八年级数学勾股定理的应用2
八年级数学基础巩固与拓展提优:第二章 第10课时 勾股定理的应用(2)
第10课时勾股定理的应用(2)(附答案)【基础巩固】1.小强量得家里彩电荧屏的长为58 cm,宽为46 cm,则这台电视机的尺寸是 ( ) A.9英寸(23 cm) B.21英寸(54 cm)C.29英寸(74 cm) D.34英寸(87 cm)2.如图,每个小正方形的边长为1,则△ABC的三边a,b,c的大小关系是 ( )A.a<c<b B.a<b<e C.c<a<b D.c<b<a3.如图,△ABC是等腰直角三角形,∠A=90°,BD是角平分线,DE⊥BC,BC=10 cm,则△DEC的周长是 ( )A.8 cm B.10 cm C.12 cm D.14 cm4.旗杆上的绳子垂到地面还多出1 m,如果把绳子的下端拉开距旗杆底部5m后,绷紧的绳子的末端刚好接触地面,则旗杆的高度为_______m.5.如图,大正方形网格是由16个边长为1的小正方形组成,求图中阴影部分的面积.6.在波平如镜的湖面上,有一朵美丽的红莲,它高出水面1m,一阵大风吹过,红莲被吹至一边,花朵齐及水面,如果知道红莲移动的水平距离为2m,问这里水深多少?78.如图,在△ABC中,∠A=45°,AC AB1.求边BC的长.9.如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形(涂上阴影).(1)在图①中,画一个三角形,使它的三边长都是有理数;(2)在图②、图③中,分别画两个不全等的直角三角形,使它的三边长都是无理数.【拓展提优】10,如图,已知△ABC是边长为1的等腰直角三角形,以Rt△ABC的斜边AC为直角边,画第二个等腰直角三角形ACD,再以直角三角形ACD的斜边AD为直角边,画第三个等腰直角三角形ADE,…,依此类推,第n个等腰直角三角形的斜边长是_______.11.在Rt△ABC中,∠BAC=90°.AB=AC=2,以AC为一边,在△ABC外部作等腰直角三角形ACD,则线段BD的长为_______.12.如图,数学活动课上,老师在黑板上画直线平行于射线AN(如图),让同学们在直线l 和射线AN上各找一点B和C,使得以A、B、C为顶点的三角形是等腰直角三角形,这样的三角形最多能画_______个.13.如图,在四边形ABCD中,AB=AC=AD,E是CB的中点,AE=EC,∠BAC=3∠DBC,BD=6AB=_______14.已知直角三角形的周长是2斜边上的中线为1,则此直角三角形的面积是( )A.1 B.2 C.12D.1415.如图,在长方形纸片ABCD中,AD=4 cm,AB=10 cm,按如图方式折叠,使点B与点D 重合,折痕为EF,求DE的长.16.如图,等边三角形ABC的边长为6,AD是BC边上的中线,M是AD上的动点,E是AC 边上一点,若AE=2,求EM +CM的最小值.17.如图是两个全等的直角三角形,量得它们的斜边长为10 cm,较小锐角为30°,将这两个三角形摆成如图①所示的形状,使点B、C、F、D在同一条直线上,且点C与点F重合,将图①中的△ABC绕点C顺时针方向旋转到图②的位置,使点E落在边AB上,AC交DE于点G,则线段CG的长为_______cm(保留根号).18.如图,在△ABC中,CD是高,CE为∠ACB的平分线.若AC=15,BC=20,CD=12,则CE的长等于_______.参考答案【基础巩固】1.C 2.C 3.B 4.12 5.10 6.1.5m 7.略 8.2 9.略【拓展提优】10.n 11.4或 12.5 13.12 14.C 15.5.8 16.17. 18。
数学人教版八年级下册勾股定理的应用(2)——作图
学习目标:1.能用勾股定理直角三角形全等的“斜边、直角边”判定定理。
2.能应用勾股定理在数轴上画出表示无理数的点。
3.体会勾股定理在数学中的地位和作用。
学习重点:用勾股定理作出长度为无理数的线段。
教学活动流程活动1:复习孕新,引入课题1.回顾勾股定理,并以针对性练习为画作铺垫;(2)用“数学海螺”图创设情境并导入新课,明确学习目标。
活动2:运用勾股定理证明(HL)用三角板作辅助演示活动3:课件动画演示作图演示的两种作法以及“数学海螺”的作法.活动4:动手实践,会“数形互变”以前面的练习题为作图思路导向,以课件演示类比模仿,教师演示规范作图,学生会作图也会求点.活动5:当堂检测教材第27页习题活动6:拓展应用,服务生活1.用无刻度的直尺在网格上按要求画含无理数线段的三角形;(2)求蚂蚁沿圆柱表面爬行的最短路径。
活动7:小结梳理数轴图——网格图——展开图;实际问题——数学问题——建模活动8:布置作业教学过程活动1:复习孕新,引入课题1.问题(1)勾股定理的内容是什么?怎样求斜边长c或直角边长a、b?(2)求以线段a、b为直角边的直角三角形的斜边长。
a=1 b=1 (c=)a=1 b= (c=)a=2 b=3 (c=)设计意图:在复习的基础上为新课画无理数线段作铺垫,实现知识正迁移。
(3)如果直角三角形ABC的两边长分别为3和4,求第三边长。
设计意图:第三边应考虑为直角边或斜边,渗透分类讨论思想。
2.课件展示“数学海螺”图片并明确学习目标设计意图:创设情境并明确本节课学习任务。
活动2:运用勾股定理证明(HL)用三角板作演示,并要求画图并写出已知、求证并证明,利用勾股定理求得第三边长,再利用(SSS)或(SAS)可证得。
活动3:课件动画演示作图1.对比的两种作法,明确当直角边为正整数时作图方便,并引导学生如何规范作图。
2.“数学海螺”的作法活动4:动手实践,会“数形互变”1.在数轴上画出表示的点,的点呢?2.求点A在数轴上表示的点(1-)设计意图:以练习为画的思路导向,以活动3为类比模仿会作图也会求点,实现数形互变,以“数”化“形”,以“形”变“数”,渗透数形结合思想。
八年级上预科四讲-勾股定理的应用二
BD 2 CD 2 2 AD 2 。
16、如图,有一块塑料矩形模板 ABCD,长为 8cm,宽为 4cm,将你手中足够大的直角三角板 PHF 的直角顶点 P 落在 AD 边上(不与 A、D 重合),在 AD 上适当移动三角 板顶点 P:能否使你的三角板两直角边分别通过点 B 与
点 C?若能,(1) 求 BP+CP 的值(2) 请你求出这时 AP 的长。
17.在 Rt△ABC 中,∠C=90°,若 a:b=3:4,c=20,
则 a=
,b=
.
18.如图,在△ABC 中,AB=AC,AD 是△ABC 的角
平分线,若 BC=10,AD=12,则 AC=
.
19.如图,已知四边形 ABCD 中,AB=20cm,BC=15cm,CD=7cm,AD=24cm,
4
底面的直径。一蚂蚁从点 A 出发,沿着圆柱的侧面爬行到点 C,试
求出爬行的最短路程。
C
3)、如图,有一个圆柱体,底面周长为 20 ㎝,高 AB 为 10 ㎝,在
圆柱的下底面 A 点处有一只蚂蚁,它想绕圆柱体侧面一周爬行到
它的顶端 C 点处,那么它所行走的路程是多少?
