八年级数学平行线与三角形内角和计算(人教版)(含答案)

合集下载

平行线与三角形内角和的综合应用(讲义及答案)

平行线与三角形内角和的综合应用(讲义及答案)

平行线与三角形内角和的综合应用(讲义)课前预习1. 如图,在△ABC 中,如果∠C =90°,∠A =30°,那么∠B =_____,∠A +∠B =_______,也就是∠A 与∠B ________(填“互余”、“互补”).ABC2. 如图,已知∠AOC =∠BOD =90°,求证:∠AOD =∠BOC .DCB A证明:如图,∵∠AOC =∠BOD =90° (_______________________) ∴∠AOD =∠BOC (_______________________)知识点睛1. 三角形的内角和等于__________.已知:如图,△ABC .求证:∠BAC +∠B +∠C =180°.A MBC12N证明:_______,___________________________. ∵MN ∥BC ( 已作 ) ∴∠B =∠1,∠C =∠2(_______________________)∵∠BAC+∠1+∠2=180°(_______________________) ∴∠BAC +∠B +∠C =180°(_______________________)2. 直角三角形两锐角___________.精讲精练1. 如图,在△ABC 中,∠A =50°,∠C =72°,BD 是△ABC 的一条角平分线,则∠ABD=__________.B DAC FED C BA第1题图 第2题图2. 如图,在△ABC 中,∠B =∠C ,E 是AC 上一点,ED ⊥BC ,DF ⊥AB ,垂足分别为D ,F .若∠AED =140°,则∠C =_____,∠BDF =______,∠A =______.3. 如图,AE ∥BD ,∠1=110°,∠2=30°,则∠C =______.21EDCB A FDAEB题图第3题图 第4题图4. 如图,AD ∥BC ,AB ∥CD ,E 在CB 的延长线上,EF 经过点A ,∠C =50°,∠FAD =60°,则∠EAB =_______.5. 如图,在△ABC 中,CD 平分∠ACB 交AB 于点D ,过点D 作DE ∥BC 交AC 于点E .若∠A =75°,∠ADE =35°,则 ∠EDC =_________.6. 如图,在△ABC 中,∠B =40°,∠BAC =68°,AD ⊥BC 于点D ,求∠DAC 的度数.解:如图,在△ABC 中,∠B =40°,∠BAC =68°(已知) ∴∠C =180°-______-______ =180°-_____-_____=______(_______________________) ∵AD ⊥BC (已知)∴∠ADC =90°(垂直的定义) ∴∠C +_____=90°(直角三角形两锐角互余)∴∠DAC =90°-______=90°-______=______(_______________________)7. 如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB ,垂足为D .求证:∠A =∠BCD .证明:如图, ∵∠ACB =90°(已知)∴∠A +_____=90°(直角三角形两锐角互余) ∵CD ⊥AB (已知)ABCDEDCBA∴∠CDB =90°(垂直的定义)∴_____+∠B =90°(______________________) ∴∠A =∠BCD (______________________)8. 如图,在△ABC 中,∠C =90°,点D 是边AC 上一点,DE ∥BC ,∠1=60°,求∠A 的度数.ADE1BC9. 如图,BD ∥AE 交△ABC 的边AC 于点F ,∠CAE =95°,∠CBD =30°,求∠C 的度数.AB CDEF10.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,AF平分∠CAB交CD于点E,交BC于点F.求证:∠1=∠2.【参考答案】课前预习1.60°,90°,互余2.已知,同角的余角相等 知识点睛1.180°如图,过点A作MN∥BC两直线平行,内错角相等平角的定义等量代换2.互余精讲精练1.29°21FEDCB A2.50°,40°,80°3.40°4.70°5.35°6.解:如图,在△ABC中,∠B=40°,∠BAC=68°(已知)∴∠C=180°-∠B-∠BAC=180°-40°-68°=72°(三角形的内角和等于180°)∵AD⊥BC(已知)∴∠ADC=90°(垂直的定义)∴∠C+∠DAC=90°(直角三角形两锐角互余)∴∠DAC=90°-∠C=90°-72°=18°(等式的性质)7.证明:如图,∵∠ACB=90°(已知)∴∠A+∠B=90°(直角三角形两锐角互余)∵CD⊥AB(已知)∴∠CDB=90°(垂直的定义)∴∠BCD+∠B=90°(直角三角形两锐角互余)∴∠A=∠BCD(同角的余角相等)8.解:如图,∵DE∥BC(已知)∴∠1=∠B(两直线平行,同位角相等)∵∠1=60°(已知)∴∠B=60°(等量代换)∵∠C=90°(已知)∴∠A+∠B=90°(直角三角形两锐角互余)∴∠A=90°-∠B=90°-60°=30°(等式的性质)9.解:如图,∵BD∥AE(已知)∴∠CFD=∠CAE(两直线平行,同位角相等)∵∠CAE=95°(已知)∴∠CFD=95°(等量代换)∴∠CFB=180°-∠CFD=180°-95°=85°(平角的定义)在△CBF中,∠CBD=30°,∠CFB=85°(已知)∴∠C=180°-∠CBD-∠CFB=180°-30°-85°=65°(三角形的内角和等于180°)10.证明:如图,∵∠ACB=90°(已知)∴∠CAF+∠2=90°(直角三角形两锐角互余)∵CD⊥AB(已知)∴∠EDA=90°(垂直的定义)∴∠DAE+∠AED=90°(直角三角形两锐角互余)∵AF平分∠CAB(已知)∴∠CAF=∠DAE(角平分线的定义)∴∠2=∠AED(等角的余角相等)∵∠1=∠AED(对顶角相等)∴∠1=∠2(等量代换)。

中考数学最新真题专项汇总—平行线与三角形(含解析)

中考数学最新真题专项汇总—平行线与三角形(含解析)

中考数学最新真题专项汇总—平行线与三角形(含解析)一.选择题1.(2022·内蒙古通辽)如图,一束光线AB 先后经平面镜OM ,ON 反射后,反射光线CD 与AB 平行,当35ABM ∠=︒时,DCN ∠的度数为( )A .55︒B .70︒C .60︒D .35︒【答案】A 【分析】根据题意得:∠ABM =∠OBC , ∠BCO =∠DCN ,然后平行线的性质可得∠BCD =70°,即可求解.【详解】解:根据题意得:∠ABM =∠OBC , ∠BCO =∠DCN ,∠∠ABM =35°,∠∠OBC =35°,∠∠ABC =180°-∠ABM -∠OBC =180°-35°-35°=110°, ∠CD ∠AB ,∠∠ABC +∠BCD =180°,∠∠BCD =180°-∠ABC =70°,∠∠BCO +∠BCD +∠DCN =180°, ∠BCO =∠DCN , ∠1(180)552DCN BCD ︒︒-∠=∠=.故选:A【点睛】本题主要考查了平行线的性质,熟练掌握两直线平行,同旁内角互补是解题的关键.2.(2022·河北)要得知作业纸上两相交直线AB ,CD 所夹锐角的大小,发现其交点不在作业纸内,无法直接测量.两同学提供了如下间接测量方案(如图1和图2):对于方案∠、∠,说法正确的是()A.∠可行、∠不可行B.∠不可行、∠可行C.∠、∠都可行D.∠、∠都不可行【答案】C【分析】用夹角可以划出来的两条线,证明方案∠和∠的结果是否等于夹角,即可判断正误【详解】方案∠:如下图,BPD∠即为所要测量的角∠HEN CFG∥∠AEM BPD∠=∠∠MN PD∠=∠故方案∠可行方案∠:如下图,BPD∠即为所要测量的角在EPF中:180∠+∠+∠=︒BPD PEF PFE则:180∠=︒-∠-∠故方案∠可行故选:CBPD AEH CFG【点睛】本题考查平行线的性质和判定,三角形的内角和;本题的突破点是用可画出夹角的情况进行证明3.(2022·河南)如图,直线AB,CD相交于点O,EO∠CD,垂足为O.若∠1=54°,则∠2的度数为()A.26°B.36°C.44°D.54°【答案】B【分析】根据垂直的定义可得90∠=︒,根据平角的定义即可求解.COE【详解】解:EO∠CD,90∴∠=︒,COE12180∠+∠+∠=︒,2180905436∴∠=︒-︒-︒=︒.故选:B .COE【点睛】本题考查了垂线的定义,平角的定义,数形结合是解题的关键.4.(2022·湖北鄂州)如图,直线l1∥l2,点C、A分别在l1、l2上,以点C为圆心,CA长为半径画弧,交l1于点B,连接AB.若∠BCA=150°,则∠1的度数为( )A .10°B .15°C .20°D .30°【答案】B 【分析】由作图得ABC ∆为等腰三角形,可求出15ABC ∠=︒,由l 1∥l 2得1ABC ∠=∠,从而可得结论.【详解】解:由作图得,CA CB =,∠ABC ∆为等腰三角形,∠ABC CAB ∠=∠ ∠∠BCA =150°,∠11(180)(180150)1522ABC ACB ∠=︒-∠=︒-︒=︒∠l 1∥l 2∠115ABC ∠=∠=︒故选B【点睛】本题主要考查了等腰三角形的判定与性质,平行线的性质等知识,求出15ABC ∠=︒是解答本题的关键. 5.(2022·湖南郴州)如图,直线a b ∥,且直线a ,b 被直线c ,d 所截,则下列条件不能..判定直线c d ∥的是( )A .34∠=∠B .15180∠+∠=︒C .12∠=∠D .14∠=∠【答案】C 【分析】利用平行线的判定条件进行分析即可得出结果.【详解】解:A 、当34∠=∠时,c d ∥;故A 不符合题意;B 、当15180∠+∠=︒时,c d ∥;故B 不符合题意;C 、当12∠=∠时,a b ∥;故C 符合题意;D 、∠a b ∥,则12∠=∠,∠14∠=∠,则24∠∠=,∠c d ∥;故D 不符合题意;故选:C【点睛】本题主要考查平行线的判定,解答的关键是熟记平行线的判定条件并灵活运用.6.(2022·山东潍坊)如图是小亮绘制的潜望镜原理示意图,两个平面镜的镜面AB 与CD 平行,入射光线l 与出射光线m 平行.若入射光线l 与镜面AB 的夹角14010'∠=︒,则6∠的度数为( )A .10040'︒B .9980'︒C .9940'︒D .9920'︒【答案】C 【分析】由入射光线与镜面的夹角等于反射光线与镜面的夹角,可得∠1=∠2,可求出∠5,由l //m 可得∠6=∠5【详解】解:由入射光线与镜面的夹角等于反射光线与镜面的夹角,可得∠1=∠2,∠14010'∠=︒∠24010'∠=︒∠518012180401040109940'''∠=︒-∠-∠=︒-︒-︒=︒ ∠l //m ∠659940'∠=∠=︒ 故选:C【点睛】本题主要考查了平行线的性质,熟记两直线平行,内错角相等是解答本题的关键.7.(2022·北京)如图,利用工具测量角,则1∠的大小为( )A .30°B .60°C .120°D .150°【答案】A 【分析】利用对顶角相等求解.【详解】解:量角器测量的度数为30°,由对顶角相等可得,130∠=︒.故选A .【点睛】本题考查量角器的使用和对顶角的性质,掌握对顶角相等是解题的关键.8.(2022·黑龙江)如图,ABC 中,AB AC =,AD 平分BAC ∠与BC 相交于点D ,点E 是AB 的中点,点F 是DC 的中点,连接EF 交AD 于点P .若ABC 的面积是24, 1.5PD =,则PE 的长是( )A.2.5B.2C.3.5D.3【答案】A【分析】连接DE,取AD的中点G,连接EG,先由等腰三角形“三线合一“性质,证得AD∠BC,BD=CD,再由E是AB的中点,G是AD的中点,求出S∠EGD=3,然后证∠EGP∠∠FDP(AAS),得GP=CP=1.5,从而得DG=3,即可由三角形面积公式求出EG长,由勾股定理即可求出PE长.【详解】解:如图,连接DE,取AD的中点G,连接EG,∠AB=AC,AD平分BAC∠与BC相交于点D,∠AD∠BC,BD=CD,∠S∠ABD=112422ABCS=⨯=12,∠E是AB的中点,∠S∠AED=111222ABDS=⨯=6,∠G是AD的中点,∠S△EGD=11622AEDS=⨯=3,∠E是AB的中点,G是AD的中点,∠EG∥BC,EG=12BD=12CD,∠∠EGP=∠FDP=90°,∠F是CD的中点,∠DF=12CD,∠EG=DF,∠∠EPG=∠FPD,∠∠EGP∠∠FDP(AAS),∠GP=PD=1.5,∠GD=3,∠S△EGD=12GD EG⋅=3,即1332EG⨯=,∠EG=2,在Rt∠EGP中,由勾股定理,得PE=,故选:A.【点睛】本题考查等腰三角形的性质,三角形面积,全等三角形判定与性质,勾股定理,熟练掌握三角形中线分三角形两部分的面积相等是解题的关键.9.(2022·贵州遵义)如图1是第七届国际数学教育大会(ICME)会徽,在其主体图案中选择两个相邻的直角三角形,恰好能组合得到如图2所示的四边形OABC.若1AB BC==,30AOB∠=︒,则点B到OC的距离为()A B C .1 D .2【答案】B【分析】根据题意求得2OB =,进而求得OC【详解】解:在Rt ,Rt ABO BOC 中,30AOB ∠=︒,1AB BC ==,2OB ∴=,OC ∴设B 到OC 的距离为h ,1122OC h BC BO ∴⋅=⋅,h ∴==, 故选B .【点睛】本题考查了勾股定理,含30度角的直角三角形的性质,掌握以上知识是解题的关键.10.(2022·广西)活动探究:我们知道,已知两边和其中一边的对角对应相等的两个三角形不一定全等,如己知∠ABC 中,∠A =30°, AC =3,∠A 所对的边为满足已知条件的三角形有两个(我们发现其中如图的∠ABC 是一个直角三角形),则满足已知条件的三角形的第三边长为( )A.B .3C .D .3【答案】C 【分析】分情况讨论,当∠ABC 是一个直角三角形时,当∠AB 1C 是一个钝角三角形时,根据含30°的直角三角形的性质及勾股定理求解即可.【详解】如图,当∠ABC 是一个直角三角形时,即90C ∠=︒,30,A BC ∠=︒=2∴==AB BC如图,当∠AB 1C 是一个钝角三角形时,过点C 作CD ∠AB 1,90CDA CDB ∴∠=︒=∠,1CB CB =,1BD B D ∴=,30,3A AC ∠=︒=,1322CD AC ∴==, 3BC =1B D BD ∴===,1BB ∴11AB AB BB ∴=-综上,满足已知条件的三角形的第三边长为故选:C . 【点睛】本题考查了根据已知条件作三角形,涉及含30°的直角三角形的性质及勾股定理,熟练掌握知识点是解题的关键.11.(2022·山东烟台)如图,某海域中有A ,B ,C 三个小岛,其中A 在B 的南偏西40°方向,C 在B 的南偏东35°方向,且B ,C 到A 的距离相等,则小岛C 相对于小岛A 的方向是( )A .北偏东70°B .北偏东75°C .南偏西70°D .南偏西20°【答案】A 【分析】根据题意可得∠ABC =75°,AD ∠BE ,AB =AC ,再根据等腰三角形的性质可得∠ABC =∠C =75°,从而求出∠BAC 的度数,然后利用平行线的性质可得∠DAB =∠ABE =40°,从而求出∠DAC 的度数,即可解答.【详解】解:如图:由题意得:∠ABC=∠ABE+∠CBE=40°+35°=75°,AD∠BE,AB=AC,∠∠ABC=∠C=75°,∠∠BAC=180°﹣∠ABC﹣∠C=30°,∠AD∠BE,∠∠DAB=∠ABE=40°,∠∠DAC=∠DAB+∠BAC=40°+30°=70°,∠小岛C相对于小岛A的方向是北偏东70°,故选:A..【点睛】本题考查了方向角,等腰三角形的性质,熟练掌握等腰三角形的性质是解题的关键.12.(2022·河北)如图,将∠ABC折叠,使AC边落在AB边上,展开后得到折痕l,则l是∠ABC的()A.中线B.中位线C.高线D.角平分线【答案】D【分析】根据折叠的性质可得CAD BAD∠=∠,作出选择即可.【详解】解:如图,∠由折叠的性质可知CAD BAD∠=∠,∠AD是BAC∠的角平分线,故选:D.【点睛】本题考查折叠的性质和角平分线的定义,理解角平分线的定义是解答本题的关键.13.(2022·广西贺州)如图,在Rt∠ABC中,∠C=90°,∠B=56°,则∠A的度数为()A.34︒B.44︒C.124︒D.134︒【答案】A【分析】根据直角三角形的两个锐角互余,即可得出∠A的度数.【详解】解:∠Rt∠ABC中,∠C=90°,∠B=56°,∠∠A=90°-∠B=90°-56°=34°;故选:A.【点睛】本题考查了直角三角形的性质:直角三角形的两个锐角互余;熟练掌握直角三角形的性质,并能进行推理计算是解决问题的关键.14.(2022·湖南永州)如图,在Rt ABC∠=°,点D为边AC∠=︒,60C△中,90ABC的中点,2BD=,则BC的长为()B.C.2D.4A【答案】C【分析】根据三角形内角和定理可得∠A=30°,由直角三角形斜边上的中线的性质得出AC=2BD=4,再利用含30度角的直角三角形的性质求解即可.【详解】解:∠∠ABC=90°,∠C=60°,∠∠A=30°,∠点D为边AC的中点,BD=2∠AC=2BD=4,∠BC=12AC=,2故选:C.【点睛】题目主要考查三角形内角和定理及直角三角形斜边上中线的性质,含30度角的直角三角形的性质等,理解题意,综合运用这些知识点是解题关键.15.(2022·湖南永州)下列多边形具有稳定性的是()A.B.C.D.【答案】D【分析】利用三角形具有稳定性直接得出答案.【详解】解:三角形具有稳定性,四边形、五边形、六边形都具有不稳定性,故选D.【点睛】本题考查三角形的特性,牢记三角形具有稳定性是解题的关键.16.(2022·广西玉林)请你量一量如图ABC中BC边上的高的长度,下列最接近的是()A.0.5cm B.0.7cm C.1.5cm D.2cm【答案】D【分析】作出三角形的高,然后利用刻度尺量取即可.【详解】解:如图所示,过点A作AO∠BC,用刻度尺直接量得AO更接近2cm,故选:D.【点睛】题目主要考查利用刻度尺量取三角形高的长度,作出三角形的高是解题关键.17.(2022·黑龙江大庆)下列说法不正确...的是()A.有两个角是锐角的三角形是直角或钝角三角形B.有两条边上的高相等的三角形是等腰三角形C.有两个角互余的三角形是直角三角形D.底和腰相等的等腰三角形是等边三角形【答案】A【分析】利用等腰三角形的性质与判定、等边三角形的性质与判定、直角三角形的判定,对各选项逐项分析可得出正确答案.【详解】解:A、设∠1、∠2为锐角,因为:∠1+∠2+∠3=180°,所以:∠3可以为锐角、直角、钝角,所以该三角形可以是锐角三角形,也可以是直角或钝角三角形,故A选项不正确,符合题意;B、如图,在∠ABC中,BE∠AC,CD∠AB,且BE=CD.∠BE ∠AC ,CD ∠AB ,∠∠CDB =∠BEC =90°,在Rt ∠BCD 与Rt ∠CBE 中,CD BE BC CB=⎧⎨=⎩, ∠Rt ∠BCD ∠Rt ∠CBE (HL ),∠∠ABC =∠ACB ,∠AB =AC ,即∠ABC 是等腰三角形.,故B 选项正确,不符合题意;C 、根据直角三角形的判定:有两个角互余的三角形是直角三角形,, 故C 选项正确,不符合题意;D 、底和腰相等的等腰三角形是等边三角形,故D 选项正确,不符合题意;故选:A .【点睛】本题综合考查了等腰三角形的性质与判定、等边三角形的性质与判定、直角三角形的判定,要求学生在学习过程中掌握三角形的各种性质及推论,不断提升数学学习的能力.18.(2022·广西梧州)如图,在ABC 中,,AB AC AD =是ABC 的角平分线,过点D 分别作,DE AB DF AC ,垂足分别是点E ,F ,则下列结论错误..的是( )A .90ADC ∠=B .DE DF =C .AD BC = D .BD CD =【答案】C【分析】根据等腰三角形底边上的高线、顶角的角平分线、底边上的中线这三线合一及角平分线的性质即可判断求解.【详解】解:∠,AB AC AD =是ABC 的角平分线,∠,AD BC BD CD , ∠90ADC ∠=,故选项A 、D 结论正确,不符合题意;又AD 是BAC ∠的角平分线,,DE AB DF AC ,∠DE DF =,故选项B 结论正确,不符合题意;由已知条件推不出AD BC =,故选项C 结论错误,符合题意;故选:C .【点睛】本题考察了等腰三角形的性质及角平分线的性质,属于基础题,熟练掌握其性质即可.19.(2022·四川乐山)如图,等腰∠ABC 的面积为AB =AC ,BC =2.作AE ∠BC 且AE =12BC .点P 是线段AB 上一动点,连接PE ,过点E 作PE 的垂线交BC 的延长线于点F ,M 是线段EF 的中点.那么,当点P 从A 点运动到B 点时,点M 的运动路径长为( )AB .3C .D .4【答案】D【分析】当P 与A 重合时,点F 与C 重合,此时点M 在N 处,当点P 与B 重合时,如图,点M 的运动轨迹是线段MN .求出CF 的长即可解决问题.【详解】解:过点A 作AD ∠BC 于点D ,连接CE ,∠AB =AC ,∠BD =DC =12BC =1,∠AE =12BC ,∠AE =DC =1,∠AE ∠BC ,∠四边形AECD 是矩形,∠S ∠ABC =12BC ×AD =12×2×AD∠ADCE =AD当P 与A 重合时,点F 与C 重合,此时点M 在CE 的中点N 处,当点P 与B 重合时,如图,点M 的运动轨迹是线段MN .∠BC =2,CE由勾股定理得BE =4,cos∠EBC =BC BE BE BF =,即244BF =, ∠BF =8,∠点N 是CE 的中点,点M 是EF 的中点,∠MN =12BF =4,∠点M 的运动路径长为4,故选:D .【点睛】本题考查点的轨迹、矩形的判定和性质、解直角三角形、勾股定理等知识,解题的关键是正确寻找点M 的运动轨迹,学会利用起始位置和终止位置寻找轨迹,属于中考填空题中的压轴题.20.(2022·四川凉山)下列长度的三条线段能组成三角形的是( ) A .3,4,8B .5,6,11C .5,6,10D .5,5,10 【答案】C【分析】根据三角形的三边关系定理(任意两边之和大于第三边)逐项判断即可得.【详解】解:A 、3478+=<,不能组成三角形,此项不符题意;B 、5611+=,不能组成三角形,此项不符题意;C 、561110+=>,能组成三角形,此项符合题意;D 、5510+=,不能组成三角形,此项不符题意;故选:C .【点睛】本题考查了三角形的三边关系定理,熟练掌握三角形的三边关系定理是解题关键.21.(2022·四川成都)如图,在ABC 和DEF 中,点A ,E ,B ,D 在同一直线上,AC DF ∥,AC DF =,只添加一个条件,能判定ABC DEF △≌△的是( )A .BC DE =B .AE DB =C .A DEF ∠=∠D .ABC D ∠=∠【答案】B 【分析】根据三角形全等的判定做出选择即可.【详解】A 、BC DE =,不能判断ABC DEF △≌△,选项不符合题意;B 、AE DB =,利用SAS 定理可以判断ABC DEF △≌△,选项符合题意; C 、A DEF ∠=∠,不能判断ABC DEF △≌△,选项不符合题意;D 、ABC D ∠=∠,不能判断ABC DEF △≌△,选项不符合题意;故选:B .【点睛】本题考查三角形全等的判定,根据SSS 、SAS 、ASA 、AAS 判断三角形全等,找出三角形全等的条件是解答本题的关键.22.(2022·山东聊城)如图,ABC 中,若80BAC ∠=︒,70ACB ∠=︒,根据图中尺规作图的痕迹推断,以下结论错误的是( )A .40BAQ ∠=︒B .12DE BD = C .AF AC = D .25EQF ∠=︒【答案】D【分析】根据线段的垂直平分线的性质,角平分线的定义,三角形外角的性质,直角三角形的性质判断即可.【详解】∠80BAC ∠=︒,70ACB ∠=︒,∠∠B =180°-∠BAC -∠ACB =30°,A .由作图可知,AQ 平分BAC ∠,∠1402BAP CAP BAC ∠=∠=∠=︒,故选项A 正确,不符合题意;B .由作图可知,MQ 是BC 的垂直平分线,∠90DEB ∠=︒,∠30B ∠=︒,∠12DE BD =,故选项B 正确,不符合题意;C .∠30B ∠=︒,40BAP ∠=︒,∠70AFC ∠=︒,∠70C ∠=︒,∠AF AC =,故选项C 正确,不符合题意;D .∠70EFQ AFC ∠=∠=︒,90QEF ∠=︒,∠20EQF ∠=︒;故选项D 错误,符合题意.故选:D .【点睛】本题考查了线段的垂直平分线的性质,角平分线的定义,三角形外角的性质,直角三角形的性质等知识,解题的关键是读懂图象信息.23.(2022·海南)如图,直线m n∥,ABC是等边三角形,顶点B在直线n上,直线m交AB于点E,交AC于点F,若1140∠=︒,则2∠的度数是()A.80︒B.100︒C.120︒D.140︒【答案】B【分析】根据等边三角形的性质可得∠A=60°,再由三角形外角的性质可得∠AEF=∠1-∠A=80°,从而得到∠BEF=100°,然后根据平行线的性质,即可求解.【详解】解:∠ABC是等边三角形,∠∠A=60°,∠∠1=140°,∠∠AEF=∠1-∠A=80°,∠∠BEF=180°-∠AEF=100°,∠m n∥,∠∠2=∠BEF=100°.故选:B【点睛】本题主要考查了等边三角形的性质,三角形外角的性质,平行线的性质,熟练掌握等边三角形的性质,三角形外角的性质,平行线的性质是解题的关键.24.(2022·黑龙江齐齐哈尔)如图所示,直线a∠b,点A在直线a上,点B在直线b上,AC=BC,∠C=120°,∠1=43°,则∠2的度数为()A .57°B .63°C .67°D .73°【答案】D【分析】根据等腰三角形的性质可求出30ABC ∠=︒,可得出+173ABC ∠∠=︒,再根据平行线的性质可得结论.【详解】解:∠AC =BC ,∠ABC ∆是等腰三角形,∠=120C ∠︒ ∠11(180)(180120)3022ABC C ∠=︒-∠=︒-︒=︒∠1304373ABC ∠+∠=︒+︒=︒∠a ∠b ,∠2173ABC ∠=∠+∠=︒ 故选:D【点睛】本题主要考查了等腰三角形的判定与性质,以及平行线的性质,求出173ABC ∠+∠=︒是解答本题的关键. 25.(2022·湖北恩施)已知直线12l l ∥,将含30°角的直角三角板按图所示摆放.若1120∠=︒,则2∠=( )A.120°B.130°C.140°D.150°【答案】D【分析】根据平行线的性质可得∠3=∠1=120°,再由对顶角相等可得∠4=∠3=120°,然后根据三角形外角的性质,即可求解.【详解】解:如图,根据题意得:∠5=30°,∥,∠∠3=∠1=120°,∠∠4=∠3=120°,∠12l l∠∠2=∠4+∠5,∠∠2=120°+30°=150°.故选:D【点睛】本题主要考查了平行线的性质,对顶角相等,三角形外角的性质,熟练掌握平行线的性质,对顶角相等,三角形外角的性质是解题的关键.二.填空题26.(2022·辽宁锦州)如图,在ABC中,,30=∠=︒,点D为BC的中AB AC ABC点,将ABC绕点D逆时针旋转得到A B C''',当点A的对应点A'落在边AB上时,点C'在BA的延长线上,连接BB',若1AA'=,则BB D'△的面积是____________.【分析】先证明A AD ' 是等边三角形,再证明AO BC '⊥,再利用直角三角形30角对应的边是斜边的一般分别求出A B ''和A O ',再利用勾股定理求出OD ,从而求得BB D '△的面积.【详解】解:如下图所示,设A B ''与BD 交于点O ,连接A D '和AD ,∠点D 为BC 的中点,,30AB AC ABC =∠=︒,∠AD BC ⊥,A D B C '''⊥,A D '是B A C '''∠的角平分线,AD 是BAC ∠,∠120B A C ︒'''∠=,120BAC ︒∠=∠60BAD B A D ︒'∠'=∠=∠A D AD '=,∠A AD ' 是等边三角形,∠1A A AD A D ''===,∠18060BA B B A C ︒︒'''''∠=-∠=,∠BA B A AD '''∠=∠,∠//A B AD '',∠AO BC '⊥, ∠1122A O A D ''==,∠OD ==∠22A B A D '''==∠30A BD A DO ︒''∠=∠=,∠BO OD = ∠13222OB '=-=,2BD OD ==∠113222BB D S BD B O ''=⨯⨯==. 【点睛】本题考查等腰三角形、等边三角形和直角三角形的性质,证明A AD ' 是等边三角形是解本题的关键.27.(2022·湖南郴州)如图.在ABC 中,90C ∠=︒,AC BC =.以点A 为圆心,以任意长为半径作弧交AB ,AC 于D ,E 两点;分别以点D ,E 为圆心,以大于12DE 长为半径作弧,在BAC ∠内两弧相交于点P ;作射线AP 交BC 于点F ,过点F 作FG AB ⊥,垂足用G .若8cm AB =,则BFG 的周长等于________cm .【答案】8【分析】由角平分线的性质,得到CF GF=,然后求出BFG的周长即可.【详解】解:根据题意,在ABC中,90=,C∠=︒,AC BC由角平分线的性质,得CF GF=,∠BFG的周长为:()8++=-+=-+==;BG BF FG AB AG BC AB AC BC AB故答案为:8【点睛】本题考查了角平分线的性质,解题的关键是掌握角平分线的性质.28.(2022·江苏常州)如图,在ABC中,E是中线AD的中点.若AEC△的面积是1,则ABD△的面积是______.【答案】2【分析】根据ACE∆的面积DCE=∆的面积计算出各部=∆的面积,ABD∆的面积ACD分三角形的面积.【详解】解:AD是BC边上的中线,E为AD的中点,根据等底同高可知,ACE ∆的面积DCE =∆的面积1=,ABD ∆的面积ACD =∆的面积2AEC =∆的面积2=,故答案为:2.【点睛】本题考查了三角形的面积,解题的关键是利用三角形的中线平分三角形面积进行计算.29.(2022·黑龙江哈尔滨)在ABC 中,AD 为边BC 上的高,30ABC ∠=︒,20CAD ∠=︒,则BAC ∠是___________度.【答案】40或80##80或40【分析】根据题意,由于ABC 类型不确定,需分三种情况:高在三角形内部、高在三角形边上和高在三角形外部讨论求解.【详解】解:根据题意,分三种情况讨论:∠高在三角形内部,如图所示:在ABD ∆中,AD 为边BC 上的高,30ABC ∠=︒,90903060BAD ABC ∴∠=︒-∠=︒-︒=︒,20CAD ∠=︒,602080BAC BAD CAD ∴∠=∠+∠=︒+︒=︒;∠高在三角形边上,如图所示:可知0CAD ∠=︒,20CAD ∠=︒,故此种情况不存在,舍弃;∠高在三角形外部,如图所示:在ABD ∆中,AD 为边BC 上的高,30ABC ∠=︒,90903060BAD ABC ∴∠=︒-∠=︒-︒=︒,20CAD ∠=︒,602040BAC BAD CAD ∴∠=∠-∠=︒-︒=︒;综上所述:80BAC ∠=︒或40︒,故答案为:40或80.【点睛】本题考查求角度问题,在没有图形的情况下,必须考虑清楚各种不同的情况,根据题意分情况讨论是解决问题的关键.30.(2022·四川成都)如图,在ABC 中,按以下步骤作图:∠分别以点B 和C 为圆心,以大于12BC 的长为半径作弧,两弧相交于点M 和N ;∠作直线MN 交边AB 于点E .若5AC =,4BE =,45B ∠=︒,则AB 的长为_________.【答案】7【分析】连接EC,依据垂直平分线的性质得EB EC=.由已知易得∠∠=︒=,在Rt∠AEC中运用勾股定理求得AE,即可求得答案.BEC CEA90【详解】解:由已知作图方法可得,MN是线段BC的垂直平分线,连接EC,如图,所以BE CE=,所以45∠=∠=︒,ECB B所以∠BEC=∠CEA=90°,因为5AC=,4BE=,所以4CE=,在AEC△中,2222AE AC EC,543所以347AB AE BE=+=+=,因此AB的长为7.故答案为:7.【点睛】本题主要考查中垂线性质,等腰三角形的性质,勾股定理等知识,解题的关键是掌握中垂线上一点到线段两端点距离相等,由勾股定理求得AE 即可. 31.(2022·内蒙古通辽)在Rt ABC 中,90C ∠=︒,有一个锐角为60︒,6AB =,若点P 在直线..AB 上(不与点A ,B 重合),且30PCB ∠=︒,则AP 的长为_______. 【答案】92或9或3【分析】分∠ABC =60、∠ABC =30°两种情况,利用数形结合的方法,分别求解即可.【详解】解:当∠ABC =60°时,则∠BAC =30°, ∠132BC AB ==,∠AC =,当点P 在线段AB 上时,如图,∠30PCB ∠=︒,∠∠BPC =90°,即PC ∠AB ,∠9cos 2AP AC BAC =⋅∠==; 当点P 在AB 的延长线上时,∠30PCB ∠=︒,∠PBC =∠PCB +∠CPB ,∠∠CPB =30°,∠∠CPB =∠PCB ,∠PB =BC =3,∠AP =AB +PB =9;当∠ABC =30°时,则∠BAC =60°,如图,∠132AC AB ==,∠30PCB ∠=︒,∠∠APC =60°,∠∠ACP =60°,∠∠APC =∠P AC =∠ACP ,∠∠APC 为等边三角形,∠P A =AC =3.综上所述,AP 的长为92或9或3. 故答案为:92或9或3【点睛】本题是解直角三角形综合题,主要考查了含30度角的直角三角形、解直角三角形,等边三角形的判定和性质等,分类求解是本题解题的关键.32.(2022·湖南岳阳)如图,在ABC中,AB AC=,AD BCBC=,⊥于点D,若6则CD=______.【答案】3【分析】根据等腰三角形的性质可知D是BC的中点,即可求出CD的长.【详解】解:∠AB AC=,AD BC⊥,∠CD BD=,∠6BC=,∠3CD=,故答案为:3.【点睛】本题考查了等腰三角形的性质,熟练掌握等腰三角形三线合一是解题的关键.33.(2022·江苏无锡)∠ABC是边长为5的等边三角形,∠DCE是边长为3的等边三角形,直线BD与直线AE交于点F.如图,若点D在∠ABC内,∠DBC=20°,则∠BAF=________°;现将∠DCE绕点C旋转1周,在这个旋转过程中,线段AF长度的最小值是________.【答案】804##4【分析】利用SAS证明∠BDC∠∠AEC,得到∠DBC=∠EAC=20°,据此可求得∠BAF 的度数;利用全等三角形的性质可求得∠AFB=60°,推出A、B、C、F四个点在同一个圆上,当BF是圆C的切线时,即当CD∠BF时,∠FBC最大,则∠FBA 最小,此时线段AF长度有最小值,据此求解即可.【详解】解:∠∠ABC和∠DCE都是等边三角形,∠AC=BC,DC=EC,∠BAC=∠ACB=∠DCE=60°,∠∠DCB+∠ACD=∠ECA+∠ACD=60°,即∠DCB =∠ECA,在∠BCD和∠ACE中,CD CEBCD ACEBC AC=⎧⎪∠=∠⎨⎪=⎩,∠∠ACE∠∠BCD(SAS),∠∠EAC=∠DBC,∠∠DBC=20°,∠∠EAC=20°,∠∠BAF=∠BAC+∠EAC=80°;设BF与AC相交于点H,如图:∠∠ACE ∠∠BCD∠AE =BD ,∠EAC =∠DBC ,且∠AHF =∠BHC ,∠∠AFB =∠ACB =60°,∠A 、B 、C 、F 四个点在同一个圆上,∠点D 在以C 为圆心,3为半径的圆上,当BF 是圆C 的切线时,即当CD ∠BF 时,∠FBC 最大,则∠FBA 最小,∠此时线段AF 长度有最小值,在Rt ∠BCD 中,BC =5,CD =3,∠BD=4,即AE =4,∠∠FDE =180°-90°-60°=30°,∠∠AFB =60°,∠∠FDE =∠FED =30°,∠FD =FE ,过点F 作FG ∠DE 于点G ,∠DG =GE =32,∠FE =DF =cos30DG ︒∠AF=AE-FE=4故答案为:80;4【点睛】本题考查了旋转的性质,等边三角形的性质,圆周角定理,切线的性质,解直角三角形,解答本题的关键是明确题意,找出所求问题需要的条件.34.(2022·湖南永州)我国古代数学家赵爽创制了一幅“赵爽弦图”,极富创新意识地给出了勾股定理的证明.如图所示,“赵爽弦图”是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形,若大正方形的面积是25,小正方形的面积是1,则AE=______.【答案】3【分析】根据题意得出AB=BC=CD=DA=5,EF=FG=GH=HE=1,设AF=DE=CH=BG=x,结合图形得出AE=x-1,利用勾股定理求解即可得出结果.【详解】解:∠大正方形的面积是25,小正方形的面积是1,∠AB=BC=CD=DA=5,EF=FG=GH=HE=1,根据题意,设AF=DE=CH=BG=x,则AE=x-1,在Rt∆AED中,222+=,AE ED AD即()222-+=,x x15解得:x =4(负值已经舍去),∠x -1=3,故答案为:3.【点睛】题目主要考查正方形的性质,勾股定理解三角形,一元二次方程的应用等,理解题意,综合运用这些知识点是解题关键.35.(2022·黑龙江齐齐哈尔)在∠ABC 中,AB =6AC =,45B ∠=,则BC =______________.【答案】3或3【分析】画出图形,分∠ABC 为锐角三角形和钝角三角形两种情况讨论即可.【详解】解:情况一:当∠ABC 为锐角三角形时,如图1所示:过A 点作AH ∠BC 于H ,∠∠B =45°,∠∠ABH 为等腰直角三角形, ∠363322ABAH BH ,在Rt∠ACH 中,由勾股定理可知:2236273CHAC AH , ∠333BC BH CH . 情况二:当∠ABC 为钝角三角形时,如图2所示:由情况一知:363322ABAH BH ,2236273CH AC AH , ∠333BC BH CH .故答案为:3或3.【点睛】本题考察了等腰直角三角形的性质及勾股定理的应用,本题的关键是能将∠ABC 分成锐角三角形或钝角三角形分类讨论.36.(2022·贵州遵义)如图,在等腰直角三角形ABC 中,90BAC ∠=︒,点M ,N分别为BC ,AC 上的动点,且AN CM =,AB 当AM BN +的值最小时,CM 的长为__________.【答案】2【分析】过点A 作AD BC ∥,且AD AC =,证明AND CMA ≌△△,可得AM DN =,当,,B N D 三点共线时,BN AM +取得最小值,证明AB BM =,即可求解.【详解】如图,过点A 作AD BC ∥,且AD AC =,连接DN ,如图1所示, DAN ACM ∴∠=∠,又AN CM =,AND CMA ∴≌,AM DN ∴=,BN AM BN DN BD ∴+=+≥,当,,B N D 三点共线时,BN AM +取得最小值,此时如图2所示,在等腰直角三角形ABC 中,90BAC ∠=︒,AB =2BC ∴==,AND CMA ≌△△,ADN CAM ∴∠=∠,AD AC AB ==,ADN ABN ∴∠=∠,AD BC ∥,ADN MBN ∴∠=∠,ABN MBN ∴∠=∠,设MAC α∠=,90BAM BAC αα∴∠=∠-=︒-,245ABM ABN NBM α∴∠=∠+∠==︒,22.5α∴=︒,180180904567.5AMB BAM ABM α∴∠=︒-∠-∠=︒-︒+-︒=︒,9022.567.5BAM ∠=︒-︒=︒,AB BM ∴==2CM BC BM ∴=-=即BN AM +取得最小值为2 故答案为:2图1 图2【点睛】本题考查了等腰直角三角的性质,勾股定理,两点之间线段最短,转化线段是解题的关键.37.(2022·广西)如图摆放一副三角板,直角顶点重合,直角边所在直线分别重合,那么∠BAC 的大小为______【答案】135°##135度【分析】根据三角板及其摆放位置可得180,45BAO BAC OAC OAC ∠=︒=∠+∠∠=︒,求解即可.【详解】180,45BAO BAC OAC OAC ∠=︒=∠+∠∠=︒,18045135BAC ∴∠=︒-︒=︒,故答案为:135°.【点睛】本题考查了求一个角的补角,即两个角的和为180度时,这两个角互为补角,熟练掌握知识点是解题的关键.38.(2022·广西桂林)如图,点C是线段AB的中点,若AC=2cm,则AB=_____cm.【答案】4【分析】根据中点的定义可得AB=2AC=4cm.【详解】解:根据中点的定义可得:AB=2AC=2×2=4cm,故答案为:4.【点睛】本题主要考查中点的定义,熟知中点的定义是解题关键.39.(2022·贵州遵义)数学小组研究如下问题:遵义市某地的纬度约为北纬28°,求北纬28纬线的长度.小组成员查阅相关资料,得到如下信息:信息一:如图1,在地球仪上,与赤道平行的圆圈叫做纬线;信息二:如图2,赤道半径OA约为6400千米,弦BC OA∥,以BC为直径的圆的周长就是北纬28°纬线的长度;(参考数据:π3≈,sin280.47︒≈,︒≈,cos280.88︒≈)tan280.53根据以上信息,北纬28°纬线的长度约为__________千米.【答案】33792【分析】根据平行线的性质可知28∠=∠=︒,在Rt BOD中,利用锐角三角B BOA函数求出BD ,即为以BC 为直径的圆的半径,求出周长即可.【详解】解:如图,过点O 作OD BC ,垂足为D ,根据题意6400OB OA ==,∠BC OA ∥,∠28B BOA ∠=∠=︒,∠在Rt BOD 中, 28B ∠=︒,∠cos28BD OB =︒,∠OD BC ,∠由垂径定理可知:12BD DC BC ==,∠以BC 为直径的圆的周长为22364000.8833792BD π⨯≈⨯⨯⨯=,故答案为:33792.【点睛】本题考查解直角三角形,平行线的性质,解题的关键是熟练三角函数的含义与解直角三角形的方法.三.解答题40.(2022·广东)如图,已知AOC BOC ∠=∠,点P 在OC 上,PD OA ⊥,PE OB ⊥,垂足分别为D ,E .求证:OPD OPE ≌.【答案】见解析【分析】根据角平分线的性质得PD PE =,再用HL 证明OPD OPE ≌.【详解】证明:∠AOC BOC ∠=∠,∠OC 为AOB ∠的角平分线,又∠点P 在OC 上,PD OA ⊥,PE OB ⊥,∠PD PE =,90PDO PEO ∠=∠=︒,又∠PO PO =(公共边),∠()HL OPD OPE ≌.【点睛】本题考查角平分线的性质,全等三角形的判定,利用合适的条件证明三角形全等是本题的关键.41.(2022·广西)校园内有一块四边形的草坪造型,课外活动小组实地测量,并记录数据,根据造型画如图的四边形ABCD ,其中 AB =CD =2米,AD =BC =3米,∠B =30(1)求证:∠ABC ∠∠CDA ;(2)求草坪造型的面积.【答案】(1)见解析(2)草坪造型的面积为23m【分析】(1)根据“SSS ”直接证明三角形全等即可;(2)过点A 作AE ∠BC 于点E ,利用含30°的直角三角形的性质求出AE 的长度,继而求出ABC 的面积,再由全等三角形面积相等得出32ABC CDASS ==,即可求出草坪造型的面积.(1)在ABC 和CDA 中,AB CD AC CA BC AD =⎧⎪=⎨⎪=⎩, ()ABC CDA SSS ∴≅;(2)过点A 作AE ∠BC 于点E ,90AEB ∴∠=︒,30,2m B AB ∠=︒=,11m 2AE AB ∴==, 3m BC =,211331m 222ABCS BC AE ∴=⋅=⨯⨯=, ABC CDA ≅,23m 2ABC CDA S S ∴==, ∴草坪造型的面积23m ABC CDA S S =+=,所以,草坪造型的面积为23m .【点睛】本题考查了全等三角形的判定和性质,含30°的直角三角形的性质,熟。

