【精品】2018年甘肃省兰州市永登县九年级上学期数学期中试卷及解析

合集下载

甘肃省兰州市九年级上学期期中数学试卷

甘肃省兰州市九年级上学期期中数学试卷

甘肃省兰州市九年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)下列方程中,不是一元二次方程的是()A . x2=﹣3B . ﹣4x2+2x+1=0C . 3x2﹣2x+1=0D . x2+x=(x+1)(x﹣2)2. (2分)若※是新规定的某种运算符号,设a※b=b 2 -a,则-2※x=6中x的值()A . 4B . 8C . 2D . -23. (2分)如图中的四个图案,四位同学分别说出了它们的形成过程,其中说得不正确的是()A . 图①是一个长方形绕着图形的中心按逆时针旋转90°,180°和270°所得B . 图②可由一个钝角三角形绕着图形的中心按同一方向旋转90°,180°和270°形成C . 图③可以看作以正方形的一条对角线所在直线为对称轴翻折所得D . 图④可以看作由长方形的一边的垂直平分线为对称轴翻折而成4. (2分)已知第二象限内的点P,到x轴的距离为2,到y轴的距离为3,则点P关于原点的对称点的坐标为()A . (-3,2)B . (3,-2)C . (2,-3)D . (-2,3)5. (2分)方程x(x﹣4)=2﹣8x的两个实数根为α和β,则下列说法正确的个数为()①有一个根为正数,一个根为负数;②两个根都为负数;③两根的积大于两根的和;④本题解方程最好的方法是分解因式;⑤它的二次项系数为1,一次项为4,常数项为﹣2.A . 2个B . 3个C . 4个D . 5个6. (2分) (2016九下·农安期中) 关于x的方程x2﹣2x+c=0有两个相等的实数根,则c的值为()A . 1B . ﹣1C . 4D . ﹣47. (2分) (2018九上·抚顺期末) 抛物线y=ax2+bx+c的顶点为D(﹣1,2),与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则以下结论:①b2﹣4ac<0;②当x>﹣1时,y随x增大而减小;③a+b+c <0;④若方程ax2+bx+c﹣m=0没有实数根,则m>2;⑤3a+c<0.其中正确结论的个数是()A . 2个B . 3个C . 4个D . 5个8. (2分)(2017·宜城模拟) 在同一坐标系中一次函数y=ax﹣b和二次函数y=ax2+bx的图象可能为()A .B .C .D .9. (2分) (2018八下·青岛期中) 如图,0是正△ABC内一点,OA=3,OB=4,OC=5,将线段B0以点B为旋转中心逆时针旋转60°得到线段BO′,下列结论:①点0与0′的距离为4;②∠AOB=150°;③ = .其中正确的结论是()A . ①B . ①②C . ②③D . ①②③10. (2分)如果抛物线y=mx²+(m-3)x-m+2经过原点,那么m的值等于()A . 0;B . 1;C . 2;D . 3.11. (2分) (2016九上·三亚期中) 某城市2012年底已有绿化面积300公顷,经过两年绿化,绿化面积逐年增加,到2014年底增加到363公顷,设绿化面积平均每年的增长率为x,由题意,所列方程正确的是()A . 300(1+x)=363B . 300(1+x)2=363C . 300(1+2x)=363D . 363(1﹣x)2=30012. (2分)抛物线y=(x+2)2+3的顶点坐标与对称轴是()A . (2,-3),直线x=2B . (-2,3),直线x=2C . (-2,3),直线x=-2D . (-2,-3),直线x=-2二、填空题 (共6题;共7分)13. (2分)(2017·新疆) 如图,在边长为6cm的正方形ABCD中,点E、F、G、H分别从点A、B、C、D同时出发,均以1cm/s的速度向点B、C、D、A匀速运动,当点E到达点B时,四个点同时停止运动,在运动过程中,当运动时间为________ s时,四边形EFGH的面积最小,其最小值是________ cm2 .14. (1分) (2018九下·滨海开学考) 如图,在矩形ABCD中,AD=4,DC=3,将△ADC绕点A按逆时针方向旋转到△AEF(点A、B、E在同一直线上),则AC在运动过程中所扫过的面积为________.15. (1分) (2017·蒙自模拟) 若关于x的一元二次方程x2+4x﹣k=0有实数根,则k的最小值为________.16. (1分)二次函数y=x2+2x﹣3的图象有最________ 点.(填:“高”或“低”)17. (1分)我市某公司前年缴税40万元,今年缴税48.4万元.该公司缴税的年平均增长率为________ .18. (1分)如图,在菱形ABCD中,AB=4cm,∠ADC=120°,点E、F同时由A、C两点出发,分别沿AB、CB 方向向点B匀速移动(到点B为止),点E的速度为1cm/s,点F的速度为2cm/s,经过t秒△DEF为等边三角形,则t的值为________.三、解答题 (共8题;共92分)19. (10分)解方程(1) x2﹣5x+1=0(2) 3x(x﹣2)=2(2﹣x)20. (20分)若是方程的两个根,试求下列各式的值:(1);(2);(3);(4).21. (5分) (2017七下·顺义期末) 已知,为有理数,且满足,求代数式的值.22. (11分) (2019九上·慈溪期中) 已知抛物线经过坐标原点O,与x轴交于另一点A,顶点为B.求:(1)抛物线的解析式;(2)△AOB的面积;(3)要使二次函数的图象过点(10,0),应把图象沿x轴向右平移________个单位23. (10分)如图①,将边长为2的正方形OABC如图①放置,O为原点.(1)若将正方形OABC绕点O逆时针旋转60°时,如图②,求点A的坐标;(2)如图③,若将图①中的正方形OABC绕点O逆时针旋转75°时,求点B的坐标.24. (10分)(2017·桂林) 为进一步促进义务教育均衡发展,某市加大了基础教育经费的投入,已知2015年该市投入基础教育经费5000万元,2017年投入基础教育经费7200万元.(1)求该市这两年投入基础教育经费的年平均增长率;(2)如果按(1)中基础教育经费投入的年平均增长率计算,该市计划2018年用不超过当年基础教育经费的5%购买电脑和实物投影仪共1500台,调配给农村学校,若购买一台电脑需3500元,购买一台实物投影需2000元,则最多可购买电脑多少台?25. (11分) (2020九上·息县期末) 如图①,在与中,, .(1)与的数量关系是: ________; .(2)把图①中的绕点旋转一定的角度,得到如图②所示的图形.①求证: .②若延长交于点,则与的数量关系是什么?并说明理由.(3)若,,把图①中的绕点顺时针旋转,直接写出长度的取值范围.26. (15分) (2017九上·重庆期中) 如图,抛物线y=ax2+bx﹣2与x轴交于A、B两点,与y轴交于点C,已知A(﹣1,0),且tan∠ABC= .(1)求抛物线的解折式.(2)在直线BC下方抛物线上一点P,当四边形OCPB的面积取得最大值时,求此时点P的坐标.(3)在y轴的左侧抛物线上有一点M,满足∠MBA=∠ABC,若点N是直线BC上一点,当△MNB为等腰三角形时,求点N的坐标.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共7分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共92分)19-1、19-2、20-1、20-2、20-3、20-4、21-1、22-1、22-2、22-3、23-1、23-2、24-1、24-2、25-1、25-2、25-3、26-1、26-2、26-3、。