4)、如图,假如这是一个圆柱体的玻璃杯, AD 是杯底直径,C 是 A 杯口一点,其他已知条件不变,蚂蚁从外部点 A 处爬到杯子的内 壁到达高 CD 的中点 E 处,最短该走多远呢?(杯子的厚度不计) 5)、为筹备迎新生晚会,同学们设计了一个圆筒形灯罩,底色漆成白色,
(A)11
(B)10
(C)9
(D)8
5. 若三角形三边长为 a、b、c,且满足等式 (a b)2 c 2 2ab ,则此三角形是( ).
2024八年级数学下册第十七章勾股定理17.1勾股定理第2课时应用勾股定理解实际问题课件新版新人教版
【解】(1)如图,过点A作AE⊥CD于点E,
则∠AEC=∠AED=90°.
∵∠ACD=60°,∴∠CAE=90°-60°=30°.
∴CE= AC=
DE=
km.∴AE=
km,
km.
∴AE=DE.∴△ADE是等腰直角三角形.∴AD=
+ = = AE= ×
度为x尺,则可列方程为( D )
A.x2-3=(10-x)2
B.x2-32=(10-x)2
C.x2+3=(10-x)2
D.x2+32=(10-x)2
【点拨】
如图,已知折断处离地面的高度为x尺,即AC=x尺,
则AB=(10-x)尺,BC=3尺.在Rt△ABC中,AC2+BC2=
AB2,即x2+32=(10-x)2.故选D.
2.[2023·岳阳 新考向·传承数学文化]我国古代数学名著《九章
算术》中有这样一道题:“今有圆材,径二尺五寸,欲为
方版,令厚七寸,问广几何?”结合如图,其大意是:今
有圆形材质,直径BD为25寸,要做成方形板材,使其厚
度CD达到7寸,则BC的长是( C )
A. 寸
B.25寸
C.24寸
D.7寸
选B.
4.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙
时,梯子底端到左墙脚的距离为0.7 m,顶端距离地面2.4
m.如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶
端距离地面2 m,那么小巷的宽度为( C )
A.0.7 m
B.1.5 m
C.2.2 m
D.2.4 m
【点拨】
如图,BC=2.4 m,AC=0.7 m,DE=
八年级数学勾股定理的应用2
pk10冠军遗漏
[判断题]气密试验不合格就投料开车,一旦法兰连接处泄漏就会造成停车或意外事故。A.正确B.错误 [单选]厨房要有一定坡度以防积水,坡度应该保持在()A、15%~20%B、20%~25%C、25%~30%D、30%~35% [单选]近年来,减轻农民负担工作的重点相应转入到()。A.巩固农村税费改革成果、有效防止反弹阶段B.实施税费改革阶段C.工业反哺农业阶段D.实施农业补贴阶段 [问答题,简答题]文艺心理学同普通心理学是什么关系? [单选]残疾人个人提供加工、修理修配劳务的可以免征()?A.营业税B.增值税C.个人所得税D.印花税 [单选]根据《建设工程质量管理条例》的规定,设计单位应当参与建设工程()分析,并提出相应的棱柱处理方案。A.工期延误B.投资失控C.质量事故D.施工组织 [问答题,简答题]发电机中性点接地变压器的参数? [判断题]期货公司作为交易者与期货交易所之间的桥梁和纽带,属于银行服务行业。()A.正确B.错误 [单选]有关听神经鞘瘤组织学,下列哪项描述不正确()A.肿瘤有完整包膜B.一般不侵犯小脑C.血供主要来自小脑前下动脉D.与听神经瘤关系最密切的脑神经是三叉神经E.不会发生恶变和转移 [单选]关于抑郁发作的临床表现,下列说法正确的是()。A.心情不好即抑郁发作B.症状持续至少2周C.不会出现幻觉D.多数伴有自罪妄想E.自杀是重度抑郁发作的标准之一 [单选]申请道路旅客运输经营的,应向具有审批权的()进行申请并提交规定的材料。A、安全监督管理部门B、道路运输管理机构C、公安交通管理部门 [单选,A型题]片剂中加入过量的哪种辅料,很可能会造成片剂的崩解迟缓()A、硬脂酸镁B、聚乙二醇C、乳糖D、微晶纤维素E、滑石粉 [单选]在短时记忆中,把几个孤立的项目结合成一个有意义的单位来识记称为()A.组块B.编码C.项目D.容量 [填空题]电力系统中的电力设备和线路短路故障的保护应有主保护和() [单选]下列不是影响空气粘性的因素是().A、空气的流动位置B、气流的流速C、空气的粘性系数D、与空气的接触面积 [单选,A1型题]乳腺癌出现表面皮肤凹陷的机制是()A.癌细胞堵塞乳房皮下淋巴管B.癌肿侵入乳腺管使其收缩C.癌细胞浸润大片皮肤D.癌肿侵犯Cooper韧带使其收缩E.以上都不是 [单选]静止卫星通信的日凌中断发生在()A.卫星处在地球和太阳之间的连线上B.地球处在卫星和太阳之间的连线上C.每天中午12点 [填空题]LF炉精炼钢液时要做到三相电极同步起弧,避免钢水()。 [单选]项目范嗣管理计划应以()为根本目的。A.施工项目目标B.质量标准C.工期D.工程成本 [单选]支配口腔颌面部运动的主要脑神经是()A.舌神经B.舌咽神经C.面神经D.三叉神经E.迷走神经 [填空题]混凝土运输、浇筑及间歇的全部时间不应超过混凝土的()时间。 [判断题]同一杯水具有相同的效用。A.正确B.错误 [单选]齿轮箱结合面紧固,定位孔和定位销接触面积在()以上。A、80%B、60%C、50%D、40% [判断题]国民收入变化量是投资变化量的倍数,这个倍数就是投资乘数。()A.正确B.错误 [名词解释]低聚糖 [单选]湿地保护采取什么与什么相结合的方式,加大湿地恢复治理力度,增强净化水质、涵养水源、休养生息的能力。()A、工程治理与自然修复B、工程治理与退田为湖C、防治并举与自然修复 [单选,A1型题]有大毒,而功专拔毒祛腐的药是()A.铅丹B.升药C.白矾D.硼砂E.朱砂 [单选]按坚持图书成批装订前的样书检查制度的规定,印装厂在每种书封面和内文印刷完毕、未成批装订前,必须先装订()本样书,送出版社查验。A.20B.15C.10D.5 [单选,A2型题,A1/A2型题]鉴别慢性粒细胞白血病与类白血病反应是否有贫血及血小板减少D.Ph染色体阳性E.骨髓增生明显活跃 [填空题]1100A氧分析仪根据()原理制造。 [单选]“钢船时期”的代表作“龙威”号被编入北洋舰队后,改名为“()”号,成为北洋八大远之一。A、威远B、平远C、定远D、镇远 [单选]发热恶寒,汗出,口渴,心烦,头痛如劈,舌红苔黄,脉滑数,属于:().A.卫分证B.卫气同病C.气分证D.卫营同病 [填空题]橄榄球中“斯克兰”的英文名()。 [单选]关节脱位治疗以手法复位为主,最好在伤后几周内进行()A.1B.2C.3D.4E.5 [填空题]只有为客户提供(),才能赢得客户对我们的信任 [判断题]液体气化的方法有蒸发和沸腾。()A.正确B.错误 [名词解释]地壳元素丰度 [单选,A1型题]依照国家对药品标签、说明书管理的要求,药品标签、说明书必须用中文显著标示药品的()A.通用名称B.商品名称C.别名D.化学名称E.汉语拼音名称 [单选,A1型题]患者戴用隐形义齿后出现卡环尖部挂带食物,正确的处理方法是()A.加温后调改卡环,使卡环尖部与基牙紧贴B.义齿组织面进行重衬C.调磨缓冲义齿组织面D.磨除挂带食物的卡环E.改作铸造支架式可摘局部义齿 [单选]下列有关行政法规的说法哪项是错误的?()A.行政法规的修改程序,适用《行政法规制定程序条例》的有关规定B.拟订国务院提请全国人大常委会审议的法律草案,参照《行政法规制定程序条例》的有关规定办理C.行政法规的外文正式译本,由国务院办公厅审定D.行政法规修改后,应及
