Volatile communication in plant–aphid interactions

合集下载

植物逆境胁迫下的分子响应机制

植物逆境胁迫下的分子响应机制

植物逆境胁迫下的分子响应机制Introduction植物的长期生存离不开逆境环境中的谨慎应对,其中逆境胁迫是最常遇到的典型案例。

植物感知范围内的逆境胁迫,并启动分子层面的响应机制以抵抗挑战和尽可能地维持生长发育。

这篇文章将重点介绍植物逆境胁迫下的分子响应机制,其中包括植物模式识别受体、激素调控网络、次生代谢物品类、基因表达和蛋白质翻译调节等方面。

植物模式识别受体植物模式识别受体(PRRs)是植物防御响应的第一道屏障,它们可针对微生物致病分子通路中的共生分子(例如Flagellin,Chitin等)而产生响应,启动植物免疫机能。

由此可见,PRRs是植物维持自身稳态和适应不良环境的关键分子。

在逆境胁迫的背景下,PRRs可促进细胞外和细胞内的免疫反应。

例如,在病原体致病后,PRR调控局部酶催化,从而启动微生物降解机制。

在盐胁迫环境中,PRRs还可以介导盐胁迫适应过程中的肾上腺素和ATP信号转导,促进水分利用率和植物水分代谢能力的提高。

因此,PRRs是植物适应性的重要分子基础。

激素调控网络植物逆境胁迫中的激素调控网络是植物应对逆境的重要分子机制之一。

植物体内的激素调控网络包括乙烯(ethylene)、赤霉素(gibberellin)、脱落酸(abscisic acid)、生长素(auxin)和脯氨酸(proline)等,这些激素在不同的逆境环境中发挥着不同的生物学功能。

其中,乙烯和赤霉素能调节植物生长和发育,并在逆境胁迫后发挥重要作用。

例如,在盐胁迫环境中,乙烯可以促进盐胁迫适应的前期响应,从而增加植物的生物质生产和水分利用效率。

相反,在水胁迫环境中,赤霉素抑制植物根系的伸长,降低水分利用和土壤探测能力,并在逆境胁迫长期作用下,使植物处于萎蔫状态,失去活力。

次生代谢物品类植物紫外线、水胁迫和盐胁迫等逆境胁迫条件下,可激发植物次生代谢物品类的生产。

次生代谢物品类是由酚、醛、酮、生物碱、三萜类、酸类、内酯类等不同类型的化合物组成的,这些化合物在植物逆境响应中起到重要的生物学功能。

国际著名的cabi收录《分子植物育种》英文版

国际著名的cabi收录《分子植物育种》英文版

国际著名的cabi收录《分子植物育种》英文版Molecular Plant Breeding is an international, peer-reviewed journal providing rapid publication of articles inall aspects of plant genetics, including genetics and genomics, quantitative and population genetics, functionaland evolutionary genomics, epigenetics, metabolic engineering, physiological and molecular biology, developmental genetics, agroforestry, biotechnology, and applied biochemistry.The journal publishes high-quality original research, reviews, and opinion papers on the most significant advancesin all areas of contemporary plant genetics and theassociated technologies. It serves as an invaluable source of current and emerging concepts for the internationalscientific community.Since its establishment in 1994, Molecular Plant Breeding has maintained a high reputation for its excellence ineditorial selection and sound peer review. It is indexed by Cabi, which includes the Web of Science; Scopus; Biological Abstracts; and AGRICOLA. The journal is also included in the Emerging Sources Citation Index (ESCI) from Clarivate Analytics.Molecular Plant Breeding is published monthly, with the exception of one combined issue in the summer. Each issue contains reviews of recent advances in the field, selected refereed research articles, commissioned book reviews, and welcomes submission of original research articles and review articles relevant to its scope.Molecular Plant Breeding is an essential source of information for plant breeders, geneticists, agronomists, biochemists, bioinformaticians, plant pathologists, and other scientists involved in the study of plant genetics andrelated technologies. The journal seeks to contribute to the advancement of science and the benefit of society. It is becoming increasingly recognized as an important source of research and continues to be a leader in the field.。

蝴蝶兰成花分子生物学研究进展

蝴蝶兰成花分子生物学研究进展

蝴蝶兰成花分子生物学研究进展1. 引言1.1 蝴蝶兰成花分子生物学研究进展概述蝴蝶兰(Phalaenopsis)是一种重要的观赏植物,被广泛栽培和欣赏。

其开花过程一直是研究的热点之一,蝴蝶兰的花期、花色、花香以及花粉发育等生物学特性一直备受关注。

随着分子生物学技术的不断发展,蝴蝶兰成花分子生物学研究逐渐走向深入,并取得了一系列重要进展。

过去几年中,研究人员通过基因组学、转录组学和蛋白质组学等手段,陆续发现了一些参与调控蝴蝶兰开花过程的关键基因。

这些基因包括调控开花时期的基因、控制花色素合成的基因、调控花香生成的基因等,它们共同参与了蝴蝶兰开花的复杂调控网络。

研究人员还通过深入研究蝴蝶兰的花色素合成途径、花香生成机制、花期特异性基因表达调控以及花粉发育分子机理等问题,逐步揭示了蝴蝶兰开花过程中的分子机制。

这些研究成果不仅深化了对蝴蝶兰开花调控机制的理解,还为蝴蝶兰的育种和栽培提供了重要的理论依据。

蝴蝶兰成花分子生物学研究的进展为我们揭示了蝴蝶兰开花的分子机制,为进一步挖掘蝴蝶兰植物学特性和应用价值提供了重要的科学支持和指导。

2. 正文2.1 蝴蝶兰开花调控基因的发现蝴蝶兰是一种受人们喜爱的兰花品种,其开花过程受到多种因素的调控。

近年来,通过分子生物学研究,科研人员陆续发现了与蝴蝶兰开花调控相关的基因。

这些基因的发现为深入理解蝴蝶兰开花机制提供了重要线索。

研究表明FT基因在蝴蝶兰开花过程中起着重要作用。

FT基因编码了一个促进开花的蛋白质,它的表达受到内源激素和外界环境的调控。

在蝴蝶兰中,FT基因的表达水平在花蕾形成期显著增加,进而促进花蕾的开放。

LFY基因也被发现与蝴蝶兰开花相关。

LFY基因编码了一个转录因子,能够促进花蕾的形成和发育。

LFY基因的表达模式与FT基因有所重叠,二者共同参与了蝴蝶兰的开花调控过程。

一些其他的基因如AP1、AP3等也被证实与蝴蝶兰开花有关。

这些基因共同组成了一个复杂的调控网络,协同作用以确保蝴蝶兰开花的顺利进行。

农业类专业英语词汇

农业类专业英语词汇

一、Plant and Disease carnivore 食肉动物nematology 线虫学anatomy 解剖学horticulture 园艺学meteorology 气象学aesthetically 美学地审美地photosynthesis 光合作用malfunction 故障异常phloem 韧皮部amorphous 无定型的foodstuff 食物粮食xylem 木质部二、Plant Disease Management fumigation 熏蒸熏蒸法phytoplasma 植原体contingency 偶然突发事件defoliate 落叶soilborne 土传的cyst 胞囊pruning 修剪thinning 间苗mite 螨三、Wheat Rustsmorphology 形态学predominant cultivar 主栽品种variation 变异变种epidemiological zone 流行区域virulence 毒力毒性teliospore 冬孢子fleck 斑点pustule孢子堆diamond-shaped 菱形的sporulate 产孢子leaf blade 叶片shrivel 干瘪senesce 开始衰老photosynthetic 光合作用的meiosis 减数分裂basidiospore 担孢子taxonomist 分类学家alternate host 转主寄主urediospore 夏孢子reinfection 再侵染airborne 空气传播的germinate 发芽stoma 气孔stomata 复数hyphae 菌丝pycniospore 性孢子aeciospore 锈孢子perennial 多年生的necrotic 坏死的十、Apple Scabsepal 萼片petiole 叶柄pedicel 花梗bud scale 幼芽鳞片lesion病斑velvety 绒毛状的pucker 皱缩cracked 脆的scabby 疮痂状的water-soaked 水渍状的blossom 花stroma 子座conidi(a)ophore 分生孢子梗budbreak萌芽ascomycete 子囊菌十一、Introduction to Insect appendage 附肢Insecta 昆虫纲thorax 胸部abdomen 腹部insect diversity 昆虫多样性predator 捕食者mammalia 哺乳动物generation 世代immigrant 迁入者sweep net 捕虫网aphid 蚜虫scale 介壳虫webworm 结网幼虫white grub 金龟科幼虫蛴螬aphid mummy 蚜茧蜂lady beetle 瓢虫sryphid fly 食蚜蝇bait trap 诱心诱集物品pheromone trap 性诱心enzyme 酶ingest 吸收摄取leafhopper 叶蝉homoptera 同翅目house fly 家蝇diptera 双翅目mandible 上颚head capsule 头腔hemolymph 血淋巴hatching 孵化control strategy 防治策略十二、Wheat AphidNymph若虫cornicle 腹管cereal 谷类barley 大麦wingless aphid 无翅蚜winged aphid 有翅蚜overlapping generation 世代重叠 lacewing 草蛉syrphid 食蚜蝇parasite 寄生性昆虫十三、European Corn Boreroviposit 产卵egg-mass 卵块stubble 茬emerge 羽化stadi(um)a 虫态龄期复diapause 滞育photoperiod 光周期phenology物候学granular insecticide颗粒杀虫剂十四、Insect Pests of Tree Fruitskey pest 关键害虫secondary pest 次要害虫powdery mildew 白粉病leafroller 卷叶蛾ornamental tree 观赏植物wingspan 翅展翅幅mature larvae 老熟幼虫pheromone 信息素fourth instar 第四龄十八、Insect Pests of Cruciferous Cropscruciferous 十字花科的Cruciferae 十字花科cosmopolitan 世界性的各地的ephemeral 朝生暮死的herb 药草colonise 定殖secondary 次生的pungent 刺激性的cue 信号exacerbate 加剧shed 脱落volunteer plant 自生植株倒茬vulnerable 易受攻击的lepidopterous 鳞翅类的forewing 前翅hind-wing 后翅fringe 边缘genera 属caterpillar 毛虫leaf miner 潜叶蝇tapering 尖端细的cocoon 茧prepupal stage 蛹前期parasitoid 拟寄生物hymenopterous 膜翅目的interval 间隔pathogen 病原体granulosis virus 颗粒体病毒nuclear polyhedrosis virus 核多面体病毒 cabbage 卷心菜甘蓝cauliflower 花椰菜Chinese cabbage 大白菜Pak choi 小白菜leaf mining 潜叶现象growth regulator 生长调节剂十九、Stored Product Insect Pestsbin 谷仓mill 磨坊retail 零售ecosystem 生态系统render 致使frass 幼虫的粪便蛀屑carcass 躯壳残体moisture-laden 携带湿气的moisture 湿气mold 霉菌spoilage损坏fumigation 熏蒸消毒熏蒸法diapause 滞育hibernation 休眠devour 吞食破坏scavenger 食腐动物yellow mealworm 黄粉虫volatile 挥发性的sanitation 清洁卫生precaution 预防防范protectant 防虫剂crevice 墙壁裂缝aeration 通风fumigant 熏蒸剂aerosol 气雾剂烟雾剂dispersion 扩散传播reinfestation 再蔓延musty 发霉的intraspecific 种内的pupal 蛹的二十七、Insect Pest Management in Potatoes Colorado potato beetle 马铃薯叶甲fecundity 产卵力stadium 虫态burrow 洞穴打洞voraciously 贪得无厌地immunity 免疫性crop rotation 作物轮作predation 捕食foliar-applied insecticide 叶面杀虫剂scouting 监测mode of action 作用方式cluster 串丛成群straw-mulched 盖草的二十八、IPMIntegrated Pest Management有害生物综合防治practitioner 从业者holistic approach 整体全局方法impediment 障碍far-sighted 有远见的indiscriminate 不加选择的problematic 有疑问的entomologist 昆虫学家periodic 周期性的pest resurgence 害虫再猖獗semiochemical 信息化合物mandatory 强制的prophylaxis 预防commendable 值得称赞的。

