其中0>a .(Ⅰ)讨论)(x f 在其定义域上的单调性;(Ⅱ)当]1,0[∈x 时,求)(x f 取得最大值和最小值时的x 的值. 19.[2014·北京卷] 已知椭圆42:22=+y x C .(Ⅰ)求椭圆C 的离心率;(Ⅱ)设O 为原点,若点A 在直线2=y 上,点B 在椭圆C 上,且OB OA ⊥,求线段AB 长度的最小值.20.[2014·广东卷] 已知椭圆)0(1:2222>>=+b a b y a x C 的一个焦点为)0,5(F ,离心率为35.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)若动点),(00y x P 为椭圆C 外一点,且点P 到椭圆C 的两条切线相互垂直,求点P 的轨迹方程.20.[2014·湖南卷] 如图所示,O 为坐标原点,双曲线)0,0(1:112122121>>=-b a b y a x C 和椭圆)0(1:222222222>>=+b a b x a y C 均过点)1,332(F , 且以1C 的两个顶点和2C 的两个焦点为 顶点的四边形是面积为2的正方形.(Ⅰ)求21,C C 的方程.(Ⅱ)是否存在直线l ,使得l 与1C 交于B A ,两点,与2C 只有一个公共点,且||||AB OB OA =+?证明你的结论. 17.[2014·江苏卷] 如图所示,在平面直角坐标系xOy 中,21,F F 分别是椭圆)0(12222>>=+b a by a x的左、右焦点,顶点B 的坐标为),0(b ,连接2BF 并延长交椭圆于点A ,过点A 作x 轴的垂线交 椭圆于另一点C ,连接C F 1.(Ⅰ)若点C 的坐标为)31,34(,且22=BF ,求椭圆的方程;(Ⅱ)若AB C F ⊥1,求椭圆离心率e 的值.14.[2014·江西卷] 设椭圆)0(1:2222>>=+b a by a x C 的左右焦点分别为21,F F ,过2F 作x 轴的垂线与C 相交于B A ,两点,B F 1与y 轴相交于点D .若B F AD 1⊥,则椭圆C 的离心率等于________.9.[2014·全国卷] 已知椭圆)0(1:2222>>=+b a b y a x C 的左、右焦点为21,F F ,离心率为33,过2F 的直线l 交C 于B A ,两点.若B AF 1∆的周长为34,则C 的方程为( )A.12322=+y x B.1322=+y x C.181222=+y x D.141222=+y x 20.[2014·新课标全国卷Ⅱ] 设21,F F 分别是椭圆)0(1:2222>>=+b a by a x C 的左、右焦点,M是C 上一点且2MF 与x 轴垂直.直线1MF 与C 的另一个交点为N .(Ⅰ)若直线MN 的斜率为43,求C 的离心率; (Ⅱ)若直线MN 在y 轴上的截距为2,且||5||1N F MN =,求b a ,.21.[2014·山东卷] 在平面直角坐标系xOy 中,椭圆)0(1:2222>>=+b a b y a x C 的离心率为23,直线x y =被椭圆C 截得的线段长为5104. (Ⅰ)求椭圆C 的方程.(Ⅱ)过原点的直线与椭圆C 交于B A ,两点(B A ,不是椭圆C 的顶点).点D 在椭圆C 上,且AB AD ⊥,直线BD 与x 轴、y 轴分别交于N M ,两点.(ⅰ)设直线AM BD ,的斜率分别为21,k k ,证明存在常数λ使得21k k λ=,并求出λ的值;(ⅱ)求OMN ∆面积的最大值.20.[2014·陕西卷] 已知椭圆)0(12222>>=+b a by a x 经过点)3,0(,离心率为21,左、右焦点分别为)0,(),0,(21c F c F -.(Ⅰ)求椭圆的方程;(Ⅱ)若直线m x y l +-=21:与椭圆交于B A ,两点,与以21F F 为直径的圆交于D C ,两点,且满足435||||=CD AB ,求直线l 的方程. 20.[2014·四川卷] 已知椭圆)0(1:2222>>=+b a b y a x C 的左焦点为)0,2(-F ,离心率为36.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)设O 为坐标原点,T 为直线3-=x 上一点,过F 作TF 的垂线交椭圆于Q P ,.当四边形OPTQ 是平行四边形时,求四边形OPTQ 的面积.18.[2014·天津卷] 设椭圆)0(12222>>=+b a b y a x 的左、右焦点分别为21,F F ,右顶点为A ,上顶点为B .已知||23||21F F AB =.(Ⅰ)求椭圆的离心率;(Ⅱ)设P 为椭圆上异于其顶点的一点,以线段PB 为直径的圆经过点1F ,经过点2F 的直线l 与该圆相切于点22||,2=MF M ,求椭圆的方程.8.[2014·重庆卷] 设21,F F 分别为双曲线)0,0(12222>>=-b a by a x 的左、右焦点,双曲线上存在一点P 使得ab b PF PF 3|)||(|2221-=-,则该双曲线的离心率为( )A.2B.15 C .4 D.1710.[2014·北京卷] 设双曲线C 的两个焦点为)0,2(),0,2(21F F -,一个顶点是)0,1(,则C 的方程为________.8.[2014·广东卷] 若实数k 满足50<<k ,则曲线151622=--k y x 与曲线151622=--y k x 的( ) A .实半轴长相等 B .虚半轴长相等 C .离心率相等 D .焦距相等8.[2014·湖北卷] 设b a ,是关于t 的方程0si n c o s2=+θθt t 的两个不等实根,则过),(),,(22b b B a a A 两点的直线与双曲线1sin cos 2222=-θθy x 的公共点的个数为( ) A .0 B .1 C .2 D .317.[2014·浙江卷] 设直线)0(03≠=+-m m y x 与双曲线)0,0(12222>>=-b a by a x 的两条渐近线分别交于点B A ,若点)0,(m P 满足||||PB PA =,则该双曲线的离心率是_______.9.[2014·江西卷] 过双曲线1:2222=-by a x C 的右顶点作x 轴的垂线,与C 的一条渐近线相交于点A .若以C 的右焦点为圆心、半径为4的圆经过O A ,两点(O 为坐标原点),则双曲线C 的方程为( )A. 112422=-y x B. 19722=-y x C. 18822=-y x D. 141222=-y x 11.[2014·全国卷] 双曲线)0,0(1:2222>>=-b a by a x C 的离心率为2,焦点到渐近线的距离为3,则C 的焦距等于( )A .2B .22C .4D .244.[2014·全国新课标卷Ⅰ] 已知双曲线)0(13222>=-a y a x 的离心率为2,则=a ( ) A .2 B.26 C. 25D .1 15.[2014·山东卷] 已知双曲线)0,0(12222>>=-b a by a x 的焦距为c 2,右顶点为A ,抛物线)0(22>=p py x 的焦点为F .若双曲线截抛物线的准线所得线段长为c 2,且c FA =||,则双曲线的渐近线方程为________. 11.[2014·四川卷] 双曲线1422=-y x 的离心率等于________.6.[2014·天津卷] 已知双曲线)0,0(12222>>=-b a by a x 的一条渐近线平行于直线102:+=x y l ,双曲线的一个焦点在直线l 上,则双曲线的方程为( )A. 120522=-y x B. 152022=-y x C. 1100325322=-y x D. 1253100322=-y x 10.[2014·四川卷] 已知F 为抛物线x y =2的焦点,点B A ,在该抛物线上且位于x 轴的两侧,2=⋅OB OA (其中O 为坐标原点),则ABO ∆与AFO ∆面积之和的最小值是( )A .2B .3 C. 8217 D. 103.[2014·安徽卷] 抛物线241x y =的准线方程是( )A .1-=yB .2-=yC .1-=xD .2-=x11.[2014·广东卷] 曲线35+-=x e y 在点(0,-2)处的切线方程为________.22.[2014·湖北卷] 在平面直角坐标系xOy 中,点M 到点)0,1(F 的距离比它到y 轴的距离多1.记点M 的轨迹为C .(Ⅰ)求轨迹C 的方程;(Ⅱ)设斜率为k 的直线l 过定点)1,2(-P ,求直线l 与轨迹C 恰好有一个公共点、两个公共点、三个公共点时k 的相应取值范围. 14.[2014·湖南卷] 平面上一机器人在行进中始终保持与点)0,1(F 的距离和到直线1-=x 的距离相等.若机器人接触不到过点)0,1(-P 且斜率为k 的直线,则k 的取值范围是________. 20.[2014·江西卷] 如图所示,已知抛物线y x C 4:2=, 过点)2,0(M 任作一直线与C 相交于B A ,两点,过点B 作 y 轴的平行线与直线AO 相交于点D (O 为坐标原点).(Ⅰ)证明:动点D 在定直线上.(Ⅱ)作C 的任意一条切线l (不含x 轴), 与直线2=y 相交于点1N ,与(Ⅰ)中的定直线相交于点2N .证明:2122||||MN MN -为定 值,并求此定值.8. [2014·辽宁卷] 已知点)3,2(-A 在抛物线px y C 2:2=的准线上,记C 的焦点为F ,则直线AF 的斜率为( )A .34-B .1-C .43-D .21-10.[2014·新课标全国卷Ⅱ] 设F 为抛物线x y C 3:2=的焦点,过F 且倾斜角为︒30的直线交C 于B A ,两点,则=||AB ( )A.330B .6C .12D .37 10.[2014·全国新课标卷Ⅰ] 已知抛物线x y C =2:的焦点为),(,00y x A F 是C 上一点,045||x AF =,则=0x ( ) A .1 B .2 C .4 D .811.[2014·陕西卷] 抛物线x y 42=的准线方程为________. 22.[2014·浙江卷] 已知ABP ∆的三个顶点都在抛物线y x C 4:2=上,F 为抛物线C 的焦点,点M 为AB 的中 点,FM PF 3=.(Ⅰ)若3||=PF ,求点M 的坐标;(Ⅱ)求ABP ∆面积的最大值.15.[2014·辽宁卷] 已知椭圆149:22=+y x C ,点M 与C 的焦点不重合.若M 关于C 的焦点的对称点分别为B A ,线段MN 的中点在C 上,则=+||||BN AN ________.2.[2014·安徽蚌埠质检] 设点)2,3(),3,2(---B A .若直线l 过点)1,1(P 且与线段AB 相交,则直线l 的斜率k 的取值范围是( )A .43≥k 或4-≤kB .443≤≤-kC .434≤≤-k D .4≥k 或43-≤k6.[2014·承德联考] 使三条直线432,0,44=-=+=+my x y mx y x 不能围成三角形的m 的值最多有( )A .1个B .2个C .3个D .4个14.[2014·黄冈中学期末] 已知圆的方程为08622=--+y x y x ,设该圆过点)5,3(的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积为_______.4.[2014·昆明一中检测] 已知直线t x =与椭圆192522=+y x 交于Q P ,两点.若点F 为该椭圆的左焦点,则使FQ FP ⋅取得最小值时,t 的值为( )A .17100-B .1750- C. 1750 D. 171003.[2014·济南期末] 已知双曲线)0,0(12222>>=-b a by a x 的两条渐近线均与圆056:22=+-+x y x C 相切,则该双曲线的离心率等于( )A. 23B. 26C. 553D. 555.[2014·株洲模拟] 已知直线2-=x y 与圆034:22=+-+x y x C 及抛物线x y 82=依次交于D C B A ,,,四点,则||||CD AB +等于( )A .10B .12C .14D .163.[2014·湖南衡阳模拟] 已知椭圆)0(1:2222>>=+b a by a x C 的两个焦点分别为)0,2(),0,2(21F F -.点)0,1(M 与椭圆短轴的两个端点的连线相互垂直.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)已知点N 的坐标为)2,3(,点P 的坐标为)3)(,(≠m n m ,过点M 任作直线l 与椭圆C 相交于B A ,两点,设直线BN NP AN ,,的斜率分别为321,,k k k ,若2312k k k =+,试求n m ,满足的关系式.。