八年级数学勾股定理的应用2
[判断题]ANA无器官和种属特异性。()A.正确B.错误 [单选,A型题]患者男性,30岁,阵发性心悸1年。心电图如图3-16-3所示,应诊断为()。A.完全性左束支阻滞B.心肌缺血C.下壁心肌梗死D.左心室肥大E.预激综合征 [单选]收货人于5月9日到某站领取整车危险货物一车,交付时货票丁联注明发出催领通知的时间为5月5日,应向收货人核收()。A.货车停放费B.货物暂存费C.货车使用费D.过秤费 [单选]企业在办理出口退(免)税资格认定时,按照规定报送有关材料后,税务机关和对资料是否齐全、是否符合法定形式,对于符合条件的()。A、当场受理,并在1个工作日内转下一环节,由税务管理部门进行调查核实B、当场受理,并在1个工作日内将相关资料信息转下一环节按规定程序审 [单选]甘缓不峻,性平不偏,质润不燥,能平肝息风的药物是()A.蜈蚣B.羚羊角C.地龙D.钩藤E.天麻 [单选]关于保单现金价值理解正确的是()A.现金价值是风险保费B.现金价值是储蓄保费C.现金价值就是投标人所缴的保费D.一般第三年退保现金价值是所缴保险费的一半左右 [单选]()是企业授予客户的赊销限额,反映企业的资金能力和对客户所承担的机会成本及风险的承受能力。A.信用额度B.信用期限C.信用折扣D.信用标准 [单选]集体资产管理的基本任务是()。A.集体资产的保值B.集体资产的增值C.保证集体扩大再生产D.减少集体资金的投入 [单选]产程中胎心监护,下列哪项是不恰当的?()A.不能分辨与宫缩的关系B.潜伏期应每1~2小时听胎心1次C.听诊胎心应在宫缩间歇期宫缩刚结束时进行D.活跃期应每15~30分钟听胎心1次E.每次听胎心应听1分钟 [单选]燥热病邪致病有别于其它温邪的基本特点是:().A.多发生在秋季B.从口鼻上受C.以肺经为病变中心D.病起即见鼻唇咽等明显津液干燥征象 [单选]如图,正常甲状腺中部横切面的超声声像图,中央气管环状软骨前方组织为()A.甲状腺峡部B.皮下组织C.甲状旁腺D.淋巴结E.以上均不对 [单选]()理论认为,智力是由一群彼此无关的原始能力构成的,各种智力活动可以分成不同的组群,每一群中有一个基本因素是共同的。A.智力的群因素论B.智力的三维结构理论C.智力的二因素论D.智力的认知成分理论 [单选,B型题]肾手术的备皮范围为()A.白乳头至耻骨联合平面,两侧到腋后线B.白剑突至大腿上1/3前内侧及外阴部,两侧到腋后线C.自脐平线至大腿上1/3包括外阴D.自乳头连线至耻骨联合,前后均过正中线E.自唇下至乳头连线,两侧至斜方肌前缘 [单选]目前我国治疗普通型流脑首选的药物是()A.青霉素B.氯霉素C.头孢类抗生素D.磺胺类E.环丙沙星 [判断题]近交和早配都会导致后代的生活力减弱。()A.正确B.错误 [单选,A2型题,A1/A2型题]下面与颅脑MRI技术无关的项是()A.检查病人是否有禁忌物品B.线圈用头部正交线圈C.脑梗死、颅内出血和脑的先天畸形等一般只需做平扫D.相位编码方向:横断位取前后向E.血管性病变常做平扫加血管成像 [单选]某县人民政府做出有关规范该县集贸市场秩序的决定,这一行为属于()。A.行政立法行为B.抽象行政行为C.具体行政行为D.行政执法行为 [问答题,简答题]内燃机的进、排气门为什么要早开迟关? [多选]()是知觉的基本特征A.分散性B.理解性C.恒常性D.选择性 [判断题]银行应当按照《个人外汇管理办法》规定为个人办理外汇收付、结售汇几开立外汇账户等业务,对个人提交的有效身份证件及相关证明材料的真实性进行审核。A.正确B.错误 [多选]下列各项中,影响利润表“所得税费用”项目金额的有()。A.当期应交所得税B.递延所得税收益C.递延所得税费用D.代扣代交的个人所得税 [单选]肺结核咯血的最常见原因为()A.病灶钙化B.病灶形成纤维化C.渗出和空洞病变D.病灶出现硬结E.血小板减少 [判断题]调节系统的速度变动率只能用四象限法测取。()A.正确B.错误 [问答题,简答题]投资组合管理的主要内容有? [单选,A1型题]核间性眼肌麻痹的病变部位在()。A.皮质侧视觉中枢B.脑桥侧视觉中枢C.内侧纵束D.外展神经核E.动眼神经核 [填空题]首届橄榄球世界杯于()年由澳大利亚和新西兰举办。2011年得世界杯赛于()举行。 [单选]下列各项中,不应计入营业外收人的是()。A.债务重组利得B.处置固定资产净收益C.收发差错造成存货盘盈D.确实无法支付的应付账款 [单选,A2型题,A1/A2型题]下列可引起局部水肿的是()。A.黏液性水肿B.丝虫病C.重度烧伤D.肾病综合征E.肝硬化 [单选,A2型题,A1/A2型题]心脏停搏复苏中除应补足血容量外,还应适当补充()A.维生素B1B.维生素CC.辅酶A与ATPD.细胞色素CE.5%碳酸氢钠 [单选,A2型题,A1/A2型题]铁染色常用于哪种疾病的诊断()A.巨幼细胞贫血B.慢性疾病性贫血C.缺铁性贫血D.骨髓增生异常综合征E.溶血性贫血 [填空题]植物采收或动物屠宰至加工这段时间维生素含量会发生显著变化,主要因为其受()、尤其是动、植物死后释放出的()所降解。 [单选,A2型题,A1/A2型题]带状疱疹的理疗,错误的是()A.毫米波可用于治疗带状疱疹B.紫外线照射,病灶区用中红斑量C.超短波与紫外线联合应用效果更好D.超声波治疗时,应将超声头紧密接触患部缓慢环形移动E.脉冲磁疗时,两磁头并置于与病灶相应的神经根节段反射区 [多选]MEN1的甲状旁腺功能亢进症与散发性甲状旁腺功能亢进症的鉴别点包括()。A.前者较后者发病年龄早,且没有性别差异B.两者的甲状旁腺病理学不同C.两者甲状旁腺手术后的结局不同D.前者几乎不会进展为甲状旁腺癌E.两者的临床表现不同 [单选]机床照明灯应选下列电压供电。()A.220伏B.110伏C.24伏D.380伏 [单选,A2型题,A1/A2型题]玻璃器皿干热消毒要求()。A.160~170℃2小时B.160~170℃1小时C.100℃2小时D.150℃2小时E.140℃2小时 [单选]学龄前期易患疾病,下列哪项不正确()A.缺铁性贫血B.龋齿C.外伤D.维生素D缺乏性佝偻病E.寄生虫病 [单选,A1型题]克拉维酸因具哪种特点可与阿莫西林配伍应用()。A.抗菌谱广B.是广谱β内酰胺酶抑制剂C.与阿莫西林竞争肾小管分泌D.使阿莫西林口服吸收更好E.使阿莫西林毒性降低 [单选,A1型题]男孩,3个月10d。每天以母乳加牛奶混合喂养。现添加米糊类食品,消化良好,其理由为()A.生后2个月唾液腺发育已完全完善B.唾液腺分泌的淀粉酶已为成人活力的1/3C.过早添加会引起频繁呕吐D.3个月后添加米糊食品还为时过早E.添加米糊食品最好为生后6个月 [单选]慢性胆囊炎的CT特征性表现是()A.胆囊大,囊壁水肿,密度低B.胆囊正常大小,肝内胆管扩张C.胆囊小,囊壁增厚D.胆囊大,胆总管扩张E.以上都不是 [单选]所钻井的()是指该井在地球表面的经度和纬度。A.构造位置B.地理位置C.测线位置D.坐标位置
人教版八年级下册数学全国通用版中考数学练:第17章 全国通用版中考数学3:勾股定理的简单应用(二)
【解答】∵CD 是 AB 边上的高,∴∠BDC=∠ADC=90°, Rt△ADC 中,AC=20,CD=12, 由勾股定理得:AD= AC 2 CD2 202 122 16 同理得:BD= BC 2 CD2 152 122 9 ∵AE=AC=20, ∴DE=20-16=4, ∵BF=BC=15,BD=9,∴DF=15-9=6,∴EF=DE+DF=4+6=10.
