2021年中考数学二轮复习重难题型突破类型二图形规律
2021年九年级数学中考二轮复习探索规律专题突破训练:数字的变化规律(附答案)
2021年九年级数学中考二轮复习探索规律专题突破训练:数字的变化规律(附答案)1.计算1+2﹣3﹣4+5+6﹣7﹣8+…+2017+2018﹣2019﹣2020的值为()A.0B.﹣1C.2020D.﹣20202.按一定规律排列的单项式:a,﹣a2,a3,﹣a4,a5,﹣a6,……第2020个单项式是()A.2020a B.﹣2020a C.a2020D.﹣a20203.已知函数f(x)=,若M=f(1)+f(2)+f(3)+…+f(2013)+f(2014),N=f ()+f()+f()+…+f()+f(),则M+N=()A.2014B.C.2013D.4.一列数1,5,11,19…按此规律排列,第7个数是()A.37B.41C.55D.715.在数列,,,,,,,,,,…中,请你观察数列的排列规律,推算该数列中的第5055个数为()A.B.C.D.6.将一列有理数﹣1,2,﹣3,4,﹣5,6,…,按如图所示进行排列,则﹣2021应排在()A.A位置B.B位置C.D位置D.E位置7.已知f(1)=2(取1×2的末位数字),f(2)=6(取2×3的末位数字),f(3)=2(取3×4的末位数字),…,则f(1)+f(2)+f(3)+…+f(2021)的值为()A.6B.4028C.4042D.40488.已知整数a1,a2,a3,a4,…,满足下列条件:a1=0,a2=﹣|a1+1|,a3=﹣|a2+2|,…,依此类推,则a2035的值为()A.﹣2035B.2035C.﹣1018D.﹣10179.一个盒子里装有不多于200颗糖,如果每次2颗,3颗,4颗或6颗的取出,最终盒内都只剩下一颗糖,如果每次以11颗的取出,那么正好取完,则盒子里共有颗糖.10.按一定规律排列的一列数依次为,﹣,,﹣,,﹣,…,按此规律排列下去,这列数中第8个数是,第n个数是(n为正整数).11.一组按规律排列的式子:,,,,,其中第8个式子是,第n个式子是(用含的n式子表示,n为正整数).12.已知整数a1,a2,a3,a4,…满足下列条件:a1=0,a2=﹣|a1+1|,a3=﹣|a2+2|,a4=﹣|a3+3|,…,依此类推,则a2019的值为.13.设第n行第m个数为a n,m.满足a n,n=a n,1=,a n,m=a n+1,m+a n+1,m+1,求a12,11=.14.正整数按如图所示的规律排列,则第29行第30列的数字为.15.已知a1=0,a n+1=﹣|a n+n|(n≥1,且n为整数),则a2020的值是.16.正整数按如图的规律排列.请写出第20行,第21列的数字.17.观察下列一组数:﹣,,﹣,,﹣,…,它们是按一定规律排列的,那么这一组数的第n个数是.18.如果a是不为1的有理数,我们把称为a的差倒数.如:2的差倒数是=﹣1,﹣1的差倒数是=.已知a1=4,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数,…,依此类推,则a2022=.19.观察下列两个数的积(这两个数的十位上的数相同,个位上的数的和等于10);71×79=5609;24×26=624;35×35=1225;53×57=3021;…(1)计算83×87=,552=.(2)根据观察与计算能得出什么结论,请将它用文字或字母表示出来;(3)证明得出的结论.20.阅读材料:求1+2+22+23+…+22019+22020的值.解:设S=1+2+22+23+…+22019+22020①,将等式①的两边同乘以2,得2S=2+22+23+24+…+22020+22021②,用②﹣①得,2S﹣S=22021﹣1,即S=22021﹣1.即1+2+22+23+…+22019+22020=22021﹣1.请仿照此法计算:(1)请直接填写1+2+22+23的值为;(2)求1+5+52+53+…+510的值;(3)请直接写出1﹣10+102﹣103+104﹣105+…﹣102019+102020﹣的值.21.我们把按一定规律排列的一列数称为数列.若对于一个数列中任意相邻有序的三个数a,b,c总满足c=ab+2a﹣b,则称这个数列为“梦数列”.(1)若0,1,﹣1,2,y是“梦数列”,则y=;(2)如果数列…,x,3,6x﹣1,…是“梦数列”,求x的值;(3)如果数列…,2m,n,5…是“梦数列”,求代数式8m﹣2n+4mn﹣9的值.22.有一系列等式:第1个:52﹣12=8×3;第2个:92﹣52=8×7;第3个:132﹣92=8×11;第4个:172﹣132=8×15;……(1)请写出第5个等式:.(2)请写出第n个等式,并加以验证.(3)依据上述规律,计算:8×3+8×7+8×11+……+8×399.23.观察下列等式:=1,=,=.将以上三个等式的两边分别相加,得:+=1=1=.(1)直接写出计算结果:=.(2)计算:.(3)猜想并直接写出:=.(n 为正整数)24.阅读下列材料,然后回答问题:观察下列等式:=1,=,将以上三个等式相加得:=1=1=.(1)猜想并写出:=;(2)直接写出下列各式的结果:①=;②=;(3)探究并计算:.25.观察下列各式:12+32+42=2×(12+32+3);22+42+62=2×(22+42+8);32+52+82=2×(32+52+15);…(1)用a,b,c表示等式左边的由小到大的三个底数,发现c与a,b的数量关系是;(2)等式右边括号内的三个数可用a,b表示为:;(3)用a,b表示你发现的等式,并加以证明.26.定义一种新运算“⊙”,观察下列等式:①1⊙3=1×3﹣(﹣1)﹣(﹣3)=7,②(﹣1)⊙(﹣2)=(﹣1)×(﹣2)﹣1﹣2=﹣1,③0⊙(﹣2)=0×(﹣2)﹣0﹣2=﹣2,④4⊙(﹣3)=4×(﹣3)﹣(﹣4)﹣3=﹣11,…(1)计算(﹣5)⊙3的值;(2)有理数的加法和乘法运算满足交换律,“⊙”运算是否满足交换律?请说明理由.27.有一列数,按一定规律排成1,,,,,,….(1)这列数中的第7个数是,第n个数是.(2)若其中某三个相邻数的和是,则这三个数中最大的数是多少?28.观察下列等式:①1﹣1﹣=﹣;②﹣﹣=﹣;③﹣﹣=﹣;④﹣﹣=﹣;…根据上述规律解决下列问题:(1)完成第⑤个等式;(2)写出你猜想的第n个等式(用含n的式子表示)并证明其正确性.29.我们将不大于2020的正整数随机分为两组,第一组按照升序排列得到a1<a2<…<a1010,第二组按照降序排列得到b1>b2>…>b1010.求|a1﹣b1|+|a2﹣b2|+…+|a1010﹣b1010|的所有可能值.30.观察下列等式:12=;12+22=;12+22+32=;12+22+32+42=;…(1)根据上述规律,求12+22+32+42+52的值;(2)你能用一个含有n(n为正整数)的算式表示这个规律吗?请直接写出这个算式(不计算).(3)根据你发现的规律,计算下面算式的值:62+72+82+92+…+592+602.参考答案1.解:∵1+2﹣3﹣4=﹣4,5+6﹣7﹣8=﹣4,即每四项结果为﹣4,∵2020÷4=505,∴1+2﹣3﹣4+5+6﹣7﹣8+…+2013+2014﹣2015﹣2016=﹣4×505=﹣2020.故选:D.2.解:∵一列单项式为:a,﹣a2,a3,﹣a4,a5,﹣a6,…,∴第n个单项式为(﹣1)n+1•a n,当n=2020时,这个单项式是(﹣1)2020+1•a2020=﹣a2020,故选:D.3.解:根据题意可知:f(2)==,f()=÷(1+)=,∴f(2)+f()=+=1,…可得:f(2014)+f()=1,又∵f(1)=,∴M+N=2013+=.故选:D.4.解:1=1×2﹣1,5=2×3﹣1,11=3×4﹣1,19=4×5﹣1,…第n个数为n(n+1)﹣1,则第7个数是:55.故选:C.5.解:观察数列发现规律:第n组的分数有n个,它们的分子是从1开始的连续自然数,分母是从n开始的连续降序自然数,因为前100组有:1+2+3+…+100=5050个分数,所以5055个数在第101组的第5个,分母为101﹣4=97,分子是5,所以第5055个数为:.故选:B.6.解:由图可知,每个凸起对应5个数字,这些数字的奇数都是负数,偶数都是正数,∵(2021﹣1)÷5=2020÷5=404,∴﹣2021应排在E位置,故选:D.7.解:∵f(1)=2(取1×2的末位数字),f(2)=6(取2×3的末位数字),f(3)=2(取3×4的末位数字),f(4)=0(取4×5的末位数字),f(5)=0(取5×6的末位数字),f(6)=2(取6×7的末位数字),f(7)=6(取7×8的末位数字),f(8)=2(取8×9的末位数字),f(9)=0(取9×10的末位数字),f(10)=0(取10×11的末位数字),f(11)=2(取11×12的末位数字),…,可知末位数字以2,6,2,0,0依次出现,∵2021÷5=404…1,∴f(1)+f(2)+f(3)+…+f(2021)=(2+6+2+0+0)×404+2=10×404+2=4040+2=4042,故选:C.8.解:由题意可得,a1=0,a2=﹣|a1+1|=﹣1,a3=﹣|a2+2|=﹣1,a4=﹣|a3+3|=﹣2,a5=﹣|a4+4|=﹣2,…,∵(2035﹣1)÷2=2034÷2=1017,∴a2035=﹣1017,故选:D.9.解:已知如果每次11颗地取出正好取完,则盒子内糖数必为11的倍数.又知盒子里装有不多于200颗糖,则盒子内糖数可能为11、22、33、44、55、66、77、88、99、110、121、132、143、154、165、176、187、198.又已知如果每次2颗,3颗,4颗或6颗地取出,最终盒内都只剩一颗糖,则盒子内糖数为12的倍数+1.又知盒子里装有不多于200颗糖则盒子内糖数可能为13,25,37,49,61,73,85,97,109,121,133,145,157,169,181,193.取上面两组数的交集可得121,故盒子里共有121颗糖.故答案为:121.10.解:根据分析可知:一列数依次为:,﹣,,﹣,,﹣,…,按此规律排列下去,则这列数中的第8个数是﹣,所以第n个数是:(﹣1)n+1(n是正整数).故答案为:﹣;(﹣1)n+1.11.解:∵=(﹣1)2•,﹣=(﹣1)3•,=(﹣1)4•,…∴第8个式子是,第n个式子为:(﹣1)n+1•.故答案是:;(﹣1)n+1•.12.解:a1=0,a2=﹣|a1+1|=﹣|0+1|=﹣1,a3=﹣|a2+2|=﹣|﹣1+2|=﹣1,a4=﹣|a3+3|=﹣|﹣1+3|=﹣2,a5=﹣|a4+4|=﹣|﹣2+4|=﹣2,a6=﹣|a5+5|=﹣|﹣2+5|=﹣3,a7=﹣|a6+6|=﹣|﹣3+6|=﹣3,…,所以,n是奇数时,a n=﹣(n﹣1),n是偶数时,a n=﹣,∴a2019=﹣(2019﹣1)=﹣1009.故答案为:﹣1009.13.解:因为a n,n=a n,1=,所以a11,11=a11,1=,a12,12=a12,1=,因为a n,m=a n+1,m+a n+1,m+1,所以a12,11=a11,11﹣a12,12=﹣=.故答案为:.14.解:根据图表分析如下:第一行:首个数字1,横向箭头共有1个数字,第二行:首个数字4,横向箭头共有2个数字,第三行:首个数字9,横向箭头共有3个数字,第四行:首个数字16,横向箭头共有4个数字,可以发现每行首个数字是行数的平方,每行横向箭头数字个数等于行数,因此,第29行第30列的数字应该为第30行第1列上面的数字的平方减去30,302﹣30=870.故答案为:870.15.解:∵a1=0,a n+1=﹣|a n+n|(n≥1,且n为整数),∴a2=﹣|0+1|=﹣1,a3=﹣|﹣1+2|=﹣1,a4=﹣|﹣1+3|=﹣2,a5=﹣|﹣2+4|=﹣2,a6=﹣|﹣2+5|=﹣3,a7=﹣|﹣3+6|=﹣3,…,∴a2020=﹣=﹣1010,故答案为:﹣1010.16.解:第一行第二列对应的数字为:2=1×2,第二行第三列对应的数字为:6=2×3,第三行第四列对应的数字为:12=3×4,第四行第五列对应的数字为:20=4×5,…第20行,第21列对应的数字为:20×21=420;故答案为:420;17.解:观察下列一组数:﹣=﹣,=,﹣=﹣,=,﹣=﹣,…,它们是按一定规律排列的,那么这一组数的第n个数是:(﹣1)n.故答案为:(﹣1)n.18.解:∵a1=4a2===﹣,a3===,a4===4,…数列以4,﹣,三个数依次不断循环,∵2022÷3=674,∴a2022=a3=,故答案为:.19.解:(1)∵83×87=7221,552=3025,(2)可得规律为:十位上数字乘以十位上数字加一作为结果的千和百位数字,两个个位相乘作为结果的个位和十位.(3)设十位数字为x,个位数字为y,一个数为10x+y,则另一个数为10x+10﹣y=10(x+1)﹣y,(10x+y)[10(x+1)﹣y]=100x(x+1)+y(10﹣y),前一项就是十位上数字乘以十位上数字加一,后一项就是两个个位数字相乘.故答案为:(1)7221;3025.20.解:(1)1+2+22+23=1+2+4+8=15,故答案为:15;(2)设S=1+5+52+53+ (510)则5S=5+52+53+ (511)∴5S﹣S=511﹣1,∴4S=511﹣1,∴S=,即1+5+52+53+…+510=;(3)设S=1﹣10+102﹣103+104﹣105+…﹣102019+102020,则10S=10﹣102+103﹣104+105﹣…﹣102020+102021,∴S+10S=1+102021,∴11S=1+102021,∴S=,∴1﹣10+102﹣103+104﹣105+…﹣102019+102020﹣=﹣=.21.解:(1)∵0,1,﹣1,2,y是“梦数列”,∴y=﹣1×2+2×(﹣1)﹣2=﹣2+(﹣2)+(﹣2)=﹣6,故答案为:﹣6;(2)∵数列…,x,3,6x﹣1,…是“梦数列”,∴6x﹣1=3x+2x﹣3,解得x=﹣2,即x的值为﹣2;(3)∵数列…,2m,n,5…是“梦数列”,∴5=2mn+4m﹣n,∴8m﹣2n+4mn﹣9=2(2mn+4m﹣n)﹣9=2×5﹣9=1.22.解:(1)由题意可知:相间两个奇数的乘方差,等于这个两数的平均数的8倍,∴第5个等式为:212﹣172=8×19,故答案为:212﹣172=8×19;(2)第n个等式为:(4n+1)2﹣(4n﹣3)2=8(4n﹣1).验证:(4n+1)2﹣(4n﹣3)2=16n2+8n+1﹣(16n2﹣24n+9)=32n﹣8=8(4n﹣1),∴(4n+1)2﹣(4n﹣3)2=8(4n﹣1);(3)8×3+8×7+8×11+……+8×399=52﹣12+92﹣52+132﹣92+……+4012﹣3972=4012﹣12=402×400=160800.23.解:(1)=1﹣+…+=1﹣=,故答案为:;(2)=1﹣+…+=1﹣==;(3)=×(1﹣+…+)=×(1﹣)=×=×=,故答案为:.24.解:(1)由题意可得,=,故答案为:;(2)①=1﹣+…+=1﹣=,故答案为:;②==1﹣+…+=1﹣==,故答案为:;(3)=×(+…+)=×()=×=.25.解:(1)∵12+32+42=2×(12+32+3);22+42+62=2×(22+42+8);32+52+82=2×(32+52+15);…,∴用a,b,c表示等式左边的由小到大的三个底数,则c=a+b,故答案为:c=a+b;(2)∵12+32+42=2×(12+32+3);22+42+62=2×(22+42+8);32+52+82=2×(32+52+15);…,∴用a,b,c表示等式左边的由小到大的三个底数,则等式右边括号内的三个数可表示为a2+b2+ab,故答案为:a2+b2+ab;(3)a2+b2+(a+b)2=2(a2+b2+ab),证明:∵a2+b2+(a+b)2=a2+b2+a2+2ab+b2=2(a2+b2+ab),∴a2+b2+(a+b)2=2(a2+b2+ab).26.解:(1)观察已知等式可知:(﹣5)⊙3=﹣5×3﹣5﹣(﹣3)=﹣17;(2)“⊙”运算满足交换律,理由如下:因为a⊙b=ab﹣(﹣a)﹣(﹣b)=ab+a+b;b⊙a=ba﹣(﹣b)﹣(﹣a)=ab+b+a=ab+a+b=a⊙b.所以a⊙b=b⊙a.27.解:(1)∵一列数为1,,,,,,….∴这列数的第n个数为,当n=7时,这个数是=﹣,故答案为:﹣,;(2)设这三个数是4x,﹣2x,x,则4x+(﹣2x)+x=,解得x=﹣,则﹣2x=,4x=﹣,故这三个数中最大的数是.28.解:(1)∵左边的第2项和第3项的分母分别是连续的奇数和偶数,右边的分母为是左边第2项和第3项的分母之积,∴第5个等式为:﹣﹣=﹣;(2)第n个等式为:﹣﹣=﹣,证明:左边==﹣,右边=﹣,∴左边=右边,∴原式成立.29.解:(1)若a k≤1010,且b k≤1010,则a1<a2<…<a k≤1010,1010≥b k>b k+1>…>b1010,则a1,a2,…a k,b k,……,{b1010,共1011个数,不大于1010不可能;(2)若a k>1010,且b k>1010,则a1010>a1009>…>a k+1>a k>1010及b1>b2>…>b k>1010,则${b}_{1},……,{b}_{k},{a}_{k}……{a}_{1010}共1011个数都大于100,也不可能;∴|a1﹣b1|,……,|a1010﹣b1010|中一个数大于1010,一个数不大于1010,∴|a1﹣b1|+|a2﹣b2|+…+|a1010﹣b1010|=1010×1010=1020100.30.解:(1)12+22+32+42+52==55,即12+22+32+42+52的值是55;(2)∵12=;12+22=;12+22+32=;12+22+32+42=;…∴第n个算式是12+22+32+…+n2=;(3)62+72+82+92+…+592+602=12+22+32+…+602﹣(12+22+32+42+52)=﹣=73810﹣55=73755。
2021中考数学第二轮专题复习 规律探索问题
专题一:规律探索问题1. (11·漳州)用形状和大小相同的黑色棋子按下图所示的方式排列,按照这样的规律,第个图形需要棋子_ 枚.n的代数式表示)2. .如图,依次连结第一个矩形各边的中点得到一个菱形,再依次连结菱形各边的中点得到第二个矩形,按照此方法继续下去,已知第一个矩形的面积为1,则第n个矩形的面积为 .3.(2010·湛江)观察下列算式:31=3,32=9,33=27,34=81,35=243,36=729,37=2 187,38=6 561,…通过观察,用你所发现的规律确定32 000的个位数字是()A.3 B.9 C.7 D.14.(2010·盐城)填在下面各正方形中的四个数之间都有相同的规律,根据此规律,m的值是()A.38 B.52 C.66 D.745.(2010·武汉)如图,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行.从内到外,它们的边长依次为2,4,6,8,…,顶点依次用A1,A2,A3,A4,…表示,则顶点A55的坐标是()A.(13,13) B.(-13,-13)C.(14,14) D.(-14,-14)6.(2010·广东)阅读下列材料:1×2=13(1×2×3-0×1×2),2×3=13(2×3×4-1×2×3),3×4=13(3×4×5-2×3×4),由以上三个等式相加,可得1×2+2×3+3×4=13×3×4×5=20.读完以上材料,请你计算下列各题:(1)1×2+2×3+3×4+…+10×11(写出过程);(2)1×2+2×3+3×4+…+n×(n+1)=________;(3)1×2×3+2×3×4+3×4×5+…+7×8×9=________.7.(2010·眉山)如图,将第一个图(图①)所示的正三角形连结各边中点进行分割,得到第二个图(图②);再将第二个图中最中间的小正三角形按同样的方式进行分割,得到第三个图(图③);再将第三个图中最中间的小正三角形按同样的方式进行分割,…则得到的第五个图中,共有________个正三角形.第1个图形第2个图形第3个图形…53A 1A C A 1AC8.(2010·龙岩)如图是圆心角为30°,半径分别是1、3、5、7、…的扇形组成的图形,阴影部分的面积依次记为S 1、S 2、S 3、…,则S 50=________.(结果保留π)解答题例1.(15分)(2010·杭州)给出下列命题:命题1:点(1,1)是直线y =x 与双曲线y =1x 的一个交点;命题2:点(2,4)是直线y =2x 与双曲线y =8x 的一个交点;命题3:点(3,9)是直线y =3x 与双曲线y =27x的一个交点;……(1)请观察上面的命题,猜想出命题n(n 是正整数); (2)证明你猜想的命题n 是正确的.例2.某数学兴趣小组开展了一次活动,过程如下:设∠BAC=θ(0°<θ<90°)现把小棒依次摆放在两射线AB ,AC 之间,并使小棒两端分别落在两射线上. 活动一:如图甲所示,从点A 1开始,依次向右摆放小棒,使小棒与小棒在端点处互相垂直,A 1A 2为第1根小棒. 数学思考:(1)小棒能无限摆下去吗?答:___________ .(填“能“或“不能”) (2)设AA 1=A 1A 2=A 2A 3=1. ①θ=_______ 度;②若记小棒A 2n-1A 2n 的长度为a n (n 为正整数,如A 1A 2=a 1,A 3A 4=a 2,…),求出此时a 2,a 3的值,并直接写出a n (用含n 的式子表示).活动二:如图乙所示,从点A 1开始,用等长的小棒依次向右摆放,其中A 1A 2为第1根小棒,且A 1A 2=AA 1. 数学思考:(3)若已经向右摆放了3根小棒,则θ1=______ ,θ2=______ ,θ3=_________ (用含θ的式子表示); (4)若只能..摆放4根小棒,求θ的范围.专题一:规律探索作业: 姓名________________ 1.(2010·福州)如图,直线y =3x ,点A 1坐标为(1,0),过点A 1作x 轴的垂线交直线于点B 1,以原点O 为圆心,OB 1长为半径画弧交x 轴于点A 2;再过点A 2作x 轴的垂线交直线于点B 2,以原点O 为圆心,OB 2长为半径画弧交x 轴于点A 3,…,按此作法进行下去,点A 5的坐标为________. 2.(2010·十堰)如图,n +1个上底、两腰皆为1,下底长为2的等腰梯形的下底均在同一直线上,设四边形P 1M 1N 1N 2的面积为S 1,四边形P 2M 2N 2N 3的面积为S 2,…,四边形 P n M n N n N n +1的面积为S n ,通过逐一计算S 1,S 2,…,可得S n =________.3.(2010·连云港)如图,△ABC 的面积为1,分别取AC 、BC 两边的中点A 1、B 1,则四边形A 1ABB 1的面积为34,再分别取A 1C 、B 1C 的中点A 2、B 2,A 2C 、B 2C 的中点A 3、B 3,依次取下去,……利用这一图形,能直观地计算出34+342+343+ (3)4n =________.4.(2021•江津区)如图,四边形ABCD 中,AC=a ,BD=b ,且AC 丄BD ,顺次连接四边形ABCD 各边中点,得到四边形A 1B 1C 1D 1,再顺次连接四边形A 1B 1C 1D 1各边中点,得到四边形A 2B 2C 2D 2…,如此进行下去,得到四边形A n B n C n D n .下列结论正确的有( ) ①四边形A 2B 2C 2D 2是矩形; ②四边形A 4B 4C 4D 4是菱形; ③四边形A 5B 5C 5D 5的周长是 ④四边形A n B n C n D n 的面积是.A 、①②B 、②③C 、②③④D 、①②③④5. 我们把分子为1的分数叫做理想分数,如,,,…,任何一个理想分数都可以写成两个不同理想分数的和,如=+;=+;=+;…根据对上述式子的观察,请你思考:如果理想分数(n 是不小于2的正整数)=+, 那么a+b=.(用含n 的式子表示)6. 如图,在△ABC 中,∠ACB =90º,∠A =30º,BC =1.过点C 作CC 1⊥AB 于C 1,过点C 1作C 1C 2⊥AC 于C 2,过点C 2作C 2C 3⊥AB 于C 3,…, 按此作发进行下去,则AC n = .7.2021年在北京召开的世界数学大会会标图案是由四个全等的直角三角形围成的一个大正方形,中间的阴影部分是一个小正方形的“赵爽弦图”.若这四个全等的直角三角形有一个角为30°,顶点1B 、2B 、3B 、…、n B 和1C 、2C 、3C 、…、n C 分别在直线=y -1+3+12x 和x 轴上,则第n 个阴影正方形的面积为 .8.(2010·江西)课题:两个重叠的正多边形,其中的一个绕某一顶点旋转所形成的有关问题.【实验与论证】 设旋转角∠A 1A 0B 1=α(α<∠A 1A 0A 2),θ3、θ4、θ5、θ6所示的角如图所示.(1)用含α的式子表示角的度数:θ3=________,θ4=________,θ5=________.(2)图①~图④中,连结A 0H 时,在不添加其他辅助线的情况下,是否存在与直线A 0H 垂直且被它平分的线段?若存在,请选择其中的一个图给出证明;若不存在,请说明理由;【归纳与猜想】 设正n 边形A 0A 1A 2…A n -1与正n 边形A 0B 1B 2…B n -1重合(其中,A 1与B 1重合),现将正n 边形A 0B 1B 2…B n -1绕顶点A 0逆时针旋转α(0°<α<180°n).(3)设θn 与上述“θ3,θ4,…”的意义一样,请直接写出θn 的度数. (4)试猜想在正n 边形的情形下,是否存在与直线A 0H 垂直且被它平分的线段?若存在,请将这条线段用相应的顶点字母表示出来(不要求证明);若不存在,请说明理由.。