2014 届高考解析几何专题复习试题汇编.doc

2014 届高考解析几何专题复习试题汇编.doc

专题七 解析几何1.(2013·高考新课标全国卷Ⅰ)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为52,则C 的渐近线方程为( )A .y =±14xB .y =±13xC .y =±12x D .y =±x解析:选C.由e =52,得c a =52,∴c =52a ,b =c 2-a 2=12a .而x 2a 2-y 2b 2=1(a >0,b >0)的渐近线方程为y =±b ax , ∴所求渐近线方程为y =±12x .2.(2013·高考新课标全国卷Ⅰ)O 为坐标原点,F 为抛物线C :y 2=42x 的焦点,P 为C 上一点,若|PF |=42,则△POF 的面积为( )A .2B .2 2C .2 3D .4解析:选C.设P (x 0,y 0),则|PF |=x 0+2=42, ∴x 0=32, ∴y 20=42x 0=42×32=24, ∴|y 0|=2 6.∵F (2,0),∴S △POF =12|OF |·|y 0|=12×2×26=2 3.3.(2013·高考新课标全国卷Ⅰ)已知椭圆E :x 2a 2+y 2b2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的方程为( )A.x 245+y 236=1B.x 236+y 227=1C.x 227+y 218=1D.x 218+y 29=1 解析:选D.设A (x 1,y 1),B (x 2,y 2),则⎩⎨⎧x 21a 2+y 21b 2=1, ①x 22a 2+y 22b 2=1. ②①-②得(x 1+x 2)(x 1-x 2)a 2=-(y 1-y 2)(y 1+y 2)b 2, ∴y 1-y 2x 1-x 2=-b 2(x 1+x 2)a 2(y 1+y 2). ∵x 1+x 2=2,y 1+y 2=-2,∴k AB =b 2a2.而k AB =0-(-1)3-1=12,∴b 2a 2=12,∴a 2=2b 2, ∴c 2=a 2-b 2=b 2=9, ∴b =c =3,a =32,∴E 的方程为x 218+y 29=1.4.(2013·高考新课标全国卷Ⅱ)设椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,P 是C 上的点, PF 2⊥F 1F 2,∠PF 1F 2=30°,则C 的离心率为( )A.36 B.13 C.12 D.33 解析:选D.如图,由题意知s in 30°=|PF 2||PF 1|=12, m∴|PF 1|=2|PF 2|.又∵|PF 1|+|PF 2|=2a ,∴|PF 2|=2a3.∴tan 30°=|PF 2||F 1F 2|=2a32c =33.∴c a =33.故选D. 5.(2013·高考新课标全国卷Ⅱ)设抛物线C :y 2=4x 的焦点为F ,直线l 过F 且与C 交于A ,B 两点.若|AF |=3|BF |,则l 的方程为( )A .y =x -1或y =-x +1B .y =33(x -1)或y =-33(x -1)C .y =3(x -1)或y =-3(x -1)D .y =22(x -1)或y =-22(x -1)解析:选C.设直线AB 的倾斜角为θ,由题意知p =2,F (1,0),|AF ||BF |=3.又1|F A |+1|FB |=2p , ∴13|BF |+1|BF |=1, ∴|BF |=43,|AF |=4,∴|AB |=163.又由抛物线焦点弦公式:|AB |=2psin 2θ,∴163=4sin 2θ, ∴s in 2θ=34,∴s in θ=32,∴k =tan θ=±3.故选C.6.(2013·高考大纲全国卷)椭圆C :x 24+y 23=1的左、右顶点分别为A 1、A 2,点P 在C 上且直线P A 2斜率的取值范围是[-2,-1],那么直线P A 1斜率的取值范围是 ( )A .[12,34]B .[38,34]C .[12,1]D .[34,1]解析:选B.由题意可得A 1(-2,0),A 2(2,0),当P A 2的斜率为-2时,直线P A 2的方程为y =-2(x -2),代入椭圆方程,消去y 化简得19x 2-64x +52=0,解得x =2或x =2619.由点P 在椭圆上得点P (2619,2419),此时直线P A 1的斜率k =38.同理,当直线P A 2的斜率为-1时,直线P A 2方程为y =-(x -2),代入椭圆方程,消去y 化简得7x 2-16x +4=0,解得x =2或x =27.由点P 在椭圆上得点P (27,127),此时直线P A 1的斜率k =34.数形结合可知,直线P A 1斜率的取值范围是[38,34]. 7.(2013·高考大纲全国卷)已知F 1(-1,0),F 2(1,0)是椭圆C 的两个焦点,过F 2且垂直于x 轴的直线交C 于A ,B 两点,且|AB |=3,则C 的方程为( )A.x 22+y 2=1B.x 23+y 22=1C.x 24+y 23=1D.x 25+y 24=1 解析:选C.由题意知椭圆焦点在x 轴上,且c =1,可设C 的方程为x 2a 2+y 2a 2-1=1(a >1),由过F 2且垂直于x 轴的直线被C 截得的弦长|AB |=3,知点(1,32)必在椭圆上,代入椭圆方程化简得4a 4-17a 2+4=0,所以a 2=4或a 2=14(舍去).故椭圆C 的方程为x 24+y 23=1.8.(2013·高考大纲全国卷)已知抛物线C :y 2=8x 与点M (-2,2),过C 的焦点且斜率为k 的直线与C 交于A 、B 两点.若MA →·MB →=0,则k =( )A.12B.22C. 2 D .2解析:选D.抛物线C 的焦点为F (2,0),则直线方程为y =k (x -2),与抛物线方程联立,消去y 化简得k 2x 2-(4k 2+8)x +4k 2=0.设点A (x 1,y 1),B (x 2,y 2),则x 1+x 2=4+8k2,x 1x 2=4.所以y 1+y 2=k (x 1+x 2)-4k =8k,y 1y 2=k 2[x 1x 2-2(x 1+x 2)+4]=-16.因为MA →·MB →=(x 1+2,y 1-2)·(x 2+2,y 2-2)=(x 1+2)(x 2+2)+(y 1-2)(y 2-2)=x 1x 2+2(x 1+x 2)+y 1y 2-2(y 1+y 2)+8=0,将上面各个量代入,化简得k 2-4k +4=0,所以k =2. 9.(2013·高考山东卷)过点(3,1)作圆(x -1)2+y 2=1的两条切线,切点分别为A ,B ,则直线AB 的方程为 ( )A .2x +y -3=0B .2x -y -3=0C .4x -y -3=0D .4x +y -3=04解析:选A.设P (3,1),圆心C (1,0),切点为A 、B ,则P 、A 、C 、B 四点共圆,且PC 为圆的直径,∴四边形P ACB 的外接圆方程为(x -2)2+(y -12)2=54①,圆C :(x -1)2+y 2=1②,①-②得2x+y -3=0,此即为直线AB 的方程.10.(2013·高考山东卷)抛物线C 1:y =12p x 2(p >0)的焦点与双曲线C 2:x 23-y 2=1的右焦点的连线交C 1于第一象限的点M .若C 1在点M 处的切线平行于C 2的一条渐近线,则p =( )A.316B.38C.233D.433解析:选D.∵双曲线C 2:x 23-y 2=1,∴右焦点为F (2,0),渐近线方程为y =±33x .抛物线C 1:y =12p x 2(p >0),焦点为F ′(0,p2).设M (x 0,y 0),则y 0=12p x 20.∵k MF ′=k FF ′,∴12p x 20-p 2x 0=p 2-2.①又∵y ′=1p x ,∴y ′|x =x 0=1p x 0=33.②由①②得p =433.11.(2013·高考浙江卷)如图,F 1,F 2是椭圆C 1:x24+y 2=1与双曲线C 2的公共焦点,A ,B 分别是C 1,C 2在第二、四象限的公共点.若四边形AF 1BF 2为矩形,则C 2的离心率是( )A. 2B. 3C.32D.62解析:选D.由椭圆可知|AF 1|+|AF 2|=4,|F 1F 2|=2 3. 因为四边形AF 1BF 2为矩形, 所以|AF 1|2+|AF 2|2=|F 1F 2|2=12,所以2|AF 1||AF 2|=(|AF 1|+|AF 2|)2-(|AF 1|2+|AF 2|2)=16-12=4,所以(|AF 2|-|AF 1|)2=|AF 1|2+|AF 2|2-2|AF 1||AF 2|=12-4=8,所以|AF 2|-|AF 1|=22, 因此对于双曲线有a =2,c =3,所以C 2的离心率e =c a =62.12.(2013·高考北京卷)直线l 过抛物线C :x 2=4y 的焦点且与y 轴垂直,则l 与C 所围成的图形的面积等于( )A.43 B .2 C.83 D.1623 解析:选C.∵抛物线方程为x 2=4y ,∴其焦点坐标为F (0,1),故直线l 的方程为y =1.如图所示,可知l 与C 围成的图形的面积等于矩形OABF 的面积与函数y =14x 2的图象和x 轴正半轴及直线x =2围成的图形的面积的差的2倍(图中阴影部分的2倍),即S =4-2⎠⎛02x 24d x =4-2·x 312⎪⎪⎪20=4-43=83. 13.(2013·高考天津卷)已知双曲线x 2a 2-y 2b2=1(a>0,b>0)的两条渐近线与抛物线y 2=2p x (p>0)的准线分别交于A ,B 两点,O 为坐标原点.若双曲线的离心率为2,△AOB 的面积为3,则p =( )A .1 B.32C .2D .3解析:选C.由已知得c a =2,所以a 2+b 2a 2=4,解得ba=3,即渐近线方程为y =±3x .而抛物线准线方程为x =-p 2,于是A ⎝⎛⎭⎫-p 2,-3p 2,B ⎝⎛⎭⎫-p 2,3p 2,从而△AOB 的面积为12·3p·p 2=3,可得p =2.14.(2013·高考北京卷)双曲线x 2-y 2m=1的离心率大于2的充分必要条件是( ) A .m>12 B .m ≥1C .m>1D .m>2解析:选C.∵双曲线x 2-y2m=1的离心率e =1+m ,又∵e>2,∴1+m>2,∴m>1.15.(2013·高考福建卷)双曲线x 24-y 2=1的顶点到其渐近线的距离等于( )A .25 B.45 C .255 D.455解析:选C.双曲线的渐近线为直线y =±12x ,即x ±2y =0,顶点为(±2,0),∴所求距离为d =|±2±0|5=255.16.(2013·高考天津卷)已知过点P(2,2)的直线与圆(x -1)2+y 2=5相切,且与直线a x -y +1=0垂直,则a =( )A .-12B .1C .2 D.12解析:选C.由题意知圆心为(1,0),由圆的切线与直线a x -y +1=0垂直,可设圆的切线方程为x +ay +c =0,由切线x +ay +c =0过点P(2,2),∴c =-2-2a ,∴|1-2-2a|1+a 2=5,解得a =2.17.(2013·高考福建卷)双曲线x 2-y 2=1的顶点到其渐近线的距离等于( ) A .12 B.22 C .1 D. 2 解析:选B.双曲线x 2-y 2=1的顶点坐标为(±1,0),渐近线为y =±x ,∴x ±y =0,∴顶点到渐近线的距离为d =|±1±0|2=22.18.(2013·高考湖南卷)在等腰直角三角形ABC 中,AB =AC =4,点P 是边AB 上异于A ,B 的一点.光线从点P 出发,经BC ,CA 发射后又回到点P(如图).若光线QR 经过△ABC 的重心,则AP 等于( )A .2B .1C .83 D.43 解析:选D.分别以AB ,AC 所在直线为x 轴,y 轴,A 为原点建立如图所示的平面直角坐标系.因为AB =AC =4,故B(4,0),C(0,4).设P(t,0)为线段AB 上的点,点P 关于AC 的对称点P ′(-t,0).点P 关于直线BC 的对称点为M(4,4-t).由光的反射定理知,点P ′,M 一定在直线RQ 上.又△ABC的重心坐标为G(43,43),由题意知点G 在线段RQ 上,即P ′,G ,M 三点共线.∵P ′G →=(43+t ,43),MP ′→=(-4-t ,t -4),P ′G →∥MP ′→,∴(43+t)(-4+t)-43(-4-t)=0,解得t =43, 即|AP →|=43.19.(2013·高考辽宁卷)已知点O(0,0),A(0,b),B(a ,a 3).若△OAB 为直角三角形,则必有( )A .b =a 3B .b =a 3+1aC .(b -a 3)(b -a 3-1a )=0D .|b -a 3|+|b -a 3-1a|=0解析:选C.若以O 为直角顶点,则B 在x 轴上,则a 必为0,此时O ,B 重合,不符合题意;若∠A =π2,则b =a 3≠0.若∠B =π2,根据斜率关系可知a 2·a 3-b a=-1, 所以a(a 3-b)=-1,即b -a 3-1a=0.以上两种情况皆有可能,故只有C 满足条件. 20.(2013·高考陕西卷)已知点M(a ,b)在圆O :x 2+y 2=1外, 则直线a x +by =1与圆O 的位置关系是( )A .相切B .相交C .相离D .不确定解析:选B.由题意知点在圆外,则a 2+b 2>1,圆心到直线的距离d =1a 2+b2<1,故直线与圆相交.21.