2017-2018年甘肃省兰州市永登县九年级上学期数学期中试卷与解析

2017-2018年甘肃省兰州市永登县九年级上学期数学期中试卷与解析

2017-2018学年甘肃省兰州市永登县九年级(上)期中数学试卷一、选择题(本大题共15小题,每小题4分,共60分)1.(4分)方程x2﹣3x﹣6=0的根的情况是()A.由两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定2.(4分)如图,已知菱形ABCD的周长为12,∠A=60°,则BD的长为()A.3 B.4 C.6 D.83.(4分)下列性质中,菱形对角线不具有的是()A.对角线互相垂直 B.对角线所在直线是对称轴C.对角线相等D.对角线互相平分4.(4分)如图所示,矩形ABCD中,AE平分∠BAD交BC于E,∠CAE=15°,则下面的结论:=S△COE,①△ODC是等边三角形;②BC=2AB;③∠AOE=135°;④S△AOE其中正确结论有()A.1个 B.2个 C.3个 D.4个5.(4分)关于x的一元二次方程kx2+2x+1=0有两个实根,则实数k的取值范围是()A.k≤1 B.k<1 C.k≤1且k≠0 D.k<1且k≠06.(4分)一元二次方程x2﹣3x﹣1=0的两实数根是x1,x2,则x1+x2﹣x1•x2的值是()A.4 B.2 C.﹣2 D.﹣47.(4分)某种药品原价为36元/盒,经过连续两次降价后售价为25元/盒.设平均每次降价的百分率为x,根据题意所列方程正确的是()A.36(1﹣x)2=36﹣25 B.36(1﹣2x)=25 C.36(1﹣x)2=25 D.36(1﹣x2)=258.(4分)小红上学要经过两个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望上学时经过每个路口都是绿灯,但实际这样的机会是()A.B.C.D.9.(4分)在一个不透明的布袋中装有50个黄、白两种颜色的球,除颜色外其他都相同,小红通过多次摸球试验后发现,摸到黄球的频率稳定在0.3左右,则布袋中白球可能有()A.15个B.20个C.30个D.35个10.(4分)若实数x,y满足(x2+y2+1)(x2+y2﹣2)=0,则x2+y2的值是()A.1 B.2 C.2或﹣1 D.﹣2或﹣111.(4分)如果x:(x+y)=3:5,那么x:y=()A.B.C.D.12.(4分)由5a=6b(a≠0),可得比例式()A.B.C.D.13.(4分)如图,边长为12的大正方形中有两个小正方形,若两个小正方形的面积分别为S1、S2,则S1+S2的值为()A.60 B.64 C.68 D.7214.(4分)下列命题中,真命题是()A.对角线互相平分且相等的四边形是矩形B.对角线互相垂直且相等的四边形是矩形C.对角线互相平分且相等的四边形是菱形D.对角线互相垂直且相等的四边形是菱形15.(4分)关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,则q的取值范围是()A.q<16 B.q>16 C.q≤4 D.q≥4二、填空题(本大题共5小题,每小题4分,共20分)16.(4分)若关于x的方程式x2+mx﹣6=0的有一个根2,则另一个根为,m的值为.17.(4分)若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有两个不相等的实数根,则k的取值范围是.18.(4分)在一个不透明的口袋中装有颜色不同的红、白两种小球,其中红球3个,白球n个,若从袋中任取一个球,摸出白球的概率是,则n=.19.(4分)若,则=.20.(4分)如图,为估算某河的宽度,在河对岸选定一个目标点A,在近岸取点B,C,D,使得AB⊥BC,CD⊥BC,点E在BC上,并且点A,E,D在同一条直线上.若测得BE=20m,EC=10m,CD=20m,则河的宽度AB=m.三、解答题(本大题共7小题,共70分)21.(10分)(1)解方程:x+5=x2﹣25.(2)x2﹣4x+1=0(用配方法)22.(8分)甲、乙、丙、丁四位同学进行一次羽毛球单打比赛,要从中选出两位同学打第一场比赛.请用树状图法或列表法,求恰好选中甲、乙两位同学的概率.23.(10分)如图所示,正方形ABCD的边长是3,E是正方形ABCD的边AB上的点,且AE=1,EF⊥DE交BC于点F,求线段CF的长.24.(10分)已知:关于x的一元二次方程x2﹣3x﹣k=0有两个不相等的实数根.(1)求k的取值范围;(2)请选择一个k的负整数值,并求出方程的根.25.(10分)如图,已知点E,F分别是▱ABCD的边BC,AD上的中点,且∠BAC=90°.(1)求证:四边形AECF是菱形;(2)若∠B=30°,BC=10,求菱形AECF面积.26.(10分)在矩形ABCD中,AB=6cm,BC=12cm,点P从点A开始沿AB方向向点B以1cm/s的速度运动,同时点Q从点B开始沿BC边向C以2cm/s的速度运动,P、Q两点分别到达B、C两点后停止移动,那么几秒后△PBQ的面积是5cm2?27.(12分)某商店经销一种销售成本为每千克40元的水产品,据市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨1元,月销售量就减少10千克.针对这种水产品的销售情况,请解答以下问题:(1)当销售单价定为每千克55元时,计算月销售量和月销售利润;(2)设销售单价为每千克x元,月销售利润为y元,求y与x之间的关系式;(3)商店想在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,则销售单价应定为多少?2017-2018学年甘肃省兰州市永登县九年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共15小题,每小题4分,共60分)1.(4分)方程x2﹣3x﹣6=0的根的情况是()A.由两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定【解答】解:∵a=1,b=﹣3,c=﹣6,∴△=b2﹣4ac=(﹣3)2﹣4×1×(﹣6)=33>0,所以原方程有两个不相等的实数.故选:A.2.(4分)如图,已知菱形ABCD的周长为12,∠A=60°,则BD的长为()A.3 B.4 C.6 D.8【解答】解:∵菱形ABCD的周长为12,∴菱形ABCD的边长=12÷4=3,∵∠A=60°,AD=AB,∴△ABD等边三角形,∴AB=BD,∴BD=3,故选:A.3.(4分)下列性质中,菱形对角线不具有的是()A.对角线互相垂直 B.对角线所在直线是对称轴C.对角线相等D.对角线互相平分【解答】解:∵菱形对角线具有的性质有:对角线互相垂直,对角线互相平分,∴对角线所在直线是对称轴.故A,B,D正确,C错误.故选:C.4.(4分)如图所示,矩形ABCD中,AE平分∠BAD交BC于E,∠CAE=15°,则下面的结论:①△ODC是等边三角形;②BC=2AB;③∠AOE=135°;④S=S△COE,△AOE其中正确结论有()A.1个 B.2个 C.3个 D.4个【解答】解:∵四边形ABCD是矩形,∴∠BAD=90°,OA=OC,OD=OB,AC=BD,∴OA=OD=OC=OB,∵AE平分∠BAD,∴∠DAE=45°,∵∠CAE=15°,∴∠DAC=30°,∵OA=OD,∴∠ODA=∠DAC=30°,∴∠DOC=60°,∵OD=OC,∴△ODC是等边三角形,∴①正确;∵四边形ABCD是矩形,∴AD∥BC,∠ABC=90°∴∠DAC=∠ACB=30°,∴AC=2AB,∵AC>BC,∴2AB>BC,∴②错误;∵AD∥BC,∴∠DBC=∠ADB=30°,∵AE平分∠DAB,∠DAB=90°,∴∠DAE=∠BAE=45°,∵AD∥BC,∴∠DAE=∠AEB,∴∠AEB=∠BAE,∴AB=BE,∵四边形ABCD是矩形,∴∠DOC=60°,DC=AB,∵△DOC是等边三角形,∴DC=OD,∴BE=BO,∴∠BOE=∠BEO=(180°﹣∠OBE)=75°,∵∠AOB=∠DOC=60°,∴∠AOE=60°+75°=135°,∴③正确;∵OA=OC,=S COE,∴④正确;∴根据等底等高的三角形面积相等得出S△AOE故选:C.5.(4分)关于x的一元二次方程kx2+2x+1=0有两个实根,则实数k的取值范围是()A.k≤1 B.k<1 C.k≤1且k≠0 D.k<1且k≠0【解答】解:∵关于x的一元二次方程kx2+2x+1=0有两个实根,∴,解得:k≤1且k≠0.故选:C.6.(4分)一元二次方程x2﹣3x﹣1=0的两实数根是x 1,x2,则x1+x2﹣x1•x2的值是()A.4 B.2 C.﹣2 D.﹣4【解答】解:∵一元二次方程x2﹣3x﹣1=0的两实数根是x1,x2,∴x1+x2=3,x1•x2=﹣1,∴x1+x2﹣x1•x2=3+1=4.故选:A.7.(4分)某种药品原价为36元/盒,经过连续两次降价后售价为25元/盒.设平均每次降价的百分率为x,根据题意所列方程正确的是()A.36(1﹣x)2=36﹣25 B.36(1﹣2x)=25 C.36(1﹣x)2=25 D.36(1﹣x2)=25【解答】解:第一次降价后的价格为36×(1﹣x),两次连续降价后售价在第一次降价后的价格的基础上降低x,为36×(1﹣x)×(1﹣x),则列出的方程是36×(1﹣x)2=25.故选:C.8.(4分)小红上学要经过两个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望上学时经过每个路口都是绿灯,但实际这样的机会是()A.B.C.D.【解答】解:共4种情况,有1种情况每个路口都是绿灯,所以概率为.故选:A.9.(4分)在一个不透明的布袋中装有50个黄、白两种颜色的球,除颜色外其他都相同,小红通过多次摸球试验后发现,摸到黄球的频率稳定在0.3左右,则布袋中白球可能有()A.15个B.20个C.30个D.35个【解答】解:设袋中有黄球x个,由题意得=0.3,解得x=15,则白球可能有50﹣15=35个.故选:D.10.(4分)若实数x,y满足(x2+y2+1)(x2+y2﹣2)=0,则x2+y2的值是()A.1 B.2 C.2或﹣1 D.﹣2或﹣1【解答】解:∵(x2+y2+1)(x2+y2﹣2)=0,∴x2+y2+1=0或x2+y2﹣2=0,∴x2+y2=﹣1或x2+y2=2,而x2+y2≥0,∴x2+y2=2.故选:B.11.(4分)如果x:(x+y)=3:5,那么x:y=()A.B.C.D.【解答】解:∵x:(x+y)=3:5,∴5x=3x+3y,2x=3y,∴x:y=3:2=,故选:D.12.(4分)由5a=6b(a≠0),可得比例式()A.B.C.D.【解答】解;A、⇒ab=30,故选项错误;B、⇒ab=30,故选项错误;C、⇒6a=5b,故选项错误;D、⇒5(a﹣b)=b,即5a=6b,故选项正确.故选:D.13.(4分)如图,边长为12的大正方形中有两个小正方形,若两个小正方形的面积分别为S1、S2,则S1+S2的值为()A.60 B.64 C.68 D.72【解答】解:如图,设正方形S2的边长为x,根据等腰直角三角形的性质知,AC=x,x=CD,∴AC=2CD,CD=4,∴EC2=42+42,即EC=4,∴S2的面积为EC2=32,∵S1的边长为6,S1的面积为6×6=36,∴S1+S2=32+36=68.故选:C.14.(4分)下列命题中,真命题是()A.对角线互相平分且相等的四边形是矩形B.对角线互相垂直且相等的四边形是矩形C.对角线互相平分且相等的四边形是菱形D.对角线互相垂直且相等的四边形是菱形【解答】解:A、对角线互相平分的四边形是平行四边形;对角线相等的平行四边形是矩形;正确;即可得C错误;B、D、对角线互相垂直且相等的四边形可能是如图:所以错误;故选:A.15.(4分)关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,则q的取值范围是()A.q<16 B.q>16 C.q≤4 D.q≥4【解答】解:∵关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,∴△=82﹣4q=64﹣4q>0,解得:q<16.故选:A.二、填空题(本大题共5小题,每小题4分,共20分)16.(4分)若关于x的方程式x2+mx﹣6=0的有一个根2,则另一个根为﹣3,m的值为1.【解答】解:设方程的另一根为x1,又∵x2=2,∴根据根与系数的关系可得:,解得:.故答案为﹣3,1.17.(4分)若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有两个不相等的实数根,则k的取值范围是k>且k≠1.【解答】解:根据题意得k﹣1≠0且△=22﹣4(k﹣1)×(﹣2)>0,解得:k>且k≠1.故答案为:k>且k≠1.18.(4分)在一个不透明的口袋中装有颜色不同的红、白两种小球,其中红球3个,白球n个,若从袋中任取一个球,摸出白球的概率是,则n=12.【解答】解:根据题意得:=,解得:n=12,经检验:n=12是原分式方程的解.故答案为:12.19.(4分)若,则=.【解答】解:∵,∴设a=3k,b=4k,∴==.故答案为:.20.(4分)如图,为估算某河的宽度,在河对岸选定一个目标点A,在近岸取点B,C,D,使得AB⊥BC,CD⊥BC,点E在BC上,并且点A,E,D在同一条直线上.若测得BE=20m,EC=10m,CD=20m,则河的宽度AB=40m.【解答】解:∵AB⊥BC,CD⊥BC,∴△BAE∽△CDE,∴=,∵BE=20m,CE=10m,CD=20m,∴=解得:AB=40,故答案为:40.三、解答题(本大题共7小题,共70分)21.(10分)(1)解方程:x+5=x2﹣25.(2)x2﹣4x+1=0(用配方法)【解答】解:(1)x+5=x2﹣25x2﹣x﹣30=0(x+5)(x﹣6)=0x+5=0,x﹣6=0x1=﹣5,x2=6;(2)x2﹣4x+1=0△=16﹣4=12>0,x=x1=2+,x2=2﹣.22.(8分)甲、乙、丙、丁四位同学进行一次羽毛球单打比赛,要从中选出两位同学打第一场比赛.请用树状图法或列表法,求恰好选中甲、乙两位同学的概率.【解答】解:画树状图:共有12个等可能的结果,其中恰好是甲乙的占2个,所有恰好选中甲、乙两位同学的概率==23.(10分)如图所示,正方形ABCD的边长是3,E是正方形ABCD的边AB上的点,且AE=1,EF⊥DE交BC于点F,求线段CF的长.【解答】解:∵ABCD是正方形,∴∠A=∠B=90°,∴∠ADE+∠DEA=90°,又EF⊥DE,∴∠AED+∠FEB=90°,∴∠ADE=∠FEB,∴△ADE∽△BEF.∴=,∴,∴BF=∵BC=3,∴CF=BC﹣BF=24.(10分)已知:关于x的一元二次方程x2﹣3x﹣k=0有两个不相等的实数根.(1)求k的取值范围;(2)请选择一个k的负整数值,并求出方程的根.【解答】解:(1)∵一元二次方程x2﹣3x﹣k=0有两个不相等的实数根,∴△=(﹣3)2﹣4×1×(﹣k)>0,解得k>﹣;(2)当k=﹣2时,方程为x2﹣3x+2=0,因式分解得(x﹣1)(x﹣2)=0,解得x1=1,x2=2.25.(10分)如图,已知点E,F分别是▱ABCD的边BC,AD上的中点,且∠BAC=90°.(1)求证:四边形AECF是菱形;(2)若∠B=30°,BC=10,求菱形AECF面积.【解答】解:(1)证明:∵四边形ABCD是平行四边形,∴AD=BC,在Rt△ABC中,∠BAC=90°,点E是BC边的中点,∴AE=BC=CE,同理,AF=AD=CF,∴AE=CE=AF=CF,∴四边形AECF是菱形;(2)连接EF交AC于点O,如图所示:在Rt△ABC中,∠BAC=90°,∠B=30°,BC=10,∴AC=BC=5,AB=AC=5,∵四边形AECF是菱形,∴AC⊥EF,OA=OC,∴OE是△ABC的中位线,∴OE=AB=,∴EF=5,∴菱形AECF的面积=AC•EF=×5×5=.26.(10分)在矩形ABCD中,AB=6cm,BC=12cm,点P从点A开始沿AB方向向点B以1cm/s的速度运动,同时点Q从点B开始沿BC边向C以2cm/s的速度运动,P、Q两点分别到达B、C两点后停止移动,那么几秒后△PBQ的面积是5cm2?【解答】解:设x秒后△PBQ面积为5cm2,则PB=6﹣x,BQ=2x.根据题意,得(6﹣x)•2x=5解得:x1=5,x2=1.答:5秒或1秒后△PBQ面积为5cm2.27.(12分)某商店经销一种销售成本为每千克40元的水产品,据市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨1元,月销售量就减少10千克.针对这种水产品的销售情况,请解答以下问题:(1)当销售单价定为每千克55元时,计算月销售量和月销售利润;(2)设销售单价为每千克x元,月销售利润为y元,求y与x之间的关系式;(3)商店想在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,则销售单价应定为多少?【解答】解:(1)当销售单价定为每千克55元时,月销售量为500﹣(55﹣50)×10=450(千克),从而可求出月销售利润为[(55﹣40)×450]元.(2)设销售单价为每千克x元,则月销售量为[500﹣(x﹣50)×10]千克,而每千克的销售利润是(x﹣40)元,所以月销售利润为(x﹣40)[500﹣(x﹣50)×10]元.(3)要使月销售利润达到8000元,即可列方程(x﹣40)[500﹣(x﹣50)×10]=8000.解:(1)月销售量为500﹣(55﹣50)×10=450(千克).月销售利润为(55﹣40)×450=15×450=6750(元).(2)y=(x﹣40)[500﹣(x﹣50)×10]=(x﹣40)[500﹣10x+500]=(x﹣40)(1000﹣10x)=1000x﹣10x2﹣40000+400x=﹣10x2+1400x﹣40000.(3)﹣10x2+1400x﹣40000=8000,﹣10x2+1400x﹣48000=0,x2﹣140x+4800=0,(x﹣60)(x﹣80)=0,∴x1=60,x2=80.当x=60时,成本为40×[500﹣(60﹣50)×10]=40×(500﹣100)=40×400 =16000(元)>10000元.当x=80时,成本为40×[500﹣(80﹣50)×10]=40×(500﹣300)=40×200=8000(元)<10000元.所以销售单价应定为80元.第21页(共21页)。

甘肃省兰州市2018年中考数学试卷(有答案)

 甘肃省兰州市2018年中考数学试卷(有答案)