2021年九年级数学中考二轮复习《探索图形的变化规律》专题突破训练
2021年九年级数学中考二轮复习《探索图形的变化规律》专题突破训练1.如图,将一枚跳棋放在七边形ABCDEFG的顶点A处,按顺时针方向移动这枚跳棋2020次.移动规则是:第k次移动k个顶点(如第一次移动1个顶点,跳棋停留在B处,第二次移动2个顶点,跳棋停留在D处),按这样的规则,在这2020次移动中,跳棋不可能停留的顶点是()A.C、E B.E、F C.G、C、E D.E、C、F2.人行道用同样大小的灰、白两种不同颜色的小正方形地砖铺设而成,如图中的每一个小正方形表示一块地砖.如果按图①②③…的次序铺设地砖,把第n个图形用图ⓝ表示,那么第50个图形中的白色小正方形地砖的块数是()A.150B.200C.355D.5053.如图,下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,…,按此规律.则第(6)个图形中面积为1的正方形的个数为()A.20B.27C.35D.404.一个纸环链,纸环按红黄绿蓝紫的顺序重复排列,截去其中的一部分,剩下部分如图所示,则被截去部分纸环的个数可能是()A.2010B.2011C.2012D.20135.根据右图中已填出的“√”和“×”的排列规律,把②、③、④还原为“√”或“×”且符合右图的排列规律,下面“〇”中还原正确的是()A.B.C.D.6.将正方体骰子(相对面上的点数分别为1和6、2和5、3和4)放置于水平桌面上,如图1.在图2中,将骰子向右翻滚90°,然后在桌面上按逆时针方向旋转90°,则完成一次变换.若骰子的初始位置为图1所示的状态,那么按上述规则连续完成10次变换后,骰子朝上一面的点数是()A.6B.5C.3D.27.如图,一只青蛙在圆周上标有数字的五个点上跳,若它停在奇数点上,则下一次沿顺时针方向跳两个点;若停在偶数点上,则下一次沿逆时针方向跳一个点.若青蛙从5这点开始跳,则经2019次跳后它停在的点所对应的数为()A.1B.2C.3D.58.观察图中正方形四个顶点所标的数字规律,可知数2019应标在()A.第504个正方形的左下角B.第504个正方形的右下角C.第505个正方形的左上角D.第505个正方形的右下角9.如图中的每次个图是由若干盆花组成的四边形图案,每条边(包括两个顶点)有n(n>1)盆花,每个图案中花盆的总数是S,按此规律推断,S与n的函数关系式是()A.S=n2B.S=4n C.S=4n﹣4D.S=4n+410.探索以下规律:根据规律,从2018到2020,箭头的方向图是()A.B.C.D.11.将棱长相等的正方体按如图所示的形状摆放,从上往下依次为第一层、第二层、第三层….则第2020层正方体的个数为()A.2009010B.2005000C.2041210D.200412.一个电子跳蚤在数轴上做跳跃运动.第一次从原点O起跳,落点为A1,点A1表示的数为1;第二次从点A1起跳,落点为OA1的中点A2,第三次从A2点起跳,落点为OA2的中点A3;如此跳跃下去…最后落点为OA2019的中点A2020,则点A2020表示的数为.13.如图图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱形,第③个图形中一共有13个菱形,…,按此规律排列下去,第⑦个图形中菱形的个数为.14.如图是由同样大小的圆按一定规律排列所组成的,其中第1个图形中一共有4个圆,第2个图形中一共有8个圆,第3个图形中一共有14个圆,第4个图形中一共有22个圆……按此规律排列下去,第9个图形中圆的个数是个.15.观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2018个图形共有个○.16.观察下列一组由★排列的“星阵”,按图中规律,第n个“星阵”中的★的个数是.17.如图是各大小型号的纸张长宽关系裁剪对比图,可以看出纸张大小的变化规律:A0纸长度方向对折一半后变为A1纸;A1纸长度方向对折一半后变为A2纸;A2纸长度方向对折一半后变为A3纸;A3纸长度方向对折一半后变为A4纸……A4规格的纸是我们日常生活中最常见的,那么由一张A4的纸可以裁张A8的纸.18.每一层三角形的个数与层数的关系如图所示,则第2018层的三角形个数为.19.如图,自左至右,第1个图由1个正六边形、6个正方形和6个等边三角形组成;第2个图由2个正六边形、11个正方形和10个等边三角形组成;第3个图由3个正六边形、16个正方形和14个等边三角形组成;…按照此规律,第n个图中正方形和等边三角形的个数之和为个.20.如图,观察各图中小圆点的摆放规律,并按这样的规律继续摆放下去,则第10个图形中小圆点的个数为.21.设△ABC的面积为1.如图1,分别将AC,BC边2等分,D1,E1是其分点,连接AE1,BD1交于点F1,得到四边形CD1F1E1,其面积S1=.如图2,分别将AC,BC边3等分,D1,D2,E1,E2是其分点,连接AE2,BD2交于点F2,得到四边形CD2F2E2,其面积S2=;如图3,分别将AC,BC边4等分,D1,D2,D3,E1,E2,E3是其分点,连接AE3,BD3交于点F3,得到四边形CD3F3E3,其面积S3=;…按照这个规律进行下去,若分别将AC,BC边(n+1)等分,…,得到四边形CD n F n E n,其面积S n=.22.“分块计数法”:对有规律的图形进行计数时,有些题可以采用“分块计数”的方法.例如:图1有6个点,图2有12个点,图3有18个点,……,按此规律,求图10、图n有多少个点?我们将每个图形分成完全相同的6块,每块黑点的个数相同(如图),这样图1中黑点个数是6×1=6个;图2中黑点个数是6×2=12个:图3中黑点个数是6×3=18个;……;所以容易求出图10、图n中黑点的个数分别是、.请你参考以上“分块计数法”,先将下面的点阵进行分块,再完成以下问题:(1)第5个点阵中有个圆圈;第n个点阵中有个圆圈.(2)小圆圈的个数会等于271吗?如果会,请求出是第几个点阵.23.(1)观察下列图形与等式的关系,并填空(2)观察下图,根据(1)中结论,计算图中黑球的个数,用含有n的代数式填空:1+3+5+…+(2n﹣1)+()+(2n﹣1)+…+5+3+1=.24.观察下表:序号123…图形xxyxxxxxyyxxyyxxxxxxxyyyxxyyy…xxyyyxxxx我们把某格中各字母的和所得多项式称为“特征多项式”.例如,第1格的“特征多项式”为4x+y.回答下列问题:(1)第3格的“特征多项式”为,第4格的“特征多项式”为,第n格的“特征多项式”为;(2)若第1格的“特征多项式”的值为﹣10,第2格的“特征多项式”的值为﹣16,求x,y的值.25.用若干根火柴可以摆出六个正方形,如下图就是一种摆法,请你再画出与下图不同的两种摆法示意图.并回答:要摆出六个正方形至多需要根火柴,至少需要根火柴.(摆出的六个正方形中,每个正方形的边仅限于一根火柴.)26.观察下面图形,按规律在两个箭头所指的“田”字格内分别画上适当图形(只对一个2分)27.观察下面的点阵图形和与之相对应的等式,探究其中的规律:(1)请你在④和⑤后面的横线上分别写出相对应的等式:①→4×0+1=4×1﹣3②→4×1+1=4×2﹣3③→4×2+1=4×3﹣3④→⑤→…(2)通过猜想,写出与第n个图形相对应的等式.28.(1)计算:;(2)解方程组:;(3)用黑白两种颜色的正六边形地面砖按如下所示的规律,拼成若干个图案:根据规律填空:①第4个图案中有白色地面砖块;②第n个图案中有白色地面砖块2021年九年级数学中考二轮复习《探索图形的变化规律》专题突破训练答案1.解:经实验或按下方法可求得顶点C,E和F棋子不可能停到.设顶点A,B,C,D,E,F,G分别是第0,1,2,3,4,5,6格,因棋子移动了k次后走过的总格数是1+2+3+…+k=k(k+1),应停在第k(k+1)﹣7p 格,这时p是整数,且使0≤k(k+1)﹣7p≤6,分别取k=1,2,3,4,5,6,7时,k(k+1)﹣7p=1,3,6,3,1,0,0,发现第2,4,5格没有停棋,若7<k≤2020,设k=7+t(t=1,2,3)代入可得,k(k+1)﹣7p=7m+t(t+1),由此可知,停棋的情形与k=t时相同,故第2,4,5格没有停棋,即顶点C,E和F棋子不可能停到.故选:D.2.解:由图形可知:第1个图形12块白色小正方形,第2个图形19个白色小正方形,第3个图形26个白色小正方形则图ⓝ的白色小正方形地砖有(7n+5)块,当n=50时,7n+5=350+5=355.故选:C.3.解:第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的图象有2+3=5个,第(3)个图形中面积为1的正方形有2+3+4=9个,…,按此规律,第n个图形中面积为1的正方形有2+3+4+…+(n+1)=个,则第(6)个图形中面积为1的正方形的个数为2+3+4+5+6+7=27个.故选:B.4.解:由题意,可知中间截去的是5n+3(n为正整数),由5n+3=2013,解得n=402,其余选项求出的n不为正整数,则选项D正确.故选:D.5.解:根据已知可以得出规律:上面若是一对一错,下面就是错号,上面两个若都是对号,下面也是对号,上面两个都是错号,下面也是对号,依此规律可从下往上推出,∵④与右侧的对号下面是对号,∴④这个位置是对号,∵②的上面为一对一错,∴②代表的是错号,∵①与右侧错号的下面是错号,∴①是对号,∵①与它的左侧是一错一对,∴③是错号,故选:C.6.解:根据题意可知连续3次变换是一循环.所以10÷3=3…1.所以是第1次变换后的图形.故选:B.7.解:由5起跳,5是奇数,沿顺时针下一次能跳2个点,落在2上.由2起跳,2是偶数,沿逆时针下一次只能跳一个点,落在1上1是奇数,沿顺时针跳两个点,落在3上.由3起跳,是奇偶数,沿顺时针跳两个点,落在5上.2﹣1﹣3﹣5﹣2,周期为4;又由2019=4×504+3,∴经过2019次跳后它停在的点所对应的数为3.故选:C.8.解:通过观察发现:正方形的左下角是4的倍数,左上角是4的倍数余3,右下角是4的倍数余1,右上角是4的倍数余2∵2019÷4=504…3,∴数2019应标在第503个正方形的左上角.故选:C.9.解:第1个图形中,每条边上有2盆花,共有4×2﹣4=4盆花,第2个图形中,每条边上3盆花,共有4×3﹣4=8盆花,…∴S=4n﹣4,故选:C.10.解:根据题意分析可得:箭头方向为向下,右,上,右.依次循环.故选:C.11.解:根据摆放的方式,知:第1层是1个;第2层是1+2=3个;第3层是1+2+3=6个;…则第2020层是1+2+3+…+2020=2041210.故选:A.12.解:第一次落点为A1处,点A1表示的数为1;第二次落点为OA1的中点A2,点A2表示的数为;第三次落点为OA2的中点A3,点A3表示的数为()2;…则点A2020表示的数为()2019,即点A2020表示的数为;故答案为:.13.解:第①个图形中一共有3个菱形,即2+1×1=3;第②个图形中一共有7个菱形,即3+2×2=7;第③个图形中一共有13个菱形,即4+3×3=13;…,按此规律排列下去,所以第⑦个图形中菱形的个数为:8+7×7=57.故答案为:57.14.解:因为第1个图形中一共有1×(1+1)+2=4个圆,第2个图形中一共有2×(2+1)+2=8个圆,第3个图形中一共有3×(3+1)+2=14个圆,第4个图形中一共有4×(4+1)+2=22个圆;可得第n个图形中圆的个数是n(n+1)+2;所以第9个图形中圆的个数9×(9+1)+2=92.故答案为:92.15.解:观察图形可知:第1个图形共有:1+1×3,第2个图形共有:1+2×3,第3个图形共有:1+3×3,…,第n个图形共有:1+3n,∴第2018个图形共有1+3×2018=6055,故答案为:6055.16.解:∵第一个图形有2+1×2=4个,第二个图形有2+2×3=8个,第三个图形有2+3×4=14个,第四个图形有2+4×5=22个,…∴第n个图形共有:2+n×(n+1)=n2+n+2.故答案为:n2+n+2.17.解:由题意得,一张A4的纸可以裁2张A5的纸一张A5的纸可以裁2张A6的纸一张A6的纸可以裁2张A7的纸一张A7的纸可以裁2张A8的纸,∴一张A4的纸可以裁24=16张A8的纸,故答案为:16.18.解:由图可得,第1层三角形的个数为:1,第2层三角形的个数为:3,第3层三角形的个数为:5,第4层三角形的个数为:7,第5层三角形的个数为:9,……第n层的三角形的个数为:2n﹣1,∴当n=2018时,三角形的个数为:2×2018﹣1=4035,故答案为:4035.19.解:∵第1个图由1个正六边形、6个正方形和6个等边三角形组成,∴正方形和等边三角形的和=6+6=12=9+3;∵第2个图由11个正方形和10个等边三角形组成,∴正方形和等边三角形的和=11+10=21=9×2+3;∵第3个图由16个正方形和14个等边三角形组成,∴正方形和等边三角形的和=16+14=30=9×3+3,…,∴第n个图中正方形和等边三角形的个数之和=(9n+3).故答案为:(9n+3).20.解:由题意可得,第一个图形的小圆点的个数为:3×3=9,第二个图形的小圆点的个数为:4×4=16,第三个图形的小圆点的个数为:5×5=25,……第十个图形的小圆点的个数为:12×12=144,故答案为:144.21.解法一:如图所示,连接D1E1,D2E2,D3E3,∵图1中,D1,E1是△ABC两边的中点,∴D1E1∥AB,D1E1=AB,∴△CD1E1∽△CBA,且==,∴S△CD1E1=S△ABC=,∵E1是BC的中点,∴S△BD1E1=S△CD1E1=,∴S△D1E1F1=S△BD1E1=×=,∴S1=S△CD1E1+S△D1E1F1=+=,同理可得:图2中,S2=S△CD2E2+S△D2E2F2=+=,图3中,S3=S△CD3E3+S△D3E3F3=+=,以此类推,将AC,BC边(n+1)等分,得到四边形CD n E n F n,其面积S n=+×n×=;解法二:S1==.S2==;S3==;…∴S n===;解法三:S1===.S2===;S3===;…∴S n=;故答案为:.22.解:图10中黑点个数是6×10=60个;图n中黑点个数是6n个,故答案为:60个,6n个;(1)如图所示:第1个点阵中有:1个,第2个点阵中有:2×3+1=7个,第3个点阵中有:3×6+1=19个,第4个点阵中有:4×9+1=37个,第5个点阵中有:5×12+1=61个,…第n个点阵中有:n×3(n﹣1)+1=3n2﹣3n+1,故答案为:61,3n2﹣3n+1;(2)3n2﹣3n+1=271,n2﹣n﹣90=0,(n﹣10)(n+9)=0,n1=10,n2=﹣9(舍),∴小圆圈的个数会等于271,它是第10个点阵.23.解:(1)1+3+5+7=16=42,设第n幅图中球的个数为a n,观察,发现规律:a1=1+3=22,a2=1+3+5=32,a3=1+3+5+7=42,…,∴a n﹣1=1+3+5+…+(2n﹣1)=n2.故答案为:42;n2.(2)观察图形发现:图中黑球可分三部分,1到n行,第n+1行,n+2行到2n+1行,即1+3+5+…+(2n﹣1)+[2(n+1)﹣1]+(2n﹣1)+…+5+3+1,=1+3+5+…+(2n﹣1)+(2n+1)+(2n﹣1)+…+5+3+1,=a n﹣1+(2n+1)+a n﹣1,=n2+2n+1+n2,=2n2+2n+1.故答案为:2n+1;2n2+2n+1.24.解:(1)观察图形发现:第1格的“特征多项式”为4x+y,第2格的“特征多项式”为8x+4y,第3格的“特征多项式”为12x+9y,第4格的“特征多项式”为16x+16y,…第n格的“特征多项式”为4nx+n2y;(2)∵第1格的“特征多项式”的值为﹣10,第2格的“特征多项式”的值为﹣16,∴,解得:x=﹣3;y=2,∴x、y的值分别为﹣3和2.25.解:最少时,画图例举如下:至少12根,最多任何两个正方形无公共边,则需要24根火柴.26.解:由图可看出每8个田字是一个循环.箭头所指的是第9个和第十个田字.那么根据第一个循环中,第一个田字和第二个田字的图形,便可画出所求的图形.27.解:前3个式子等号左边为4×序数减1+1,右边为:4×序数﹣3,那么其余式子也应按这个规律.(1)④4×3+1=4×4﹣3;⑤4×4+1=4×5﹣3.(2)4(n﹣1)+1=4n﹣3.28.解:(1)原式=1+5=6;(4分)(2)把y=x+1代入x+y=5,得2x+1=5(5分)∴x=2(6分)∴y=2+1=3(7分)∴原方程组的解为;(8分)(3)①从图中白砖与黑砖的块数找规律.我们可以发现,黑砖的数量是1,2,3,4,…,白砖的数量是6,10,14…,所以从第二块砖起,我们可以看出黑砖与白砖的数量关系是白=6n﹣2(n﹣1),其中n是黑砖的数量.所以第4个图案中有白色地面砖=18;(10分)②第n个图案中有白色地面砖4n+2.(12分)。
2021年中考数学二轮复习重难题型突破 二次函数与三角形全等、相似(位似)有关的问题(附答案)