人教版八年级数学上册第一单元《三角形的内角和》同步练习2(含参考答案)

人教版八年级数学上册第一单元《三角形的内角和》同步练习2(含参考答案)

人教版八年级数学上册第一单元《三角形的内角和》同步练习2(含参考答案)一.选择题1.已知在Rt△ABC中,∠B=90°,∠C=35°,则∠A等于()A.35°B.45°C.55°D.65°2.如右图,已知AB⊥BD,AC⊥CD,∠A=40°,则∠D的度数为()A.40°B.50°C.60°D.70°3.如右图,Rt△ABC中,∠ACB=90°,CD⊥AB于点D,则下列结论不一定成立的是()A.∠1+∠2=90°B.∠2=∠3 C.∠1=∠4 D.∠1=30°4.直角三角形两个锐角平分线相交所成的钝角的度数为()A.90°B.135°C.120°D.45°或135°5.如右图△ABC中,∠BAC=90°,AD⊥BC,AE平分∠BAC,∠B=2∠C,∠DAE的度数是()A.45°B.20°C.30°D.15°二.填空题6.若直角三角形的一个锐角为15°,则另一个锐角等于.7.如右图,直线a∥b,在Rt△ABC中,点C在直线a上,若∠1=54°,∠2=24°,则∠B的度数为.8.在直角三角形中,两个锐角的度数比为2:3,那么较小锐角的度数是.9.如右图,在△ABC中,∠ACB=90°,AD平分∠CAB,交边BC于点D,过点D作DE⊥AB,垂足为E.若∠CAD=20°,则∠EDB的度数是.10.将两张矩形纸片如图所示摆放,使其中一张矩形纸片的一个顶点恰好落在另一张矩形纸片的一条边上,则∠1+∠2=.三.解答题11.AD、BE为△ABC的高,AD、BE相交于H点,∠C=50°,求∠BHD.12.解方程组:.参考答案一.选择题1.已知在Rt△ABC中,∠B=90°,∠C=35°,则∠A等于()A.35°B.45°C.55°D.65°【分析】根据直角三角形的两锐角互余计算即可.【解答】解:在Rt△ABC中,∠B=90°,∠C=35°,则∠A=90°﹣35°=55°,故选:C.【点评】本题考查的是直角三角形的性质,掌握直角三角形的两锐角互余是解题的关键.2.如图,已知AB⊥BD,AC⊥CD,∠A=40°,则∠D的度数为()A.40°B.50°C.60°D.70°【分析】根据直角三角形的性质求出∠AEB的度数,根据对顶角相等求出∠DEC,根据直角三角形的两个锐角互余计算即可.【解答】解:∵AB⊥BD,∠A=40°,∴∠AEB=50°,∴∠DEC=50°,又AC⊥CD,∴∠D=40°,故选:A.【点评】本题考查的是直角三角形的性质,掌握直角三角形的两个锐角互余是解题的关键.3.如图,Rt△ABC中,∠ACB=90°,CD⊥AB于点D,则下列结论不一定成立的是()A.∠1+∠2=90°B.∠2=∠3C.∠1=∠4D.∠1=30°【分析】根据垂直得出∠ADC=∠BDC=90°,再根据直角三角形的性质逐个判断即可.【解答】解:A.∵∠ACB=90°,∴∠1+∠2=90°,故本选项不符合题意;B.∵CD⊥AB,∴∠ADC=90°,∴∠1+∠3=90°,∵∠1+∠2=90°,∴∠2=∠3,故本选项不符合题意;C.∵CD⊥AB,∴∠BDC=90°,∴∠2+∠4=90°,∵∠1+∠2=90°,∴∠1=∠4,故本选项不符合题意;D.根据已知条件不能推出∠1=30°,故本选项符合题意;故选:D.【点评】本题考查了垂直定义和直角三角形的性质,注意:直角三角形的两锐角互余.4.直角三角形两个锐角平分线相交所成的钝角的度数为()A.90°B.135°C.120°D.45°或135°【分析】本题可根据直角三角形内角的性质和三角形内角和为180°进行求解.【解答】解:如图:∵AE、BD是直角三角形中两锐角平分线,∴∠OAB+∠OBA=90°÷2=45°,两角平分线组成的角有两个:∠BOE与∠EOD这两个角互补,根据三角形外角和定理,∠BOE=∠OAB+∠OBA=45°,∴∠EOD=180°﹣45°=135°,故选:B.【点评】本题考查的是直角三角形的性质,熟知直角三角形的性质是解答此题的关键.5.△ABC中,∠BAC=90°,AD⊥BC,AE平分∠BAC,∠B=2∠C,∠DAE的度数是()A.45°B.20°C.30°D.15°【分析】根据三角形的内角和∠B=60°,根据角平分线的定义得出∠BAE=45°,根据直角三角形的两锐角互余得出∠BAD=30°,即可根据角的和差得解.【解答】解:∵∠BAC=90°,∠B=2∠C,∴∠B=60°,∵AD⊥BC,AE平分∠BAC,∴∠ADB=90°,∠BAE=∠BAC=45°,∴∠BAD=90°﹣60°=30°,∴∠DAE=45°﹣30°=15°.故选:D.【点评】此题考查了直角三角形的性质,熟记直角三角形的两锐角互余是解题的关键.二.填空题6.若直角三角形的一个锐角为15°,则另一个锐角等于75°.【分析】根据直角三角形的两锐角互余列式计算即可.【解答】解:∵直角三角形的一个锐角为15°,∴另一个锐角=90°﹣15°=75°,故答案为:75°.【点评】本题考查的是直角三角形的性质,掌握直角三角形的两锐角互余是解题的关键.7.如图,直线a∥b,在Rt△ABC中,点C在直线a上,若∠1=54°,∠2=24°,则∠B的度数为60°.【分析】利用平行线的性质,三角形的外角的性质求出∠A即可解决问题.【解答】解:如图,∵a∥b,∴∠1=∠3=54°,∵∠3=∠2+∠A,∴∠A=54°﹣24°=30°,∵∠ACB=90°,∴∠B=90°﹣30°=60°,故答案为60°.【点评】本题考查平行线的性质,三角形的外角的性质,三角形的内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.8.在直角三角形中,两个锐角的度数比为2:3,那么较小锐角的度数是36°.【分析】根据比例设两锐角分别为2k、3k,然后利用直角三角形两锐角互余列方程求解即可.【解答】解:设两锐角分别为2k、3k,由题意得2k+3k=90°,解得k=18°,所以较小锐角的度数为18×2=36°.故答案为:36°.【点评】本题考查了直角三角形的性质,解题时注意:在直角三角形中,两个锐角互余.9.如图,在△ABC中,∠ACB=90°,AD平分∠CAB,交边BC于点D,过点D作DE⊥AB,垂足为E.若∠CAD=20°,则∠EDB的度数是40°.【分析】根据角平分线的定义得∠CAB=40°,由直角三角形的性质计算即可得解.【解答】解:∵AD平分∠CAB,∠CAD=20°,∴∠CAB=2∠CAD=40°,∵∠ACB=90°,∴∠B=90°﹣40°=50°,∵DE⊥AB,∴∠DEB=90°,∴∠EDB=90°﹣50°=40°,故答案为:40°.【点评】本题考查了角平分线的定义和直角三角形的性质,熟记性质是解题的关键.10.将两张矩形纸片如图所示摆放,使其中一张矩形纸片的一个顶点恰好落在另一张矩形纸片的一条边上,则∠1+∠2=90°.【分析】如图,连接两交点,根据两直线平行,同旁内角互补和直角三角形两锐角互余的性质解答.【解答】解:如图,连接两交点,根据矩形两边平行,得∠1+∠2+∠3+∠4=180°,又矩形的角等于90°,∴∠3+∠4=90°,∴∠1+∠2=180°﹣90°=90°.故答案为:90.【点评】本题主要考查平行线的性质和直角三角形两锐角互余的性质.三.解答题11.AD、BE为△ABC的高,AD、BE相交于H点,∠C=50°,求∠BHD.【分析】根据同角的余角相等求出∠BHD=∠C,从而得解.【解答】解:∵AD是△ABC的高,∴∠BHD+∠HBD=90°,∵BE是△ABC的高,∴∠HBD+∠C=90°,∴∠BHD=∠C,∵∠C=50°,∴∠BHD=50°.【点评】本题考查了直角三角形两锐角互余的性质,同角的余角相等的性质,熟记性质并准确识图是解题的关键.12.解方程组:.【分析】运用加减消元解答即可.【解答】解:,②﹣①得,4y=8,解得y=2,把y=2代入①得,x﹣2=1,解得x=3,故原方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.。