甘肃省兰州市2018年中考数学试卷(解析版)一、选择题(本大题共12小题,每小题4分,共48分) 1.-2018的绝对值是( C ).2.如图是有5个完全相同的小正方形组成的几何体,则该几何体的主视图是( A ).A .B .C .D .3.据中国电子商务研究中心(100EC .CN )发布《2017年度中国共享经济发展报告》显示,截止2017年12月,共有190家共享经济平台获得1159.56亿元投资.数据1159.56亿元用科学计数法可表示为( C ) A.1159.56×108元 B.11.5956×1010元 C.1.15956×1011元 D.1.15956×108元4.下列二次根式中,是最简二次根式的是( B ).A.18B.13C.27D.12 5如图,AB//CD,AD =CD ,∠1=65°则∠2的度数是( A ) A .50° B .60° C .65° D .70°6.下列计算正确的是( D )A.ab a a 532=⋅B.1243a a a =⋅C.24226)3-b a b a =( D.22352a a a a =+÷ 7.如图,边长为4的等边△ABC 中,D 、E 分别是AB 、AC 的中点,则△ADE 的面积是( A )A.3B.23 C.433 D.328.如图,矩形ABCD 中,AB =3,BC =4,BE//DF 且BE 与DF 之间的距离为3,则AE 的长度是( C ) A. 7 B .3 C .87 D .859.如图,将口ABCD 沿对角线BD 折叠,使点A 落在点E 处,交BC 于点F .若∠ABD =48°,∠CFD =40°,则∠E 为( B ) A .102° B .112° C .122° D .92°(第7题)C AE D B10.关于x 的分式方程112=++x ax 的解为负数,则a 的取值范围为( D ) A. a >1B .a <1C .a <1且a ≠-2D .a >1且a ≠2D.解析:化简得x =a -1<0(x ≠-1)即a>1且a ≠2.11.如图,已知二次函数)0(2≠++=a c bx ax y 的图像如图所示,有下列5个结论: ①0>abc ;②b -a >c ;③)1)((b a ;a 3024的实数>⑤>;④>≠++-++m b am m c c b a .其中正确的结论有( B ) A.①②③ B.②③⑤ C.②③④ D.③④⑤B.解析:开口向下,a<0,与y 轴交点在上方,c>0,021>ab x x -=+,即b>0,故0<abc ;x =-1时,y=a -b +c<0,故b -a>c ;x =2时,y =4a +2b +c<0;acx x =21是2到3之间的数x -1到0之间的数>-3,故3a<-c ;⑤式化解得,0)(2<+-+b a bm am ,0)1()1(2<b m a m -+-,无论m 大于1还是≤1,该式总成立,故⑤成立,即答案为B .12.如图,抛物线2457212+-=x x y 与x 轴的交于点A 、B ,把抛物线在x 轴即其下方的部分记作C 1,将C 1向左平移得C 2,C 2与x 轴的交于点B 、D .若直线m x y +=21与C 1、C 2共有三个不同的交点,则m 的A.25-m 845<<-B.21-m 829<<-C.25-m 829<<-D.21-m 845<<-C.解析:在y =2457212+-x x 中,令y =0,解得x 1=9,x 2=5,∴点A ,B 的坐标分别为(9,0),(5,0).∵C 2D是由C 1向左平移得到的,∴点D 的坐标为(1,0),C 2对应的函数解析式为y =23212--)(x =253212+-x x (1≤x≤5).当直线y =m x +21与C 2相切时,可知关于x 的一元二次方程253212+-x x =m x +21有两个相等的实数根,即方程x 2-7x +5-2m =0有两个相等的实数根,∴Δ=(-7)2-4×1×(5-2m )=0,解得m =829-.当直线y =m x +21过点B 时,可得0=m +⨯521,解得m =25-.如图,故当829-<m<25-,直线y =m x +21与C 1,C 2共有3个不同的交点.二、填空题:本大题共4小题,每小题3分,共24分. 13.因式分解:32y y x -= .y(x +y)(x -y)14.不等式组⎪⎩⎪⎨⎧>+->+x x x x 32-133475)1(2的解集为 .-1<x<3.O 的半径为3,∠C =55°,则劣弧AB 的长是 .π211.13. 如图,M 、N 是正方形ABCD 的边CD 上的两个动点,满足AM =BN ,连接AB 交BN 于点E ,连接DE 交AM 于点F ,连接CF ,若正方形的边长为6,则线段CF 的最小值是 .OA CBN 第16题图 M F E D B AC353-三、解答题(本大题共11小题,满分102分,解答应写出文字说明、证明过程或演算步骤)17.(5分)计算:()︒+++⎪⎭⎫ ⎝⎛--45tan 2-13-2102π.解:2-71)12(14=+--+=原式.18.解方程:02232=--x x . 解:移项,得3x 2-2x =2,配方,得3(x -31)2=37, 解得x 1=371+,x 2=371- .19.先化简,再求值:12)143(--÷---x x x x x ,其中21=x .解:原式=211442--⋅-+-x x x x x =2+x ,代入21=x 得原式=25.20. (6分)如图,在Rt △ABC 中.(1)利用尺度作图,在BC 边上求作一点P ,使得点P 到AB 的距离(PD 的长)等于PC 的长; (2)利用尺规作图,作出(1)中的线段PD .(要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔描黑)解:∠A 的角平分线作法.作图略. 21.(7分)学校开展“书香校园”活动以来,受到同学们的广泛帮助,学校为了解全校学生课外阅读的情况,随机调查了部分学生在一周内借阅图书的次数,并制成如图不完整的统计图表.学生借阅图书的次数统计图请你根据统计图表中的信息,解答下列问题: (1)a = ,b = ;(2)该调查统计数据的中位数是 ,众数是 ; (3)请计算扇形统计图中的“3次”所对应的圆心角的度数;B(4)若该校共有2000名学生,根据调查结果,统计该校学生在一周内借阅图书“4次及以上”的人数. 解:(1)17,20%.310137%2613----÷=a =17,b =()%261310÷÷=20%;(2)10,10.由中位数和众数的定义即可得;(3)72°.360°⨯20%=72°; (4)120人.1205032000=⨯(人) 22.(7分)在一个不透明的布袋里装有4个标有1,2,3,4的小球,它们的形状是、大小完全相同.李强从布袋里随机取出一个小球,记下数字为x ,王芳在剩下的3个小球中随机取出一个小球,记下数字为y ,这样就确定了点M 的坐标(x ,y ).(1)画树状图或列表,写出点M 所有可能的坐标; (2)求点M (x ,y )在函数y =x +1的图像上的概率.(2)4.解:一共12个点坐标,有三个点坐标在上面.23. (7分)如图,斜坡BE ,坡顶B 到水平地面的距离AB 为3米,坡底AE 为18米,在B 处,E 处分别60°.求CD 的高度.(结果保留根号)解:过B 点作CD 的垂线,垂足为F,设CD =x 米,则DF =(x -3)(米),BF =AC ,BF =)x(330tan 米=︒DE,AC =AE +CE=x CD 331830tan 18+=︒⋅+,即x x 33183+=, 解得,39=x ,即CD 长为93米.24.(7分)某商家销售一款商品,进价每件80元,售价每件145元,每天销售40件,每销售一件需支付给商家管理费5元,未来一个月(按30天计算),这款商品将开展“每天降价1元”的促销活动,即从第一天起每天的单价均比前一天降1元,通过市场调查发现,该商品单价每降1元,每天的销售量增加2件,设第x 天(1≤x≤30,且x 为整数)的销量为y 件. (1)直接写出y 与x 的函数关系式;(2)设第x 天的利润为w 元,试求出w 与x 之间的函数关系式,并求出哪一天的利润最大?最大利润是多少元?解:(1)y =38+2x ;解析:y =40+2(x -1)=2x +38;(2)()()[]1580145382----+=x x w =()20412122+--x故x =21时,w 值最大,为2041元,即第21天时,利润最大,最大利润为2041元.25.(8分)如图,在平面直角坐标系中,一次函数y 1=ax +b 的图像与反比例函数xky =2的图像交于点A (1,2)和B (-2,m ).(1)求一次函数和反比例函数的表达式; (2)请直接写出21y >y 时,x 的取值范围;(3)过点B 做BE//x 轴,BE AD ⊥于点D ,点C 是直线BE 上一点,若AC =2CD ,求点C 的坐标.解:(1)xy x y 2;121=+=(3)()),1(0,2+∞- (3)C 点的坐标为(1-3-11,31,和-+;解析:易知D (1,-1),设C 点坐标为(x ,-1),故AC =223)1(+-x ,BC =1-x ,由AC =2BC 可知,224BC AC =,即()()2221431-=+-x x ,解得313121-=+=x x ,,故C 点的坐标为()()1-3-11,31,和-+.26.(8分)如图,在∆ABC 中,过点C 作CD//AB ,E 是AC 的中点,连接DE 并延长,交AB 于点F ,交CB 的延长线于点G .连接AD 、CF .(1)求证:四边形AFCD 是平行四边形; (2)若GB =3,BC =6,BF =23,求AB 的长. 证明(1).//)(//是平行四边形四边形又△△又∵的中点是∵AFCD CDAF CD AF ASA CED AEF CEAE CED AEF DCE FAE CD AF CE AE AC E ∴=∴≅∴=∠=∠∠=∠∴=∴(2)6,29,29//=+=∴====∴BF AF AB CD AF CD CD BF GC GB GCD GBF CDBF 又代入数值,可得∽△易得△∵即AB 的长为6.D27.(9分)如图,AB 为圆O 的直径,C 为圆O 上的一点,D 为BA 延长线上的一点,B ACD ∠=∠. (1)求证:DC 为圆O 的切线;(2)线段DF 分别交AC ,BC 于点E ,F ,且CEF ∠=45°,圆O 的半径为5,53sin =B ,求CF 的长.(1)连接.909090的切线是圆的直径是圆∵∵O CD CDOC OCA DAC OCB OCA ACB O AB OCB OBC OCOB ∴⊥∴︒=∠+∠∴︒=∠+∠∴︒=∠∴∠=∠∴= (2)解析:由∠CEF =45°,∠ACB =90°,可知,∠CFE =∠CEF =45°,即CF =CE . 由53sin =B ,可得AC =6,由勾股定理得,BC =8,设CF =CE =x ,由∠CDE =∠BDF ,∠ECD =∠FBD ,可知,△CED 相似于△BFD ,即①xxCD FD CE BF -==8,由∠CFD =∠AED ,∠EDA =∠FDC ,可知△CFD 相似于△AED ,即②x x ED FD AE CF -==6,联立①②得,724=x ,即CF 的长为724.28.(12分)如图,抛物线42-+=bx ax y 经过A (-3,6),B (5,-4)两点,与y 轴交于点C ,连接AB ,AC ,BC .(1)求抛物线的表达式;(2)求证:AB 平分CAO ∠;(3)抛物线的对称轴上是否存在点M ,使得ABM ∆是以AB 为直角边的直角三角形.若存在,求出点M 的坐标;若不存在,说明理由.解:(1)将A ,B 两点的坐标分别代入,D第28题图得⎩⎨⎧-=-+=--,44525,0439b a b a解得⎪⎪⎩⎪⎪⎨⎧-==,65,61b a故抛物线的表达式为y =465612--=x x y .(2)证明:设直线AB 的表达式为y =kx +b’, 则⎩⎨⎧-=+=+-,4'5,0'3b k b k解得⎪⎪⎩⎪⎪⎨⎧-=-=,23',21b k故直线AB 的表达式为y =2321--x . 设直线AB 与y 轴的交点为点D ,则点D 的坐标为(0,23-). 易得点C 的坐标为(0,-4),则由勾股定理,可得AC =5)04(]30[22=--+--)(. 设点B 到直线AC 的距离为h , 则52132121⨯⨯+⨯⨯=⨯CD CD AC h , 解得h =4.易得点B 到x 轴的距离为4, 故AB 平分∠CAO . (3)存在.易得抛物线的对称轴为直线25=x , 设点M 的坐标为(m ,25).由勾股定理,得AB 2=[5-(-3)]2+(-4-0)2=80,AM 2=[25-(-3)]2+(m -0)2=4121+m 2,BM 2=(25-5)2+[m -(-4)]2=m 2+8m +489. 当AM 为该直角三角形的斜边时, 有AM 2=AB 2+BM 2,即4121+m 2=80+m 2+8m +489, 解得m =-9, 故此时点M 的坐标为(25,-9). 当BM 为该直角三角形的斜边时, 有BM 2=AB 2+AM 2,即m 2+8m +489=80+4121+m 2, 解得m =11,故此时点M 的坐标为(25,11). 综上所述,点M 的坐标为(25,-9)或(25,11).。