类型五 二次函数与三角形全等、相似(位似)有关的问题【典例1】如图,已知抛物线y =ax 2+bx+6经过两点A (﹣1,0),B (3,0),C 是抛物线与y 轴的交点.(1)求抛物线的解析式;(2)点P (m ,n )在平面直角坐标系第一象限内的抛物线上运动,设△PBC 的面积为S ,求S 关于m 的函数表达式(指出自变量m 的取值范围)和S 的最大值;(3)点M 在抛物线上运动,点N 在y 轴上运动,是否存在点M 、点N 使得∠CMN =90°,且△CMN 与△OBC 相似,如果存在,请求出点M 和点N 的坐标.【典例2】如图,抛物线212y x bx c =++与x 轴交于A 、B 两点(点A 在点B 左边),与y 轴交于点C .直线122y x =-经过B 、C 两点.(1)求抛物线的解析式;(2)点P 是抛物线上的一动点,过点P 且垂直于x 轴的直线与直线BC 及x 轴分别交于点D 、M .PN BC ⊥,垂足为N .设(),0M m .①点P 在抛物线上运动,若P 、D 、M 三点中恰有一点是其它两点所连线段的中点(三点重合除外).请直接写出符合条件的m 的值;②当点P 在直线BC 下方的抛物线上运动时,是否存在一点P ,使PNC △与AOC △相似.若存在,求出点P 的坐标;若不存在,请说明理由.【典例3】如图,抛物线215:324L y x x =--与x 轴正半轴交于点A ,与y 轴交于点B .(1)求直线AB 的解析式及抛物线顶点坐标;(2)如图1,点P 为第四象限且在对称轴右侧抛物线上一动点,过点P 作PC x ⊥轴,垂足为C ,PC 交AB 于点D ,求PD BD +的最大值,并求出此时点P 的坐标;(3)如图2,将抛物线215:324L y x x =--向右平移得到抛物线L ',直线AB 与抛物线L '交于M ,N 两点,若点A 是线段MN 的中点,求抛物线L '的解析式.【典例4】在平面直角坐标系中,已知抛物线()24460y ax ax a a =++->与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,顶点为点D .(1)当6a =时,直接写出点A ,B ,C ,D 的坐标:A ______,B ______,C ______,D ______;(2)如图1,直线DC 交x 轴于点E ,若4tan 3AED =∠,求a 的值和CE 的长; (3)如图2,在(2)的条件下,若点N 为OC 的中点,动点P 在第三象限的抛物线上,过点P 作x 轴的垂线,垂足为Q ,交AN 于点F ;过点F 作FH DE ⊥,垂足为H .设点P 的横坐标为t ,记f FP FH =+.①用含t 的代数式表示f ;②设()50t m m -<≤<,求f 的最大值.【典例5】如图①,直线l 经过点(4,0)且平行于y 轴,二次函数y =ax 2﹣2ax +c (a 、c 是常数,a <0)的图象经过点M (﹣1,1),交直线l 于点N ,图象的顶点为D ,它的对称轴与x 轴交于点C ,直线DM 、DN 分别与x 轴相交于A 、B 两点.(1)当a =﹣1时,求点N 的坐标及AC BC的值;(2)随着a 的变化,AC BC的值是否发生变化?请说明理由; (3)如图②,E 是x 轴上位于点B 右侧的点,BC =2BE ,DE 交抛物线于点F .若FB =FE ,求此时的二次函数表达式.【典例6】若一次函数33y x =--的图象与x 轴,y 轴分别交于A ,C 两点,点B 的坐标为()3,0,二次函数2y ax bx c =++的图象过A ,B ,C 三点,如图(1).(1)求二次函数的表达式;(2)如图(1),过点C 作//CD x 轴交抛物线于点D ,点E 在抛物线上(y 轴左侧),若BC 恰好平分DBE ∠.求直线BE 的表达式;(3)如图(2),若点P 在抛物线上(点P 在y 轴右侧),连接AP 交BC 于点F ,连接BP ,BFP BAF S mS =. ①当12m =时,求点P 的坐标; ②求m 的最大值.【典例7】如图,抛物线28(0)y ax bx a =++≠与x 轴交于点()2,0A -和点()8,0B ,与y 轴交于点C ,顶点为D ,连接,,AC BC BC 与抛物线的对称轴l 交于点E .(1)求抛物线的表达式;(2)点P 是第一象限内抛物线上的动点,连接,PB PC ,当35PBC ABC SS 时,求点P 的坐标;(3)点N 是对称轴l 右侧抛物线上的动点,在射线ED 上是否存在点M ,使得以点M ,N ,E 为顶点的三角形与OBC 相似?若存在,求点M 的坐标;若不存在,请说明理由.附答案 类型五 二次函数与三角形全等、相似(位似)有关的问题【典例1】如图,已知抛物线y =ax 2+bx+6经过两点A (﹣1,0),B (3,0),C 是抛物线与y 轴的交点.(1)求抛物线的解析式;(2)点P (m ,n )在平面直角坐标系第一象限内的抛物线上运动,设△PBC 的面积为S ,求S 关于m 的函数表达式(指出自变量m 的取值范围)和S 的最大值;(3)点M 在抛物线上运动,点N 在y 轴上运动,是否存在点M 、点N 使得∠CMN =90°,且△CMN 与△OBC 相似,如果存在,请求出点M 和点N 的坐标.【答案】(1)y=﹣2x2+4x+6;(2)S△PBC=﹣3m2+9m(0<m<3);(3)M(1,8),N(0,17 2)或M(74,558),N(0,838)或M(94,398),N(0,38)或M(3,0),N(0,﹣32)【解析】【分析】(1)根据点A、B的坐标利用待定系数法即可求出抛物线的解析式;(2)过点P作PF∥y轴,交BC于点F,利用二次函数图象上点的坐标特征可得出点C的坐标,根据点B、C的坐标利用待定系数法即可求出直线BC的解析式,设点P的坐标为(m,﹣2m2+4m+6),则点F的坐标为(m,﹣2m+6),进而可得出PF的长度,利用三角形的面积公式可得出S△PBC=﹣3m2+9m,配方后利用二次函数的性质即可求出△PBC面积的最大值;(3)分两种不同情况,当点M位于点C上方或下方时,画出图形,由相似三角形的性质得出方程,求出点M,点N的坐标即可.【详解】(1)将A(﹣1,0)、B(3,0)代入y=ax2+bx+6,得:609360a ba b-+=⎧⎨++=⎩,解得:24ab=-⎧⎨=⎩,∴抛物线的解析式为y=﹣2x2+4x+6.(2)过点P作PF∥y轴,交BC于点F,如图1所示.当x =0时,y =﹣2x 2+4x+6=6,∴点C 的坐标为(0,6).设直线BC 的解析式为y =kx+c ,将B (3,0)、C (0,6)代入y =kx+c ,得:306k c c +=⎧⎨=⎩,解得:26k c =-⎧⎨=⎩, ∴直线BC 的解析式为y =﹣2x+6.设点P 的坐标为(m ,﹣2m 2+4m+6),则点F 的坐标为(m ,﹣2m+6), ∴PF =﹣2m 2+4m+6﹣(﹣2m+6)=﹣2m 2+6m , ∴223273931224PBC S PF OB m m m ⎛⎫=-+=--+ ⎪⎝⎭=, ∴当32m =时,△PBC 面积取最大值,最大值为274 . ∵点P (m ,n )在平面直角坐标系第一象限内的抛物线上运动, ∴0<m <3.(3)存在点M 、点N 使得∠CMN =90°,且△CMN 与△OBC 相似.如图2,∠CMN =90°,当点M 位于点C 上方,过点M 作MD ⊥y 轴于点D ,∵∠CDM =∠CMN =90°,∠DCM =∠NCM , ∴△MCD ∽△NCM ,若△CMN 与△OBC 相似,则△MCD 与△NCM 相似, 设M (a ,﹣2a 2+4a+6),C (0,6),∴DC =﹣2a 2+4a ,DM =a , 当3162DM OB CD OC === 时,△COB ∽△CDM ∽△CMN , ∴21242a a a =-+ , 解得,a =1,∴M (1,8), 此时1122ND DM ==, ∴N (0,172), 当12CD OB DM OC ==时,△COB ∽△MDC ∽△NMC , ∴22412a a a +=﹣ , 解得74a =, ∴M (74,558), 此时N (0,838).如图3,当点M 位于点C 的下方,过点M 作ME ⊥y 轴于点E , 设M (a ,﹣2a 2+4a+6),C (0,6), ∴EC =2a 2﹣4a ,EM =a ,同理可得:21224a a a -=或2242a a a-=,△CMN 与△OBC 相似,解得94a =或a =3, ∴M (94,398)或M (3,0),此时N 点坐标为,N (0,38)或N (0,﹣32).综合以上得,M (1,8),N (0,172)或M (74,558),N (0,838)或M (94,398),,N (0,38)或M (3,0),N (0,﹣32),使得∠CMN =90°,且△CMN 与△OBC 相似.【点睛】此题考查二次函数综合题,综合考查了待定系数法求函数解析式,二次函数的最大值,相似三角形的判定与性质,以及渗透分类讨论思想.【典例2】如图,抛物线212y x bx c =++与x 轴交于A 、B 两点(点A 在点B 左边),与y 轴交于点C .直线122y x =-经过B 、C 两点.(1)求抛物线的解析式;(2)点P 是抛物线上的一动点,过点P 且垂直于x 轴的直线与直线BC 及x 轴分别交于点D 、M .PN BC ⊥,垂足为N .设(),0M m .①点P 在抛物线上运动,若P 、D 、M 三点中恰有一点是其它两点所连线段的中点(三点重合除外).请直接写出符合条件的m 的值;②当点P 在直线BC 下方的抛物线上运动时,是否存在一点P ,使PNC △与AOC △相似.若存在,求出点P 的坐标;若不存在,请说明理由.【答案】(1)213222y x x =--;(2)-2,12-,1;(3)存在,(3,-2) 【解析】 【分析】 (1)根据直线122y x =-经过B 、C 两点求出B 、C 两点的坐标,将B 、C 坐标代入抛物线212y x bx c =++可得答案; (2)①由题意得P (m ,213222m m --),D (m ,122m -);根据P 、D 、M 三点中恰有一点是其它两点所连线段的中点列式计算即可求得m 的值;②先证明CBO AOC △∽△,得出ACO=ABC ∠∠,再根据PNC △与AOC △相似得出ACO=PCN ∠∠,则ABC=PCN ∠∠,可得出AB//PC ,求出点P 的纵坐标,代入抛物线213222y x x =--,即可求得点P 的横坐标. 【详解】解:(1)由直线122y x =-经过B 、C 两点得B (4,0),C (0,-2) 将B 、C 坐标代入抛物线得2840c b c =-⎧⎨++=⎩,解得322b c ⎧=-⎪⎨⎪=-⎩, ∴抛物线的解析式为:213222y x x =--; (2)①∵PN BC ⊥,垂足为N . (),0M m ∴P (m ,213222m m --),D (m ,122m -), 分以下几种情况:M 是PD 的中点时,MD=PM ,即0-(122m -)=213222m m -- 解得12m =-,24m =(舍去);P 是MD 的中点时,MD=2MP ,即122m -=2(213222m m --) 解得112m =-,24m =(舍去);D 是MP 的中点时,2MD=MP ,即213222m m --=2(122m -) 解得11m =,24m =(舍去); ∴符合条件的m 的值有-2,12-,1;②∵抛物线的解析式为:213222y x x =--, ∴A (-1,0),B (4,0),C (0,-2) ∴AO=1,CO=2,BO=4, ∴AO CO=CO BO,又AOC=COB ∠∠=90°, ∴AOC COB △∽△, ∴ACO=ABC ∠∠, ∵PNC △与AOC △相似 ∴ACO=PCN ∠∠, ∴ABC=PCN ∠∠, ∴ AB//PC ,∴点P 的纵坐标是-2,代入抛物线213222y x x =--,得 2322122x x --=- 解得:10x =(舍去),23x =, ∴点P 的坐标为:(3,-2) 【点睛】本题考查二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质和相似三角形的判定和性质;会利用待定系数法求函数解析式;理解坐标与图形性质,记【典例3】如图,抛物线215:324L y x x =--与x 轴正半轴交于点A ,与y 轴交于点B .(1)求直线AB 的解析式及抛物线顶点坐标;(2)如图1,点P 为第四象限且在对称轴右侧抛物线上一动点,过点P 作PC x ⊥轴,垂足为C ,PC 交AB 于点D ,求PD BD +的最大值,并求出此时点P 的坐标;(3)如图2,将抛物线215:324L y x x =--向右平移得到抛物线L ',直线AB 与抛物线L '交于M ,N 两点,若点A 是线段MN 的中点,求抛物线L '的解析式.【答案】(1)直线AB 的解析式为334y x =-,抛物线顶点坐标为5121,432⎛⎫- ⎪⎝⎭;(2)当134x =时,PD BD +的最大值为16932; 1357,432P ⎛⎫- ⎪⎝⎭;(3)21133242y x x =-+. 【解析】 【分析】(1)先根据函数关系式求出A 、B 两点的坐标,设直线AB 的解析式为y kx b =+,利用待定系数法求出AB 的解析式,将二次函数解析式配方为顶点式即可求得顶点坐标;(2)过点D 作DE y ⊥轴于E ,则//DE OA .求得AB=5,设点P 的坐标为2155,34244x x x x ⎛⎫⎛⎫--<< ⎪⎪⎝⎭⎝⎭,则点D 的坐标为3,34x x ⎛⎫- ⎪⎝⎭,ED=x ,证明BDE BAO ∽,由相似三角形的性质求出54BD x =,用含x 的式子表示PD ,配方求得最大值,即可求得点P 的坐标;(3)设平移后抛物线L '的解析式21121()232y x m =--,将L ′的解析式和直线AB 联立,得到关于x 的方程,设()()1122,,,M x y N x y ,则12,x x 是方程2232520416x m x m ⎛⎫-++-= ⎪⎝⎭的两根,得到12324x x m ⎛⎫+=+ ⎪⎝⎭,点A 为MN 的中点,128x x +=,可求得m 的值,即可求得L ′的函数解析式.【详解】(1)在215324y x x =--中, 令0y =,则2153024x x --=,解得123,42x x =-=,∴(4,0)A .令0x =,则3y =-,∴()0,3B -.设直线AB 的解析式为y kx b =+,则403k b b +=⎧⎨=-⎩,解得:343k b ⎧=⎪⎨⎪=-⎩,∴直线AB 的解析式为334y x =-. 2215151213242432y x x x ⎛⎫=--=--⎪⎝⎭, ∴抛物线顶点坐标为5121,432⎛⎫-⎪⎝⎭(2)如图,过点D 作DE y ⊥轴于E ,则//DE OA . ∵4,3OA OB ==,∴5AB ===,设点P 的坐标为2155,34244x x x x ⎛⎫⎛⎫--<< ⎪⎪⎝⎭⎝⎭, 则点D 的坐标为3,34x x ⎛⎫- ⎪⎝⎭, ∴ED x =. ∵//DE OA ,∴BDE BAO ∽,∴BD EDBA OA =, ∴54BD x=, ∴54BD x =.而2231513324242PD x x x x x ⎛⎫=----=-+ ⎪⎝⎭, ∴22215113113169224242432PD BD x x x x x x ⎛⎫+=-++=-+=--+⎪⎝⎭, ∵102-<,544x <<,由二次函数的性质可知:当134x =时,PD BD +的最大值为16932.2235313513573344444432x x ⎛⎫--=⨯-⨯-=- ⎪⎝⎭, ∴1357,432P ⎛⎫-⎪⎝⎭.(3)设平移后抛物线L '的解析式21121()232y x m =--,联立23341121()232y x y x m ⎧=-⎪⎪⎨⎪=--⎪⎩,∴2311213()4232x x m -=--, 整理,得:2232520416x m x m ⎛⎫-++-= ⎪⎝⎭, 设()()1122,,,M x y N x y ,则12,x x 是方程2232520416x m x m ⎛⎫-++-= ⎪⎝⎭的两根, ∴12324x x m ⎛⎫+=+ ⎪⎝⎭.而A 为MN 的中点,∴128x x +=, ∴3284m ⎛⎫+= ⎪⎝⎭,解得:134m =. ∴抛物线L '的解析式2211312111332432242y x x x ⎛⎫=--=-+ ⎪⎝⎭.【点睛】本题考查二次函数的图象和性质、相似三角形的判定与性质、待定系数法求一次函数解析式,解题的关键是熟练掌握二次函数的图象和性质.住两点间的距离公式;会利用分类讨论的思想解决数学问题.【典例4】在平面直角坐标系中,已知抛物线()24460y ax ax a a =++->与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,顶点为点D .(1)当6a =时,直接写出点A ,B ,C ,D 的坐标:A ______,B ______,C ______,D ______;(2)如图1,直线DC 交x 轴于点E ,若4tan 3AED =∠,求a 的值和CE 的长; (3)如图2,在(2)的条件下,若点N 为OC 的中点,动点P 在第三象限的抛物线上,过点P 作x 轴的垂线,垂足为Q ,交AN 于点F ;过点F 作FH DE ⊥,垂足为H .设点P 的横坐标为t ,记f FP FH =+.①用含t 的代数式表示f ;②设()50t m m -<≤<,求f 的最大值.【答案】(1)()3,0-,()1,0-,()0,18,()2,6--;(2)23;256;(3)①228433f t t =--+;②263.【解析】 【分析】(1)求出0y =时,x 的值可得点A 、B 的坐标,求出0x =时,y 的值可得点C 的坐标,将二次函数的解析式化为顶点式即可得点D 的坐标;(2)先求出顶点D 的坐标,从而可得DK 、OK 的长,再利用正切三角函数可得EK 、OE 、OC 的长,从而可得出点C 的坐标,然后将点C 的坐标代入二次函数的解析式可得a 的值,利用勾股定理可求出CE 的长;(3)①如图,先利用待定系数法求出直线AN 的解析式,从而可得点F 的坐标,由此可得出PF 的长,再利用待定系数法求出直线CE 的解析式,从而可得点J 的坐标,由此可得出FJ 的长,然后根据相似三角形的判定与性质可得FH FJOE CE=,从而可得FH 的长,最后根据f 的定义即可得;②先将f 的表达式化为顶点式,从而得出其增减性,再利用二次函数的性质即可得.【详解】(1)当6a =时,262418y x x =++当0y =时,2624180x x ++=,解得1x =-或3x =- 则点A 的坐标为(3,0)A -,点B 的坐标为(1,0)B - 当0x =时,18y = 则点C 的坐标为(0,18)C将262418y x x =++化成顶点式为26()62y x =+- 则点D 的坐标为(2,6)D --故答案为:()3,0-,()1,0-,()0,18,()2,6--; (2)如图,作DK x ⊥轴于点K将2446y ax ax a =++-化成顶点式为2(2)6y a x =+-则顶点D 的坐标为(2,6)D -- ∴6DK =,2OK = 在Rt DKE 中,tan DK AED EK ∠=,即643EK = 解得92EK =95222K OE EK O =--=∴= 在Rt COE △中,tan OC AED OE=∠,即4532OC =解得103OC =10(0,)3C ∴-,256CE === 将点10(0,)3C -代入2446y ax ax a =++-得:10463a -=- 解得23a =;(3)①如图,作FP 与ED 的延长线交于点J 由(2)可知,23a =,100,3C ⎛⎫- ⎪⎝⎭∴22810333y x x =+- 当0y =时,228100333x x +-=,解得5x =-或1x = ∴()5,0A -,()10B , N 为OC 的中点∴50,3N ⎛⎫- ⎪⎝⎭设直线AN 的解析式为11y k x b =+将点()5,0A -,50,3N ⎛⎫- ⎪⎝⎭代入得:1115053k b b -+=⎧⎪⎨=-⎪⎩,解得111353k b ⎧=-⎪⎪⎨⎪=-⎪⎩则直线AN 的解析式为1533y x =-- ∵22810,333P t t t ⎛⎫+-⎪⎝⎭∴15,33F t t ⎛⎫-- ⎪⎝⎭∴2215281025()33333333PF t t t t t =---+-=--+ 由(2)知,25OE =∴5,02E ⎛⎫ ⎪⎝⎭,100,3C ⎛⎫- ⎪⎝⎭设直线CE 的解析式为22y k x b =+将点5,02E ⎛⎫ ⎪⎝⎭,100,3C ⎛⎫- ⎪⎝⎭代入得:222502103k b b ⎧+=⎪⎪⎨⎪=-⎪⎩,解得2243103k b ⎧=⎪⎪⎨⎪=-⎪⎩则直线CE 的解析式为41033y x =- ∴410,33J t t ⎛⎫- ⎪⎝⎭∴1541055()333333FJ t t t =----=-+ ∵FH DE ⊥,//JF y 轴∴90FHJ EOC ∠=∠=︒,FJH ECO ∠=∠ ∴FJH ECO ~∴FH FJOE CE=,即553226535t FH -+= 解得1FH t =-+∴()2253133f PF FH t t t =+=--++-+ 即228433f t t =--+; ②将228433f t t =--+化成顶点式为()2226333t f =-++由二次函数的性质可知,当3t <-时,f 随t 的增大而增大;当3t ≥-时,f 随t 的增大而减小()50t m m -<≤<50m ∴-<<因此,分以下两种情况: 当53m -<<-时在5t m -<≤内,f 随t 的增大而增大 则当t m =时,f 取得最大值,最大值为()2226333m -++ 又当53m -<<-时,()20233m -+<()2226263333m -++<∴ 当30m -≤<时在53t -<<-内,f 随t 的增大而增大;在3t m -≤≤内,f 随t 的增大而减小 则当3t =-时,f 取得最大值,最大值为263综上,f 的最大值为263.【点睛】本题考查了利用待定系数法求二次函数的表达式、二次函数的图象与性质、正切三角函数、相似三角形的判定与性质等知识点,较难的是题(3)①,通过作辅助线,构造相似三角形求出FH 的长是解题关键.【典例5】如图①,直线l 经过点(4,0)且平行于y 轴,二次函数y =ax 2﹣2ax +c (a 、c 是常数,a <0)的图象经过点M (﹣1,1),交直线l 于点N ,图象的顶点为D ,它的对称轴与x 轴交于点C ,直线DM 、DN 分别与x 轴相交于A 、B 两点.(1)当a =﹣1时,求点N 的坐标及ACBC的值; (2)随着a 的变化,ACBC的值是否发生变化?请说明理由; (3)如图②,E 是x 轴上位于点B 右侧的点,BC =2BE ,DE 交抛物线于点F .若FB =FE ,求此时的二次函数表达式.【答案】(1)N(4,﹣4),ACBC=32;(2)不变,理由见解析;(3)y=﹣7568x2+7534x+29368或y=﹣568x2+534x+8368.【解析】【分析】(1)证明△DME∽△DAC,△DCB∽△DFN,则ME DEAC DC=,BC DCFN DF=,求出AC=52,BC=53,即可求解;(2)点D(1,1﹣4a),N(4,1+5a),则ME=2,DE=﹣4a,由(1)的结论得:AC=142aa--,BC=143aa--,即可求解;(3)利用△FHE∽△DCE,求出F(53﹣512a,16﹣23a),即可求解.【详解】解:(1)分别过点M、N作ME⊥CD于点E,NF⊥DC于点F,∵ME∥FN∥x轴,∴△DME∽△DAC,△DCB∽△DFN,∴ME DEAC DC=,BC DCFN DF=,∵a=﹣1,则y=﹣x2+2x+c,将M(﹣1,1)代入上式并解得:c=4,∴抛物线的表达式为:y=﹣x2+2x+4,则点D(1,5),N(4,﹣4),则ME=2,DE=4,DC=5,FN=3,DF=9,∴245,539BCAC==,解得:AC=52,BC=53,∴ACBC=32;(2)不变,理由:∵y=ax2﹣2ax+c过点M(﹣1,1),则a+2a+c=1,解得:c=1﹣2a,∴y=ax2﹣2ax+(1﹣3a),∴点D(1,1﹣4a),N(4,1+5a),∴ME=2,DE=﹣4a,由(1)的结论得:AC=142aa--,BC=143aa--,∴ACBC=32;(3)过点F作FH⊥x轴于点H,则FH∥l,则△FHE∽△DCE,∵FB=FE,FH⊥BE,∴BH=HE,∵BC=2BE,则CE=6HE,∵CD=1﹣4a,∴FH=146a -,∵BC =413a a-, ∴CH =54×413a a -=20512a a-, ∴F (53﹣512a ,16﹣23a ), 将点F 的坐标代入y =ax 2﹣2ax +(1﹣3a )=a (x +1)(x ﹣3)+1得:16﹣23a =a (53﹣512a +1)(53﹣512a ﹣3)+1,解得:a =﹣7568或﹣568,故y =﹣7568x 2+7534x +29368或y =﹣568x 2+534x +8368.【点睛】本题考查了相似三角形的判定与性质,二次函数的综合运用等知识.综合性强. 【典例6】若一次函数33y x =--的图象与x 轴,y 轴分别交于A ,C 两点,点B 的坐标为()3,0,二次函数2y ax bx c =++的图象过A ,B ,C 三点,如图(1).(1)求二次函数的表达式;(2)如图(1),过点C 作//CD x 轴交抛物线于点D ,点E 在抛物线上(y 轴左侧),若BC 恰好平分DBE ∠.求直线BE 的表达式;(3)如图(2),若点P 在抛物线上(点P 在y 轴右侧),连接AP 交BC 于点F ,连接BP ,BFPBAFSmS=.①当12m =时,求点P 的坐标; ②求m 的最大值.【答案】(1)223y x x =--;(2)113y x =-;(3)①点(2,3)P -或(1,4)-P ;②916m =最大值 【解析】 【分析】(1)先求的点A 、C 的坐标,再用待定系数法求二次函数的解析式即可; (2)设BE 交OC 于点M .