2m,高为 6m.如果要求彩带从柱子底端的 A 处绕柱子 4 圈后到达柱子顶端的 B 处,那么
至少应购买彩带
米.
【【【【 将圆柱表面切开展开呈长方形,则有螺旋线长为四个长方形并排后 的长方形的对角线长,∵圆柱高 6m,底面周长 2m,
x2=(2×4)2+62=64+36=100, 所以,彩带长至少是 10m. 【答案】10. 【【 2. 如图,将一根 25㎝长的细木棒放入长、宽、高分别为 8㎝、6㎝和 10 3 ㎝的长方体无盖盒 子中,求细木棒露在盒外面的最短长度是多少?
【【【【
连接 BD,因为 AB=AD=12,∠A=60°,所以△ABD 是等边三角形,
又因为∠D=150°,所以△BCD 是直角三角形,
于是 BC+CD=42-12-12=18,设 BC= x ,从而 CD=18- x , 利用勾股定理列方程得 (18 x)2 122 x2 ,解得 x =13,即 BC 的长为 13.
【解析】这是立体几何问题.盒子内两点间最长距离是长方体的斜对角线.
L= 82 62 (10 3)2 =20cm. 细木棒露在盒外面的最短长度是 25-20=5cm. 【答案】 5cm
【例 3】 如图,铁路上 A 、 B 两点相距 25km , C 、 D 为两村庄,若 DA 10km , CB 15km ,
八年级数学下册 勾股定理应用第二课时的类型题 人教版
勾股定理应用第二课时的类型题知识点一:勾股定理如果直角三角形的两直角边长分别为:a,b,斜边长为c,那么a2+b2=c2.即直角三角形中两直角边的平方和等于斜边的平方.要点诠释:(1)勾股定理揭示的是直角三角形平方关系的定理。
(2)勾股定理只适用于直角三角形,而不适用于锐角三角形和钝角三角。
(3)理解勾股定理的一些变式:c2=a2+b2, a2=c2-b2, b2=c2-a2,c2=(a+b)2-2ab知识点二:用面积证明勾股定理方法一:将四个全等的直角三角形拼成如图(1)所示的正方形。
图(1)中,所以。
方法二:将四个全等的直角三角形拼成如图(2)所示的正方形。
图(2)中,所以。
方法三:将四个全等的直角三角形分别拼成如图(3)—1和(3)—2所示的两个形状相同的正方形。
在(3)—1中,甲的面积=(大正方形面积)—(4个直角三角形面积),在(3)—2中,乙和丙的面积和=(大正方形面积)—(4个直角三角形面积),所以,甲的面积=乙和丙的面积和,即:.方法四:如图(4)所示,将两个直角三角形拼成直角梯形。
,所以。
知识点三:勾股定理的作用1.已知直角三角形的两条边长求第三边;2.已知直角三角形的一条边,求另两边的关系;3.用于证明平方关系的问题;4.利用勾股定理,作出长为的线段。
2. 在理解的基础上熟悉下列勾股数满足不定方程x2+y2=z2的三个正整数,称为勾股数(又称为高数或毕达哥拉斯数),显然,以x,y,z为三边长的三角形一定是直角三角形。
熟悉下列勾股数,对解题是会有帮助的:①3、4、5②5、12、13;③8、15、17;④7、24、25;⑤10、24、26;⑥9、40、41.如果(a,b,c)是勾股数,当t>0时,以at,bt,ct为三角形的三边长,此三角形必为直角三角形。
经典例题透析类型一:勾股定理的直接用法1、在Rt△ABC中,∠C=90°(1)已知a=6, c=10,求b,(2)已知a=40,b=9,求c;(3)已知c=25,b=15,求a.思路点拨:写解的过程中,一定要先写上在哪个直角三角形中,注意勾股定理的变形使用。
2023-2024学年人教版八年级数学下册课件17.1 勾股定理第2课时 勾股定理的应用
=________,
=__________.
典例分享
例 某条道路限速80 km/h,如图17.1-12,一辆小汽
车在这条道路上沿直线行驶,某一时刻刚好行驶到
路对面车速检测仪处的正前方30 m的处,过了2 s,
小汽车到达处,此时测得小汽车与车速检测仪间的
图17.1-12
距离为50 m.
∵ 72 km/h < 80 km/h,
∴ 这辆小汽车没有超速.
方法感悟
在运用勾股定理解决实际问题时,要从实际问题中抽象出数学问题,
即建立直角三角形模型,把实际的量抽象成线段的长度,进而转化为求
直角三角形的边长.如果没有直角三角形,可以添加辅助线构造出直角
三角形.
轻松达标
1.如图17.1-13,,之间隔有一湖,在与方向成
图17.1-14
( C ) .
A. 5
B.2 2
C. 2
D.2.5
3.图17.1-15(a)是第七届国际数
学教育大会(ICME-7)的会徽,在其
主体图案中选择两个相邻的直角
三角形,恰好能组合成如图17.1-
图17.1-15
15 b 所示的四边形.若
= = 1,∠ = 30∘ ,则的长为( D ) .
图17.1-20
(1)该城市是否受到台风的影响?请说明理由.