2018届九年级数学上期中试题含答案

2018届九年级数学上期中试题含答案

2018届九年级数学上学期期中试题(考试时间:120分钟 满分:150分)请注意:1.所有试题的答案均填写在答题卡上,答案写在试卷上无效.2.作图必须用2B 铅笔,并请加黑加粗.一、选择题(本大题共有6小题,每小题3分,共18分)1.有下列四个命题:①直径是弦;②经过三点一定可以作圆;③三角形的内心到三角形三边的距离都相等;④半径相等的两个半圆是等弧.其中正确的有( ▲ )A .4个B .3个C .2个D .1个 2.某服装销售商在进行市场占有率的调查时,他最应该关注的是( ▲ ) A .服装型号的平均数 B .服装型号的众数 C .服装型号的中位数 D .最小的服装型号 3.某科普小组有5名成员,身高分别为(单位:cm ):160,165,170,163,167.增加1名身高为165 cm 的成员后,现科普小组成员的身高与原来相比,下列说法正确的是( ▲ )A .平均数不变,方差不变B .平均数不变,方差变大C .平均数不变,方差变小D .平均数变小,方差不变 4.一个不透明的袋子里装有6个只有颜色可以不同的球,其中4个红球,2个白球.从袋中任意摸出1个球,则摸出的球是红球的概率为( ▲ ) A. 21B. 61 C. 31 D. 32 5.二次函数1)1(2+-=x y 图像的顶点坐标是( ▲ )A .(1,1)B .(-1,1)C .(1,-1)D .(-1,-1)6.二次函数122+-=x x y 的图像与坐标轴的交点个数是( ▲ ) A .0 B .1 C .2 D .3 二、填空题(本大题共有10小题,每小题3分,共30分)7.已知一组数据2,2,3,4,5,5,5.这组数据的中位数是 ▲ . 8.如果一组数据-1,0,3,4,6,x 的平均数是3,那么x 等于 ▲ . 9.样本方差计算式()()()[]222212303030801-+⋅⋅⋅+-+-=n x x x S 中n = ▲ . 10.一个学习兴趣小组有4名女生,6名男生,现要从这10名学生中选出一人担任组长,则女生当选组长的概率是 ▲ .11.如图,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,与图中阴影部分构成轴对称图形的概率是 ▲ .12.如图,OA ,OB 是⊙O 的半径,点C 在⊙O 上,连接AC ,BC ,若∠AOB =120°, 则∠ACB = ▲ °.13.扇形的半径为3 cm ,弧长为2π cm ,则该扇形的面积为 ▲ cm 2. 14.抛物线)3)(2(+-=x x y 与y 轴的交点坐标是 ▲ .15.某同学在用描点法画二次函数y =ax 2+bx +c 图像时,列出了下面的表第16题图y第11题图第12题图格:由于粗心,他算错了一个y值,则这个错误的数值是▲ .16.如图,在平面直角坐标系xOy中,点A、B、P的坐标分别为(1,0)、(2,5)、(4,2).若点C在第一象限内,且横坐标、纵坐标均为整数,P是△ABC的外心,则点C的坐标为▲ .三、解答题(本大题共有10小题,共102分.解答时应写出必要的步骤)17.(本题满分12分)(1)已知二次函数c=2的图像经过点(-1,5)和(2,8),求这y+ax个函数的表达式;(2)已知二次函数my+=2的图像与x轴只有一个公共点,求m的-xmx值.18.(本题满分8分)某品牌手机销售公司有营销员14人,销售部为制定营销人员月销售手机定额,统计了这14人某月的销售量如下(单位:台):(1)求这14位营销员该月销售该品牌手机的平均数、中位数和众数.(2)销售部经理把每位营销员月销售量定为90台,你认为是否合理?为什么?19.(本题满分8分)在学校组织的朗诵比赛中,甲、乙两名学生以抽签的方式从 3 篇不同的文章中抽取一篇参加比赛.抽签规则是:在 3 个相同的标签上分别标注字母A、B、C,各代表 1 篇文章,一名学生随机抽取一个标签后放回,另一名学生再随机抽取.用画树状图或列表的方法列出所有等可能的结果,并求甲、乙抽中同一篇文章的概率.20.(本题满分8分)某篮球运动员去年共参加40场比赛,其中3分球的命中率为0.25,平均每场有6次3分球未投中.(1)该运动员去年的比赛中共投中多少个3分球?(2)在其中的一场比赛中,该运动员3分球共出手16次,小明说,该运动员这场比赛中一定投中了4个3分球,你认为小明的说法正确吗?请说明理由.21.(本题满分10分)如图,在⊙O的内接四边形ABCD中,AB=AD,∠C =110°.若点PP的度数.第21题图第22题图DA B22.(本题满分10分)如图,△ABC是⊙O的内接三角形,AB是⊙O的直径,∠CAD=∠ABC.判断直线AD与⊙O的位置关系,并说明理由.23.(本题满分10分)如图,⊙O的直径ABC为AB延长线上一点,CD与⊙O相切于点过点B作弦BE∥CD,连接DE.第23题图BE的中点;(1)求证:点D为⌒(2)若∠C=∠E,求四边形BCDE的面积.24.(本题满分10分)某商场以每件42元的价格购进一种服装,由试销知,每天的销量t(件)与每件的销售价x(元)之间的函数关系为xt3=.204-(1)试写出每天销售这种服装的毛利润y (元)与每件销售价x(元)之间的函数表达式(毛利润=销售价-进货价);(2)每件销售价多少元才能使每天的毛利润最大?最大毛利润是多少?25.(本题满分12分)如图, 在Rt△ABC中,∠B=90°,AB= 3 cm,BC= 4 cm.点P从点A出发,以1 cm/s的速度沿AB运动;同时,点Q从点B出发,以2 cm/s的速度沿BC运动.当点Q到达点C时,P、Q两点同时停止运动.设动点运动的时间为t (s) .(1)试写出△PBQ的面积S (cm2)与 t (s)之间的函数表达式;(2)当 t 为何值时,△PBQ 的面积S 为2 cm 2;(3)当 t 为何值时,△PBQ 的面积最大?最大面积是多少?26.(本题满分14分)在平面直角坐标系中,二次函数c bx ax y ++=2的图像开口向上,且经过点A (0,23).(1)若此函数的图像经过点(1,0)、(3,0),求此函数的表达式; (2)若此函数的图像经过点B (2,21-),且与x 轴交于点C 、D .①填空:=b (用含a 的代数式表示); ②当2CD 的值最小时,求此函数的表达式.2017年秋学期期中考试九年级数学参考答案与评分标准一、选择题(本大题共有6小题,每小题3分,共18分) 1.B ;2.B ;3.C ;4.D ;5.A ;6.C.二、填空题(本大题共有10小题,每小题3分,共30分)7. 4; 8. 6; 9. 80; 10. 52; 11. 53; 12. 60; 13. 3π; 14. (0,-6); 15. -5; 16 . (1,4)、(6,5)、(7,4).三、解答题(共10题,102分.下列答案仅供参考........,有其它答案或解法.......,参.照标准给分......) 17.(本题满分12分)(1)(本小题6分)解:将(-1,5)和(2,8)分别代入c ax y +=2,得⎩⎨⎧=+=+845c a c a (3分) 解得41==c a (5分) ∴ y =x 2+4; (6分)(2)(本小题6分)解:04)(422=--=-m m ac b (2分) 得 042=-m m (4分) 解得 0=m 或4=m (6分) 18.(本题满分8分)解:(1)平均数:90台 中位数:80台 众数:80台. (6分) (2)不合理,因为若将每位营销员月销售量定为90台,则多数营销员可能完不成任务. (8分)19.(本题满分8分) 解:(4分)所有等可能的结果:(A ,A )、(A ,B )、(A ,C )、(B ,A )、(B ,B )、(B ,C )、(C ,A )、(C ,B )、(C ,C ). (6分)∴P(甲、乙抽中同一篇文章)3193==. (8分)20. (本题满分8分)解:(1)设该运动员共出手x个3分球,(1分)开始A B C乙 A B C A B C A B C甲根据题意,得4075.0x =6,(3分)解得x=320, 0.25x=0.25×320=80(个),(4分)答:运动员去年的比赛中共投中80个3分球; (5分)(2)小明的说法不正确;(6分)3分球的命中率为0.25,是相对于40场比赛来说的,而在其中的一场比赛中,虽然该运动员3分球共出手16次,但是该运动员这场比赛中不一定是投中了4个3分球. (8分) 21.(本题满分10分)解:连接BD . (1分) ∵四边形ABCD 是⊙O 的内接四边形, ∴∠BAD +∠C =180°.∴∠BAD =180°-∠C =180°-110°=70°. (在△ABD 中,∵AB =AD ,∠BAD =70°,∴∠ABD =∠ADB = 55°. (6分) ∵又四边形APBD 是⊙O 的内接四边形, ∴∠P +∠ADB =180°.∴∠P =180°-∠ADB =180°-55°=125°. (10分) 22.(本题满分10分)解:直线AD 与⊙O 相切. (2分)D A B∵AB 是⊙O 的直径,∴∠ACB = 90°. (4分) ∴∠ABC +∠BAC = 90°. (6分) 又∵∠CAD =∠ABC ,∴∠CAD +∠BAC = 90°. (8分) ∴直线AD 与⊙O 相切. (10分) 23.(本题满分10分)(1)证明:连接OD 交BE 于F ,∵CD 与⊙O 相切于点D ,∴OD ⊥DC∵BE ∥CD ,∴∠OFB =∠ODC =90∴OD ⊥BE ,∴⌒BD =⌒DE ,∴点D (2)解:连接OE .∵BE ∥CD ,∴∠C =∠ABE .∵∠C =∠BED ,∴∠ABE =∠BED ,∴DE ∥CB , ∴四边形BCDE 是平行四边形.∵∠ABE =∠BED ,∴∠AOE =∠BOD ,∴⌒AE =⌒BD . ∵⌒BD =⌒DE ,∴⌒BD =⌒DE =⌒AE ,∴∠BOD =∠DOE =∠AOE =60°.∴△DOE 为等边三角形. 又∵OD ⊥BE ,∴DF =OF =21OD =3,BF =EF . 在Rt △OEF 中,EF =22OF OE -=2236-=33,BE =36.∴四边形BCDE 的面积=DF BE ⋅=336⨯=318. (10分)24.(本题满分10分)解:(1))2043)(42(+--=x x y ; (4分) (2))2043)(42(+--=x x y (5分)856833032-+-=x x (7分)当x = 55时,y 有最大值,最大值是507. (9分)答:每件销售价是55元才能使每天的毛利润最大,最大毛利润是507元.(10分)25.(本题满分12分)解:(1)S △PBQ PB BQ ⋅=21()t t -⨯⨯=3221t t 32+-=; (4分)(2)232=+-=t t s 且0≤ t ≤2, 解得1=t 或1=t ,∴当1=t s 或2 s 时,△PBQ 的面积为2 cm 2 ; (8分)(3)∵49)23(322+--=+-=t t t S 且0≤ t ≤2 , ∴当23=t s 时,△PBQ 的面积最大,最大值是49cm 2. (12分) 26.(本题满分14分)解:(1)将(0,23)、(1,0)、(3,0)分别代入c bx ax y ++=2,得⎪⎪⎩⎪⎪⎨⎧=++=++=039023c b a c b a c 解得⎪⎪⎩⎪⎪⎨⎧=-==23221c b a ∴此时函数的表达式是:232212+-=x x y (5分)(2)① 填空:=b 12--a (用含a 的代数式表示); (9分)② 将12--=a b 代入232++=bx ax y ,得 23)12(2++-=x a ax y .设点C (1x ,0)、D (2x ,0).得a a x x 1221+=+,a x x 2321=. ∴ 2CD ()221x x -=4212+-=a a 3)11(2+-=a.∴当1=a 时,2CD 的值最小,最小值是3. ∴此时函数的表达式是:2332+-=x x y . (14分)。

2018年九年级(上)期中数学试题(含答案)- 精品

2018年九年级(上)期中数学试题(含答案)- 精品

2018—2018学年度第一学期期中考试九年级数学试题(三年制)题号一二三总分16 17 18 19 20 21 22 23 24 25得分选择题答题栏题号 1 2 3 4 5 6 7 8 9 10答案一、选择题(本大题满分30分,每小题3分.每小题只有一个符合题意的选项,请你将正确选项的代号填在答题栏内)1.8的立方根是A.2B. ±2C. 4D. ±42.下列图形中,是中心对称图形的是A.B.C.D.3.化简154122⨯+的结果是A.52B.63C.3D.534.估算171+的值在A.2和3之间B.3和4之间C.4和5之间D.5和6之间5.一元二次方程240x x c++=中,0c<,该方程的解的情况是A.没有实数根B.有两个相等的实数根C.有两个不相等的实数根D.不能确定6.已知:如图所示,正方形ABCD是⊙O的内接四边形,点P是劣弧上不同于点C的任意一点,则∠BPC的度数是A.45°B.60°C.75°D.90°九年级数学试题(三年制)第1页(共8页)(第6题图)POBCDACD7. 用配方法解方程x 2-2x -5=0时,原方程应变形为A .(x +1)2=6B .(x +2)2=9C . (x -1)2=6D .(x -2)2=98. 如果关于x 的一元二次方程x 2+px +q =0的两根分别为x 1=2,x 2=1,那么p ,q 的值分别是A .3,2B . -3,-2C . 3,-2D . -3,29. 若关于x 的一元二次方程 (k -1)x 2+x -k 2=0的一个根为1,则k 的值为 A .-1 B .0 C .1 D .0或1 10. 如图,将半径为2cm 的圆形纸片折叠后,圆弧恰好经过圆心O , 则折痕AB 的长为 A .2cmB .3cmC .23cmD .25cm二、填空题(本大题满分15分,每小题3分,请你将答案填写在题目中的横线上)11.函数y =11-+x x 的自变量x 的取值范围为 . 12.如图,已知平行四边形ABCD 的两条对角线交于平面直角坐标系的原点,点A 的坐标为(-2,3),则点C 的坐标为 .13.点A (-2,6)到原点的距离是 .14.如图所示,若⊙O 的半径为13cm ,点p 是弦AB 上一动点,且到圆心的最短距离为5 cm ,则弦AB 的长为________cm .15.已知:如图,点E 、F 是半径为5cm 的⊙O 上两定点,点P 是直径AB 上的一动点,AB ⊥OF ,∠AOE =30°,则点P 在AB 上移动的过程中,PE +PF 的最小值是 cm .九年级数学试题(三年制)第2页(共8页)(第15题图)(第10题图)OAB(第14题图)OABP(第15题图)OABEFP (第12题图)y xABCDO三、解答题 (本大题满分55分, 解答要写出必要的文字说明或推演步骤)16.(本题满分6分)计算:①3 (12+8)②(24-21) +(81+6)17.(本题满分4分)解方程:3x (x -1)=2(x -1)九年级数学试题(三年制)第3页(共8页)18.(本题满分4分)如图,已知点A B ,的坐标分别为(0,0)(4,0),将ABC △绕点A 按逆时针方向旋转90°得到AB C ''△. (1)画出AB C ''△; (2)写出点C '的坐标; (3)求BB '的长.19.(本题满分4分)若关于x 的一元二次方程x 2+2kx +(k 2+2k -5)=0有两个实数根,分别是x 1,x 2 , ①求k 的取值范围.②若有x 1+x 2 =x 1x 2,则k 的值是多少?九年级数学试题(三年制)第4页(共8页)yO x123451234-1-2-3-4-1-2-3A B C65(第18题图)20.(本题满分4分)阅读下列材料:211+=)12)(21(12-+-=2-1,321+=)23)(32(23-+-=3-2,231+=)32)(23(32-+-=2-3,521+=)25)(52(25-+-=5-2.读完以上材料,请你计算下列各题: (1)1031+= .(2)11++n n = .(3)211++321++231++…+201120101+= .21.(本题满分5分)如图,已知AB 是⊙O 的弦,OB =2,∠B =30°,C 是弦AB 上任意一点(不与点A 、B重合),连接CO 并延长CO 交⊙O 于点D ,连接AD . (1)弦AB =________(结果保留根号); (2)当∠D =20°时,求∠BOD 的度数.九年级数学试题(三年制)第5页(共8页)OBDAC(第21题图)22.(本题满分6分)如图,要设计一幅宽为12cm ,长为20cm 的图案,其中有一横一竖的彩条,横竖彩条的宽度相等,如果要使彩条所占面积是图案面积的四分之一,应如何设计彩条的宽度?23.(本题满分7分)阅读理解:我们把d c b a称作二阶行列式,规定它的运算法则为bc ad dc ba -=.。