由(3,0),(0,3)B C -可得OB OC =,45OBC OCB ︒∠=∠=.再由//CD AB ,根据平行线的性质可得45BCD ︒∠=,所以OCB BCD ∠=∠.已知BC 平分DBE ∠,根据角平分线的定义可得EBC DBC ∠=∠.利用AAS 证得MBC DBC ≌.由全等三角形的性质可得CM CD =. 由此即可求得点M 的坐标为(0,-1).再由(3,0)B ,即可求得直线BE 解析式为113y x =-; (3)①由12BFPBAF SS =可得12PF AF =.过点P 作//PN AB 交BC 于点N ,则ABF PNF ∽.根据相似三角形的性质可得2AB NP =.由此即可求得2NP =.设()2,23P t t t --,可得2233N t t x --=-.所以22N x t t =-.由此即可得()22PN t t t =--=2,解得122,1t t ==.即可求得点(2,3)P -或(1,4)-P ;②由①得4PN m =.即()22213442169t t t m t --⎛⎫==--+ ⎪⎝⎭.再根据二次函数的性质即可得916m =最大值. 【详解】(1)解:令330x --=,得1x =-.令0x =时,3y =-. ∴(1,0),(0,3)A C --. ∵抛物线过点(0,3)C -, ∴3c =-.则23y ax bx =+-,将(1,0),(3,0)A B -代入得03,093 3.a b a b =--⎧⎨=+-⎩解得1,2.a b =⎧⎨=-⎩∴二次函数表达式为223y x x =--.(2)解:设BE 交OC 于点M .∵(3,0),(0,3)B C -,∴OB OC =,45OBC OCB ︒∠=∠=. ∵//CD AB , ∴45BCD ︒∠=. ∴OCB BCD ∠=∠. ∵BC 平分DBE ∠, ∴EBC DBC ∠=∠. 又∵BC BC =, ∴MBC DBC ≌. ∴CM CD =. 由条件得:(2,3)D -. ∴2CD CM ==. ∴321OM =--. ∴(0,1)M -.∵(3,0)B ,∴直线BE 解析式为113y x =-.(3)①12BFPBAFSS =,∴12PF AF =. 过点P 作//PN AB 交BC 于点N ,则ABF PNF ∽. ∴2AB NP =. ∵4AB =, ∴2NP =.∵直线BC 的表达式为3y x =-, 设()2,23P t t t --, ∴2233N t t x --=-. ∴22N x t t =-.∴()22PN t t t =--,则()222t t t --=,解得122,1t t ==.∴点(2,3)P -或(1,4)-P .②由①得:4PNm =. ∴()()222222331391344442442916t t t t t t t m t t ----⎡⎤-+⎛⎫⎛⎫====⨯--+=--+⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦.∴m 有最大值,916m =最大值. 【点睛】本题是二次函数综合题,主要考查了一次函数与坐标轴的交点坐标、待定系数法求二次函数及一次函数的解析式,相似三角形的判定与性质,解决第(2)问时,求得点M 的坐标是关键;解决(3)①问时,作出辅助线求得2NP =是解题的关键;解决(3)②问时,构建函数模型是解决问题的关键.【典例7】如图,抛物线28(0)y ax bx a =++≠与x 轴交于点()2,0A -和点()8,0B,与y 轴交于点C ,顶点为D ,连接,,AC BC BC 与抛物线的对称轴l 交于点E .(1)求抛物线的表达式;(2)点P 是第一象限内抛物线上的动点,连接,PB PC ,当35PBCABCS S =时,求点P 的坐标;(3)点N 是对称轴l 右侧抛物线上的动点,在射线ED 上是否存在点M ,使得以点M ,N ,E 为顶点的三角形与OBC 相似?若存在,求点M 的坐标;若不存在,请说明理由.【答案】(1)21382y x x =-++;(2)()()1221268P P ,,,;(3)在射线ED 上存在点M ,使得以点M ,N ,E 为顶点的三角形与OBC 相似,点M 的坐标为:()3,8,(3,515或()311,. 【解析】 【分析】(1)直接将()2,0A -和点()8,0B代入28(0)y ax bx a =++≠,解出a ,b 的值即可得出答案; (2)先求出点C 的坐标及直线BC 的解析式,再根据图及题意得出三角形PBC 的面积;过点P 作PG ⊥x 轴,交x 轴于点G ,交BC 于点F ,设21,382P t t x ⎛⎫-++ ⎪⎝⎭,根据三角形PBC 的面积列关于t 的方程,解出t 的值,即可得出点P 的坐标;(3)由题意得出三角形BOC 为等腰直角三角形,然后分MN=EM ,MN=NE ,NE=EM 三种情况讨论结合图形得出边之间的关系,即可得出答案.【详解】(1)抛物线28(0)y ax bx a =++≠过点()2,0A -和点()8,0B428064880a b a b -+=⎧∴⎨++=⎩ 123a b ⎧=-⎪∴⎨⎪=⎩∴抛物线解析式为:21382y x x =-++ (2)当0x =时,8y = ()0,8C ∴∴直线BC 解析式为:8y x =-+111084022ABC SAB OC =⋅⋅=⨯⨯= 3245PBC ABC S S ∴== 过点P 作PG ⊥x 轴,交x 轴于点G ,交BC 于点F 设21,382P t t x ⎛⎫-++ ⎪⎝⎭(),8F t t ∴-+2142PF t t ∴=-+1242PBC SPF OB ∴=⋅= 即211482422t t ⎛⎫⨯-+⨯= ⎪⎝⎭122,6t t ∴== ()()1221268P P ∴,,,(3)()()08,80=90C B COB ∠︒,,,OBC ∴为等腰直角三角形抛物线21382y x x =-++的对称轴为331222b x a =-=-=⎛⎫⨯- ⎪⎝⎭∴点E 的横坐标为3又点E 在直线BC 上∴点E 的纵坐标为5()35E ∴,设()21,,382M m N n n n ⎛⎫-++ ⎪⎝⎭3, ①当MN=EM ,90EMN ∠=︒,NME COB △△时2531382m n n n m -=-⎧⎪⎨-++=⎪⎩ 解得68n m =⎧⎨=⎩或20n m =-⎧⎨=⎩(舍去)∴此时点M 的坐标为()3,8②当ME=EN ,90MEN ∠=︒时25313852mn n n -=-⎧⎪⎨-++=⎪⎩ 解得:515315m n ⎧=+⎪⎨=+⎪⎩或515315m n ⎧=-⎪⎨=-⎪⎩(舍去)∴此时点M 的坐标为()3,515+③当MN=EN ,90MNE ∠=︒时连接CM ,易知当N 为C 关于对称轴l 的对称点时,MNECOB △△,此时四边形CMNE 为正方形 CM CE ∴=()()()0,8,3,5,3,C E M m()()222238,35832CM m CE ∴=+-=+-=()223832m ∴+-=解得:1211,5m m ==(舍去) 此时点M 的坐标为()311,在射线ED 上存在点M ,使得以点M ,N ,E 为顶点的三角形与OBC 相似,点M 的坐标为:()3,8,(3,515或()311,. 【点睛】本题是一道综合题,涉及到二次函数的综合、相似三角形的判定及性质、等腰三角形的性质、勾股定理、正方形的性质等知识点,综合性比较强,解答类似题的关键是添加合适的辅助线.。
题型一 探索规律题-2021年中考数学二轮复习重点题型专项训练(含解析)
第二轮复习----题型一探索规律题类型1 数式规律1.观察下列各式:a1=,a2=,a3=,a4=,a5=,…,根据其中的规律可得a n=______(用含n的式子表示).2.南宋数学家杨辉在其著作《详解九章算法》中揭示了(a+b)n(n为非负整数)展开式的项数及各项系数的有关规律如下,后人也将右表称为“杨辉三角”(a+b)0=1(a+b)1=a+b(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5…则(a+b)9展开式中所有项的系数和是()A. 128B. 256C. 512D. 10243.在求1+3+32+33+34+35+36+37+38的值时,张红发现:从第二个加数起每一个加数都是前一个加数的3倍,于是她假设:S=1+3+32+33+34+35+36+37+38①,然后在①式的两边都乘以3,得:3S=3+32+33+34+35+36+37+38+39②,②-①得,3S-S=39-1,即2S=39-1,所以S=.得出答案后,爱动脑筋的张红想:如果把“3”换成字母m(m≠0且m≠1),能否求出1+m+m2+m3+m4+…+m2016的值?如能求出,其正确答案是______ .4.将自然数按以下规律排列:表中数2在第二行第一列,与有序数对(2,1)对应,数5与(1,3)对应,数14与(3,4)对应,根据这一规律,数2014对应的有序数对为______ .5.观察下列各式:=1+,=1+,=1+,……请利用你所发现的规律,计算+++…+,其结果为______.类型2 点的坐标规律6.如图,在平面直角坐标系中,点A1的坐标为(1,2),以点O为圆心,以OA1长为半径画弧,交直线y=x于点B1.过B1点作B1A2∥y轴,交直线y=2x于点A2,以O为圆心,以OA2长为半径画弧,交直线y=x于点B2;过点B2作B2A3∥y轴,交直线y=2x于点A3,以点O为圆心,以OA3长为半径画弧,交直线y=x于点B3;过B3点作B3A4∥y轴,交直线y=2x于点A4,以点O为圆心,以OA4长为半径画弧,交直线y=x于点B4,…按照如此规律进行下去,点B2018的坐标为______.第6题图第7题图7.在平面直角坐标系中,一个智能机器人接到的指令是:从原点O出发,按“向上→向右→向下→向右”的方向依次不断移动,每次移动1个单位长度,其移动路线如图所示,第一次移动到点A1,第二次移动到点A2……第n次移动到点A n,则点A2019的坐标是()A. (1010,0)B. (1010,1)C. (1009,0)D. (1009,1)8.如图,在平面直角坐标系中,已知直线y=x+1和双曲线y=-,在直线上取一点,记为A1,过A1作x轴的垂线交双曲线于点B1,过B1作y轴的垂线交直线于点A2,过A2作x轴的垂线交双曲线于点B2,过B2作y轴的垂线交直线于点A3,…,依次进行下去,记点An的横坐标为a n,若a1=2,则a2020=______.第8题图第9题图第10题图9.如图,已知直线l:y=x,过点A(0,1)作y轴的垂线交直线l于点B,过点B作直线l的垂线交y轴于点A1;过点A1作y轴的垂线交直线l于点B1,过点B1作直线l的垂线交y轴于点A2;…按此作法继续下去,则点A2013的坐标为______.10.如图所示,在平面直角坐标系xoy中,一组同心圆的圆心为坐标原点O,它们的半径分别为1,2,3,…,按照“加1”依次递增;一组平行线,l0,l1,l2,l3,…都与x轴垂直,相邻两直线的间距为l,其中l0与y轴重合若半径为2的圆与l1在第一象限内交于点P1,半径为3的圆与l2在第一象限内交于点P2,…,半径为n+1的圆与l n在第一象限内交于点P n,则点P n的坐标为______.(n为正整数)类型3 图形变化规律11.如图是用黑色棋子摆成的美丽图案,按照这样的规律摆下去,第10个这样的图案需要黑色棋子的个数为()A. 148B. 152C. 174D. 20212.用棋子摆出下列一组图形:按照这种规律摆下去,第n个图形用的棋子个数为()A. 3nB. 6nC. 3n+6D. 3n+313.如图,四边形ABCD是正方形,曲线DA1B1C1D1A2…是由一段段90度的弧组成的.其中:的圆心为点A,半径为AD;的圆心为点B,半径为BA1;的圆心为点C,半径为CB1;的圆心为点D,半径为DC1;…,…的圆心依次按点A,B,C,D循环.若正方形ABCD 的边长为1,则的长是______.第13题图第14题图14.如图①,某广场地面是用A,B,C三种类型地砖平铺而成的.三种类型地砖上表面图案如图②所示.现用有序数对表示每一块地砖的位置:第一行的第一块(A型)地砖记作(1,1),第二块(B 型)地砖记作(2,1)…若(m,n)位置恰好为A型地砖,则正整数m,n须满足的条件是______.15.数轴上O,A两点的距离为4,一动点P从点A出发,按以下规律跳动:第1次跳动到AO的中点A1处,第2次从A1点跳动到A1O的中点A2处,第3次从A2点跳动到A2O的中点A3处,按照这样的规律继续跳动到点A4,A5,A6,…,A n.(n≥3,n是整数)处,那么线段A n A的长度为______(n≥3,n是整数).答案1.【答案】【解析】解:由分析可得a n=.故答案为:.观察分母的变化为3、5、7,…,2n+1次幂;分子的变化为:奇数项为n2+1;偶数项为n2-1;依此即可求解.本题考查学生通过观察、归纳、抽象出数列的规律的能力,要求学生首先分析题意,找到规律,并进行推导得出答案.2.【答案】C【解析】【分析】本题考查了完全平方公式,(a+b)n展开式;关键在于观察、分析已知数据,找出规律是解决问题的关键.由“杨辉三角”的规律可知,(a+b)n展开式的各项系数之和为2n,代入(a+b)9计算可得所有项的系数和.【解答】解:当n=1、2、3、4、…时,(a+b)n展开式的各项系数之和分别为2、4、8、16、…,由此可知则(a+b)9展开式中所有项的系数和为(1+1)9=29=512.故选C.3.【答案】(m≠0且m≠1)【解析】解:设S=1+m+m2+m3+m4+…+m2016(m≠0且m≠1)①,将①×m得:mS=m+m2+m3+m4+…+m2017②,由②-①得:mS-S=m2017-1,即S=,∴1+m+m2+m3+m4+…+m2016=(m≠0且m≠1).故答案为:(m≠0且m≠1).仿照例子,将3换成m,设S=1+m+m2+m3+m4+…+m2016(m≠0且m≠1),则有mS=m+m2+m3+m4+…+m2017,二者做差后两边同时除以m-1,即可得出结论.本题考查了规律型中的数字的变化类,解题的关键是仿照例子计算1+m+m2+m3+m4+…+m2016.本题属于基础题,难度不大,本题其实是等比数列的求和公式,但初中未接触过该方面的知识,需要借助于错位相减法来求出结论,此题中尤其要注意m的取值范围.4.【答案】(45,12)【解析】解:由已知可得:根据第一列的奇数行的数的规律是第几行就是那个数平方,第一行的偶数列的数的规律,与奇数行规律相同;∵45×45=2025,2014在第45行,向右依次减小,∴2014所在的位置是第45行,第12列,其坐标为(45,12).故答案为:(45,12).根据已知数据可得出第一列的奇数行的数的规律是第几行就是那个数平方,同理可得出第一行的偶数列的数的规律,从而得出2014所在的位置.此题主要考查了数字的规律知识,得出第一列的奇数行的数的规律与第一行的偶数列的数的规律是解决问题的关键.5.【答案】9【解析】解:由题意可得:+++…+=1++1++1++ (1)=9+(1-+-+-+…+-)=9+=9.故答案为:9.直接根据已知数据变化规律进而将原式变形求出答案.此题主要考查了数字变化规律,正确将原式变形是解题关键.6.【答案】(22018,22017)【解析】【分析】本题考查一次函数图象上点的坐标特征,解答本题的关键是明确题意,发现题目中坐标的变化规律,求出相应的点的坐标.根据题意可以求得点B1的坐标,点A2的坐标,点B2的坐标,然后即可发现坐标变化的规律,从而可以求得点B2018的坐标.【解答】解:由题意可得,点A1的坐标为(1,2),设点B1的坐标为(a,a),,解得,a=2,∴点B1的坐标为(2,1),同理可得,点A2的坐标为(2,4),点B2的坐标为(4,2),点A3的坐标为(4,8),点B3的坐标为(8,4),……∴点B2018的坐标为(22018,22017),故答案为:(22018,22017).7.【答案】C【解析】【分析】根据图象可得智能机器人移动4次完成一个循环,再计算2019次移动中共完成了几次循环,余数为多少,即可得出点A2019的坐标.本题考查了平面直角坐标系中点的坐标的变化规律,解答本题的关键是观察智能机器人移动的规律.【解答】解:A1(0,1),A2(1,1),A3(1,0),A4(2,0),A5(2,1),A6(3,1),…,由智能机器人移动的规律看出:每移动4次将在x轴上向右前进2个单位长度,∵20194=504...3,∴完成504次移动后,机器人回到x轴,离坐标原点的距离为:个单位长度,接下来机器人还需继续按规律移动3次,再次到达x轴,水平前进了1个单位长度,此时离坐标原点的距离为:1008+1=1009个单位长度,A2019的坐标是(1009,0).故选C.8.【答案】2【解析】解:当a1=2时,B1的横坐标与A1的横坐标相等为a1=2,A2的纵坐标和B1的纵坐标相同为y2=-=-,B2的横坐标和A2的横坐标相同为a2═-,A3的纵坐标和B2的纵坐标相同为y3=-=,B3的横坐标和A3的横坐标相同为a3=-,A4的纵坐标和B3的纵坐标相同为y4=-=3,B4的横坐标和A4的横坐标相同为a4=2=a1,…由上可知,a1,a2,a3,a4,a5,…,3个为一组依次循环,∵2020÷3=673…1,∴a2020=a1=2,故答案为:2.根据反比例函数与一次函数图象上点的坐标特征分别求出A1、B1、A2、B2、A3、B3…,从而得到每3次变化为一个循环组依次循环,用2020除以3,根据商的情况确定出a2020即可.本题考查了一次函数图象上点的坐标特征,反比例函数图象上点的坐标特征,依次求出各点的坐标,观察出每3次变化为一个循环组依次循环是解题的关键,也是本题的难点.9.【答案】(0,42013)或(0,24026)【解析】解:∵直线l的解析式为:y=x,∴l与x轴的夹角为30°,∵AB∥x轴,∴∠ABO=30°,∵OA=1,∴AB=,∵A1B⊥l,∴∠ABA1=60°,∴AA1=3,∴A1(0,4),同理可得A2(0,16),…,∴A2013纵坐标为:42013,∴A2013(0,42013).故答案为:(0,42013)或(0,24026)根据所给直线解析式可得l与x轴的夹角,进而根据所给条件依次得到点A1,A2的坐标,通过相应规律得到A2013坐标即可.本题考查的是一次函数综合题,先根据所给一次函数判断出一次函数与x轴夹角是解决本题的突破点;根据含30°的直角三角形的特点依次得到A、A1、A2、A3…的点的坐标是解决本题的关键.10.【答案】(n,)【解析】解:连接OP1,OP2,OP3,l1、l2、l3与x轴分别交于A1、A2、A3,如图所示:在Rt△OA1P1中,OA1=1,OP1=2,∴A1P1===,同理:A2P2==,A3P3==,……,∴P1的坐标为(1,),P2的坐标为(2,),P3的坐标为(3,),……,…按照此规律可得点P n的坐标是(n,),即(n,)故答案为:(n,).连OP1,OP2,OP3,l1、l2、l3与x轴分别交于A1、A2、A3,在Rt△OA1P1中,OA1=1,OP1=2,由勾股定理得出A1P1==,同理:A2P2=,A3P3=,……,得出P1的坐标为(1,),P2的坐标为(2,),P3的坐标为(3,),……,得出规律,即可得出结果.本题考查了切线的性质:圆的切线垂直于过切点的半径.也考查了勾股定理;由题意得出规律是解题的关键.11.【答案】C【解析】【分析】本题考查了规律型:图形的变化类,观察图形,发现棋子的规律是解题的关键.观察各图可知棋子数量的规律,然后写成第n个图案的通式,再取n=10进行计算即可求解.【解答】解:根据图形,第1个图案有12=2(1+2+3)+2×0枚棋子,第2个图案有22=2(1+2+3+4)+2×1枚棋子,第3个图案有34=2(1+2+3+4+5)+2×2枚棋子,第4个图案有48=2(1+2+3+4+5+6)+2×3枚棋子,…第n个图案有2(1+2+…+n+1+n+2)+2(n-1)枚棋子,故第10个这样的图案需要黑色棋子的个数为(枚).故选:C.12.【答案】D【解析】【分析】解决这类问题首先要从简单图形入手,抓住随着“编号”或“序号”增加时,后一个图形与前一个图形相比,在数量上增加(或倍数)情况的变化,找出数量上的变化规律,从而推出一般性的结论.本题考查了规律性.图形的变化类:首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善于用联想来解决这类问题.【解答】解:∵第一个图需棋子3+3=6;第二个图需棋子3×2+3=9;第三个图需棋子3×3+3=12;…∴第n个图需棋子(3n+3)枚.故选D.13.【答案】4039π【解析】【分析】此题主要考查了弧长的计算,弧长的计算公式:,找到每段弧的半径变化规律是解题关键.曲线DA1B1C1D1A2…是由一段段90度的弧组成的,半径每次比前一段弧半径多1,总结出规律AD n-1=AA n=4(n-1)+1,BA n=BB n=4(n-1)+2,再计算弧长即可.【解答】解:由图可知,曲线DA1B1C1D1A2…是由一段段90度的弧组成的,半径每次比前一段弧半径多1,AD=AA1=1,BA1=BB1=2,……,AD n-1=AA n=4(n-1)+1,BA n=BB n=4(n-1)+2,故的半径为BA2020=BB2020=4(2020-1)+2=8078,的弧长=.故答案为:4039π.14.【答案】m、n同为奇数或m、n同为偶数【解析】解:观察图形,A型地砖在列数为奇数,行数也为奇数的位置上或列数为偶数,行数也为偶数的位置上,若用(m,n)位置恰好为A型地砖,正整数m,n须满足的条件为m、n同为奇数或m、n同为偶数.故答案为m、n同为奇数或m、n同为偶数.几何图形,观察A型地砖的位置得到当列数为奇数时,行数也为奇数,当列数为偶数,行数也为偶数的,从而得到m、n满足的条件.本题考查了图形规律问题以及坐标表示位置:通过类比点的坐标解决实际问题的能力和阅读理解能力.分析图形,寻找规律是关键.15.【答案】4-【解析】【分析】考查了两点间的距离,本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.本题注意根据题意表示出各个点跳动的规律,根据题意,得第一次跳动到OA的中点A1处,即在离原点的长度为×4,第二次从A1点跳动到A2处,即在离原点的长度为()2×4,则跳动n次后,即跳到了离原点的长度为()n×4=,再根据线段的和差关系可得线段A n A的长度.【解答】解:由于OA=4,所有第一次跳动到OA的中点A1处时,OA1=OA=×4=2,同理第二次从A1点跳动到A2处,离原点的()2×4处,同理跳动n次后,离原点的长度为()n×4=,故线段A n A的长度为4-(n≥3,n是整数).故答案为:4-.。
中考数学二轮复习重难题型突破类型三新解题方法型