人教版八年级数学上册三角形的内角和定理

人教版八年级数学上册三角形的内角和定理

三角形的内角和定理人教八上初中数学试卷金戈铁骑整理制作11-4一、学习目标理解“三角形的内角和等于180°”及证明过程;证明“三角形内角和定理”,体会证明中辅助线的作用,尝试用多种方法证明三角形内角和定理;运用三角形内角和定理解决问题.二、知识回顾拼拼看,将任意一个三角形的三个内角拼合在一起会形成什么角?三、新知讲解1.三角形内角和定理定理三角形三个内角的和等于180°符号语言在△ABC中,∠A+∠B+∠C=180°图示2.三角形内角和定理的证明已知:如图,已知△ABC,求证:∠A+∠B+∠C=180°.〖方法1〗证明:过A点作DE∥BC,∵DE∥BC,(已作)∴∠DAB=∠B,∠EAC=∠C,(两直线平行,内错角相等)∵∠DAB+∠BAC+∠EAC=180°,(平角=180°)∴∠BAC+∠B+∠C=180°,(等量代换)〖方法2〗证明:作BC的延长线CD,过点C作射线CE∥BA.∵CE∥BA,∴∠B=∠ECD(两直线平行,同位角相等),∠A=∠ACE(两直线平行,内错角相等),∵∠BCA+∠ACE+∠ECD=180°,(平角=180°)∴∠A+∠B+∠ACB=180°.(等量代换)3.三角形内角和定理的应用(1)已知三角形的两个内角,利用三角形内角和定理可求第三个角;(2)已知各角之间的关系,利用三角形内角和定理可求各角.四、典例探究扫一扫,有惊喜哦!1.三角形的内角和定理【例1】(2014春•靖江市校级月考)若一个三角形的三个内角之比为3:4:5,则它的最大内角的度数是()A.80°B.75°C.90°D.108°总结:给出三角形三个内角的比求内角度数时,通常要设未知数,通过列方程求解.【例2】(2014•重庆校级模拟)如图,已知D、E在△ABC的边上,DE∥BC,∠B=60°,∠AED=45°,则∠A的度数为()A.65°B.75°C.85°D.95°总结:关于三角形与平行线结合的问题,求解时,先从平行线的性质入手,把有关角转化到三角形中,再利用三角形的内角和定理求解.【例3】(2014秋•太和县期末)如图,在△ABC中,∠ABC=50°,∠ACB=80°,BP平分∠ABC,CP 平分∠ACB,则∠BPC的大小是()A.100°B.110°C.115°D.120°总结:三角形中两内角平分线相交组成的角等于90°与第三个内角一半的和.练1.(2015•重庆模拟)在△ABC中,已知∠A=4∠B=104°,则∠C的度数是()A.50°B.45°C.40°D.30°练2.(2014秋•安庆期中)在△ABC中,∠A、∠B、∠C的度数之比为3:4:5,那么△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形练3.(2014春•通川区校级期中)如图,已知△ABC中,∠B=65°,∠C=45°,AD是BC边上的高,AE是∠BAC的平分线,求∠DAE的度数.2.三角形内角和定理的实际应用【例4】如图,一轮船由B处向C处航行,在B处测得C处在B的北偏东75°方向上,在海岛上的观察所A测得B在A的南偏西30°方向上,若轮船行驶到C处时测得∠BAC=55°,那么从C处看A,B两处的视角∠ACB是多少度?总结:1.“三角形的内角和为180°”是隐含条件,在实际应用中必不可少.2.在有关方位角的计算中,常常构造三角形,在三角形中计算角的度数.练4.(2010•石家庄二模)如图所示是小李绘制的某大桥断裂的现场草图,若∠1=38°,∠2=23°,则桥面断裂处夹角∠BCD为________度.一、选择题1.(2014•江北区模拟)在△ABC中,已知∠A=3∠C=54°,则∠B的度数是()A.90°B.94°C.98°D.108°2.(2014春•合川区校级期中)已知△ABC中,∠A=20°,∠B=∠C,那么三角形△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.正三角形3.(2014春•江阴市校级期中)如图,BE、CF都是△ABC的角平分线,且∠BDC=110°,则∠A=()A.50°B.40°C.70°D.35°4.如图,是一块三角形木板的残余部分,量得∠A=100°,∠B=40°,这块三角形木板另外一个角∠C 的度数为()A.30°B.40°C.50°D.60°二、填空题5.(2014秋•宁津县校级月考)在△ABC中,∠A:∠B:∠C=2:3:4,则∠A=,∠C=.6.(2014•徐州二模)如图,AB∥CD,AD和BC相交于点O,∠A=35°,∠AOB=75°,则∠C=.7.(2013春•苏州期末)如图,CD、CE分别是△ABC的高和角平分线,∠A=30°,∠B=60°,则∠DCE=.三、解答题8.(2014春•庐江县期末)如图,已知∠DAB=70°,AC平分∠DAB,∠1=35°,求∠D的度数.9.(2012春•中山区期中)已知,如图,AB∥CD,AE平分∠BAC,CE平分∠ACD,求∠E的度数.10.(2011春•宣威市校级月考)如图所示,已知图①五角星ABCDE,将图①中的A点向下移动得到图②,将图①中的C点向上移动得图③,对于五角星及五角星的变形图,∠A+∠B+∠C+∠D+∠E 的和为多少度?并选择一图加以说明.典例探究答案:【例1】(2014春•靖江市校级月考)若一个三角形的三个内角之比为3:4:5,则它的最大内角的度数是()A.80°B.75°C.90°D.108°分析:设三角形的三个内角的度数分别为3x、4x、5x,根据三角形内角和定理得到3x+4x+5x=180°,然后解方程求出x后计算5x即可.解答:解:设三角形的三个内角的度数分别为3x、4x、5x,所以3x+4x+5x=180°,解得x=15°,所以5x=75°.故选B.点评:本题考查了三角形内角和定理,即三角形内角和是180°.【例2】(2014•重庆校级模拟)如图,已知D、E在△ABC的边上,DE∥BC,∠B=60°,∠AED=45°,则∠A的度数为()A.65°B.75°C.85°D.95°分析:根据平行线的性质可得∠C=∠AED=45°,再利用三角形内角和为180°可以计算出∠A的度数.解答:解:∵DE∥BC,∴∠C=∠AED=45°,∴∠A=180°﹣∠B﹣∠C=180°﹣45°﹣60°=75°,故选:B.点评:此题主要考查了三角形内角和定理,即三角形内角和为180°.【例3】(2014秋•太和县期末)如图,在△ABC中,∠ABC=50°,∠ACB=80°,BP平分∠ABC,CP平分∠ACB,则∠BPC的大小是()A.100°B.110°C.115°D.120°分析:根据三角形内角和定理计算.解答:解:∵∠ABC=50°,∠ACB=80°,且BP平分∠ABC,CP平分∠ACB,∴∠PBC=25°,∠PCB=40°,∴∠BPC=115°.故选C.点评:此题主要考查了三角形的内角和定理:三角形的内角和为180°.练1.(2015•重庆模拟)在△ABC中,已知∠A=4∠B=104°,则∠C的度数是()A.50°B.45°C.40°D.30°分析:根据已知条件求出∠B的度数,再根据三角形的内角和等于180°列式计算即可得解.解答:解:∵4∠B=104°,∴∠B=26°,∴∠C=180°﹣∠A﹣∠B=180°﹣104°﹣26°=50°.故选A.点评:本题考查了三角形的内角和定理,是基础题,求出∠B的度数,然后列出∠C的表达式是解题的关键.练2.(2014秋•安庆期中)在△ABC中,∠A、∠B、∠C的度数之比为3:4:5,那么△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形分析:已知三角形三个内角的度数之比,可以设一份为k°,根据三角形的内角和等于180°列方程求三个内角的度数,从而确定三角形的形状.解答:解:设一份为k°,则三个内角的度数分别为3k°,4k°,5k°.则3k°+4k°+5k°=180°,解得k°=15°,∴5k°=75°,3k°=45°,4k°=60°,所以这个三角形是锐角三角形,故选A.点评:此题主要考查三角形的按边分类,直接根据三角形三个内角的度数比来判断是解题的关键.练3.(2014春•通川区校级期中)如图,已知△ABC中,∠B=65°,∠C=45°,AD是BC边上的高,AE是∠BAC的平分线,求∠DAE的度数.分析:由三角形的内角和定理,可求∠BAC=70°,又由AE是∠BAC的平分线,可求∠BAE=35°,再由AD是BC边上的高,可知∠ADB=90°,可求∠BAD=25°,所以∠DAE=∠BAE﹣∠BAD=10°.解答:解:在△ABC中,∵∠BAC=180°﹣∠B﹣∠C=70°,∵AE是∠BAC的平分线,∴∠BAE=∠CAE=35°.又∵AD是BC边上的高,∴∠ADB=90°,∵在△ABD中∠BAD=90°﹣∠B=25°,∴∠DAE=∠BAE﹣∠BAD=10°.点评:本题考查三角形的内角和定理及角平分线的性质,高线的性质,解答的关键是三角形的内角和定理,一定要熟稔于心.【例4】如图,一轮船由B处向C处航行,在B处测得处在B的北偏东75°方向上,在海岛上的观察所A测得B在A的南偏西30°方向上,若轮船行驶到C处时测得∠BAC=55°,那么从C处看A,B两处的视角∠ACB是多少度?分析:根据方位角就可求得BA与正北方向的夹角,即可得到∠ABC,在△ABC中,根据三角形内角和定理即可求得∠ACB的度数.解答:解:∵∠BAE=30°,∴∠ABD=30°,∴∠ABC=∠DBC-∠ABD=75°-30°=45°.在△ABC中,根据三角形内角和定理得到:∠ACB=180°-45°-55°=80°,即从C处看A,B两处的视角∠ACB是80°.点评:本题主要考查了方位角的定义,以及三角形的内角和定理.练4.(2010•石家庄二模)如图所示是小李绘制的某大桥断裂的现场草图,若∠1=38°,∠2=23°,则桥面断裂处夹角∠BCD为_____度.分析:连接BD,根据对顶角相等得到∠1=∠4=38°,∠2=∠3=23°,然后根据三角形内角和定理进行计算即可.解答:解:连接BD,如图,∵∠1=∠4=38°,∠2=∠3=23°,∴∠BCD=180°-∠4-∠3=180°-23°-38°=119°.故答案为:119.点评:本题考查了三角形内角和定理:三角形的内角和为180°.也考查了对顶角相等.课后小测答案:一、选择题1.(2014•江北区模拟)在△ABC中,已知∠A=3∠C=54°,则∠B的度数是()A.90°B.94°C.98°D.108°解:如图所示:∵∠A=3∠C=54°,∴∠C=18°,∴∠B的度数是:180°﹣∠A﹣∠C=108°.故选:D.2.(2014春•合川区校级期中)已知△ABC中,∠A=20°,∠B=∠C,那么三角形△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.正三角形解:∵∠A=20°,∴∠B=∠C=(180°﹣20°)=80°,∴三角形△ABC是锐角三角形.故选A.3.(2014春•江阴市校级期中)如图,BE、CF都是△ABC的角平分线,且∠BDC=110°,则∠A=()A.50°B.40°C.70°D.35°解:∵BE、CF都是△ABC的角平分线,∴∠A=180°﹣(∠ABC+∠ACB)=180°﹣2(∠DBC+∠BCD)∵∠BDC=180°﹣(∠DBC+∠BCD),∴∠A=180°﹣2(180°﹣∠BDC)∴∠BDC=90°+∠A,∴∠A=2(110°﹣90°)=40°.故选B.4.如图,是一块三角形木板的残余部分,量得∠A=100°,∠B=40°,这块三角形木板另外一个角∠C的度数为()A.30°B.40°C.50°D.60°解:∵△ABC中,∠A=100°,∠B=40°,∴∠C=180°-∠A-∠B=180°-100°-40°=40°.故选B.二、填空题5.(2014秋•宁津县校级月考)在△ABC中,∠A:∠B:∠C=2:3:4,则∠A=,∠C=.解:设∠A=2x°,则∠B=3x°,∠C=4x°,∵∠A+∠B+∠C=180°,即:2x°+3x°+4x°=180°,解得:x=20∴∠A=40°,则∠B=60°,∠C=80°,故答案为:40°、80°6.(2014•徐州二模)如图,AB∥CD,AD和BC相交于点O,∠A=35°,∠AOB=75°,则∠C=.解:∵∠A=35°,∠AOB=75°,∠A+∠B+∠C=180°,∴∠B=180°﹣35°﹣75°=70°.又∵AB∥CD,∴∠C=∠B=70°.7.(2013春•苏州期末)如图,CD、CE分别是△ABC的高和角平分线,∠A=30°,∠B=60°,则∠DCE=.解:∵∠A=30°,∠B=60°,∴∠ACB=180°﹣∠A﹣∠B=90°,∵CD、CE分别是△ABC的高和角平分线,∴∠BCE=∠ACB=45°,∠BDC=90°,∴∠BCD=90°﹣∠B=30°,∴∠DCE=∠BCE﹣∠BCD=45°﹣30°=15°.故答案为:15°.三、解答题8.(2014春•庐江县期末)如图,已知∠DAB=70°,AC平分∠DAB,∠1=35°,求∠D的度数.解:∵∠DAB=70°,AC平分∠DAB,∴∠DAC=35°,又∵∠1=35°,∴∠D=180°﹣(∠1+∠DAC)=180°﹣(35°+35°)=110°.9.(2012春•中山区期中)已知,如图,AB∥CD,AE平分∠BAC,CE平分∠ACD,求∠E的度数.解:∵AB∥CD,AE平分∠BAC,CE平分∠ACD,又∠BAC+∠DCA=180°⇒∠CAE+∠ACE=(∠BAC+∠DCA)=90°,∠E=180°﹣(∠CAE+∠ACE)=90°,∴∠E=90°.10.(2011春•宣威市校级月考)如图所示,已知图①五角星ABCDE,将图①中的A点向下移动得到图②,将图①中的C点向上移动得图③,对于五角星及五角星的变形图,∠A+∠B+∠C+∠D+∠E的和为多少度?并选择一图加以说明.解:∠A+∠B+∠C+∠D+∠E=180°,图①:∵∠A+∠D=∠BNM,∠E+∠C=∠BMN,(三角形的外角等于与它不相邻的两个内角的和),又∵∠B+∠BNM+∠BMN=180∴∠A+∠B+∠C+∠D+∠E=180°.图②:延长AD交BE于点F,再根据三角形外角的性质解答;③同①,∵∠A+∠C=∠1,∠B+∠E=∠2,∠1+∠2+∠D=180°,∴∠A+∠B+∠C+∠D+∠E=180°.。

人教版初中八年级数学上册第十一章《三角形》经典复习题(含答案解析)(1)

人教版初中八年级数学上册第十一章《三角形》经典复习题(含答案解析)(1)

一、选择题1.将一副三角板的直角顶点重合按如图所示方式放置,得到下列结论,其中正确的结论有( )①13∠=∠;②180BAE CAD ∠+∠=︒;③若//BC AD ,则230∠=︒;④若150CAD ∠=︒,则4C ∠=∠.A .1个B .2个C .3个D .4个C解析:C【分析】 利用同角的余角相等可判断①,利用角的和差与直角三角形的性质可判断②,利用平行线的性质先求解CAD ∠,再利用结论②可判断③,由150CAD ∠=︒,先求解230∠=︒, 如图,记,AB DE 交于,G 再求解90AGE ∠=︒,再利用三角形的外角的性质求解4∠, 从而可判断④.【详解】解:90BAC DAE ∠=∠=︒,122390∴∠+∠=∠+∠=︒,13∴∠=∠,故①符合题意, 19090180BAE CAD BAE DAE BAC DAE ∠+∠=∠+∠+∠=∠+∠=︒+︒=︒,故②符合题意;//,BC AD180C CAD ∴∠+∠=︒,45C ∠=︒,135CAD ∴∠=︒,218018013545CAD ∴∠=︒-∠=︒-︒=︒,故③不符合题意; 150180CAD BAE CAD ∠=︒∠+∠=︒,,30BAE ∴∠=︒,如图,记,AB DE 交于,G60E∠=︒,180306090AGE∴∠=︒-︒-︒=︒,45,B C∠=∠=︒4904545.AGE B∴∠=∠-∠=︒-︒=︒4.C∴∠=∠故④符合题意,综上:符合题意的有①②④.故选:.C【点睛】本题考查的是角的和差,余角与补角,平行线的性质,三角形的内角和定理,三角形的外角的性质,掌握以上知识是解题的关键.2.下列四组线段中,不可以构成三角形的是()A.4,5,6 B.1.5,2,2.5 C.13,14,15D.12,3D解析:D【分析】计算较小两边的和,与最大的边比较,大于最大的边时三角形存在,依此判断即可.【详解】∵4+5>6,∴能构成三角形;∵1.5+2>2.5,∴能构成三角形;∵14+15>13,∴能构成三角形;∵2<1+2=3,∴不能构成三角形;故选D.【点睛】本题考查了已知线段长判断三角形的存在,熟记三角形存在的条件是解题的关键. 3.若一个三角形的三边长分别为3,7,x,则x的值可能是()A.6 B.3 C.2 D.11A解析:A根据三角形的三边关系列出不等式,即可求出x 的取值范围,得到答案.【详解】解:∵三角形的三边长分别为3,7,x ,∴7-3<x <7+3,即4<x <10,四个选项中,A 中,4<6<10,符合题意.故选:A .【点睛】本题主要考查了三角形的三边关系,即任意两边之和大于第三边,任意两边之差小于第三边.4.如图,//AB CD ,40C ∠=︒,60A ∠=︒,则F ∠的度数为( )A .10°B .20°C .30°D .40°B解析:B【分析】 利用平行线和三角形外角的性质即可求解.【详解】∵//AB CD ,∴60DEF A ∠=∠=︒.∵DEF C F ∠=∠+∠,∴604020F DEF C ∠=∠-∠=︒-︒=︒.故选:B .【点睛】本题考查平行线和三角形外角的性质,熟练利用其性质找到角的等量关系是解答本题的关键.5.如图,在ABC 中,B C ∠=∠,D 为BC 边上的一点,点E 在AC 边上,ADE AED ∠=∠,若10CDE ∠=︒,则BAD ∠的度数为( )A .20°B .15°C .10°D .30°A【分析】先根据三角形外角的性质得出∠ADC=∠B+∠BAD ,∠AED=∠C+∠EDC ,再根据∠B=∠C ,∠ADE=∠AED 即可得出结论.【详解】解:∵∠ADC 是△ABD 的外角,∴∠ADC=∠B+∠BAD ,∴∠ADE=∠ADC-∠CDE=∠B+∠BAD-∠CDE∵∠AED 是△CDE 的外角,∴∠AED=∠C+∠EDC ,∵∠ADE=∠AED ,∴∠B+∠BAD-∠CDE=∠C+∠EDC ,∵∠B=∠C ,∴∠BAD=2∠EDC ,∵10CDE ∠=︒∴∠BAD=20°;故选:A【点睛】本题考查的是三角形外角的性质,熟知三角形的外角等于与之不相邻的两个内角的和是解答此题的关键.6.一副透明的三角板,如图叠放,直角三角板的斜边AB 、CE 相交于点D ,则BDC ∠的度数是( )A .65︒B .75︒C .85︒D .105︒B解析:B【分析】 根据三角板的性质以及三角形内角和定理计算即可.【详解】解:∵∠CEA =60︒,∠BAE =45︒,∴∠ADE = 180︒−∠CEA −∠BAE =75︒,∴∠BDC =∠ADE =75︒,故选:B【点睛】本题考查三角板的性质,三角形内角和定理等知识,对顶角相等,解题的关键是熟练掌握基本知识,属于中考基础题.7.一个多边形的内角和是外角和的4倍,则这个多边形的边数为()A.10 B.8 C.6 D.4A解析:A【分析】设这个多边形的边数为n,根据内角和公式以及多边形的外角和为360°即可列出关于n的一元一次方程,解方程即可得出结论.【详解】解:设这个多边形的边数为n,则该多边形的内角和为(n-2)×180°,依题意得:(n-2)×180°=360°×4,解得:n=10,∴这个多边形的边数是10.故选:A【点睛】本题考查了多边形内角与外角,解题的关键是根据多边形内角和公式得出方程(n-2)×180°=360°×4.a b,含30角的直角三角板按如图所示放置,顶点A在直线a上,斜边8.已知直线//BC与直线b交于点D,若135∠=︒,则2∠的度数为()A.35︒B.45︒C.65︒D.75︒C解析:C【分析】如图,根据三角形外角的性质可得出∠3,再根据平行线的性质可得出∠2.【详解】解:如图,∠=︒,∠B=30°∵135∴∠3=∠1+∠B=35°+30°=65°a b∵//∴∠2=∠3=65°故选:C【点睛】此题考查了平行线的性质以及三角形外角的性质.解题时注意掌握平行线的性质以及三角形外角的性质的应用.9.下列长度的四根木棒,能与3cm ,7cm 长的两根木棒钉成一个三角形的是( ) A .3cmB .10cmC .4cmD .6cm D解析:D【分析】根据三角形的三边关系解答.【详解】解:∵三角形的两边为3cm ,7cm ,∴第三边长的取值范围为7-3<x <7+3,即4<x <10,只有D 符合题意,故选:D .【点睛】本题考查了三角形的三边关系,要知道,三角形的两边之和大于第三边.10.小红有两根长度分别为4cm 和8cm 的木棒,他想摆一个三角形,现有长度分别为3cm ,4cm ,8cm ,15cm 四根木棒,则他应选择的木棒长度为( ).A .3cmB .4cmC .8cmD .15cm C 解析:C【分析】设选择的木棒长为x ,根据第三边大于两边之差小于两边之和即可求出范围,再结合选项即可得出答案.【详解】由题意得,设选择的木棒长为x ,则8448x -<<+,即412x <<, ∴选择木棒长度为8cm .故选C .【点睛】本题考查了三角形三边关系的应用,熟练掌握三边关系是解题的关键.二、填空题11.如图,则A B C D E ∠+∠+∠+∠+∠的度数为________.180°【分析】两次运用三角形的外角定理求出∠B+∠C+∠D=∠2再通过三角形的内角和定理即可求解【详解】解:如图∵∠1是△CDF 外角∴∠C+∠D=∠1∵∠2是三角形BFG 外角∴∠B+∠1=∠2∴∠解析:180°【分析】两次运用三角形的外角定理求出∠B+∠C+∠D=∠2,再通过三角形的内角和定理即可求解【详解】解:如图,∵∠1是△CDF 外角,∴∠C+∠D=∠1,∵∠2是三角形BFG 外角,∴∠B+∠1=∠2,∴∠B+∠C+∠D=∠2,∴=2180A B C D E A E ∠+∠+∠+∠+∠∠+∠+∠=︒.故答案为:180°【点睛】本题考查了三角形的外角定理、内角和定理,通过三角形的外角定理将∠B+∠C+∠D 转化为∠2是解题关键.12.如果一个多边形所有内角和与外角和共为2520°,那么从这个多边形的一个顶点出发共有_________条对角线11【分析】先根据题意求出多边形的边数再根据从n 边形一个顶点出发共有(n-3)条对角线即可解答【详解】设多边形的边数为n 则有(n-2)•180+360=2520解得:n=1414-3=11即从这个多解析:11【分析】先根据题意求出多边形的边数,再根据从n 边形一个顶点出发共有(n-3)条对角线即可解答.【详解】设多边形的边数为n ,则有(n -2)•180+360=2520,解得:n =14,14-3=11,即从这个多边形的一个顶点出发共有11条对角线,故答案为11.【点睛】本题考查了多边形的内角和与外角和、多边形的对角线,得到多边形的边数是解本题的关键.13.如图,△ABC 的两条中线AD 、BE 相交于点G ,如果S △ABG =2,那么S △ABC =_____.6【分析】根据DE 分别是三角形的中点得出G 是三角形的重心再利用重心的概念可得:2GD =AG 进而得到S △ABG :S △ABD =2:3再根据AD 是△ABC 的中线可得S △ABC =2S △ABD 进而得到答案【详解析:6【分析】根据D ,E 分别是三角形的中点,得出G 是三角形的重心,再利用重心的概念可得:2GD =AG 进而得到S △ABG :S △ABD =2:3,再根据AD 是△ABC 的中线可得S △ABC =2S △ABD 进而得到答案.【详解】解:∵△ABC 的两条中线AD 、BE 相交于点G ,∴2GD =AG ,∵S △ABG =2,∴S △ABD =3,∵AD 是△ABC 的中线,∴S △ABC =2S △ABD =6.故答案为:6.【点睛】此题主要考查了重心的概念和性质:三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的两倍.14.如图,在ABC ∆中,4ACB A ∠=∠,点D 在边AC 上,将BDA ∆沿BD 折叠,点A 落在点A '处,恰好BA AC '⊥于点E 且//BC DA ',则BDC ∠的度数为__________度.54°【分析】根据折叠的性质及题意可在Rt △BEC中求解∠C 及∠CBE 的度数从而计算∠ABD 的度数则∠BDC=∠A+∠ABD 即可计算出结果【详解】由题意可得:∠A=∠∠=∠CBE ∴则在Rt △BEC 中 解析:54°【分析】根据折叠的性质及题意,可在Rt △BEC 中求解∠C 及∠CBE 的度数,从而计算∠ABD 的度数,则∠BDC=∠A+∠ABD ,即可计算出结果.【详解】由题意可得:∠A=∠A ',∠A '=∠CBE ,∴44ACB A CBE ∠=∠=∠,则在Rt △BEC 中,∠C+∠CBE=90°,即:5∠CBE=90°,∠CBE=18°,∴∠A=18°,∠C=72°,∠ABC=90°,∴72ABA ABC CBE '=-=︒∠∠∠,由折叠性质可知,ABD A BD '∠=∠,∴=36ABD A BD '∠=∠︒,∴54BDC ABD A ∠=∠+∠=︒故答案为:54°.【点睛】本体三角形的折叠问题,平行线的性质及三角形的外角定理,理解图形变化中的特点,准确结合题意计算是解题关键.15.如图,在ABC 中,点D 、E 、F 分别是边BC 、AD 、CE 上的中点,则6ABC S =,则BEF S =△______.【分析】利用三角形的中线把三角形分成面积相等的两部分解决问题即可【详解】解:∵BD=DC ∴S △ABD=S △ADC=×6=3(cm2)∵AE=DE ∴S △AEB=S △AEC=×3=(cm2)∴S △BEC解析:3 2【分析】利用三角形的中线把三角形分成面积相等的两部分解决问题即可.【详解】解:∵BD=DC,∴S△ABD=S△ADC=12×6=3(cm2),∵AE=DE,∴S△AEB=S△AEC=12×3=32(cm2),∴S△BEC=6-3=3(cm2),∵EF=FC,∴S△BEF=12×3=32(cm2),故答案为32.【点睛】本题考查三角形的面积,三角形的中线等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.16.如图,在一个四边形ABCD中,AE平分∠BAD,DE平分∠ADC,且∠ABC=80°,∠BCD=70°,则∠AED=_________.75°【分析】先根据四边形的内角和求出∠BAD+∠CDA然后再根据角平分线的定义求得∠EAD+∠EDA最后根据三角的内角和定理求解即可【详解】解:∵在四边形ABCD中∠ABC=80°∠BCD=70°解析:75°.【分析】先根据四边形的内角和求出∠BAD+∠CDA,然后再根据角平分线的定义求得∠EAD+∠EDA,最后根据三角的内角和定理求解即可.【详解】解:∵在四边形ABCD中,∠ABC=80°,∠BCD=70°∴∠BAD+∠CDA=360°-80°-70°=210°∵∠EAD=12∠BAD,∠EDA=12∠CAD∴∠EAD+∠EDA=1(∠BAD+∠CDA)=105°2∴∠AED=180°-(∠EAD+∠EDA)=180°-105°=75°.故答案为75°.【点睛】本题主要考查了三角形的内角和、四边形的内角和以及角平分线的相关知识,灵活应用相关知识成为解答本题的关键.17.一个三角形的两边长分别是3和7,且第三边长为奇数,这样的三角形的周长最大值是___________,最小值是___________.15【分析】记三角形的第三边为c先根据三角形的三边关系确定c的取值范围进而可得三角形第三边的最大值与最小值进一步即可求出答案【详解】解:记三角形的第三边为c则7-3<c<7+3即4<c<10因为第三解析:15【分析】记三角形的第三边为c,先根据三角形的三边关系确定c的取值范围,进而可得三角形第三边的最大值与最小值,进一步即可求出答案.【详解】解:记三角形的第三边为c,则7-3<c<7+3,即4<c<10,因为第三边长为奇数,所以三角形第三边长的最大值是9,最小值是5,所以三角形的周长最大值是3+7+9=19;最小值是3+7+5=15;故答案为:19,15.【点睛】本题考查了三角形的三边关系与不等式组的整数解,属于基础题型,正确理解题意、掌握解答的方法是关键.18.鹿鸣社区里有一个五边形的小公园,如图所示,王老师每天晚饭后都要到公园里去散步,已知图中的∠1=95 ,王老师沿公园边由A点经B→C→D→E,一直到F时,他在行程中共转过了_____度.275【分析】王老师每次转过的角度之和为该五边形的外角和减去∠1的外角度数由多边形的外角和即可求解【详解】解:王老师每次转过的角度之和为该五边形的外角和减去∠1的外角度数∵多边形的外角和为360°∴解析:275王老师每次转过的角度之和为该五边形的外角和减去∠1的外角度数,由多边形的外角和即可求解.【详解】解:王老师每次转过的角度之和为该五边形的外角和减去∠1的外角度数,∵多边形的外角和为360°,∴他在行程中共转过了()36018095275︒-︒-︒=︒,故答案为:275.【点睛】本题考查多边形的外角和,明确王老师每次转过的角度之和为该五边形的外角和减去∠1的外角度数是解题的关键.19.如图,在ABC 中,已知66ABC ∠=︒,54ACB ∠=︒,BE 是AC 上的高,CF 是AB 上的高,H 是BE 和CF 的交点,EHF ∠的度数是________.120°【分析】先根据三角形内角和定理求出∠A 的度数再根据CF是AB 上的高得出∠ACF 的度数再由三角形外角的性质即可得出结论【详解】解:∵∠ABC=66°∠ACB=54°∴∠A=60°∵CF 是AB 上解析:120°【分析】先根据三角形内角和定理求出∠A 的度数,再根据CF 是AB 上的高得出∠ACF 的度数,再由三角形外角的性质即可得出结论.【详解】解:∵∠ABC=66°,∠ACB=54°,∴∠A=60°,∵CF 是AB 上的高,∴在△ACF 中,∠ACF=180°-∠AFC-∠A=30°,在△CEH 中,∠ACF=30°,∠CEH=90°,∴∠EHF=∠ACF+∠CEH=30°+90°=120°.故答案为120°.【点睛】本题考查的是三角形内角和定理及三角形外角的性质、三角形的高线等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.20.一个三角形的三个内角的度数的比是1∶2∶3,这个三角形是_________________三角形.(填锐角、直角或钝角)直角【分析】根据三角形内角和定理和已知求出这个三角形的最大内角的度数即可得出答案【详解】180°÷(1+2+3)×3=180°÷6×3=30°×3=90°答:这个三角形中最大的角是直角故答案解析:直角【分析】根据三角形内角和定理和已知求出这个三角形的最大内角的度数,即可得出答案.【详解】180°÷(1+2+3)×3=180°÷6×3=30°×3=90°,答:这个三角形中最大的角是直角.故答案为:直角.【点睛】本题考查了三角形内角和定理的应用,能求出这个三角形的最大内角的度数是解此题的关键,注意:三角形的内角和等于180°.三、解答题21.如图,△ABC中,∠ABC的角平分线与外角∠ACD的平分线交于A1.(1)∵BA1、CA1是∠ABC与∠ACD的平分线,∴∠A1BD=12∠ABD,∠A1CD=12∠ACD,∴∠A1CD﹣∠A1BD=12(∠ACD﹣∠ABD),∵∠A1CD﹣∠A1BD=,∠ACD﹣∠ABD=∠,∴∠A1=.(2)如图2,四边形ABCD中,∠F为∠ABC的角平分线及外角∠DCE的平分线所在的直线构成的角,若∠A+∠D=230°,求∠F的度数.(3)如图3,△ABC中,∠ABC的角平分线与外角∠ACD的平分线交于A1,若E为BA延长线上一动点,连接EC,∠AEC与∠ACE的角平分线交于Q,当E滑动时有下面两个结论:①∠Q+∠A1的值为定值;②∠Q﹣∠A1的值为定值,其中有且只有一个是正确的,请写出正确的结论,并求出其值.解析:(1)∠A1,A,12∠A;(2)25°;(3)①的结论是正确的,且这个定值为180°.【分析】(1)根据角平分线的定义可得∠A1BD=12∠ABC,∠A1CD=12∠ACD,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ACD=∠A+∠ABC,∠A1CD=∠A1BC+∠A1,则可得出答案;(2)先根据四边形内角和等于360°,得出∠ABC+∠DCB=360°﹣(∠A+∠D),根据内角与外角的关系和角平分线的定义得出∠ABC+(180°﹣∠DCE)=2∠FBC+(180°﹣2∠DCF)=180°﹣2(∠DCF﹣∠FBC)=180°﹣2∠F,从而得出结论;(3)依然要用三角形的外角性质求解,易知2∠A1=∠AEC+∠ACE=2(∠QEC+∠QCE),利用三角形内角和定理表示出∠QEC+∠QCE,即可得到∠A1和∠Q的关系.【详解】解:(1)∵BA1是∠ABC的平分线,CA1是∠ACD的平分线,∴∠A1BD=12∠ABD,∠A1CD=12∠ACD,∴∠A1CD﹣∠A1BD=12(∠ACD﹣∠ABD),∵∠A1CD﹣∠A1BD=∠A1,∠ACD﹣∠ABD=∠A,∴∠A1=12∠A.故答案为:∠A1,A,12∠A;(2)∵∠ABC+∠DCB=360°﹣(∠A+∠D),∵∠ABC+(180°﹣∠DCE)=2∠FBC+(180°﹣2∠DCF)=180°﹣2(∠DCF﹣∠FBC)=180°﹣2∠F,∴360°﹣(∠A+∠D)=180°﹣2∠F,2∠F=∠A+∠D﹣180°,∴∠F=12(∠A+∠D)﹣90°,∵∠A+∠D=230°,∴∠F=25°;(3)△ABC中,由三角形的外角性质知:∠BAC=∠AEC+∠ACE=2(∠QEC+∠QCE);即:2∠A1=2(180°﹣∠Q),化简得:∠A1+∠Q=180°,因此①的结论是正确的,且这个定值为180°.【点睛】此题考查三角形的角平分线的性质,三角形内角和定理,三角形外角定理,熟练掌握三角形的外角等于与它不相邻的两个内角的和是解题的关键.22.在ABC ∆中,已知3,7AB AC ==,若第三边BC 的长为偶数,求ABC ∆的周长. 解析:周长为16或18.【分析】利用三角形三边关系定理,先确定第三边的范围,再根据第三边BC 的长为偶数求出符合条件的BC 值,即可求出周长.【详解】 解:在ABC ∆中,3,7AB AC ==,∴第三边BC 的取值范围是:410,BC <<∴符合条件的偶数是6或8,∴当6BC =时,ABC ∆的周长为:36716++=;当8BC =时,ABC ∆的周长为:37818++=.ABC ∆∴的周长为16或18.【点睛】此题主要考查了三角形三边关系,要注意三角形形成的条件:任意两边之和大于第三边,任意两边之差小于第三边.23.如图,AF ,AD 分别是ABC 的高和角平分线,且34B ∠=︒,76C ∠=︒,求DAF ∠的度数.解析:21︒【分析】运用三角形的内角和定理即可求出∠BAC 的度数;根据角平分线的定义、三角形的内角和定理的推论以及直角三角形的两个锐角互余即可求出∠FAC 的度数,再由DAF DAC FAC =-∠∠∠即可得出结论.【详解】解:∵AF 是ABC 的高,∴90AFC ∠=︒,∴90907614FAC C ∠=︒-∠=︒-︒=︒,∵180BAC B C ∠+∠+∠=︒,∴180180763470BAC B C ∠=︒-∠-∠=︒-︒-︒=︒,∵AD 是ABC 的角平分线, ∴11703522DAC BAC ==⨯︒=∠∠︒, ∴21DAF DAC FAC =-∠=∠∠︒.【点睛】本题考查的是三角形内角和定理,熟知三角形内角和是180°是解答此题的关键. 24.如图①,ABC 中,BD 平分ABC ∠,且与ABC 的外角ACE ∠的角平分线交于点D .(1)若75ABC ∠=︒,45ACB ∠=︒,求D ∠的度数;(2)若把A ∠截去,得到四边形MNCB ,如图②,猜想D ∠、M ∠、N ∠的关系,并说明理由.解析:(1)30D ∠=︒;(2)()11802D M N ∠=∠+∠-︒,理由见解析 【分析】(1)根据三角形内角和定理以及角平分线定义,先求出∠D 、∠A 的等式,推出∠A=2∠D ,最后代入求出即可;(2)根据(1)中的结论即可得到结论.【详解】解:ACE A ABC ∠=∠+∠, ACD ECD A ABD DBE ∴∠+∠=∠+∠+∠,DCE D DBC ∠=∠+∠,又∵BD 平分ABC ∠,CD 平分ACE ∠,ABD DBE ∴∠=∠,ACD ECD ∠=∠,()2A DCE DBC ∴∠=∠-∠,D DCE DBC ∠=∠-∠,2A D ∴∠=∠,75ABC ∠=︒,45ACB ∠=︒,60A ∴∠=︒,30D ∴∠=︒;(2)()11802D M N ∠=∠+∠-︒; 理由:延长BM 、CN 交于点A ,则180A BMN CNM ∠=∠+∠-︒,由(1)知,12D A ∠=∠, ()11802D M N ∴∠=∠+∠-︒.【点睛】此题考查三角形内角和定理以及角平分线的定义的综合运用,解此题的关键是求出∠A=2∠D .25.已知一个n 边形的每一个内角都等于120°.(1)求n 的值;(2)求这个n 边形的内角和;(3)这个n 边形内一共可以画出几条对角线?解析:(1)6;(2)720°;(3)9条【分析】(1)分别用两个式子表示多边形的内角和,列出方程,求解即可;(2)根据多边形内角和公式即可求解;(3)根据对角线的定义求出每个顶点的对角线条数,再求解即可.【详解】解:(1)由题意得()2180120n n -︒=︒,解得 6n =.(2)()62180720-⨯︒=︒,所以这个多边形的内角和为720°.(3)六边形每个顶点可以引6-3=3条对角线, 所以一共可画6392⨯=条对角线. 【点睛】本题考查了多边形的内角和公式,多边形对角线的定义,熟记多边形的内角和公式,理解对角线的定义是解题关键.26.如图,在ABC 中,AD 是高,AE 、BF 是角平分线,它们相交于点O ,60BAC ∠=︒,70C ∠=︒.求EAD ∠和∠BOE 的度数.解析:10EAD ∠=︒,55BOE ∠=︒【分析】根据三角形内角和定理求出∠BAC=180°-60°-70°=50°,再由AE 是角平分线,求出∠EAC=12∠BAC=30°,由AD 是高,求出∠CAD=90°-∠C=20°,最后即可求出∠EAD=∠EAC-∠CAD=10°;根据角平分线的性质,得∠OAB=12∠BAC ,∠OBA=12∠ABC ,所以∠BOE=∠OAB+∠OBA=12(∠BAC+∠ABC )=12(180°-∠C )=12×(180°-70°)=55°. 【详解】解:∠B AC =60°,∠C =70°∴∠ABC =180°−∠ABC −∠C =180°−60°-70°=50°,∵AE 是角平分线,∴∠EAC =12∠BAC =12×60°=30°, ∵AD 是高,∴∠ADC =90°,∴∠CAD =90°−∠C =90°−70°=20°,∴∠DAE =∠EAC −∠CAD =30°−20°=10°;∵AE ,BF 是角平分线,∴∠OAB =12∠BAC ,∠OBA =12∠ABC , ∴∠BOE =∠OAB +∠OBA =12(∠BAC +∠ABC )=12(180°−∠C )=12×(180°−70°) =55°. 【点睛】本题考查了三角形内角和定理、角平分线性质,解题的关键是明确题意,找出所求问题需要的条件.27.如图,已知直线//AB CD ,直线EF 分别交直线AB ,CD 于点E ,F ,BEF ∠的平分线与DFE ∠的平分线相交于一点P .试说明:90P ∠=︒.解析:证明见解析【分析】由AB∥CD,可知∠BEF与∠DFE互补,由角平分线的性质可得∠PEF+∠PFE=90°,由三角形内角和定理可得出结论.【详解】∵AB∥CD,∴∠BEF+∠DFE=180°.又∵∠BEF的平分线与∠DFE的平分线相交于点P,∴∠PEF=12∠BEF,∠PFE=12∠DFE,∴∠PEF+∠PFE=12(∠BEF+∠DFE)=90°.∵∠PEF+∠PFE+∠P=180°,∴∠P=90°.【点睛】本题主要考查了平行线的性质、角平分线的定义、三角形内角和等知识,解题时注意:两直线平行,同旁内角互补.28.如图,AD,AE分别是△ABC的高和角平分线.(1)已知∠B=40°,∠C=60°,求∠DAE的度数;(2)设∠B=α,∠C=β(α<β).请直接写出用α、β表示∠DAE的关系式.解析:(1)10︒;(2)11 22βα-【分析】(1)根据三角形的内角和求出∠BAC的度数,得到∠BAE的度数,求出∠AED的度数,根据AD是高线,求得答案;(2)根据三角形的内角和求出∠BAC的度数,得到∠BAE的度数,求出∠AED的度数,根据AD是高线,求得答案.【详解】(1)∵∠B=40°,∠C=60°,∴∠BAC=18080B C ︒-∠-∠=︒,∵AE 平分∠BAC ,∴∠BAE=1402BAC ∠=︒, ∴∠AED=∠B+∠BAE=80︒,∵AD 是高线,∴AD ⊥BC ,∴∠DAE=9010AED ︒-∠=︒;(2)∵∠B =α,∠C =β,∴∠180180BAC B C αβ=︒-∠-∠=︒--,∵AE 平分∠BAC ,∴∠BAE=121902B C ︒-∠-∠=121902αβ︒-- ∴∠AED=∠B+∠BAE=121902B C ︒+∠-∠=121902αβ︒+- ∵AD 是高线,∴AD ⊥BC , ∴∠DAE=190212AED C B ︒-∠=∠-∠=1122βα-, 故答案为:1122βα-. 【点睛】此题考查三角形的基础知识,三角形的角平分线的性质,三角形的内角和定理,三角形的高线,直角三角形两锐角互余,熟练掌握各知识点并应用解决问题是解题的关键.。