甘肃省兰州市九年级上学期数学期中考试试卷

甘肃省兰州市九年级上学期数学期中考试试卷

甘肃省兰州市九年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共10分)1. (1分) (2018九上·福田月考) 下列方程中,关于x的一元二次方程是()A .B .C .D .2. (1分)若实数x满足方程(x2+2x)•(x2+2x﹣2)﹣8=0,那么x2+2x的值为()A . ﹣2或4B . 4C . ﹣2D . 2或﹣43. (1分)下列函数的图象,一定经过原点的是()A .B .C .D .4. (1分)(2016·鄂州) 如图,菱形ABCD的边AB=8,∠B=60°,P是AB上一点,BP=3,Q是CD边上一动点,将梯形APQD沿直线PQ折叠,A的对应点A′.当CA′的长度最小时,CQ的长为()A . 5B . 7C . 8D .5. (1分) (2017八上·仲恺期中) 下列图案中不属于轴对称图形的是()A .B .C .D .6. (1分)若将点A(﹣3,2)先向右平移1个单位,再向下平移4个单位,得到点B,则点B的坐标为()A . (﹣1,6)B . (﹣4,﹣2)C . (﹣2,6)D . (﹣2,﹣2)7. (1分)圆外一个点到圆周的最短距离为2,最长距离为8,那么此圆的直径为().A . 6B . 3C . 8D . 48. (1分)在平面直角坐标系xOy中,已知点A(2,3),若将OA绕原点O逆时针旋转90°得到OA′,则点A′的坐标为()A . (﹣2,3)B . (﹣3,2)C . (2,﹣3)D . (3,﹣2)9. (1分)如图,a是长方形纸带,纸带沿折叠成图b,再沿BF折叠成图c,则图c中的度数是()A .B .C .D .10. (1分) (2018八上·合浦期末) 8.已知抛物线y=k(x+1)(x- )与x轴交于点A,B,与y轴交于点C,则能使△ABC为等腰三角形的抛物线有()A . 5条B . 4条C . 3条D . 2条二、填空题 (共6题;共6分)11. (1分)(2017·泰安) 关于x的一元二次方程x2+(2k﹣1)x+(k2﹣1)=0无实数根,则k的取值范围为________.12. (1分)(2018·武进模拟) 已知关于的方程的一个根是1,则另一个根为________.13. (1分)如图,已知函数y= 与y=ax2+bx+c(a>0,b>0)的图象相交于点P,且点P的纵坐标为1,则关于x的方程ax2+bx+ =0的解是________.14. (1分) (2015九上·黄陂期中) 在△ABC中,AC=BC,∠ACB=90°,将△ABC绕点A旋转60°到△ADE的位置,点C的对应点为E,连接CD,若AC=BC=1,则CD的长为________.15. (1分) (2019九上·深圳期末) 如图,在⊙O中,弦CD垂直于直径AB于点E,若∠BAD=30°,且BE=2,则CD=________.16. (1分) (2019九上·盐城月考) 如图,以为圆心,半径为2的圆与轴交于、两点,与轴交于,两点,点为圆上一动点,于,当点在圆的运动过程中,线段的长度的最小值为________.三、解答题 (共9题;共19分)17. (1分)(2017·自贡) 先化简,再求值:(a+ )÷ ,其中a=2.18. (2分)如图所示,将△ABC绕其顶点A顺时针旋转30°后得△ADE.(1)问△ABC与△ADE的关系如何?(2)求∠BAD的度数.19. (2分) (2018七上·江海期末) 如图,已知线段a、b,请你用直尺和圆规画一条线段,使它等于2a﹣b.(保留作图痕迹,不写作法)20. (2分) (2018九上·大石桥期末) 现代互联网技术的广泛应用,催生了快递行业的高度发展,据调查,长沙市某家小型“大学生自主创业”的快递公司,今年三月份与五月份完成投递的快递总件数分别为10万件和12.1万件,现假定该公司每月投递的快递总件数的增长率相同.(1)求该快递公司投递总件数的月平均增长率;(2)如果平均每人每月最多可投递0.6万件,那么该公司现有的21名快递投递业务员能否完成今年6月份的快递投递任务?如果不能,请问至少需要增加几名业务员?21. (2分)(2018·徐州模拟) 在平面直角坐标系中,抛物线y=x2+(k﹣1)x﹣k与直线y=kx+1交于A、B 两点,点A在点B的左侧.(1)如图1,当k=1时,直接写出A,B两点的坐标;(2)在(1)的条件下,点P为抛物线上的一个动点,且在直线AB下方,试求出△ABP面积的最大值及此时点P的坐标;(3)如图2,抛物线y=x2+(k﹣1)x﹣k(k>0)与x轴交于点C、D两点(点C在点D的左侧),是否存在实数k使得直线y=kx+1与以O、C为直径的圆相切?若存在,请求出k的值;若不存在,请说明理由.22. (2分) (2017八上·安定期末) 如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E 在BC边上,且BE=BD,连接AE,DE,DC.(1)求证:△ABE≌△CBD;(2)若∠CAE=30°,求∠BDC的度数.23. (3分)(2017·荆州) 荆州市某水产养殖户进行小龙虾养殖.已知每千克小龙虾养殖成本为6元,在整个销售旺季的80天里,销售单价p(元/千克)与时间第t(天)之间的函数关系为:,日销售量y(千克)与时间第t(天)之间的函数关系如图所示:(1)求日销售量y与时间t的函数关系式?(2)哪一天的日销售利润最大?最大利润是多少?(3)该养殖户有多少天日销售利润不低于2400元?(4)在实际销售的前40天中,该养殖户决定每销售1千克小龙虾,就捐赠m(m<7)元给村里的特困户.在这前40天中,每天扣除捐赠后的日销售利润随时间t的增大而增大,求m的取值范围.24. (2分)(2020·西安模拟) 如图,四边形ABCD中,AD∥BC,DE=EC,连结AE并延长交BC的延长线于F,连结BE.(1)求证:AD=CF;(2)若AB=BC+AD,求证:BE⊥AF.25. (3分)(2019·许昌模拟) 如图,抛物线y=ax2+bx+3交y轴于点A,交x轴于点B(-3,0)和点C(1,0),顶点为点M.(1)求抛物线的解析式;(2)如图,点E为x轴上一动点,若△AME的周长最小,请求出点E的坐标;(3)点F为直线AB上一个动点,点P为抛物线上一个动点,若△BFP为等腰直角三角形,请直接写出点P 的坐标.参考答案一、单选题 (共10题;共10分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共9题;共19分)17-1、18-1、18-2、19-1、20-1、20-2、21-1、21-2、21-3、22-1、22-2、23-1、23-2、23-3、23-4、24-1、24-2、25-1、25-2、25-3、。

甘肃省兰州市九年级上学期数学期中测试卷

甘肃省兰州市九年级上学期数学期中测试卷

甘肃省兰州市九年级上学期数学期中测试卷姓名:________ 班级:________ 成绩:________一、单选题 (共15题;共45分)1. (3分) (2018九上·东湖期中) 方程x(x+5)=0化成一般形式后,它的常数项是()A . ﹣5B . 5C . 0D . 12. (3分)(a-1)x2+2x-3=0是一元二次方程,则字母a应满足()A . a>1B . a≠1C . a≠0D . a<-13. (3分)已知二次函数y=a(x﹣1)2+c的图象如图,则一次函数y=ax+c的大致图象可能是()A .B .C .D .4. (3分) (2017八下·宜兴期中) 如图,在方格纸上建立的平面直角坐标系中,将OA绕原点O按顺时针方向旋转180°得到OA′,则点A′的坐标为()A . ( -3, 1)B . (1, -3)C . (1, 3)D . (3, -1)5. (3分)下列图形中,既是轴对称图形,又是中心对称图形的是()A . 等腰梯形B . 平行四边形C . 等边三角形D . 矩形6. (3分)抛物线与y轴的交点坐标是()A . (4,0)B . (-4,0)C . (0,-4)D . (0,4)7. (3分)一元二次方程x2﹣2x=0的两根分别为x1和x2 ,则x1x2为()A . ﹣2B . 1C . 2D . 08. (3分)(2018·绥化) 抛物线的部分图象如图所示,与x轴的一个交点坐标为,抛物线的对称轴是下列结论中:;;方程有两个不相等的实数根;抛物线与x轴的另一个交点坐标为;若点在该抛物线上,则.其中正确的有A . 5个B . 4个C . 3个D . 2个9. (3分)(2017·青山模拟) 如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(﹣1,0),与y轴的交点B在(0,﹣2)和(0,﹣1)之间(不包括这两点),对称轴为直线x=1.下列结论:①abc>0②4a+2b+c>0③4ac﹣b2<8a④ <a<⑤b>c.其中含所有正确结论的选项是()A . ①③B . ①③④C . ②④⑤D . ①③④⑤10. (3分) (2018九上·娄星期末) 对于函数的图象,下列说法不正确的是()A . 开口向下B . 对称轴是C . 最大值为0D . 与轴不相交11. (3分) (2017九上·孝义期末) 将抛物线y= x2+1向左平移2个单位,再向下平移3个单位,得到的抛物线的函数表达式为()A . y= (x-2)2+4B . y= (x-2)2-2C . y= (x+2)2+4D . y= (x+2)2-212. (3分) (2018九上·点军期中) 点M(1,﹣2)关于原点对称的点的坐标是()A . (﹣1,2)B . (1,2)C . (﹣1,﹣2)D . (﹣2,1)13. (3分)在平面直角坐标系中,将抛物线y=x2-4先向右平移2个单位,再向上平移2个单位,得到的抛物线解析式为()A . y=(x+2)2+2B . y=(x-2)2-2C . y=(x-2)2+2D . y=(x+2)2-214. (3分) (2017九上·双城开学考) 二次函数y=ax2+bx+c的图象如图所示,下列结论错误的是()A . a>0B . b>0C . c<0D . abc>015. (3分)(2017·瑞安模拟) 已知抛物线的开口向下,顶点坐标为(2,-3),那么该二次函数有()A . 最小值-3B . 最大值-3C . 最小值2D . 最大值2二、解答题 (共9题;共75分)16. (6分)解方程:﹣x2﹣2x=2x+117. (6分) (2018九上·东莞期中) 已知关于的方程 .(1)求证:方程有两个不相等的实数根.(2)当为何值时,方程的两根互为相反数?并求出此时方程的解.18. (7分)如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(3,2)、B(3,5)、C(1,2).(1)在平面直角坐标系中画出△ABC关于x轴对称的△A1B1C1;(2)把△ABC绕点A顺时针旋转一定的角度,得图中的△AB2C2 ,点C2在AB上.①旋转角为多少度?②写出点B2的坐标.19. (7分)如图,点E为△ABC边AB上一点,AC=BC=BE,AE=EC,BD⊥AC于D,求∠CBD的度数.20. (8分)如图,已知抛物线y=x2上有一点A , A点的横坐标是-1,过点A作AB∥x轴,交抛物线于另一点B ,求△AOB的面积.21. (8分)宁波元康水果市场某批发商经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价一元,日销售量将减少20千克.(1)现要保证每天盈利6000元,同时又要让顾客得到实惠,那么每千克应涨价多少元?(2)若该批发商单纯从经济角度看,那么每千克应涨价多少元,能使商场获利最多.22. (10分) (2017八下·房山期末) 某小区有一块长21米,宽8米的矩形空地,如图所示.社区计划在其中修建两块完全相同的矩形绿地,并且两块绿地之间及四周都留有宽度为x米的人行通道.如果这两块绿地的面积之和为60平方米,人行通道的宽度应是多少米?23. (11分) (2017九上·江津期末) 如图,在平面直角坐标系中,抛物线经过点A(﹣3,0)和点B(2,0).直线(为常数,且)与BC交于点D,与轴交于点E,与AC交于点F.(1)求抛物线的解析式;(2)连接AE,求为何值时,△AEF的面积最大;(3)已知一定点M(﹣2,0).问:是否存在这样的直线,使△BDM是等腰三角形?若存在,请求出的值和点D的坐标;若不存在,请说明理由.24. (12分)(2017·滨州) 如图,直线y=kx+b(k、b为常数)分别与x轴、y轴交于点A(﹣4,0)、B(0,3),抛物线y=﹣x2+2x+1与y轴交于点C.(Ⅰ)求直线y=kx+b的函数解析式;(Ⅱ)若点P(x,y)是抛物线y=﹣x2+2x+1上的任意一点,设点P到直线AB的距离为d,求d关于x的函数解析式,并求d取最小值时点P的坐标;(Ⅲ)若点E在抛物线y=﹣x2+2x+1的对称轴上移动,点F在直线AB上移动,求CE+EF的最小值.参考答案一、单选题 (共15题;共45分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、二、解答题 (共9题;共75分)16-1、17-1、17-2、18-1、19-1、20-1、21-1、22-1、23-1、23-2、23-3、。