中考数学二轮复习重难题型突破类型三新解题方法型中考数学二轮复习重难题型突破类型三新解题方法型类型三新解题方法型例1、求两个正整数的最大公约数是常见的数学问题,中国古代数学专著《九章算术》中便记载了求两个正整数最大公数最大公约数的一种方法——更相减损术,术曰:“可半者半之,不可半者,副置分母、子之数,以少成多,更相减损,求其等也.以等数约之”,意思是说,要求两个正整数的最大公约数,先用较大的数减去较小的数,得到差,然后用减数与差中的较大数减去较小数,以此类推,当减数与差相等时,此时的差(或减数)即为这两个正整数的最大公约数.例如:求91与56的最大公约数解:91-56=3556-35=2121-1 4=714 -7=7所以,91与56的最大公约数是7.请用以上方法解决下列问题:(1)求108与45的最大公约数;(2)求三个数78、104、143的最大公约数.[解答]解:(1)108-45=6345-18=2727-18=918-9=9所以,108与45的最大公约数是9;(2)①先求104与78的最大公约数,104-78=2678-26=52所以,104与78的最大公约数是26;②再求26与143的最大公约数,143-26=117117-26=9191-26=6565-26=3939-26=13所以,26与143的最大公约数是13.综上所述,78、104、143 的最大公约数是13.例2、数和形是数学的两个主要研究对象,我们经常运用数形结合、数形转化的方法解决一些数学问题.下面我们来探究“由数思形,以形助数”的方法在解决代数问题中的应用.探究:求不等式|x-1|(1)探究|x-1|的几何意义[解答]如图①,在以O为原点的数轴上,设点A′对应的数是x-1,由绝对值的定义可知,点A′与点O的距离为|x-1|,可记为A′O=|x-1|.将线段A′O向右平移1个单位得到线段AB,此时点A对应的数是x,点B对应的数是1.因为AB=A′O,所以AB=|x-1|.因此,|x-1|的几何意义可以理解为数轴上x所对应的点A与1所对应的点B之间的距离AB.第2题图(2)求方程|x-1|=2的解[解答]因为数轴上3和-1所对应的点与1所对应的点之间的距离都为2,所以方程的解为3,-1.(3)求不等式|x-1|因为|x-1|表示数轴上x所对应的点与1所对应的点之间的距离,所以求不等式解集就转化为求这个距离小于2的点对应的数x的范围.请在图②的数轴上表示|x-1|[解答] 解:在数轴上表示如解图所示.第2题解图所以,不等式的|x-1|例3、古希腊数学家丢番图(公元250年前后)在《算术》中提到了一元二次方程的问题,不过当时古希腊人还没有寻求到它的求根公式,只能用图解等方法来求解.在欧几里得的《几何原本》中,形如x2+ax=b2(a>0,b>0)的方程的图解法是:如图,以a2 和b为两直角边作Rt△ABC,再在斜边上截取BD=a2,则AD的长就是所求方程的解.(1)请用含字母a、b的代数式表示AD的长.(2)请利用你已学的知识说明该图解法的正确性,并说说这种解法的遗憾之处.第3题图[解答]解:(1)∵∠C=90°,BC=a2,AC=b,∴AB=b2+a24,∴AD=b2+a24-a2=4b2+a2-a2;(2)用求根公式求得:x1=-4b2+a2-a2;x2=4b2+a2-a2故A D的长就是方程的正根,遗憾之处:图解法不能表示方程的负根.例4、请你阅读引例及其分析解答,希望能给你以启示,然后完成对探究一和探究二的解答.引例:设a,b,c为非负实数,求证:a2+b2+b2+c2 +c2+a2≥2(a+b+c),分析:考虑不等式中各式的几何意义,我们可以试构造一个边长为a+b+c的正方形来研究.解:如图①,设正方形的边长为a+b+c,则AB=a2+b2,BC=b2+c2,CD=a2+c2,显然AB+BC+CD≥AD,∴a2+b2+b2+c2+c2+a2≥2(a+b+c).探究一:已知两个正数x,y,满足x+y=12,求x2+4+y2+9的最小值(图②仅供参考);探究二:若a,b为正数,求以a2+b2,4a2+b2,a2+4b2为边的三角形的面积.第4题图[解答]解:探究一:如解图①,构造矩形AECF,并设矩形的两边长分别为12,5,第4题解图①则x+y=12,AB=x2+4,BC=y2+9,显然AB+BC≥AC,当A,B,C三点共线时,AB+BC最小,即x2+4+y2+9的最小值为AC,∵AC=122+52=13,∴x2+4+y2+9 的最小值为13;第4题解图②探究二:如解图②,设矩形ABCD的两边长分别为2a,2b,E,F分别为AB,AD的中点,则CF=4a2+b2,CE=a2+4b2,EF=a2+b2,设以a2+b2,4a2+b2,a2+4b2为边的三角形的面积为S△CEF,∴S△CEF=S矩形ABCD-S△C DF-S△AEF-S△BCE=4ab-12×2a×b-12ab-12a×2b=32ab,∴以a2+b2,4a2+b2,a2+4b2为边的三角形的面积为32ab.。
专题02 图形变化规律(解析版)中考数学二轮复习难点题型专项突破
专题02 图形变化规律一.圆点类图形变化1.(2020•绥化)如图各图形是由大小相同的黑点组成,图1中有2个点,图2中有7个点,图3中有14个点,…,按此规律,第10个图中黑点的个数是119.解:∵图1中黑点的个数2×1×(1+1)÷2+(1﹣1)=2,图2中黑点的个数2×2×(1+2)÷2+(2﹣1)=7,图3中黑点的个数2×3×(1+3)÷2+(3﹣1)=14,……∴第n个图形中黑点的个数为2n(n+1)÷2+(n﹣1)=n2+2n﹣1,∴第10个图形中黑点的个数为102+2×10﹣1=119.故答案为:119.2.(2020•日照)用大小相同的圆点摆成如图所示的图案,按照这样的规律摆放,则第10个图案中共有圆点的个数是()A.59B.65C.70D.71解:根据图中圆点排列,当n=1时,圆点个数5+2;当n=2时,圆点个数5+2+3;当n=3时,圆点个数5+2+3+4;当n=4时,圆点个数5+2+3+4+5,…∴当n=10时,圆点个数5+2+3+4+5+6+7+8+9+10+11=4+(1+2+3+4+5+6+7+8+9+10+11)=.故选:C.3.(2020•大庆)如图,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第20个图需要黑色棋子的个数为440.解:观察图形可知:第1个图需要黑色棋子的个数为:3=1×3;第2个图需要黑色棋子的个数为:8=2×4;第3个图需要黑色棋子的个数为:15=3×5;第4个图需要黑色棋子的个数为:24=4×6;…发现规律:第n个图需要黑色棋子的个数为:n(n+2);所以第20个图需要黑色棋子的个数为:20(20+2)=440.故答案为:440.4.(2020•德州)如图是用黑色棋子摆成的美丽图案,按照这样的规律摆下去,第10个这样的图案需要黑色棋子的个数为()A.148B.152C.174D.202解:根据图形,第1个图案有12枚棋子,第2个图案有22枚棋子,第3个图案有34枚棋子,…第n﹣1个图案有2(1+2+…+n+1)+2(n﹣2)=n2+5n﹣2枚棋子,第n个图案有2(1+2+…+n+2)+2(n﹣1)=n2+7n+4枚棋子,故第10个这样的图案需要黑色棋子的个数为102+7×10+4=100+70+4=174(枚).故选:C.二.三角形类图形变化5.(2020•白银模拟)如图,用火柴棒按如图所示的方式搭一行三角形,搭1个三角形需3枝火柴棒,搭2个三角形需5枝火柴棒,搭3个三角形需7枝火柴棒,照这样的规律搭下去,搭2020个三角形需要火柴棒4041枝.解:第一个三角形需要3枝火柴棒;第二个三角形需要(3+2)枝火柴棒;第3个三角形需要(3+2×2)枝火柴棒.…第n个三角形需要[3+(n﹣1)×2]=2n+1枝火柴棒.所以,第2020个三角形需要火柴棒=2×2020+1=4041(枝).故答案为:4041.6.(2020•山西)如图是一组有规律的图案,它们是由边长相等的正三角形组合而成,第1个图案有4个三角形,第2个图案有7个三角形,第3个图案有10个三角形…按此规律摆下去,第n个图案有(3n+1)个三角形(用含n的代数式表示).解:第1个图案有4个三角形,即4=3×1+1第2个图案有7个三角形,即7=3×2+1第3个图案有10个三角形,即10=3×3+1…按此规律摆下去,第n个图案有(3n+1)个三角形.故答案为:(3n+1).7.(2020•重庆)把黑色三角形按如图所示的规律拼图案,其中第①个图案中有1个黑色三角形,第②个图案中有3个黑色三角形,第③个图案中有6个黑色三角形,…,按此规律排列下去,则第⑤个图案中黑色三角形的个数为()A.10B.15C.18D.21解:∵第①个图案中黑色三角形的个数为1,第②个图案中黑色三角形的个数3=1+2,第③个图案中黑色三角形的个数6=1+2+3,…∴第⑤个图案中黑色三角形的个数为1+2+3+4+5=15,故选:B.8.(2020•温州模拟)如图,第1个图形有1个三角形,第2个图形中有5个三角形,第3个图形中有9个三角形,……,则第2019个图形中有8073个三角形.解:由图可得,第1个图形有1个三角形,第2个图形中有1+4=5个三角形,第3个图形中有1+4+4=1+4×2=9个三角形,……,则第2019个图形中有:1+4×(2019﹣1)=8073个三角形,故答案为:8073.三.正方形类图形变化9.(2020•聊城)人行道用同样大小的灰、白两种不同颜色的小正方形地砖铺设而成,如图中的每一个小正方形表示一块地砖.如果按图①②③…的次序铺设地砖,把第n个图形用图ⓝ表示,那么第50个图形中的白色小正方形地砖的块数是()A.150B.200C.355D.505解:由图形可知:第1个图形12块白色小正方形,第2个图形19个白色小正方形,第3个图形26个白色小正方形则图ⓝ的白色小正方形地砖有(7n+5)块,当n=50时,7n+5=350+5=355.故选:C.10.(2020•娄底模拟)下列图形都是由面积为1的正方形按一定的规律组成的,其中,第1个图形中面积为1的正方形有9个,第2个图形中面积为1的正方形有14个,……,按此规律,则第几个图形中面积为1的正方形的个数为2019个()A.400B.401C.402D.403解:第1个图形面积为1的小正方形有9个,第2个图形面积为1的小正方形有9+5=14个,第3个图形面积为1的小正方形有9+5×2=19个,…第n个图形面积为1的小正方形有9+5×(n﹣1)=5n+4个,根据题意得:5n+4=2019,解得:n=403.故选:D.11.(2020•通辽)如图,用大小相同的小正方形拼大正方形,拼第1个正方形需要4个小正方形,拼第2个正方形需要9个小正方形…,按这样的方法拼成的第(n+1)个正方形比第n个正方形多2n+3个小正方形.解:∵第1个正方形需要4个小正方形,4=22,第2个正方形需要9个小正方形,9=32,第3个正方形需要16个小正方形,16=42,…,∴第n+1个正方形有(n+1+1)2个小正方形,第n个正方形有(n+1)2个小正方形,故拼成的第n+1个正方形比第n个正方形多(n+2)2﹣(n+1)2=(2n+3)个小正方形.故答案为:2n+3.12.(2020•渌口区模拟)如图:已知正方形的边长为a,将此正方形按照下面的方法进行剪拼:第一次,先沿正方形的对边中点连线剪开,然后对接为一个长方形,则此长方形的周长为4a;第二次,再沿长方形的对边(长方形的宽)中点连线剪开,对接为新的长方形,如此继续下去,第n次得到的长方形的周长为2n﹣1•4a+2×()n a.解:第1个长方形的周长为4a+2×a,第2个长方形的周长为2×4a+2×a,第3个长方形的周长为2×8a+2×a,……∴第n个长方形的周长为2n﹣1•4a+2×()n a,故答案为:4a+2×a,2n﹣1•4a+2×()n a.四.旋转跳跃类图形变化13.(2020•江西模拟)如图,给正五边形的顶点依次编号为1,2,3,4,5.若从某一顶点开始,沿正五边形的边顺时针行走,顶点编号的数字是几,就走几个边长,则称这种走法为一次“移位”.如:小宇在编号为3的顶点时,他应走3个边长,即从3→4→5→1为第一次“移位”,这时他到达编号为1的顶点;然后从1→2为第二次“移位”.若小宇从编号为2的顶点开始,第20次“移位”后,他所处顶点的编号是()A.1B.2C.3D.4解:根据题意,小宇从编号为2的顶点开始,第1次移位到点4,第2次移位到达点3,第3次移位到达点1,第4次移位到达点2,…,依此类推,4次移位后回到出发点,20÷4=5.所以第20次移位为第5个循环组的第4次移位,到达点2.故选:B.14.(2020•常德)如图,将一枚跳棋放在七边形ABCDEFG的顶点A处,按顺时针方向移动这枚跳棋2020次.移动规则是:第k次移动k个顶点(如第一次移动1个顶点,跳棋停留在B处,第二次移动2个顶点,跳棋停留在D处),按这样的规则,在这2020次移动中,跳棋不可能停留的顶点是()A.C、E B.E、F C.G、C、E D.E、C、F解:经实验或按下方法可求得顶点C,E和F棋子不可能停到.设顶点A,B,C,D,E,F,G分别是第0,1,2,3,4,5,6格,因棋子移动了k次后走过的总格数是1+2+3+…+k=k(k+1),应停在第k(k+1)﹣7p格,这时p是整数,且使0≤k(k+1)﹣7p≤6,分别取k=1,2,3,4,5,6,7时,k(k+1)﹣7p=1,3,6,3,1,0,0,发现第2,4,5格没有停棋,若7<k≤2020,设k=7+t(t=1,2,3)代入可得,k(k+1)﹣7p=7m+t(t+1),由此可知,停棋的情形与k=t时相同,故第2,4,5格没有停棋,即顶点C,E和F棋子不可能停到.故选:D.15.(2020•嵊州市模拟)如图1,现有8枚棋子呈一直线摆放,依次编号为①~⑧.小明进行隔子跳,想把它跳成4叠,每2枚棋子一叠,隔子跳规则为:只能靠跳跃,每一步跳跃只能是把一枚棋子跳过两枚棋子与另一枚棋子相叠,如图2中的(1)或(2)(可随意选择跳跃方向)一枚棋子最多只能跳一次.若小明只通过4步便跳跃成功,那么他的第一步跳跃可以为()A.①叠到④上面B.②叠到⑤上面C.④叠到⑦上面D.⑤叠到⑧上面解:A、①叠到④上面,③只能叠到⑤上面,②不能按规则跳,故选项错误;B、②叠到⑤上面,④只能叠到⑥上面,③不能按规则跳,故选项错误;C、④叠到⑦上面,⑥能叠到②上面,①能叠到③上面,⑤能叠到⑧上面,故选项正确;D、⑤叠到⑧上面,⑦只能叠到③上面,⑥不能按规则跳,故选项错误.故选:C.16.(2020•赤峰)一个电子跳蚤在数轴上做跳跃运动.第一次从原点O起跳,落点为A1,点A1表示的数为1;第二次从点A1起跳,落点为OA1的中点A2,第三次从A2点起跳,落点为OA2的中点A3;如此跳跃下去…最后落点为OA2019的中点A2020,则点A2020表示的数为.解:第一次落点为A1处,点A1表示的数为1;第二次落点为OA1的中点A2,点A2表示的数为;第三次落点为OA2的中点A3,点A3表示的数为()2;…则点A2020表示的数为()2019,即点A2020表示的数为;故答案为:.五.复合图形变化17.(2020•莒县二模)如图,∠AOB为锐角,在射线OA上依次截取A1A2=A2A3=A3A4=…=A n A n+1,在射线OB 上依次截取B1B2=B2B3=B3B4=…=B n B n+1,记S n为△A n B n B n+1的面积(n为正整数),若S3=7,S4=10,则S2019=()A.4039B.4041C.6055D.6058解:过A3作A3C⊥OB于C,过A4作A4D⊥OB于D,过A2019作A2019E⊥OB于E,如图所示:则△OA3C∽△OA4D∽△OA2019E,设OA1=a,A1A2=A2A3=A3A4=…=A n A n+1=1个单位,∵S3=7,S4=10,B1B2=B2B3=B3B4=…=B n B n+1,∴=,即=,解得:a=,∴=,即=,∴A2019E=6055,∴S2019=6055,故选:C.18.(2020•郓城县一模)一组正方形按如图所示的方式放置,其中顶点B1在y轴上,顶点C1,E1,E2,C2,E3,E4,C3……在x轴上,已知正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3……则正方形A2020B2020C2020D2020的边长是()A.()2017B.()2018C.()2019D.()2020解:∵正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3,∴D1E1=B2E2,D2E3=B3E4,∠D1C1E1=∠C2B2E2=∠C3B3E4=30°,∴D1E1=C1D1sin30°=,则B2C2==()1,同理可得:B3C3==()2,故正方形A n B n∁n D n的边长是:()n﹣1,则正方形A2020B2020C2020D2020的边长为:()2019,故选:C.19.(2020•周村区一模)如图,在Rt△ABC中,∠C=90°,AC=2,BC=4.点M1,N1,P1分别在AC,BC,AB 上,且四边形M1CN1P1是正方形,点M2,N2,P2分别在P1N1,BN1,BP1上,且四边形M2N1N2P2是正方形,…,点M n,N n,P n分别在P n﹣1N n﹣1,BN n﹣1,BP n﹣1上,且四边形M n N n﹣1N n P n是正方形,则线段BN2020的长度是.解:∵N1P1∥AC,∴△B1N1P1∽△BCA,∴=,设N1P1=x,则=,解得:x=,∴BN1=BC﹣CN1=4﹣=,同理,∵N2P2∥AC,∴△P1N1B∽△P2N2B,设P2N2=y,∴=,解得:y=,∴BN2=﹣==.同理,BN3==,∴线段BN2020的长度是.故答案为:.20.(2020•锦州一模)如图,∠MON=30°,点A1在ON上,点C1在OM上,OA1=A1C1=2,C1B1⊥ON于点B1,以A1B1和B1C1为邻边作矩形A1B1C1D1,点A1,A2关于点B1对称,A2C2∥A1C1交OM于点C2,C2B2⊥ON于点B2,以A2B2和B2C2为邻边作矩形A2B2C2D2,连接D1D2,点A2,A3关于点B2对称,A3C3∥A2C2交OM 于点C3,C3B3⊥ON于点B3,以A3B3和B3C3为邻边作矩形A3B3C3D3,连接D2D3,……依此规律继续下去,则D n D n+1=2n﹣1•.解:由题意D1D2===20,D2D3==2=21•,D3D4==4=22•,…∴D n D n+1=2n﹣1•,故答案为2n﹣1•.。
专题二 图形规律-2021年中考数学二轮复习之重难热点提分专题(原卷版)
1专题二 图形规律题型一:动点图形规律1.(2020常德)如图,将一枚跳棋放在七边形ABCDEFG 的顶点A 处,按顺时针方向移动这枚跳棋2020次.移动规则是:第k 次移动k 个顶点(如第一次移动1个顶点,跳棋停留在B 处,第二次移动2个顶点,跳棋停留在D 处),按这样的规则,在这2020次移动中,跳棋不可能停留的顶点是( )A .C 、EB .E 、FC .G 、C 、ED .E 、C 、F题型二:几何图形规律2.(2020烟台)如图,△OA 1A 2为等腰直角三角形,OA 1=1,以斜边OA 2为直角边作等腰直角三角形OA 2A 3,再以OA 3为直角边作等腰直角三角形OA 3A 4,…,按此规律作下去,则OA n 的长度为( ) A .(2)n B .(2)n ﹣1 C .(22)n D .(22)n ﹣1 3.(2020盐城)把1~9这9个数填入3×3方格中,使其任意一行,任意一列及两条对角线上的数之和都相等,这样便构成了一个“九宫格”.它源于我国古代的“洛書”(图△),是世界上最早的“幻方”.图△是仅可以看到部分数值的“九宫格”,则其中x的值为()2A .1B .3C .4D .64.(2020•成都)如图,六边形ABCDEF 是正六边形,曲线F A 1B 1C 1D 1E 1F 1…叫做“正六边形的渐开线”,FA1̂,A 1B 1̂,B 1C 1̂,C 1D 1̂,D 1E 1̂,E 1F 1̂,…的圆心依次按A ,B ,C ,D ,E ,F 循环,且每段弧所对的圆心角均为正六边形的一个外角.当AB =1时,曲线F A 1B 1C 1D 1E 1F 1的长度是 .5.(2020•湘西州)观察下列结论:(1)如图△,在正三角形ABC 中,点M ,N 是AB ,BC 上的点,且AM =BN ,则AN =CM ,△NOC =60°;(2)如图2,在正方形ABCD 中,点M ,N 是AB ,BC 上的点,且AM =BN ,则AN =DM ,△NOD =90°;(3)如图△,在正五边形ABCDE 中点M ,N 是AB ,BC 上的点,且AM =BN ,则AN =EM ,△NOE =108°;…根据以上规律,在正n 边形A 1A 2A 3A 4…A n 中,对相邻的三边实施同样的操作过程,即点M ,N 是A 1A 2,A 2A 3上的点,且A 1M =A 2N ,A 1N 与A n M 相交于O .也会有类似的结论,你的结论是.36.(2020潍坊)如图,四边形ABCD 是正方形,曲线DA 1B 1C 1D 1A 2…是由一段段90度的弧组成的.其中:DA 1̂的圆心为点A ,半径为AD ;A 1B 1̂的圆心为点B ,半径为BA 1;B 1C 1̂的圆心为点C ,半径为CB 1;C 1D 1̂的圆心为点D ,半径为DC 1;⋯DA 1̂,A 1B 1̂,B 1C 1̂,C 1D 1̂,…的圆心依次按点A ,B ,C ,D 循环.若正方形ABCD 的边长为1,则A 2020B 2020̂的长是 .7.(2020徐州)如图,△MON =30°,在OM 上截取OA 1=3.过点A 1作A 1B 1△OM ,交ON 于点B 1,以点B 1为圆心,B 1O 为半径画弧,交OM 于点A 2;过点A 2作A 2B 2△OM ,交ON 于点B 2,以点B 2为圆心,B 2O 为半径画弧,交OM 于点A 3;按此规律,所得线段A 20B 20的长等于 .8.(2020辽阳)如图,四边形ABCD 是矩形,延长DA 到点E ,使AE =DA ,连接EB,点F 1是CD 的中4 点,连接EF 1,BF 1,得到△EF 1B ;点F 2是CF 1的中点,连接EF 2,BF 2,得到△EF 2B ;点F 3是CF 2的中点,连接EF 3,BF 3,得到△EF 3B ;…;按照此规律继续进行下去,若矩形ABCD 的面积等于2,则△EF n B 的面积为 .(用含正整数n 的式子表示)题型三:几何函数图形规律9.(2020荆门)在平面直角坐标系xOy 中,Rt△AOB 的直角顶点B 在y 轴上,点A 的坐标为(1,3),将Rt△AOB 沿直线y =﹣x 翻折,得到Rt△A 'OB ',过A '作A 'C 垂直于OA '交y 轴于点C ,则点C 的坐标为( )A .(0,﹣23)B .(0,﹣3)C .(0,﹣4)D .(0,﹣43)10.(2020鄂州)如图,点A 1,A 2,A 3…在反比例函数y =xk (x >0)的图象上,点B 1,B 2,B 3,…B n 在y5轴上,且△B 1OA 1=△B 2B 1A 2=△B 3B 2A 3=…,直线y =x 与双曲线y =x1交于点A 1,B 1A 1△OA 1,B 2A 2△B 1A 2,B 3A 3△B 2A 3…,则B n (n 为正整数)的坐标是( )A .(2n ,0)B .(0,12+n )C .(0,)1(2-n n )D .(0,2n )11.(2020温州)点P ,Q ,R 在反比例函数y =xk (常数k >0,x >0)图象上的位置如图所示,分别过这三个点作x 轴、y 轴的平行线.图中所构成的阴影部分面积从左到右依次为S 1,S 2,S 3.若OE =ED =DC ,S 1+S 3=27,则S 2的值为 .12.(2020•自贡)如图,直线y =by x +-3与y 轴交于点A ,与双曲线y =xk 在第三象限交于B 、C 两点,且AB •AC =16.下列等边三角形△OD 1E 1,△E 1D 2E 2,△E 2D 3E 3,…的边OE 1,E 1E 2,E 2E 3,…在x 轴上,顶点D 1,D 2,D 3,…在该双曲线第一象限的分支上,则k = ,前25个等边三角形的周长之和为.613.(2020齐齐哈尔)如图,在平面直角坐标系中,等腰直角三角形△沿x 轴正半轴滚动并且按一定规律变换,每次变换后得到的图形仍是等腰直角三角形.第一次滚动后点A 1(0,2)变换到点A 2(6,0),得到等腰直角三角形△;第二次滚动后点A 2变换到点A 3(6,0),得到等腰直角三角形△;第三次滚动后点A 3变换到点A 4(10,24),得到等腰直角三角形△;第四次滚动后点A 4变换到点A 5(10+212,0),得到等腰直角三角形△;依此规律…,则第2020个等腰直角三角形的面积是.。