新人教版初中数学八年级数学上册第一单元《三角形》测试题(有答案解析)

新人教版初中数学八年级数学上册第一单元《三角形》测试题(有答案解析)

新人教版初中数学八年级数学上册第一单元《三角形》测试题(有答案解析)1.已知实数x、y满足|x-4|+|y-5|=12,则x+y的取值范围是________。

2.如图,AB和CD相交于点O,∠A=∠C,则∠1+∠2的度数为________。

3.下列每组数分别是三根小木棒的长度,不能用它们搭成三角形的是________。

4.若过六边形的一个顶点可以画n条对角线,则n的值是________。

5.如图,ABC中,BC边上的高是AE,AD=5,DE=3,则BE的长度为________。

6.已知长度分别为3cm,4cm,xcm的三根小棒可以摆成一个三角形,则x的取值范围是________。

7.如图,∠1等于40°,则∠3的度数是________。

8.如图,为估计池塘岸边A、B的距离,小方在池塘的一侧选取一点O,测得OA=15米,OB=10米,A、B间的距离不可能是________米。

9.以下说法正确的有()个:①把一个角分成两个角的射线叫做这个角的角平分线;②连接C、D两点的线段叫两点之间的距离;③两点之间直线最短;④射线上点的个数是直线上点的个数的一半;⑤n边形从其中一个顶点出发连接其余各顶点,可以画出(n-3)条对角线,这些对角线把这个n边形分成了(n-2)个三角形。

10.现有两根木棒,长度分别为5cm和13cm,若不改变木棒的长度,要钉成一个三角形木架,则应在下列四根木棒中选取________。

13.2016年2月6日凌晨,台湾高雄发生了6.7级地震。

中国派出了武警部队探测队,他们在得知某建筑物下面有生命迹象后,使用仪器在生命迹象上方建筑物的A、B两侧地面上的位置探测到了生命迹象C。

已知探测线与地面的夹角分别为30度和60度(如图),则C的角度是多少?14.如图所示,BD是三角形ABC的中线,点E、F分别为BD、CE的中点。

若AEF的面积为3平方厘米,则ABC的面积是多少平方厘米?15.设三角形的三个内角的度数分别为x、y、z。

人教版八年级数学上册《三角形内角和定理》教学设计

人教版八年级数学上册《三角形内角和定理》教学设计

人教版八年级上学期第11章11.2 三角形内角和定理教学设计学校: 教师:一、内容和内容解析(一)内容:三角形内角和定理(二)内容解析三角形内角和定理是八年级上册第十一章的重要内容,也是“图形与几何”必备的知识基础.它从“角”的角度刻画了三角形的特征.三角形内角和定理的探究体现了由实验几何到论证几何的研究过程,同时说明了证明的必要性.三角形内角和定理的证明以平行线的相关知识为基础.定理的验证方法从剪拼图的实验活动中获得添加辅助线的思路和方法,定理的证明思路是不同位置的三个内角转化为平角或同旁内角.基于以上分析,确定本节课的教学重点:体会证明的必要性;探索并证明三角形内角和定理,二、目标和目标解析(一)目标1.探索并证明三角形内角和定理.2.能运用三角形内角和定理解决简单问题.(二)目标解析达成目标1的标志是:学生能通过度量或剪拼图等实验进一步感知三角形的内角和等于180°,发现操作实验的局限性,进而了解证明的必要性;在实验的过程中能发现其中蕴含的辅助线,并运用平行线的性质证明三角形内角和定理.达成目标2的标志是:学生能运用三角形内角和定理解决简单的与三角形中角有关的计算和证明问题.三、学情分析学生学习技能基础:学生在以前的几何学习中,已经学习过平行线的判定定理与平行线的性质定理以及它们的严格证明,也熟悉三角形内角和定理的内容,而本节课是建立在学生认识了三角形掌握了平行线的性质、判定等知识的基础上展开的,因此,学生具有良好的知识基础.数学活动经验基础:本节课主要采取的活动形式是学生自主探究与合作交流的学习方式,学生具有较熟悉的数学活动经验.证明三角形内角和定理需要添加辅助线,这是学生第一次遇到添加辅助线证明定理的问题.由于添加辅助线是一种尝试性活动,规律性不强,要根据需要而定,学生会感到困难.教学时,教师要让每个学生都亲自动手进行剪图、拼图,引导学生在实验的过程中感悟添加辅助线的方法,进而发现思路、证明定理.基于以上分析,确定本节课的教学难点:如何添加辅助线,证明三角形内角和定理.四、教学过程设计为达到本节课教学目标,本节课的设计分为五个环节:知识回顾、新课引入——操作验证、探索新知——巩固练习、强化应用——课堂小结、升华提升——作业布置、反馈教学.第一环节:知识回顾、新课引入新课导入:上一节课,我们认识了三角形.(出示课件)我们知道,组成三角形的基本元素有边和角;然后我们又重点研究了三边的关系.那么你认为,接下来我们可以研究哪些内容呢?(三角的关系、角与边的关系)问题1:关于三角形的内角,你都知道哪些知识呢?回忆小学的时候,我们是通过哪些方法验证这个结论的呢?师:具体的,你是如何操作的?方法1:度量法.分别测量出三个内角的度数,然后计算它们的和;方法2:剪拼法.将三角形的三角剪下,随意将它们拼凑在一起.设计意图:在初步认识三角形的基础上,将研究的视角定格在研究角之间的关系,在提问中引导学生回顾三个内角的关系:三个角的和是定值.在启发如何知道这个结论时,引导学生回到思维的起点,让学生回顾小学的研究方法:度量法、剪拼法.第二环节:操作验证、探索新知活动1 实验论证请同学们利用手中的三角形纸片,进行剪拼,再次验证这个结论.学生活动:1学生动手操作.2. 班级展讲.(学生在黑板右上方展示两种图形).无论是度量法还是剪拼法,我们能够验证有限个三角形,它们的内角和等于180°;但是,形状不同的三角形有无数多个;如果我们要说明“所有三角形的内角和等于180°”,那我们应该用什么方法呢?生:推理论证.设计意图:在启发中引导学生找到这些方法存在的缺憾,老师适当留给学生思维的空白,目的是为了让学生感受要进行推理证明的“必要性”,突出了本节课的第一个重点:体会证明的必要性.同时,通过实验操作的方法验证结论的合理性,发展学生合情推理的能力,为下一步作辅助线提供方法.活动2 推理论证接下来,我们要证明:三角形的内角和等于180°.这是一个文字命题.对于文字命题的证明,一般要先画出图形,写出已知、求证.我们一起完成已知、求证的书写.探究一:转化两个角师:要证明的结论是什么?生:NA+NB+NC=180° .观察图形,4ABC中,NA、NB、NC处在不同的位置,没有明显的联系.那我们应该怎么做呢?(学生思考半分钟)回顾一下我们的拼图过程,我们把NB “搬”到了NA的左侧, /^搬”到了NA的右侧,组成了一个角/DAE.请同学们思考:剪拼的目的是什么?(三个角建立起关系)师:剪拼的过程,实际上进行了“角的转化”,从而让三个角建立起关系.问题2那么,请同学们思考,通过什么数学方法,可以实现ZB的转化呢?设计意图:本环节设计目的是通过教师引导学生作出辅助线,同时画出思路分析流程图,流程图直观,易于理解,能够更好的培养学生有序分析问题的能力.结合剪拼图,教师引导学生,在黑板上画出思路分析的流程图.证明1:过点A作直线DE〃BC 分析流程图:・.・DE〃BC・・・NB=N1, ZC=Z2 ・Z1+ZBAC+Z2=180°丁•NBAC+NB +ZC=180°ZBAC+Z1+Z2 =1800 0ZB = N1,N C = N2.n转化Z A+ZB + ZC =追问:回顾刚才的证明过程,请同学们思考:证明的“关键”是什么?为达到“转化”的目的,使用的方法是什么?问题2 (教师动手移动NB,如右图)结合这个拼图,你能想证明方法吗?B学生活动:1.学生思考,在学案上独立完成证明过程.2.班级展讲.证明2:(/8转化为它的同位角N1)延长BA至D,过点A作AE〃BC.・.・AE〃BC・・・NB=N1,ZC=Z2「NBAC+N1+N2=180°・•・ZBAC+ZB+ZC=180°(平角的定义)(等量代换)问题3 刚才我们通过转化两个角,证明了结论.如果我们同时转化三个角,你能证明这个结论吗?请同学们小组讨论.学生活动:小组讨论, 班级展讲.追问:/8除了可以转化为点A出的同位角,还能转化为其他点处的同位角吗?教师活动:几何画板演示,引导学生有序的思考怎样进行三个角的转化. ^3^\二探究二:转化三个角①点P在直线AB上时:②点P在直线AB外时:FFNNBD GD G问题4 刚才我们对两个角、三个角进行了转化,如果只转化一个角能证明这个结论吗?请同学们试试看. (此环节根据时间情况决定是否讲解.)探究三:只转化一个角证明3:过点A作直线AD〃BC・.・AD〃BC・・.NC=N1 (两直线平行,同位角相等)NB+NBAC+N1=180°(两直线平行,同旁内角互补)/. ZB+ZB AC+NC=180。

人教版八年级数学上《三角形的内角和》知识全解

人教版八年级数学上《三角形的内角和》知识全解

《三角形的内角和》知识全解课标要求1.了解三角形的内角和,会用平行线的性质与平角的定义证明三角形内角和等于180°;2.利用三角形内角和定理来解决实际问题.知识结构多边形的内角和三角形的内角和三角形三角形的外角和多边形的外角和内容解析三角形的内角和定理:三角形三个内角的和等于180°.三角形的内角和定理是从“数量关系”来揭示三角形内角之间的关系的,这个定理是任意三角形的一个重要性质,它是学习以后知识的基础,并且是计算角的度数的方法之一.在解决四边形和多边形的内角和时都将转化为三角形的内角和来解决.其中辅助线的作法、把新知识转化为旧知识、用代数方法解决几何问题,为以后的学习打下良好的基础,三角形内角和定理在理论和实践中有广泛的应用.重点难点本节的重点是:掌握三角形的内角和定理,并能解决简单的实际问题.教学重点的解决方法:采用点拨的方法,启发学生主动思考,尝试用多种方法来证明这个结论,使整个课堂生动有趣,极大限度地培养了学生观察问题、发现问题、归纳问题的能力和一题多解、一题多法的创新能力,使课本知识成为学生自己的知识.本节难点是:三角形内角和定理的证明方法.教学难点的解决方法:课堂中逐步设置疑问,让学生动手、动脑、动口,积极参与知识学习的全过程,渗透多观察、动脑想、大胆猜、勤钻研的研讨式学习方法.教法导引本节课结合七年级学生的理解能力、思维特征和依赖直观图形学习数学的年龄特征,采用多媒体辅助教学,将知识形象化、生动化、具体化,在教学中采用启发式、师生互动式等方法,充分发挥学生的主动性、积极性,特别是用拼图法得出三角形内角和是180°的结论,教师采用课件演示、点拨的方法,启发学生主动思考,尝试用多种方法来证明这个结论,使整个课堂生动有趣,极大限度地培养了学生观察问题、发现问题、归纳问题的能力和一题多解、一题多法的创新能力,使课本知识成为学生自己的知识.学法建议多动手、动脑、动口,积极参与知识学习的全过程,渗透多观察、动脑想、大胆猜、勤钻研的研讨式学习方法,培养学习数学的兴趣,在参与的过程中得到充足的体验和发展.。

人教版_部编版八年级数学上册第十一章第二节三角形的内角试题(含答案) (48)

人教版_部编版八年级数学上册第十一章第二节三角形的内角试题(含答案) (48)