[答案] 该城市会受到这次台风的影响.理由:如答图1,过作 ⊥
于点.在Rt △ 中,∵ ∠ = 30∘ , = 240 km,
∴ =
ቤተ መጻሕፍቲ ባይዱ
1
2
= 120 km . ∵ 城市所受风力达到或超过四级就会受台风影
在周围数十千米范围内形成气旋风暴,有极强的
人教版数学八年级下册17.1《勾股定理的应用》(第2课时)说课稿
人教版数学八年级下册17.1《勾股定理的应用》(第2课时)说课稿一. 教材分析《勾股定理的应用》是人教版数学八年级下册第17.1节的内容,属于几何学的范畴。
本节内容是在学生已经掌握了勾股定理的基础上进行学习的,主要是让学生能够运用勾股定理解决实际问题。
教材通过引入古希腊数学家毕达哥拉斯的故事,让学生了解勾股定理的发现过程,进而引导学生运用勾股定理解决实际问题。
教材内容丰富,既有理论知识的讲解,又有实际问题的应用,能够激发学生的学习兴趣,提高学生的数学素养。
二. 学情分析学生在学习本节内容前,已经掌握了勾股定理的基本知识,能够熟练地运用勾股定理进行计算。
但是,对于如何将实际问题转化为数学问题,如何运用勾股定理解决实际问题,学生的掌握情况参差不齐。
因此,在教学过程中,我将会注重引导学生将实际问题转化为数学问题,培养学生运用勾股定理解决实际问题的能力。
三. 说教学目标1.知识与技能目标:让学生掌握勾股定理的应用,能够将实际问题转化为数学问题,运用勾股定理解决实际问题。
2.过程与方法目标:通过小组合作、讨论交流的方式,培养学生合作学习的能力和解决问题的能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生积极思考、探索问题的习惯。
四. 说教学重难点1.教学重点:让学生掌握勾股定理的应用,能够将实际问题转化为数学问题,运用勾股定理解决实际问题。
2.教学难点:如何引导学生将实际问题转化为数学问题,如何运用勾股定理解决实际问题。
五. 说教学方法与手段在教学过程中,我将采用讲授法、提问法、小组合作法、讨论交流法等教学方法,结合多媒体课件、教学道具等教学手段,引导学生主动探究,提高学生的学习效果。
六. 说教学过程1.导入:通过回顾勾股定理的知识,引导学生进入本节内容的学习。
2.知识讲解:讲解勾股定理的应用,引导学生将实际问题转化为数学问题,运用勾股定理解决实际问题。
3.例题解析:分析并解析典型例题,让学生掌握解题思路和方法。
人教版八年级数学下册17.1勾股定理(第2课时)勾股定理的应用一等奖优秀教学设计
如果在箱内的 A 处有一只昆虫,它要在箱壁上爬行到 B
处,至少要爬多远?
B
B
40
40
C
50 A 30 D 50
C
A
30
师:你能找到解决问题的方法吗? 师:如何把没学过的立体图形求长度转化为学过的平面
图形? 同桌讨论后汇报思路,老师画出展开后的平面图, 学生独立解决 总结:注意把立体图形转化为平面图形求线段长.
A A
C
C
OB
C
师:怎样转化为几何问题?你能否画出图形? 师:独立思考、小组交流合作完成 师:小组互评,答案见课本 26 页
独立思考
检测学生
小组交流 对方法的掌握
小组互评 情况
2.勾股定理拓展探究
(1)例 2:我国《九章算术》中记载了一道有趣的问题,
大意是:有一个边长为 10 尺的正方形水池,在水池的中
新人教版八年级数学下册 17.1 勾股定理(第 2 课时)教学设计
一、 教材分析 1、 地位作用:
勾股定理是本章的重要内容,也是几何计算必备的知识基础.它从直角三角形的三 边关系入手,在直角三角形中进行边的计算,为今后几何计算打下基础。
勾股定理的应用是用勾股定理解决实际问题的重要一环,要让学生通过学习感受需 要把实际问题转化为数学问题,建立几何模型进行实际问题数学化.
3、4 题练 习学生应用方 程方法解决问 题的能力
5.如图,一个圆柱形纸筒的底面周长是 40cm,高是 30cm,一只小蚂蚁在圆筒底的 A 处,它想吃到上底与 下底面中间与 A 点相对的 B 点处的蜜糖,试问蚂蚁爬
行的最短的路程是多少?
独立思考 独立完成
第 5 题练 习学生立体图 形转化为平面 图形的能力
人教版八年级下册数学《勾股定理》教学说课(第2课时勾股定理的应用)
如图,折叠长方形ABCD的一边AD,使点D落在BC边的F点处,若AB=8cm,
BC=10cm,求EC的长.
解:在R
BF2=AF2-AB2=102-82=36,
D
A
∴BF=6cm.∴CF=BC-BF=4.
E
设EC=xcm,则EF=DE=(8-x)cm ,
在R
x2+ 42=(8-x)2,解得 x=3.
解:如图,过点A作AD⊥BC于D.
∵∠ADC=90°,∠C=60°,
1
∴ = 2 = 5
在R
在R
=
2 − 2 =
= 2 − 2 =
∴BC=BD+CD=11+5=16.
102 − 52 = 5 3.
142 − (5 3)2 = 11.
课程讲授
3
勾股定理与几何图形
习
3. (中考·厦门)已知A,B,C三地位置如图所示,
∠C=90°,A,C两地的距离是4 km,B,C两地的距离是3 km,则A,B两地
5 km
正北
的距离是________;若A地在C地的正东方向,则B地在C地的________方向.
随堂练
习
4.如图,在△ABC中,AB=AC,D点在CB 延长线上,
2
点.容易知道,长为
的线段是两条直角边的长都为1的直角三
角形的斜边.
长为 13 的线段能是直角边的长为正整数的直角三角形的
斜边吗?
新知导入
想一想:
利用勾股定理,可以发现,直角边的长为正整数2, 3
知识
的直角三角形的斜边长为
13 .由此,可以依照如下方法在
数轴上画出表示 13 的点.
如图,在数轴上找出表示3的点A, 则OA=3,过点A作直
北师大版八年级数学上册勾股定理的应用课件(2)
拓展1
如果圆柱换成如图的棱长为10cm的正方 体盒子,蚂蚁沿着表面需要爬行的最短路 程又是多少呢?
B
A
B
B
10
A
10
10
C
A
正方体中的最值问题
例3、如图,边长为1的正方体中,一只蚂蚁从顶点A出
发沿着正方体的外表面爬到顶点B的最短距离是( ).
(A)3 (B) √5
(C)2 (D)1
B C
C
2
B
1
Hale Waihona Puke AA分析: 由于蚂蚁是沿正方体的外表面爬行的,故 需把正方体展开成平面图形(如图).
拓展2
如果盒子换成如图长为3cm,宽为 2cm,高为1cm的长方体,蚂蚁沿着 表面需要爬行的最短路程又是多少呢?
B
A
分析:蚂蚁由A爬到B过程中较短的路线有
多少种情况?
B
(1)经过前面和上底面;
2
(2)经过前面和右面; (3)经过左面和上底面.
A
5
A
3
1
5
C
12 B ∵ AB2=AC2+BC2=169, ∴ AB=13.
B
数学思想
(1)立体图形 (2)实际问题
转化 展开
转化 建模
平面图形 数学问题
作业:
1、习题1.4 3 4 题。 2、课堂精练对应练习。
C1 线有三种情况(如图①②③ ),由勾股
B1
1 C
定理可求得图1中AC1爬行的路线最
2 B
短.
D D1
C1
D1
①
D
C1
A1
1
②
B1
C1
1
③
八年级数学勾股定理的逆定理课件-应用
人教版
第2课时勾股定理的逆定 理(二) —— 应用
(2)在图2中,画一个三边长分别为3,2, 13的三角形,一共可以画 16 个这样的三角形. 解析:如图2,一共可以画16个这样的三角形.
图2
数学
八年级 下册
人教版
第2课时勾股定理的逆定 理(二) —— 应用
10.在某小区在社区工作人员及社区居民的共同努力之下,
数学
八年级 下册
人教版
第2课时勾股定理的逆定 理(二) —— 应用
8.如图,明明在距离水面高度为5 m的岸边C处,用绳子拉船 靠岸,开始时绳子BC的长为13 m.若明明收绳6 m后,船到 达D处,则船向岸边A处移动了多少米?