挥发性代谢组VOCs研究方案及文献

挥发性代谢组VOCs研究方案及文献

VOCs研究方案1.纯代谢组解析营养品质案例葡萄柚果肉糖、有机酸、类胡萝卜素、香气成分分析期刊:Food Chemistry发表时间:2016.3.3单位:西南大学园艺与园林学院席万鹏课题组研究背景:葡萄柚作为一种重要的水果,含有丰富的营养物质,其形状、风味、色泽和储藏时间是决定消费者选择的关键因素。

尽管之前对葡萄柚风味、色泽等品种性状相关的代谢物进行过相关分析,但不是很全面。

本研究对6个葡萄柚品种中糖、有机酸、挥发物和类胡萝卜素分析,为葡萄柚果实品质育种和消费者提供了参考。

研究思路:2.代谢组+转录组解析营养品质案例转录组及代谢组研究柑橘叶片和花中挥发性成分期刊:BMC Plant Biology发表时间:2020.1单位:华中农业大学园艺林学学院程运江团队研究背景:柑橘挥发性成分研究主要集中在果实,其叶、花的挥发性成分鲜有报道。

柑橘叶、花中富含具有特殊芳香的挥发性成分。

本文对62种不同柑桔种质的叶片和25种不同柑橘种质的花进行了转录组、挥发性代谢组检测,解析了柑橘叶、花中的挥发性成分。

研究思路:3.代谢组解析生物互作的案例挥发性代谢组揭示植物-植物互作、植物-昆虫互作的生态效应关系期刊:Plant Cell and Environment发表时间:2019.02.12单位:中国科学院武汉植物园入侵生态学学科组与瑞士伯尔尼大学和德国马普化学生态研究所研究背景:植物挥发物不仅可以帮助植物抵御生物和非生物胁迫,同时影响邻近植物的生长和防御,在调节植物、昆虫种群动态和群落组成方面起到重要作用,其中植物根系释放的挥发性有机化合物会影响邻近植物的萌发和生长。

然而,关于根部挥发物在调节植物-植物互作和植物-昆虫互作研究知之甚少。

本研究发现在没有昆虫取食邻近植物的情况下,斑点矢车菊根部释放的倍半萜类物质可以显著提高部分邻近植物的种子萌发和个体生长;但是,在有昆虫取食邻近植物的情况下,这些倍半萜类物质的释放显著促进了昆虫在邻近植物上的取食危害程度,反而抑制邻近植物的生长。

葡萄花芽分化研究进展

葡萄花芽分化研究进展

·957·葡萄花芽分化研究进展王博1,罗惠格1,覃富强1,陈祥飞1,朱维1,谢太理2,曹雄军2,白先进3*(1广西大学农学院,广西南宁530004;2广西农业科学院葡萄与葡萄酒研究所,广西南宁530007;3广西农业科学院,广西南宁530007)摘要:花芽分化是葡萄生长发育过程中十分重要的阶段,而葡萄的成花过程较特殊,成花诱导更复杂,表现在始原基分化后能进一步分化形成花序,也能分化成卷须发育成为营养器官。

葡萄花芽分化过程受诸多内部和外部因素影响,生理及分子调控机制复杂。

文章结合国内外研究综述葡萄花芽分化的生理阶段及其特殊性,成花诱导和花形态建成相关基因功能及表达,以及影响葡萄花芽分化的因素,包括环境因素(温度、光照和水分)、树体营养(碳水化合物和矿质元素)、内源激素水平和栽培技术等。

根据葡萄花芽分化方面需进一步研究的问题,提出完善不同葡萄品种花芽分化进程、结构特性及冬芽次年花器官分化阶段等形态结构方面的研究,利用多组学关联分析深入探究葡萄花芽分化分子调控机制,以及开展不同栽培模式下葡萄花芽分化规律研究,进而推进葡萄花芽分化生理及分子机理的系统研究,为葡萄生产调控提供理论参考。

关键词:葡萄;花芽分化;生理;分子机制中图分类号:S663.1文献标志码:A文章编号:2095-1191(2023)03-0957-12收稿日期:2022-03-11基金项目:国家自然科学基金项目(31960572);广西创新驱动发展专项(桂科AA17204097-4);广西自然科学基金项目(2018GXNSFAA294150)通讯作者:白先进(1956-),https:///0000-0001-7318-7169,研究员,主要从事果树栽培研究工作,E-mail :*************第一作者:王博(1985-),https:///0000-0002-0666-8509,博士,主要从事葡萄栽培生理及分子研究工作,E-mail :wang-**************Research progress of grape flower bud differentiationWANG Bo 1,LUO Hui-ge 1,QIN Fu-qiang 1,CHEN Xiang-fei 1,ZHU Wei 1,XIE Tai-li 2,CAO Xiong-jun 2,BAI Xian-jin 3*(1Agriculture of College ,Guangxi University ,Nanning ,Guangxi 530004,China ;2Viticulture and Wine ResearchInstitute ,Guangxi Academy of Agricultural Sciences ,Nanning ,Guangxi 530007,China ;3Guangxi Academy ofAgricultural Sciences ,Nanning ,Guangxi 530007,China )Abstract :Flower bud differentiation of grape is a very important stage in its growth and development.Flowering pro-cess of grapes is relatively different ,and its flower induction is more complex.After differentiation ,primordium can fur-ther develop into inflorescence or into tendril to be a vegetable organ.The process of flower bud differentiation is affectedby many internal and external factors.Its physiological and molecular regulation mechanism is complex.In this paper ,the physiological stage and the particularity of grape flower bud differentiation ,the function and expression of genes related to flower induction and flower morphogenesis ,and the factors affecting flower bud differentiation such as environmental factors (temperature ,light ,and water ),tree nutrition (carbohydrates and mineral elements ),endogenous hormone levels ,and cultivation techniques were reviewed based on domestic and foreign studies.For the issues of grape flower bud differen-tiation require further study ,researches in respect of morphogenesis and strcuture were carried out to improve flower bud differentiation process and structure characteristics of different grape varieties and flower organ differentiation stage of winter bud in the next year.The molecular regulation mechanism of grape flower bud differentiation was studied by multi-omics association analysis ,and the research on the regulation of grape flower bud differentiation under different cultiva-tion modes was carried out ,so as to promote the systematic research on the physiological and molecular mechanism of grape flower bud differentiation ,which would provide a theoretical reference for the regulation of grape production.Key words :grape ;flower bud differentiation ;physiology ;molecular mechanism Foundation items :National Natural Science Foundation of China (31960572);Guangxi Innovation-driven Develop-ment Project (Guike AA17204097-4);Guangxi Natural Science Foundation (2018GXNSFAA294150)54卷南方农业学报·958·0引言葡萄(Vitis vinifera L.)为葡萄科葡萄属藤本植物,栽培历史悠久,种植分布广,产量和产值高,是全球的重要果树。