(2013·高考江西卷)过点(2,0)引直线l 与曲线y =1-x 2相交于A ,B 两点,O 为坐标原点,当△AOB 的面积取最大值时,直线l 的斜率等于( )A .33B .-33C .±33D .- 3解析:选B.由于y =1-x 2,即x 2+y 2=1(y ≥0),直线l 与x 2+y 2=1(y ≥0)交于A ,B 两点,如图所示,S △AOB =12·s in ∠AOB ≤12,且当∠AOB =90°时,S △AOB 取得最大值,此时AB =2,点O 到直线l 的距离为22,则∠OCB =30°,所以直线l 的倾斜角为150°,则斜率为-33. 22.(2013·高考湖北卷)已知0<θ<π4,则双曲线C 1:x 2cos 2θ-y 2sin 2θ=1与C 2:y 2sin 2θ-x 2sin 2θtan 2θ=1的( )A .实轴长相等B .虚轴长相等C .焦距相等D .离心率相等解析:选D.双曲线C 1的焦点在x 轴上,a =co s θ,b =s in θ,c =1,因此离心率e 1=1cos θ;双曲线C 2的焦点在y 轴上,由于0<θ<π4,所以a =s in θ,b =s in θtan θ,c =sin 2θ+sin 2θtan 2θ,因此离心率e 2=sin 2θ+sin 2θtan 2θsin θ=sin θ1+tan 2θsin θ=1cos θ.故两条双曲线的实轴长、虚轴长、焦距都不相等,离心率相等.23.(2013·高考江西卷)已知点A(2,0),抛物线C :x 2=4y 的焦点为F ,射线FA 与抛物线C 相交于点M ,与其准线相交于点N ,则|FM|∶|MN|=( )A .2∶ 5B .1∶2C . 1∶ 5D .1∶3 解析:选C.如图所示,由抛物线定义知|MF|=|MH|,所以|MF|∶|MN|=|MH|∶|MN|.由于△MHN ∽△FOA ,则|MH||HN|=|OF||OA|=12, 则|MH|∶|MN|=1∶5, 即|MF|∶|MN|=1∶ 5.24.(2013·高考湖北卷)已知0<θ<π4,则双曲线C 1:x 2sin 2θ-y 2cos 2θ=1与C 2:y 2cos 2θ-x 2sin 2θ=1的( )A .实轴长相等B .虚轴长相等C .离心率相等D .焦距相等解析:选D.双曲线C 1和C 2的实半轴长分别是s in θ和co s θ,虚半轴长分别是co s θ和s in θ,则半焦距c 都等于1,故选D.25.(2013·高考四川卷)抛物线y 2=8x 的焦点到直线x -3y =0的距离是( ) A .2 3 B .2 C . 3 D .1 解析:选D.抛物线y 2=8x 的焦点为F(2,0),则d =|2-3×0|12+(-3)2=1.故选D.26.(2013·高考四川卷)从椭圆x 2a 2+y 2b2=1(a>b>0)上一点P 向x 轴作垂线,垂足恰为左焦点F 1,A 是椭圆与x 轴正半轴的交点,B 是椭圆与y 轴正半轴的交点,且AB ∥OP(O 是坐标原点),则该椭圆的离心率是( )A .24 B.12 C .22 D.32解析:选C.设P(-c ,y 0),代入椭圆方程求得y 0,从而求得k OP ,由k OP =k AB 及e =ca可得离心率e.由题意设P(-c ,y 0),将P(-c ,y 0)代入x 2a 2+y 2b 2=1,得c 2a 2+y 20b 2=1,则y 20=b 2⎝⎛⎭⎫1-c 2a 2=b 2·a 2-c 2a2=b 4a 2. ∴y 0=b 2a 或y 0=-b 2a (舍去),∴P ⎝⎛⎭⎫-c ,b 2a ,∴k OP =-b 2ac.∵A(a,0),B(0,b),∴k AB =b -00-a =-ba .又∵AB ∥OP ,∴k AB =k OP ,∴-b a =-b 2ac,∴b =c.∴e =c a =c b 2+c2=c 2c 2=22.故选C. 27.(2013·高考四川卷)抛物线y 2=4x 的焦点到双曲线x 2-y 23=1的渐近线的距离是( )A .12 B.32 C .1 D. 3解析:选B.由题意可得抛物线的焦点坐标为(1,0), 双曲线的渐近线方程为3x -y =0或3x +y =0,则焦点到渐近线的距离d 1=|3×1-0|(3)2+(-1)2=32 或d 2=|3×1+0|(3)2+12=32. 28.(2013·高考重庆卷)已知圆C 1:(x -2)2+(y -3)2=1,圆C 2:(x -3)2+(y -4)2=9,M ,N 分别是圆C 1,C 2上的动点,P 为x 轴上的动点,则|PM|+|PN|的最小值为( )A .52-4 B.17-1 C .6-2 2 D.17解析:选A.设P(x ,0),设C 1(2,3)关于x 轴的对称点为C 1′(2,-3),那么|PC 1|+|PC 2|=|PC 1′|+|PC 2|≥|C ′1C 2|=(2-3)2+(-3-4)2=5 2.而|PM|=|PC 1|-1,|PN|=|PC 2|-3, ∴|PM|+|PN|=|PC 1|+|PC 2|-4≥52-4. 29.(2013·高考重庆卷)设P 是圆(x -3)2+(y +1)2=4上的动点,Q 是直线x =-3上的动点,则|PQ|的最小值为( )A .6B .4C .3D .2 解析:选B.如图,圆心M(3,-1)与定直线x =-3的最短距离为|MQ|=3-(-3)=6,又圆的半径为2,故所求最短距离为6-2=4.30.(2013·高考广东卷)垂直于直线y =x +1且与圆x 2+y 2=1相切于第一象限的直线方程是( )A .x +y -2=0B .x +y +1=0C .x +y -1=0D .x +y +2=0解析:选A.与直线y =x +1垂直的直线方程可设为x +y +b =0,由x +y +b =0与圆x 2+y 2=1相切,可得|b|12+12=1,故b =±2.因为直线与圆相切于第一象限,故结合图形分析知b =-2,故直线方程为x +y -2=0,故选A.31.(2013·高考广东卷)已知中心在原点的双曲线C 的右焦点为F(3,0),离心率等于32,则C 的方程是( )A .x 24-y 25=1 B.x 24-y 25=1 C .x 22-y 25=1 D.x 22-y 25=1 解析:选B.右焦点为F(3,0)说明两层含义:双曲线的焦点在x 轴上;c =3.又离心率为c a =32,故a =2,b 2=c 2-a 2=32-22=5,故C 的方程为x 24-y25=1,故选B.32.(2013·高考广东卷)已知中心在原点的椭圆C 的右焦点为F(1,0),离心率等于12,则C 的方程是( )A .x 23+y 24=1 B.x 24+y 23=1 C .x 24+y 22=1 D.x 24+y 23=1 解析:选D.右焦点为F(1,0)说明两层含义:椭圆的焦点在x 轴上;c =1.又离心率为c a =12,故a=2,b 2=a 2-c 2=4-1=3,故椭圆的方程为x 24+y23=1,故选D.33.(2013·高考安徽卷)直线x +2y -5+5=0被圆x 2+y 2-2x -4y =0截得的弦长为( ) A .1 B .2 C .4 D .4 6 解析:选C.圆的方程可化为C :(x -1)2+(y -2)2=5,其圆心为C(1,2),半径R = 5.如图所示,取弦AB 的中点P ,连接CP ,则CP ⊥AB ,圆心C 到直线AB 的距离d =|CP|=|1+4-5+5|12+22=1.在Rt △ACP 中,|AP|=R 2-d 2=2,故直线被圆截得的弦长|AB|=4. 34.(2013·高考山东卷)过点(3,1)作圆(x -2)2+(y -2)2=4的弦,其中最短弦的长为________. 解析:设A(3,1),易知圆心C(2,2),半径r =2,当弦过点A(3,1)且与CA 垂直时为最短弦. |CA|=(2-3)2+(2-1)2= 2.∴半弦长=r 2-|CA|2=4-2= 2. ∴最短弦长为2 2. 答案:2 2 35.(2013·高考安徽卷)已知直线y =a 交抛物线y =x 2于A ,B 两点,若该抛物线上存在点C ,使得∠ACB 为直角,则a 的取值范围为________.解析:设C(x ,x 2),由题意可取A(-a ,a),B(a ,a), 则CA →=(-a -x ,a -x 2),CB →=(a -x ,a -x 2),由于∠ACB =π2,所以CA →·CB →=(-a -x )(a -x )+(a -x 2)2=0,整理得x 4+(1-2a)x 2+a 2-a =0, 即y 2+(1-2a)y +a 2-a =0,所以⎩⎪⎨⎪⎧-(1-2a )≥0,a 2-a ≥0,(1-2a )2-4(a 2-a )>0,解得a ≥1.答案:[1,+∞)36.(2013·高考江苏卷)双曲线x 216-y 29=1的两条渐近线的方程为________.解析:由双曲线方程可知a =4,b =3,所以两条渐近线方程为y =±34x .答案:y =±34x37.(2013·高考江苏卷)在平面直角坐标系x Oy 中,椭圆C 的标准方程为x 2a 2+y 2b2=1(a>b>0),右焦点为F,右准线为l ,短轴的一个端点为B.设原点到直线BF 的距离为d 1,F 到l 的距离为d 2,若d 2=6d 1,则椭圆C 的离心率为________.解析:依题意,d 2=a 2c -c =b 2c.又BF =c 2+b 2=a ,所以d 1=bca.由已知可得b 2c =6·bca,所以6c 2=ab ,即6c 4=a 2(a 2-c 2),整理可得a 2=3c 2,所以离心率e =c a =33.答案:3338.(2013·高考浙江卷) 直线y =2x +3被圆x 2+y 2-6x -8y =0所截得的弦长等于________. 解析:圆的方程可化为(x -3)2+(y -4)2=25,故圆心为(3,4),半径r =5.又直线方程为2x -y +3=0,所以圆心到直线的距离为d =|2×3-4+3|4+1=5,所以弦长为2r 2-d 2=2×25-5=220=4 5.答案:4 5 39.(2013·高考北京卷)若抛物线y 2=2p x 的焦点坐标为(1,0),则p =________;准线方程为________.解析:∵ 抛物线y 2=2p x 的焦点坐标为(p2,0),∴准线方程为x =-p2.又抛物线焦点坐标为(1,0),故p =2,准线方程为x =-1. 答案:2;x =-1 40.(2013·高考浙江卷)设F 为抛物线C :y 2=4x 的焦点,过点P(-1,0)的直线l 交抛物线C 于A ,B 两点,点Q 为线段AB 的中点.若|FQ|=2,则直线l 的斜率等于________.答案:±141.(2013·高考天津卷)已知抛物线y 2=8x 的准线过双曲线x 2a 2-y 2b2=1(a>0,b>0)的一个焦点,且双曲线的离心率为2,则该双曲线的方程为________.解析:由题意可知抛物线的准线方程为x =-2,∴双曲线的半焦距c =2.又双曲线的离心率为2,∴a =1,b =3,∴双曲线的方程为x 2-y 23=1.答案:x 2-y23=142.(2013·高考福建卷)椭圆Γ:x 2a 2+y 2b2=1(a>b>0)的左、右焦点分别为F 1,F 2,焦距为2c.若直线y =3(x +c)与椭圆Γ的一个交点M 满足∠MF 1F 2=2∠MF 2F 1,则该椭圆的离心率等于________.解析:已知F 1(-c,0),F 2(c,0),直线y =3(x +c)过点F 1,且斜率为3, ∴倾斜角∠MF 1F 2=60°.∵∠MF 2F 1=12∠MF 1F 2=30°,∴∠F 1MF 2=90°,∴|MF 1|=c ,|MF 2|=3c. 由椭圆定义知|MF 1|+|MF 2|=c +3c =2a ,∴离心率e =c a =21+3=3-1.答案:3-143.(2013·高考辽宁卷)已知椭圆C :x 2a 2+y 2b2=1(a>b>0)的左焦点为F ,椭圆C 与过原点的直线相交于A ,B 两点,连接AF ,BF.若|AB|=10,|AF|=6,co s ∠ABF =45,则椭圆C 的离心率e =________.解析:设椭圆的右焦点为F 1,因为直线过原点,所以|AF|=|BF 1|=6,|BO|=|AO|.在△ABF 中,设|BF|=x ,由余弦定理得36=100+x 2-2×10x ×45,解得x =8,即|BF|=8.所以∠BFA =90°,所以△ABF 是直角三角形,所以2a =6+8=14,即a =7.又因为在Rt △ABF 中,|BO|=|AO|,所以|OF|=12|AB|=5,即c =5.所以e =57. 答案:5744.(2013·高考陕西卷)双曲线x 216-y 2m =1的离心率为54,则m 等于________.解析:x 216-y2m =1中,a =4,b =m ,∴c =16+m.而e =54,∴16+m 4=54,∴m =9.答案:945.(2013·高考福建卷)椭圆Γ:x 2a 2+y 2b2=1(a>b>0)的左、右焦点分别为F 1,F 2,焦距为2c.若直线y =3(x +c)与椭圆Γ的一个交点M 满足∠MF 1F 2=2∠MF 2F 1,则该椭圆的离心率等于________.解析:已知F 1(-c,0),F 2(c,0),直线y =3(x +c)过点F 1,且斜率为3, ∴倾斜角∠MF 1F 2=60°.∵∠MF 2F 1=12∠MF 1F 2=30°,∴∠F 1MF 2=90°,∴|MF 1|=c ,|MF 2|=3c. 由椭圆定义知|MF 1|+|MF 2|=c +3c =2a ,∴离心率e =c a =21+3=3-1.答案:3-146.(2013·高考辽宁卷)已知F 为双曲线C :x 29-y 216=1的左焦点,P ,Q 为C 上的点.