人教版_部编版八年级数学上册第十一章第二节三角形的内角试题(含答案)如图①,BE 、DF 分别平分四边形ABCD 的外角MBC ∠和NDC ∠,设BAD ∠=α,BCD β∠=.(1)若110αβ+=︒,则MBC NDC ∠+∠= ︒;(2)若BE 与DF 相交于点G ,且25BGD ∠=︒,求α、β所满足的等量关系式,并说明理由;(3)如图②,若αβ=,试判断BE 、DF 的位置关系,并说明理由.【答案】(1)110;(2)50βα-=︒,理由见解析;(3)BE DF ∥,理由见解析【解析】【分析】(1)根据四边形的内角和与邻补角的性质即可求解;(2)连接BD ,先得到1()2CBG CDG αβ∠+∠=+,再根据三角形的内角和得到角度的关系即可求解;(3)由(1)有,∠MBC +∠NDC =αβ+,BE 、DF 分别平分四边形的外角∠MBC 和∠NDC ,则∠CBE +∠CDH =12(αβ+),∠CBE +β−∠DHB =12(αβ+),根据α=β,则有∠CBE +β−∠DHB =12(β+β)=β,得到∠CBE =∠DHB ,故可得到BE ∥DF .【详解】解:(1)∵∠ABC +∠ADC =360°−(αβ+)=250°,∴∠MBC +∠NDC =180°−∠ABC +180°−∠ADC =360°-(∠ABC +∠ADC )=αβ+=110°.故答案为:110;(2)50βα-=︒.理由如下:如解图①,连接BD ,由(1)知,MBC NDC αβ∠+∠=+, BE 、DF 分别平分四边形ABCD 的外角MBC ∠和NDC ∠, ∴12CBG MBC ∠=∠,12CDG NDC ∠= ()1111()2222CBG CDG MBC NDC MBC NDC αβ∴∠+∠=∠+=∠+=+. 在△BCD 中,∠BDC +∠CBD =180°−∠BCD =180°−β,在△BDG 中,∠GBD +∠GDB +∠BGD =180°,∴∠CBG +∠CBD +∠CDG +∠BDC +∠BGD =180°,∴(∠CBG +∠CDG )+(∠BDC +∠CBD )+∠BGD =180°, ∴12(αβ+)+180°−β+25°=180°, 整理得50βα-=︒;(3)BE DF ∥.理由如下,如解图①所示,延长BC 交DF 于点H ,由(1)、(2)可知,MBC NDC αβ∠+∠=+,1()2CBE CDH αβ∠+∠=+. BCD CDH DHC ∠=∠+∠,CDH BCD DHC DHC β∴∠=∠-∠=-∠,1()2CBE DHC βαβ∴∠+-∠=+. αβ=,1()2CBE DHB ββββ∴∠+-∠=+=, CBE DHB ∴∠=∠,BE DF ∴∥.【点睛】此题考查了平行线的性质及其判定,多边形的内角和公式,利用多边形的内角和公式倒角为解题关键.72.如图,在ABC ,AD BC ⊥于点D ,AE 平分BAC ∠.(1)若70C ∠=︒,40B ∠=︒,求DAE ∠的度数;(2)若20C B ∠-∠=︒,求DAE ∠的度数.【答案】(1)15︒;(2)10︒【解析】【分析】(1)根据角平分线的定义和互余进行计算;(2)根据三角形内角和定理和角平分线定义得出∠DAE 的度数等于∠B 与∠C 差的一半解答即可.【详解】解:(1)70C ∠=︒,40B ∠=︒,180407070BAC ∴∠=︒-︒-︒=︒,AE ∵平分BAC ∠,35EAC ∴∠=︒.AD BC ⊥,90ADC ∴∠=︒,907020CAD ∴∠=︒-︒=︒,352015DAE EAC CAD ∴∠=∠-∠=︒-︒=︒;(2)∵∠B +∠C +∠BAC =180°,∴∠BAC =180°−∠B −∠C ,∵AE 平分∠BAC ,∴∠BAE =12∠BAC =12(180°−∠B −∠C )=90°−12(∠B +∠C ), ∵AD ⊥BC ,∴∠ADE =90°,而∠ADE =∠B +∠BAD ,∴∠BAD =90°−∠B ,∴∠DAE =∠BAD −∠BAE =90°−∠B )−[90°−12(∠B +∠C )]=12(∠C −∠B ),∵∠C −∠B =20°,∴∠DAE =12×20°=10°. 【点睛】本题考查了三角形内角和定理,关键是根据三角形内角和是180°和三角形外角性质解答.73.如图,AB BD ⊥于点B ,点C 在BD 上,且BAC DCE ∠=∠,ACE △是直角三角形吗?为什么?【答案】是直角三角形,理由见解析【解析】【分析】根据已知得到90ACB DCE ∠+∠=︒,即可求出90ACE ∠=︒,故可求解.【详解】解:ACE △是直角三角形,理由如下:AB BD ⊥,90ABC ∴∠=︒,90ACB BAC ∴∠+∠=︒.BAC DCE ∠=∠,90ACB DCE ∴∠+∠=︒.180()90ACE ACB DCE ∴∠=︒-∠+∠=︒,ACE ∴是直角三角形.【点睛】此题主要考查直角三角形的判定,解题的关键是熟知三角形的内角和及平角的性质.74.已知ABC ∆中,B C ∠=∠,D 为边BC 上一点(不与,B C 重合),点E 为边AC 上一点,ADE AED ∠=∠,44BAC ∠=︒.(1)求C ∠的度数;(2)若75ADE ∠=︒,求CDE ∠的度数.【答案】(1)68C ∠=︒;(2)7CDE ∠=︒.【解析】【分析】(1)根据已知及三角形的内角和定理进行计算即可得解;(2)根据三角形的内角和定理进行角度的计算即可得解.【详解】(1)∵44BAC ∠=︒,180BAC B C ∠+∠+∠=︒,∴18044136B C ∠+∠=︒-︒=︒,∵B C ∠=∠,∴2136C ∠=︒,∴68C ∠=︒;(2)∵ADE AED ∠=∠,75ADE ∠=︒,∴75AED ∠=︒,∵180AED CED ∠+∠=︒,∴18075105CED ∠=︒-︒=︒,∵180CDE CED C ∠+∠+∠=︒,∴180105687CDE ∠=︒-︒-︒=︒.【点睛】本题主要考查了三角形的内角和定理,熟练掌握角度的和差计算是解决本题的关键.75.已知:在ABC 中,AD ,AE 分别是ABC 的高和角平分线,若3050B C ∠=︒∠=︒,.你能帮助工人师傅解决下面的问题吗.(1)求DAE ∠的度数;(2)试写出DAE ∠与C B ∠-∠有何关系.(不必证明)【答案】(1)10°;(2)1DAE (C B)2∠=∠-∠ 【解析】【分析】(1)先根据三角形内角和定理求出BAC ∠的度数,再利用角平分线的定义求得CAE ∠的度数,然后由直角三角形两锐角互余求出CAD ∠的度数,两角相减即可得解;(2)先根据三角形内角和定理用含B 、C ∠的式子表示出BAC ∠的度数,再利用角平分线的定义求得CAE ∠的度数,然后由直角三角形两锐角互余求出CAD ∠的度数,两角相减即可得解.【详解】解:(1)∵3050B C ∠=︒∠=︒,∴1803050100BAC ∠=︒-︒-︒=︒∵AE 是ABC 的角平分线 ∴110050212CAE BAC ∠=∠=⨯︒=︒ ∵AD 是ABC 的高,50C ∠=︒∴905040CAD ∠=︒-︒=︒∴504010DAE CAE CAD ∠=∠-∠=︒-︒=︒.(2)同(1)的思路, ∵()1111CAE BAC 180B C 90B C 2222︒︒∠=∠=-∠-∠=-∠-,CAD 90C ︒∠=-∠ ∴()111DAE CAE CAD 90B C 90C (C B)222︒︒∠=∠-∠=-∠---∠=∠-∠. 故答案是:(1)10︒;(2)1()2DAE C B ∠=∠-∠ 【点睛】本题考查了三角形内角和定理、角平分线定义以及直角三角形两锐角互余等知识点,属基础题目,两问解题思路是一样的,体现了从特殊到一般的思想方法.76.如图,ABC 中,90ACB ∠=︒,点F 在AC 上,点D 在AB 上,FE AB ⊥于点,E DG BC ⊥于点G ,且12∠=∠.求证:90ADC ∠=︒.【答案】见解析【解析】【分析】根据三角形内角和相等得到∠1=∠B ,再由∠1=∠2得出∠2=∠B ,推出∠2+∠BDG=90°,即∠CDB=90°,从而得出∠ADC=90°.【详解】解:如图,∵EF ⊥AB ,DG ⊥BC ,∴∠AEF=∠DGB=90°,∵∠ACB=90°,∠A=∠A,∴∠1=∠B ,又∵∠1=∠2,∴∠B=∠2,∵∠B+∠BDG=90°,∴∠2+∠BDG=90°,∴∠CDB=90°,∴∠ADC=90°.【点睛】本题考查了三角形内角和定理,余角的性质,解题的关键是找到∠B ,通过∠1、∠2与∠B 的关系推出结论.77.如图,点A 在MN 上,点B 在PQ 上,连接AB ,过点A 作AC AB ⊥交PQ 于点C ,过点B 作BD 平分ABC ∠交AC 于点D ,且NAC ABC ∠+∠90=︒.(1)求证://MN PQ ;(2)若10ABC NAC ∠=∠+︒,求ADB ∠的度数.【答案】(1)见解析;(2)65°【解析】【分析】(1)根据垂直的定义得到∠BAC=90°,推出∠NAC=∠ACB ,根据平行线的判定定理即可得到结论;(2)根据三角形的内角和列方程得到∠ABC=50°,根据角平分线的定义得到∠ABD=12∠ABC=25°,于是得到结论. 【详解】解:(1)证明:∵AC ⊥AB ,∴∠BAC=90°,∴∠ABC+∠ACB=90°,∵∠NAC+∠ABC=90°,∴∠NAC=∠ACB,∴MN∥PQ;(2)解:∵∠ABC=∠NAC+10°=∠ACB+10°,∵∠ACB+∠ABC=90°,∴∠ACB+∠ACB+10°=90°,∴∠ACB=40°,∴∠ABC=50°,∵BD平分∠ABC,∴∠ABD=12∠ABC=25°,∵∠BAC=90°,∴∠ADB=90°-25°=65°.【点睛】本题考查了三角形的内角和,垂直的定义,平行线的判定和性质,正确的识别图形是解题的关键.78.阅读下面的材料图1,在△ABC中,试说明∠A+∠B+∠C=180°分析:通过画平行线,将∠A、∠B、∠C作等量代换,使各角之和恰为一个平角,依辅助线不同而得多种方法:解:如图2,延长BC到点D,过点C作CE∥BA因为BA∥CE(作图所知)所以∠B=∠2,∠A=∠1(两直线平行,同位角、内错角相等)又因为∠BCD=∠BCA+∠2+∠1=180°(平角的定义)所以∠A+∠B+∠ACB=180°(等量代换)(1)如图3,过BC上任一点F,作FH∥AC,FG∥AB,这种添加辅助线的方法能说∠A+∠B+∠C=180°吗?并说明理由.(2)还可以过点A作直线MN∥BC,或在三角形内取点P过P作三边的平行线,请选择一种方法,画出相应图形,并说明∠A+∠B+∠C=180°.【答案】(1)可以,理由详见解析;(2)详见解析【解析】【分析】(1)利用平角的定义以及平行线的性质即可解决问题.(2)过点A作直线MN∥BC,利用平角的定义以及平行线的性质即可解决问题.【详解】解:(1)可以,因为FH∥AC所以∠1=∠C,∠2=∠FGC,因为FG∥AB所以∠3=∠B,∠FGC=∠A所以∠2=∠A因为∠1+∠2+∠3=180°所以∠A+∠B+∠C=180°.(2)过点A作直线MN∥BC.则∠MAB=∠B,∠NAC=∠C,因为∠MAB+∠BAC+∠NAC=180°,所以∠BAC+∠B+∠C=180°.【点睛】本题考查三角形内角和定理、平行线的性质和平角的定义等知识,解题的关键是熟练掌握平行线的性质和平角的定义.79.如图,在△ABC中,CD△AB,垂足为D,点E在BC上,EF△AB,垂足为F.(1)CD与EF平行吗?为什么?(2)如果△1=△2,CD平分△ACB,且△3=120°,求△ACB与△1的度数.【答案】(1)详见解析;(2)①ACB=120°,①1=60°【解析】【分析】(1)根据垂直于同一直线的两直线平行判定;(2)根据平行线的性质和已知求出∠1=∠2=∠DCB,推出DG∥BC,根据平行线的性质得出∠ACB的度数即可;再由∠ACB的度数和已知得∠DCG的度数,利用三角形的外角的性质即可求出∠1的度数.【详解】解:(1)CD∥EF,理由是:∵CD⊥AB,EF⊥AB,∴CD∥EF;(2)∵CD∥EF,∴①2=①DCB,∵①1=①2,∴①1=①DCB,∴DG∥BC,∴①ACB=①3,∵①3=120°,∴①ACB=120°.∵CD平分①ACB,∴①DCG=12①ACB=60°,∵①3=①1+①DCG,∴①1=120°-60°=60°.∴①ACB=120°,①1=60°. 【点睛】本题考查了对平行线的性质和判定的应用,三角形的内角和定理以及三角形外角的性质,角平分线的定义.熟练掌握平行线的判定与性质是解决本题的关键.80.(1)如图,在ABC 中,AD 是高,,AE BF 是角平分线,它们相交于点O ,4060ABC C ∠=︒∠=︒,.求AOB ∠和DAE ∠的度数.(2)一个多边形的内角和是外角和的3倍,它是几边形?若这个多边形的各个内角都相等,求这个多边形的每个内角的度数.【答案】(1)AOB ∠=120°,DAE ∠=10°;(2)多边形为8边形;每个内角的度数为135°.【解析】【分析】(1)根据三角形的内角和定理,可求出∠BAC 的度数,结合AE 是角平分线,求出∠EAC 的度数,由AD 是高,可以依据直角三角形两锐角互余,可求出∠DAC 的度数,代入=EAC DA D C AE ∠-∠∠中求解;运用角平分线的定义及三角形内角和定理即可求出AOB ∠;(2)依据多边形内角和公式和外角和为360°,结合已知条件,列出关于边数的方程,解出即可;多边形内角和÷边数即得每个内角的度数.【详解】解:(1)AD 是ABC ∆的高,∴90ADC ∠=︒,∴在ADC ∆中,90906030DAC C ∠=︒-∠=︒-︒=︒,在ABC ∆中,180180406080BAC ABC C ∠=︒-∠-∠=︒-︒-︒=︒, ∵AE 、BF 是角平分线,11402022ABO ABC ∴∠=∠=⨯︒=︒, 11=804022BAO EAC BAC ∠=∠∠=⨯︒=︒, ∴=EAC DA D C AE ∠-∠∠=40°-30°=10°,在ABC ∆中,1801802040120BOA ABO BAO ∠=︒-∠-∠=︒-︒-︒=︒. 答:AOB ∠=120°,DAE ∠=10°.(2)设多边形为n 边形.依题意得:(n -2)×180°=3×360°,解之得:n =8,∴多边形为8边形,若这个多边形的各个内角都相等,则每个内角的度数=3×360°÷8=135°.答:多边形为8边形;每个内角的度数为135°.【点睛】(1)本题考查了三角形中的角度计算,熟练掌握高和角平分线的定义、三角形内角和定理以及直角三角形两锐角互余是解答本题的关键.(2)本题考查了多边形的内角和与外角和,熟练掌握多边形的内角和公式、外角和为360度是解题的基础,列出关于边数的方程是解题的关键.。

三角形的内角(7种题型)-2023年新八年级数学核心知识点与常见题型(人教版)(解析版)

三角形的内角(7种题型)-2023年新八年级数学核心知识点与常见题型(人教版)(解析版)

三角形的内角(7种题型)【知识梳理】三角形内角和定理:三角形的内角和为180°.要点诠释:应用三角形内角和定理可以解决以下三类问题:①在三角形中已知任意两个角的度数可以求出第三个角的度数;②已知三角形三个内角的关系,可以求出其内角的度数;③求一个三角形中各角之间的关系.【考点剖析】题型一、三角形的内角和定理证明例1.证明:三角形的内角和为180°.【答案与解析】解:已知:如图,已知△ABC,求证:∠A+∠B+∠C=180°.证法1:如图1所示,延长BC到E,作CD∥AB.因为AB∥CD(已作),所以∠1=∠A(两直线平行,内错角相等),∠B=∠2(两直线平行,同位角相等).又∠ACB+∠1+∠2=180°(平角定义),所以∠ACB+∠A+∠B=180°(等量代换).证法2:如图2所示,在BC 边上任取一点D ,作DE ∥AB ,交AC 于E ,DF ∥AC ,交AB 于点F .因为DF ∥AC (已作),所以∠1=∠C (两直线平行,同位角相等),∠2=∠DEC (两直线平行,内错角相等).因为DE ∥AB (已作).所以∠3=∠B ,∠DEC=∠A (两直线平行,同位角相等).所以∠A=∠2(等量代换).又∠1+∠2+∠3=180°(平角定义),所以∠A+∠B+∠C=180°(等量代换).证法3:如图3所示,过A 点任作直线1l ,过B 点作2l ∥1l ,过C 点作3l ∥1l ,因为1l ∥3l (已作).所以∠l=∠2(两直线平行,内错角相等).同理∠3=∠4.又1l ∥2l (已作),所以∠5+∠1+∠6+∠4=180°(两直线平行,同旁内角互补).所以∠5+∠2+∠6+∠3=180°(等量代换).又∠2+∠3=∠ACB ,所以∠BAC+∠ABC+∠ACB=180°(等量代换).证法4:如图4,将ΔABC的三个内角剪下,拼成以C为顶点的平角.证法5:如图5-1和图5-2,在图5-1中作∠1=∠A,得CD∥AB,有∠2=∠B;在图5-2中过A作MN ∥BC有∠1=∠B,∠2=∠C,进而将三个内角拼成平角.【总结升华】三角形内角和定理的证明方法有很多种,无论哪种证明方法,都是应用的平行线的性质.例2.在△ABC中,已知∠A+∠B=80°,∠C=2∠B,试求∠A,∠B和∠C的度数.【思路点拨】题中给出两个条件:∠A+∠B=80°,∠C=2∠B,再根据三角形的内角和等于180°,即∠A+∠B+∠C=180°就可以求出∠A,∠B和∠C的度数.【答案与解析】解:由∠A+∠B=80°及∠A+∠B+∠C=180°,知∠C=100°.又∵∠C=2∠B,∴∠B=50°.∴∠A=80°-∠B=80°-50°=30°.【总结升华】解答本题的关键是利用隐含条件∠A+∠B+∠C=180°.本题可以设∠B=x,则∠A=80°-x,∠C=2x建立方程求解.【变式1】已知,如图,在△ABC中,∠C=∠ABC=2∠A,BD是AC边上的高,求∠DBC的度数.【答案】解:已知△ABC中,∠C=∠ABC=2∠A设∠A=x则∠C=∠ABC=2xx+2x+2x=180°解得:x=36°∴∠C=2x=72°在△BDC中, BD是AC边上的高,∴∠BDC=90°∴∠DBC=180°-90°-72°=18°例3.在△ABC中,∠ABC=∠C,BD是AC边上的高,∠ABD=30°,则∠C的度数是多少?【思路点拨】按△ABC【答案与解析】解:分两种情况讨论:(1)当△ABC为锐角三角形时,如图所示,在△ABD中,∵BD是AC边上的高(已知),∴∠ADB=90°(垂直定义).又∵∠ABD=30°(已知),∴∠A=180°-∠ADB-∠ABD=180°-90°-30°=60°.又∵∠A+∠ABC+∠C=180°(三角形内角和定理),∴ ∠ABC+∠C =120°,又∵ ∠ABC =∠C ,∴ ∠C =60°.(2)当△ABC 为钝角三角形时,如图所示.在直角△ABD 中,∵ ∠ABD =30°(已知),所以∠BAD =60°.∴ ∠BAC =120°.又∵ ∠BAC+∠ABC+∠C =180°(三角形内角和定理),∴ ∠ABC+∠C =60°.∴ ∠C =30°.综上,∠C 的度数为60°或30°.【总结升华】在解决无图的几何题的过程中,只有正确作出图形才能解决问题.这就要求解答者必须具备根据条件作出图形的能力;要注意考虑图形的完整性和其他各种可能性,双解和多解问题也是我们在学习过程中应该注意的一个重要环节.【变式1】三角形中至少有一个角不小于________度.【答案】60题型三:直角三角形两个锐角互余 例3.(2023春·湖南娄底·八年级统考阶段练习)在Rt ABC △中,90C ∠=︒,60B ∠=︒,则A ∠的度数是( )A .60︒B .30︒C .50︒D .40︒【答案】B【分析】根据直角三角形的两个锐角互余,则可求解.【详解】解:90C ∠=︒,60B ∠=︒, 9030A B ∴∠=︒−∠=︒,故选:B .【点睛】本题主要考查直角三角形的性质,解答的关键是明确直角三角形的两个锐角互余.【变式1】(2023春·湖南怀化·八年级统考期中)直角三角形的一锐角是30︒,那么另一锐角是()A.40︒B.50︒C.60︒D.70︒【答案】C【分析】由直角三角形的两锐角互余可得答案.【详解】解:直角三角形的一锐角是30︒,那么另一锐角是903060︒−︒=︒,故选:C.【点睛】本题考查的是直角三角形的两锐角互余,熟记知识点是解本题的关键.【变式2】如图,AC⊥BC,CD⊥AB,图中有对互余的角?有对相等的锐角?【答案】3,2.题型四、利用三角形内角和判定三角形的形状例4.在△ABC中,若∠A=12∠B=13∠C,试判断该三角形的形状.【思路点拨】由∠A=12∠B=13∠C,以及∠A+∠B+∠C=180°,可求出∠A、∠B和∠C的度数,从而判断三角形的形状.【答案与解析】解:设∠A=x,则∠B=2x,∠C=3x.由于∠A+∠B+∠C=180°,即有x+2x+3x=180°.解得x=30°.故∠A=30°.∠B=60°,∠C=90°.故△ABC是直角三角形.【总结升华】本题利用设未知数的方法求出三角形三个内角的度数,解法较为巧妙.题型五:与平行线有关的三角形内角和问题例5.(2023秋·山东济南·八年级校考期末)已知直线MN EF∥,一个含30︒角的直角三角尺()ABC AB BC>如图叠放在直线MN上,斜边AC交EF于点D,则1∠的度数为()A .30︒B .45︒C .50︒D .60︒【答案】D 【分析】首先根据直角三角形的性质判定∠A=30°,∠ACB=60°,然后根据平行的性质得出∠1=∠ACB.【详解】∵含30︒角的直角三角尺()ABC AB BC >∴∠A=30°,∠ACB=60°∵MN EF ∥∴∠1=∠ACB=60°故选:D.【点睛】此题主要考查直角三角形以及平行的性质,熟练掌握,即可解题.八年级单元测试)如图,在ABC 中,【答案】39°.【分析】利用三角形的内角和定理以及角平分线的定义求出DCB ∠即可解决问题.【详解】解:54A ∠=︒,48B ∠=︒,180544878ACB ∴∠=︒−︒−︒=︒,CD 平分ACB ∠,1392DCB ACB ∴∠=∠=︒,//DE BC ,39CDE DCB ∴∠=∠=︒,故答案为:39°.【点睛】本题考查平行线的性质,三角形的内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.题型六:三角形折叠中的角度问题 例6.(2023秋·四川达州·八年级校考期末)如图,将ABC 沿着平行于BC 的直线折叠,得到A DE ',若25115E DA A E D '∠=︒∠=︒',,则ABC ∠的度数是( )A .45︒B .40︒C .55︒D .50︒【答案】B 【分析】根据题意可得A DE ADE DE BC '∠=∠∥,,结合三角形内角和定理可得40ADE ∠=︒,最后根据平行线的性质求解即可.【详解】解:由题意得,A DE ADE DE BC '∠=∠∥,,又∵25115E DA A E D '∠=︒∠=︒',,∴1802511540018ADE A DE DA E DEA '∠∠=︒−︒−︒=︒''∠=∠=︒−−,∵DE BC ∥,∴40ADE B ∠=∠=︒,故选:B .【点睛】本题考查了三角形内角和定理、平行线的性质和折叠的性质,灵活运用所学知识求解是解决本题的关键.【变式】.(2023秋·山东聊城·八年级校考期末)如图,把ABC 纸片沿DE 折叠,当点A 落在四边形BCDE 内部时,则A ∠与12∠+∠之间有一种数量关系始终保持不变,这个关系是( )A .212A ∠=∠+∠B .3212A ∠=∠+∠C .12A ∠=∠+∠D .32122A ∠=∠+∠【答案】A 【分析】根据折叠的性质和平角的定义先得到2236012AED ADE ∠+∠=︒−∠−∠,再由三角形内角和定理得到223602AED ADE A ∠+∠=︒−∠,由此即可得到结论.【详解】解:由折叠的性质可知2118022180AED ADE ∠+∠=︒∠+∠=︒,, ∴2236012AED ADE ∠+∠=︒−∠−∠,由三角形内角和定理可知180A ADE AED ∠+∠+∠=︒,∴223602AED ADE A ∠+∠=︒−∠,∴360123602A ︒−−=︒−∠∠∠, ∴122A ∠+∠=∠故选:A .【点睛】本题主要考查了三角形内角和定理,折叠的性质,灵活运用所学知识是解题的关键.题型七:与角平分线有关的三角形内角和问题 八年级统考期末)如图,在ABC 中, 【答案】D 【分析】根据三角形的内角和定理可求解BAC ∠的大小,再利用角平分线的定义可求解BAD ∠的度数,由三角形的高线可得90AEB ∠=︒,利用三角形的内角和定理可求解BAE ∠的度数,进而可求得EAD ∠的度数.【详解】解:∵45B ∠=︒,55C ∠=︒,∴180455580BAC ∠=︒−︒−︒=︒,∵AD 平分BAC ∠,∴40BAD ∠=︒,∵AE BC ⊥,∴90AEB ∠=︒,∴180904545BAE ∠=︒−︒−︒=︒,∴45405EAD BAE BAD ∠=∠−∠=︒−︒=︒,故选:D .【点睛】本题主要考查三角形的内角和定理的应用,三角形的高线的含义,求解BAD ∠,BAE ∠的度数是解题的关键. 【变式】.(2023秋·八年级课时练习)如图,在ABC 中,AD BC ⊥,AE 平分BAC ∠,若30BAE ∠=︒,20CAD ∠=︒,则B ∠的度数为_____________.【答案】50︒/50度【分析】先利用角平分线的定义求得260BAC BAE ∠=∠=︒,在Rt ACD 利用直角三角形的两锐角互余求得C ∠,最后在ABC 中利用三角形的内角和即可求解.【详解】解:∵AE 平分BAC ∠,,30BAE ∠=︒,∴260BAC BAE ∠=∠=︒,∵20CAD ∠=︒,AD ⊥BC ,∴9070C CAD ∠=︒−∠=︒,∴在ABC 中,18050B BAC C ∠=︒−∠−∠=︒,故答案为:50︒.【点睛】本题考查了角平分线的定义,三角形的内角和定理,熟练掌握定义和定理是解题的关键.【过关检测】一、单选题 1.(2023春·湖南常德·八年级统考期中)在一个直角三角形中,有一个锐角等于35︒,则另一个锐角的度数是( )A .145︒B .125︒C .65︒D .55︒【答案】D【分析】根据直角三角形中两锐角互余可直接求得.【详解】解:一个直角三角形中,有一个锐角等于35︒,则另一个锐角的度数是 903555︒−︒=︒, 故选D .【点睛】本题考查了三角形内角和定理的应用,熟记直角三角形两锐角互余的性质是解本题的关键. 2.(2023春·贵州贵阳·八年级校考阶段练习)在ABC 中,90A ∠=︒,36B ∠=︒,则C ∠的度数为( )A .34︒B .44︒C .54︒D .64︒【答案】C【分析】由三角形内角和180︒可得结果.【详解】解:936180180045C A ︒︒︒︒︒∠=−∠−∠=−−=.故选:C .【点睛】本题考查三角形的内角和定理,熟知三角形的内角和为180︒是解题的关键. 3.(2023春·新疆乌鲁木齐·八年级乌市八中校考开学考试)如图,在ABC 中,AD 是BC 边上的高,BE 平分ABC ∠交AC 边于E ,60BAC ∠=︒,26ABE ∠=︒,则DAC ∠的大小是( )A .20︒B .22︒C .24︒D .26︒【答案】B 【分析】根据角平分线的定义可得2ABC ABE ∠=∠,再根据直角三角形两锐角互余求出BAD ∠,然后根据DAC BAC BAD ∠=∠−∠计算即可得解.【详解】解:BE 平分ABC ∠,222652ABC ABE ∴∠=∠=⨯︒=︒, AD 是BC 边上的高,90905238BAD ABC ∴∠=︒−∠=︒−︒=︒,603822DAC BAC BAD ∴∠=∠−∠=︒−︒=︒.故选:B .【点睛】本题考查了三角形的内角和定理,角平分线的定义,准确识图理清图中各角度之间的关系是解题的关键. 八年级统考期末)如图,在ABC 中, 【答案】B 【分析】根据垂直的定义,直角三角形的两个锐角互余,即可求解.【详解】解:∵AD BC ⊥,48C ∠=︒,∴90ADC ∠=︒,∵48C ∠=︒,∴904842DAC ∠=︒−︒=︒,故选:B .【点睛】本题考查了垂直的定义,直角三角形的两个锐角互余,求得90ADC ∠=︒是解题的关键.5.(2023春·湖南张家界·八年级统考期中)在Rt ABC 中,90C ∠=︒,若50A ∠=︒,则B ∠等于( )A .55︒B .50︒C .45︒D .40︒【答案】D【分析】根据直角三角形的两个锐角互余即可求出结果.【详解】解:在Rt ABC 中,=90C ∠︒,=50A ∠︒, =90A B ∴∠+∠︒,=9050=40B ∴∠︒−︒︒, 故选:D .【点睛】本题考查直角三角形的性质,熟练掌握直角三角形两锐角互余是解题的关键.6.(2023春·广西贵港·八年级统考期中)将一副直角三角板如图放置,使含30︒角的三角板的短直角边和含45︒角的三角板的一条直角边重合,则1∠的度数为( )度.A .60B .75C .45D .30【答案】B 【分析】利用三角形内角和定理以及对顶角相等即可求解.【详解】解:由题意得60A ∠=︒,45B ∠=︒,∴118075ACB A B ∠=∠=︒−∠−∠=︒,故选:B .【点睛】本题考查了三角形内角和定理,对顶角的性质,掌握相关性质是解题的关键.7.(2023秋·重庆忠县·八年级统考期末)如图所示,将A ∠沿着BC 折叠到A ∠所在平面内,点A 的对应点是A ',若54A ∠=︒,则12∠+∠= ( )A .144︒B .108︒C .72︒D .54︒【答案】B 【分析】先根据折叠求出1∠和2∠的补角,再求12∠+∠即可.【详解】∵将A ∠沿着BC 折叠到A ∠所在平面内,点A 的对应点是A ',∴1∠的补角为2ACB ∠,2∠的补角为2ABC ∠,∵54A ∠=︒,∴180********ABC ACB A ∠+∠=︒−∠=︒−︒=︒,∴22252ABC ACB ∠+∠=︒,∴12∠+∠18021802360252108ABC ACB =︒−∠+︒−∠=︒−︒=︒,故选B .【点睛】本题考查了折叠的性质和三角形内角和定理,根据折叠的性质得到12∠+∠和A ∠的关系是解题的关键.8.(2023秋·山东济南·八年级校考期末)两个直角三角板如图摆放,其中90BAC EDF ∠=∠=︒,45E ∠=︒,30C ∠=︒,AB 与DF 交于点M .若//BC EF ,则BMD ∠的大小为( )A .60︒B .67.5︒C .75︒D .82.5︒【答案】C【分析】根据//BC EF ,可得45FDB F ∠=∠=︒,再根据三角形内角和即可得出答案.【详解】由图可得6045B F ∠=︒∠=︒,,∵//BC EF ,∴45FDB F ∠=∠=︒,∴180180456075BMD FDB B ∠=︒−∠−∠=︒−︒−︒=︒,故选:C .【点睛】本题考查了平行线的性质和三角形的内角和,掌握平行线的性质和三角形的内角和是解题的关键.二、填空题 9.(2023秋·广东汕头·八年级统考期末)如图,在ABC 中,点D 、E 分别在BC 、AC 上,40,60B C ∠=︒∠=︒.若//DE AB ,则AED =∠________︒.【答案】100【分析】先根据三角形内角和定理求出∠A=80°,再根据平行线的性质,求出AED ∠,即可.【详解】解:∵40,60B C ∠=︒∠=︒,∴∠A=180°-40°-60°=80°,∵//DE AB ,∴AED =∠180°-80°=100°.故答案是100.【点睛】本题主要考查三角形内角和定理以及平行线的性质,掌握两直线平行,同旁内角互补,是解题的关键.10.(2023秋·山东济宁·八年级统考期末)如图,ABC 中,80B ∠=︒,70C ∠=︒,将ABC 沿EF 折叠,A 点落在形内的A ',则12∠+∠的度数为___________.【答案】60︒【分析】先根据三角形内角和定理求出A ∠的度数,进而得出AEF AFE +∠∠的度数,再根据图形翻折变换的性质得出A EF A FE ''∠+∠的度数,最后由四边形的内角和为360︒即可得到结论.【详解】解:80B ∠=︒,70C ∠=︒,180180807030A B C ∴∠=︒−∠−∠=︒−︒−︒=︒,180********AEF AFE A ∴∠+∠=︒−∠=︒−︒=︒,A EF '由AEF △折叠而成,150A EF A FE AEF AFE ''∴∠+∠=∠+∠=︒,()12360360807015060B C A EF A FE ''∴∠+∠=︒−∠−∠−∠+∠=︒−︒−︒−︒=︒,故答案为:60︒.【点睛】本题考查了三角形内角和定理和折叠问题,熟知三角形内角和是180︒,折叠前后对应的角相等是解答此题的关键.11.(2023秋·甘肃定西·八年级校考期末)如图,ABC 中,60A ∠=︒,点E 、F 在AB 、AC 上,沿EF 向内折叠AEF △,得DEF ,则图中12∠+∠等于 _____.【答案】120︒/120度【分析】根据三角形的内角和等于180︒求出AEF AFE +∠∠的度数,再根据折叠的性质求出AED AFD ∠+∠的度数,然后根据平角等于180︒解答.【详解】解:60A ∠=︒,18060120AEF AFE ∴∠+∠=︒−︒=︒,沿EF 向内折叠AEF △,得DEF ,2()2120240AED AFD AEF AFE ∴∠+∠=∠+∠=⨯︒=︒,121802240360240120∴∠+∠=︒⨯−︒=︒−︒=︒.故答案为:120︒.【点睛】本题考查了三角形的内角和定理,翻转变换的性质,整体思想的利用是解题的关键. 12.(2023秋·黑龙江齐齐哈尔·八年级统考期末)如图,在ABC 中,沿DE 折叠,点A 落在三角形所在的平面内的1A 处, 若30A ∠=︒,180BDA ∠=︒,则1CEA ∠=_________.【答案】20︒/20度【分析】根据折叠的性质得出1ADE A DE ∠=∠,1AED A ED ∠=∠,根据180BDA ∠=︒,得出100AED ∠=︒,根据11180CEA AED A ED ∠=∠+∠−︒,即可求解.【详解】解:∵沿DE 折叠,点A 落在三角形所在的平面内的1A 处, ∴1ADE A DE ∠=∠,1AED A ED ∠=∠, ∵180BDA ∠=︒, ∴11100ADA ADE A DE ∠=∠+∠=︒, ∴1=50ADE A DE ∠=∠︒∴180100AED A ADE ∠=︒−∠−∠=︒∴1=100AED A ED ∠=∠︒ ∴1118020CEA AED A ED ∠=∠+∠−︒=︒,故答案为:20.【点睛】本题考查了折叠问题中的三角形内角和定理的应用,掌握折叠的性质以及三角形内角和定理是解题的关键. 13.(2023秋·河南郑州·八年级校考期末)如图所示,将三角形纸片ABC 沿DE 折叠,点A 落在点P 处,已知12128∠+∠=︒,则A ∠是_________度.【答案】64【分析】根据折叠的性质可知ADE EDP ∠=∠,AED DEP ∠=∠,利用平角是180︒,求出ADE ∠与AED ∠的和,然后利用三角形内角和定理求出A ∠的度数.【详解】解:将纸片ABC 沿DE 折叠,点A 落在点P 处,ADE EDP ∴∠=∠,AED DEP ∠=∠,1222180180ADE AED ∴∠+∠+∠+∠=︒+︒,122()360ADE AED ∴∠+∠+∠+∠=︒又12128∠+∠=︒,116ADE AED ∴∠+∠=︒,180()64A ADE AED ∴∠=︒−∠+∠=︒.故答案是:64.【点睛】本题考查了翻折变换(折叠问题),解题的关键是挖掘出隐含于题中的已知条件:三角形内角和是180︒、平角的度数也是180︒.14.(2023秋·北京东城·八年级北京市第五中学分校校考期中)如图,D ,E 分别为ABC 的边AB ,AC 上的点,DE BC ∥,将ABC 沿DE 折叠,使点A 落在BC 边上的点F 处.若55B ∠=︒,则BDF ∠的度数为________°.【答案】70【分析】首先根据平行线的性质,可得55ADE B ∠=∠=︒,再根据折叠的性质,可得55ADE EDF ∠=∠=︒,再根据平角的性质,即可求得答案.【详解】解:DE BC ∥,55ADE B ∴∠=∠=︒,根据折叠的性质,可得55ADE EDF ∠=∠=︒,180180555570BDF ADE EDF ∴∠=︒−∠−∠=︒−︒−︒=︒,故答案为:70.【点睛】本题考查了折叠的性质,平行线的性质,平角的性质,熟练掌握和运用各图形的性质是解决此题的关键.三、解答题为ABC 的内角平分线【答案】见解析【分析】由角平分线的定义求得2ABC PBC ∠=∠,2ACB BCP ∠=∠,再利用三角形的内角和定理即可证明.【详解】证明:BP 、CP 是角平分线,2ABC PBC ∴∠=∠,2ACB BCP ∠=∠,180ABC ACB A ∠+∠+∠=︒,22180PBC BCP A ∠∠∠∴++=︒,又180PBC BCP BPC ∠+∠+∠=︒,1902BPC A ∠∠︒∴=+.【点睛】本题考查了三角形内角和定理,角平分线的定义,熟练掌握三角形的内角和定理是解题的关键. 16.(2023春·湖南岳阳·八年级统考期中)AD BE 、为ABC 的高,AD BE 、相交于H 点,50C ∠=︒,求BHD ∠.【答案】50︒【分析】根据同角的余角相等求出BHD C ∠=∠,从而得解.【详解】解:∵AD 是ABC 的高,∴90BHD HBD ∠+∠=︒,∵BE 是ABC 的高,∴90HBD C ∠+∠︒=,∴BHD C ∠∠=,∵=50C ∠︒,∴50BHD ∠︒=..【点睛】本题考查了直角三角形两锐角互余的性质,同角的余角相等的性质,熟记性质并准确识图是解题的关键.17.(2023秋·浙江湖州·八年级统考期末)如图,在ABC 中,CD 是ACB ∠的平分线,高AE 与CD 相交于点O .若70BAC ∠=︒,60ACB ∠=︒.求:(1)B ∠的度数;(2)AOD ∠的度数.【答案】(1)50︒(2)60︒【分析】(1)根据三角形的内角和定理即可求出答案.(2)利用角平分线求出COE ∠度数,在根据三角形内角和定理即可求出EOC ∠的度数,利用对顶角相等可求出AOD ∠的度数.【详解】(1)解:70BAC ∠=︒,60ACB ∠=︒,∴180180706050B BAC ACB ∠=︒−∠−∠=︒−︒−︒=︒;(2)解:60ACB ∠=︒,CD 是ACB ∠的平分线,1302DCB ACB ∴∠=∠=︒,高AE 与CD 相交于点O ,AE BC ∴⊥,90AEC ∴∠=︒,180903060COE ∴∠=︒−︒−︒=︒,AOD EOC ∠=∠(对顶角相等),60AOD EOC ∴∠=∠=︒.【点睛】本题主要考查的知识点有三角形内角和定理、角平分线的定义和对顶角相等,解题过程中是否能熟练运用定理和性质是解题的关键.18.(2023春·浙江·八年级专题练习)用反证法证明“三角形三个内角中,至少有一个内角小于或等于60︒.”已知:A ∠,B ∠,C ∠是ABC 的内角.求证:A ∠,B ∠,C ∠中至少有一个内角小于或等于60︒.【答案】见解析【分析】根据反证法证明方法,先假设结论不成立,然后得到与定理矛盾,从而证得原结论成立.【详解】证明:假设求证的结论不成立,那么三角形中所有角都大于60︒,180A B C ∴∠+∠+∠>︒,这与三角形的三内角和为180︒相矛盾.∴假设不成立,∴三角形三内角中至少有一个内角小于或等于60度.【点睛】本题考查了三角形内角和定理考查反证法,解题关键要懂得反证法的意义及步骤.反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.在假设结论不成立时,要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定. 八年级统考期末)如图,在ABC 中, 【答案】125︒【分析】先根据三角形内角和定理求出110ABC ACB ∠+∠=︒,再由角平分线的定义推出55DBC DCB +=︒∠∠,进而利用三角形内角和定理求出D ∠的度数.【详解】解:∵70A ∠=︒,∴180110ABC ACB A ∠+∠=︒−∠=︒,∵BD 平分ABC ∠,CD 平分ACB ∠, ∴1122DBC ABC DCB ACB ∠∠∠∠==,, ∴115522DBC DCB ABC ACB +=+=︒∠∠∠∠,∴180125D DBC DCB =︒−−=︒∠∠∠.【点睛】本题主要考查了三角形内角和定理,角平分线的定义,熟知三角形内角和为180︒是解题的关键. 20.(2023春·河南郑州·八年级郑州外国语中学校考期末)学习了证明的必要性,张明尝试证明三角形内角和定理,下面是他的部分证明过程.已知:如图,ABC ,求证:180A B C ∠+∠+∠=o .证明:过点A 作直线DE BC ∥…【答案】见解析【分析】过点A 作直线DE BC ∥,根据平行线的性质可证得DAB B ∠=∠,EAC C ∠=∠,再根据平角的性质,即可证得.【详解】证明:如图:过点A 作直线DE BC ∥,DAB B ∴∠=∠,EAC C ∠=∠,180DAB BAC EAC ∠+∠+∠=o Q ,180B BAC C ∴∠+∠+∠=o .【点睛】本题考查了三角形内角和定理的证明方法,熟练掌握和运用三角形内角和定理的证明方法是解决本题的关键.21.(2023秋·四川达州·八年级校考期末)如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F,∠1=∠2.(1)试说明DG∥BC的理由;(2)如果∠B=34°,且∠ACD=47°,求∠3的度数.【答案】(1)DG∥BC,详见解析;(2)∠3 =103°.【分析】(1)先根据垂直定义得出∠CDF=∠EFB=90°,根据平行线判定可得出CD∥EF,故可得出∠2=∠BCD,推出∠1=∠BCD,根据平行线的判定即可得出结论;(2)先根据CD⊥AB得出∠BDC=90°,由直角三角形的性质得出∠BCD的度数,故可得出∠ACB的度数,再根据平行线的性质即可得出结论.【详解】解:(1)DG∥BC.理由是:∵CD⊥AB,EF⊥AB,∴∠CDF=∠EFB=90°,∴CD∥EF.∴∠2=∠BCD,∵∠1=∠2,∴∠1=∠BCD,∴DG∥BC;(2)∵CD⊥AB,∴∠BDC=90°.∵∠B=34°,∴∠BCD=90°-34°=56°.∵∠ACD=47°,∴∠ACB=∠ACD+∠BCD=47°+56°=103°.∵由(1)知DG∥BC,∴∠3=∠ACB=103°.【点睛】本题考查的是三角形内角和定理和平行线的判定与性质,熟知三角形的内角和等于180°是解答此题的关键. 22.(2023秋·八年级单元测试)如图,在ABC 中,CD AB ⊥于点D ,EF CD ⊥于点G ,ADE EFC ∠=∠.(1)求证:B EFC ∠=∠;(2)若60A ∠=︒,76ACB ∠=︒,求ADE ∠的度数.【答案】(1)证明见解析(2)44︒【分析】(1)由垂直于同一直线的两条直线平行,可得AB EF ∥,再由平行线的性质可得B EFC ∠=∠;(2)结合已知条件与(1)的结论,可得DE BC ∥,由三角形的内角和定理可求得B ∠的度数,从而可得ADE ∠的度数.【详解】(1)∵CD AB ⊥,EF CD ⊥,∴90BDC FGC ∠=∠=︒∴AB EF ∥,∴B EFC ∠=∠.(2)∵B EFC ∠=∠,ADE EFC ∠=∠,∴B ADE ∠=∠.∴DE BC ∥.∵60A ∠=︒,76ACB ∠=︒,∴180607644B ∠=︒−︒−︒=︒.∴44ADE B ∠=∠=︒.【点睛】本题主要考查了三角形的内角和,平行线的判定与性质,解答的关键是结合图形分析清楚角与角之间的关系. 23.(2023秋·八年级单元测试)如图,AD 是ABC 的高,AE 平分BAC ∠.(1)若76B ∠=︒,48C ∠=︒,求DAE ∠的度数;(2)若42B C ∠−∠=︒,求DAE ∠的度数.【答案】(1)14︒(2)21︒【分析】(1)利用三角形的内角和定理和三角形高的定义先求出BAC ∠、BAD ∠,再利用角平分线的定义求出BAE ∠,最后利用角的和差关系求出DAE ∠;(2)利用三角形的内角和定理和三角形高的定义用含C ∠的式子先表示出BAC ∠、BAD ∠,再利用角平分线的定义用含C ∠的式子表示出BAE ∠,最后利用角的和差关系求出DAE ∠;【详解】(1)解:AD 是ABC 的高,76B ∠=︒,48C ∠=︒,∴180180764856BAC B C ∠=−∠−∠=︒−︒−︒=︒︒,90907614BAD B ∠=︒−∠=︒−︒=︒,AE 平分BAC ∠,∴11562822BAE BAC ∠=∠=⨯︒=︒,∴281414DAE BAE BAD ∠=∠−∠=︒−︒=︒;(2)解:42B C ∠−∠=︒,42B C ∴∠=∠+︒,AD 是ABC 的高,∴()180180421382BAC B C C C C ︒∠=︒−∠−∠=︒−∠+︒−∠=−∠,()90904248BAD B C C︒∠=︒−∠=︒−∠+︒=−∠, AE 平分BAC ∠, ∴()1113826922BAE BAC C C ∠=∠=⨯︒−∠=︒−∠,∴()694821DAE BAE BAD C C ∠=∠−∠=︒−∠−︒−∠=︒.【点睛】本题主要考查了三角形的内角和定理,三角形高的定义,掌握“三角形的内角和等于180︒”、角平分线的定义及角的和差关系是解决本题的关键.。