兰州市永登县届九级上期中数学试卷含答案解析

兰州市永登县届九级上期中数学试卷含答案解析

2015-2016学年甘肃省兰州市永登县九年级(上)期中数学试卷一、选择题(每小题4分,共40分)1.下列说法中,正确的是( )A.希望小学初一年级的367名同学中,至少有两个生日相同的概率是1B.在投掷骰子时,连投两次点数相同的概率与连投两次点数都为1的概率相等C.我们小组共8名同学,他们中肯定有两人在同一月过生日D.一个游戏的中奖率是1%,买100张奖券,一定会中奖2.用配方法解一元二次方程x2﹣2x﹣3=0时,方程变形正确的是( )A.(x﹣1)2=2 B.(x﹣1)2=4 C.(x﹣1)2=1 D.(x﹣1)2=73.已知x1,x2是一元二次方程x2﹣2x=0的两根,则x1+x2的值是( )A.0 B.2 C.﹣2 D.44.若顺次连接四边形ABCD各边的中点所得四边形是菱形,则四边形ABCD一定是( ) A.菱形 B.对角线互相垂直的四边形C.矩形 D.对角线相等的四边形5.若(x+y)(1﹣x﹣y)+6=0,则x+y的值是( )A.2 B.3 C.﹣2或3 D.2或﹣36.如图,正方形OABC的边长为6,点A、C分别在x轴、y轴的正半轴上,点D(2,0)在OA上,P是OB上一动点,则PA+PD的最小值为( )A.2B. C.4 D.67.如图A所示,将长为20cm,宽为2cm的长方形白纸条,折成图B所示的图形并在其一面着色,则着色部分的面积为( )A.34cm2B.36cm2C.38cm2D.40cm28.菱形的面积为24,其中的一条较短的对角线长为6,则此菱形的周长为( )A.24 B.20 C.12 D.289.小明从家里出发到学校共经过3个路口,每个路口都有红绿灯,如果红绿灯亮的时间为20秒,绿灯亮的时间为40秒,那么小明从家里出发到学校一路通行无阻的概率是( )A.B.C.D.10.关于x的方程ax2﹣(3a+1)x+2(a+1)=0有两个不相等的实根x1、x2,且有x1﹣x1x2+x2=1﹣a,则a的值是( )A.1 B.﹣1 C.1或﹣1 D.2二、填空题(每小题4分,共40分)11.如图,O是矩形ABCD的对角线AC的中点,M是AD的中点.若AB=5,AD=12,则四边形ABOM的周长为__________.12.设a,b是一个直角三角形两条直角边的长,且(a2+b2)(a2+b2+1)=12,则这个直角三角形的斜边长为__________.13.某校决定从三名男生和两名女生中选出两名同学担任校艺术节文艺演出专场的主持人,则选出的恰为一男一女的概率是__________.14.关于x的方程x2﹣3x﹣k=0有两个不相等的实数根,则k的取值范围是__________.15.有一人患了流感,经过两轮传染后共有64人患了流感,则每轮传染中平均一个人传染了__________个人.如果不及时控制,第三轮将又有__________人被传染.16.有四张不透明的卡片,证明分别标有22,,0.1010010001…,4.4545除正面的数不同外,其余都相同,将它们背面朝上洗匀后,从中随机抽取一张卡片,抽到写有无理数卡片的概率为__________.17.如图,梯形ABCD中,AB∥CD,AD=CD,E、F分别是AB、BC的中点,若∠1=35°,则∠D=__________度.18.从1,2,﹣3三个数中,随机抽取两个数相乘,积是正数的概率是__________.19.如果一元二次方程x2+8x+7=0的两根分别为x1、x2,则x1+x2=__________,x1x2=__________.20.某校办工厂生产的某种产品,今年产量为200件,计划通过改进技术,使今后两年的产量都比前一年增长一个相同的百分数,使得三年的总产量达到1400件.若设这个百分数为x,则可列方程__________.三、解答题(共70分)21.用适当的方法解下列方程(1)x2﹣4x+4=7(2)(x+1)(x﹣1)+2(x+3)=8(3)2x2﹣10=6(4)x2﹣6x﹣16=0.22.已知m是方程x2﹣x﹣2=0的一个实数根,求代数式(m2﹣m)(m﹣+1)的值.23.如图,在△ABC中,D、E分别是AB、AC的中点,过点E作EF∥AB,交BC于点F.(1)求证:四边形DBFE是平行四边形;(2)当△ABC满足什么条件时,四边形DBFE是菱形?为什么?24.已知关于x的方程mx2﹣(m+2)x+2=0(m≠0).(1)求证:方程总有两个实数根;(2)若这个方程的两个实数根都是整数,求正整数m的值.25.如图,在直角梯形ABCD中,AB∥CD,AD⊥DC,AB=BC,且AE⊥BC.(1)求证:AD=AE;(2)若AD=8,DC=4,求AB的长.26.阅读下面的材料,回答问题:解方程x4﹣5x2+4=0,这是一个一元四次方程,根据该方程的特点,它的解法通常是:设x2=y,那么x4=y2,于是原方程可变为y2﹣5y+4=0 ①,解得y1=1,y2=4.当y=1时,x2=1,∴x=±1;当y=4时,x2=4,∴x=±2;∴原方程有四个根:x1=1,x2=﹣1,x3=2,x4=﹣2.(1)在由原方程得到方程①的过程中,利用__________法达到__________的目的,体现了数学的转化思想.(2)解方程(x2+x)2﹣4(x2+x)﹣12=0.27.一学校为了绿化校园环境,向某园林公司购买了一批树苗,园林公司规定:如果购买树苗不超过60棵,每棵售价120元;如果购买树苗超过60棵,每增加1棵,所出售的这批树苗每棵售价均降低0.5元,但每棵树苗最低售价不得少于100元,该校最终向园林公司支付树苗款8800元,请问该校共购买了多少棵树苗?28.在街头巷尾会遇到一类“摸球游戏”,摊主的游戏道具是把分别标有数字1,2,3的3个白球和标有数字4,5,6的3个黑球(球除颜色外,其他均相同)放在口袋里,让你摸球.规定:每付3元钱就玩一局,每局连续摸两次,每次只能摸一个,第一次摸完后把球放回口袋里搅匀后再摸一次,若前后两次摸得的都是白球,摊主就送你10元钱的奖品.(1)用列表法列举出摸出的两球可能出现的结果;(2)求出获奖的概率;(3)如果有500个人每人各玩一局,摊主可能会从这些人身上骗走多少钱?2015-2016学年甘肃省兰州市永登县九年级(上)期中数学试卷一、选择题(每小题4分,共40分)1.下列说法中,正确的是( )A.希望小学初一年级的367名同学中,至少有两个生日相同的概率是1B.在投掷骰子时,连投两次点数相同的概率与连投两次点数都为1的概率相等C.我们小组共8名同学,他们中肯定有两人在同一月过生日D.一个游戏的中奖率是1%,买100张奖券,一定会中奖【考点】概率的意义;随机事件.【分析】概率值只是反映了事件发生的机会的大小,不是会一定发生.不确定事件就是随机事件,即可能发生也可能不发生的事件,发生的概率大于0并且小于1.【解答】解:A、希望小学初一年级的367名同学中,至少有两个生日相同,故A正确;B、在投掷骰子时,连投两次点数相同的概率是,连投两次点数都为1的概率是,故B 错误;C、8÷12=<1,故C错误;D、一个游戏的中奖率是1%,只能说买100张奖券,有1%的中奖机会,故D错误.故选A.【点评】本题考查了概率的意义,理解概率的意义反映的只是这一事件发生的可能性的大小.2.用配方法解一元二次方程x2﹣2x﹣3=0时,方程变形正确的是( )A.(x﹣1)2=2 B.(x﹣1)2=4 C.(x﹣1)2=1 D.(x﹣1)2=7【考点】解一元二次方程-配方法.【专题】计算题.【分析】利用配方法解已知方程时,首先将﹣3变号后移项到方程右边,然后方程左右两边都加上一次项系数一半的平方1,左边化为完全平方式,右边合并为一个非负常数,即可得到所求的式子.【解答】解:x2﹣2x﹣3=0,移项得:x2﹣2x=3,两边都加上1得:x2﹣2x+1=3+1,即(x﹣1)2=4,则用配方法解一元二次方程x2﹣2x﹣3=0时,方程变形正确的是(x﹣1)2=4.故选:B【点评】此题考查了解一元二次方程﹣配方法,利用此方法解方程时,首先将方程常数项移动方程右边,二次项系数化为1,然后方程左右两边都加上一次项系数一半的平方,方程左边化为完全平方式,右边合并为一个非负常数,开方转化为两个一元一次方程来求解.3.已知x1,x2是一元二次方程x2﹣2x=0的两根,则x1+x2的值是( )A.0 B.2 C.﹣2 D.4【考点】根与系数的关系.【专题】计算题.【分析】利用根与系数的关系即可求出两根之和.【解答】解:∵x1,x2是一元二次方程x2﹣2x=0的两根,∴x1+x2=2.故选B【点评】此题考查了根与系数的关系,熟练掌握根与系数的关系是解本题的关键.4.若顺次连接四边形ABCD各边的中点所得四边形是菱形,则四边形ABCD一定是( ) A.菱形 B.对角线互相垂直的四边形C.矩形 D.对角线相等的四边形【考点】三角形中位线定理;菱形的判定.【分析】根据三角形的中位线定理得到EH∥FG,EF=FG,EF=BD,要是四边形为菱形,得出EF=EH,即可得到答案.【解答】解:∵E,F,G,H分别是边AD,DC,CB,AB的中点,∴EH=AC,EH∥AC,FG=AC,FG∥AC,EF=BD,∴EH∥FG,EF=FG,∴四边形EFGH是平行四边形,假设AC=BD,∵EH=AC,EF=BD,则EF=EH,∴平行四边形EFGH是菱形,即只有具备AC=BD即可推出四边形是菱形,故选:D.【点评】本题主要考查对菱形的判定,三角形的中位线定理,平行四边形的判定等知识点的理解和掌握,灵活运用性质进行推理是解此题的关键.5.若(x+y)(1﹣x﹣y)+6=0,则x+y的值是( )A.2 B.3 C.﹣2或3 D.2或﹣3【考点】换元法解一元二次方程;解一元二次方程-因式分解法.【专题】换元法.【分析】先设x+y=t,则方程即可变形为t2﹣t﹣6=0,解方程即可求得t即x+y的值.【解答】解:设t=x+y,则原方程可化为:t(1﹣t)+6=0即﹣t2+t+6=0t2﹣t﹣6=0∴t=﹣2或3,即x+y=﹣2或3故选C【点评】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.6.如图,正方形OABC的边长为6,点A、C分别在x轴、y轴的正半轴上,点D(2,0)在OA上,P是OB上一动点,则PA+PD的最小值为( )A.2B. C.4 D.6【考点】轴对称-最短路线问题;坐标与图形性质;正方形的性质.【专题】压轴题;探究型.【分析】过D点作关于OB的对称点D′,连接D′A交OB于点P,由两点之间线段最短可知D′A即为PA+PD的最小值,由正方形的性质可求出D′点的坐标,再根据OA=6可求出A点的坐标,利用两点间的距离公式即可求出D′A的值.【解答】解:过D点作关于OB的对称点D′,连接D′A交OB于点P,由两点之间线段最短可知D′A即为PA+PD的最小值,∵D(2,0),四边形OABC是正方形,∴D′点的坐标为(0,2),A点坐标为(6,0),∴D′A==2,即PA+PD的最小值为2.故选A.【点评】本题考查的是最短线路问题、正方形的性质及两点间的距离公式,具有一定的综合性,但难度适中.7.如图A所示,将长为20cm,宽为2cm的长方形白纸条,折成图B所示的图形并在其一面着色,则着色部分的面积为( )A.34cm2B.36cm2C.38cm2D.40cm2【考点】翻折变换(折叠问题).【专题】压轴题.【分析】根据折叠的性质,已知图形的折叠就是已知两个图形全等.由图知,着色部分的面积是原来的纸条面积减去两个等腰直角三角形的面积.【解答】解:着色部分的面积=原来的纸条面积﹣两个等腰直角三角形的面积=20×2﹣2××2×2=36cm2.故选B.【点评】本题考查图形的折叠变化及等腰直角三角形的面积公式.关键是要理解折叠是一种对称变换.8.菱形的面积为24,其中的一条较短的对角线长为6,则此菱形的周长为( )A.24 B.20 C.12 D.28【考点】菱形的性质.【分析】首先已知菱形的面积为24,列出等式可求出另一条对角线的长.又因为菱形的对角线互相垂直平分,故可求出OB,OA的长,利用勾股定理求出菱形的边长继而求出菱形的周长.【解答】解:如图,BD=6.∵菱形的面积=×BD×AC=×6×AC=24,∴AC=8.∵菱形的对角线互相垂直平分,∴OB=3,OA=4,∠AOB=90°.∴AB=5.∴菱形的周长为4×5=20.故选B.【点评】此题主要考查学生对菱形的性质及勾股定理的运用,正确理解菱形的对角线的对角线互相平分且互相垂直是关键.9.小明从家里出发到学校共经过3个路口,每个路口都有红绿灯,如果红绿灯亮的时间为20秒,绿灯亮的时间为40秒,那么小明从家里出发到学校一路通行无阻的概率是( )A.B.C.D.【考点】列表法与树状图法.【专题】计算题.【分析】由于绿灯亮的时间为红灯的两倍,则假设每个路口有两次量绿灯,一次亮红灯,则可画树状图展示所有27种等可能的结果数,再找出三次都是绿灯的结果数,然后根据概率公式求解.【解答】解:因为红绿灯亮的时间为20秒,绿灯亮的时间为40秒,所以假设每个路口有两次量绿灯,一次亮红灯,画树状图为:共有27种等可能的结果数,其中三次都是绿灯的结果数为8,所以小明从家里出发到学校一路通行无阻的概率=.故选C.【点评】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.10.关于x的方程ax2﹣(3a+1)x+2(a+1)=0有两个不相等的实根x1、x2,且有x1﹣x1x2+x2=1﹣a,则a的值是( )A.1 B.﹣1 C.1或﹣1 D.2【考点】根与系数的关系;根的判别式.【专题】计算题;压轴题.【分析】根据根与系数的关系得出x1+x2=﹣,x1x2=,整理原式即可得出关于a的方程求出即可.【解答】解:依题意△>0,即(3a+1)2﹣8a(a+1)>0,即a2﹣2a+1>0,(a﹣1)2>0,a≠1,∵关于x的方程ax2﹣(3a+1)x+2(a+1)=0有两个不相等的实根x1、x2,且有x1﹣x1x2+x2=1﹣a,∴x1﹣x1x2+x2=1﹣a,∴x1+x2﹣x1x2=1﹣a,∴﹣=1﹣a,解得:a=±1,又a≠1,∴a=﹣1.故选:B.【点评】此题主要考查了根与系数的关系,由x1﹣x1x2+x2=1﹣a,得出x1+x2﹣x1x2=1﹣a是解决问题的关键.二、填空题(每小题4分,共40分)11.如图,O是矩形ABCD的对角线AC的中点,M是AD的中点.若AB=5,AD=12,则四边形ABOM的周长为20.【考点】矩形的性质;三角形中位线定理.【专题】几何图形问题.【分析】根据题意可知OM是△ADC的中位线,所以OM的长可求;根据勾股定理可求出AC的长,利用直角三角形斜边上的中线等于斜边的一半可求出BO的长,进而求出四边形ABOM的周长.