若PQ 的长等于虚轴长的2倍,点A(5,0)在线段PQ 上,则△PQF 的周长为________.解析:由双曲线方程知,b =4,a =3,c =5,则虚轴长为8,则|PQ|=16.由左焦点F(-5,0),且A(5,0)恰为右焦点,知线段PQ 过双曲线的右焦点,则P ,Q 都在双曲线的右支上.由双曲线的定义可知|PF|-|PA|=2a ,|QF|-|QA|=2a ,两式相加得,|PF|+|QF|-(|PA|+|QA|)=4a ,则|PF|+|QF|=4a +|PQ|=4×3+16=28,故△PQF 的周长为28+16=44.答案:4447.(2013·高考陕西卷)双曲线x 216-y 29=1的离心率为________.解析:由题意a 2=16⇒a =4.又b 2=9,则c 2=a 2+b 2=16+9=25⇒c =5,故e =c a =54.答案:5449.(2013·高考湖南卷)设F 1,F 2是双曲线C :x 2a 2-y 2b2=1(a>0,b>0)的两个焦点,P 是C 上一点.若|PF 1|+|PF 2|=6a ,且△PF 1F 2的最小内角为30°,则C 的离心率为________.解析:设点P 在双曲线右支上,F 1为左焦点,F 2为右焦点,则|PF 1|-|PF 2|=2a. 又|PF 1|+|PF 2|=6a ,∴|PF 1|=4a ,|PF 2|=2a. ∵在双曲线中c>a ,∴在△PF 1F 2中|PF 2|所对的角最小且为30°. 在△PF 1F 2中,由余弦定理得|PF 2|2=|PF 1|2+|F 1F 2|2-2|PF 1||F 1F 2|co s 30°,即4a 2=16a 2+4c 2-83ac ,即3a 2+c 2-23ac =0.∴(3a -c)2=0,∴c =3a ,即ca= 3.∴e = 3.答案: 350.(2013·高考江西卷)抛物线x 2=2py(p>0)的焦点为F ,其准线与双曲线x 23-y 23=1相交于A ,B 两点,若△ABF 为等边三角形,则p =________.解析:由于x 2=2py(p>0)的准线为y =-p 2,由⎩⎪⎨⎪⎧y =-p 2,x 2-y 2=3,解得准线与双曲线x 2-y 2=3的交点为A ⎝⎛⎭⎫-3+14p 2,-p 2,B ⎝⎛⎭⎫3+14p 2,-p 2,所以AB =23+14p 2.由△ABF 为等边三角形,得32AB =p ,解得p =6. 答案:651.(2013·高考江西卷)椭圆C :x 2a 2+y 2b 2=1(a>b>0)的离心率e =32,a +b =3.(1)求椭圆C 的方程;(2)如图所示,A ,B ,D 是椭圆C 的顶点,P 是椭圆C 上除顶点外的任意一点,直线DP 交x 轴于点N ,直线AD 交BP 于点M ,设BP 的斜率为k ,MN 的斜率为m ,证明:2m -k 为定值.解:(1)因为e =32=c a ,所以a =23c ,b =13c.代入a +b =3,得c =3,a =2,b =1.故椭圆C 的方程为x 24+y 2=1.(2)证明:法一:因为B(2,0),点P 不为椭圆顶点,则直线BP 的方程为y =k(x -2)⎝⎛⎭⎫k ≠0,k ≠±12,①①代入x 24+y 2=1,解得P ⎝ ⎛⎭⎪⎫8k 2-24k 2+1,-4k 4k 2+1.直线AD 的方程为y =12x +1.②①与②联立解得M ⎝ ⎛⎭⎪⎫4k +22k -1,4k 2k -1.由D(0,1),P ⎝ ⎛⎭⎪⎫8k 2-24k 2+1,-4k 4k 2+1,N(x ,0)三点共线知-4k4k 2+1-18k 2-24k 2+1-0=0-1x -0,解得N ⎝ ⎛⎭⎪⎫4k -22k +1,0.所以MN 的斜率为m =4k2k -1-04k +22k -1-4k -22k +1=4k (2k +1)2(2k +1)2-2(2k -1)2=2k +14, 则2m -k =2k +12-k =12(定值).法二:设P(x 0,y 0)(x 0≠0,x 0≠±2),则k =y 0x 0-2,直线AD 的方程为y =12(x +2),直线BP 的方程为y =y 0x 0-2(x -2),直线DP 的方程为y -1=y 0-1x 0x ,令y =0,由于y 0≠1可得N ⎝ ⎛⎭⎪⎫-x 0y 0-1,0,联立,得⎩⎨⎧y =12(x +2),y =y0x 0-2(x -2),解得M ⎝⎛⎭⎪⎫4y 0+2x 0-42y 0-x 0+2,4y 02y 0-x 0+2,因此MN 的斜率为m =4y 02y 0-x 0+24y 0+2x 0-42y 0-x 0+2+x 0y 0-1=4y 0(y 0-1)4y 20-8y 0+4x 0y 0-x 20+4=4y 0(y 0-1)4y 20-8y 0+4x 0y 0-(4-4y 20)+4=y 0-12y 0+x 0-2, 所以2m -k =2(y 0-1)2y 0+x 0-2-y 0x 0-2=2(y 0-1)(x 0-2)-y 0(2y 0+x 0-2)(2y 0+x 0-2)(x 0-2)=2(y 0-1)(x 0-2)-2y 20-y 0(x 0-2)(2y 0+x 0-2)(x 0-2)=2(y 0-1)(x 0-2)-12(4-x 20)-y 0(x 0-2)(2y 0+x 0-2)(x 0-2)=12(定值).52.(2013·高考四川卷)在平面直角坐标系内,到点A(1,2),B(1,5),C(3,6),D(7,-1)的距离之和最小的点的坐标是________.解析:设平面上任一点M ,因为|MA|+|MC|≥|AC|,当且仅当A ,M ,C 共线时取等号,同理|MB|+|MD|≥|BD|,当且仅当B ,M ,D 共线时取等号,连接AC ,BD 交于一点M ,若|MA|+|MC|+|MB|+|MD|最小,则点M 为所求.又k AC =6-23-1=2,∴直线AC 的方程为y -2=2(x -1),即2x -y =0.①又k BD =5-(-1)1-7=-1,∴直线BD 的方程为y -5=-(x -1),即x +y -6=0.②由①②得⎩⎪⎨⎪⎧2x -y =0,x +y -6=0,∴⎩⎪⎨⎪⎧x =2,y =4,∴M(2,4). 答案:(2,4) 53.(2013·高考新课标全国卷Ⅰ)已知圆M :(x +1)2+y 2=1,圆N :(x -1)2+y 2=9,动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C.(1)求C 的方程;(2)l 是与圆P 、圆M 都相切的一条直线,l 与曲线C 交于A 、B 两点,当圆P 的半径最长时,求|AB|.解: 由已知得圆M 的圆心为M(-1,0),半径r 1=1;圆N 的圆心为N(1,0),半径r 2=4.设圆P 的圆心为P(x ,y),半径为R.(1)因为圆P 与圆M 外切并且与圆N 内切, 所以|PM|+|PN|=(R +r 1)+(r 2-R)=r 1+r 2=4.由椭圆的定义可知,曲线C 是以M ,N 为左,右焦点,长半轴长为2,短半轴长为3的椭圆(左顶点除外),其方程为x 24+y 23=1(x ≠-2).(2)对于曲线C 上任意一点P(x ,y),由于|PM|-|PN|=2R -2≤2,所以R ≤2,当且仅当圆P 的圆心为(2,0)时,R =2,所以当圆P 的半径最长时,其方程为(x -2)2+y 2=4.若l 的倾斜角为90°,则l 与y 轴重合,可得|AB|=2 3.若l 的倾斜角不为90°,由r 1≠R 知l 不平行于x 轴,设l 与x 轴的交点为Q ,则|QP||QM|=Rr 1,可求得Q(-4,0),所以可设l :y =k(x +4).由l 与圆M 相切得|3k|1+k 2=1,解得k =±24.当k =24时,将y =24x +2代入x 24+y 23=1,并整理得7x 2+8x -8=0,解得x 1,2=-4±627,所以|AB|=1+k 2|x 2-x 1|=187.当k =-24时,由图形的对称性可知|AB|=187.综上,|AB|=23或|AB|=187.54.(2013·高考新课标全国卷Ⅱ)在平面直角坐标系x Oy 中,已知圆P 在x 轴上截得线段长为22,在y 轴上截得线段长为2 3.(1)求圆心P 的轨迹方程;(2)若P 点到直线y =x 的距离为22,求圆P 的方程.解:(1)设P(x ,y),圆P 的半径为r.由题设y 2+2=r 2,x 2+3=r 2,从而y 2+2=x 2+3. 故P 点的轨迹方程为y 2-x 2=1.(2)设P(x 0,y 0).由已知得|x 0-y 0|2=22.又P 点在双曲线y 2-x 2=1上,从而得⎩⎪⎨⎪⎧|x 0-y 0|=1,y 20-x 20=1.由⎩⎪⎨⎪⎧ x 0-y 0=1,y 20-x 20=1,得⎩⎪⎨⎪⎧x 0=0,y 0=-1.此时,圆P 的半径r = 3. 由⎩⎪⎨⎪⎧ x 0-y 0=-1,y 20-x 2=1,得⎩⎪⎨⎪⎧x 0=0,y 0=1, 此时,圆P 的半径r = 3.故圆P 的方程为x 2+(y +1)2=3或x 2+(y -1)2=3.55.(2013·高考大纲全国卷)已知双曲线C :x 2a 2-y 2b2=1(a>0,b>0)的左、右焦点分别为F 1、F 2,离心率为3,直线y =2与C 的两个交点间的距离为 6.(1)求a 、b ;(2)设过F 2的直线l 与C 的左、右两支分别交于A 、B 两点,且|AF 1|=|BF 1|,证明:|AF 2|、|AB|、|BF 2|成等比数列.解:(1)由题设知ca =3,即a 2+b 2a 2=9,故b 2=8a 2.所以C 的方程为8x 2-y 2=8a 2.将y =2代入上式,求得x =± a 2+12.由题设知,2a 2+12=6,解得a 2=1.所以a =1,b =2 2.(2)证明:由(1)知,F 1(-3,0),F 2(3,0),C 的方程为8x 2-y 2=8.①由题意可设l 的方程为y =k(x -3),|k|<22,将其代入①并化简,得(k 2-8)x 2-6k 2x +9k 2+8=0.设A(x 1,y 1),B(x 2,y 2),则x 1≤-1,x 2≥1,x 1+x 2=6k 2k 2-8,x 1x 2=9k 2+8k 2-8.于是|AF 1|=(x 1+3)2+y 21=(x 1+3)2+8x 21-8 =-(3x 1+1),|BF 1|=(x 2+3)2+y 22=(x 2+3)2+8x 22-8=3x 2+1. 由|AF 1|=|BF 1|,得-(3x 1+1)=3x 2+1,即x 1+x 2=-23,故6k 2k 2-8=-23,解得k 2=45,从而x 1x 2=-199.由于|AF 2|=(x 1-3)2+y 21=(x 1-3)2+8x 21-8=1-3x 1,|BF 2|=(x 2-3)2+y 22=(x 2-3)2+8x 22-8=3x 2-1, 故|AB|=|AF 2|-|BF 2|=2-3(x 1+x 2)=4, |AF 2|·|BF 2|=3(x 1+x 2)-9x 1x 2-1=16, 因而|AF 2|·|BF 2|=|AB|2,所以|AF 2|、|AB|、|BF 2|成等比数列.56.(2013·高考山东卷)椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别是F 1、F 2,离心率为32,过F 1且垂直于x 轴的直线被椭圆C 截得的线段长为1.(1)求椭圆C 的方程;(2)点P 是椭圆C 上除长轴端点外的任一点,连接PF 1,PF 2,设∠F 1PF 2的角平分线PM 交C 的长轴于点M(m ,0),求m 的取值范围;(3)在(2)的条件下,过点P 作斜率为k 的直线l ,使得l 与椭圆C 有且只有一个公共点.设直线PF 1,PF 2的斜率分别为k 1,k 2.若k ≠0,试证明1kk 1+1kk 2为定值,并求出这个定值. 解:(1)由于c 2=a 2-b 2,将x =-c 代入椭圆方程x 2a 2+y 2b 2=1,得y =±b 2a.由题意知2b2a =1,即a =2b 2.又e =c a =32,所以a =2,b =1.所以椭圆C 的方程为x 24+y 2=1.(2)法一:设P(x 0,y 0)(y 0≠0), 又F 1(-3,0),F 2(3,0), 所以直线PF 1,PF 2的方程分别为 lPF 1:y 0x -(x 0+3)y +3y 0=0, lPF 2:y 0x -(x 0-3)y -3y 0=0.由题意知|my 0+3y 0|y 20+(x 0+3)2=|my 0-3y 0|y 20+(x 0-3)2. 由于点P 在椭圆上,所以x 204+y 20=1. 所以|m +3|(32x 0+2)2=|m -3|(32x 0-2)2.因为-3<m<3,-2<x 0<2, 可得m +332x 0+2=3-m 2-32x 0,所以m =34x 0.因此-32<m<32.法二:设P(x 0,y 0),当0≤x 0<2时,①当x 0=3时,直线PF 2的斜率不存在,易知P(3,12)或P(3,-12).若P(3,12),则直线PF 1的方程为x -43y +3=0.由题意得|m +3|7=3-m ,因为-3<m<3,所以m =334.若P(3,-12),同理可得m =334.②当x 0≠3时,设直线PF 1,PF 2的方程分别为y =k 1(x +3),y =k 2(x -3).由题意知|mk 1+3k 1|1+k 21=|mk 2-3k 2|1+k 22,所以(m +3)2(m -3)2=1+1k 211+1k 22.