植物信息素沟通英语文章

植物信息素沟通英语文章

植物信息素沟通英语文章Plant communication through chemical signalsPlants may not have ears or mouths, but they are extremely good at communicating. They use a complex language of chemical signals to share information with each other, much like animals use sound and sight to communicate. This plant communication is essential for their survival and reproduction.One form of plant communication involves the use of chemical signals called "pheromones". Pheromones are secreted by plants and can be transmitted through the air or via contact with other plants. They are used to convey information about the presence of pests, diseases or other threats to the plant community.When a plant is attacked by a pest or infected by a disease, it releases pheromones that warn other plants nearby of the threat. The release of these pheromones triggers a defensive response in the neighbouring plants, such as increasing their resistance to thepest or disease. This collective defensive response helps to protect the plant community from further damage.In addition to warning signals, plants also use pheromones to coordinate their growth and development. For example, when a plant is growing towards a light source, it releases pheromones that tell other plants in its vicinity to do the same. This allows the plantsto grow in synchrony, maximising their exposure to light and reducing competition for resources.The study of plant communication is a rapidly developing field, and scientists are constantly discovering new chemical signals and mechanisms used by plants to communicate. Understanding how plants communicate is crucial for developing sustainable agriculture practices that conserve natural resources and protect plant biodiversity.In conclusion, plants may lack conventional means of communication, but they have developed an effective chemical signalling system to coordinate their activities and defend themselves against threats.This remarkable ability to communicate is essential for their survival and reproduction in the dynamic environment of nature.。

花不凋谢果实就结不出作文

花不凋谢果实就结不出作文

花不凋谢果实就结不出作文英文回答:Nature's delicate equilibrium manifests itself in the symbiotic relationship between blossoms and fruits. For flowers to flourish and bear fruit, a harmonious dance must take place. The interplay of pollination, photosynthesis, and seed dispersal ensures the perpetuation of plant life.Pollination, the transfer of pollen grains from male to female reproductive structures, sets the stage for fruit development. Insects, birds, and even the wind play crucial roles as pollinators, carrying pollen to the female stigma. Once pollination occurs, the flower's ovary, containing immature ovules, embarks on its transformation into a fruit.Photosynthesis, the process by which plants convert sunlight into energy, fuels this transformation. The leaves of the plant, adorned with chlorophyll, capture sunlightand use it to produce glucose, the primary energy sourcefor plant growth and development. The glucose istransported to the developing ovary, providing thenutrients necessary for fruit formation.As the fruit matures, its primary function becomes seed dispersal. Seeds, the life-giving entities of plants, are contained within the fruit's protective flesh. When ripe, the fruit's vibrant colors and alluring aroma attract animals and birds, enticing them to consume the fruit. Once ingested, the seeds travel through the digestive system of the animal, eventually finding fertile ground where theycan germinate and initiate new plant life.The intricate relationship between flowers and fruits epitomizes the harmony and interconnectedness of nature. Without flowers, there would be no fruit, and without fruit, there would be no seeds. It is a testament to the delicate balance that has sustained life on Earth for millennia.中文回答:花不凋谢,果实就结不出来。

蓝白斑试验

蓝白斑试验

X
Hale Waihona Puke AmlacZN2H
片段
片段
lacZ
标志补救(ß-半乳糖苷酶法)
COOH
X-gal
Lac Z
蓝色化合物
X-gal
(LacZ基因 N端序列)
LacZ基因 N端序列
LacZ酶
插入片段 (LacZ基因失活)
DNA本身 生殖细胞、
体细胞、个体
三、蓝白斑试验(IPTG-Xgal 试验)
乳糖操纵子的天然诱导物是乳糖
乳糖类似物异丙基-β-D -硫代半乳糖苷(IPTG) 有更强的诱导作用。
IPTG配合使用在基因工程可作蓝白斑筛选。
LacZ基因编码的乳糖苷酶
X-gal
蓝色吲哚产物
诱导物
乳糖
PO PO
ZY
X
ZY
原核生物表达体系: 大肠杆菌、枯草杆菌、农杆菌
大肠杆菌表达体系的优点:
积累了充足经验,有数不清的载体可供应用;
可因不同载体而选择不同菌种作宿主;
操作安全,致病能力低 ;
成本相对低得多 ;
真核生物的基因先在原核体系上构建克隆,称 为亚克隆(subclone),然后采用其它方式转移 至真核细胞上表达。
缺点: 原核生物载体构建的重组体是无法进入 动物细胞进行表达; 没有加工所需的酶系统; 热源、内毒素不易除去 ; 常会形成包涵体。
表达体系的发展
表达体
载体
宿主
第一代 原核生物表达体系 质粒、噬菌体 细菌
第二代 酵母表达体系
穿梭质粒
酵母
第三代 哺乳类细胞表达体系 病毒、脂质体 培养细胞
第四代 基因直接导入

非生物胁迫下棉花植物同源结构域(phd)转录因子的研究

非生物胁迫下棉花植物同源结构域(phd)转录因子的研究

石河子大学硕士学位论文非生物胁迫下棉花植物同源结构域(PHD)转录因子的研究学位申请人杨雷指导教师谢宗铭申请学位门类级别理学硕士学科、专业名称生物化学与分子生物学研究方向植物基因工程所在学院生命科学学院中国·新疆·石河子2013年6 月Characterization and Functional Analysis of Plant Homeodomain (PHD) Transcription Factors Responsiveto Abiotic Stress in CottonA Dissertation Submitted toShihezi UniversityIn Partial Fulfillment of the Requirementsfor the Degree of Master of Natural ScienceByYanglei(Biochemistry and Molecular Biology)Dissertation Supervisor:Prof. Xie ZongmingShihezi·Xinjiang·ChinaJun,2013学位论文独创性声明本人所呈交的学位论文是在我导师的指导下进行的研究工作及取得的研究成果。

据我所知,除文中已经注明引用的内容外,本论文不包含其他个人已经发表或撰写过的研究成果。

对本文的研究做出重要贡献的个人和集体,均已在文中作了明确的说明并表示谢意。

研究生签名:时间:年月日使用授权声明本人完全了解石河子大学有关保留、使用学位论文的规定,学校有权保留学位论文并向国家主管部门或指定机构送交论文的电子版和纸质版。

有权将学位论文在学校图书馆保存并允许被查阅。

有权自行或许可他人将学位论文编入有关数据库提供检索服务。

有权将学位论文的标题和摘要汇编出版。

保密的学位论文在解密后适用本规定。

研究生签名:时间:年月日导师签名:时间:年月日摘要目的:通过对陆地棉(Gossypium hirsutum L.)PHD(plant homeodomain)转录因子在棉花不同组织和非生物胁迫条件下的表达分析,筛选并克隆棉花逆境胁迫应答基因,初步探究棉花植物同源结构域转录因子在非生物下的应答模式以及转基因模式植物抗逆性能。

植物响应非生物逆境胁迫的生理和分子机制研究

植物响应非生物逆境胁迫的生理和分子机制研究

植物响应非生物逆境胁迫的生理和分子机制研究植物是生命中的重要组成部分,它们在自然生态系统中扮演着至关重要的角色。

植物的生长和发育过程受到许多环境因素的影响,例如光照、气温、水分、盐分和病毒等。

其中,非生物因素不仅是植物生长发育的重要影响因素,还是影响植物生产力和生存的主要因素之一。

在植物生长过程中,逆境胁迫是不可避免的。

逆境胁迫通常是指由气候变化、生态环境恶化和人类活动等因素导致的暴露在高温、干旱、盐度等非正常环境条件下的植物对生存、生长和发育的影响,因此,研究植物响应非生物逆境胁迫的生理和分子机制对于提高作物产量和改善环境质量具有非常重要的意义。

1. 生理机制1.1 水分胁迫植物在生长发育过程中需要水分,然而,干旱情况的出现可能会导致植物吸收不到足够的水分,降低其生存能力。

植物响应水分胁迫的生理机制已有大量的研究。

水分胁迫引起了植物水分、营养物质(如糖类、蛋白质和核酸等)和激素(如脱落酸)的失衡,使植物发生一系列反应。

其中,植物的利用水分碳素代谢适应水分胁迫(例如利用微生物的共生关系来增加根系表面积)以及受到水分胁迫诱导的激素,如脱落酸、紫外线激素、植物生长素和玉米素等,在植物水分胁迫响应中起着重要作用。

1.2 盐度胁迫高盐环境中植物的生长状态受到抑制,盐度胁迫也是目前威胁作物产量的主要因素之一。

在植物响应盐度胁迫的过程中,植物会产生高盐胁迫对应的适应机制,例如调控生长素的合成和代谢,抑制细胞分裂等。

这些机制有利于植物避免高盐环境的负面影响。

2. 分子机制植物响应非生物逆境胁迫的生理机制是复杂的,并受到分子机制的调控和调解。

随着分子生物学在生命科学领域的快速发展和研究技术的进步,逆境胁迫信号适应性的分子机制逐渐得到了解释。

研究植物响应非生物逆境胁迫的分子机制对于寻找逆境胁迫信号适应性控制的新靶点并深入了解逆境胁迫信号适应性的生理和生化机制具有重要意义。

2.1 信号传导途径逆境胁迫激活的信号转导途径是植物响应逆境胁迫的分子机制之一。

水杨酸甲酯和寡糖·链蛋白对麦蚜和瓢虫的生态作用

水杨酸甲酯和寡糖·链蛋白对麦蚜和瓢虫的生态作用

2020, 46(5):18^192Plant Protection水杨酸甲酯和寡糖•链蛋白对麦蚜和瓢虫的生态作用刘佳惠S王康S战一迪S曹跃文2,刘勇(1.山东农业大学植物保护学院,泰安2H018; 2.日照市农产品质量检测中心,日照276800)摘要为研发小麦蚜虫绿色防控新技术,比较了虫害诱导植物挥发物水杨酸甲酯海藻酸钠缓释球(MeSA)和植物免疫激发子寡糖•链蛋白(OAP)以及二者共同处理对麦蚜及其天敌瓢虫种群动态和数量的影响。

结果表明:水杨酸甲酯、寡糖.链蛋白和2者共同处理对麦蚜以及瓢虫的种群发生趋势无影响,但可以显著降低麦蚜无翅蚜的种群数量;3种处理中水杨酸甲酯对瓢虫有极显著吸引效果;不同处理对有翅蚜数量的影响存在一定的差异,在2018年3种处理均可以显著降低麦蚜有翅蚜的数量,而2019年OAP及其与MeSA混合处理可显著降低有翅蚜数量,提高小麦的产量。