数学
八年级 下册
人教版
第2课时勾股定理的逆定 理(二) —— 应用
解:∵开始时绳子BC的长为13 m,明明收绳6 m后,船到达D处,
数学
八年级 下册
人教版
第2课时勾股定理的逆定 理(二) —— 应用
知识点 勾股定理逆定理的应用 【例题】如图,甲船以5海里/时的速度离开港口O沿南偏东 30°方向航行,乙船同时同地沿某方向以12海里/时的速度 航行.已知它们离开港口2小时后分别到达B,A两点,且AB =26海里.你知道乙船是沿哪个方向航行的吗?
数学 人教版 八年级 下册
目 录
CONTENTS
数学
八年级 下册
人教版
第2课时勾股定理的逆定 理(二) —— 应用
第十七章 勾股定理
17.2 勾股定理的逆定理 第2课时勾股定理的逆定理(二) —— 应用
01 课标要求
02 基础梳理
03 典例探究
04 课时训练
数学
八年级 下册
新人教版:八年级数学下册第十七章勾股定理 勾股定理第2课时勾股定理的实际应用课件
图 17-1-19
解:在 Rt△ABC 中,AC=30 m,AB=50 m,∠C=90° . 由勾股定理,得 BC= AB2-AC2= 502-302=40(m), 40 ∴小汽车的速度为 v= =20(m/s)=72(km/h). 2 ∵72>70, ∴这辆小汽车超速了.
6.如图 17-1-20,甲、乙两艘轮船同时从港口 O 出发,甲轮船以 20 海里/ 时的速度向南偏东 45° 方向航行,乙轮船向南偏西 45° 方向航行.已知它们离开港 口 O2 h 后,两艘轮船相距 50 海里,则乙轮船平均每小时航行多少海里?
图 17-1-13
解:(1)根据题意,得 AC=25 m,BC=7 m, ∴AB= 252-72=24(m). 答:这个梯子的顶端距地面有 24 m. (2)根据题意,得 A′B=24-4=20(m), ∴BC′= 252-202=15(m), ∴CC′=15-7=8(m). 答:梯子的底端在水平方向滑动了 8 m.
图 17-1-18
【解析】 已知直角三角形的一条直角边长是 3 m,斜边长是 5 m,根据勾股 定理,得水平的直角边长是 4 m. 故购买这种地毯的长是 3+4=7(m),面积是 2×7=14(m2),价格是 14×30= 420(元).
5.据规定,小汽车在城市街道上行驶的速度不得超过 70 km/h.如图 17-1- 19,一辆小汽车在一条城市街道上直行,某一时刻刚好行驶到路边车速检测仪 A 处的正前方 30 m 的 C 处, 过了 2 s 后, 测得小汽车与车速检测仪间的距离为 50 m. 这 辆小汽车超速了吗?
例 1 答图
【点悟】利用勾股定理解决实际问题的关键是构造含所求线段的直角三角形.
飞机在空中水平飞行,某一时刻刚好飞到一个男孩头顶正上方 4 000 m 处,过 20 s 飞机距离这个男孩头顶 5 000 m,飞机每小,AB=5 000 m,∠C=90° . ∵BC2=AB2-AC2=5 0002-4 0002=9 000 000,BC>0, ∴BC=3 000 m.
八年级数学勾股定理的应用练习题2
14.2勾股定理的应用(二)知识与基础1.在 Rt ΔABC 与 Rt ΔA`B`C`中∠C =∠C`=90°,有下列几组条件( ).①AC =B`C`,BC =A`C`;②AC =A`C`,BC =B`C`;③AC =A`B`,∠A =∠A`;④BC =A`C`,AB =A`B`.其中能判定这两个直角三角形全等的有( ).A.1个B.2个C.3个D.4个2.下面是直角三角形具备的几条性质:( ).①两个较小的内角之和等于较大的内角;②三个内角的和等于180°;③面积等于较短的两边的乘积的一半;④有斜边和一条直角边相等的两个直角三角形全等.其中一般三角形不具备的有( ).A.4条B.3条C.2条D.1条3.在下列语句中,不正确的是( ).A.有两条边对应相等的两个直角三角形全等;B.一般三角形所具备的性质,直角三角形都具备;C.直角三角形没有稳定性;D.两边及其中一边上的高对应相等的两个锐角三角形全等4.如图,0A =0B ,AD ⊥0B ,BC ⊥0A ,D 、C 为垂足,AD 、BC 相交于点P.下面给出的四个结论:①△A0D ≌△B0C ;②∠1=∠2;③PC =PD ;④0P 平分∠A0B.其中,一定成立的有( ).A.4个B.3个C.2个D.1个5.如图,AB 是∠CAD 的平分线2,BC ⊥AC ,BD ⊥AD ,垂足分别为C 、D ,E 是AB 上任意一点,下面给出的四个结论:①BC =BD ,②EC =ED ,③∠CAE =∠ADE ,④点B 在∠CED 的平分线上,其中,正确的结论有( ).A.1个B.2个C.3个D.4个6.如图,在△ABC 中,∠B =90°,BC =20㎝,AD 是角平分线,且BD :CD =2:3,则点D 到AC 边上的距离是 ㎝。
7.如图,已知∠C =∠D =90°,∠1≠∠4,∠2≠∠3。
如果补充一个条件 ,那么△ABC ≌△ABD ﹙HL ﹚如果补充一个条件 ,那么△ABC ≌△ABD ﹙HL ﹚如果补充一个条件 ,那么△ABC ≌△ABD ﹙AAS ﹚如果补充一个条件 ,那么△ABC ≌△ABD ﹙AAS ﹚O A A B C D E D CPD C CA8.如图,已知,AB =AC ,AE =AF ,AE ⊥EC ,AF ⊥BF ,说明∠BAE =∠CAF 。
人教版八年级数学下册勾股定理勾股定理的应用
17.1 勾股定理
第2课时 勾股定理在实际生活中的应用
学习目标
(2)以原点O为圆心,以无理数斜边长为半径画弧与数轴存在交点,在原点左边的点表示是负无理数,在原点右边的点表示是正无理
数.
在八年级上册中,我们曾经通过画图得到结论:斜边和一条直角边分别相等的两个直角三角形全等.学习了勾股定理后,你能证明这
求证:△ABC≌△A ′B ′C′ .
证明:在Rt△ABC 和
Rt△A ′B ′C ′中,∠C=∠C′
A
A′
=90°,根据勾股定理,得
BC= AB2-AC2 ,
BC AB2AC2.
A B A B ,A C A C ,
BCBC.
C
B C′
B′
A B C A B C (S S S ).
三用勾股定理在数轴上表示无理数
一结论吗?
如图,在5ⅹ5正方形网格中,每个小正方形的边长均为1,画出两个三角形,一个三角形的长分别
,另一个三角形的三边长分别
为
.
5m,那么梯子底端B也外移0.
问题 在Rt△ABC中,已知BC=6, AC=8,
问题2 你认为选择哪种方法比较好?你能说出你这种方法通过的最大长度是什么?
1.学会运用勾股定理及直角三角形的判 (2)构造直角三角形;
ac
a2+b2=c2
b
勾股定理在现实生活中有哪些应用呢?
导入新课
问题 在Rt△ABC中,已知BC=6, AC=8,
(1) 则AB= 10 ; B
(2) 则AB边上的高是 4.8 ;
(3) 它的面积是 24 ; C
A
(4) 它的周长是 24 .