八年级数学平行线与三角形内角和计算(人教版)(含答案)

八年级数学平行线与三角形内角和计算(人教版)(含答案)

学生做题前请先回答以下问题问题1:由角的关系得平行,可以考虑哪些定理?问题2:由平行得角的关系,可以考虑哪些定理?问题3:三角形的内角和等于_______.问题4:直角三角形两锐角_______.平行线与三角形内角和计算(人教版)一、单选题(共10道,每道10分)1.如图,在△ABC中,AD平分△BAC,且与BC相交于点D,△B=40°,△BAD=30°,则△C的度数为( )A.80°B.90°C.100°D.110°答案:A解题思路:试题难度:三颗星知识点:三角形内角和定理2.已知在△ABC中,△B是△A的2倍,△C比△A大20°,则△A的度数为( )A.30°B.40°C.60°D.80°答案:B解题思路:试题难度:三颗星知识点:三角形内角和定理3.如图,在△ABC中,△B=△C,FD△BC,DE△AB,垂足分别为D,E.若△AFD=158°,则△EDF=( )A.42°B.44°C.68°D.79°答案:C解题思路:试题难度:三颗星知识点:互余4.如图,在△ABC中,AE平分△BAC,AD△BC,垂足为D,若△BAC=128°,△C=36°,则△DAE的度数为( )A.10°B.12°C.15°D.18°答案:A解题思路:试题难度:三颗星知识点:互余5.如图,在△ABC中,△BAC=4△1=4△C,BD△CA于点D,则△DBA=( )A.20°B.60°C.45°D.30°答案:D解题思路:试题难度:三颗星知识点:互余6.如图,在四边形ABCD中,点E在BC上,AB△DE,△B=78°,△C=60°,则△EDC的度数为( )A.42°B.60°C.78°D.80°答案:A解题思路:试题难度:三颗星知识点:三角形内角和定理7.如图,直线BD△EF,AE与BD交于点C,若△B=30°,△A=75°,则△CEF的度数为( )A.60°B.75°C.90°D.105°答案:D解题思路:试题难度:三颗星知识点:三角形内角和定理8.如图,直线AB△CD,△EFA=28°,△EHC=50°,则△E=( )A.28°B.22°C.32°D.38°答案:B解题思路:试题难度:三颗星知识点:三角形内角和定理9.如图,AB△CD,AE平分△CAB,CE平分△ACD,则△E=( )A.60°B.75°C.90°D.105°答案:C解题思路:试题难度:三颗星知识点:三角形内角和定理10.将一副直角三角板如图放置,已知AE△BC,则△AFE的度数为( )A.95°B.100°C.110°D.105°答案:D解题思路:试题难度:三颗星知识点:三角形内角和定理。

部编数学八年级上册专题02三角形内角外角问题(解析版)含答案

部编数学八年级上册专题02三角形内角外角问题(解析版)含答案

2023--2024学年度人教版数学八年级上册期末复习核心考点三种题型精炼专题02 三角形内角外角问题一、选择题1. (2023湖北宜昌)如图,小颖按如下方式操作直尺和含30°角的三角尺,依次画出了直线a ,b ,c .如果170=°∠,则2Ð的度数为( )A. 110°B. 70°C. 40°D. 30°【答案】C 【解析】可求34570Ð=Ð+Ð=°,由25Ð=Ð,即可求解.如图,由题意得:430Ð=°,a b ∥,3170\Ð=Ð=°,34570Ð=Ð+Ð=°Q ,540\Ð=°,2540\Ð=Ð=°,故选:C .【点睛】本题考查了平行线的性质,对顶角的性质,三角形外角定理,掌握平行线的性质是解题的关键.2. (2023大连)如图,直线,45,20AB CD ABE D Ð=Ð=°°∥,则E Ð的度数为( )A. 20°B. 25°C. 30°D. 35°【答案】B 【解析】先根据平行线的性质可得45ABE BCD ÐÐ==°,再根据三角形的外角性质即可得.,45AB CD ABE Ð=°Q ∥,45ABE BCD \=Ð=а,20D Ð=°Q ,25BCD D E Ð-Ð==\а,故选:B .【点睛】本题考查了平行线的性质、三角形的外角性质,熟练掌握平行线的性质是解题关键.3. (2023内蒙古包头)如图,直线a b P ,直线l 与直线,a b 分别相交于点,A B ,点C 在直线b 上,且CA CB =.若132Ð=°,则2Ð的度数为( )A. 32°B. 58°C. 74°D. 75°【答案】C 【解析】由CA CB =,132Ð=°,可得1801742CBA CAB °-ÐÐ=Ð==°,由a b P ,可得2CBA Ð=Ð,进而可得2Ð的度数.∵CA CB =,132Ð=°,∴1801742CBA CAB °-ÐÐ=Ð==°,∵a b P ,∴274CBA Ð=Ð=°,故选:C .【点睛】本题考查了等边对等角,三角形的内角和定理,平行线的性质.解题的关键在于明确角度之间的数量关系.4. (2023山东东营)如图,AB CD ∥,点E 在线段BC 上(不与点B ,C 重合),连接DE ,若40D Ð=°,60BED Ð=°,则B Ð=( )A. 10°B. 20°C. 40°D. 60°【答案】B 【解析】根据三角形的外角的性质求得20C Ð=°,根据平行线的性质即可求解.∵40D Ð=°,60BED Ð=°,∴20C BED D Ð=Ð-Ð=°,∵AB CD ∥,∴B Ð=20C Ð=°,故选:B .【点睛】本题考查了三角形的外角的性质,平行线的性质,熟练掌握以上知识是解题的关键.5. (2023山东聊城)如图,分别过ABC V 的顶点A ,B 作AD BE P .若25CAD Ð=°,80EBC Ð=°,则ACB Ð的度数为( )A. 65°B. 75°C. 85°D. 95°【答案】B 【解析】根据两直线平行,同位角相等,得到80E ADC BC =°Ð=Ð,利用三角形内角和定理计算即可.∵AD BE P ,80EBC Ð=°,∴80E ADC BC =°Ð=Ð,∵25CAD Ð=°,∴71805ACB ADC CAD =°Ð=°-Ð-Ð,故选B .【点睛】本题考查了平行线的性质,三角形内角和定理,熟练掌握平行线性质是解题的关键.6. (2023深圳)如图为商场某品牌椅子侧面图,120DEF Ð=°,DE 与地面平行,50ABD Ð=°,则ACB =∠( )A. 70°B. 65°C. 60°D. 50°【答案】A 【解析】根据平行得到50ABD EDC Ð=Ð=°,再利用外角的性质和对顶角相等,进行求解即可.由题意,得:DE AB ∥,∴50ABD EDC Ð=Ð=°,∵120DEF EDC DCE Ð=Ð+Ð=°,∴70DCE Ð=°,∴70ACB DCE Ðа==;故选A .【点睛】本题考查平行线的性质,三角形外角的性质,对顶角.熟练掌握相关性质,是解题的关键.7. (2023湖北荆州)如图所示的“箭头”图形中,AB CD ∥,80B D Ð=Ð=o ,47E F Ð=Ð=o ,则图中G Ð的度数是( )的A. 80oB. 76oC. 66oD. 56o【答案】C 【解析】延长AB 交EG 于点M ,延长CD 交GF 于点N ,过点G 作AB 的平行线GH ,根据平行线的性质即可解答.如图,延长AB 交EG 于点M ,延长CD 交GF 于点N ,过点G 作AB 的平行线GH ,4780,E F EBA FDC Ð=Ð=Ð=Ð=o o Q ,33EMA EBA E \Ð=Ð-Ð=°,33FNC FDC F Ð=Ð-Ð=°,,AB CD AB HG ∥∥Q ,HG CD \∥,33MGH EMA \Ð=Ð=°,33NGH FND Ð=Ð=°,333366EGF \Ð=°+°=°,故选:C .【点睛】本题考查了平行线的判定及性质,三角形外角的定义和性质,作出正确的辅助线是解题的关键.8. 如图,已知AB CD ∥,点E 在线段AD 上(不与点A ,点D 重合),连接CE .若∠C =20°,∠AEC =50°,则∠A =( )A. 10°B. 20°C. 30°D. 40°【答案】C 【解析】根据三角形外角的性质、平行线的性质进行求解即可;∵∠C +∠D =∠AEC ,∴∠D =∠AEC -∠C =50°-20°=30°,∥,∵AB CD∴∠A=∠D=30°,故选:C.【点睛】本题主要考查三角形外角的性质、平行线的性质,掌握相关性质并灵活应用是解题的关键.9.将一副三角板按如图所示的位置摆放在直尺上,则∠1的度数为( )A.70°B.75°C.80°D.85°【答案】B【解析】利用三角形内角和定理和平行线的性质解题即可.如图,∵∠2=90°﹣30°=60°,∴∠3=180°﹣45°﹣60°=75°,∵a∥b,∴∠1=∠3=75°.10.如图,一副分别含有30°和45°角的两个直角三角板,拼成如下图形,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD的度数是( )A.15°B.25°C.30°D.10°【答案】A.【解析】本题考查的是三角形外角的性质,熟知三角形的外角等于与之不相邻的两个内角的和是解答此题的关键。

三角形的重要线段和角度计算—2023-2024学年八年级数学上册培优题型(人教版)(解析版)

三角形的重要线段和角度计算—2023-2024学年八年级数学上册培优题型(人教版)(解析版)

三角形的重要线段和角度计算(专项培优训练)试卷满分:100分 考试时间:120分钟 试卷难度:较难试卷说明:本套试卷结合人教版数学八年级上册同步章节知识点,精选易错,常考,压轴类问题进行专题汇编!题目经典,题型全面,解题模型主要选取热点难点类型!同步复习,考前强化必备!适合成绩中等及偏上的学生拔高冲刺。