本研究结果可为我国冬小麦生产中增产、减药提供一定的依据。

关键词虫害诱导植物挥发物;植物免疫激发子;麦蚜;瓢虫;生态作用;产量中图分类号:S435.122 文献标识码:A DOI:10.16688/j.zwbh.2019301Ecological functions of the slow release MeSA alginate bead combining with oligosaccharins • plant activator protein on wheat aphids andtherr coccinellids natural enemiesLIUJiahui1,WANGKang1,ZHANYidi1,CAOYuewen2,LIUYong1*(1.College of Plant Protection,Shandong Agricultural University,Tai犻an271018, China;2.Rizhao Agricultural Product Quality Inspection Center,Rizhao276800, China)Abstract To explore the green prevention and control technology of wheat aphids,the ecological functions of the slow release of herbivore-induced plant volatile methyl salicylate algniate bead(MeSA)combninig with plant defence activator oligosaccharins•plant activator protein(OAP)on the population dynamics and the abundance of wheat aphids and their coccinellid natural enemies were investigated.The results showed^hat^he MeSA^OAP and MeSA combining with OAP had no effect on population dynamics of aphid and coccinellids.It could significantly re less aphid and attractthe coccinellids which plays an importantrole in controlling wheataphids.In OAP and their i nteraction could significantly reduce the number of winged aphid,while in2019, only OAP and mixture of OAP and MeSA could significantly reduce the number of winged aphid,in suggested that the application of MeSA alginate bead and OAP in the fields could provide a production and reducing application of chemical pesticides in winter wheat production in China.Key words herbivore--nduced plant volatile;oligosaccharins•plant activator protein;wheat aphids;coc­cinellids;ecological function;yield小麦是最主要的粮食作物之一,麦长管蚜S to-tO n m ie a tt 和禾谷溢管蚜是小麦生产的主要害虫。

植物沟通基因当信使等

植物沟通基因当信使等

植物沟通基因当信使等作者:暂无来源:《发明与创新·大科技》 2014年第10期近日,弗吉尼亚理工学院科学家吉姆·韦斯特伍德发现了一种可能的植物间通讯方式,通过这种形式的通讯,植物间可以分享海量的基因信息。

韦斯特伍德选取了菟丝子为寄生植物,拟南芥和番茄为宿主植物,对寄生植物和宿主植物间的关系进行了测试。

为了吸收宿主植物的水分和养分,菟丝子使用了一个被称为吸根的附属物刺透宿主植物。

韦斯特伍德发现,在这一过程中,两种植物间存在RNA传输。

韦斯特伍德对此进行了深入研究,分析了涉及到的信使mRNA。

mRNA在细胞内发送指令,告知细胞应该采取哪些行动,比如应该制造哪些蛋白质。

此前,科学家认为,信使RNA太过脆弱,“寿命”短暂,很难在物种间进行传递。

新研究揭示,在菟丝子寄生过程中,数以千计的信使RNA在不同植物间传递。

菟丝子或许通过这种方法“强迫”宿主应该做些什么,比如降低防御,使其更易被入侵。

谢菲尔德大学教授朱莉·斯科尔斯认为:“独脚金和肉蓰蓉在非洲等地泛滥成灾。

韦斯特伍德的发现,为科学家研究基于中断信使RNA方法的防控策略提供了新思路。

”(据人民日报)古爱斯基摩人孤立生活超4000年钱铮人类历史上或许再没有像古爱斯基摩人那样寂寞的民族了。

近日,《科学》杂志刊登的一篇论文写道,古爱斯基摩人这个约700年前消失的古代民族集团在北美的北极圈内孤立地生活了4000年以上。

根据这篇由丹麦自然历史博物馆等研究机构发表的论文,横渡白令海峡,从西伯利亚移居到新家园的古爱斯基摩人与历史上不同时期经由相同途径迁徙而来的美洲土著民族、因纽特人等其他文化的人们完全没有接触。

而在距今约700年前,与现代因纽特人祖先从阿拉斯加向东迁徙几乎同时期,古爱斯基摩人消失了。

美国史密森学会自然历史国家博物馆北极研究中心主任威廉·菲茨休说,古爱斯基摩人可能被赶到北极地区的边缘,但无法在那里生存下来,也可能单纯地因某种未知的因素灭亡。

环介导等温扩增技术检测小苍兰花叶病毒

环介导等温扩增技术检测小苍兰花叶病毒

环介导等温扩增技术检测小苍兰花叶病毒樊荣辉;黄敏玲;钟淮钦;叶秀仙;罗远华【摘要】小苍兰花叶病毒Freesia mosaic virus (FreMV)是侵染兰花的主要病毒,严重影响其观赏价值.本研究根据FreMV的外壳蛋白基因序列设计了一组特异性引物,经过一系列条件优化,建立了该病毒的RT-LAMP检测方法.结果显示设计引物能特异扩增FreMV,与其他4种病毒(菜豆黄花叶病毒Bean yellow mosaic virus、黄瓜花叶病毒Cucumber mosaic virus、建兰花叶病毒Cymbidium mosaic virus和齿兰环斑病毒Odontoglossum ringspot virus)不发生反应;该方法灵敏度为RT-PCR的10倍.田间检测20份样品中,RT-LAMP和RT-PCR检测结果一致,检出率为60%.在产物中加入荧光染料SYBR GreenⅠ直接用肉眼观察就可判断样品是否感染FreMV,可省去电泳分析的时间.该方法具有特异性强、灵敏度高、操作简单、快速等特点.【期刊名称】《植物保护》【年(卷),期】2019(045)002【总页数】4页(P153-156)【关键词】小苍兰花叶病毒;RT-LAMP;检测【作者】樊荣辉;黄敏玲;钟淮钦;叶秀仙;罗远华【作者单位】福建省农业科学院作物研究所,福建省农业科学院花卉研究中心,福建省特色花卉工程技术研究中心,福州350013;福建省农业科学院作物研究所,福建省农业科学院花卉研究中心,福建省特色花卉工程技术研究中心,福州350013;福建省农业科学院作物研究所,福建省农业科学院花卉研究中心,福建省特色花卉工程技术研究中心,福州350013;福建省农业科学院作物研究所,福建省农业科学院花卉研究中心,福建省特色花卉工程技术研究中心,福州350013;福建省农业科学院作物研究所,福建省农业科学院花卉研究中心,福建省特色花卉工程技术研究中心,福州350013【正文语种】中文【中图分类】S436.8小苍兰Freesia hybrida为鸢尾科香雪兰属花卉, 因其花色艳丽、高雅芳香、花序柔美摇曳,深受消费者喜爱。

植物生理学通讯杂志社-投稿编辑部-期刊网

植物生理学通讯杂志社-投稿编辑部-期刊网

植物生理学通讯杂志社-投稿编辑部-期刊网公务员之家致力于《植物生理学通讯》同类优秀杂志信息整理收录。

本组稿中心并非杂志社官方网站!本站仅为客户提供本类同级期刊发表相关渠道和相关信息的中介服务。

文章是否采用以杂志社的官方通知书为准。

同时,本站可以在数千家期刊中,根据客户需要,选择最适合客户的正规期刊发表论文,帮助你节约时间成本和精力成本,提高工作效率。

如果你成为我们的客户,体验了发表全过程并认为非常满意的话,请你记住公务员之家并向你的朋友推荐我们。

植物生理学通讯刊名:植物生理学通讯PlantPhysiologyCommunications主办:中国植物生理学会;中科院上海植物生理研究所周期:双月出版地:上海市语种:中文开本:大16开ISSN0412-0922CN31-1350/Q邮发代号4-267创刊年:1951ASPT来源刊中国期刊网来源刊2004年度核心期刊《植物生理学通讯》期刊介绍:本刊是我国植物生理学综合性学术刊物,其特色是栏目众多,内容涵盖面广,信息量大。

1998和1999年该刊的总被引次数为891和1132,分别获得国家科技部颁发的第10名和第16名证书;被列为生物科学类、植物学类、农作物类和园艺学类的核心期刊。