因为x 204+y 20=1,且k 1=y 0x 0+3,k 2=y 0x 0-3, 所以(m +3)2(m -3)2=4(x 0+3)2+4-x 204(x 0-3)2+4-x 20=3x 20+83x 0+163x 20-83x 0+16=(3x 0+4)2(3x 0-4)2,即|m +3||m -3|=|3x 0+4||3x 0-4|. 因为-3<m<3,0≤x 0<2且x 0≠3,所以3+m 3-m =4+3x 04-3x 0,整理得m =3x 04,故0≤m<32且m ≠334.综合①②可得0≤m<32.当-2<x 0<0时,同理可得-32<m<0.综上所述,m 的取值范围是(-32,32).(3)设P(x 0,y 0)(y 0≠0),则直线l 的方程为y -y 0=k(x -x 0).联立得⎩⎪⎨⎪⎧x 24+y 2=1,y -y 0=k (x -x 0),整理得(1+4k 2)x 2+8(ky 0-k 2x 0)x +4(y 20-2k x 0y 0+k 2x 20-1)=0.由题意Δ=0,即(4-x 20)k 2+2x 0y 0k +1-y 20=0. 又x 204+y 20=1, 所以16y 20k 2+8x 0y 0k +x 20=0,故k =-x 04y 0. 由(2)知1k 1+1k 2=x 0+3y 0+x 0-3y 0=2x 0y 0,所以1kk 1+1kk 2=1k (1k 1+1k 2)=(-4y 0x 0)·2x 0y 0=-8,因此1kk 1+1kk 2为定值,这个定值为-8.57.(2013·高考山东卷)在平面直角坐标系x Oy 中,已知椭圆C 的中心在原点O ,焦点在x 轴上,短轴长为2,离心率为22.(1)求椭圆C 的方程;(2)A ,B 为椭圆C 上满足△AOB 的面积为64的任意两点,E 为线段AB 的中点,射线OE 交椭圆C 于点P.设OP →=tOE →,求实数t 的值.解:(1)设椭圆C 的方程为x 2a 2+y 2b2=1(a>b>0),由题意知⎩⎪⎨⎪⎧a 2=b 2+c 2,c a =22,2b =2,解得⎩⎨⎧a =2,b =1,因此椭圆C 的方程为x 22+y 2=1.(2)(ⅰ)当A ,B 两点关于x 轴对称时,设直线AB 的方程为x =m. 由题意得-2<m<0或0<m< 2.将x =m 代入椭圆方程x 22+y 2=1,得|y|= 2-m 22.所以 S △AOB =|m|·2-m 22=64.解得m 2=32或m 2=12.①因为OP →=tOE →=12t(OA →+OB →)=12t(2m,0)=(mt,0),又P 为椭圆C 上一点,所以(mt )22=1.②由①②,得t 2=4或t 2=43,又t>0,所以t =2或t =233.(ⅱ)当A ,B 两点关于x 轴不对称时,设直线AB 的方程为y =k x +h.将其代入椭圆的方程x 22+y 2=1,得(1+2k 2)x 2+4kh x +2h 2-2=0. 设A(x 1,y 1),B(x 2,y 2).由判别式Δ>0可得1+2k 2>h 2,此时x 1+x 2=-4kh1+2k 2,x 1x 2=2h 2-21+2k 2,y 1+y 2=k(x 1+x 2)+2h =2h1+2k 2,所以|AB|=1+k 2×(x 1+x 2)2-4x 1x 2=22×1+k 2×1+2k 2-h 21+2k 2.因为点O 到直线AB 的距离d =|h|1+k 2,所以S △AOB =12|AB|d =12×22×1+k 2×1+2k 2-h 21+2k 2×|h|1+k 2 =2×1+2k 2-h 21+2k 2×|h|.又S △AOB =64,所以2×1+2k 2-h 21+2k2×|h|=64.③ 令n =1+2k 2,代入③整理得3n 2-16h 2n +16h 4=0.解得n =4h 2或n =43h 2,即1+2k 2=4h 2或1+2k 2=43h 2.④因为OP →=tOE →=12t(OA →+OB →)=12t(x 1+x 2,y 1+y 2)=(-2kht 1+2k 2,ht 1+2k 2), 又P 为椭圆C 上一点,所以t 2[12(-2kh 1+2k 2)2+(h 1+2k 2)2]=1, 即h 2t 21+2k 2=1.⑤ 将④代入⑤,得t 2=4或t 2=43.又t>0,故t =2或t =233.经检验,适合题意.综合(ⅰ)(ⅱ),得t=2或t=23 3.58.(2013·高考江苏卷)如图,在平面直角坐标系x Oy 中,点A(0,3),直线l :y =2x -4.设圆C 的半径为1,圆心在l 上.(1)若圆心C 也在直线y =x -1上,过点A 作圆C 的切线,求切线的方程; (2)若圆C 上存在点M ,使MA =2MO ,求圆心C 的横坐标a 的取值范围.解:(1)由题设,圆心C 是直线y =2x -4和y =x -1的交点,解得点C(3,2),于是切线的斜率必存在.设过A(0,3)的圆C 的切线方程为y =k x +3.由题意,得|3k +1|k 2+1=1,解得k =0或k =-34,故所求切线方程为y =3或3x +4y -12=0. (2)因为圆心在直线y =2x -4上,所以圆C 的方程为(x -a)2+[y -2(a -2)]2=1. 设点M(x ,y),因为MA =2MO ,所以x 2+(y -3)2=2x 2+y 2,化简得x 2+y 2+2y -3=0,即x 2+(y +1)2=4,所以点M 在以D(0,-1)为圆心,2为半径的圆上.由题意,点M(x ,y)在圆C 上,所以圆C 与圆D 有公共点, 则|2-1|≤CD ≤2+1,即1≤a 2+(2a -3)2≤3. 整理,得-8≤5a 2-12a ≤0. 由5a 2-12a +8≥0,得a ∈R ;由5a 2-12a ≤0,得0≤a ≤125.所以点C 的横坐标a 的取值范围为[0,125].59.(2013·高考浙江卷)已知抛物线C 的顶点为O (0,0),焦点为F (0,1). (1)求抛物线C 的方程;(2)过点F 作直线交抛物线C 于A 、B 两点,若直线AO ,BO 分别交直线l :y =x -2于M ,N 两点, 求|MN |的最小值.解:(1)由题意可设抛物线C 的方程为x 2=2py (p >0),则p2=1,所以抛物线C 的方程为x 2=4y .(2)设A (x 1,y 1),B (x 2,y 2),直线AB 的方程为y =kx +1. 由⎩⎪⎨⎪⎧y =kx +1,x 2=4y ,消去y ,整理得x 2-4kx -4=0, 所以x 1+x 2=4k ,x 1x 2=-4. 从而|x 1-x 2|=4k 2+1.由⎩⎪⎨⎪⎧y =y 1x 1x ,y =x -2,解得点M 的横坐标x M =2x 1x 1-y 1=2x 1x 1-x 214=84-x 1. 同理,点N 的横坐标x N =84-x 2.所以|MN |=2|x M -x N |=2|84-x 1-84-x 2|=82|x 1-x 2x 1x 2-4(x 1+x 2)+16|=82k 2+1|4k -3|.令4k -3=t ,t ≠0,则k =t +34.当t >0时,|MN |=2 2 25t 2+6t +1>2 2.当t <0时,|MN |=2 2 (5t +35)2+1625≥852.综上所述,当t =-253,即k =-43时,|MN |的最小值是852.60.(2013·高考安徽卷)设椭圆E :x 2a 2+y21-a 2=1的焦点在x 轴上.(1)若椭圆E 的焦距为1,求椭圆E 的方程;(2)设F 1、F 2分别是椭圆E 的左、右焦点,P 为椭圆E 上第一象限内的点,直线F 2P 交y 轴于点Q ,并且F 1P ⊥F 1Q .证明:当a 变化时,点P 在某定直线上.解:(1)因为椭圆的焦点在x 轴上且焦距为1,所以2a 2-1=14,解得a 2=58.故椭圆E 的方程为8x 25+8y23=1.(2)证明:设出点P 的坐标,并求出其横、纵坐标的关系式. 注意点在直线上时,点的坐标满足直线方程.设P (x 0,y 0),F 1(-c,0),F 2(c,0),其中c =2a 2-1.由题设知x 0≠c ,则直线F 1P 的斜率kF 1P =y 0x 0+c,直线F 2P 的斜率kF 2P =y 0x 0-c .故直线F 2P 的方程为y =y 0x 0-c(x -c ).当x =0时,y =cy 0c -y 0,即点Q 坐标为(0,cy 0c -x 0).因此,直线F 1Q 的斜率为kF 1Q =y 0c -x 0.由于F 1P ⊥F 1Q ,所以kF 1P ·kF 1Q =y 0x 0+c ·y 0c -x 0=-1.化简得y 20=x 20-(2a 2-1).①将①代入椭圆E 的方程,由于点P (x 0,y 0)在第一象限,解得x 0=a 2,y 0=1-a 2, 即点P 在定直线x +y =1上.61.(2013·高考北京卷)直线y =kx +m (m ≠0)与椭圆W :x 24+y 2=1相交于A ,C 两点,O 是坐标原点.(1)当点B 的坐标为(0,1),且四边形OABC 为菱形时,求AC 的长;(2)当点B 在W 上且不是W 的顶点时,证明:四边形OABC 不可能为菱形. 解:(1)因为四边形OABC 为菱形, 所以AC 与OB 互相垂直平分.所以可设A (t ,12),代入椭圆方程得t 24+14=1,即t =±3.所以|AC |=2 3.(2)证明:假设四边形OABC 为菱形.因为点B 不是W 的顶点,且AC ⊥OB ,所以k ≠0. 由⎩⎪⎨⎪⎧x 2+4y 2=4,y =kx +m ,消去y 并整理得 (1+4k 2)x 2+8kmx +4m 2-4=0. 设A (x 1,y 1),C (x 2,y 2),则 x 1+x 22=-4km 1+4k 2,y 1+y 22=k ·x 1+x 22+m =m1+4k 2, 所以AC 的中点为M (-4km 1+4k 2,m1+4k 2).因为M 为AC 和OB 的交点,且m ≠0,k ≠0,所以直线OB 的斜率为-14k.因为k ·(-14k)≠-1,所以AC 与OB 不垂直.所以四边形OABC 不是菱形,与假设矛盾.所以当点B 在W 上且不是W 的顶点时,四边形OABC 不可能是菱形.62.(2013·高考天津卷)设椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,离心率为33,过点F 且与x 轴垂直的直线被椭圆截得的线段长为433.(1)求椭圆的方程;(2)设A ,B 分别为椭圆的左、右顶点,过点F 且斜率为k 的直线与椭圆交于C ,D 两点.若AC →·DB →+AD →·CB →=8,求k 的值.解:(1)设F (-c,0),由c a =33,知a =3c .过点F 且与x 轴垂直的直线为x =-c ,代入椭圆方程有(-c )2a 2+y 2b 2=1,解得y =±6b3,于是26b 3=433,解得b = 2.又a 2-c 2=b 2,从而a =3,c =1,所以椭圆的方程为x 23+y 22=1.(2)设点C (x 1,y 1),D(x 2,y 2),由F (-1,0)得直线C D 的方程为y =k (x +1),由方程组⎩⎪⎨⎪⎧y =k (x +1),x 23+y22=1,消去y ,整理得(2+3k 2)x 2+6k 2x +3k 2-6=0.由根与系数的关系可得x 1+x 2=-6k 22+3k 2,x 1x 2=3k 2-62+3k 2.因为A (-3,0),B (3,0),所以AC →·DB →+AD →·CB →=(x 1+3,y 1)·(3-x 2,-y 2)+(x 2+3,y 2)·(3-x 1,-y 1)=6-2x 1x 2-2y 1y 2=6-2x 1x 2-2k 2(x 1+1)(x 2+1) =6-(2+2k 2)x 1x 2-2k 2(x 1+x 2)-2k 2=6+2k 2+122+3k 2.由已知得6+2k 2+122+3k 2=8,解得k =±2.63.(2013·高考浙江卷)如图,点P (0,-1)是椭圆C 1:x 2a 2+y2b2=1(a >b >0)的一个顶点,C 1的长轴是圆C 2:x 2+y 2=4的直径.l 1,l 2是过点P 且互相垂直的两条直线,其中l 1交圆C 2于A ,B 两点,l 2交椭圆C 1于另一点D.(1)求椭圆C 1的方程;(2)求△AB D 面积取最大值时直线l 1的方程.解:(1)由题意得⎩⎪⎨⎪⎧b =1,a =2.所以椭圆C 的方程为x 24+y 2=1.(2)设A (x 1,y 1),B (x 2,y 2),D(x 0,y 0).由题意知直线l 1的斜率存在,不妨设其为k ,则直线l 1的方程为y =kx -1.又圆C 2:x 2+y 2=4,故点O 到直线l 1的距离d =1k 2+1,所以|AB |=24-d 2=24k 2+3k 2+1.又l 2⊥l 1,故直线l 2的方程为x +ky +k =0. 由⎩⎪⎨⎪⎧x +ky +k =0,x 2+4y 2=4,消去y ,整理得(4+k 2)x 2+8kx =0, 故x 0=-8k 4+k 2,所以|P D|=8k 2+14+k 2.设△AB D 的面积为S ,则S =12|AB |·|P D|=84k 2+34+k 2,所以S =324k 2+3+134k 2+3≤3224k 2+3·134k 2+3=161313,当且仅当k =±102时取等号.所以所求直线l 1的方程为y =±102x -1.64.(2013·高考福建卷)如图,抛物线E :y 2=4x 的焦点为F ,准线l 与x 轴的交点为A .点C 在抛物线E 上,以C 为圆心,|CO |为半径作圆,设圆C 与准线l 交于不同的两点M ,N .(1)若点C 的纵坐标为2,求|MN |; (2)若|AF |2=|AM |·|AN |,求圆C 的半径.解:(1)抛物线y 2=4x 的准线l 的方程为x =-1.。