专题04 图形变化类规律问题(解析版)2021年中考数学二轮复习之难点突破热点解题方法
专题04 图形变化类规律问题一、单选题1.如图是一组有规律的图案,它们是由边长相同的正方形和正三角形拼接而成,第①个图案有4个三角形和1个正方形,第②个图案有7个三角形和2个正方形,第③个图案有10个三角形和3个正方形,⋯依此规律,如果第n 个图案中正三角形和正方形的个数共有2021个,则n =( )A .504B .505C .506D .507【答案】B 【分析】根据图形的变化规律、正方形和三角形的个数可发现第n 个图案有31n +个三角形和n 个正方形,正三角形和正方形的个数共有41n +个,进而可求得当412021n +=时n 的值. 【详解】解:∵第∵个图案有4个三角形和1个正方形,正三角形和正方形的个数共有5个; 第∵个图案有7个三角形和2个正方形,正三角形和正方形的个数共有9个; 第∵个图案有10个三角形和3个正方形,正三角形和正方形的个数共有13个; 第∵个图案有13个三角形和4个正方形,正三角形和正方形的个数共有17个;∵第n 个图案有()43131n n +-=+个三角形和n 个正方形,正三角形和正方形的个数共有3141n n n ++=+个∵第n 个图案中正三角形和正方形的个数共有2021个∵412021n += ∵505n =. 故选择:B 【点睛】本题考查了图形变化类的规律问题、利用一元一次方程求解等,解决本题的关键是观察图形的变化寻找规律.2.如图,依次连接第一个矩形各边的中点得到一个菱形,再依次连接菱形各边的中点得到第二个矩形,按照此方法继续下去.已知第一个矩形的面积为1,则第n 个知形的面积为( )A .14B .114n - C .14nD .114n + 【答案】B 【分析】易得第二个矩形的面积为(21)2,第三个矩形的面积为(41)2,依此类推,第n 个矩形的面积为(221)2n -.【详解】解:已知第一个矩形的面积为1; 第二个矩形的面积为原来的(22211)24⨯-=; 第三个矩形的面积是(23211)216⨯-=; ⋯故第n 个矩形的面积为:(2211111)()244n n n ---==.【点睛】本题考查了三角形的中位线定理及矩形、菱形的性质,是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.3.如图,第1个图形中小黑点的个数为5个,第2个图形中小黑点的个数为9个,第3个图形中小黑点的个数为13个,…,按照这样的规律,第n 个图形中小黑点的个数应该是( )A .41n +B .32n +C .51n -D .62n -【答案】A 【分析】观察规律,逐个总结,从特殊到一般即可. 【详解】第1个图形,1+1×4=5个; 第2个图形,1+2×4=9个; 第3个图形,1+3×4=13个;第n 个图形,1+4n 个; 故选:A .本题考查利用整式表示图形的规律,仔细观察规律并用整式准确表达是解题关键.4.按图示的方式摆放餐桌和椅子,图1中共有6把椅子,图2中共有10把椅子,…,按此规律,则图7中椅子把数是()A.28B.30C.36D.42【答案】B【分析】观察图形变化,得出n张餐桌时,椅子数为4n+2把(n为正整数),代入n=7即可得出结论.【详解】解:1张桌子可以摆放的椅子数为:2+1×4=6,2张桌子可以摆放的椅子数为:2+2×4=10,3张桌子可以摆放的椅子数为:2+3×4=14,…,n张桌子可以摆放的椅子数为:2+4n,令n=7,可得2+4×7=30(把).故选:B.【点睛】此题考查图形类规律探究,列式计算,根据图形的排列总结规律并运用解决问题是解题的关键.5.如图,用黑白两种颜色的纸片,按黑色纸片数逐渐增加1的规律拼成下列图案.若第n个图案中有202个白色纸片,则n的值为()A.66B.67C.68D.69【答案】B【分析】根据题目中的图形,可以发现白色纸片个数的变化规律,然后根据第n个图案中有202张白色纸片,即可求得n的值.【详解】由图可得,第1个图案中白色纸片的个数为:1+1×3=4,第2个图案中白色纸片的个数为:1+2×3=7,第3个图案中白色纸片的个数为:1+3×3=10,…,第n个图案中白色纸片的个数为:1+n×3=3n+1,令3n+1=202,解得,n=67,故答案为:B.【点睛】本题考查图形的变化类,解答本题的关键是明确题意,发现题目中白色纸片的变化规律,利用数形结合的思想解答.6.如图所示的图形都由同样大小的小圆圈按一定规律所组成的,若按此规律排列下去,则第50个图形中有()个小圆圈.A.2454B.2605C.2504D.2554【答案】D【分析】设第n个图形中有a n个小圆圈(n为正整数),根据图形中小圆圈个数的变化可找出“a n=4+n(n+1)(n为正整数)”,再代入n=50即可求出结论.【详解】解:设第n个图形中有a n个小圆圈(n为正整数)观察图形,可知:a1=4+1×2,a2=4+2×3,a3=4+3×4,a4=4+4×5,…,∵a n=4+n(n+1)(n为正整数),∵a50=4+50×51=2554故选D.【点睛】本题考查了规律型:图形的变化类,根据图形中小圆圈个数的变化找出变化规律“a n=4+n(n+1)(n为正整数)”是解题的关键.7.用火柴棒按下图的方式搭图形,搭第n个图形需要火柴棒根数为()A .21nB .2nC .21n -D .2(1)n +【答案】A 【分析】观察给出图形的根数,发现以此增加2,即可列出代数式. 【详解】第一个图形有:1+2=3根, 第二个图形有:1+2×2=5根, 第三个图形有:1+2×3=7根, 第四个图形有:1+2×4=9根,⋯⋯∵第n 个图形有:2n+1根; 故选:A . 【点睛】本题考查列代数式表示图形的变化规律,找准每个图形增加的数量关系是解题关键.8.按照如图所示的方法排列黑色小正方形地砖,则第14个图案中黑色小正方形地砖的数量是( )A.360B.363C.365D.369【答案】C【分析】观察求出图案中地砖的块数,找到规律再求出黑色的地砖的数量即可.【详解】第1个图案只有(2×1﹣1)2=12=1块黑色地砖,第2个图案有黑色与白色地砖共(2×2﹣1)2=32=9,其中黑色的有12(9+1)=5块,第3个图案有黑色与白色地砖共(2×3﹣1)2=52=25,其中黑色的有12(25+1)=13块,…第n个图案有黑色与白色地砖共(2n﹣1)2,其中黑色的有12[(2n﹣1)2+1],当n=14时,黑色地砖的块数有12×[(2×14﹣1)2+1]=12×730=365.故选:C.【点睛】此题考查图形类规律的探究,有理数的混合运算,根据所给图案总结出图案排列的规律由此进行计算是解题的关键.9.法国数学家柯西于1813年在拉格朗日、高斯的基础上彻底证明了《费马多边形数定理》,其主要突破在“五边形数”的证明上.如图为前几个“五边形数”的对应图形,请据此推断,第20个“五边形数”应该为(),第2020个“五边形数”的奇偶性为()A .533;偶数B .590;偶数C .533;奇数D .590;奇数【答案】B 【分析】根据前几个“五边形数”的对应图形找到规律,得出第n 个“五边形数”为23122n n -,将n=10代入可求得第20个“五边形数”,利用奇偶性判断第2020个“五边形数”的奇偶性. 【详解】解:第1个“五边形数”为1=2311122⨯-⨯, 第2个“五边形数”为5=2312222⨯-⨯, 第3个“五边形数”为12=2313322⨯-⨯, 第4个“五边形数”为22=2314422⨯-⨯, 第5个“五边形数”为35=2315522⨯-⨯, ···由此可发现:第n 个“五边形数”为23122n n -, 当n=20时,23122n n -= 231202022⨯-⨯=590, 当n=2020时,232n =3×2020×1010是偶数,12n =1010是偶数,所以23122n n -是偶数,故选:B .【点睛】本题考查数字类规律探究、有理数的混合运算,通过观察图形,发现数字的变化规律是解答的关键. 10.观察下列一组图形中点的个数,其中第1个图中共有4个点,第2个图中共有10个点,第3个图中共有19个点,按此规律第8个图中共有点的个数是( )个A .108B .109C .110D .112【答案】B 【分析】由图可知:其中第1个图中共有1+1×3=4个点,第2个图中共有1+1×3+2×3=10个点,第3个图中共有1+1×3+2×3+3×3=19个点,…,由此规律得出第n 个图有1+1×3+2×3+3×3+…+3n 3(1)12n n +=+个点,然后依据规律解答即可. 【详解】解:第1个图中共有1+1×3=4个点, 第2个图中共有1+1×3+2×3=10个点, 第3个图中共有1+1×3+2×3+3×3=19个点, …第n 个图有1+1×3+2×3+3×3+…+3n=13(123)n ++++⋯+3(1)12n n +=+个点, ∵第8个图中共有点的个数38(81)11092⨯+=+=个,故选B.【点睛】此题考查图形的变化规律,根据图形得出数字之间的运算规律是解题的关键.11.观察下列图形:它们是按一定规律排列的,依照此规律,第7个图形共有()个五星.A.14B.18C.21D.28【答案】C【分析】根据图形的变化发现规律即可求解.【详解】解:第一个图形中有1×3=3个五星,第二个图形中有2×3=6个五星,第三个图形中有3×3=9个五星,第四个图形中有4×3=12个五星,…根据规律可知第n个图形有3n个五星,所以第7个图形共有7×3=21个五星.故选:C.【点睛】考查了规律型:图形的变化类,解决此类探究性问题,关键在观察、分析已知数据,寻找它们之间的相互联系,探寻其规律.本题的关键规律为第n 个图形有3n 个五星.12.如图所示,2条直线相交只有1个交点,3条直线相交最多能有3个交点,4条直线相交最多能有6个交点,5条直线相交最多能有10个交点,……,n (n ≥2,且n 是整数)条直线相交最多能有( )A .()23n -个交点B .()36n -个交点C .()410n -个交点D .()112n n -个交点 【答案】D【分析】根据题目中的交点个数,找出n 条直线相交最多有的交点个数公式:()112n n - 【详解】解:2条直线相交有1个交点;3条直线相交有1+2=3个交点;4条直线相交有1+2+3=6个交点;5条直线相交有1+2+3+4=10个交点;6条直线相交有1+2+3+4+5=15个交点;…n 条直线相交有1+2+3+4+…+(n -1)=()112n n -故选:D【点睛】本题考查的是多条直线相交的交点问题,解答此题的关键是找出规律,即n 条直线相交最多有()112n n -个交点. 13.如图所示图形是由相同的小五角星按一定的规律排列组合而成,其中第一个图形有6个五角星,第二个图形有10个五角星,第三个图形有16个五角星,第四个图形有24个五角星,……,则第八个图形五角星的个数为( )A .74B .76C .78D .80【答案】B【分析】 根据已知图形得出第n 个图形中五角星个数为4+n(n+1),据此可得.【详解】解:∵第一个图形中五角星的个数6=4+1×2,第二个图形中五角星的个数10=4+2×3,第三个图形中五角星的个数16=4+3×4,……,∵第八个图形中五角星的个数为4+8×9=76,故选B .【点睛】本题主要考查图形的变化规律,解题的关键是将已知图形分割成两部分,并从中找到总个数的通项公式4+n(n+1)14.观察下列一组图形,其中图形(1)中共有2颗星,图形(2)中共有6颗星,图形(3)中共有11颗星,图形(4)中共有17颗星,…,按此规律,图形(20)中的星星颗数是( )A .210B .236C .249D .251【答案】C【分析】 设图中第n 个图形的星星个数为a n (n 为正整数),然后列出各个图形星星的个数,去判断星星个数的规律,然后计算第20个图形的星星个数.【详解】解:第n 个图形的星星个数为a n (n 为正整数)则a 1=2=1+1,a 2=6=1+2+3,a 3=11=1+2+3+5,a 4=17=1+2+3+4+7∵a n =1+2+3+……+n +(2n -1)=2(1)15(21)1222n n n n n ++-=+- 令n =20,则2215151?20+?20-12222n n +-==249 故选:C【点睛】本题主要考查根据图形找规律,解题的关建是找出图形规律,然后计算.二、填空题15.如图,45MON ∠=︒,正方形1ABB C ,正方形1121A B B C ,正方形2232A B B C ,正方形3343A B B C ,…,的顶点A ,123,,A A A ,在射线OM 上,顶点1234,,,,,B B B B B ,在射线ON 上,连接2AB 交11A B 于点D ,连接13A B 交22A B 于点1D ,连接24A B 交33A B 于点2D ,…,连接11B D 交2AB 于点E ,连接22B D 交13A B 于点1E ,…,按照这个规律进行下去,设四边形11A DED 的面积为1S ,四边形2112A D E D 的面积为2S ,四边形3223A D E D 的面积为3S ,…,,若2AB =,则n S 等于________.(用含有正整数n 的式子表示).【答案】2429n +. 【分析】先证得∵ADC ~∵21B DB ,推出CD=23,143DB =,同理得到1143C D =,1283D B =,由∵1~EDB ∵21EB D ,推出∵ED 1B 边D 1B 上的高为43,计算出1649S =,同理计算得出26449S =⨯,236449S =⨯,找到规律,即可求解【详解】解:∵正方形1ABB C ,正方形1121A B B C ,且45MON ︒∠=,∵OAB ∆和11AA B ∆都是等腰直角三角形,∵12OB AB BB ===,∵1114A B OB ==,同理228A B =,∵正方形1ABB C ,正方形1121A B B C ,正方形2232A B B C ,边长分别为2,4, 8,∵12112//,//AC B B DB D B ,∵11224CD AC DB B B ==, ∵12DB CD =,∵11124,333CD CB DB ===, 同理:1112122223231481816,,,333333C D C B D B C D C B D B ======, ∵112//DB D B ,∵121DEB EB D ∆∆∽,设∵EDB 1和∵EB 2D 1的边DB 1和B 2D 1上的高分别为h 1和1h ', ∵11112413,823h DB h D B '=== ∵11124,h h B B '+== ∵1148,33h h '==, 设1112223,,D E D B B E B E D ∆∆∆的边11223,,DB D B D B 的高分别为123,,h h h , ∵1234816,,,333h h h === ∵11112211111114464442222339A B D DB E S S S DB h ∆∆=-=⨯-⨯⋅=⨯-⨯⨯=; 同理求得:221212222122111188648842222339A B D D B E S S S D B h ∆∆=-=⨯-⨯⋅=⨯-⨯⨯=⨯; 333232223233111161664161284222339A B D D B E S S S D B h ∆∆=-=⨯-⨯⋅=-⨯⨯=⨯; …224164424999n n n n S ++-=⨯==.故答案为:2429n.【点睛】本题考查了正方形的性质,等腰直角三角形的判定和性质,相似三角形的判定与性质在规律型问题中的应用,数形结合并善于发现规律是解题的关键.16.某班要在一面墙上同时展示数张形状、大小均相同的矩形绘画作品......,将这些作品排成一个矩形(作品不完全重合).现需要在每张作品的四个角落都钉上图钉..............,如果作品有角落相邻,那么相邻的角落共享一枚图钉(例如,用9枚图钉将4张作品钉在墙上,如图).若有43枚图钉可供选用,则最多可以按照要求展示绘画作品________张.【答案】30【分析】分别找出展示的绘画作品展示成一行、二行、三行、四行、五行、六行、七行的时候,43枚图钉最多可以展示的画的数量,比较后即可得出结论.【详解】解:∵如果所有的画展示成一行,43÷(1+1)=21……1,∵43枚图钉最多可以展示20张画;∵如果所有的画展示成两行,43÷(2+1)=14……1,14-1=13(张),2×13=26(张),∵43枚图钉最多可以展示26张画;∵如果所有的画展示成三行,43÷(3+1)=10……3,10-1=9(张),3×9=27(张),∵43枚图钉最多可以展示27张画;∵如果所有的画展示成四行,43÷(4+1)=8……3,8-1=7(张),4×7=28(张),∵43枚图钉最多可以展示28张画;∵如果所有的画展示成五行,43÷(5+1)=7……1,7-1=6(张),5×6=30(张),∵43枚图钉最多可以展示30张画;∵如果所有的画展示成六行,43÷(6+1)=6……1,6-1=5(张),6×5=30(张),∵43枚图钉最多可以展示30张画;∵如果所有的画展示成七行,43÷(7+1)=5……3,5-1=4(张),4×7=28(张),∵43枚图钉最多可以展示28张画;综上所述:43枚图钉最多可以展示30张画.故答案为:30.【点睛】本题考查了规律型中图形的变化类,观察图形,求出展示的绘画作品展示成一行、二行、三行、四行、五行、六行、七行时,最多可以展示的画的数量是解题的关键.17.如图,每条边上有n(n≥2)个方点,每个图案中方点的总数是S.(1)请写出n=5时,S=_____________ ;(2)按上述规律,写出S与n的关系式,S=__________________ .【答案】16; 44n -.【分析】当2n =时,4(21)4S =⨯-=;当3n =时,4(31)8S =⨯-=,⋯,以此类推,可知当n n =时,4(1)S n =⨯-,即4(1)S n =-,根据解答即可.【详解】解:(1)2n =,()4421S ==⨯-;3n =,()8431S ==⨯-;4n =,()12441S ==⨯-;()()412S n n ∴=-≥.∵4n =,()45116S =⨯-=;(2)由(1)可得()4144S n n =-=-.【点睛】主要考查了图形类的规律,正确分析理解题目是解题的关键.18.如图,在矩形ABCD 中,AD=2,CD=1,连接AC ,以对角线AC 为边,按逆时针方向作矩形ABCD 的相似矩形AB 1C 1C ,再连接AC 1,以对角线AC 1为边作矩形AB 1C 1C 的相似矩形AB 2C 2C 1,…,按此规律继续下去,则矩形AB4C4C3的面积为_____.【答案】4 75 2【分析】利用勾股定理可求得AC的长,根据面积比等于相似比的平方可得矩形AB1C1C的面积,同理可求出矩形AB2C2C1、AB3C3C2,……的面积,从而可发现规律,根据规律即可求得第n个矩形的面积,继而即可求得矩形AB4C4C3的面积.【详解】∵在矩形ABCD中,AD=2,CD=1,=∵矩形ABCD与矩形AB1C1C相似,∵矩形AB1C1C与矩形ABCD,∵矩形AB1C1C与矩形ABCD的面积比为54,∵矩形ABCD的面积为1×2=2,∵矩形AB1C1C的面积为2×54=52,同理:矩形AB2C2C1的面积为52×54=258=2352,矩形AB 3C 3C 2的面积为258×54=12532=3552, ……∵矩形AB n C n C n -1面积为2152nn , ∵矩形AB 4C 4C 3的面积为=4752, 故答案为:4752【点睛】本题考查了矩形的性质,勾股定理,相似多边形的性质,根据求出的结果得出规律并熟记相似图形的面积比等于相似比的平方是解题关键.19.如图所示,第(1)个图有2个相同的小正方形,第(2)个图有6个相同的小正方形,第(3)个图有12个相同的小正方形,第(4)个图有20个相同的小正方形,……,按此规律,那么第(n )个图有________个相同的小正方形.【答案】n(n +1)【分析】通过观察可以发现,每一个图形中正方形的个数等于图形序号乘以比序号大一的数,根据此规律解答即可.【详解】第(1)个图有2个相同的小正方形,2=1×2,第(2)个图有6个相同的小正方形,6=2×3,第(3)个图有12个相同的小正方形,12=3×4,第(4)个图有20个相同的小正方形,20=4×5,…,以此类推,第n 个图应有n(n +1)个相同的小正方形.【点睛】本题是对图形变化规律的考查,发现正方形的个数是两个连续整数的乘积是解题的关键,此类题目对同学们的能力要求较高,在平时的学习中要不断积累.20.如图所示是一组有规律的图案,它们是由边长相同的小正方形组成,其中部分小正方形涂有阴影,按照这样的规律,第4个图案中有______个涂有阴影的小正方形,第n个图案中有_______个涂有阴影的小正方形(用含有n的代数式表示).【答案】17 4n+1【分析】观察发现,后一个图案比前一个图案多涂4个有阴影的小正方形,根据规律写出第n个图案的涂阴影的小正方形的个数即可.【详解】由图可得,第1个图案涂有阴影的小正方形的个数为5个,第2个图案涂有阴影的小正方形的个数为5+4=9个,第3个图案涂有阴影的小正方形的个数为5+4+4=13个,第4个图案涂有阴影的小正方形的个数为5+4+4+4=17个,,第n个图案涂有阴影的小正方形的个数为5+4(n-1)=4n+1(个),故答案为:17,4n+1.【点睛】此题考查图形类规律的探究,列代数式,有理数的加法计算法则,观察图形得到图形的变化规律,总结规律并解决问题是解题的关键.21.将一半径相同的小圆按如图所示的规律摆放,第1个图形有4个小圆,第2个图形有8个小圆,第3个图形有14个小圆,…,依此规律,第11个图形的小圆个数是______.