1998、1999两年发表的论文被SCICDE引用36次,收录我刊的国内外检索系统达19个之多。

《植物生理学通讯》常见论文发表范例:分光光度法测定叶绿素含量及其比值问题的探讨---袁方李鑫余君萍王学奎徐久玮张立新乌拉尔甘草硬实和非硬实种子无损分离的液体比重法---孙群王建华丁自勉孙宝启12种园林植物耐荫性鉴定指标的筛选---丁爱萍王瑞张卓文师恩铭心伟绩永存-纪念罗士韦教授逝世10周年---夏镇澳毛果杨的组织培养与快速繁殖---张红梅夏新莉尹伟伦西藏虎头兰的组织培养与快速繁殖---王莲辉姜运力余金勇罗在柒陈景艳毛菍的组织培养和植株再生---何长信代色平马国华麒麟叶的组织培养和快速繁殖---许渝花林利华宗桦石大兴范俊岗许良飞陈慧郑义红李俊强耧斗菜的组织培养---李群赵富群陈丽萍蒋娜孟亚婷美丽豹子花的离体快繁和瓶内结球---吴丽芳张艺萍崔光芬吴学尉康超勇兰属新种昌宁兰的组织培养及植株再生---和寿星薛润光李兆光和加卫李燕经夏越冬播种水曲柳种子的萌发效应---张鹏沈海龙低温下转昆虫抗冻蛋白基因烟草的亚显微结构变化---王艳马纪邱立明王晶代春英张富春砀山酥梨黑皮病发病程度与相关生理指标的关系---牛瑞雪惠伟李彩香屠荫华金宏宋要强李琦甘薯EST资源的SSR信息分析---黄立飞房伯平陈景益张雄坚罗忠霞不同类型玉米籽粒的营养品质及其与籽粒质地的关系---张海艳抗旱性不同品种的小麦叶片中光合电子传递和分配对氮素水平的响应---张绪成上官周平不同成熟度对烤后烟叶中质体色素及其降解产物的影响---赵铭钦王文基刘国顺习红昂王传兴多糖和糖蛋白聚丙烯酰胺凝胶电泳染色方法的改进---王玉琪巫光宏林先丰贺丽平黄卓烈均匀设计优化橡胶树细胞悬浮系培养基---吴紫云华玉伟黄华孙GA_3对小麦种子Α-淀粉酶诱导形成测定方法的改进---唐新科周平兰梁芳互叶醉鱼草的组织培养与快速繁殖---柳金凤吴建华李永华秀丽野海棠的组织培养与快速繁殖---林骏烈雷蓓陈玉琳夏国华弦月的组织培养与快速繁殖---韵宇飞熊亚栋颜冰儿顾福根大花杓兰的组织培养与快速繁殖---王艳丽林昊赵洪颜朴仁哲离子草的组织培养与快速繁殖---刘琳曾幼玲张富春玉米籽粒胚乳细胞增殖及其与淀粉充实的关系---张海艳外源植物生长调节物质对烟叶中腐胺和烟碱含量的影响---刘华山田效园韩锦峰白海群不同光照强度下辣木光合作用及与其相关生理指标的日变化---吕晓静任安祥王羽梅黑杨胚抢救技术体系优化---奚晓军魏芳张金凤影响芋茎尖培养中脱毒和快速繁殖的几个生理因素---赵建萍蒋小满柏新富张萍勇金萍几种化学制剂对番木瓜抗环斑病毒和防御酶活性的影响---张荣萍黄耿磊郭漫登许钟良余雪标小麦成熟胚脱分化过程CDPKS基因的差异表达分析---雷志华崔琰赵一丹陈军营陈新建需要检测文章的朋友请点击>> 需要发表文章的朋友请点击>>公务员之家创建于2003年,历经6年多的发展与广大会员的积极参与,现已成为全国会员最多(86.1万名会员)、文章最多、口碑最好的公务员日常网站。

植物学通信

植物学通信

植物学通信植物学是一门极其重要的科学学科,也是许多研究者的研究重心。

它不仅涉及植物的生物学特性,在生物圈内也有着至关重要的作用。

因此,植物学界的人们都会交流学术论文,积极探讨相关研究。

植物学术交流有着极大的价值,从而促进了植物学科的发展。

一般而言,植物学的学术交流都是以学术期刊形式进行的。

学术期刊也是植物学的重要来源,如《植物学》、《植物生态学》、《植物学通信》等。

这些期刊定期发表有关植物学的新成果、学术思想和研究趋势。

它们的发表也促进了植物学科的发展,使植物学家可以更好地宣传自己的研究成果,也可以让植物学科内的研究成果得到更广泛的认可和发表。

《植物学通信》是一本有着历史悠久的学术期刊,于1959年创刊,由美国植物学会(APS)出版。

鉴于植物学有着极其重要的作用,《植物学通信》也成为了植物学界的重要资源。

本期刊不仅仅发表关于植物学的新研究结果,还发表了关于植物学的新思想,以及关于植物的问题的讨论文章。

《植物学通信》的文章都经过严格的审查,只发表最优秀的文章。

期刊编辑都是经过严格的审查的,他们评估的文章的学术性,确保所发表的文章都符合学术标准。

本期刊的宗旨在于将最优秀的文章发表出来,以期在推动植物学科的发展。

此外,《植物学通信》也注重跨学科研究,让不同学科的研究者能够进行充分的交流,以达到学科融合并促进科学的发展。

在现代化的科学研究中,多学科的交叉研究显得尤为重要,《植物学通信》也在努力推动多学科交叉研究的发展。

《植物学通信》不仅仅发表有关植物学研究的文章,还出版了一些专著,向植物学界普及植物学的知识和理论。

本期刊还联合多家学术机构出版学术研究著作,促进了植物学研究的发展。

总之,《植物学通信》在植物学界起到了极其重要的作用,促进了植物学研究的深入发展。

它不仅发表优秀的文章,也出版了一些有关植物学的著作,向植物学界推广科学理念,从而促进植物学研究的发展。

巴西中部大豆上发生的一种菜豆皱缩花叶病毒株系

巴西中部大豆上发生的一种菜豆皱缩花叶病毒株系

巴西中部大豆上发生的一种菜豆皱缩花叶病毒株系
Iizu.,N;梁谊
【期刊名称】《国外农学:植物保护》
【年(卷),期】1993(006)001
【摘要】1989年,在巴西中部EMBRAPA和CPAC地区的田中从表现斑驳的大豆上分离到一种病毒,根据寄主范围、症状、传播方式、病毒粒子形态和血清学研究
判断,该种病毒鉴定为菜豆皴缩花叶病毒的一个株系,属于豌豆花叶病毒组。

【总页数】2页(P11-12)
【作者】Iizu.,N;梁谊
【作者单位】不详;不详
【正文语种】中文
【中图分类】S435.651
【相关文献】
1.不同省份大豆新品种(系)对东北大豆强弱花叶病毒株系的抗性鉴定 [J], 滕卫丽;
邱丽娟;关荣霞;王春英;卢双勇;高阳;孙明明;韩英鹏;李文滨;朱聃;程章;胡海波
2.大豆资源对大豆花叶病毒(SMV)东北3号株系与黄淮7号株系的抗性反应 [J], 李开盛;王洪岩;曹越平
3.大豆对大豆花叶病毒株系SC6和SC17抗病基因的精细定位 [J], 阳小凤;杨永庆;郑桂杰;智海剑;李小红
4.大豆花叶病毒的株系划分及株系间的交互保护作用 [J], 吕文清;李延华
5.南方菜豆花叶病毒(SBMV)两典型株系特异cDNA和RNA探针的制备及应用 [J], 李尉民;张成良;谢联辉
因版权原因,仅展示原文概要,查看原文内容请购买。

2008年国际植物诱发突变大会将在维也纳举行

2008年国际植物诱发突变大会将在维也纳举行

2008年国际植物诱发突变大会将在维也纳举行佚名【期刊名称】《作物学报》【年(卷),期】2007(33)10【摘要】自从上个世纪20年代以来,理化诱变技术在植物遗传变异创制、新品种培育和遗传学研究等领域发挥了重要作用。

适逢突变技术应用于植物遗传改良80周年之际,由国际粮农组织和国际原子能机构(FAO/IAEA)联合署主办的“国际植物诱发突变大会”将于2008年8月12日至15日在奥地利首都维也纳国际原子能机构总部举行。