一、选择题:本大题共10小题,每小题2分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(本题2分)(2022秋·云南楚雄·八年级校考阶段练习)如图,在ABC 中,12∠=∠,3=4∠∠,80A ∠=︒,则x 的度数为( )A .130︒B .80︒C .100︒D .120︒【答案】A 【分析】由三角形内角和及三角形内角角平分线求得24∠+∠,即可求解.【详解】解:三角形内角和是180︒180100ABC ACB A ∴∠+∠=︒−∠=︒12,34∠=∠∠=∠11124()50222ABC ACB ABC ACB ∴∠+∠=∠+∠=∠+∠=︒18050130x ∴=︒−︒=︒故选:A .【点睛】本题考查三角形内角和定理和内角角平分线的性质,解题的关键是掌握三角形两内角角平分线的夹角=1902︒+⨯另一内角,及其推导过程. 2.(本题2分)(2023春·陕西西安·八年级西北大学附中校考阶段练习)如图,在ABC 中,B C ∠=∠,D 为BC 边上的一点,E 点在AC 边上,ADE AED ∠=∠,若28BAD ∠=︒,则CDE ∠=( )A .14︒B .16︒C .20︒D .12︒【答案】A 【分析】利用三角形的外角性质可得AED C CDE ∠=∠+∠,结合ADE AED ∠=∠,可得出∠ADE C CDE =∠+∠,利用三角形的外角性质可得ADC B BAD ∠=∠+∠,进而可得出ADE CDE C CDE CDE B BAD ∠+∠=∠+∠+∠=∠+∠,再结合B C ∠=∠及28BAD ∠=︒即可解答.【详解】解:∵AED ∠是CDE 的外角,∴AED C CDE ∠=∠+∠,∵ADE AED ∠=∠,∴ADE C CDE ∠=∠+∠.∵ADC ∠是ABD △的外角,∴ADC B BAD ∠=∠+∠,∴ADE CDE C CDE CDE B BAD ∠+∠=∠+∠+∠=∠+∠,又∵B C ∠∠=,∴2BAD CDE ∠=∠28BAD ∠=︒,∴11281422CDE BAD ∠=∠=⨯︒=︒.故选:A .【点睛】本题主要考查了三角形的外角性质,牢记“三角形的一个外角等于和它不相邻的两个内角的和”是解题的关键.3.(本题2分)(2020秋·广东广州·八年级校考阶段练习)如图,点O 在ABC 内,BO 平分ABC ∠,CO 平分ACB ∠.若40A ∠=︒,则BOC ∠等于( )A .110︒B .115︒C .125︒D .130︒【答案】A 【分析】根据角平分线的定义几三角形内角和即可求解.【详解】解:在ABC 内,BO 平分ABC ∠,CO 平分ACB ∠,12OBC ABC ∴∠=∠,12OCB ACB ∠=∠,则()180BOC OBC OCB ∠=︒−∠+∠,()11802BOC ABC ACB ∴∠=︒−∠+∠,40A ∠=︒,18040140ABC ACB ∴∠+∠=︒−︒=︒,11801401102BOC ∴∠=︒−⨯︒=︒,故选:A .【点睛】本题考查了三角形内角和即角平分线的定义,熟练掌握三角形内角和即角平分线的定义是解答本题的关键.4.(本题2分)(2022秋·河南洛阳·八年级统考期中)如图,在ABC 中,已知点D ,E ,F 分别是BC AD CE ,,的中点,ABC 的面积是4,则BEF △的面积是( )A .2B .1C .0.5D .0.25【答案】B【分析】因为点F 是CE 的中点,所以BEF △的底是BEC 的底的一半,BEF △高等于BEC 的高;同理,D 、E 分别是BC AD 、的中点,BEC 与ABC 同底,BEC 的高是ABC 高的一半;利用三角形的等积变换可解答.【详解】解:如图,点F 是CE 的中点,∴BEF △的底是EF ,BEC 的底是EC ,即12EF EC =,高相等, ∴12BEF BEC S S =,∵E 是AD 的中点,BEC 与ABC 同底,∴BEC 的高是ABC 高的一半, ∴12EBC ABC S S =, ∴14B E F A B C S S =,且4ABC S =, ∴1BEF S =△, 即阴影部分的面积为1.故选:B .【点睛】此题主要考查三角形的面积求解,解题的关键是熟知三角形中线的性质. 八年级校考期末)如图,从ABC 各顶点作平行线若ABE 的面积为只要知道下列哪个值就可以求出DEF 的面积( A .12S S +B .123S S S ++C .3SD .1232S S S ++【答案】C 【分析】根据平行线间的距离处处相等得到:ADE V 和ABD △在底边AD 上的高相等,ADF △和ADC △在底边AD 上的高相等,BEF △和BEC 在底边BE 上的高相等,所以由三角形的面积公式和图形间的面积的数量关系进行证明即可.【详解】证明:∵AD BE AD FC FC BE ∥,∥,∥,∴ADE V 和ABD △在底边AD 上的高相等,ADF △和ADC △在底边AD 上的高相等,BEF △和BEC 在底边BE 上的高相等,∴ADF ADC BEF BEC AEF BEF ABE BEC ABE ABC SS S S S S S S S S ===−=−=,, ∴2DEF ADE ADF AEF ABD ADC ABC ABC SS S S S S S S =++=++=. 即2DEF ABC SS =. ∵EDC EBD AEB ABC S S SS +−= 即31112DEF S S S S +−=即32DEF S S =,故选:C .【点睛】本题考查了平行线之间的距离,三角形面积,根据等底等高的三角形面积进行转化是解题的关键. 八年级校考阶段练习)如图,在ABC 中,A .3个B .2个C .1个D .4个【答案】A 【分析】根据三角形中线定义和三角形面积公式可对①进行判断;根据等角的余角相等得到BAD ACD ∠=∠,再根据角平分线的定义和三角形外角性质可对②进行判断;根据等角的余角相等得到GAE ABC ∠=∠,再根据角平分线的定义可对③进行判断.【详解】CF 是中线得到AF BF =,ACF BCF S S ∴=,故①正确;90BAC ︒∠=,AD 是高,BAD ACD ∴∠=∠, BE 是角平分线,ABE CBE ∴∠=∠,AGE ABE BAD ∠=∠+∠,AEG CBE ACB ∠=∠+∠,AEG AGE ∴∠=∠,AE AG ∴=,故②正确;90BAD DAC ︒∠+∠=,90BAD ABD ︒∠+∠=,DAC ABD ∴∠=∠,而2ABC ABE ∠=∠,2GAE ABE ∴∠=∠,故③正确.根据已知条件不能推出HBC HCB ∠=∠,即不能推出BH CH =,故④错误;故选:A .【点睛】本题考查了等腰三角形的判定,三角形内角和定理,三角形的外角性质,三角形的角平分线、中线、高线等知识点,能综合运用定理进行推理是解此题的关键. 八年级假期作业)如图,把ABC 纸片沿 A .70︒B .75︒C .80︒D .85︒【答案】A 【分析】利用折叠性质得30ADE A DE '∠=∠=︒,AED A ED '∠=∠,再根据三角形外角性质得55CED ∠=︒,利用邻补角得到125AED ∠=︒,则125A ED '∠=︒,然后利用D A A EC ED CE ∠=∠∠''−,进行计算即可.【详解】解:120BDA '∠=︒,180********ADA BDA ''∴∠=︒−∠=︒−︒=︒, ABC 纸片沿DE 折叠,使点A 落在图中的A '处,1302ADE A DE ADA ''∴∠=∠=∠=︒°,AED A ED '∠=∠,253055CED A ADE ∠=∠+∠=︒+︒=︒,180********AED CED ∴∠=︒−∠=︒−︒=︒,125A ED '∴∠=︒,1255570A EC A ED CED ''∴∠=∠−∠=︒−︒=︒,故选:A .【点睛】本题考查了折叠的性质,三角形外角的性质,求一个角的邻补角,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等. 在ABC 中, A .24B .22C .20D .18 【答案】D【分析】连接CF ,设=BFD S a △,由三角形面积公式可得3CFD S a =,3ADC ABD S S =,由点E 是AC 的中点,得ABE CBE S S =,AFE CEF S S =,进而得4ABF CBF S S a ==,5ABD S a =,15ADC S a =,12AFC S a =,20ABC S a =,6EFC S a =,得出9DCEF S a =四边形,通过讨论ABC 的面积最大值得四边形DCEF 的面积最大值.【详解】解:连接CF ,设=BFD S a △,3C D B D =,3CFD S a ∴=,3ADC ABD S S =,点E 是AC 的中点,ABE CBE SS ∴=,AFE CEF S S =, 4BFD C ABF CB F F D S a SS S ∴+===, 45ABF BFD ABD S a S a S a ∴===++,15ADC Sa ∴=,51520ABC ABD ADC S S S a a a =+=+= 204412ABC ABF C A B FC F a S S S a Sa a ∴=−−=−−=, 126A EF FC C S a S ∴==,639F DCE C F E C FD S a a S S a =+∴==+四边形,920ABC DCEF S S ∴=四边形,在ABC 中,8AB =,10AC =,1810402ABC S ∴=⨯⨯=的最大值,∴四边形DCEF 的面积的最大值是18,故选:D .【点睛】本题考查了三角形的面积,已知两边三角形面积的最大值等知识,解题关键是理解运用同高的两个三角形面积之比等于底边之比. 9.(本题2分)(2022秋·八年级课时练习)如图,AB CD ∥,∠M =44°,AN 平分∠BAM ,CN 平分∠DCM ,则∠N 等于( )A .21.5°B .21°C .22.5°D .22°【答案】D【分析】由平行线的性质,三角形的内角和定理,角平分线的定义,只要证明得22M N ∠−∠=︒,即可求出答案.【详解】解:如图,线段AM 与AN 相交于点E ,∵AB CD ∥,∴180ACD CAB ∠+∠=︒,∵AN 平分∠BAM ,CN 平分∠DCM ,∴21BAM ∠=∠,24DCM ∠=∠,12∠=∠,3=4∠∠,∴180ACD CAM BAM ∠+∠+∠=︒,∴21180ACD CAM ∠+∠+∠=︒;①在△ACM 中,有180ACM CAM M ∠+∠+∠=︒,∴2444180ACD CAM ∠+∠+∠+︒=︒②,由①-②,得212444∠−∠=︒,∴1422∠−∠=︒,即1322∠−∠=︒;∵13180AEN N CEM M ∠+∠+∠=∠+∠+∠=︒,又AEN CEM ∠=∠,∴13N M ∠+∠=∠+∠,∴1322M N ∠−∠=∠−∠=︒,即4422N ︒−∠=︒,∴22N ∠=︒;故选:D .【点睛】本题考查了平行线的性质,三角形的内角和定理,角平分线的定义,解题的关键是熟练掌握所学的知识,正确地利用所学知识进行角度之间的转化.10.(本题2分)(2022秋·湖北孝感·八年级统考期中)如图,A ABC CB =∠∠,BD 、CD 、BE 分别平分ABC ∠,外角ACP ∠,外角MBC ∠,以下结论:①AD BC ∥,②BD BE ⊥,③90BDC ABC ∠+∠=︒,④2180BAC BEC ∠+∠=︒,其中正确的结论有( )A .1个B .2个C .3个D .4个【答案】D 【分析】根据角平分线的定义、三角形的内角和定理、三角形的外角性质、平行线的判定一一判定即可.【详解】解:①设点A 、B 在直线MF 上,∵BD 、CD 分别平分ABC 的内角ABC ∠,外角ACP ∠,∴AD 平分ABC 的外角FAC ∠,∴FAD DAC ∠=∠,∵FAC ACB ABC ∠=∠+∠,且A ABC CB =∠∠,∴FAD ABC ∠=∠,∴AD BC ∥,故①正确.②∵BD 、BE 分别平分ABC 的内角ABC ∠、外角MBC ∠,∴11118090222DBE DBC EBC ABC MBC ∠=∠+∠=∠+∠=⨯︒=︒, ∴EB BD ⊥,故②正确.③∵DCP BDC CBD ∠=∠+∠,22DCP BAC DBC ∠=∠+∠,∴2()2BDC CBD BAC DBC ∠+∠=∠+∠, ∴12BDC BAC∠=∠,∵2180BAC ACB ∠+∠=︒, ∴1902BAC ACB ∠+∠=︒,∴90BDC ACB ∠+∠=︒,故③正确.④∵111180()180()180(180)222BEC MBC NCB BAC ACB BAC ABC BAC ∠=︒−∠+∠=︒−∠+∠+∠+∠=︒−︒+∠∴1902BEC BAC∠=︒−∠,∴2180BAC BEC ∠+∠=︒,故④正确. 故选:D .【点睛】本题考查了角平分线的定义、三角形的内角和定理、三角形的外角性质、平行线的判定等,熟悉各个概念的内容是解题的关键.二、填空题:本大题共10小题,每小题2分,共20分.【答案】1369【分析】根据等高的三角形面积之比等于底之比,依次推理面积之间的比例即可.【详解】解:如图连接1AC,∵△ABC 的面积是1, ∵13A B AB =, ∴1A BC 的面积是3, ∵13B C BC =, ∴11A B C 的面积是9, ∴11A B B 的面积是12,同理11B C C 和11ACA 的面积都是12, ∴111ABC 的面积是37,即111A B C 的面积是△ABC 面积的37倍, 同理222A B C 的面积是111A B C 的37倍,∴2373711369S =⨯⨯=,故答案为:1369.【点睛】本题考查了三角形的面积,能够正确判断相邻的两个三角形面积之间的关系是解决本题的关键. 12.(本题2分)(2022秋·黑龙江齐齐哈尔·八年级校考阶段练习)如图,ABC 的面积为1,分别延长AB ,BC ,CA 到1A ,1B ,1C ,使12AA AB =,12BB BC =,12CC CA =,得到111A B C △,再分别延长11A B ,11B C ,1C A 到2A ,2B ,2C ,使12112A A A B =,12112B B B C =,12112C C C A =,再得到222A B C △,则222A B C △的面积为 .【答案】49【分析】连接1AC,找出延长各边后得到的三角形是原三角形面积的7倍的规律,利用规律求解即可. 【详解】解:连接1AC,∵ABC 的面积为1,12AA AB =,12BB BC =,12CC CA=, ∴122AA CABCSS==, ∴1112317A B C S =⨯+=△; 同理得2227749A B C S=⨯=.故答案为:49.【点睛】本题考查了三角形的面积,解答此类问题的关键是仔细分析所给图形的特征得到规律,再把得到的规律应用于解题.13.(本题2分)(2022秋·湖南岳阳·八年级统考期末)如图,在ABC 中,延长CA 至点F ,使得AF CA =,延长AB 至点D ,使得2BD AB =,延长BC 至点E ,使得3CE CB =,连接EF FD DE 、、,若54DEFS =,则ABCS为 .【答案】3【分析】如图,连接AE CD ,,设ABCSm =,利用等高模型的性质,用m 表示出各个三角形的面积,可得DEF 的面积为18m ,构建方程,可得结论.【详解】如图,连接AE CD ,,设ABCSm =,.∵2BD AB =, ∴2BCDSm =,3ACDSm =,∵AC AF =, ∴3ACDADFSSm==,∵3EC BC =, ∴3ECASm=,6EDCSm=∵AC AF =, ∴3AEFEACS Sm==∴263331854DEFSm m m m m m m =+++++==,∴3m =, ∴3ABC S =△,故答案为:3.【点睛】本题考查三角形的面积,等高模型的性质等知识,解题的关键是学会利用参数,构建方程解决问题.14.(本题2分)(2022秋·山西晋中·八年级统考期末)一副三角板按如图所示摆放,其中90ABC EDF ∠=∠=︒,45A ∠=︒,60E ∠=︒点B 在边EF 上,点D 在边AC 上,BC 与DF 相交于点G ,且AC EF ∥,则DGC ∠=度.【答案】105【分析】根据平行线的性质及三角形内角和定理,即可求解. 【详解】解:90ABC EDF ∠=∠=︒,45A ∠=︒,60E ∠=︒,90904545C A ∴∠=︒−∠=︒−︒=︒, 90906030F E ∠=︒−∠=︒−︒=︒, AC EF ∥30F FDC ∴∠=∠=︒,1801803045105DGC FDC C ∴∠=︒−∠−∠=︒−︒−︒=︒,故答案为:105.【点睛】本题主要考查了平行线的性质,三角形内角和定理,解题时注意:两直线平行,内错角相等. 分别平分ABC【答案】①②③【分析】根据角平分线定义得出∠22ABC ABD DBC =∠=∠,22EAC EAD DAC ∠=∠=∠,22ACF DCF ACD ∠=∠=∠,根据平角得出180ACB ACD DCF ∠+∠+∠=︒,根据三角形外角性质得出BDC DCF DBC ∠=∠−∠,ACF ABC BAC ∠=∠+∠,根据已知结论逐步推理,即可判断各项.【详解】解:∵AD 平分EAC ∠, ∴2EAC EAD ∠=∠,∵EAC ABC ACB ∠=∠+∠,A ABC CB =∠∠, ∴EAD ABC ∠=∠, ∴AD BC ∥,故①正确; ∵AD BC ∥, ∴ADB DBC ∠=∠,∵BD 平分ABC ∠,A ABC CB =∠∠,∴22ABC ACB DBC ADB ∠=∠=∠=∠,故②正确; ∵CD 平分ABC 的外角ACF ∠, ∴12ACD DCF ACF ∠=∠=∠,∵AD BC ∥, ∴ADC DCF ∠=∠,由180ACB ACD DCF ∠+∠+∠=︒得:22180ADB DCF ∠+∠=︒,即22180ADB ADC ∠+∠=︒, ∴90ADC ABD ∠+∠=︒,∴90ADC ABD ∠=︒−∠由BDC DCF DBC ∠=∠−∠得:()111222BDC DCF DBC ACF ABC ACF ABC ∠=∠−∠=∠−∠=∠−∠,∴12BDC BAC∠=∠,故④错误;∵12ACD DCF ACF ∠=∠=∠,ADC DCF ∠=∠,∴12ADC ACF ∠=∠,又∵ACF ∠是ABC 的外角,∴1122ADC ACF ABC ∠=∠>∠,故⑤错误;故答案为:①②③.【点睛】此题考查了三角形外角性质,角平分线定义,平行线的判定,主要考查学生的推理能力,有一定的难度.16.(本题2分)(2022秋·陕西西安·八年级西安一中校考期中)如图,A 、B 分别是x 轴上位于原点左、右两侧的点,点()2,P p 在第一象限,直线P A 交y 轴于点()0,2C ,直线PB 交y 轴于点D ,此时6AOP S =V ,BOP POD S S =△△,则BOD S =△ .【答案】12【分析】如图,过P 作PE OD ⊥于E ,先求解12222POCS=⨯⨯=,从而可得AOCS的面积,可得OA 的长度,再求解P 的坐标,利用BOP PODS S =△△,证明=DP BP ,再利用中点坐标公式求解B ,D 的坐标,从而可得答案.【详解】解:如图,过P 作PE OD ⊥于E ,∵点()2,P p 在第一象限,()0,2C ,∴12222POCS=⨯⨯=,∵6AOP S =V ,∴624AOCS=−=,∴1242OA ⨯=,即()4,0A −,∵6AOP S =V , ∴1462p ⨯=,解得:3p =, ∴()2,3,P∵BOP POD S S =△△, ∴BP DP =, 设()0,D y ,(),0B x ,由中点坐标公式可得:4x =,6y =∴4OB =,6OD = ∴146122BODS=⨯⨯=.故答案为:12.【点睛】本题考查的是坐标与图形,图形面积与坐标的关系,三角形的中线的性质,利用数形结合的方法求解是关键.【答案】18【分析】过点D 作DE AB ⊥于点E ,先根据角平分线的性质可得3DE CD ==,再利用三角形的面积公式即可得.【详解】解:如图,过点D 作DE AB ⊥于点E ,90C ∠=︒,CD AC ∴⊥,又AD 平分CAB ∠,3CD =,3DE CD ∴==,12AB =,ABD ∴的面积是111231822AB DE ⋅=⨯⨯=,故答案为:18.【点睛】本题考查了角平分线的性质,熟练掌握角平分线的性质是解题关键. 18.(本题2分)(2022秋·山东潍坊·八年级统考期末)如图,AB 和CD 相交于点O ,,,,C COA BDC BOD AP DP ∠=∠∠=∠分别平分CAO ∠和BDC ∠,若165C P B ∠+∠+∠=︒,则C ∠= ︒.【答案】70【分析】根据三角形内角和定理可得B CAO ∠∠=,设C COA BDC BOD x ∠=∠=∠=∠=,则1802B CAO x ∠=∠=︒−,再由,AP DP 分别平分CAO ∠和BDC ∠,可得1902OAP OAC x∠=∠=︒−,1122BDP ODB x ∠=∠=,再根据三角形内角和定理可得P OAP BDP B ∠+∠=∠+∠,从而得到5902P x∠=︒−,然后根据165C P B ∠+∠+∠=︒得到关于x 的方程,即可求解. 【详解】解:如图,∵,C COA BDC BOD ∠=∠∠=∠, ∴C COA BDC BOD ∠=∠=∠=∠,∴180,180C COA OAC BDC BOD B ∠+∠+∠=︒∠+∠+∠=︒, ∴B CAO ∠∠=,设C COA BDC BOD x ∠=∠=∠=∠=,则1802B CAO x ∠=∠=︒−, ∵,AP DP 分别平分CAO ∠和BDC ∠,∴1902OAP OAC x ∠=∠=︒−,1122BDP ODB x∠=∠=, ∵180P OAP AEP BDP B BED ∠+∠+∠=︒=∠+∠+∠,AEP BED ∠=∠, ∴P OAP BDP B ∠+∠=∠+∠, ∴19018022P x x x ∠+︒−=+︒−,∴1902P x ∠=︒−,∵165C P B ∠+∠+∠=︒ ∴19018021652x x x +︒−+︒−=︒,解得:70x =︒, 即70C ∠=︒. 故答案为:70【点睛】本题主要考查了三角形内角和定理,一元一次方程的应用,利用参数思想构建方程是解题的关键. 19.(本题2分)(2023秋·广东梅州·八年级校考阶段练习)如图,AB BC ⊥,AE 平分BAD ∠交BC 于点E ,AE DE ⊥,1290∠+∠=︒,M 、N 分别是BA ,CD 延长线上的点,EAM ∠和EDN ∠的平分线交于点F .下列结论:①AB CD ∥;②180AEB ADC ∠+∠=︒;③DE 平分ADC ∠;④F ∠为定值.其中结论正确的有 .【答案】①③④【分析】证明190AEB DEC AEB ∠+∠=︒=∠+∠,可得1DEC ∠=∠,证明90C ∠=︒,可得180B C ∠+∠=︒,可得AB CD ∥,故①正确;证明24∠∠=,可得ED 平分ADC ∠,故③正确;证明24AEB ∠=∠=∠,若180AEB ADC ∠+∠=︒,则2460AEB ∠=∠=∠=︒,与已知矛盾,故②错误;证明36090270EAM EDN ∠+∠=︒−︒=︒.可得12701352EAF EDF ∠+∠=⨯︒=︒.证明3490∠+∠=°,可得1359045FAD FDA ∠+∠=︒−︒=︒,18045135F ∠=︒−︒=︒,故④正确.【详解】解:标注角度如图所示:∵AB BC ⊥,AE DE ⊥,∴190AEB DEC AEB ∠+∠=︒=∠+∠, ∴1DEC ∠=∠, 又∵1290∠+∠=︒, ∴290DEC ∠+∠=︒, ∴90C ∠=︒, ∴180B C ∠+∠=︒, ∴AB CD ∥,故①正确; ∴180BAD ADC ∠+∠=︒,∵4390∠+∠=︒,2190∠+∠=︒,而31∠=∠, ∴24∠∠=,∴ED 平分ADC ∠,故③正确;∵90B C ∠=∠=︒,19012AEB ∠+∠=︒=∠+∠, ∴24AEB ∠=∠=∠, 若180AEB ADC ∠+∠=︒,∴24180AEB ∠+∠+∠=︒,∴2460AEB ∠=∠=∠=︒,与已知矛盾,故②错误; ∵2190∠+∠=︒,∴36090270EAM EDN ∠+∠=︒−︒=︒. ∵EAM ∠和EDN ∠的平分线交于点F , ∴12701352EAF EDF ∠+∠=⨯︒=︒.∵AE DE ⊥, ∴3490∠+∠=°,∴1359045FAD FDA ∠+∠=︒−︒=︒, ∴18045135F ∠=︒−︒=︒,故④正确. 故答案为:①③④.【点睛】本题主要考查了平行线的性质与判定、三角形内角和定理、直角三角形的性质及角平分线的计算,解题的关键是熟知三角形的内角和等于180︒.PBCS与ABCS和PBCS与ABCS和【答案】PBCDBC ABC1122SS S =+PBCDBC ABC11n SS S nn−=+【分析】当AP=12AD 时,根据△ABP 和△ABD 的高相等,得到ABP ABD12S S =,根据△CDP 和△CDA 的高相等,得到CDP CDA12S S =,结合图形计算即可;同理,当AP=1n AD (n 表示正整数)时,根据△ABP 和△ABD 的高相等,得到ABPABD1SS n=,根据△CDP 和△CDA 的高相等,得到CDPCDA1n SS n−=,结合图形计算即可.【详解】∵AP=12AD ,△ABP 和△ABD 的高相等,∴ABPABD12SS =,∵PD=AD -AP=12AD ,△CDP 和△CDA 的高相等,∴CDP CDA12S S =,∴PBCABPCDPABCD SS SS=−−四边形ABDCDAABCD 1122S SS =−−四边形()()DBCABCABCD ABCDABCD1122S SS S S=−−−−四边形四边形四边形DBCABC1122S S =+;当AP=1n AD (n 表示正整数)时, ∵AP=1n AD ,△ABP 和△ABD 的高相等,∴ABP ABD1S S n =,∵PD=AD -AP=1n n −AD ,△CDP 和△CDA 的高相等,∴CDP CDA1n S S n −=,∴PBCABPCDPABCD SS SS=−−四边形ABDCDAABCD 11n S SS n n−=−−四边形 ()()DBCABCABCD ABCDABCD11n S SS SSn n −=−−−−四边形四边形四边形DBC ABC 11n S S n n −=+;故答案为:PBCDBC ABC1122SS S =+;PBCDBC ABC11n SS S nn−=+.【点睛】本题考查了三角形的面积的计算,掌握高相等的两个三角形的面积比等于底的比是解题的关键.三、解答题:本大题共7小题,21-25题每小题8分,26-27题每小题10分,共60分.21.(本题8分)(2019秋·广东梅州·八年级期末)如图,180ADE BCF ∠+∠=︒,AF 平分BAD ∠,2BAD F ∠=∠.(1)AD 与BC 平行吗?请说明理由; (2)AB 与EF 的位置关系如何?为什么? (3)若BE 平分ABC ∠.证明:90E F ∠+∠=︒. 【答案】(1)AD BC ∥,理由见解析 (2)AB EF ∥,理由见解析 (3)证明见解析【分析】(1)由180ADE BCF ∠+∠=︒结合邻补角互补,可得出BCF ADC ∠=∠,再利用“同位角相等,两直线平行”可得出AD BC ∥;(2)根据角平分线的定义及2BAD F ∠=∠,可得出BAF F ∠=∠,再利用“内错角相等,两直线平行”可得出AB EF ∥;(3)由AD BC ∥,利用“两直线平行,同旁内角互补”可得出180BAD ABC ∠+∠=︒,再结合2BAD F ∠=∠,2ABC E ∠=∠可得出90E F ∠+∠=︒.【详解】(1)解:AD BC ∥. 理由如下:180ADE BCF ∠+∠=︒,180ADE ADC ∠+∠=︒, BCF ADC ∴∠=∠, AD BC ∴∥;(2)解:AB EF ∥. 理由如下:AF 平分BAD ∠,2BAD F ∠=∠,12BAF BAD F ∴∠=∠=∠,AB EF ∴;(3)证明:AD BC ,180BAD ABC ∴∠+∠=︒.AB EF ∥, ABE E ∴∠=∠,BE 平分ABC ∠22ABC ABE E ∴∠=∠=∠,2BAD F ∠=∠,22180E F ∴∠+∠=︒, 90E F ∴∠+∠=︒.【点睛】本题考查了平行线的判定与性质、角平分线的定义以及邻补角,牢记各平行线的判定定理与性质定理是解题的关键.已知如图,ABC 是等腰直角三角形,(1)如图1,点C 的坐标是()0,2. ①若60ACO ∠=︒,则AC =______; ②若A 的坐标是()4,0−,求点B 的坐标.(2)如图2,若x 轴恰好平分BAC ∠,BC 与x 轴交于点E ,过点【答案】(1)①4AC =;②()2,6B −(2)2AE BF =;理由见解析【分析】(1)①根据直角三角形的性质即可得到结果;②过点B 作BH y ⊥轴,证明CAO BHC △≌△,求得2OC BH ==,6OH OC CH =+=,即可得到点B 的坐标(2)延长BF 、AC 交于点H ,证明AFB AFH △≌△,得到2BH BF =,再证明ACE BCH △≌△,即可得到2AE BF =【详解】(1)①∵点C 的坐标是()0,2,∴2OC =,∵60ACO ∠=︒,且=90AOC ∠︒, ∴30OAC ∠=︒, ∴24AC OC == ②过点B 作BH y ⊥轴,∵()4,0A −,()0,2C ,∴4OA =,2OC =, ∵ABC 是等腰直角三角形, ∴AC BC =,90ACB ∠=︒, ∴90ACO BCH ∠+∠=︒, ∵90ACO CAO ∠+∠=︒, ∴BCH CAO ∠=∠,在CAO △和BHC △中,90AOC BHC CAO BCH AC BC ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴CAO BHC △≌△,∴2OC BH ==,4CH OA ==, ∴6OH OC CH =+=, ∴()2,6B −(2)2AE BF =,理由如下: 延长BF 、AC 交于点H ,∵BF x ⊥,∴90AFB AFH ∠=∠=︒, ∵x 轴平分BAC ∠, ∴CAE BAE ∠=∠, ∵AF AF =, ∴AFB AFH △≌△, ∴BF FH =,即2BH BF =,∵90ACE BFE ∠=∠=︒,AEC BEF ∠=∠, ∴CAE CBH ∠=∠,∵AC BC =,90ACE BCH ∠=∠=︒, ∴ACE BCH △≌△, ∴2AE BH BF ==【点睛】本题是三角形综合题,主要考查了等腰直角三角形的性质、直角三角形的性质、全等三角形的判定和性质及角平分线的定义,解决本题的关键是作辅助线构造全等三角形.23.(本题8分)(2019春·黑龙江大庆·八年级统考期中)如图①,在平面直角坐标系中,点A ,B 的坐标分别为(-1,0),(3,0),现同时将点A ,B 分别向上平移2个单位长度,再向右平移1个单位长度,分别得到点A ,B 的对应点C ,D ,连接AC ,BD ,CD .【答案】(1)C(0,2);D(4,2);8ABDCS=四边形(2)存在;(0,4)或(0,−4)(3)DCP BOPCPO∠+∠∠的值不变,且1DCP BOPCPO∠+∠=∠【分析】(1)根据点的平移规律易得点C,D的坐标,根据平移的性质求解四边形ABDC的面积即可;(2)先计算出8ABDCS四边形=,设Q坐标为(0,a),根据三角形面积公式得12×4×|a|=8,解得a=±4,即可求解;(3)过点P作PQ CD∥,依据平行线公理的推理可得到PQ AB CD,由平行线的性质和角的和差关系可证明∠CPQ+∠OPQ=∠CPO,故此可求得问题的答案;【详解】(1)解:∵点A,B的坐标分别为(−1,0),(3,0),将点A,B分别向上平移2个单位长度,再向右平移1个单位长度,分别得到点A,B的对应点C,D,∴点C(0,2),点D(4,2),AB=4,AB CD,AB=CD,根据平移可知OC=2,∴428ABDCS⨯=四边形=.(2)解:在y 轴上存在一点Q ,使QABABDCSS 四边形=,理由如下:设Q 的坐标为(0,a ), ∵QABABDCSS 四边形=,∴12×4×|a|=8,解得:a =±4,∴Q 点的坐标为(0,4)或(0,−4). (3)解:①是正确的结论,理由如下: 过点P 作PQ CD ∥,如图所示:∵AB CD , ∴PQABCD ,∴∠DCP =∠CPQ ,∠BOP =∠ ∴∠DCP +∠BOP =∠CPQ +∠OPQ =∠CPO , ∴1DCP BOP CPOCPO CPO ∠+∠∠==∠∠,∴①正确,②错误.【点睛】本题主要考查了平移的性质、坐标与图形性质、平行线的性质,本题综合性强,解题的关键是熟练掌握平移的性质和三角形面积公式,属于中考常考题型.24.(本题8分)(2022秋·广东东莞·八年级校考期中)如图,已知DF AB ⊥于点F ,且45A ∠=︒,30D ∠=︒,求ACD ∠的度数.【答案】ACD ∠的度数为105︒【分析】先根据DF AB ⊥得90DFB ∠=︒,再根据90B D ∠=︒−∠求出B ∠的度数,最后由ACD A B ∠=∠+∠,进行计算即可得到答案. 【详解】解:DF AB ⊥,90DFB ∴∠=︒,30D ∠=︒,90903060B D ∴∠=︒−∠=︒−︒=︒,45A ∠=︒,4560105ACD A B ∴∠=∠+∠=︒+︒=︒,∴ ACD ∠的度数为105︒.【点睛】本题主要考查了直角三角形的两个锐角互余,三角形的外角的定义,熟练掌握直角三角形的两个锐角互余,三角形的外角的定义,是解题的关键.(1)则=a ,b = .(2)若灯B 射线先转动20秒,灯A 射线才开始转动,在灯B 射线到达互相平行?【答案】(1)3,1(2)10秒或85秒(3)不变,23BAC BCD ∠=∠【分析】(1)根据非负数的性质求解a 、b 值即可;(2)设灯A 射线转动t 秒,两灯的光束互相平行,画图分情况讨论求解即可;(3)设灯A 射线转动t 秒,则()3MAC t ∠=︒,PBC t ∠=︒,()()3135345BAC BAN CAN t t ∠=∠−∠=−︒=−︒,根据平行线的性质和三角形的内角和定理推导出()()90290245BCD ACB t t ∠=︒−∠=−︒=−︒,进而可得到23BAC BCD ∠=∠. 【详解】(1)解:∵()2340a b a b −++−=,且30a b −≥,()240a b +−≥,∴3040a b a b −=⎧⎨+−=⎩,解得31a b =⎧⎨=⎩,故答案为:3,1;(2)解:设灯A 射线转动t 秒,两灯的光束互相平行,根据题意,分以下情况:①当灯A 射线转到AN 之前,BD AC ∥,如图,则CAB ABD ∠=∠,由题意,060t <<,()3MAC t ∠=︒,()20PBD t ∠=+︒,∵PQ MN ∥,∴MAB ABP ∠=∠,∴MAC PBD ∠=∠,则320t t =+,解得10t =;②当灯A 射线转到AN 之后且返回AM 之前,BD AC ∥,如图,则CAB ABD ∠=∠,由题意,60120t <<,()21803MAC t ∠=⨯−︒,()20PBD t ∠=+︒,∵PQ MN ∥,∴MAB ABP ∠=∠,∴MAC PBD ∠=∠,则2180320t t ⨯−=+,解得85t =;③当灯A 射线转到AM 之后第二次转向AN 之前,BD AC ∥,如图,则CAB ABD ∠=∠,由题意,120180t <<,()32180MAC t ∠=−⨯︒,()20PBD t ∠=+︒, ∵PQ MN ∥,∴MAB ABP ∠=∠,∴MAC PBD ∠=∠,则3218020t t −⨯=+,解得t =综上,当A 灯射线转动10秒或85秒时,两灯的光束互相平行;(3)解:在转动过程中,BAC ∠与BCD ∠的数量关系不发生变化.设灯A 射线转动t 秒,则()3MAC t ∠=︒,PBC t ∠=︒, ∴()1803CAN t ∠=−︒,又45BAN ∠=︒, ∴()()3135345BAC BAN CAN t t ∠=∠−∠=−︒=−︒, ∵PQ MN ∥,∴180135ABP BAN ∠=︒−∠=︒,∴()135ABC ABP PBC t ∠=∠−∠=−︒,∴180ACB BAC ABC ∠=︒−∠−∠()1802t =−︒,∵CD AC ⊥,∴=90ACD ∠︒,∴()()90290245BCD ACB t t ∠=︒−∠=−︒=−︒,∴23BAC BCD ∠=∠.【点睛】本题考查非负数的性质、解二元一次方程组、平行线的性质、一元一次方程的应用、三角形的内角和定理、垂直定义等知识,熟练掌握平行线的性质,并利用数形结合思想和分类讨论思想进行角之间的运算是解答的关键. 26.(本题10分)(2022秋·湖北随州·八年级校考期中)在ABC 中,35A B ∠−∠=︒,43C ∠=︒,求A ∠和B ∠的度数.【答案】86A ∠=︒,51B ∠=︒.【分析】先根据三角形内角和定理求出A B ∠∠+的度数,再与35A B ∠−∠=︒联立即可得出结论.【详解】解:∵ABC 中43C ∠=︒,∴18043137A B ∠+∠=︒−︒=︒①,∵35A B ∠−∠=︒②,∴+①②得,86A ∠=︒,∴1378651B ∠=︒−︒=︒.180度是解答此题的关键.(1)如图1,BD ,CD 分别是ABC ∆的两个内角ABC ∠,ACB ∠的平分线,说明∠【深入探究】(2)①如图2,BD ,CD 分别是ABC ∆的两个外角EBC ∠,FCB ∠的平分线,D ∠是 ;②如图3,BD ,CD 分别是ABC 的一个内角ABC ∠和一个外角ACE ∠的平分线,BD ,CD 交于点D ,探究D ∠与A ∠之间的等量关系,并说明理由.【拓展应用】(3)请用以上结论解决下列问题:如图4,在ABC ∆中,BD ,CD 分别平分ABC ∠,ACB ∠,M ,N ,Q 分别在DB ,DC ,BC 的延长线上,BE ,CE 分别平分MBC ∠,BCN ∠,BF ,CF 分别平分EBC ∠,ECQ ∠.若80A ∠=︒,则F ∠的度数是 .【答案】(1)见解析(2)①1902D A ∠=︒−∠;②12D A ∠=∠,理由见解析(3)12.5︒.【分析】(1)利用角平分线的定义得出1()212ABC ACB ∠+∠=∠+∠,再利用三角形内角和定理即可求解;(2)①利用三角形内角和定理可得180DBC DCB D ∠+∠+∠=︒,180A ABC ACB ∠+∠+∠=︒,利用角平分线的定义可得EBD DBC ∠=∠,BCD DCF ∠=∠,从而得到2(180)180A D ∠−︒−∠=−︒,化简即可求解;②利用三角形的外角性质可得DCE DBC D ∠=∠+∠,22A DBC DCE ∠+∠=∠,从而得到222A DBC DBC D ∠+∠=∠+∠,化简即可求解;(3)由(1)知:1902D A ∠=︒+∠,即可求出A ∠,利用三角形内角和定理可得MBC NCB ∠+∠,再利用角平分线的性质可得CBE BCE ∠+∠,利用三角形内角和定理可得E ∠,再由(2)②可知12F E ∠=∠,求解即可. 【详解】(1)解: BD Q 、CD 分别是ABC ∠、ACB ∠的平分线,112ABC ∴∠=∠,122ACB ∠=∠,112()2ABC ACB ∴∠+∠=∠+∠, 180A ABC ACB ∠+∠+∠=︒,12180D ∠+∠+∠=︒,118012180()2D ABC ACB ∴∠=︒−∠−∠=︒−∠+∠,1902D A ∴∠=︒+∠;(2)解:①D ∠与A ∠之间的等量关系是:1902D A ∠=︒−∠,理由如下:BD Q 、CD 分别是ABC 的两个外角EBC ∠、FCB ∠的平分线,EBD DBC ∴∠=∠,BCD DCF ∠=∠,180DBC DCB D ∠+∠+∠=︒,180A ABC ACB ∠+∠+∠=︒,1802ABC DBC ∠=︒−∠,1802ACB DCB ∠=︒−∠, 180********A DBC DCB ∴∠+︒−∠+︒−∠=︒,180DBC DCB D ∠+∠=︒−∠,2()180A DBC DCB ∴∠−∠+∠=−︒,2(180)180A D ∴∠−︒−∠=−︒,2180A D ∴∠+∠=︒,1902D A ∴∠=︒−∠;②D ∠与A ∠之间的等量关系是:12D A ∠=∠,理由如下:BD Q 、CD 分别是ABC 的一个内角ABC ∠和一个外角ACE ∠的平分线,DCE DBC D ∠=∠+∠,22A DBC DCE ∠+∠=∠,222A DBC DBC D ∴∠+∠=∠+∠,2A D ∴∠=∠,12D A ∴∠=∠.(3)解:由(1)知:1902D A ∠=︒+∠, 80A ∠=︒,130D ∴∠=︒,50DBC DCB ∴∠+∠=︒,36050310MBC NCB ∴∠+∠=︒−︒=︒, BE 、CE 分别平分MBC ∠、BCN ∠,1()1552CBE BCE MBC NCB ∴∠+∠=∠+∠=︒,18015525E ∴∠=︒−︒=︒.由(2)②知:12F E ∠=∠, 112.52F E ∴∠=∠=︒,【点睛】本题考查三角形的外角性质,三角形的内角和定理,角平分线的定义,解题的关键是熟记三角形外角性质,内角和定理,角平分线的定义.。