2014年解析几何高考题选讲(含答案)

2014年解析几何高考题选讲(含答案)

2014年解析几何高考题选讲1. (北京卷)已知圆()()22:341C x y -+-=和两点(),0A m -,()(),00B m m >,若圆C 上存在点P ,使得90APB ∠=,则m 的最大值为( )A.7B.6C.5D.42、(四川卷)设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则||||PA PB +的取值范围是( )A、 B、 C、 D、3(福建卷)已知圆()()22:1C x a y b -+-=,设平面区域70,30,0x y x y y +-≤⎧⎪Ω=-+≥⎨⎪≥⎩,若圆心C ∈Ω,且圆C 与x 轴相切,则22a b +的最大值为 ( ).5.29.37.49A B C D4.(江西卷)过双曲线12222=-by a x C :的右定点作x 轴的垂线与C 的一条渐近线相交于A .若以C 的右焦点为圆心、半径为4的圆经过为坐标原点),两点(、O O A ,则双曲线C 的方程为( )A.112422=-y x B.19722=-y x B. C.18822=-y x D.141222=-y x5. (上海卷)已知曲线C :x =l :x=6.若对于点A (m ,0),存在C 上的点P 和l 上的点Q 使得0AP AQ +=,则m 的取值范围为6. (辽宁卷)已知椭圆C :22194x y +=,点M 与C 的焦点不重合,若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则||||AN BN += .7. (江西卷)设椭圆()01:2222>>=+b a b y a x C 的左右焦点为21F F ,,作2F 作x 轴的垂线与C 交于B A ,两点,B F 1与y 轴交于点D ,若B F AD 1⊥,则椭圆C 的离心率等于________.8.(湖北卷)已知圆22:1O x y +=和点(2,0)A -,若定点(,0)B b (2)b ≠-和常数λ满足:对圆O 上任意一点M ,都有||||MB MA λ=,则 (Ⅰ)b = ; (Ⅱ)λ= .9. (北京卷)已知椭圆C :2224x y +=. (1) 求椭圆C 的离心率;(2)设O 为原点,若点A 在直线2y =,点B 在椭圆C 上,且OA OB ⊥,求线段AB 长度的最小值.10.(江西卷)如图,已知抛物线2:4C xy =,过点(0,2)M 任作一直线与C 相交于,A B两点,过点B 作y 轴的平行线与直线AO 相交于点D (O 为坐标原点). (1)证明:动点D 在定直线上;(2)作C 的任意一条切线l (不含x 轴)与直线2y =相交于点1N ,与(1)中的定直线相交于点2N ,证明:2221||||MN MN -为定值,并求此定值.11.(陕西卷)已知椭圆22221(0)x y a b a b +=>>经过点,离心率为12,左右焦点分别为12(,0),(,0)F c F c -. (1)求椭圆的方程;(2)若直线1:2l y x m =-+与椭圆交于,A B 两点,与以12F F 为直径的圆交于,C D两点,且满足||||4AB CD =,求直线l 的方程. x12.(大纲卷)已知抛物线C:22(0)y px p =>的焦点为F ,直线y=4与y 轴的交点为P ,与C 的交点为Q ,且54QF PQ =. (1)求抛物线C 的方程;(2)过F 的直线l 与C 相交于A,B 两点,若AB 的垂直平分线l '与C 相交于M,N 两点,且A,M,B,N 四点在同一个圆上,求直线l 的方程.2014年解析几何高考题选讲答案1.B2.B3.C4.A5. [2,3]8. (Ⅰ)12-;(Ⅱ)129. 解:(I )由题意,椭圆C 的标准方程为22142x y +=, 所以224,2a b ==,从而2222c a b =-=、内部 ,因此2,a c ==,故椭圆C 的离心率 .(II )设点A ,B 的坐标分别为00(,2),(,)t x y ,其中00x ≠, 因为OA OB ⊥,所以0OA OB ⋅=,即0020tx y +=,解得002y t x =-,又220024x y +=, 所以22200||()(2)AB x t y =-+-=2200002()(2)y x y x ++-=2220002044y x y x +++ =2220002042(4)42x x x x --+++=2200284(04)2x x x ++<≤, 因为22002084(04)2x x x +≥<≤,且当204x =时间等号成立,所以2||8AB ≥,故线段AB长度的最小值为10.(1)解:依题意可设AB 方程为2y kx =+,代入24x y =,得24(2)x kx =+,即2480x kx --=.设1122(,),(,)A x y B x y ,则有:128x x =-,直线AO 的方程为11y y x x =;BD 的方程为2x x =;解得交点D 的坐标为1221(,)y x x x ,注意到128x x =-及2114x y =,则有212121211244y x x x x x y x x ====-,因此D 点在定直线2(0)y x =-≠上.(2)依题设,切线l 的斜率存在且不等于零,设切线l 的方程为(0)y ax b a =+≠,代入24x y =得24()x ax b =+,即2440x ax b --=,由0∆=得2(4)160a b +=,化简整理得2b a =-,故切线l 的方程可写为2y ax a =-,分别令2,2y y ==-得12,N N 的坐标为1222(,2),(,2)N a N a a a +-+-,则222222122()4()8MN MN a a a a -=-+-+=,即2221MN MN -为定值8.11. (1)由题意可得312222b c a b a c ⎧=⎪⎪=⎨⎪⎪=⎩—xyF 2F 1DCBA O解得2,3,1a b c ===∴椭圆的方程为22143x y += (2)由题意可得以12F F 为直径的圆的方程为221x y +=∴圆心到直线l 的距离为5d =由1d <15<,可得5||m <22242||21215455m CD d m ∴=-=-=-设1122(,),(,)A x y B x y联立2212143y x m x y ⎧=-+⎪⎪⎨⎪+=⎪⎩ 整理得2230x mx m -+-=由求根公式可得:12x x m +=,2123x x m =-||AB ∴==||||4AB CD =1=解方程得3m =±,且满足||2m < ∴直线l的方程为123y x =-+或123y x =--12.解:(1)设Q (x 0,4),代入由22(0)y px p =>中得x 0=8p, 所以088,22p p PQ QF x p p ==+=+,由题设得85824p p p+=⨯,解得p =-2(舍去)或p =2.所以C 的方程为24y x =.(2)依题意知直线l 与坐标轴不垂直,故可设直线l 的方程为1x my =+,(m ≠0)代入24y x =中得2440y my --=,设A (x 1,y 1),B(x 2,y 2),则y 1+y 2=4m ,y 1y 2=-4, 故AB 的中点为D (2m 2+1,2m ),2124(1)AB y y m =-=+,有直线l '的斜率为-m ,所以直线l '的方程为2123x y m m=-++,将上式代入24y x =中,并整理得2244(23)0y y m m+-+=. 设M(x 3,y 3),N(x 4,y 4),则234344,4(23)y y y y m m+=-=-+. 故MN的中点为E(23422223,),m MN y m m ++-=-=). 由于MN 垂直平分AB ,故A,M,B,N 四点在同一个圆上等价于12AE BE MN ==,从而2221144AB DE MN +=,即222222224224(1)(21)4(1)(2)(2)m m m m m m m +++++++=,化简得m 2-1=0,解得m =1或m =-1,所以所求直线l 的方程为x -y-1=0或x +y-1=0.。

【数学】2014版《6年高考4年模拟》:第9章-解析几何-第1节直线和圆

【数学】2014版《6年高考4年模拟》:第9章-解析几何-第1节直线和圆

梯方在线高中数学【数学】2014版《6年高考4年模拟》第九章解析几何第一节直线和圆第一部分六年高考荟萃2013年高考题一、选择题1 .(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD版含答案))已知点(1,0),(1,0),(0,1)A B C-,直线(0)y ax b a=+>将△ABC分割为面积相等的两部分,则b的取值范围是()A.(0,1)B.21(1,)22- ( C)21(1,]23-D.11[,)32答案:B由题意可得,三角形ABC 的面积为=1,由于直线y=ax+b(a>0)与x轴的交点为M(﹣,0),由﹣≤0,可得点M在射线OA上.设直线和BC的交点为N,则由可得点N的坐标为(,).①若点M和点A重合,则点N为线段BC的中点,则﹣=﹣1,且=,解得a=b=.②若点M在点O和点A之间,则点N在点B 和点C之间,由题意可得三角形NMB 的面积等于,即=,即=,解得a=>0,故有b<.③若点M在点A的左侧,则﹣<﹣1,b<a,设直线y=ax+b和AC的交点为P,则由求得点P的坐标为(,),此时,NP====•.此时,点C (0,1)到直线y=ax+b 的距离等于 .由题意可得,三角形CPN 的面积等于,即•••=.化简可得2(1﹣b )2=|a 2﹣1|.由于此时 0<b <a <1,所以2(1﹣b )2=|a 2﹣1|=1﹣a 2 . 两边开方可得(1﹣b )=<1,所以1﹣b <,化简可得 b >1﹣.综合以上可得,b=可以,且b <,且b >1﹣,即b 的取值范围是,故选B2 .(2013年普通高等学校招生统一考试山东数学(理)试题(含答案))过点(3,1)作圆22(1)1x y -+=的两条切线,切点分别为A ,B ,则直线AB 的方程为 ( )A .230x y +-=B .230x y --=C .430x y --=D .430x y +-= 答案:A由图象可知,(1,1)A 是一个切点,所以代入选项知,,B D 不成立,排除。

2014届高考数学(理)分项模拟解析几何(含详解)

2014届高考数学(理)分项模拟解析几何(含详解)