这将是自1969年第一届国际植物诱发突变大会召开以来规模最大的一次学术盛会。

自1995年第七届国际植物诱发突变大会以来,植物功能基因组学的空前发展为诱发突变技术的研究与应用注入了新的活力。

诱发突变的基础研究以及在基于基因组学的农作物重要性状基因发掘和作物新性状塑造等方面均取得显著进展。

本次大会将成为世界植物突变及相关领域研究者与决策者展示新成果、交流新经验和探讨未来合作与发展的重要平台。

【总页数】1页(P1719-1719)【关键词】诱发突变;国际植物;维也纳;植物功能基因组学;国际原子能机构;诱变技术;新品种培育;遗传变异【正文语种】中文【中图分类】S512.103.5【相关文献】1.第5届国际奥林匹克世界科学大会将在澳大利亚的悉尼召开●国际奥林匹克运动医学大会将在澳大利亚的布里斯班举行 [J],2.2005年7月第十七届国际植物学大会将在奥地利维也纳召开 [J],3.2008年国际植物诱发突变大会将在维也纳举行 [J], 刘录祥4.第十一届国际植物组织培养和生物技术大会将在北京举行 [J],5.第十一届国际植物组织培养和生物技术大会将在北京举行 [J],因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Available online at Volatile communication in plant –aphid interactionsMartin de Vos 1and Georg Jander 2Volatile communication plays an important role in mediating the interactions between plants,aphids,and other organisms in the environment.In response to aphid infestation,many plants initiate indirect defenses through the release of volatiles that attract ladybugs,parasitoid wasps,and other aphid-consuming predators.Aphid-induced volatile release in the model plant Arabidopsis thaliana requires the jasmonatesignaling pathway.Volatile release is also induced by infection with aphid-transmitted viruses.Consistent with mathematical models of optimal transmission,viruses that are acquired rapidly by aphids induce volatile release to attract migratory aphids,but discourage long-term aphid feeding.Although the ecology of these interactions is well-studied,further research is needed to identify the molecular basis of aphid-induced and virus-induced changes in plant volatile release.Addresses 1KeyGene N.V.,P.O.Box 216,6700AE Wageningen,The Netherlands 2Boyce Thompson Institute for Plant Research,1Tower Road,Ithaca,NY 14853,United StatesCorresponding authors:Jander,Georg (gj32@ )Current Opinion in Plant Biology 2010,13:366–371This review comes from a themed issue on Biotic interactionsEdited by Jane E.Parker and Jeffrey G.Ellis Available online 4th June 20101369-5266/$–see front matter#2010Elsevier Ltd.All rights reserved.DOI 10.1016/j.pbi.2010.05.001IntroductionPlants have a tremendous capacity to counteract herbi-vores and pathogens by reprogramming their gene expression and metabolism.Induced responses to her-bivory and even insect oviposition include not only pro-duction of direct defenses such as toxins and spines,but also indirect defenses that involve the recruitment of predators to infested plants.Plant volatile blends elicited by herbivory are quantitatively and qualitatively different from those released in response to mechanical damage alone.Therefore,host plant-specific and herbivore-specific volatile release is a reliable cue that predators and parasitoids can use to find suitable prey.Different signaling pathways are induced by chewing insects,such as caterpillars and piercing-sucking insects,such as aphids and whiteflies.In some cases,this can result in antagon-istic effects,whereby infestation by one herbivore class interferes with the induction of direct or indirect defensesagainst another [1].Aphids,even though they cause relatively little physical damage to the plants upon which they are feeding,nevertheless induce robust plant defense responses.Natural enemies that are attracted by aphid-induced plant volatiles include coccinellid bee-tles (Figure 1),parasitoid wasps,lacewings,and hoverflies [2–5,6 ].In another type of tri-trophic interaction,plant viruses,many of which rely on aphids for their trans-mission,manipulate plant volatile release to recruit aphids and thereby promote virus spread.Plant –aphid –predator interactionsAlthough the aphid-derived elicitors that trigger plant volatile release remain largely unknown,many reports demonstrate that aphid-infested plants release terpenes and other volatile cues to attract predators.Some para-sitoids respond to uninfested plants,but most prefer aphid-elicited cues over ‘clean’plants [5].For instance,infestation of Vicia faba (broad bean),by Acyrthosiphon pisum (pea aphid)elicits attraction of the parasitoid Aphi-dius ervi [7].Wind tunnel and olfactometer behavior assays show that A.ervi females use volatile semiochem-icals from aphid-infested bean plants to locate their hosts,and are relatively unaffected by volatiles released from the aphids themselves [7–9].Additionally,coupled gas chromatography-electroantennography (GC-EAG)allowed the identification of plant-derived volatiles that trigger electrophysiological activity in the antennae of naı¨ve A.ervi females.Specific compounds showing electrophysiological activity,for example 6-methyl-5-hepten-2-one (Figure 2),were increased in V.fabae upon A.pisum feeding and,more importantly,were not released by bean plants during infestation with Aphis fabae (black bean aphid),which is not a host for A.ervi [7].Together,these results show that plant-derived volatiles can be reliable cues for foraging parasitoids.In addition to their innate ability to associate plant volatiles with suitable hosts,most parasitoids,whether specializing in attacking aphids or Lepidoptera,acquire a strong preference for volatile cues from previous success-ful oviposition (e.g.[10]).Experienced A.ervi and Diaer-etiella rapae parasitoids show increased responsiveness toaphid-induced plant volatiles compared to naı¨ve parasi-toids [7,11].Host location through detection of plant volatiles may be impacted by other environmental factors,including attack by other herbivores.In their natural ecosystems,plants often face multiple simultaneous attackers,each of which elicits a specific volatile blend.Infestation with Bemisia tabaci (silverleaf whitefly)inter-feres with (E)-beta-ocimene (Figure 2)induction and thereby indirect defense against Tetranychus urticae(two-spotted spider mite)in Phaseolus limensis (Lima bean)[1].However,in another recent example,Myzus persicae (green peach aphid)feeding on cabbage plants attracted D.rapae through the production of plant vola-tiles,an interaction that was not compromised by volatiles released through simultaneous infestation of the plants with non-host Plutella xylostella (diamondback moth)lar-vae [12].With the rise of Arabidopsis thaliana (mouse ear cress)as a model system,there has been more research on aphid-induced volatiles in the Brassicaceae.The parasitoid D.rapae specifically attacks aphids feeding on Brassicaceae,including both generalists such as M.persicae and special-ists such as Brevicoryne brassicae (cabbage aphid)and Lipaphis erysimi (mustard aphid)[13,14].Glucosinolates and their myrosinase-catalyzed breakdown products are key chemical defenses in Brassicaceae that have been adopted as host-finding cues by both specialist herbivores and parasitoids.A combination of behavioral and GC-EAG studies showed that glucosinolate-derived volatiles,for example,allyl isothiocyanate (Figure 2),attract D.rapae to aphid-infested plants [14–16].Analysis of mutant and transgenic lines showed that attraction of D.rapae to M.persicae -induced A.thaliana requires jasmonate pro-duction via the octadecanoid pathway,but that salicylate signaling negatively effects parasitoid orientation [11,17 ].This is probably due to the known antagonistic effect of salicylate on jasmonate-regulated volatile pro-duction.In addition to recognizing plant-derived volatiles,some natural enemies locate prey by eavesdropping on aphid –aphid communication involving sex and alarm phero-mones.Species-specific ratios of terpenoids,for example,nepetalactone (Figure 2),constitute the major sex phero-mones for many aphids.These volatile compounds attract female parasitoids in the field [18–20]and elicit oriented flights by A .ervi and Aphidius eadyi females in the lab [21].The lacewing predators Chrysopa cognata and Chrysopa oculata are similarly attracted by aphid sex pheromones in olfactometer and field trapping experiments [3,22].How-ever,sex pheromones are only produced in the fall,when aphids reproduce sexually,which would limit their utility as kairomones.By contrast,E -beta-farnesene (EBF;Figure 2),the major component of the aphid alarm pheromone,is produced throughout the year and by all life stages [23].Several studies demonstrate that EBF also attracts predators,alone or in association with plant vola-tiles [4,24,25].Interestingly,EBF is often found in theVolatile communication in plant –aphid interactions de Vos and Jander 367Figure1Coccinella novemnotata (nine-spotted ladybug),an endangered North American species (/),is shown eatingAcyrthosiphon pisum (pea aphid)on Vicia faba (broad bean).Coccinellid beetles and other predators can use plant-derived and aphid-derived volatile cues to locate their prey.Figure2Examples of volatile compounds that help to mediate tri-trophic plant –aphid –predator interactions.blend of aphid-induced plant volatiles,for example in M.persicae -infested Solanum tuberosum (potato)[26,27].Plant-produced EBF could provide protection by repel-ling aphids [28],by attracting predators [25],or perhaps by habituating aphids to the presence of alarm phero-mone by repeated stimulation [29],which could make them more vulnerable to predators.In addition to EBF,other plant-derived volatiles have dual functions,both repelling aphids and attracting predators in a species-specific context.Whereas M.persicae and L.erysimi are attracted to volatiles from untreated plants,volatiles released from A.thaliana sprayed with cis-jasmone repelled the generalist M.persicae ,but did not change the behavior of the specialist L.erysimi [30].The same volatile blend also attracted the generalist parasitoid A.ervi ,but not the specialist D.rapae [30].Phorodon humuli (hop aphid)feeding on Humulus lupulus (hop)induces release of volatile methyl salicylate (Figure 2)a compound that is detected by aphid antennae and repels migratory P.humuli [31,32].Methyl salicylate is also repellent to migratory Rhopalosiphum padi (bird cherry-oat aphid)when they are moving from their winter hosts that release methyl salicylate to several grass species that do not [33,34].However,lacewings and coccinellids use methyl salicylate as an attractive signal to find aphid prey [35,36].Plant –aphid –virus interactionsIn many aphid species,alate (winged)life stages (Figure 3)that can migrate in search of more suitable host plants develop in response to unfavorable growth conditions,crowding,the presence of predators,or exposure to EBF [37,38].Although they are not strong fliers,alate aphids can move considerable distances by drifting in the prevailing winds.Plant viruses,many of which depend on insect vectors for transmission [39],canthus rely on aphid transport not only to other parts of the same plant,but also to more distant,hosts.Two important aphid behaviors can affect the rate of virus transmission:(i)whether aphids feed preferentially from virus-infected tissue,and (ii)whether alate aphids preferentially orient toward virus-infected plants.Mathematical