【解答】解:∵O是矩形ABCD的对角线AC的中点,M是AD的中点,∴OM=CD=AB=2.5,∵AB=5,AD=12,∴AC==13,∵O是矩形ABCD的对角线AC的中点,∴BO=AC=6.5,∴四边形ABOM的周长为AB+AM+BO+OM=5+6+6.5+2.5=20,故答案为:20.【点评】本题考查了矩形的性质、三角形的中位线的性质以及直角三角形斜边上的中线等于斜边的一半这一性质,题目的综合性很好,难度不大.12.设a,b是一个直角三角形两条直角边的长,且(a2+b2)(a2+b2+1)=12,则这个直角三角形的斜边长为.【考点】勾股定理;解一元二次方程-因式分解法.【专题】换元法.【分析】根据勾股定理c2=a2+b2代入方程求解即可.【解答】解:∵a,b是一个直角三角形两条直角边的长设斜边为c,∴(a2+b2)(a2+b2+1)=12,根据勾股定理得:c2(c2+1)﹣12=0即(c2﹣3)(c2+4)=0,∵c2+4≠0,∴c2﹣3=0,解得c=或c=﹣(舍去).则直角三角形的斜边长为.故答案为:【点评】本题考查的是利用勾股定理求直角三角形的斜边,需同学们灵活掌握.13.某校决定从三名男生和两名女生中选出两名同学担任校艺术节文艺演出专场的主持人,则选出的恰为一男一女的概率是.【考点】列表法与树状图法.【分析】此题可以借助于列表法求解,一共有20种情况记为m,其中选出的恰为一男一女的有12种情况记为n,根据概率公式可知选出的恰为一男一女的概率是=.【解答】解:列表得:男1,女2 男2,女2 男3,女2 女1,女2男1,女1 男2,女1 男3,女1 女2,女1男1,男3 男2,男3 女1,男3 女2,男3男1,男2 男3,男2 女1,男2 女2,男2男2,男3 男3,男1 女1,男1 女2,男1∴一共有20种情况,选出的恰为一男一女的有12种情况;∴选出的恰为一男一女的概率是=.【点评】列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.14.关于x的方程x2﹣3x﹣k=0有两个不相等的实数根,则k的取值范围是﹣.【考点】根的判别式.【分析】由方程根的情况可得方程根的判别式△>0,得到关于k的不等式,解不等式即可求得k的范围.【解答】解:∵关于x的方程x2﹣3x﹣k=0有两个不相等的实数根,∴△>0,即(﹣3)2+4k>0,解得k>﹣,故答案为:﹣.【点评】本题主要考查一元二次方程判别式与根的情况的应用,由方程根的情况得到关于k 的不等式是解题的关键.15.有一人患了流感,经过两轮传染后共有64人患了流感,则每轮传染中平均一个人传染了7个人.如果不及时控制,第三轮将又有448人被传染.【考点】一元二次方程的应用.【分析】设每轮传染中平均一个人传染了x人,根据经过两轮传染后共有64人患了流感,可求出x,从而求解.【解答】解:设一个患者一次传染给x人,由题意,得x(x+1)+x+1=64,解得:x1=7,x2=﹣9(舍去),第三轮被传染的人数是:64×7=448人.故答案为:7,448.【点评】本题考查了列一元二次方程解实际问题的运用,一元二次方程的解法的运用,解答时根据两轮共传染了64人建立方程是关键.16.有四张不透明的卡片,证明分别标有22,,0.1010010001…,4.4545除正面的数不同外,其余都相同,将它们背面朝上洗匀后,从中随机抽取一张卡片,抽到写有无理数卡片的概率为.【考点】概率公式;无理数.【分析】先求出无理数的个数,再根据概率公式求解即可.【解答】解:∵22,,0.1010010001…,4.4545中无理数有:,0.1010010001…共2个,∴抽到写有无理数卡片的概率==.故答案为:.【点评】本题考查的是概率公式,熟记概率公式是解答此题的关键.17.如图,梯形ABCD中,AB∥CD,AD=CD,E、F分别是AB、BC的中点,若∠1=35°,则∠D=110度.【考点】梯形.【分析】先根据平行线的性质和AD=CD求出∠DAC与∠DCA都等于∠1的度数,再根据三角形内角和定理即可求出.【解答】解:∵梯形ABCD中,AB∥CD∴∠DCA=∠CAB∵AD=CD∴∠DCA=∠DAC又∵E、F分别是AB、BC的中点∴EF∥AC,∠1=∠CAB=∠DCA=∠DAC=35°在△ADC中,∠DCA=∠DAC=35°∴∠D=180°﹣∠DCA﹣∠DAC=180°﹣35°﹣35°=110°故应填110.【点评】解答此题要用到以下概念:(1)三角形的内角和等于180°,(2)两直线平行,同位角相等.平行线的性质和三角形内角和定理是主要考查点.18.从1,2,﹣3三个数中,随机抽取两个数相乘,积是正数的概率是.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与随机抽取两个数相乘,积是正数的情况,再利用概率公式求解即可求得答案.【解答】解:画树状图得:∵共有6种等可能的结果,随机抽取两个数相乘,积是正数的有2种情况,∴随机抽取两个数相乘,积是正数的概率是:=.故答案为:.【点评】此题考查的是用列表法或树状图法求概率.注意画树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.19.如果一元二次方程x2+8x+7=0的两根分别为x1、x2,则x1+x2=﹣8,x1x2=7.【考点】根与系数的关系.【分析】直接利用根与系数的关系得出答案即可.【解答】解:∵一元二次方程x2+8x+7=0的两根分别为x1、x2,∴x1+x2=﹣8,x1x2=7.故答案为:﹣8,7.【点评】本题考查了一元二次方程根与系数的关系.解题关键是会利用根与系数的关系来求方程中的字母系数.一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系为:x1+x2=﹣,x1•x2=.20.某校办工厂生产的某种产品,今年产量为200件,计划通过改进技术,使今后两年的产量都比前一年增长一个相同的百分数,使得三年的总产量达到1400件.若设这个百分数为x,则可列方程200+200(1+x)+200(1+x)2=1400.【考点】由实际问题抽象出一元二次方程.【专题】增长率问题.【分析】根据题意:设这个百分数为x,根据第一年的产量+第二年的产量+第三年的产量=1400,由此列出方程解答即可.【解答】解:设这个百分数为x,由题意得200+200(1+x)+200(1+x)2=1400.故答案为:200+200(1+x)+200(1+x)2=1400.【点评】本题考查由实际问题抽象出实际问题,对增长率问题的掌握情况,理解题意后以三年的总产量做等量关系可列出方程.三、解答题(共70分)21.用适当的方法解下列方程(1)x2﹣4x+4=7(2)(x+1)(x﹣1)+2(x+3)=8(3)2x2﹣10=6(4)x2﹣6x﹣16=0.【考点】解一元二次方程-因式分解法;解一元二次方程-配方法.【分析】(1)利用直接开平方法求出方程的解;(2)首先去括号,然后利用因式分解法求出方程的解;(3)首先常数项进行合并,然后把二次项系数化为1,最后利用直接开平方法求解;(4)利用因式分解法求方程的解即可.【解答】解:(1)∵x2﹣4x+4=7,∴(x﹣2)2=7,∴x﹣2=±,∴x1=2,x2=2﹣;(2)∵(x+1)(x﹣1)+2(x+3)=8,∴x2﹣1+2x+6=8,∴x2+2x﹣3=0,∴(x+3)(x﹣1)=0,∴x+3=0或x﹣1=0,∴x1=﹣3,x2=1;(3)∵2x2﹣10=6,∴x2=8,∴x1=2,x2=﹣2;(4)∵x2﹣6x﹣16=0,∴(x﹣8)(x+2)=0,∴x﹣8=0或x+2=0,∴x1=8,x2=﹣2.【点评】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.22.已知m是方程x2﹣x﹣2=0的一个实数根,求代数式(m2﹣m)(m﹣+1)的值.【考点】一元二次方程的解.【专题】整体思想.【分析】把x=m代入方程中得到关于m的一元二次方程,由方程分别表示出m2﹣m和m2﹣2,分别代入所求的式子中即可求出值.【解答】解:∵m是方程x2﹣x﹣2=0的一个根,∴m2﹣m﹣2=0,∴m2﹣m=2,m2﹣2=m,∴原式===2×2=4.【点评】此题考查学生理解一元二次方程解的意义,掌握整体代入的数学思想,是一道综合题.23.如图,在△ABC中,D、E分别是AB、AC的中点,过点E作EF∥AB,交BC于点F.(1)求证:四边形DBFE是平行四边形;(2)当△ABC满足什么条件时,四边形DBFE是菱形?为什么?【考点】三角形中位线定理;平行四边形的判定;菱形的判定.【专题】几何图形问题.【分析】(1)根据三角形的中位线平行于第三边并且等于第三边的一半可得DE∥BC,然后根据两组对边分别平行的四边形是平行四边形证明;(2)根据邻边相等的平行四边形是菱形证明.【解答】(1)证明:∵D、E分别是AB、AC的中点,∴DE是△ABC的中位线,∴DE∥BC,又∵EF∥AB,∴四边形DBFE是平行四边形;(2)解:当AB=BC时,四边形DBFE是菱形.理由如下:∵D是AB的中点,∴BD=AB,∵DE是△ABC的中位线,∴DE=BC,∵AB=BC,∴BD=DE,又∵四边形DBFE是平行四边形,∴四边形DBFE是菱形.【点评】本题考查了三角形的中位线平行于第三边并且等于第三边的一半,平行四边形的判定,菱形的判定以及菱形与平行四边形的关系,熟记性质与判定方法是解题的关键.24.已知关于x的方程mx2﹣(m+2)x+2=0(m≠0).(1)求证:方程总有两个实数根;(2)若这个方程的两个实数根都是整数,求正整数m的值.【考点】根的判别式.【分析】(1)先计算判别式的值得到△=[﹣(m+2)]2﹣4m×2=(m﹣2)2,再根据非负数的值得到△≥0,然后根据判别式的意义得到方程总有两个实数根;(2)利用因式分解法解方程得到(x﹣1)(mx﹣2)=0,解得x1=1,x2=,这个方程的两个实数根都是整数,分析为整数确定正整数m的值.【解答】(1)证明:∵m≠0,△=[﹣(m+2)]2﹣4m×2=m2﹣4m+4=(m﹣2)2,而(m﹣2)2≥0,即△≥0,∴方程总有两个实数根;(2)解:mx2﹣(m+2)x+2=0,(x﹣1)(mx﹣2)=0,x﹣1=0或mx﹣2=0,∴x1=1,x2=,当m为正整数1或2时,x2为整数,即方程的两个实数根都是整数,正整数m的值为1或2.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.25.如图,在直角梯形ABCD中,AB∥CD,AD⊥DC,AB=BC,且AE⊥BC.(1)求证:AD=AE;(2)若AD=8,DC=4,求AB的长.【考点】直角梯形;全等三角形的判定与性质;勾股定理.【专题】综合题;压轴题.【分析】(1)连接AC,证明△ADC与△AEC全等即可;(2)设AB=x,然后用x表示出BE,利用勾股定理得到有关x的方程,解得即可.【解答】(1)证明:连接AC,∵AB∥CD,∴∠ACD=∠BAC,∵AB=BC,∴∠ACB=∠BAC,∴∠ACD=∠ACB,∵AD⊥DC,AE⊥BC,∴∠D=∠AEC=90°,∵AC=AC,∴,∴△ADC≌△AEC,(AAS)∴AD=AE;(2)解:由(1)知:AD=AE,DC=EC,设AB=x,则BE=x﹣4,AE=8,在Rt△ABE中∠AEB=90°,由勾股定理得:82+(x﹣4)2=x2,解得:x=10,∴AB=10.说明:依据此评分标准,其它方法如:过点C作CF⊥AB用来证明和计算均可得分.【点评】本题考查梯形,矩形、直角三角形的相关知识.解决此类题要懂得用梯形的常用辅助线,把梯形分割为矩形和直角三角形,从而由矩形和直角三角形的性质来求解.26.阅读下面的材料,回答问题:解方程x4﹣5x2+4=0,这是一个一元四次方程,根据该方程的特点,它的解法通常是:设x2=y,那么x4=y2,于是原方程可变为y2﹣5y+4=0 ①,解得y1=1,y2=4.当y=1时,x2=1,∴x=±1;当y=4时,x2=4,∴x=±2;∴原方程有四个根:x1=1,x2=﹣1,x3=2,x4=﹣2.(1)在由原方程得到方程①的过程中,利用换元法达到降次的目的,体现了数学的转化思想.(2)解方程(x2+x)2﹣4(x2+x)﹣12=0.【考点】换元法解一元二次方程.【专题】阅读型.【分析】(1)本题主要是利用换元法降次来达到把一元四次方程转化为一元二次方程,来求解,然后再解这个一元二次方程.(2)利用题中给出的方法先把x2+x当成一个整体y来计算,求出y的值,再解一元二次方程.【解答】解:(1)换元,降次(2)设x2+x=y,原方程可化为y2﹣4y﹣12=0,解得y1=6,y2=﹣2.由x2+x=6,得x1=﹣3,x2=2.由x2+x=﹣2,得方程x2+x+2=0,b2﹣4ac=1﹣4×2=﹣7<0,此时方程无实根.所以原方程的解为x1=﹣3,x2=2.【点评】本题应用了换元法,把关于x的方程转化为关于y的方程,这样书写简便且形象直观,并且把方程化繁为简化难为易,解起来更方便.27.一学校为了绿化校园环境,向某园林公司购买了一批树苗,园林公司规定:如果购买树苗不超过60棵,每棵售价120元;如果购买树苗超过60棵,每增加1棵,所出售的这批树苗每棵售价均降低0.5元,但每棵树苗最低售价不得少于100元,该校最终向园林公司支付树苗款8800元,请问该校共购买了多少棵树苗?【考点】一元二次方程的应用.【分析】根据设该校共购买了x棵树苗,由题意得:x[120﹣0.5(x﹣60)]=8800,进而得出即可.【解答】解:因为60棵树苗售价为120元×60=7200元<8800元,所以该校购买树苗超过60棵,设该校共购买了x棵树苗,由题意得:x[120﹣0.5(x﹣60)]=8800,解得:x1=220,x2=80.当x=220时,120﹣0.5×(220﹣60)=40<100,∴x=220(不合题意,舍去);当x=80时,120﹣0.5×(80﹣60)=110>100,∴x=80.答:该校共购买了80棵树苗.【点评】此题主要考查了一元二次方程的应用,根据已知“如果购买树苗超过60棵,每增加1棵,所出售的这批树苗每棵售价均降低0.5元”得出方程是解题关键.28.在街头巷尾会遇到一类“摸球游戏”,摊主的游戏道具是把分别标有数字1,2,3的3个白球和标有数字4,5,6的3个黑球(球除颜色外,其他均相同)放在口袋里,让你摸球.规定:每付3元钱就玩一局,每局连续摸两次,每次只能摸一个,第一次摸完后把球放回口袋里搅匀后再摸一次,若前后两次摸得的都是白球,摊主就送你10元钱的奖品.(1)用列表法列举出摸出的两球可能出现的结果;。