【答案】134【分析】根据图形的变化寻找规律即可求解.【详解】解:观察图形的变化可知:第1个图形有1×2+2=4个小圆,第2个图形有2×3+2=8个小圆,第3个图形有3×4+2=14个小圆,…,发现规律:第n个图形的小圆个数是n(n+1)+2.所以第11个图形的小圆个数是11×12+2=134.故答案为:134.【点睛】本题考查了规律型-图形的变化,解决本题的关键是观察图形的变化寻找规律并总结规律,会利用找到的规律进行解题.22.德国数学家康托尔引入位于一条线段上的一些点的集合,做法如下:取一条长度为1的线段三等分后,去掉中间段,余下两条线段,达到第1阶段;将剩下的两条线段分别三等分后,各去掉中间段,余下四条线段,达到第2阶段;再将剩下四条线段分别三等分后,各去掉中间段,余下八条线段,达到第3阶段;..,一直如此操作下去大在不断分割舍弃过程中,所形成的线段数目越来越多.如图是最初几个阶段,(1)当达到第5个阶段时,余下的线段条数为____________.(2)当达到第n个阶段时(n为正整数),去掉的线段的长度之和为___ (用含n的式子表示)【答案】(1)32;(2)1 ()3n.【分析】根据题意写出前面所求的结果的式子,然后推广得出规律,即可解答.【详解】(1)根据题意可知:第一阶段余下的线段的条数为12=2条;第二阶段余下的线段的条数为22=4条;第三阶段余下的线段的条数为32=8条;第四阶段余下的线段的条数为42=16条;第五阶段余下的线段的条数为52=32条;故答案为32.(2)根据题意可知:第一阶段去掉的线段的长度为11()3; 第二阶段去掉的线段的长度和为211111=()33333⨯+⨯; 第三阶段去掉的线段的长度和为22311111()()()33333⨯+⨯=; 以此类推,第n 阶段去掉的线段的长度和为1()3n. 故答案为1()3n.【点睛】考查发现图形的规律,根据图形写出前面的几种情况,然后找出其规律是解答本题的关键.23.如图,用火柴棍摆出一列正方形图案,其中图∵有4根火柴棍,图∵有12根火柴棍,图∵有24根火柴棍… …以此类推,则图∵中火柴棍的根数是_____________.【答案】220【分析】图形从上到下可以分成几行,第n 个图形中,竖放的火柴有n (n+1)根,横放的有n (n+1)根,因而第n 个图案中火柴的根数是:n (n+1)+n (n+1)=2n (n+1),把n=10代入就可以求出.【详解】设摆出第n 个图案用火柴棍为S n .∵图,S 1=1×(1+1)+1×(1+1);∵图,S 2=2×(2+1)+2×(2+1);∵图,S 3=3×(3+1)+3×(3+1);…;第n 个图案,S n =n (n+1)+n (n+1)=2n (n+1),则第∵个图案为:2×10×(10+1)=220.故答案为:220.【点睛】本题考查了规律型图形的变化,有一定难度,注意此题第n 个图案用火柴棍为2n (n+1),要拥有一定的推理与论证能力.24.如图,用棋子摆出下列一组图形:按照这种规律摆下去,第2020个图形用的棋子个数是_______.【答案】6063个【分析】根据各图形中所用棋子个数的变化可得出变化规律“33n a n =+”,此题得解.【详解】设第n 个图形用的棋子个数为n a 个(n 为正整数),∵1123a =++,2234a =++,3345a =++,…,∵()()1233n a n n n n =++++=+,∵20203202036063a =⨯+=.故答案为:6063个.【点睛】本题考查了规律型:图形的变化类,根据各图形中所用棋子个数的变化,找出变化规律“33n a n =+”是解题的关键.25.如图,正方形ABCD 的边长为1,其面积标记为1S ,以CD 为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为2···S ,按照此规律继续下去,则5S 的值为__________【答案】116【分析】根据正方形的面积公式以及勾股定理的内容发现S 1=12=1,S 2=12S 1=12,S 3=12S 2=14,S 4=12S 3=18,…,继而得出规律即可求得答案.【详解】观察,发现规律:S 1=12=1,S 2=12S 1=12,S 3=12S 2=14,S 4=12S 3=18,…, ∵S n =(12)n -1,当n=5时,S 5=411=126⎛⎫ ⎪⎝⎭, 故答案为:116. 【点睛】本题考查了规律型——图形的变化类,推导出前几个正方形的面积得出面积变化的规律是解题的关键∵ 26.有一塔形几何体由若干个正方体构成,构成方式如图所示,上层正方体下底面的四个顶点是下层正方体上底面各边的中点.已知最底层正方体的棱长为2,且该塔形的表面积(含最底层正方体的底面面积)超过39,则该塔形中正方体的个数至少是___________.【答案】6【分析】求出各个层的正方体的表面积,求出它们的和,该塔形的表面积(含最底层正方体的底面面积)超过39,求出正方体的个数至少个数.【详解】解:底层正方体的表面积为24;第2层正方体的棱长214()2⨯;第3层正方体的棱长为222⨯,每个面的面积为214()2⨯;第n 层正方体的棱长为12)2n -⨯,每个面的面积为114()2n -⨯; 若该塔形为n 层,则它的表面积为2151111244[4()4()4()]40()2222n n --+⨯+⨯+⋯+⨯=-因为该塔形的表面积超过39,所以该塔形中正方体的个数至少是6.故答案为:6.【点睛】本题是中档题,考查计算能力,数列求和的知识,正确就是解好数学问题的关键,常考题型. 27.如图1是一个轴对称图形,且每个角都是直角,长度如图所示,小明按图2所示的方式两两相扣,相扣处不留空隙,小明用x 个如图1所示的图形拼出来的总长度y 会随着x 的变化而变化,y 与x 的关系式为y =______.【答案】52x +【分析】探究规律,利用规律解决问题即可.【详解】观察图形可知:当两个图(1)拼接时,总长度为:7+5=12;当三个图(1)拼接时,总长度为:7+2×5;以此类推,可知:用x 个这样的图形拼出来的图形总长度为:()75152x x +-=+,∵y 与x 的关系式为52y x =+.【点睛】本题考查了图形规律,根据图形的拼接规律得出y 与x 的关系式是解题的关键.28.如图,古希腊人常用小石子在沙滩上摆成各种图形来研究数.例如:图中的数1,5,12,22…,由于这些数能够表示成五边形,所以将它们称为五边形数,按照此规律,第40个图形表示的五边形数是_____.【答案】2380【分析】观察图形得到第1个五边形数为1,第2个五边形数为1+4=5,第3个五边形数为1+4+7=12,第4个五边形数为1+4+7+10=22,即每个五边形数是从1开始,后面的数都比前面一个数大3的几个数的和,且数的个数等于序号数,则第n 个五边形数为232n n -,把n =40代入计算即可. 【详解】第一个图形有1个,第二个图形有5=2+3个,第三个图形有12=3+4+5个,第n 个图形五边形数为()2312312n n n n n n n n -⎡⎤+++++++⋯++-=⎣⎦故第40个图形表示的五边形数是:23404023802⨯-=个【点睛】本题考查了规律型:图形的变化类,通过从一些特殊的图形变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.29.如图,∵ABC 的面积为1,分别倍长(延长一倍)AB ,BC ,CA 得到∵A 1B 1C 1,再分别倍长A 1B 1,B 1C 1,C 1A 1得到∵A 2B 2C 2.…按此规律,倍长2020次后得到的∵A 2020B 2020C 2020的面积为_____.【答案】72020【分析】连接AB 1、BC 1、CA 1,根据等底等高的三角形面积相等,可得111A B C S △=7S ∵ABC ,由此即可解题.【详解】连接AB 1、BC 1、CA 1,根据等底等高的三角形面积相等,∵A 1BC 、∵A 1B 1C 、∵AB 1C 、∵AB 1C 1、∵ABC 1、∵A 1BC 1、∵ABC 的面积都相等,所以,111A B C S △=7S ∵ABC ,同理222A B C S △=7111A B C S △=72S ∵ABC ,依此类推,∵A 2020B 2020C 2020的面积为=72020S ∵ABC ,∵∵ABC 的面积为1,∵202020202020A S B C =72020.故答案为:72020.【点睛】本题考查了三角形的面积,根据等底等高的三角形的面积相等求出一次倍长后所得的三角形的面积等于原三角形的面积的7倍是解题的关键.30.(观察下列图形,它是把一个三角形分别连接这个三角形三边的中点,构成4个小三角形,挖去中间的一个小三角形(如图1);对剩下的三个小三角形再分别重复以上做法,…将这种做法继续下去(如图2,图3…),则图6中挖去三角形的个数为______.【答案】364【分析】根据题意找出图形的变化规律,根据规律计算即可.【详解】因为1n =时,挖去三角形的个数是1个,即03个,2n =时,挖去三角形的个数是4个,即()0133+个,3n =时,挖去三角形的个数是13个,即()012333++个,所以图n 中挖去三角形的个数是()011333n -+++个,所以图∵中挖去三角形的个数是012345333333364+++++=个.故答案为:364.【点睛】本题考查的是图形的变化,掌握图形的变化规律是解题的关键.31.如图,有一个正六边形的点阵,层数由内向外第一层每边有两个点,第二层每边有三个点,依此类推,从射线OA 开始,沿逆时针方向按顺序将每个点依次标上1,2,3,4,5,6,7,……用含n 的代数式表示:第n 层共有______个点、射线OC 上第n 个数字是________.【答案】6n 231n n -+【分析】先分别求出第1、2、3层的点的个数,再归纳类推出一般规律即可得;先分别求出射线OC 上第1、2、3个数字,再归纳类推出一般规律即可得.【详解】第1层共有的点的个数为6,第2层共有的点的个数为1262=⨯,第3层共有的点的个数为1863=⨯,归纳类推得:第n 层共有的点的个数为6n ;射线OC 上第1个数字为33021160=+=⨯++⨯,射线OC 上第2个数字为()1156221601=+=⨯++⨯+,射线OC 上第3个数字为()257182316012=+=⨯++⨯++,归纳类推得:射线OC 上第n 个数字为()2160121n n ++++++-,()()1112162n n n -+-=++⨯,()2131n n n =++-,231n n =-+,故答案为:6n ,231n n -+.【点睛】本题考查了用代数式表示图形的规律型问题、整式的乘法与加减法的应用,正确归纳类推出一般规律是解题关键.32.(2020·达州市达川区中小学教学研究室)如图,有一个面积为1的正方形纸板,第一次剪掉这块正方形纸板的一半,第二次剪掉剩下的一半,以此类推.小明想到第n 次剪掉的面积是12n ,第n 次剪掉后剩下的面积也是12n ,小明受此启发,于是计算出202011112482++⋯+=_____________.【答案】2020112-【分析】 根据第1次剪掉的面积是12,第1次剪掉后剩下的面积是12;第2次剪掉的面积是14,第2次剪掉后剩下的面积是14;…第n 次剪掉的面积是12n ,第n 次剪掉后剩下的面积也是12n ;由此规律得出:利用1减去最后剩下的面积计算得出202011112482++⋯+的结果. 【详解】解:∵第1次剪掉的面积是12,第1次剪掉后剩下的面积是12; 第2次剪掉的面积是14,第2次剪掉后剩下的面积是14;。
2021年山西中考数学二轮复习 题型集训专题一 规律探索问题 课件
26 11
,…,根据其中的规律可得an=_n_2_+__(__-__1_)__n_+_1 _____(用含n的式子 2n+1
表示).
8.(2020·咸宁)按一定规律排列的一列数:3,32,3-1,33,3-4,37,3-11, 318,…,若a,b,c表示这列数中的连续三个数,猜想a,b,c满足的关系式 是________a_÷__b_=__c____.
1.(2020·聊城)人行道用同样大小的灰、白两种不同颜色的小正方形地砖 铺设而成,如图中的每一个小正方形表示一块地砖.如果按图①②③…的次 序铺设地砖,把第n个图形用图表示,那么第50个图形中的白色小正方形地砖 的块数是( C )
A.150 B.200 C.355 D.505
2.(2019·枣庄)如图,小正方形是按一定规律摆放的,下面四个选项中的 图片,适合填补图中空白处的是( D )
7.(2020·黔西南州)如图所示图形都是由同样大小的菱形按照一定规律所 组成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱形, 第③个图形中一共有13个菱形,…,按此规律排列下去,第⑦个图形中菱形 的个数为__5_7_.
8.1829年法国盲人路易·布莱尔发明了点字,用6个点(凸或不凸)构成 的点阵中凸点的个数和位置表示不同的符号,形成了现代盲文,所有6点 阵共可表示_6_3__个不同的符号(没有任何凸点的不计数).
9.(2020·德阳)将正偶数按照如下规律进行分组排列,依次为(2),(4,6), (8,10,12),(14,16,18,20),…,我们称“4”是第2组第1个数字,“16” 是第4组第2个数字,若2020是第m组第n个数字,则m+n=6_5___.
类型二 图形规律探索
解答图形累加规律探索题的方法 第一步:标序数——按图号标序; 第二步:算结果——观察(计算)每个图中所求量的个数; 第三步:找规律——对求出的结果进行一定的变形(变换成与序数n有关的式 子),使其呈现一定的规律,得到第n个图中所求量的个数; 第四步:验证——代入序数验证所归纳的式子是否正确; 第五步:求出结果——将要求项序数代入关系式,求得结果.
专题复习(2) 规律与猜想【2021中考数学二轮复习】答案版
专题复习(2) 规律与猜想【2021中考数学二轮复习】类型1 数式的变化规律1.找出等式中“变”与“不变”的部分.2.分析出“变”的规律.3.常用数字规律有:(1)正整数列规律:1,2,3,…,n ;(2)奇(偶)数列规律:1,3,5,…,2n -1(2,4,6,…,2n);(3)2,4,8,16,…,2n ;(4)3,9,27,81,…,3n ;(5)正整数和:1+2+3+…+n =n (n +1)2;(6)正奇数和:1+3+5+…+(2n -1)=n 2;(7)正偶数和:2+4+6+…+2n =n(n +1).观察下列一组数:a 1=13,a 2=35,a 3=69,a 4=1017,a 5=1533,…它是按一定规律排列的,请利用其中规律,写出第n 个数a n =n (n +1)2+2n +1.(用含n 的式子表示) 【思路点拨】 观察分母:3,5,9,17,33,…,可知规律为2n +1;观察分子:1,3,6,10,15,…,可知规律为n (n +1)2,即可求解.1.(2020·牡丹江)一列数1,5,11,19…按此规律排列,第7个数是(C )A .37B .41C .55D .712.(2020·娄底)下列各正方形中的四个数之间都有相同的规律,根据此规律,x 的值为(C )A .135B .153C .170D .1893.(2019·济宁)已知有理数a ≠1,我们把11-a 称为a 的差倒数,如:2的差倒数是11-2=-1,-1的差倒数是11-(-1)=12.如果a 1=-2,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差倒数,…,依此类推,那么a 1+a 2+…+a 100的值是(A )A .-7.5B .7.5C .5.5D .-5.54.(2020·咸宁)按一定规律排列的一列数:3,32,3-1,33,3-4,37,3-11,318,…,若a ,b ,c 表示这列数中的连续三个数,猜想a ,b ,c 满足的关系式是a ÷b =c .5.(2020·武威)已知y =(x -4)2-x +5,当x 分别取1,2,3,…,2 020时,所对应y 值的总和是2_032.6.(2020·孝感)有一列数,按一定的规律排列成13,-1,3,-9,27,-81,….若其中某三个相邻数的和是-567,则这三个数中第一个数是-81.7.(2020·滨州)观察下列各式:a 1=23,a 2=35,a 3=107,a 4=159,a 5=2611,…,根据其中的规律可得a n =n 2+(-1)n +12n +1(用含n 的式子表示).8.(2020·黔西南)如图是一个运算程序的示意图,若开始输入x的值为625,则第2 020次输出的结果为1.9.(2020·青海)观察下列各式的规律:①1×3-22=3-4=-1;②2×4-32=8-9=-1;③3×5-42=15-16=-1.请按以上规律写出第4个算式4×6-52=24-25=-1.用含有字母的式子表示第n个算式为n(n+2)-(n+1)2=-1.10.(2020·泰安)如表被称为“杨辉三角”或“贾宪三角”.其规律是:从第三行起,每行两端的数都是“1”,其余各数都等于该数“两肩”上的数之和.表中两平行线之间的一列数:1,3,6,10,15,…,我们把第一个数记为a1,第二个数记为a2,第三个数记为a3,…,第n个数记为a n,则a4+a200=20_110.类型2图形的变化规律(1)标序号:记每组图形的序号为“1,2,3,…,n”;(2)数图形的个数:在图形数量变化时,要记出每组图形表示的个数;(3)寻找图形数量与序号数n的关系:针对寻找第n个图形表示的数量时,先将后一个图形的个数与前一个图形的个数进行比较,通常作差(商)来观察是否有恒定量的变化,然后按照定量变化推导出第n个图形的个数;(4)验证:代入序号验证所归纳的式子是否正确.(注:当图形变化规律不明显时,可把序号数n作为自变量,把第n个图形的个数看作是函数值,设函数解析式为y=an2+bn+c,再代入三组值进行计算即可,若a=0,则是一次函数)将一些相同的“○”按如图所示摆放,观察每个图形中的“○”的个数.若第n 个图形中“○”的个数是78,则n的值是(B)A.11 B.12 C.13 D.14【思路点拨】第1个图形有1个小圆;第2个图形有1+2=3个小圆;第3个图形有1+2+3=6个小圆;第4个图形有1+2+3+4=10个小圆;…第n 个图形有1+2+3+…+n =n (n +1)2个小圆. 小圆个数为78时,代入即可求出n 的值.11.(2020·济宁)小明用大小和形状都完全一样的正方体按照一定规律排放了一组图案(如图所示),每个图案中他只在最下面的正方体上写“心”字,寓意“不忘初心”.其中第(1)个图案中有1个正方体,第(2)个图案中有3个正方体,第(3)个图案中有6个正方体,…按照此规律,从第(100)个图案所需正方体中随机抽取一个正方体,抽到带“心”字正方体的概率是(D )A .1100B .120C .1101D .210112.(2020·聊城)人行道用同样大小的灰、白两种不同颜色的小正方形地砖铺设而成,如图中的每一个小正方形表示一块地砖.如果按图①②③…的次序铺设地砖,把第n 个图形用图○n 表示,那么图中的白色小正方形地砖的块数是(C )A .150B .200C .355D .50513.(2020·大庆)如图,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第20个图需要黑色棋子的个数为440.14.(2019·玉林)如图,在矩形ABCD 中,AB =8,BC =4,一发光电子开始置于AB 边的点P 处,并设定此时为发光电子第一次与矩形的边碰撞,将发光电子沿着PR 方向发射,碰撞到矩形的边时均反射,每次反射的反射角和入射角都等于45°.若发光电子与矩形的边碰撞次数经过2 019次后,则它与AB 边的碰撞次数是673.15.(2020·辽阳)如图,四边形ABCD 是矩形,延长DA 到点E ,使AE =DA ,连接EB ,点F 1是CD 的中点,连接EF 1,BF 1,得到△EF 1B ;点F 2是CF 1的中点,连接EF 2,BF 2,得到△EF 2B ;点F 3是CF 2的中点,连接EF 3,BF 3,得到△EF 3B ;…;按照此规律继续进行下去.若矩形ABCD 的面积等于2,则△EF n B 的面积为2n +12n .(用含正整数n 的式子表示)类型3坐标的变化规律坐标的变化规律探究是数的探究和图形的探究的综合.因为点附在图形上,图形在做有规律的变化导致图形的点在做有规律的变化,所以,在探究时,先分析图形的变化规律,根据图形的变化规律求出前面几个点的坐标,然后利用分析数的变化规律的方法分析出一般的规律,再按照一般的规律写出任何一个要求的点的坐标.如图,在平面直角坐标系中,点A1,A2,A3,…,A n在x轴上,点B1,B2,B3,…,B n在直线y=33x上.若A1(1,0),且△A1B1A2,△A2B2A3,…,△A n B n A n+1都是等边三角形,从左到右的小三角形(阴影部分)的面积分别记为S1,S2,S3,…,S n,则S n可表示为(D)A.22n3B.22n-13C.22n-23D.22n-33【思路点拨】直线y=33x与x轴的夹角∠B1OA1=30°,可得∠OB1A1=30°,…,∠OB n A n=30°,∠OB1A2=90°,…,∠OB n A n+1=90°;根据等腰三角形的性质可知B1A1=1,B2A2=OA2=2,B3A3=4,…,B n A n=2n-1;根据勾股定理可得B1B2=3,B2B3=23,…,B n B n+1=2n-13,再由面积公式即可求解.16.(2019·张家界)如图,在平面直角坐标系中,将边长为1的正方形OABC绕点O顺时针旋转45°后得到正方形OA1B1C1,依此方式,绕点O连续旋转2 019次得到正方形OA2 019B2 019C2 019,那么点A2 019的坐标是(A)A.(22,-22)B.(1,0)C.(-22,-22)D.(0,-1)17.(2020·衡阳)如图,在平面直角坐标系中,点P1的坐标为(22,22),将线段OP1绕点O按顺时针方向旋转45°,再将其长度伸长为OP1的2倍,得到线段OP2;又将线段OP2绕点O按顺时针方向旋转45°,长度伸长为OP2的2倍,得到线段OP3;如此下去,得到线段OP4,OP5,…,OP n(n为正整数),则点P2 020的坐标是(0,-22_019).18.(2020·怀化)如图,△OB1A1,△A1B2A2,△A2B3A3,…,△A n-1B n A n,都是一边在x轴上的等边三角形,点B1,B2,B3,…,B n都在反比例函数y=3x(x>0)的图象上,点A1,A2,A3,…,A n,都在x轴上,则A n19.(2019·衡阳)在平面直角坐标系中,抛物线y=x2的图象如图所示.已知A点坐标为(1,1),过点A作AA1∥x轴交抛物线于点A1,过点A1作A1A2∥OA交抛物线于点A2,过点A2作A2A3∥x轴交抛物线于点A3,过点A3作A3A4∥OA交抛物线于点A4,…,依次进行下去,则点A2 019的坐标为(-1_010,1_0102).20.(2019·潍坊)如图所示,在平面直角坐标系xOy中,一组同心圆的圆心为坐标原点O,它们的半径分别为1,2,3,…,按照“加1”依次递增;一组平行线,l0,l1,l2,l3,…都与x轴垂直,相邻两直线的间距为1,其中l0与y轴重合.若半径为2的圆与l1在第一象限内交于点P1,半径为3的圆与l2在第一象限内交于点P2,…,半径为n+1的圆与l n在第一象限内交于点P n,则点P n(n为正整数)。