解析几何一、选择题1.“a =2”是“直线ax +2y =0平行于直线x +y =1”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件解析:若a =2,则直线ax +2y =0平行于直线x +y =1,反之也成立,即“a =2”是“直线ax +2y =0平行于直线x +y =1”的充要条件,故应选C.答案:C2.已知圆的方程为x 2+y 2-6x -8y =0,设该圆中过点M (3,5)的最长弦、最短弦分别为AC ,BD ,则以点A ,B ,C ,D 为顶点的四边形ABCD 的面积为( )A .106B .20 6C .30 6D .40 6解析:已知圆的圆心为(3,4),半径为5,则最短的弦长为252-12=46,最长的弦为圆的直径为10,则四边形的面积为12×46×10=206,故应选B.答案:B3.若直线l 被圆x 2+y 2=4所截得的弦长为23,则直线l 与下列曲线一定有公共点的是( )A .y 2=x B.x 22-y 2=1C .(x -2)2+y 2=4 D.x 23+y 2=1解析:依题意得,圆心(0,0)到直线l 的距离等于4-⎝⎛⎭⎫2322=1,即直线l 必是圆x 2+y 2=1的切线.对于A ,圆x 2+y 2=1的切线x =-1与曲线y 2=x 没有公共点;对于B ,圆x 2+y 2=1的切线x =-1与曲线x 22-y 2=1没有公共点;对于C ,圆x 2+y 2=1的切线x =-1与曲线(x -2)2+y 2=4没有公共点;对于D ,由于圆x 2+y 2=1上的所有点均不在椭圆x 23+y 2=1外,因此圆x 2+y 2=1的切线与曲线x23+y 2=1一定有公共点.综上所述,选D.答案:D4.已知双曲线y 22-x 23=1的两个焦点分别为F 1、F 2,则满足△PF 1F 2的周长为6+25的动点P 的轨迹方程为( )A.x 24+y 29=1B.x 29+y 24=1 C.x 24+y 29=1(x ≠0) D.x 29+y 24=1(x ≠0) 解析:依题意得,|F 1F 2|=22+3=25,|PF 1|+|PF 2|=6>|F 1F 2|,因此满足△PF 1F 2的周长为6+25的动点P 的轨迹是以点F 1、F 2为焦点,长轴长是6的椭圆(除去长轴的端点),即动点P 的轨迹方程是x 24+y 29=1(x ≠0),选C.答案:C5.正方形的四个顶点都在双曲线C 上,其一边经过C 的焦点,则C 的离心率为( )A.3+12 B .2C.5+12D. 2解析:不妨设正方形的边长为2,则有2c =2,2a =5-1,∴双曲线C 的离心率e =c a =2c2a=25-1=5+12,选C.答案:C6.直线4kx -4y -k =0与抛物线y 2=x 交于A 、B 两点,若|AB |=4,则弦AB 的中点到直线x +12=0的距离等于( )A.74 B .2 C.94D .4 解析:直线4kx -4y -k =0,即y =k ⎝⎛⎭⎫x -14,即直线4kx -4y -k =0过抛物线y 2=x 的焦点⎝⎛⎭⎫14,0.设A (x 1,y 1),B (x 2,y 2),则|AB |=x 1+x 2+12=4,故x 1+x 2=72,则弦AB 的中点的横坐标是74,弦AB 的中点到直线x +12=0的距离是74+12=94.答案:C7.已知A (-2,0),B (0,2),实数k 是常数,M ,N 是圆x 2+y 2+kx =0上两个不同点,P 是圆x 2+y 2+kx =0上的动点,如果M ,N 关于直线x -y -1=0对称,则△P AB 面积的最大值是( )A .3- 2B .4C .3+ 2D .6解析:依题意得圆x 2+y 2+kx =0的圆心⎝⎛⎭⎫-k 2,0位于直线x -y -1=0上,于是有-k 2-1=0,即k =-2,因此圆的圆心坐标是(1,0)、半径是1.由题意可得|AB |=22,直线AB 的方程是x -2+y2=1,即x -y +2=0,圆心(1,0)到直线AB 的距离等于|1-0+2|2=322,点P 到直线AB 的距离的最大值是322+1,△P AB 面积的最大值为12×22×32+22=3+2,选C.答案:C8.已知P 是抛物线y 2=4x 上一动点,则点P 到直线l :2x -y +3=0和y 轴的距离之和的最小值是( )A. 3B. 5 C .2 D.5-1解析:由题意知,抛物线的焦点为F (1,0).设点P 到直线l 的距离为d ,由抛物线的定义知,点P 到y 轴的距离为|PF |-1,所以点P 到直线l 的距离与到y 轴的距离之和为d +|PF |-1.易知d +|PF |的最小值为点F 到直线l 的距离,故d +|PF |的最小值为|2+3|22+(-1)2=5,所以d +|PF |-1的最小值为5-1.答案:D9.已知双曲线x 2a 2-y 2b2=1(a >1,b >0)的焦距为2c ,离心率为e ,若点(-1,0)与点(1,0)到直线x a -y b =1的距离之和为S ,且S ≥45c ,则离心率e 的取值范围是( )A.⎣⎡⎦⎤52,5 B .[2,7] C.⎣⎡⎦⎤52,7 D.[]2,5解析:由题意得S =|-b -ab |a 2+b 2+|b -ab |a 2+b2=2ab c ≥45c ,所以2c 2≤5ab ,即4c 4≤25a 2(c 2-a 2),整理得4c 4-25a 2c 2+25a 4≤0,所以4e 4-25e 2+25≤0,解得54≤e 2≤5,即52≤e ≤ 5.答案:A10.已知椭圆x 22a 2+y 2b 2=1(a >b >0)和双曲线x 2a 2-y 2b2=1(a >0,b >0)有相同的焦点F 1、F 2,则椭圆和双曲线离心率的平方和为( )A.94B.74 C .2 D .3解析:依题意得2a 2-b 2=a 2+b 2,即a 2=2b 2,因此该椭圆和双曲线的离心率分别是 2a 2-b 22a 2和 a 2+b 2a 2,该椭圆与双曲线的离心率的平方和为2a 2-b 22a 2+a 2+b 2a 2=4b 2-b 24b 2+2b 2+b 22b 2=94,选A. 答案:A11.若P 是双曲线C 1:x 2a 2-y 2b2=1(a >0,b >0)和圆C 2:x 2+y 2=a 2+b 2的一个交点且∠PF 2F 1=2∠PF 1F 2,其中F 1、F 2是双曲线C 1的两个焦点,则双曲线C 1的离心率为( )A.3-1B.3+1 C .2 D .3解析:依题意得,∠F 1PF 2=90°,又∠PF 2F 1=2∠PF 1F 2,因此∠PF 1F 2=30°,|PF 2|=12|F 1F 2|=c ,|PF 1|=32|F 1F 2|=3c ,双曲线C 1的离心率等于|F 1F 2||PF 1|-|PF 2|=2c3c -c=3+1,选B.答案:B12.若曲线C 1:y 2=2px (p >0)的焦点F 恰好是曲线C 2:x 2a 2-y 2b2=1(a >0,b >0)的右焦点,且曲线C 1与曲线C 2交点的连线过点F ,则曲线C 2的离心率为( )A.2-1B.2+1C.6+22D.2+12解析:设曲线C 1与曲线C 2在第一象限的交点为A ,则点A ⎝⎛⎭⎫c ,b 2a ,因为抛物线的焦点与双曲线的右焦点重合,所以A 点的坐标可以表示为⎝⎛⎭⎫p 2,p ,所以p =2c ,从而b 2a=2c ,即e 2-2e -1=0,解得e =2+1或e =1-2(舍去),故选B.答案:B 二、填空题13.已知正三角形OAB 的三个顶点都在抛物线y 2=2x 上,其中O 为坐标原点,则△OAB 的外接圆的方程是______________.解析:由题意知A ,B 两点关于x 轴对称,所以外接圆的圆心C 在x 轴上.设圆C 的半径为r (r >0),则圆心坐标为(r,0),A 点坐标为⎝⎛⎭⎫32r ,32r ,于是有⎝⎛⎭⎫32r 2=2×32r ,解得r =4,所以圆C 的方程为(x -4)2+y 2=16.答案:(x -4)2+y 2=1614.若直线l :4x +3y -8=0过圆C :x 2+y 2-ax =0的圆心且交圆C 于A 、B 两点,O 为坐标原点,则△OAB 的面积为__________.解析:由题易知,圆C :x 2+y 2-ax =0的圆心为⎝⎛⎭⎫a 2,0.又直线l :4x +3y -8=0过圆C的圆心⎝⎛⎭⎫a 2,0,∴4×a2+3×0-8=0,∴a =4,∴圆C 的方程为x 2+y 2-4x =0,即(x -2)2+y 2=4.∴|AB |=2r =4.又点O (0,0)到直线l :4x +3y -8=0的距离d =|0+0-8|42+32=85,∴S △OAB =12|AB |·d =12×4×85=165.答案:16515.F 是抛物线y 2=2x 的焦点,A 、B 是该抛物线上的两点,|AF |+|BF |=6,则线段AB 的中点到y 轴的距离为__________.解析:设A (x 1,y 1),B (x 2,y 2),由抛物线的定义可知:|AF |+|BF |=p 2+x 1+p2+x 2=x 1+x 2+p =6,∵p =1,∴x 1+x 2=5,∵线段AB 的中点的横坐标为x 1+x 22=52,∴线段AB 的中点到y 轴的距离为52.答案:5216.已知点F 是双曲线x 2a 2-y 2b2=1(a >0,b >0)的左焦点,点E 是该双曲线的右顶点,过点F 且垂直于x 轴的直线与双曲线交于A ,B 两点,若△ABE 是锐角三角形,则该双曲线的离心率e 的取值范围为__________.解析:由题意知,△ABE 为等腰三角形.若△ABE 是锐角三角形则只需要∠AEB 为锐角.根据对称性,只要∠AEF <π4即可.直线AB 的方程为x =-c ,代入双曲线方程得y 2=b4a2,取点A ⎝⎛⎭⎫-c ,b 2a ,则|AF |=b 2a ,|EF |=a +c ,只要|AF |<|EF |就能使∠AEF <π4,即b2a <a +c ,即b 2<a 2+ac ,即c 2-ac -2a 2<0,即e 2-e -2<0,即-1<e <2,又e >1,故1<e <2.答案:(1,2) 三、解答题17.已知椭圆x 2m +1+y 2=1的两个焦点是F 1(-c,0),F 2(c,0)(c >0).(1)设E 是直线y =x +2与椭圆的一个公共点,求|EF 1|+|EF 2|取得最小值时椭圆的方程; (2)已知点N (0,-1),斜率为k (k ≠0)的直线l 与条件(1)下的椭圆交于不同的两点A ,B ,点Q 满足AQ →=QB →,且NQ →·AB →=0,求直线l 在y 轴上的截距的取值范围.解析:(1)由题意,知m +1>1,即m >0.由⎩⎪⎨⎪⎧y =x +2,x 2m +1+y 2=1,得(m +2)x 2+4(m +1)x +3(m +1)=0. 又Δ=16(m +1)2-12(m +2)(m +1)=4(m +1)(m -2)≥0,解得m ≥2或m ≤-1(舍去),∴m ≥2. 此时|EF 1|+|EF 2|=2m +1≥2 3.当且仅当m =2时,|EF 1|+|EF 2|取得最小值23,此时椭圆的方程为x 23+y 2=1.(2)设直线l 的方程为y =kx +t .由方程组⎩⎪⎨⎪⎧x 2+3y 2=3,y =kx +t ,消去y 得(1+3k 2)x 2+6ktx +3t 2-3=0.∵直线l 与椭圆交于不同的两点A ,B ,∴Δ=(6kt )2-4(1+3k 2)(3t 2-3)>0, 即t 2<1+3k 2.①设A (x 1,y 1),B (x 2,y 2),Q (x Q ,y Q ),则x 1+x 2=-6kt1+3k 2.由AQ →=QB →,得Q 为线段AB 的中点,则x Q =x 1+x 22=-3kt 1+3k 2,y Q =kx Q+t =t1+3k 2. ∵NQ →·AB →=0,∴直线AB 的斜率k AB 与直线QN 的斜率k QN 乘积为-1,即k QN ·k AB =-1,∴t1+3k 2+1-3kt 1+3k 2·k =-1,化简得1+3k 2=2t ,代入①式得t 2<2t , 解得0<t <2.又k ≠0,即3k 2>0,故2t =1+3k 2>1,得t >12.综上,直线l 在y 轴上的截距t 的取值范围是⎝⎛⎭⎫12,2.18.已知圆C :(x -4)2+(y -m )2=16(m ∈N *),直线4x -3y -16=0过椭圆E :x 2a 2+y 2b2=1(a>b >0)的右焦点,且被圆C 所截得的弦长为325,点A (3,1)在椭圆E 上.(1)求m 的值及椭圆E 的方程;(2)设Q 为椭圆E 上的一个动点,求AC →·AQ →的取值范围.解析:(1)因为直线4x -3y -16=0被圆C 所截得的弦长为325,所以圆心C (4,m )到直线4x -3y -16=0的距离为 42-⎝⎛⎭⎫1652=125,即|4×4-3×m -16|5=125,解m =4或m =-4(舍去).又因为直线4x -3y -16=0过椭圆E 的右焦点,所以椭圆E 的右焦点F 2的坐标为(4,0),则其左焦点F 1的坐标为(-4,0).因为椭圆E 过A 点,所以|AF 1|+|AF 2|=2a ,所以2a =52+2=62,所以a =32,a 2=18,b 2=2,故椭圆E 的方程为x 218+y 22=1.(2)由(1)知C (4,4),又A (3,1),所以AC →=(1,3),设Q (x ,y ),则AQ →=(x -3,y -1),则AC →·AQ→=x +3y -6.令x +3y =n ,则由⎩⎪⎨⎪⎧x 218+y 22=1,x +3y =n ,消去x 得18y 2-6ny +n 2-18=0,由于直线x +3y =n 与椭圆E 有公共点,所以Δ=(6n )2-4×18×(n 2-18)≥0,解得-6≤n ≤6,故AC →·AQ →=x +3y -6的取值范围为[-12,0].19.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率e =22,左、右焦点分别为F 1、F 2,抛物线y 2=42x 的焦点F 恰好是该椭圆的一个顶点.(1)求椭圆C 的方程;(2)已知圆M :x 2+y 2=23的切线l 与椭圆相交于A 、B 两点,那么以AB 为直径的圆是否经过定点?如果是,求出定点的坐标;如果不是,请说明理由.解析:(1)设椭圆C 的焦距为2c .∵椭圆C 的离心率e =22,∴c a =22,即a =2c . ∵抛物线y 2=42x 的焦点F (2,0)恰好是该椭圆的一个顶点, ∴a = 2.∴c =1,b =1.∴椭圆C 的方程为x 22+y 2=1.(2)(ⅰ)当直线l 的斜率不存在时, ∵直线l 与圆M 相切,∴其中的一条切线的方程为x =63.由⎩⎨⎧x =63,x22+y 2=1,解得⎩⎨⎧x =63,y =63或⎩⎨⎧x =63,y =-63,不妨设A ⎝⎛⎭⎫63,63,B ⎝⎛⎭⎫63,-63, 则以AB 为直径的圆的方程为⎝⎛⎭⎫x -632+y 2=23.(ⅱ)当直线l 的斜率为零时,∵直线l 与圆M 相切,∴其中的一条切线的方程为y =-63. 由⎩⎨⎧y =-63,x22+y 2=1,解得⎩⎨⎧x =63,y =-63或⎩⎨⎧x =-63,y =-63,不妨设A ⎝⎛⎭⎫63,-63,B ⎝⎛⎭⎫-63,-63, 则以AB 为直径的圆的方程为x 2+⎝⎛⎭⎫y +632=23. 显然以上两圆的一个交点为O (0,0).(ⅲ)当直线l 的斜率存在且不为零时,设直线l 的方程为y =kx +m .由⎩⎪⎨⎪⎧y =kx +m ,x 22+y 2=1,消去y 得(2k 2+1)x 2+4kmx +2m 2-2=0, 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-4km 2k 2+1,x 1x 2=2m 2-22k 2+1.∴y 1y 2=(kx 1+m )(kx 2+m )=k 2x 1x 2+km (x 1+x 2)+m 2=m 2-2k 22k 2+1.∴OA →·OB →=x 1x 2+y 1y 2=3m 2-2k 2-22k 2+1.①∵直线l 和圆M 相切,∴圆心到直线l 的距离d =|m |1+k 2=63,整理得m 2=23(1+k 2),②将②式代入①式,得OA →·OB →=0,显然以AB 为直径的圆经过定点O (0,0). 综上可知,以AB 为直径的圆过定点(0,0).20.如图,已知M (m ,m 2)、N (n ,n 2)是抛物线C :y =x 2上的两个不同的点,且m 2+n 2=1,m +n ≠0,直线l 是线段MN 的垂直平分线.设椭圆E 的方程为x 22+y 2a=1(a >0,a ≠2).(1)当M 、N 在C 上移动时,求直线l 的斜率k 的取值范围;(2)已知直线l 与抛物线C 交于A 、B 两点,与椭圆E 交于P 、Q 两点,设线段AB 的中点为R ,线段QP 的中点为S ,若OR →·OS →=0,求椭圆E 的离心率的取值范围.解析:(1)由题意知,直线MN 的斜率k MN =m 2-n 2m -n=m +n ,又l ⊥MN ,m +n ≠0,∴直线l 的斜率k =-1m +n.∵m 2+n 2=1,由m 2+n 2≥2mn ,得2(m 2+n 2)≥(m +n )2, 即2≥(m +n )2(当m =n 时,等号成立), ∴|m +n |≤2,∵M 、N 是不同的两点,即m ≠n , ∴0<|m +n |<2,∴|k |>22,即k <-22或k >22.(2)由题意易得,线段MN 的中点坐标为⎝⎛⎭⎫m +n 2,m 2+n 22,∵直线l 是线段MN 的垂直平分线,∴直线l 的方程为y -m 2+n 22=k ⎝⎛⎭⎫x -m +n 2,又∵m 2+n 2=1,k =-1m +n,即m +n =-1k ,∴直线l 的方程为y =kx +1,将直线l 的方程代入抛物线和椭圆方程并分别整理得,x 2-kx -1=0,① (a +2k 2)x 2+4kx +2-2a =0.②易知方程①的判别式Δ1=k 2+4>0,方程②的判别式Δ2=8a ·(2k 2+a -1),由(1)易知k 2>12,a >0, ∴2k 2+a -1>a >0,∴Δ2>0恒成立.设A (x A ,y A ),B (x B ,y B ),P (x P ,y P ),Q (x Q ,y Q ),则x A +x B =k ,y A +y B =kx A +1+kx B +1=k (x A +x B )+2=k 2+2,∴线段AB 的中点R 的坐标为⎝⎛⎭⎫k 2,k 22+1,又x P +x Q =-4k a +2k 2,y P +y Q =kx P +1+kx Q +1=k (x P +x Q )+2=2aa +2k 2, ∴线段QP 的中点S 的坐标为⎝ ⎛⎭⎪⎫-2k a +2k 2,a a +2k 2.∴OR →=⎝⎛⎭⎫k 2,k 22+1,OS →=⎝ ⎛⎭⎪⎫-2ka +2k 2,a a +2k 2, 由OR →·OS →=0得,-k 2+a ⎝⎛⎭⎫k 22+1a +2k2=0, 即-k 2+a ⎝⎛⎭⎫k 22+1=0, ∴a =2k 2k 2+2,∵|k |>22,∴a =2k 2k 2+2=2-4k 2+2>2-412+2=25,a =2k 2k 2+2=2-4k 2+2<2,故25<a <2.由题易知,椭圆E 的离心率e = 2-a2, ∴a =2-2e 2,∴25<2-2e 2<2,∴0<e 2<45,∴0<e <255,∴椭圆E 的离心率的取值范围是⎝⎛⎭⎫0,255.21.已知椭圆C 1与抛物线C 2的焦点均在x 轴上,且C 1的中心和C 2的顶点均为原点O .(1)求C 1、C 2(2)请问是否存在直线l 满足下列条件:①过C 2的焦点F ;②与C 1交于不同的两点M 、N ,且满足OM →⊥ON →.若存在,求出直线l 的方程;若不存在,说明理由.解析:(1)设抛物线C 2的标准方程为y 2=2px (p ≠0),则有y 2x=2p (x ≠0),据此验证四个点易知只有(1,-2)、(4,-4)两点在抛物线上,进而可求得C 2的标准方程为y 2=4x .设椭圆C 1的标准方程为x 2a 2+y 2b 2=1(a >b >0),把(-2,0)、⎝⎛⎭⎫2,62两点代入,得⎩⎪⎨⎪⎧4a 2+0b2=1,2a 2+32b 2=1,解得⎩⎨⎧a =2,b =3,故C 1的标准方程为x 24+y 23=1.(2)假设存在满足题设条件的直线l . 由(1)知抛物线C 2的焦点为(1,0),当直线l 的斜率不存在时,其方程为x =1,由⎩⎪⎨⎪⎧ x =1,x 24+y 23=1,得⎩⎪⎨⎪⎧ x =1,y =32或⎩⎪⎨⎪⎧x =1,y =-32,故不妨令M ⎝⎛⎭⎫1,32,N ⎝⎛⎭⎫1,-32. 此时OM →·ON →=1-94=-54,这与OM →⊥ON →矛盾.当直线l 的斜率存在时,设其方程为y =k (x -1),直线l 与C 1的交点坐标为M (x 1,y 1)、N (x 2,y 2),由⎩⎪⎨⎪⎧y =k (x -1),x 24+y 23=1,得,(3+4k 2)x 2-8k 2x +4(k 2-3)=0, 所以x 1+x 2=8k 23+4k 2,x 1x 2=4(k 2-3)3+4k 2,y 1y 2=k 2(x 1-1)(x 2-1)=k 2[x 1x 2-(x 1+x 2)+1]=k 2⎣⎢⎡⎦⎥⎤4(k 2-3)3+4k 2-8k 23+4k 2+1=-9k 23+4k 2. 又OM →⊥ON →,即OM →·ON →=0,所以x 1x 2+y 1y 2=0, 即4(k 2-3)3+4k 2-9k 23+4k2=0,整理得5k 2+12=0,此方程无实数解. 所以不存在满足题设条件的直线l .22.已知平面上的动点P (x ,y )及两定点A (-2,0),B (2,0),直线P A ,PB 的斜率分别是k 1,k 2,且k 1·k 2=-14.(1)求动点P 的轨迹C 的方程;(2)设直线l :y =kx +m 与曲线C 交于不同的两点M 、N .①若OM ⊥ON (O 为坐标原点),证明点O 到直线l 的距离为定值,并求出这个定值;②若直线BM ,BN 的斜率都存在并满足k BM ·k BN =-14,证明直线l 过定点,并求出这个定点.解析:(1)由题意得y x +2·y x -2=-14(x ≠±2),即x 2+4y 2-4=0(x ≠±2),所以P 点的轨迹C 的方程为x 24+y 2=1(x ≠±2).(2)设M (x 1,y 1),N (x 2,y 2),联立方程,得⎩⎪⎨⎪⎧y =kx +m ,x 24+y 2=1,化简得(4k 2+1)x 2+8kmx +4m 2-4=0.所以x 1+x 2=-8km 4k 2+1,x 1x 2=4m 2-44k 2+1.所以y 1y 2=(kx 1+m )(kx 2+m )=k 2x 1x 2+km (x 1+x 2)+m 2.①若OM ⊥ON ,则x 1x 2+y 1y 2=0,即(1+k 2)x 1x 2+km (x 1+x 2)+m 2=0,即(1+k 2)4m 2-44k 2+1+km -8km 4k 2+1+m 2=0,化简得m 2=45(1+k 2),此时点O 到直线l 的距离为d =|m |1+k2=255,即点O 到直线l 距离为定值255.②k BM ·k BN =-14,即y 1x 1-2·y 2x 2-2=-14.即x 1x 2-2(x 1+x 2)+4+4y 1y 2=0,即x 1x 2-2(x 1+x 2)+4+4k 2x 1x 2+4km (x 1+x 2)+4m 2=0,即4m 2-4-8km (4km -2)4k 2+1+4m 2+4=0, 化简得m (m +2k )=0,解得m =0或m =-2k .当m =0时,直线l 恒过原点;当m =-2k 时,直线l 恒过点(2,0),此时直线l 与曲线C 最多只有一个公共点,不符合题意.所以,直线l 恒过定点,定点坐标是(0,0).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
∴|PA|2+|PB|2=(x1-m)2++(x2-m)2+
=(x1+x2)2-2x1x2-2a(x1+x2)+(y1+y2)2-2y1y2-2y1y2+2a2
=(k2+1)·……11分
∵|PA|2+|PB|2的值与m无关,∴512-800k2=0∴k=±.……13分
9.(襄阳四中2014届高三年级高考冲刺模拟一)
∴当|MQ|最小时,Q的坐标为(5,0)……7分
(3)设A(x1,y1),B(x2,y2),P(m,0)(-5≤m≤5),直线l:y=k(x-m)
由得x1+x2=,x1x2=,……8分
∴y1+y2=k(x1-m)+k(x2-m)=k(x1+x2)-2km=-
y1y2=k2(x1-m)(x2-m)=k2x1x2-k2m(x1+x2)+k2m2=……9分
(1)求椭圆E的方程;
(2)若直线l: 与椭圆E交于A,B两点,当以AB为直径的圆与y轴相切时,求m的值.
【解析】(1)设椭圆E的焦点分别为F1(-c,0),F2(c,0),则椭圆的右焦点到圆上任意一点距离的最大值为: ,又 ,所以 ,(2分),过椭圆右焦点和上顶点的直线方程为: ,即 ,由直线和圆O相切可得 ,解之得 ,∴ ,所以,椭圆E的方程为: (6分)
(2)设 , ,则直线 的方程为 ,
令 ,可得 ,
由 可知, ,整理得 ,
又 ,
联立 ,解得 ,
所以点 在定直线 上.
6.(2014届同心圆梦押题卷二)
已知定点A为抛物线 的焦点,动点B是圆 (F为圆心)上一点,线段AB的垂直平分线交BF于P.
(1)求动点P的轨迹E的方程;
(2)过(0,1)点,且倾斜角为 的直线与曲线E交于M,N两点,试问在曲线E位于第二象限部分上是否存在一点C,使 共线(O为坐标原点)?若存在,求出点C的坐标;若不存在,请说明理由.
【解析】(1)易知点A为(-2,0)由题意 因此点P的轨迹是以A,F为焦点的椭圆.设所求椭圆的方程为 , , 点P的轨迹方程E为 ……4分
(2)直线的方程为: ,假设存在满足题意的点
设 则 ……7分
由 ……9分