甘肃省兰州市九年级上学期数学期中联考试卷

甘肃省兰州市九年级上学期数学期中联考试卷

甘肃省兰州市九年级上学期数学期中联考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)(2017·石景山模拟) 在一个不透明的盒子中装有2个红球,3个黄球和4个白球,这些球除了颜色外无其他差别,现从这个盒子中随机摸出一个球,摸到红球的概率是()A .B .C .D .2. (2分)已知,则的值为()A . 5B . -5C .D . .3. (2分)对于抛物线y=4x﹣4x2+7,有下列说法:①抛物线的开口向上;②顶点坐标为(2,﹣3);③对称轴为直线x= ;④点(﹣2,﹣17)在抛物线上.其中正确的有()A . 0个B . 1个C . 2个D . 3个4. (2分)如图,在中,,,,则下列结论正确的是()A .B .C .D .5. (2分)(2020·广西模拟) 如图,CD为⊙O的直径,弦AB交CD于点M,M是AB的中点,点P在劣弧上,PC与AB交于点N,∠PNA=60°,则∠PDC等于()A . 40°B . 50°C . 60°D . 70°6. (2分)(2018·遵义) 如图,直角三角形的直角顶点在坐标原点,∠OAB=30°,若点A在反比例函数y=(x>0)的图象上,则经过点B的反比例函数解析式为()A . y=﹣B . y=﹣C . y=﹣D . y=7. (2分)(2016·毕节) 一次函数y=ax+b(a≠0)与二次函数y=ax2+bx+c(a≠0)在同一平面直角坐标系中的图象可能是()A .B .C .D .8. (2分)如图,AC是⊙O的直径,AB,CD是⊙O的两条弦,且AB∥CD,若∠BAC=44°,则∠AOD等于()A . 22°B . 44°C . 66°D . 88°9. (2分)在小孔成像问题中,光线穿过小孔,在屏幕上形成倒立的实像,如图所示,若O到AB的距离是18cm,O到CD的距离是6cm,则像CD的长是AB长的()A . 3倍B .C .D . 不知AB的长度,无法判断10. (2分)下面说法正确的是()A . 圆上两点间的部分叫做弦B . 垂直于弦的直径平分弦,并且平分弦所对的两条弧C . 圆周角度数等于圆心角度数的一半D . 90度的角所对的弦是直径11. (2分)(2018·鄂尔多斯模拟) 如图,等边△ABC的边长为2cm,点P从点A出发,以1cm/s的速度沿AC向点C运动,到达点C停止;同时点Q从点A出发,以2cm/s的速度沿AB﹣BC向点C运动,到达点C停止,设△APQ的面积为y(cm2),运动时间为x(s),则下列最能反映y与x之间函数关系的图象是()A .B .C .D .12. (2分)如图,点D,E,F分别是△ABC(AB>AC)各边中点,下列说法不正确的是()A . AD平分∠BACB . EF与AD相互平分C . 2EF=BCD . △DEF是△ABC的位似图形二、填空题 (共6题;共22分)13. (1分) (2016九上·微山期中) 在1×3的正方形网格格点上放三枚棋子,按图所示的位置己放置了两枚棋子,若第三枚棋子随机放在其他格点上,则以这三枚棋子所在的格点为顶点的三角形是直角三角形的概率为________.14. (1分) (2017九下·万盛开学考) 如图,、、都与垂直,垂足分别是、、,且,,则︰的值为________.15. (1分) (2016九上·广饶期中) 如图,水库大坝的横截面是梯形,坝顶AD宽5米,坝高10米,斜坡CD 的坡角为45°,斜坡AB的坡度i=1:1.5,那么坝底BC的长度为________米.16. (1分)(2017·福田模拟) 如图,⊙O是△ABC的外接圆,AD是⊙O的直径,连接CD,∠B=70°,则∠DAC=________.17. (1分) (2020八下·西安月考) 若正方形ABCD的边长为4,E为BC上一点,BE=3,M为线段AB上一点,射线BM交正方形的一边于点F,且BF=AE,则BM的长为________.18. (17分)(2019·毕节) 已知抛物线y=ax2+bx+3经过点A(1,0)和点B(﹣3,0),与y轴交于点C,点P为第二象限内抛物线上的动点.(1)抛物线的解析式为________,抛物线的顶点坐标为________;(2)如图1,连接OP交BC于点D,当S△CPD:S△BPD=1:2时,请求出点D的坐标;(3)如图2,点E的坐标为(0,﹣1),点G为x轴负半轴上的一点,∠OGE=15°,连接PE,若∠PEG=2∠OGE,请求出点P的坐标;(4)如图3,是否存在点P,使四边形BOCP的面积为8?若存在,请求出点P的坐标;若不存在,请说明理由.三、解答题 (共8题;共88分)19. (10分)在一个不透明的盒子里,装有三个分别标有1、2、3的小球,它们的形状、大小、质地等完全相同.小明和小红做一个游戏,小明先摸出一球,记着编号后放入,小红再摸出一球,记住编号.(1)求小明和小红都摸出2号球的概率(2)若小明摸出的球的编号与小红摸出的球的编号的乘积是质数,则小明获胜,是合数,则小红胜,既不是质数又不是合数,则重新游戏.你认为这个游戏规则合理吗?请说明理由.20. (15分)(2017·杭州) 在平面直角坐标系中,设二次函数y1=(x+a)(x﹣a﹣1),其中a≠0.(1)若函数y1的图象经过点(1,﹣2),求函数y1的表达式;(2)若一次函数y2=ax+b的图象与y1的图象经过x轴上同一点,探究实数a,b满足的关系式;(3)已知点P(x0,m)和Q(1,n)在函数y1的图象上,若m<n,求x0的取值范围.21. (10分) (2016九上·昆明期中) 如图,AB为⊙O的直径,C是⊙O上一点,过点C的直线交AB的延长线于点D,AE⊥DC,垂足为E,F是AE与⊙O的交点,AC平分∠BAE.(1)求证:DE是⊙O的切线;(2)若AE=6,∠D=30°,求图中阴影部分的面积.22. (6分)如图,在大地电影院,高240cm的银幕AB挂在距离地面OM160cm的墙上,观众的座位设置在离银幕水平距离OC=300cm且坡度i=1:4的斜坡CN上,每排座位之间的水平距离CD=60cm(点D处为第1排座位),假如观看电影时,保持座位靠前,且观看银幕中心的仰角∠FP Q不大于10°为最佳位置(此时假设眼睛距离座位底端EF=120cm).(1)银幕中心距离地面________cm.(2)试问该影院第几排是最佳位置?请通过计算说明理由.(参考数据:sin10°≈0.174,cos10°≈0.985,tan10°≈0.176)23. (10分)(2019·金台模拟) 如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,CE⊥AD,交AD的延长线于点E.(1)求证:∠BDC=∠A;(2)若CE=4,DE=2,求AD的长.24. (10分) (2018九上·武汉月考) 如图,已知排球场的长度OD为18 m,位于球场中线处球网的高度AB 为2.4 m,一队员站在点O处发球,排球从点O的正上方1.6 m的C点向正前方飞出,当排球运行至离点O的水平距离OE为6 m时,到达最高点G建立如图所示的平面直角坐标系(1)当球上升的最大高度为3.4 m时,对方距离球网0.4 m的点F处有一队员,他起跳后的最大高度为3.1 m,问这次她是否可以拦网成功?请通过计算说明(2)若队员发球既要过球网,又不出边界,问排球飞行的最大高度h的取值范围是多少?(排球压线属于没出界)25. (15分)(2017·浦东模拟) 如图,矩形ABCD中,AB=3,BC=4,点E是射线CB上的动点,点F是射线CD上一点,且AF⊥AE,射线EF与对角线BD交于点G,与射线AD交于点M;(1)当点E在线段BC上时,求证:△AEF∽△ABD;(2)在(1)的条件下,联结AG,设BE=x,tan∠MAG=y,求y关于x的函数解析式,并写出x的取值范围;(3)当△AGM与△ADF相似时,求BE的长.26. (12分)(2018·广东模拟) 如图,在平面直角坐标系中,O为坐标原点,已知直线与x 轴、y轴分别交于A、B两点直线直线AB于点现有一点P从点D出发,沿线段DO向点O运动,另一点Q从点O出发,沿线段OA向点A运动,两点同时出发,速度都为每秒1个单位长度,当点P运动到O时,两点都停止设运动时间为t秒.(1)点A的坐标为________;线段OD的长为________.(2)设的面积为S,求S与t之间的函数关系不要求写出取值范围,并确定t为何值时S的值最大?(3)是否存在某一时刻t,使得为等腰三角形?若存在,写出所有满足条件的t的值;若不存在,则说明理由.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共22分)13-1、14-1、15-1、16-1、17-1、18-1、18-2、18-3、18-4、三、解答题 (共8题;共88分) 19-1、19-2、20-1、20-2、20-3、21-1、21-2、22-1、22-2、23-1、23-2、24-1、24-2、25-1、25-2、25-3、26-1、26-2、第21 页共22 页26-3、第22 页共22 页。

2018-2019学年甘肃省兰州市市区片九年级(上)期中数学试卷

2018-2019学年甘肃省兰州市市区片九年级(上)期中数学试卷
14.(4 分)如图,在周长为 20cm 的▱ABCD 中,AB≠AD,对角线 AC、BD 相交于点 O, OE⊥BD 交 AD 于 E,则△ABE 的周长为( )
A.4cm
B.6cm
C.8cm
D.10cm
15.(4 分)将矩形 ABCD 纸对折,设折痕为 MN,再把 B 点叠在折痕线 MN 上(如图点 B′),
A.1 和 3
B.﹣1 和 3
C.1 和 4
D.﹣1 和 4
3.(4 分)菱形具有而矩形不一定具有的性质是( )
A.对角线互相垂直
B.对角线相等
C.对角线互相平分
D.对角互补
4.(4 分)下列命题中,不正确的是( )
A.顺次连接菱形各边中点所得的四边形是矩形
B.有一个角是直角的菱形是正方形
C.对角线相等且垂直的四边形是正方形
2018-2019 学年甘肃省兰州市市区片九年级(上)期中数学试卷
一、选择题(共 15 小题,每小题 4 分,满分 60 分)
1.(4 分)方程 x2=3x 的解是( )
A.x=3
B.x1=0,x2=3
C.x1=0,x2=﹣3 D.x1=1,x2=3
2.(4 分)将方程 x2﹣2x﹣3=0 化为(x﹣m)2=n 的形式,指出 m,n 分别是( )
,另一个根 x=

18.(4 分)已知菱形一条对角线为长 8 cm,周长是 24cm,则这个菱形的面积是

19.(4 分)关于 x 的一元二次方程 kx2+2x﹣3=0 有实数根,则 k 的取值范围是

20.(4 分)如图,正方形 ABCD 的面积为 16,△ABE 是等边三角形,点 E 在正方形 ABCD
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018学年甘肃省兰州市永登县九年级(上)期中数学试卷
一、选择题(本大题共15小题,每小题4分,共60分)
1.(4分)方程x2﹣3x﹣6=0的根的情况是()
A.由两个不相等的实数根B.有两个相等的实数根
C.没有实数根D.无法确定
2.(4分)如图,已知菱形ABCD的周长为12,∠A=60°,则BD的长为()
A.3 B.4 C.6 D.8
3.(4分)下列性质中,菱形对角线不具有的是()
A.对角线互相垂直 B.对角线所在直线是对称轴
C.对角线相等D.对角线互相平分
4.(4分)如图所示,矩形ABCD中,AE平分∠BAD交BC于E,∠CAE=15°,则下面的结论:
=S△COE,
①△ODC是等边三角形;②BC=2AB;③∠AOE=135°;④S
△AOE
其中正确结论有()
A.1个 B.2个 C.3个 D.4个
5.(4分)关于x的一元二次方程kx2+2x+1=0有两个实根,则实数k的取值范围是()A.k≤1 B.k<1 C.k≤1且k≠0 D.k<1且k≠0
6.(4分)一元二次方程x2﹣3x﹣1=0的两实数根是x1,x2,则x1+x2﹣x1•x2的值是()A.4 B.2 C.﹣2 D.﹣4
7.(4分)某种药品原价为36元/盒,经过连续两次降价后售价为25元/盒.设平均每次降价的百分率为x,根据题意所列方程正确的是()
A.36(1﹣x)2=36﹣25 B.36(1﹣2x)=25 C.36(1﹣x)2=25 D.36(1﹣x2)=25
8.(4分)小红上学要经过两个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望上学时经过每个路口都是绿灯,但实际这样的机会是()
A.B.C.D.
9.(4分)在一个不透明的布袋中装有50个黄、白两种颜色的球,除颜色外其他都相同,小红通过多次摸球试验后发现,摸到黄球的频率稳定在0.3左右,则布袋中白球可能有()
A.15个B.20个C.30个D.35个
10.(4分)若实数x,y满足(x2+y2+1)(x2+y2﹣2)=0,则x2+y2的值是()
A.1 B.2 C.2或﹣1 D.﹣2或﹣1
11.(4分)如果x:(x+y)=3:5,那么x:y=()
A.B.C.D.
12.(4分)由5a=6b(a≠0),可得比例式()
A.B.C.D.
13.(4分)如图,边长为12的大正方形中有两个小正方形,若两个小正方形的面积分别为S1、S2,则S1+S2的值为()
A.60 B.64 C.68 D.72
14.(4分)下列命题中,真命题是()
A.对角线互相平分且相等的四边形是矩形
B.对角线互相垂直且相等的四边形是矩形
C.对角线互相平分且相等的四边形是菱形
D.对角线互相垂直且相等的四边形是菱形
15.(4分)关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,则q的取值范围是()A.q<16 B.q>16 C.q≤4 D.q≥4
二、填空题(本大题共5小题,每小题4分,共20分)
16.(4分)若关于x的方程式x2+mx﹣6=0的有一个根2,则另一个根为,m的值为.17.(4分)若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有两个不相等的实数根,则k的取值范围是.。

相关文档
最新文档