讲授新课
第三章《勾股定理》实际应用综合训练(二)2021-2022学年八年级数学苏科版上册
第三章《勾股定理》实际应用综合训练(二)1.某校机器人兴趣小组在如图所示的三角形场地上开展训练.已知:AB=10,BC=6,AC=8;机器人从点C出发,沿着△ABC边按C→B→A→C的方向匀速移动到点C停止;机器人移动速度为每秒2个单位,移动至拐角处调整方向需要1秒(即在B、A处拐弯时分别用时1秒).设机器人所用时间为t秒时,其所在位置用点P表示(机器人大小不计).(1)点C到AB边的距离是;(2)是否存在这样的时刻,使△PBC为等腰三角形?若存在,求出t的值;若不存在,请说明理由.2.如图,学校操场边有一块四边形空地ABCD,其中AB⊥AC,AB=CD=4m,BC=9m,AD=7m.为了美化校园环境,创建绿色校园,学校计划将这块四边形空地进行绿化整理.(1)求需要绿化的空地ABCD的面积;(2)为方便师生出入,设计了过点A的小路AE,且AE⊥BC于点E,试求小路AE的长.3.如图,在一条东西走向河流的一侧有一村庄C,河边原有两个取水点A,B,其中AB =AC,由于某种原因,由C到A的路现在已经不通,该村为方便村民取水决定在河边新建一个取水点H,(A、H、B在同一条直线上),并新修一条路CH,已知CB=千米,CH=2千米,HB=1千米.(1)CH是否为从村庄C到河边的最近路?请通过计算加以说明;(2)求新路CH比原路CA少多少千米?4.某中学A,B两栋教学楼之间有一块如图所示的四边形空地ABCD,学校为了绿化环境,计划在空地上种植花草,经测量∠ABC=90°,AB=20米,BC=15米,CD=7米,AD=24米.(1)求出四边形空地ABCD的面积;(2)若每种植1平方米的花草需要投入120元,求学校共需投入多少元.5.今有竹高一丈,末折抵地,去根三尺,问折者高几何?意思是:有一根竹子原高1丈(1丈=10尺),中部有一处折断,竹梢触地面处离竹根3尺,试问折断处离地面多高?6.我国明朝数学著作《直指算法统宗》中有一道关于勾股定理的问题:“平地秋千为起,踏板一尺高地.送行二步与人齐,五尺人高曾记.仕女佳人争蹴,终朝笑语欢嬉.二公高士好争,算出索长有几?(注:二步=10尺).”大意是:“当秋千静止时,它的踏板离地的距离为1尺,将秋千的踏板往前推2步(这里的每1步合5尺),它的踏板与人一样高,这个人的身高为5尺,秋千的绳索始终是呈直线状态的,现在问:这个秋千的绳索有多长?”请解答上述问题.7.如图,公路MN和公路PQ在点P处交会,公路PQ上点A处有学校,点A到公路MN 的距离为80m,现有一卡车在公路MN上以5m/s的速度沿PN方向行驶,卡车行驶时周围100m以内都会受到噪音的影响,请你算出该学校受影响的时间多长?8.如图(1)是超市的儿童玩具购物车,图(2)为其侧面简化示意图,测得支架AC=24cm,CB=18cm,两轮中心的距离AB=30cm,求点C到AB的距离.(结果保留整数)9.我市某中学有一块四边形的空地ABCD(如图所示),为了绿化环境,学校计划在空地上种植草皮,经测量∠A=90°,AB=3m,DA=4m,CD=13m,BC=12m.(1)求出空地ABCD的面积.(2)若每种植1平方米草皮需要200元,问总共需投入多少元?10.为了绿化环境,我县某中学有一块四边形的空地ABCD,如图所示,学校计划在空地上种植草皮,经测量,∠ADC=90°,CD=6m,AD=8m,AB=26m,BC=24m,(1)求出空地ABCD的面积.(2)若每种植1平方米草皮需要200元,问总共需投入多少元?11.如图,在一次夏令营活动中,小明从营地A出发,沿北偏东60°方向走了80m到达点B,然后再沿北偏西30°方向走了60m到达目的地C.(1)求A、C两点之间的距离;(2)确定目的地C在营地A的北偏东多少度方向.12.数学综合实验课上,同学们在测量学校旗杆的高度时发现:将旗杆顶端升旗用的绳子垂到地面还多2米;当把绳子的下端拉开8米后,下端刚好接触地面,如图,根据以上数据,同学们准确求出了旗杆的高度,你知道他们是如何计算出来的吗?13.如图1,一架云梯斜靠在一竖直的墙上,云梯的顶端距地面15米,梯子的长度比梯子底端离墙的距离大5米.(1)这个云梯的底端离墙多远?(2)如图2,如果梯子的顶端下滑了8m,那么梯子的底部在水平方向滑动了多少米?14.如图,有一个透明的直圆柱状的玻璃杯,现测得内径为5cm,高为12cm,今有一支14cm的吸管任意斜放于杯中,若不考虑吸管的粗细,则吸管露出杯口外的长度最少为多少?15.台风是一种自然灾害,它以台风中心为圆心在周围上百千米的范围内形成极端气候,有极强的破坏力,如图,2017年第21号台风“兰恩”的中心从A点以速度为20千米/小时,沿AB方向移动,以台风中心为圆心周围250km以内为受影响区域.已知点C 为一海港,且点C与直线AB上的两点A、B的距离分别为AC=300km,BC=400km,又AB=500km,请问海港C受台风影响吗?若受到影响,台风影响该海港的时间有多长?若不会受到影响,请说明理由.16.一架梯子AB长25米,如图所示,斜靠在一面上,此时梯子底端B离墙7米;如果梯子的顶端A下滑了4米至点A',那么梯子的底端水平滑动的距离BB'是多少米?17.如图,已知某山的高度AC为800米,从山上A处与上下B处各建一个索道口,且BC=1500米,欢欢从山下索道口坐缆车到山顶,已知缆车每分钟走50米,那么大约多少分钟后,欢欢才能达到山顶?18.如图,市政部门计划在一块三角形空地ABC内部种植草坪,并紧靠AB边外侧修建宽3m,长17m的硬化甬路(阴影图形为长方形).已知AC=8cm,BC=15cm,经过市政部门市场调研,种植草坪的费用为每平米600元,硬化甬路的费用为每平米800元,求此项工程的预计总费用.19.如图,MN是一条东西朝向的笔直的公路,C是位于该公路上的一个检测点,一辆长为9m的小货车BD行驶在该公路上.小王位于检测点C正西北方向的点A处观察小货车,某时刻他发现车头D与车尾B分别距离他10m与17m.(1)过点A向MN引垂线,垂足为E,请利用勾股定理找出线段AE、DE与AE、BE 之间所满足的数量关系;(2)在上一问的提示下,继续完成下列问题:①求线段DE的长度;②该小货车的车头D距离检测点C还有多少米?20.甲、乙两位探险者到沙漠进行探险,没有了水,需要寻找水源.为了避免走散,他们用两部对话机联系,已知对话机的有效距离为15千米,早晨8:00甲先出发,他以6千米/时的速度向东行走,1小时后乙出发,他以5千米/时的速度向北行进,上午10:00,甲、乙二人相距多远?还能保持联系吗?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
D A C
(1)蜘蛛急于想捉住苍蝇,沿着长方体的表面 向上爬,它要从点A爬到点B处,有无数条路线, 它们有长有短,蜘蛛究竟应该沿着怎样的路线 爬上去,所走的路程会最短。你能帮蜘蛛找到 最短路径吗? (2)若蜘蛛爬行的速度是每秒10厘米,问蜘蛛 沿长方体表面至少爬行几秒钟,才能迅速地抓 到苍蝇? H B
E C
D
A
G
F
B
11、假期中,王强和同学到某海岛上去玩 探宝游戏,按照探宝图,他们登陆后先往 东走8千米,又往北走2千米,遇到障碍后 又往西走3千米,在折向北走到6千米处往 东一拐,仅走1千米就找到宝藏,问登陆点 A 到宝藏埋藏点B的距离是多少千米?