又 ,所以存在满足题意的点C( )……13分
7.(2014届同心圆梦押题卷三)
已知椭圆E: 的左焦点F1(-c,0)到圆C: 上任意一点距离的最大值为6,且过椭圆右焦点F2(c,0)与上顶点的直线与圆O: 相切.
已知椭圆C: ,经过点P(1, ),离心率 ,直线 的方程为 =4,
(Ⅰ)求椭圆C的方程;
(Ⅱ)AB是经过右焦点F的任一弦(不经过P点),设直线AB与 相交于点M,记PA,PB,PM的斜率分别为 , , ,问:是否存在常数 ,使得 + = 成立?若存在,求出 的值;若不存在,请说明理由.
【解析】(Ⅰ)由点 在椭圆上得, ① ②
2.(大庆铁人中学考前模拟训练)已知椭圆C: ( )的离心率 左右焦点分别为 、 ,抛物线 的焦点F恰好是该椭圆的一个焦点。
(1)求椭圆方程
(2)过椭圆的左顶点A作两条弦 、 分别交椭圆于 、 两点,满足 ,当点 在椭圆上运动时,直线 是否经过 轴上的一定点,若过定点,请给出证明,并求出定点坐标;若不过定点,请说明理由。
由①②得 ,故椭圆 的方程为 ……………5分
(Ⅱ)假设存在常数 ,使得 .
由题意可设 ③
代入椭圆方程 并整理得
设 ,则有 ④
在方程③中,令 得, ,从而
.又因为 共线,则有 ,
即有
所以
= = ⑤
将④代入⑤得 ,又 ,
所以
故存在常数 符合题意.
5.(2014届徐州信息卷)已知椭圆 的左、右焦点分别为 、 ,过 作直线 与椭圆 交于点 、 .
解:(1)由 , ,可得
(2)椭圆方程: 即x²+4y²=4
a²=4,a=2,点A(-2,0)
当直线AM的斜率变化时,设AM的斜率为k,则AN的斜率为
直线AM方程:y=k(x+2)
直线AN方程:y= (x+2)
将AM方程代入椭圆,整理:(4k²+1)x²+16k²x+16k²-4=0
韦达定理: 则点M横坐标 = ,纵坐标 =
(Ⅲ)设 为椭圆 长轴(含端点)上的一个动点,过 点斜率为 的直线 交椭圆与 两点,若 的值与 无关,求 的值.
解:.(1)椭圆C的方程为:……3分
(2)设Q(x,y),-5≤x≤5
∴|MQ|2=(x-2)2+y2=x2-4x+4+16-x2=x2-4x+20……5分
∵对称轴x=>5∴当x=5时,|MQ|2达到最小值,
(2)由 可得 ,则 ,即 .设 ,则 , ,(8分),则AB的中点横坐标为 .则以AB为直径的圆的半径为:
由条件可得 ,整理可得 ,即 ,所以 ,所以 或 (13分)
8.已知椭圆 的离心率 为 ,且椭圆 的一个焦点与抛物线 的焦点重合.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设点 ,点 是椭圆上一点,当 最小时,试求点 的坐标;
圆 的半径为 .
圆 的方程为 .
令 ,则 ,
整理得, .②
由①、②解得, .
不妨设 , ,
∴ , .-------------------------------9分
∴ ,③
当 时,由③得, .
当且仅当 时,等号成立.
当 时,由③得, .故当 时, 的最大值为 .-----13分
4.(2014年高三年级银川市三校联考)
(1)若椭圆 的离心率为 ,右准线的方程为 , 为椭圆 上顶点,直线 交右准线于点 ,求 的值;
(2)当 时,设 为椭圆 上第一象限内的点,直线 交 轴于点 , ,证明:点 在定直线上.
解:(1)设 ,则 ,解得 ,
所以椭圆 的方程为 ,
则直线 的方程为 ,令 ,可得 ,
联立 ,得 ,所以 , ,
所以 .
解(1) ……………………6分
(2)由题意,知直线MN存在斜率,其方程为 由
消去
△=(4km)2—4(2k2+1)(2m2—2)>0 ( )

则 ………………8分

由已知直线F2M与F2N的倾斜角互补,

化简,得
整理得 ……………………10分
直线MN的方程为 ,
因此直线MN过定点,该定点的坐标为(2,0) …………………12分
已知抛物线 上的两个动点 ( , )和 ( , ),其中 且 .线段 的垂直平分线与 轴交于点 。
(1)试证直线 的垂直平分线经过定点。
(2)设 中点为 ,求 面积的表达式,要求用 表示。
(3)求 面积的最大值。
解:设线段 的中点为 ,则 ,
.Байду номын сангаас
线段 的垂直平分线的方程是 .(1)
易知 是(1)的一个解,所以线段 的垂直平分线与 轴的交点 为定点,且点 坐标为 .
2014年高考解析几何模拟试题
1.(银川一中第三次模拟考试)已知F1、F2分别为椭圆C: (a>b>0)的左、右焦点,且离心率为 ,点 椭圆C上。
(1)求椭圆C的方程;
(2)是否存在斜率为k的直线 与椭圆C交于不同的两点M、N,使直线 与 的倾斜角互补,且直线 是否恒过定点,若存在,求出该定点的坐标;若不存在,说明理由。
将AN方程代入椭圆,整理:(k²+4)x²+16x+16-4k²=0
韦达定理: 点N的横坐标 = ,纵坐标 =
直线MN的斜率 = =
直线MN方程:y = (x )
化简:y= (x+ )
由此,可知,过定点( ,0)
20.(2014届高三第十次大练习)
已知点 ,直线 : , 为平面上的动点,过点 作直线 的垂线,垂足为 ,且 .
(1)求动点 的轨迹 的方程;
(2)已知圆 过定点 ,圆心 在轨迹 上运动,且圆 与 轴交于 、 两点,设 , ,求 的最大值.
解:(1)设 ,则 ,
∵ ,
∴ .
即 ,即 ,
所以动点 的轨迹 的方程 .---------------------------------4分
(2)设圆 的圆心坐标为 ,则 .①
由(1)知直线 的方程为 ,即 .(2)
(2)代入 得 ,即 .(3)
依题意, 是方程(3)的两个实根,且 ,所以
,
.
.
定点 到线段 的距离
.
.
当且仅当 ,即 , 或 时等号成立.所以, 面积的最大值为 .
相关文档
最新文档