modeling suggests that optimal virus transmission occurs if aphids preferentially orient toward virus-infected plants,but only remain there long enough to acquire the virus and then move to a new,potentially uninfested host [40 ].Therefore,it would be in the best interests of the virus to make the plant attractive for aphid probing,but not necessarily more suitable for long-term aphid feeding.The time required for virus acquisition varies depending on the particular plant –aphid –virus interaction.Non-per-sistent,non-circulative viruses,which attach transiently to the aphid stylets,typically require shorter acquisition times than persistent,circulative viruses,which are taken into the aphid gut,pass via the hemolymph to the salivary glands,and are eventually injected back into a host plant.Visual and olfactory cues from virus-infested plants generally promote settling of alate aphids.However,changes in host plant suitability for aphid feeding vary with the type of virus transmission.A general observation is that persistent viruses,which require relatively long up-take periods,have no effect or make host plants more attractive for aphid feeding.By contrast,non-persistent viruses,which are acquired quickly,sometimes with a single aphid probe of a leaf,can make host plants less suitable for aphid feeding.M.persicae grow better on S.tuberosum and Solanum sarrachoides (hairy nightshade)infested with the persistently transmitted potato leafroll virus than on uninfested plants [41,42].Volatiles from plants infected with potato leafroll virus,are more attrac-tive than controls for both winged and non-winged M.persicae [43,44 ].Similarly,infection with the persist-ently transmitted barley yellow dwarf virus makes Triti-cum aestivum (wheat)volatiles more attractive for R.padi ,but feeding aphids did not preferentially emigrate from virus-infested plants in comparison to controls [45].Although,compared to uninfested plants,alate A.pisum settled preferentially on V.fabae infested with viruses,host plant suitability varied with the transmission mode of the infecting virus [46].Whereas V.fabae infection with the persistent pea enation mosaic virus did not affect growth of A.pisum ,infection with the non-persistent bean yellow mosaic virus reduced aphid growth and survival.Similarly,volatiles from Cucurbita pepo (cucumber)infected with the non-persistent cucumber mosaic virus are attractive for M.persicae and Aphis gossypii (cotton aphid),but aphids grew less well on virus-infested plants and emigrate more readily [47 ].Therefore,by providing a deceptive signal that causes aphids to probe virus-infested plants,but then moving on to look for a more suitable host,rapidly acquired non-circulative viruses may increase their rate of transmission.368Biotic interactionsFigure3Genetically identical winged (alate)and non-winged (apterous)Myzus persicae (green peach aphid)on a Nicotiana tabacum (tobacco)leaf.Winged aphids,which are produced in response to unfavorableconditions,use olfactory and visual cues to find suitable host plants.Future prospectsAlthough changing the volatile profile of crop plants to attract natural enemies of aphids has been proposed as a control measure,there is as yet no implemented,working system.For the long-term ecological success of such an indirect defense response,it is quite important that plant-derived volatiles are reliable signals of herbivory.If volatiles are routinely released in the absence of aphids or other suitable prey,this would lead to predator desen-sitization.Recent sequencing of three Nasonia genomes may make it possible to study such parasitoid wasp responses at the molecular level [6 ].However,more research needs to be done to identify plant gene expres-sion responses to aphid feeding,so that volatile pro-duction can be manipulated in a targeted manner.Although there is genetic evidence for aphid-specific resistance genes in several plant species,aphid elicitors of plant defense and gene expression responses have not yet been identified.The A.pisum genome [48 ]may facilitate the identification of proteinaceous elicitors in aphid saliva.Damage caused by aphid stylet penetration,changes in phloem pressure,and Ca 2+-dependent sieve element clogging are also potential elicitors of local and systemic plant gene expression responses that need to be investigated more thoroughly.For several plant species,global gene expression responses to aphid feeding and aphid-derived elicitors have been assessed with DNA microarrays [49–52].It is quite likely that much of the herbivory-induced plant volatile pro-duction is regulated at the level of transcription.However,signaling pathways leading from aphid-induced gene expression changes to altered volatile production have not yet been elucidated.Future research that combines analysis of both plant volatile responses and gene expres-sion changes may lead to the identification of regulatory networks and specific metabolic pathways that are acti-vated by plants as indirect defenses to attract predators that consume aphids and other phloem-feeding insects.Whereas genetic manipulation of the plant side of plant –insect interactions is now quite feasible,very little is known about the molecular biology of the insect responses to plant volatiles.RNA interference approaches that are being developed for many insect species,in-cluding aphids [53 ],and new insect genome sequences [6,48 ],may make it possible to study volatile response pathways in aphids and their predators in a controlled manner.Volatiles probably play a role in other multi-level interactions involving plants and aphids,but have not yet been investigated in detail.For instance,hyperparasitoids might use volatile cues,that is parasitized aphid-induced plant volatiles,to locate prey infested by parasitoids.Given that different aphid species elicit different plant volatile blends,aphid-tending ants might use these vola-tiles to differentiate between aphids that can and cannot be tended.Although numerous studies have demonstrated the effects of virus infection on plant –aphid interactions,not much is known about the mechanism by which viruses alter the physiology of the plant to make it more or less attractive for aphid feeding.Relatively little research in this field has been done with genetically tractable model plants that would facilitate the identifi-cation of gene expression changes.Publicly available A.thaliana DNA microarray data (e.g.http://www.geneves-tigator.ethz.ch )can provide evidence of virus-induced plant changes that would influence aphid feeding.For instance,infestation of A.thaliana with turnip mosaic virus reduces expression of glucosinolate biosynthesis genes [54 ],which could influence aphid attraction and feeding success.Additional research also needs to be conducted to determine whether virus transmission is actually altered in the manner that is predicted by math-ematical models and insect behavior assays [40 ,47 ].One way in which this could be accomplished more easily is by tracking aphid transmission of viruses expressingVolatile communication in plant –aphid interactions de Vos and Jander 369Figure4Arabidopsis thaliana infected with turnip mosaic virus expressing jellyfish green fluorescent protein (TuMV-GFP)is fed upon by Myzus persicae (green peach aphid),an important vector of TuMV in agricultural settings.In this image,which was made under ultraviolet light,uninfected plant tissue shows red chlorophyll auto-fluorescence and tissue infected with TuMV-GFP fluoresces green.M.persicae are visible as grayish specks on the cauline leaf at the center of the image.Infection with aphid-transmitted viruses such as TuMV can cause volatile release that makes plants more attractive to migratory winged aphids.jellyfish greenfluorescent protein(GFP;Figure4). Finally,the literature on plant–aphid–virus interactions perhaps may be overly virus-centric.The focus of the experiments is generally:‘What does the virus do to promote transmission by aphids?’However,one should also consider a different point of view:‘What must the plant do to limit virus spread by aphids?’Particularly for larger plants such as trees,aphid transmission could accelerate virus spread from one part of the plant to another,and there could be a selective advantage for plants that deter aphid settling and feeding in response to virus infestation.AcknowledgementsWe thank S.Whitham for GFP-expressing turnip mosaic virus,J.Losey for C.novemnotata,M.Mescher for providing data in advance of publication, and M.Haribal for helpful discussions.This work was funded by NSF grant IOS-0718733and USDA grant2009-05201.References and recommended readingPapers of particular interest,published within the annual period of review,have been highlighted as:of special interestof outstanding interest1.Zhang PJ,Zheng SJ,van Loon JJ,Boland W,David A,Mumm R,Dicke M:Whiteflies interfere with indirect plant defenseagainst spider mites in Lima bean.Proc Natl Acad Sci U S A2009,106:21202-21207.2.Verheggen FJ,Mescher MC,Haubruge E,Moraes CM,Schwartzberg EG:Emission of alarm pheromone in aphids:anon-contagious phenomenon.J Chem Ecol2008,34:1146-1148.3.Zhu J,Obrycki JJ,Ochieng SA,Baker TC,Pickett JA,Smiley D:Attraction of two lacewing species to volatiles produced by host plants and aphid prey.Naturwissenschaften2005,92:277-281. 4.Francis F,Lognay G,Haubruge E:Olfactory responses to aphidand host plant volatile releases:(E)-beta-farnesene aneffective kairomone for the predator Adalia bipunctata.J Chem Ecol2004,30:741-755.5.Hatano E,Kunert G,Michaud JP,Weisser WW:Chemical cuesmediating aphid location by natural enemies.Eur J Ent2008, 105:797-806.6. Nasonia Genome Working Group:Functional and evolutionary insights from the genomes of three parasitoid Nasonia species.Science2010,327:343–348.This paper describes the genome sequences of three parasitoid wasps.In addition to providing new insights into volatile responses and other unique aspects of parasitoid biology,these genome sequences will make it possible to develop new methods for utilizing parasitoids in the control of aphids and other pest insects.7.Du Y,Poppy GM,Powell W,Pickett JA,Wadhams LJ,Woodcock CM:Identification of semiochemicals releasedduring aphid feeding that attract parasitoid Aphidius ervi.J Chem Ecol1998,24:1355-1368.8.Du YJ,Poppy GM,Powell W:Relative importance ofsemiochemicals fromfirst and second trophic levels in host foraging behavior of Aphidius ervi.J Chem Ecol1996,22:1591-1605.9.Guerrieri E,Pennacchio F,Tremblay E:Flight behavior of theaphid parasitoid Aphidius ervi(Hymenoptera,Braconidae)in response to plant and host volatiles.Eur J Ent1993,90:415-421.10.Schnee C,Kollner TG,Held M,Turlings TC,Gershenzon J,Degenhardt J:The products of a single maize sesquiterpenesynthase form a volatile defense signal that attracts naturalenemies of maize herbivores.Proc Natl Acad Sci U S A2006, 103:1129-1134.11.Girling RD,Hassall M,Turner JG,Poppy GM:Behaviouralresponses of the aphid parasitoid Diaeretiella rapae tovolatiles from Arabidopsis thaliana induced by Myzuspersicae.Ent Exp Appl2006,120:1-9.12.Agbogba BC,Powell W:Effect of the presence of a nonhostherbivore on the response of the aphid parasitoid Diaeretiella rapae to host-infested cabbage plants.J Chem Ecol2007,33:2229-2235.13.Blande JD,Pickett JA,Poppy GM:A comparison ofsemiochemically mediated interactions involving specialistand generalist Brassica-feeding aphids and the Braconidparasitoid Diaeretiella rapae.J Chem Ecol2007,33:767-779. 