1 6 3 2 A 8 B
探索与提高:
如图所示,现在已测得长方体木块的长 3厘米,宽4厘米,高24厘米。一只蜘蛛潜 伏在木块的一个顶点A处,一只苍蝇在这 个长方体上和蜘蛛相对的顶点B处。
7 .观察下列表格:
猜想 列举
3、4、5 5、12、13 7、24、25
……
32=4+5 52=12+13 72=24+25
……
13、b、c
132=b+c
请你结合该表格及相关知识,求出b、c的值. 即b= 84 ,c= 85
9、如图,是一个三级台阶,它的每一级的长、宽和高 分别等于55cm,10cm和6cm,A和B是这个台阶 的两个相对的端点,A点上有一只蚂蚁,想到B点去吃 可口的食物。请你想一想,这只蚂蚁从A点出发,沿着 台阶面爬到B点,最短线路是多少?
3.若等腰三角形中相等的两边长 为10cm,第三边长为16 cm,那么第 三边上的高为 ( D) A. 12 cm B. 10 cm C. 8 cm D. 6 cm
4如图,在△ABC中,AB=AC,D点在CB延长线上, A 求证:AD2-AB2=BD· CD 证明:过A作AE⊥BC于E D 在Rt △ADE中, AD2=AE2+DE2 在Rt △ABE中, AB2=AE2+BE2 ∴ AD2-AB2=(AE2+DE2)-(AE2+BE2) ∵AB=AC,∴BE=CE
A A
B
C
B
8、如图,小颍同学折叠一个直角三角形 的纸片,使A与B重合,折痕为DE,若已知 AC=10cm,BC=6cm,你能求出CE的长吗?
D B
A E
C
10、如图,把长方形纸片ABCD折叠,使顶 点A与顶点C重合在一起,EF为折痕。若 AB=9,BC=3,试求以折痕EF为边长的正方 形面积。
回顾与思考
-----------
勾股定理
1、直角三角形的边、角之间分别存在着什么关系?
2、请你举一个生活中的实例,并应用勾股定理解决它。
3、你了解勾股定理的历史吗?与同伴迚行交流。
课堂练习: 一判断题. 1.ABC的两边AB=5,AC=12, 则BC=13 ( )
2. ABC的a=6,b=8,则c=10 ( )
B
E
C
= DE2- BE2 = (DE+BE)· ( DE- BE) = (DE+CE)· ( DE- BE) =BD· CD
5、已知:数7和24,请你再写一个整数, 使这些数恰好是一个直角三角形三边的长, 25 则这个数可以是——
6、一个直角三角形的三边长是不大于1 24 0的三个连续偶数,则它的周长是—— ——
二填空题 1.在 ABC中,C=90°, (1)若c=10,a:b=3:4,则 a=____,b=___. 6 8
41 (2)若a=9,b=40,则c=______. 2.在 ABC中, C=90°,若 AC=6,CB=8,则ABC面积为 24 斜边为上的高为______. 4.8 _____,
D C
BA; http:// / 金华修打印机 金华IT服务外包
swc40tvt
远了。尽管此时月亮已经即将移动到中天了,但近处,几个年纪大一些的老头老太太们,依然还坐在门口的小板凳上悠闲惬意地望着天 空说笑呢。再回头望望,远处一个门面挺大的点心铺子依然灯火通明。耿正忽然想,买一斤月饼过节吧!两个多月以来,兄妹三人一直 在认真地履行与“盛元酒店”的契约。虽然很辛苦,但倒也过得满有规律。他们每天早上小睡一个懒觉之后,就出来在巷子口边上的 “梁计小饭店”简单喝碗粥,吃点儿烧饼小菜什么的。午饭时间和晚饭时间都在酒店里献艺。当所有的食客们都散了之后,伙计们就招 待他们三人在酒店里随便吃了午饭和晚饭。所以,小巷儿尽头里和善的房东二老准备的那个小厨房,他们并没有启用做饭,只是偶尔从 院儿里的水井打水上来,烧热了洗漱、洗澡什么的。为了保证演艺的质量和节目的新颖性,他们每天午饭后也不回租住的房子去休息, 而是在酒店大厅的演唱台上琢磨编排一些新的演唱节目。每天晚上演唱完以后,守在演唱台旁边的伺应生伙计就会从耿正的手里接过那 把二胡,小心地放进台后的乐器柜里存放起来。第二天上午,兄妹仨再去了时,伺应生伙计就打开柜子,把二胡拿出来亲手交给耿正。 今天的午饭,他们照例是在酒店里吃的;虽然比往常时更丰盛不少,但并不是年年都必吃的饺子;如果晚上再不多少吃点儿月饼,那这 个八月十五节过得就没有一点儿象征性的意义了呢!想到这里,耿正轻轻地说:“英子,小直子,咱们去买斤月饼吧!好歹算是过八月 十五了!你们说呢?”耿英慢慢地收回眼神儿,无声地点点头。耿直似乎委屈地说“就是,中午就没有吃上饺子呢!不过啊,我晚饭吃 得不少,咱们少买点儿吧,只买两个,有个意思就行了!”耿正笑了,亲切地摸摸弟弟的小脑袋,说:“走,咱们返回去,到那个点心 铺子里买!”耿英想一想,说:“你俩去买吧,我先回去了。我想多烧些水呢!这天儿挺热的,咱们应该洗澡了!我估摸着,爷爷奶奶 去儿子家有些日子了,也该回来了呢。两位老人家不在家,咱们洗澡方便一些!”耿直瞪大眼睛问:“姐,你敢一个人走吗?这大街上 倒不打紧,可那么长的巷子!”耿英说:“没事儿,咱们老走夜路,姐已经习惯了!你们快去买吧,要不是今儿个过节,那个铺子早关 门了呢!”耿正说:“不在乎这点儿时间的,还是一块儿走吧,先去买月饼!”耿英说:“我说了没事儿就没事儿!你们快去买吧!” 耿正说:“那你小心点儿啊!”耿英点点头说:“唔,我知道。你们快去买吧!”见哥哥还在犹豫着,耿英就伸手推推催促他说:“快 去吧,要不人家要关门了呢!”耿正只好拉着弟弟转身快步朝那个点心铺子走去了。耿英也随即转身,快步往出租小院儿赶去。但没有 人注意到,就在耿正拉着弟弟刚刚
G F
D A C
H
B1
F
B3
G
B2
A
C
D
1、通过这节课的学习活动你有哪些收获? 2、对这节课的学习,你还有什么想法吗?
试一试: 在我国古代数学著作 《九章算术》中记载了一道 有趣的问题,这个问题的意 思是:有一个水池,水面是 一个边长为10尺的正方形,在 水池的中央有一根新生的芦 苇,它高出水面1尺,如果把 这根芦苇垂直拉向岸边,它 的顶端恰好到达岸边的水面, 请问这个水池的深度和这根 芦苇的长度各是多少?