中考规律探索题—(类型二:图形规律)
中考规律探索题—(类型二:图形规律)一、典题讲解题型1 :分类法例1(2021江苏扬州)将黑色圆点按如图所示的规律进行排列:图中黑色圆点的个数依次为:1,3,6,10,…,将其中所有能被3整除的数按从小到大的顺序重新排列成一组新数据,则新数据中的第33个数为.例2(2021内蒙鄂尔多斯)将一些相同的“〇”按如图所示的规律依次摆放,观察每个“龟图”的“〇”的个数,则第30个“龟图”中有个“〇”.例3(2020山西)如图是一组有规律的图案,它们是由边长相等的正三角形组合而成,第1个图案有4个三角形,第2个图案有7个三角形,第3个图案有10个三角形…按此规律摆下去,第n个图案有个三角形(用含n的代数式表示)题型2 :补形法例1(2021黑龙江绥化)下面各图形是由大小相同的三角形摆放而成的,图①中有1个三角形,图②中有5个三角形,图③中有11个三角形,图④中有19个三角形…依此规律,则第n 个图形中三角形个数是 .例2(2020鸡西)如图是由同样大小的圆按一定规律排列所组成的,其中第1个图形中一共有4个圆,第2个图形中一共有8个圆,第3个图形中一共有14个圆,第4个图形中一共有22个圆……按此规律排列下去,第9个图形中圆的个数是 个.题型3:数形结合法例1(2020四川遂宁)如图所示,将形状大小完全相同的“▱”按照一定规律摆成下列图形,第1幅图中“▱”的个数为1a ,第2幅图中“▱”的个数为2a ,第3幅图中“▱”的个数为3a ,…,以此类推,若 20202...222321n a a a a n =+++(n 为正整数),则n 的值为 .二、跟踪练习1. (2017娄底17题3分)刘莎同学用火柴棒依图中的规律摆六边形图案,用10086根火柴棒摆出的图案应该是第________个.2. (2021湘西州18题4分)古希腊数学家把1,3,6,10,15,21,…这样的数叫做三角形数,因为它的规律性可以用如图表示.根据图形,若把第一个图形表示的三角形数记为a1=1,第二个图形表示的三角形数记为a2=3,…,则第n个图形表示的三角形数a n=________.(用含n的式子表达)3. (万唯原创) 如图,是由黑白两色的圆按照一定的方法摆放而成的图形,按照这样的方法摆放下去,能满足黑色圆的个数是白色圆个数的2倍还多1个的图形是()A. 第11个B. 第12个C. 第13个D. 第14个4. 如图是一组有规律的图案,第1个图案中有1个“·”,第2个图案中有5个“·”,第3个图案中有9个“·”,第4个图案中有13个“·”,…,按此规律排下去,第n个图案中有________个“·”.(用含n的代数式表示)5. 如图是一组形似“山”字的图案,它们是由边长相等的小正方形组合而成,图①有8个小正方形,图①有13个小正方形,图①有18个小正方形,…,按照这个规律,第n个图形中,小正方形的个数为()A. 2n-5B. 2n+5C. 5n+3D. 5n-36. 观察下列图形,它们是按一定规律排列的,依此规律,第20个图形中①的个数是()A. 398B. 439C. 450D. 4727.(2020海南)海南黎锦有着悠久的历史,已被列入世界非物质文化遗产名录.如图是黎锦上的图案,每个图案都是由相同菱形构成的,若按照第1个图至第4个图中的规律编织图案,则第5个图中有个菱形,第n个图中有个菱形(用含n的代数式表示).8. 如图是一组有规律的图案,它们是由相同的矩形拼接而成,已知矩形的长为a,宽为b,则第①个图案的周长为________.9. 如图,每个图案均由相同大小的圆和正三角形按规律排列,依照此规律,第n个图形中三角形的个数比圆的个数多________个.(用含n的代数式表示)10.(2017永州)一小球从距地面1m高处自由落下,每次着地后又跳回到原高度的一半再落下.(1)小球第3次着地时,经过的总路程...为________________m;(2)小球第n次着地时,经过的总路程...为________________m.。
中考资料-2021中考数学二轮知识点复习方法说明
2021中考数学二轮知识点复习方法说明
二轮知识点复习方法说明
1、依据数学课程标准来归纳相应的专题。
数学课程标准是中考的依据,里面所对应的知识内容和数学思想方法,以及重难点都是设置专题的参照,切忌照搬专题的盲目性,毕竟第二轮复习离中考很近了,时间这个时候就非常宝贵了。
2、追踪热点问题,做好解题方法的总结。
近年热点题型分为以下几类:
(1)阅读理解型题:这类题型一般式先给出一段材料,让学生阅读理解,再设立问题,让学生运用这些知识去解决问题,这类题中涉及代数知识、几何知识、函数与统计的解题方法和推理方法,常见的类型有:①阅读特殊范例,推出一般结论,再应用之;②阅读理解解题
过程,总结解题规律或方法;③阅读新知识,研究新应用。
(2)应用型问题:近几年中考,应用题已突破了行程、工程、测量、浓度等传统命题范畴,开始较多地涉及到营销策略、生产计划安排、银行贷款利率、房屋租金等与生活生产联系密切的内容。
第二轮复习更加重视基本数学思想,包括整体的思想、分类讨论的思想、方程与函数的思想、转化与化归的思想、归纳与猜想的思想、数型结合的思想、数学模型的思想等,在复习过程中要精讲精练,举一反三,触类旁通,以不变应万变。
同时要体现数学基本方法的应用,如换元法、配方法、待定系数法、分析法与综合法、面积法等。
这些基本方法是做好题、迅速做题、准确做题的关键。
2021学年中考数学重难题型突破规律探究含解析
中考数学重难题型突破:规律探究“规律探究类问题”是中考中的一棵常青树,一直受到命题者的青睐。
这类试题要求学生有一定的数感与符号感,学生通过观察、分析、比较、概括、推理、判断等探索活动,得到图形或数式内在规律的一般通式。
不仅有利于促进数学知识和数学方法的巩固和提高,也有利于自主探索,创新精神的培养。
因此规律探究类问题一直成为命题的热点。
1、规律探索型问题的特点:基础知识广、形式灵活善变、思维量大、解法多样化2、基本题型:数式规律、图形规律、数形结合规律等。
多以填空题和选择题出现,近几年,解答题的规律探究题型开始增多。
3、规律探究类问题架构:题组一模块一一阶等差规律探究规律探究——第一次做差为常数一阶等差规律意思是第一次做差差为常数。
主要考察对图形变化的规律观察,从图形变化转化为数字变化,从数字变化中去发掘规律。
这部分内容相对简单,可以直接观察图形得出规律,也可以通过套通项公式的方法找出规律,考试中单独考察这部分的概率很小,往往与其它形式一起结合考察。
1、规律分析:问题本质:前后的图形相比较,每一幅图形以恒定不变的速度保持图形增加(减少)的个数。
2、一阶等差的实质:通过观察图形可知:后一幅图形比前一幅图形多了一个在每一幅图形中,找出个数,把图形按规律表示如下:113+⨯ 123+⨯ 133+⨯ 13+⨯n由一阶等差的实质可得规律为:b dn a n +=。
d 为求出的不变差,b 的求解可带第一组值求解。
3、首差法通项公式(通法)(1)(2)(3)……(1)将题目的已知转为一组数据,第一个数记为1a 以此第n 个数记为n a (2)对这组数据两两之间做差,差为一个固定常数记为d ,即=d 后项—前项 (3)则该类型的规律为:任意的第n 项满足:d n a a n )1(1-+=(4)若记不住公式,上述数据转化为坐标点),(n a n ,设通项公式为:b kn a n +=,代入前2组数据,通过解一次函数方法,即可得到通项公式;例1如图所示,摆第一个“小屋子”要5枚棋子,摆第二个要11枚棋子,摆第三个要17枚棋子,则摆第30个“小屋子”要 枚棋子.【规范答题】法一:套通项公式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
类型二图形规律例1.将一些相同的“”按如图所示摆放,观察每个图形中的“”的个数,若第n个图形中“”的个数是78,则n 的值是( )第1题图A .11B .12C .13D .14 【答案】B【解析】由每个图形中小圆的个数规律可得第n 个图形中,小圆的个数为n (n +1)2,由此可得方程n (n +1)2=78,解得n =12,故选B.例2. 如图,在第1个△A 1BC 中,∠B=30°,A 1B =CB ;在边A 1B 上任取一点D ,延长CA 1到A 2,使A 1A 2=A 1D ,得到第2个△A 1A 2D ;在边A 2D 上任取一点E ,延长A 1A 2到A 3,使A 2A 3=A 2E ,得到第3个△A 2A 3E ,…,按此做法继续下去,则第n 个三角形中以A n 为顶点的内角度数是( )第2题图A. (12)n ·75°B. (12)n -1·65°C. (12)n -1·75°D. (12)n·85°【答案】C【解析】在△CBA 1中,∠B=30°,A 1B =CB ,∴∠BA 1C =180°-∠B2=75°,∵A 1A 2=A 1D ,∠BA 1C 是△A 1A 2D 的外角,∴∠DA 2A 1=12∠BA 1C =12×75°;同理可得,∠EA 3A 2=(12)2×75°,∠FA 4A 3=(12)3×75°,∴第n 个三角形中以A n 为顶点的内角度数是(12)n -1×7例3. 下列图形都是由相同大小的按一定规律组成的,其中第①个图形中一共有4颗,第②个图形中一共有11颗,第③个图形中一共有21颗,…,按此规律排列下去,第⑨个图形中的颗数为( )第3题图116 B. 144 C. 145 D. 150 【答案】 B【解析】将图中下半部分组成的梯形放到矩形上方,第n 个组合图形可看作是由下半部分为n 行n 列方阵和上半部分的梯形成,第n 个图中方阵中的为(n +1)2,梯形中为2+n2·(n-1)=n 2+n -22,∴第n 个图中的的个数为(n +1)2+n 2+n -22=3n 22+5n 2,令n =9,解得第9个中个数为144个.例4.如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O 1,O 2,O 3,…,组成一条平滑的曲线.点P 从原点O 出发,沿这条曲线向右运动,速度为每秒π2个单位长度,则第2017秒时,点P的坐标是( )第4题图A. (2014,0)B. (2015,-1)C. (2017,1)D. (2016,0)【答案】C【解析】由图象可知,半圆的周长为π,∴运动一秒后的坐标为(1,1),两秒后的坐标为(2,0),三秒后的坐标为(3,-1),四秒后的坐标为(4,0),…,其中纵坐标以1,0,-1,0循环变化,∵2017÷4=504……1,∴第2017秒时,点P的坐标为(2017,1).例 5. 如图所示,将形状、大小完全相同的“”和线段按照一定规律摆成下列图形.第1幅图形中“”的个数为a1,第2幅图形中“”的个数为a2,第3幅图形中“”的个数为a 3,…,以此类推,则1a 1+1a 2+1a 3+…+1a 19的值为( )第5题图A.2021B. 6184C. 589840D. 431760 【答案】C【解析】由所给图形可知,a 1=3=22-1=(1+1)2-1,a 2=8=32-1=(2+1)2-1,a 3=15=42-1=(3+1)2-1,a 4=24=52-1=(4+1)2-1,由此猜想a n =(n +1)2-1=n(n +2),∴1a 1+1a 2+1a 3+…+1a 19=13+18+115+…+119×21=12×(1-13+12-14+13-15+…+118-120+119-121)= 12×(1+12-120-121)=589840. 例6.如图,将矩形ABCD 绕其右下角的顶点按顺时针方向旋转90°至图①位置,继续绕右下角的顶点按顺时针方向旋转90°至图②位置,依此类推,这样连续旋转2017次.若AB =4,AD =3,则顶点A 在整个旋转过程中所经过的路径总长为( )第6题图A. 2017πB. 2034πC. 3024πD. 3026π 【答案】D【解析】∵AB=4,AD =3,∴AC=BD =5,转动一次A 的路线长是90·π·4180=2π,转动第二次A 的路线长是90·π·5180=52π,转动第三次A 的路线长是90·π·3180=32π,转动第四次A 的路线长是0,以此类推,每四次一个循环,且顶点A 转动一个循环的路线长为:52π+32π+2π=6π,∵2017÷4=504……1,∴顶点A 转动2017次经过的路线长为:6π×504+2π=3026π.例7. 如图,已知菱形OABC 的顶点O(0,0),B(2,2),若菱形绕点O 逆时针旋转,每秒旋转45°,则第60秒时,菱形的对角线交点D 的坐标为( )第7题图A.(1,-1)B. (-1,-1)C. (2,0)D. (0,2)【答案】B【解析】∵菱形OABC的顶点O(0,0),点B的坐标是(2,2),∴BO与x轴的夹角为45°,∵菱形的对角线互相垂直平分,∴点D 是线段OB的中点,∴点D 的坐标是(1,1) ,∵菱形绕点O逆时针旋转,每秒旋转45°,360°÷45°=8,∴每旋转8秒,菱形的对角线交点就回到原来的位置(1,1),∵60÷8=7……4,∴第60秒时是把菱形绕点O逆时针旋转了7周回到原来位置后,又旋转了4秒,即又旋转了4×45°=180°,∴点D的对应点落在第三象限,且对应点与点D关于原点O成中心对称,∴第60秒时,菱形的对角线交点D的坐标为(-1,-1).例8. 某广场用同一种如下图所示的地砖拼图案,第一次拼成形如图①所示的图案,第二次拼成形如图②所示的图案,第三次拼成形如图③所示的图案,第四次拼成形如图④所示的图案…按照这样的规律进行下去,第n次拼成的图案共用地砖________块.第8题图 地砖图案【答案】2n 2+2n【解析】①4,②4+2×4,③4+2×4+2×6,…,故第n 个图形共有4+2×4+2×6+…+2×2n=4+4×2+4×3+…+4n =4(1+2+3+…+n)=4×n (n +1)2=2n 2+2n.例9.下列图形都是由大小相同的小正方形按一定规律组成的,其中第1个图形的周长为4,第2个图形的周长为10,第3个图形的周长为18,…,按此规律排列,第5个图形的周长为________.第9题图【答案】40【解析】第一个图形周长1×2+1×2;第二个图形周长(2+1)×2+2×2;第三个图形周长(3+2+1)×2+2×3;第四个图形周长(4+3+2+1)×2+2×4;第五个图形周长(5+4+3+2+1)×2+2×5=40.例10. 如图,在△ABC 中,BC =1,点P 1、M 1分别是AB 、AC 边的中点,点P 2、M 2分别是AP 1、AM 1的中点,点P 3、M 3分别是AP 2、AM 2的中点,按这样的规律下去,P n M n 的长为________(n 为正整数).第10题图【答案】12n【解析】在△ABC 中,BC =1,P 1、M 1分别是AB 、ACnnnn 的中点,∴P 1M 1=12BC =12,按照题设给定的规律,列表如下:例11. 正方形A 1B 1C 1O ,A 2B 2C 2C 1,A 3B 3C 3C 2…按如图所示放置,点A 1、A 2、A 3…在直线y =x +1上,点C 1、C 2、C 3…在x 轴上,则A n 的坐标是________.第11题图【答案】(2n-1-1,2n-1)【解析】∵点A1、A2、A3…在直线y=x+1上,∴A1的坐标是(0,1),即OA1=1,∵四边形A1B1C1O为正方形,∴OC1=1,即点A2的横坐标为1,∴A2的坐标是(1,2),A2C1=2,∵四边形A2B2C2C1为正方形,∴C1C2=2,∴OC2=1+2=3,即点A3的横坐标为3,∴A3的坐标是(3,4),…,观察可以发现:A1的横坐标是:0=20-1,A1的纵坐标是:1=20;A2的横坐标是:1=21-1,A2的纵坐标是:2=21;A3的横坐标是:3=22-1,A3的纵坐标是:4=22;…据此可以得到A n的横坐标是:2n-1-1,纵坐标是:2n-1.所以点A n的坐标是(2n-1-1,2n-1).例12. 如图,在平面直角坐标系中,函数y=2x和y=-x的图象分别为直线l1,l2,过点(1,0)作x轴的垂线交l1于点A1,过点A1作y轴的垂线交l2于点A2,过点A2作x轴的垂线交l1于点A3,过点A3作y轴的垂线交l2于点A4,…,依次进行下去,则点A2017的坐标为________.第12题图第13题图【答案】(21008,21009)【解析】观察,发现规律:A1(1,2),A2(-2,2),A3(-2,-4),A4(4,-4),A5(4,8),…,∴A2n+1((-2)n,2(-2)n),A2n+2(-2)n+1,2(-2)n,(n为自然数),∵2017=1008×2+1,∴A2017的坐标为((-2)1008,2(-2)1008)=(21008,21009).例13.如图,∠MON=60°,作边长为1的正六边形A1B1C1D1E1F1,边A1B1、F1E1分别在射线OM、ON上,边C1D1所在的直线分别交OM、ON于点A2、F2,以A2F2为边作正六边形A2B2C2D2E2F2,边C2D2所在的直线分别交OM、ON于点A3、F3,再以A3F3为边作正六边形A3B3C3D3E3F3,…,依此规律,经第n次作图后,点B n到ON的距离是________.【答案】3n-1 3【解析】由题可知,∠MON=60°,不妨设B n到ON的距离为h n,∵正六边形A1B1C1D1E1F1的边长为1,则A 1B 1=1,易知△A 1OF 1为等边三角形,∴A 1B 1=OA 1=1,∴OB 1=2,则h 1=2×32=3,又OA 2=A 2F 2=A 2B 2=3,∴OB 2=6,则h 2=6×32=33,同理可求:OB 3=18,则h 3=18×32=93,…,依此可求:OB n =2×3n -1,则h n =2×3n -1×32=3n -13,∴B n 到ON 的距离h n =3n -13.例14. 如图,Rt△OA 0A 1在平面直角坐标系内,∠OA 0A 1=90°,∠A 0OA 1=30°,以OA 1为直角边向外作Rt△OA 1A 2,使∠OA 1A 2=90,∠A 1OA 2=30°,以OA 2为直角边向外作Rt△OA 2A 3,使∠OA 2A 3=90°,∠A 2OA 3=30°,按此方法进行下去,得到Rt△OA 3A 4,Rt△OA 4A 5,…,Rt△OA 2016A 2017,若点A 0(1,0),则点A 2017的横坐标为________.第14题图【答案】(43)1008【解析】由题意可知,经过12次变换后,点A 13落在射线OA 1上,∵2017÷12=168……1,∴点A 2017落在射线OA 1上,其横坐标与点A 2016相同,∵OA 0=1,经过12次变换后,OA 12=(233)12,再经过12次变换后,OA 24=(233)24,综上可猜想,OA 2016=(233)2016=(43)1008,∴点A 2017的横坐标为(43)1008.例15. 如图,直线y =33x 上有点A 1,A 2,A 3,…,A n +1,且OA 1=1,A 1A 2=2,A 2A 3=4,…,A n A n +1=2n,分别过点A 1,A 2,A 3,…,A n +1作直线y =33x 的垂线,交y 轴于点B 1,B 2,B 3,…,B n +1,依次连接A 1B 2,A 2B 3,A 3B 4,…,A n B n +1,得到△A 1B 1B 2,△A 2B 2B 3,△A 3B 3B 4,…,△A n B n B n+1,则△A n B n B n+1的面积为________(用含正整数n的式子表示).第15题图【答案】32×22n-32×2n【解析】如解图,作A1C1⊥x轴于C1,A2C2⊥x轴于C2,A n C n⊥x轴于C n,∵点A n在直线上y=33x,∴A1C1OC1=A2C2OC2=A n C nOC n=33,∴∠A n OC n=30°,∴OC n=32OA n=32(1+2+22+…+2n-1),∠An OB n=60°,∵B n A n⊥OA n,∴OB n=2OA n,∴B n B n+1=2OA n+1-2OA n=2A n A n+1=2×2n=2n+1.第15题解图S△AnBnBn+1=12B n B n+1×OC n=12×2n+1·32(1+2+22+…+2n-1),设S=1+2+4+…+2n-1,则2S=2+4+…+2n+1+2n,∴S=2S-S=(2+4+…+2n-1+2n)-(1+2+4+…+2n-1)=2n-1 ,综上可知S △AnBnBn+1=12×2n +1×32(2n -1)=32×22n-32×2n .例16. 如图,∠AOB=60°,点O 1是∠AOB 平分线上一点,OO 1=2,作O 1A 1⊥OA,O 1B 1⊥OB,垂足分别为A 1,B 1,以A 1B 1为边作等边三角形A 1B 1O 2;作O 2A 2⊥OA,O 2B 2⊥OB,垂足分别为A 2,B 2,以A 2B 2为边作等边三角形A 2B 2O 3;作O 3A 3⊥OA,O 3B 3⊥OB,垂足分别为A 3,B 3,以A 3B 3为边作等边三角形A 3B 3O 4;…,按这样的方法继续下去,则△A n B n O n 的面积为________(用含正整数n 的代数式表示).【答案】32n -24n3【解析】∵∠AOB=60°,OO n 平分∠AOB,∴∠AOO n =30°,∵A 1O 1⊥AO,OO 1=2,∴A 1O 1=1,OA 1=3.∵O 1A 1⊥OA,O 1B 1⊥OB,∴O 1A 1=O 1B 1,∵O 1O =O 1O ,∴Rt△O 1A 1O≌Rt△O 1B 1O(HL),∴OA 1=OB 1,∵∠A 1OB 1=60°,∴△A 1OB 1是等边三角形,∴A 1B 1=OA 1=3,∵△A 1O 2B 1是等边三角形,∴A 1O 2=A 1B 1=3,在Rt△A 1O 2A 2中,∠O 2A 1A 2=60°,A 1O 2=3,∴A 2O 2=32A 1O 2=32O 1A 1,同理A 3O 3=32A 2O 3=(32)2A 1O 1,∴A n O n =(32)n -1A 1O 1. 又 S△O 1A 1B 1=2S△O 1A 1O -S△A 1B 1O =2×12×1×3-34·(3)2=34 .易得∠A n O n B n =∠A 1O 1B 1=120°,A n O n =B n O n ,∴A n O n A 1O 1=B n O n B 1O 1,∴△A 1O 1B 1∽△A n O n B n ,∴S △A n B n O n S △A 1B 1O 1=(A n O n A 1O 1)2=(32)2n -2.∴S△A n B n O n =32n -24n 3.。