14.Bradburne RP,Mithen R:Glucosinolate genetics and theattraction of the aphid parasitoid Diaeretiella rapae toBrassica.Proc Biol Sci2000,267:89-95.15.Pope TW,Kissen R,Grant M,Pickett JA,Rossiter JT,Powell G:Comparative innate responses of the aphid parasitoidDiaeretiella rapae to alkenyl glucosinolate derivedisothiocyanates,nitriles,and epithionitriles.J Chem Ecol2008, 34:1302-1310.16.Kissen R,Pope TW,Grant M,Pickett JA,Rossiter JT,Powell G:Modifying the alkylglucosinolate profile in Arabidopsisthaliana alters the tritrophic interaction with the herbivoreBrevicoryne brassicae and parasitoid Diaeretiella rapae.J Chem Ecol2009,35:958-969.17.Girling RD,Madison R,Hassall M,Poppy GM,Turner JG:Investigations into plant biochemical wound-responsepathways involved in the production of aphid-induced plantvolatiles.J Exp Bot2008,59:3077-3085.Responses of the parasitoid Diaeretiella rapae to volatiles from Arabi-dopsis thaliana mutants with defects in jasmonate,ethylene,and salicy-late signaling were measured.This is one of thefirst publications to address the molecular biology of aphid-induced volatile release in plants.18.Hardie J,Hick AJ,Holler C,Mann J,Merritt L,Nottingham SF,Powell W,Wadhams LJ,Witthinrich J,Wright AF:The responses of Praon spp parasitoids to aphid sex-pheromonecomponents in thefield.Ent Exp Appl1994,71:95-99.19.Hardie J,Nottingham SF,Powell W,Wadhams LJ:Syntheticaphid sex-pheromone lures female parasitoids.Ent Exp Appl 1991,61:97-99.20.Gabrys BJ,Gadomski HJ,Klukowski Z,Pickett JA,Sobota GT,Wadhams LJ,Woodcock CM:Sex pheromone of cabbage aphid Brevicoryne brassicae:identification andfield trapping ofmale aphids and parasitoids.J Chem Ecol1997,23:1881-1890.21.Glinwood RT,Du YJ,Powell W:Responses to aphid sexpheromones by the pea aphid parasitoids Aphidius ervi andAphidius eadyi.Ent Exp Appl1999,92:227-232.22.Boo KS,Chung IB,Han KS,Pickett JA,Wadhams LJ:Responseof the lacewing Chrysopa cognata to pheromones of its aphid prey.J Chem Ecol1998,24:631-643.23.Pickett JA,Wadhams LJ,Woodcock CM,Hardie J:The chemicalecology of aphids.Annu Rev Entomol1992,37:67-90.24.al Abassi S,Birkett MA,Pettersson J,Pickett JA,Wadhams LJ,Woodcock CM:Response of the seven-spot ladybird to anaphid alarm pheromone and an alarm pheromone inhibitor is mediated by paired olfactory cells.J Chem Ecol2000,26:1765-1771.25.Beale MH,Birkett MA,Bruce TJ,Chamberlain K,Field LM,Huttly AK,Martin JL,Parker R,Phillips AL,Pickett JA et al.:Aphid alarm pheromone produced by transgenic plants affects aphid and parasitoid behavior.Proc Natl Acad Sci U S A2006,103:10509-10513.26.Harmel N,Almohamad R,Fauconnier ML,Du Jardin P,Verheggen F,Marlier M,Haubruge E,Francis F:Role of terpenes from aphid-infested potato on searching and ovipositionbehavior of Episyrphus balteatus.Insect Sci2007,14:57-63. 27.Gosset V,Harmel N,Gobel C,Francis F,Haubruge E,Wathelet JP,du Jardin P,Feussner I,Fauconnier ML:Attacks by a piercing-sucking insect(Myzus persicae Sultzer)or a chewing insect(Leptinotarsa decemlineata Say)on potato plants(Solanum370Biotic interactionstuberosum L.)induce differential changes in volatilecompound release and oxylipin synthesis.J Exp Bot2009,60:1231-1240.28.Gibson RW,Pickett JA:Wild potato repels aphids by release ofaphid alarm pheromone.Nature1983,302:608-609.29.Petrescu AS,Mondor EB,Roitberg BD:Subversion of alarmcommunication:do plants habituate aphids to their own alarm signals?Can J Zool2001,79:737-740.30.Bruce TJA,Matthes MC,Chamberlain K,Woodcock CM,Mohib A,Webster B,Smart LE,Birkett MA,Pickett JA,Napier JA:cis-Jasmone induces Arabidopsis genes that affect the chemical ecology of multitrophic interactions with aphids and theirparasitoids.Proc Natl Acad Sci U S A2008,105:4553-4558. 31.Pope TW,Campbell CA,Hardie J,Wadhams LJ:Electroantennogram responses of the three migratory forms of the damson-hop aphid,Phorodon humuli,to aphidpheromones and plant volatiles.J Insect Physiol2004,50:1083-1092.32.Campbell CAM,Pettersson J,Pickett JA,Wadhams LJ,Woodcock CM:Spring migration of damson-hop aphid,Phorodon humili(Homoptera,Aphididae),and summer host plant-derived semiochemicals released on feeding.J Chem Ecol1993,19:1569-1576.33.Pettersson J,Pickett JA,Pye BJ,Quiroz A,Smart LE,Wadhams LJ,Woodcock CM:Winter host component reduces colonization by bird-cherry oat aphid,Rhopalosiphum padi(L) (Homoptera,Aphididae),and other aphids in cerealfields.J Chem Ecol1994,20:2565-2574.34.Glinwood RT,Pettersson J:Change in response ofRhopalosiphum padi spring migrants to the repellent winter host component methyl salicylate.Ent Exp Appl2000,94:325-330.35.James DG,Price TS:Field-testing of methyl salicylate forrecruitment and retention of beneficial insects in grapes and hops.J Chem Ecol2004,30:1613-1628.36.Zhu J,Park KC:Methyl salicylate,a soybean aphid-inducedplant volatile attractive to the predator Coccinellaseptempunctata.J Chem Ecol2005,31:1733-1746.37.Braendle C,Davis GK,Brisson JA,Stern DL:Wing dimorphism inaphids.Heredity2006,97:192-199.38.Kunert G,Schmoock-Ortlepp K,Reissmann U,Creutzburg S,Weisser WW:The influence of natural enemies on winginduction in Aphis fabae and Megoura viciae(Hemiptera:Aphididae).Bull Ent Res2008,98:57-62.39.Ng JCK,Perry KL:Transmission of plant viruses by aphidvectors.Mol Plant Pathol2004,5:505-511.40. Sisterson MS:Effects of insect-vector preference for healthy or infected plants on pathogen spread:insights from a model. J Econ Entomol2008,101:1-8.The author describes mathematical models of aphid-mediated virus transmission,showing how the frequency of infected plants,host plant recognition,and feeding preferences influence the rate of virus spread.41.Srinivasan R,Alvarez JM,Bosque-Perez NA,Eigenbrode SD,Novy RG:Effect of an alternate weed host,hairy nightshade, Solanum sarrachoides,on the biology of the two mostimportant potato leafroll virus(Luteoviridae:Polerovirus)vectors,Myzus persicae and Macrosiphum euphorbiae(Aphididae:Homoptera).Environ Entomol2008,37:592-600.42.Castle SJ,Berger PH:Rates of growth and increase of Myzuspersicae on virus-infected potatoes according to type of virus-vector relationship.Ent Exp Appl1993,69:51-60.43.Ngumbi E,Eigenbrode SD,Bosque-Perez NA,Ding H,Rodriguez A:Myzus persicae is arrested more by blends than by individual compounds elevated in headspace of PLRV-infected potato.J Chem Ecol2007,33:1733-1747.44.Werner BJ,Mowry TM,Bosque-Perez NA,Ding HJ,Eigenbrode SD:Changes in green peach aphid responses topotato leafroll virus-induced volatiles emitted during disease progression.Environ Entomol2009,38:1429-1438.Myzus persicae are attracted to volatiles from virus-infected potatoes in a manner that is dependent on plant age and disease progression.Volatile compounds in the headspace of infected plants may explain differences in aphid behavior.45.Medina-Ortega KJ,Bosque-Perez NA,Ngumbi E,Jimenez-Martinez ES,Eigenbrode SD:Rhopalosiphum padi(Hemiptera: Aphididae)responses to volatile cues from barley yellow dwarf virus-infected wheat.Env Ent2009,38:836-845.46.Hodge S,Powell G:Complex interactions between a plantpathogen and insect parasitoid via the shared vector-host:consequences for host plant infection.Oecologia2008,157:387-397.47.Mauck KE,De Moraes CM,Mescher MC:Deceptive chemicalsignals induced by a plant virus attract insect vectors toinferior hosts.Proc Natl Acad Sci USA2010,107:3600-3605. Cucumber mosaic virus infection of cucumbers not only induces release of aphid-attracting volatiles,but also makes the plants less suitable for aphid feeding.Thereby,viruses are acquired and transmitted rapidly to new host plants.Thesefield observations are consistent with a model for optimal transmission of non-circulative viruses proposed in reference [40 ].48.The International Aphid Genomics Consortium(G.Jander):Genome sequence of the pea aphid Acyrthosiphon pisum.PLoS Biol2010,8(2):e1000313.doi:10.1371/journal.pbio.1000313.Thefirst aphid genome sequence,which is described in this paper,will provide new tools for studying the volatiles that mediate plant–aphid interactions.Analysis of the Acyrthosiphon pisum genome identifies likely receptors and odorant binding proteins that may be involved in host plant recognition and aphid–aphid communication.49.Couldridge C,Newbury HJ,Ford-Lloyd B,Bale J,Pritchard J:Exploring plant responses to aphid feeding using a fullArabidopsis microarray reveals a small number of genes with significantly altered expression.Bull Ent Res2007,57:3183-3193.50.De Vos M,Jander G:Myzus persicae(green peach aphid)salivary components induce defence responses inArabidopsis thaliana.Plant Cell Environ2009,32:1548-1560. 51.Kusnierczyk A,Winge P,Jorstad TS,Troczynska J,Rossiter JT,Bones AM:Towards global understanding of plant defenceagainst aphids—timing and dynamics of early Arabidopsisdefence responses to cabbage aphid(Brevicoryne brassicae) attack.Plant Cell Environ2008,31:1097-1115.52.Smith CM,Liu X,Wang LJ,Chen MS,Starkey S,Bai J:Aphidfeeding activates expression of a transcriptome of oxylipin-based defense signals in wheat involved in resistance toherbivory.J Chem Ecol2010,36:260–276.53.Mutti NS,Louis J,Pappan LK,Pappan K,Begum K,Chen MS,Park Y,Dittmer N,Marshall J,Reese JC et al.:A protein from the salivary glands of the pea aphid,Acyrthosiphon pisum,isessential in feeding on a host plant.Proc Natl Acad Sci U S A 2008,105:9965-9969.This research group developed thefirst RNA interference approach that can be used to silence expression of a gene encoding a secreted aphid salivary protein.The study also demonstrates how an individual aphid salivary protein is essential for successful phloem feeding.54.Yang CL,Guo R,Jie F,Nettleton D,Peng JQ,Carr T,Yeakley JM, Fan JB,Whitham SA:Spatial analysis of Arabidopsis thaliana gene expression in response to turnip mosaic virus infection.Mol Plant Microbe Interact2007,20:358-370.Analysis of virus-induced gene expression changes shows repression of glucosinolate biosynthesis,which may affect aphid host plant choice and feeding.These results suggest the use of Arabidopsis thaliana glucosi-nolate mutants to study aphid responses to virus infection.Volatile communication in plant–aphid interactions de Vos and Jander371。

相关文档
最新文档