人教版_部编版八年级数学上册第十一章第二节三角形的内角复习试题(含答案) (37)

人教版_部编版八年级数学上册第十一章第二节三角形的内角复习试题(含答案) (37)

人教版_部编版八年级数学上册第十一章第二节三角形的内角试题(含答案)如图1,一副直角三角板ABC ∆和DEF ∆,30F =∠,将ABC ∆和DEF ∆放置如图2的位置,点B 、D 、C 、F 在同一直线上。

(1)如图3,ABC ∆固定不动,DEF ∆绕点D 逆时针旋转30时,判断BC 与EF 的位置关系,并说明理由。

(2)在图2的位置上,DEF ∆绕点D 逆时针旋转()0180αα<<,在旋转过程中,两个三角形的边是否存在垂直关系?若存在直接写出旋转的角度,并写出哪两边垂直,若不存在,请说明理由。

【答案】(1)BC EF ∥,见解析;(2)存在,45;DF AC ⊥,DE AB ⊥;75:EF AC ⊥;90:DF BC ⊥;120:EF BC ⊥;135:DF AB ⊥,DE AC ⊥;165:EF AB ⊥.【解析】【分析】(1)由旋转的性质可得∠FDC=∠F=30°,可得BC ∥EF ;(2)由旋转的性质可求解.【详解】解:(1)BC EF ∥.理由如下:∵30F =∠,30FDC ∠=,∠=∠,∵F FDC∵BC EF∥.(2)如图①,当α=45°时,∠ACB+∠FDC=90°,∠B+∠EDB=90°; ∴DF⊥AC,DE⊥AB;如图②,当α=75°时,∵∠FGC+∠F=∠ACB+α,∴∠FGC=90°∴EF⊥AC;如图③,当α=90°时,∴DF ⊥BC;如图④,当α=135°时,∠B+∠BDF=90°,∴DE ⊥AC ,DF ⊥AB.【点睛】本题考查了旋转的性质,平行线的判定与性质,三角形内角和定理,直角三角形的判定等知识,熟练运用旋转的性质是本题的关键.62.如图,直线a b ∥,点A 、点D 在直线a 上,点C 、点B 在直线b 上,连接AB 、CD 交于点E ,其中AB 平分DAC ∠,80ACB ∠=,110BED ∠=,(1)求ABC ∠的度数;(2)求ACD ∠的度数.【答案】(1)50ABC ∠=;(2)20ACD ∠=.【解析】【分析】(1)利用平行线的性质求出∠DAC ,再根据角平分线的定义求出∠DAB ,利用平行线的性质即可解决问题.(2)利用三角形内角和定理即可解决问题.【详解】解:(1)∵a ∥b ,∴∠DAC+∠ACB=180°,∵∠ACB=80°,∴∠DAC=100°,∵BA 平分∠DAC ,∴∠DAB=∠CAB=50°,∴∠ABC=∠DAB=50°.(2)∵∠BED=∠AEC=110°,∠EAC=50°,∴∠ACD=180°-110°-50°=20°.【点睛】本题考查平行线的性质,角平分线的定义,三角形的内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.63.如图,已知A (0,a ),B (0,b ),C (m ,b )且(a-4)2+3b + =0,14ABC S ∆=(1)求C 点坐标(2)作DE ⊥ DC ,交y 轴于E 点,EF 为∠ AED 的平分线,且∠DFE= 90o 。

人教版_部编版八年级数学上册第十一章第二节三角形的内角试题(含答案) (80)

人教版_部编版八年级数学上册第十一章第二节三角形的内角试题(含答案) (80)

人教版_部编版八年级数学上册第十一章第二节三角形的内角试题(含答案)在ABC △中,若A B C ∠=∠-∠,则ABC △是____三角形.【答案】直角.【解析】【分析】根据三角形内角和定理求解即可.【详解】解:根据三角形内角和定理知°+180A B C ∠+∠∠=A B C ∠=∠-∠∴°2180B ∠=°90B ∴∠=故ABC △是直角三角形故答案为:直角.【点睛】主要考查了三角形的内角和定理,注意运用等量代换的方法求得∠B 的值.92.若三角形三个内角度数的比为1:3:5,则相应的外角比是__.【答案】4:3:2.【解析】【分析】求出三角形的三个外角即可解决问题.【详解】∵三角形的三个内角度数之比为1:3:5,∴三角形的三个内角分别为180°×1135++=20°,180°×3135++=60°,180°×5135++=100°,∴相应的外角分别为160°,120°,80°,∴相应的外角之比为160°:120°:80°=4:3:2.故答案为:4:3:2.【点睛】本题考查了三角形的内角和定理、三角形的外角等知识,解题的关键是熟练正确基本概念.93.如图,∠A+∠B+∠C+∠D+∠E+∠F=__度.【答案】360【解析】【分析】把原图形分解成两个三角形,根据三角形内角和定理可知.【详解】因为∠A+∠E +∠C =180°,∠F+∠D+∠B=180°,所以∠A+∠B+∠C+∠D+∠E+∠F=360°.故答案为:360.【点睛】本题考查了多边形的内角和,利用了转化思想,把图形转化为两个三角形后根据三角形内角和定理求解.94.如图,BP 和 CP 是 ABC ∠ 和 ACB ∠ 的平分线,88A ∠=,则 BPC ∠ =______度.【答案】134【解析】【分析】在△ABC 中,根据角平分线的定义及三角形内角和定理,先求得∠ABC+∠ACB 的值,从而求得∠CBP+∠PCB 的值;然后在△BPC 中利用三角形内角和定理求得∠BPC 度数.【详解】解:∵BP 、CP 分别是△ABC 的角平分线∴∠ABP=∠CBP ,∠ACP=∠PCB ;∵∠A+∠ABC+∠ACB=180°,∴∠A+2∠CBP+2∠PCB=180°;又∵∠A=88°,∴∠CBP+∠PCB=46°;在△BPC 中,又∵∠BPC+∠CBP+∠PCB=180°,∴∠BPC=134°.故答案为:134°.【点睛】本题考查三角形的内角和定理及角平分线的性质,解答本题时要灵活运用所学的知识95.如图,已知AB∥CD,∠A=60°,∠C =25°,则∠E=_____度.【答案】35【解析】【分析】设AE交CD于点F,先根据平行线的性质求出∠DFE的度数,再由三角形外角的性质即可得出结论。

(人教版)长春八年级数学上册第十一章《三角形》经典题(答案解析)

(人教版)长春八年级数学上册第十一章《三角形》经典题(答案解析)

一、选择题1.如图,//,40,50,AB CD B C ∠=︒∠=︒则E ∠的度数为( )A .70︒B .80︒C .90︒D .100︒C解析:C【分析】 根据平行线的性质求出140∠=︒,根据三角形内角和定理计算,得到答案.【详解】解:∵//AB CD ,40B ∠=︒,50C ∠=︒,∴140B ∠=∠=︒,∴ 1801180405090E C ∠=︒-∠-∠=︒-︒-︒=︒.故选:C【点睛】本题考查的是平行线的性质、三角形内角和定理,掌握两直线平行,同位角相等是解题的关键.2.下列每组数分别是三根小木棒的长度,不能用它们搭成三角形的是( )A .1cm ,2cm ,3cmB .2cm ,3cm ,4cmC .3cm ,4cm ,5cmD .5cm ,6cm ,7cm A解析:A【分析】根据三角形的三边关系,两边之和大于第三边,即两短边的和大于最长的边,即可作出判断.【详解】解:A 、1+2=3,故以这三根木棒不能构成三角形,符合题意;B 、2+3>4,故以这三根木棒能构成三角形,不符合题意;C 、3+4>5,故以这三根木棒可以构成三角形,不符合题意;D 、5+6>7,故以这三根木棒能构成三角形,不符合题意.故选:A .【点睛】本题主要考查了三角形的三边关系,关键是掌握三角形两边之和大于第三边,判断能否组成三角形的方法是看两个较小的和是否大于第三边.3.下列说法正确的是( )A .射线AB 和射线BA 是同一条射线B .连接两点的线段叫两点间的距离C .两点之间,直线最短D .七边形的对角线一共有14条D 解析:D【分析】根据两点之间线段最短,数轴上两点间的距离的求解,射线的定义,多边形的对角线对各小题分析判断即可得解.【详解】解:A 、射线AB 和射线BA 是不同的射线,故本选项不符合题意;B 、连接两点的线段的长度叫两点间的距离,故本选项不符合题意;C 、两点之间,线段最短,故本选项不符合题意;D 、七边形的对角线一共有7(73)142条,正确 故选:D【点睛】本题考查了两点之间线段最短,数轴上两点间的距离的求解,射线的定义,多边形的对角线,熟练掌握概念是解题的关键.4.如图,在ABC 中,55A ∠=︒,65C =︒∠,BD 平分ABC ∠,//DE BC ,则BDE ∠的度数是( )A .50°B .25°C .30°D .35°C解析:C【分析】 根据三角形内角和求出∠ABC 的度数,再根据角平分线和平行线的性质求角.【详解】解:在ABC 中,∠ABC=180°-∠A-∠B=180°-55°-65°=60°,∵BD 平分ABC ∠,∴∠ABD=∠CBD=12∠ABC=30°, ∵//DE BC ,∴BDE ∠=∠CBD=30°,【点睛】本题考查了三角形内角和、角平分线的意义和平行线的性质,准确识图并能熟练应用三角形内角和、角平分线和平行线的性质是解题关键.5.在多边形的一边上任取一点(不是顶点),将这个点与多边形的各顶点连接起来,可以将多边形分割成8个三角形,则该多边形的边数为()A.8 B.9 C.10 D.11B解析:B【分析】逐一探究在三角形,四边形,五边形一边上任取一点(不是顶点),将这个点与多边形的各顶点连接起来,得到分割成的三角形的数量,再总结规律,运用规律列方程即可得到答案.【详解】解:如图,探究规律:在三角形的一边上任取一点(不是顶点),将这个点与三角形的各顶点连接起来,可以将三角形分割成2个三角形,在四边形的一边上任取一点(不是顶点),将这个点与四边形的各顶点连接起来,可以将四边形分割成3个三角形,在五边形的一边上任取一点(不是顶点),将这个点与五边形的各顶点连接起来,可以将五边形分割成4个三角形,总结规律:在n边形的一边上任取一点(不是顶点),将这个点与n边形的各顶点连接起来,可以将n边形分割成()1n-个三角形,应用规律:n-=由题意得:18,∴=9.n故选:.B【点睛】本题考查的是规律探究及规律运用,探究“在n边形的一边上任取一点(不是顶点),将这个点与n边形的各顶点连接起来,把n边形分割成的三角形的数量”是解题的关键.6.以下列各组线段为边,能组成三角形的是( )A.1,2,3 B.1,3,5 C.2,3,4 D.2,6,10C【分析】根据三角形三边关系逐一进行判断即可.【详解】A、1+2=3,不能构成三角形,故不符合题意;B、1+3=4<5,不能构成三角形,故不符合题意;C、2+3=5>4,可以构成三角形,故符合题意;D、2+6=8<10,不能构成三角形,故不符合题意,故选:C.【点睛】本题主要考查三角形的三边关系,比较简单,熟记三边关系定理是解决本题的关键.7.下列长度的三条线段能组成三角形的是()A.3,3,4 B.7,4,2 C.3,4,8 D.2,3,5A解析:A【分析】看哪个选项中两条较小的边的和大于最大的边即可.【详解】解:A、3+3>4,能构成三角形,故此选项正确;B、4+2<7,不能构成三角形,故此选项错误;C、3+4<8,不能构成三角形,故此选项错误;D、2+3=5,不能构成三角形,故此选项错误.故选:A.【点睛】此题主要考查了三角形的三边关系,在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.8.下列说法正确的有()个①把一个角分成两个角的射线叫做这个角的角平分线;②连接C、D两点的线段叫两点之间的距离;③两点之间直线最短;④射线上点的个数是直线上点的个数的一半;⑤nn-条对角线,这些对角线把这个边形从其中一个顶点出发连接其余各顶点,可以画出()3n边形分成了()2n-个三角形.A.3 B.2 C.1 D.0C解析:C【分析】分别利用直线、射线、线段的定义、角的概念和角平分线的定义以及多边形对角线的求法分析得出即可.【详解】解:①把一个角分成两个角的射线叫做这个角的角平分线,故原说法错误;②连接C 、D 两点的线段的长度叫两点之间的距离,故原说法错误;③两点之间线段最短,故原说法错误;④射线上点的个数与直线上点的个数没有关系,故原说法错误;⑤n 边形从其中一个顶点出发连接其余各顶点,可以画出()3n -条对角线,这些对角线把这个n 边形分成了()2n -个三角形,此说法正确.所以,正确的说法只有1个,故选:C .【点睛】此题主要考查了直线、射线、线段的定义以及角的概念和角平分线的定义等知识,正确把握相关定义是解题关键.9.如图,直线//,65,30AB CD A E ∠=︒∠=︒,则C ∠等于( )A .30°B .35°C .40°D .45°B解析:B【分析】根据平行线和三角形外角的性质即可求出C ∠的大小.【详解】如图,设AE 和CD 交于点F ,∵//AB CD ,∴65A DFE ∠=∠=︒(两直线平行同位角相等),∵DFE ∠是CEF △的外角,∴653035C DFE E ∠=∠-∠=︒-︒=︒.故选:B .【点睛】本题考查平行线和三角形外角的性质.熟练利用两个性质证明和求解是解答本题的关键. 10.如图,在ABC ∆中,80,BAC ∠=︒点D 在BC 边上,将ABD △沿AD 折叠,点B 恰好落在AC 边上的点'B 处,若'20B DC ∠=.则C ∠的度数为( )A .20B .25C .35D .40D解析:D【分析】 由折叠的性质可求得'B AB D ∠=∠,利用三角形内角和及外角的性质列方程求解.【详解】解:由题意可得'B AB D ∠=∠∵80,BAC ∠=︒∴∠B+∠C=100°又∵'='=20B AB D C B DC C ∠=∠+∠+∠∠,∴∠C+20°+∠C=100°解得:∠C=40°故选:D .【点睛】本题考查三角形内角和及外角的性质,找准角之间的等量关系列出方程正确计算是解题关键.二、填空题11.如图是一块正多边形的碎瓷片,经测得30ACB ∠=︒,则这个正多边形的边数是_________.12【分析】根据瓷片为正多边形及可知正多边形的外角为进而可求得正多边形的边数【详解】如图延长BC 可知∠1为正多边形的外角∵瓷片为正多边形∴AD=DB=BC ∠ADB=∠DBC ∴四边形ACBD 为等腰梯形解析:12【分析】根据瓷片为正多边形及=30ACB ∠︒,可知正多边形的外角为30︒,进而可求得正多边形的边数.【详解】如图,延长BC ,可知∠1为正多边形的外角,∵瓷片为正多边形,∴AD=DB=BC ,∠ADB=∠DBC ,∴四边形ACBD 为等腰梯形,∴BD ∥AC ,∴∠1==30ACB ∠︒,∴正多边形的边数为:360=1230︒︒, 故答案为:12.【点睛】本题考查正多边形的外角和,掌握相关知识点是解题的关键.12.若等腰三角形两边的长分别为3cm 和6cm ,则此三角形的周长是______________cm .15【分析】题中没有指出哪个底哪个是腰故应该分情况进行分析以3为腰6为底以6为腰3为底;然后应用三角形三边关系进行验证能否组成三角形即可【详解】当3cm 是腰时3+3=6不符合三角形三边关系故舍去;当解析:15【分析】题中没有指出哪个底哪个是腰,故应该分情况进行分析,以3为腰6为底,以6为腰3为底;然后应用三角形三边关系进行验证能否组成三角形即可.【详解】当3cm 是腰时,3+3=6,不符合三角形三边关系,故舍去;当6cm 是腰时,6+6=12>3,6-6=0<3,能组成三角形;∴周长=6+6+3=15cm .故它的周长为15cm .故答案为:15.【点睛】此题主要考查等腰三角形的性质及三角形三边关系的运用;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.13.如图,C 为∠AOB 的边OA 上一点,过点C 作CD ∥OB 交∠AOB 的平分线OE 于点F ,作CH ⊥OB 交BO 的延长线于点H ,若∠EFD =α,现有以下结论:①∠COF =α;②∠AOH =180°﹣2α;③CH ⊥CD ;④∠OCH =2α﹣90°.其中正确的是__(填序号).①②③④【分析】分别根据平行线的性质角平分线的定义邻补角的定义直角三角形两锐角互余进行判断即可得出结论【详解】解:∵CD ∥OB ∠EFD =α∴∠EOB =∠EFD =α∵OE 平分∠AOB ∴∠COF =∠EO 解析:①②③④【分析】分别根据平行线的性质,角平分线的定义,邻补角的定义,直角三角形两锐角互余进行判断即可得出结论.【详解】解:∵CD ∥OB ,∠EFD =α,∴∠EOB =∠EFD =α,∵OE 平分∠AOB ,∴∠COF =∠EOB =α,故①正确;∠AOB =2α,∵∠AOB +∠AOH =180°,∴∠AOH =180°﹣2α,故②正确;∵CD ∥OB ,CH ⊥OB ,∴CH ⊥CD ,故③正确;∴∠HCO +∠HOC =90°,∠AOB +∠HOC =180°,∴∠OCH =2α﹣90°,故④正确.故答案为:①②③④.【点睛】本题考查了平行线的性质,角平分线的定义,邻补角的定义,直角三角形两锐角互余等知识,熟练掌握相关知识点是解题关键.14.如图,已知ABC 中,90,50ACB B D ︒︒∠=∠=,为AB 上一点,将BCD △沿CD 折叠后,点B 落在点E 处,且//CE AB ,则ACD ∠的度数是___________.25°【分析】先求出∠A 的度数再根据折叠的性质可得∠E 的度数根据平行线的性质求出∠ADE 的度数进而即可求解【详解】∵∴∠A=40°∵沿折叠后点B 落在点E 处∴∠E=∠B=50°∵∴∠ADE=∠E=50解析:25°【分析】先求出∠A 的度数,再根据折叠的性质可得∠E 的度数,根据平行线的性质求出∠ADE 的度数,进而即可求解.【详解】∵90,50ACB B ︒︒∠=∠=, ∴∠A=40°,∵BCD △沿CD 折叠后,点B 落在点E 处,∴∠E=∠B=50°,∵//CE AB ,∴∠ADE=∠E=50°,∴∠BDC=∠EDC=(180°-50°)÷2=65°,∴∠ACD=∠BDC-∠A=65°-40°=25°,故答案是:25°.【点睛】本题主要考查折叠的性质,三角形外角的性质,平行线的性质,直角三角形的性质,掌握平行线的性质以及三角形外角的性质,是解题的关键.15.若,,a b c 是△ABC 的三边长,试化简a b c a c b +-+--= __________.2b 【分析】先根据三角形三边关系确定>0<0再去绝对值化简即可【详解】∵是△ABC 的三边长∴>0<0=+=2b 故答案填:2b 【点睛】本题主要考查三角形三边关系绝对值的性质和化简问题根据三角形三边关系解析:2b【分析】先根据三角形三边关系,确定a b c +->0,()a b c -+<0,再去绝对值化简即可.【详解】∵,,a b c 是△ABC 的三边长∴a b c +->0,()a b c -+<0,a b c a c b +-+--=a b c +-+b c a +-=2b ,故答案填:2b .【点睛】本题主要考查三角形三边关系、绝对值的性质和化简问题,根据三角形三边关系定理正确去绝对值是解决本题的关键.16.从一个多边形的一个顶点出发,一共可作9条对角线,则这个多边形的内角和是_________度.1800【分析】设多边形边数为n 根据n 边形从一个顶点出发可引出(n-3)条对角线可得n-3=9计算出n 的值再根据多边形内角和(n-2)•180°可得答案【详解】设多边形边数为n 由题意得:n-3=9n解析:1800【分析】设多边形边数为n ,根据n 边形从一个顶点出发可引出(n-3)条对角线可得n-3=9,计算出n 的值,再根据多边形内角和(n-2)•180°可得答案.【详解】设多边形边数为n ,由题意得:n-3=9,n=12,内角和:()1221801800-⨯︒=︒.故答案为:1800.【点睛】本题主要考查了多边形的对角线,以及多边形内角和,关键是掌握n 边形从一个顶点出发可引出(n-3)条对角线,多边形内角和公式(n-2)•180°.17.如图,则∠A+∠B+∠C+∠D+∠E+∠F+∠G =_____.540°【分析】连接GD 根据多边形的内角和定理可求解∠A+∠B+∠C+∠CDG+∠DGA =540°再利用三角形的内角和定理结合对顶角的性质可求得∠FGD+∠EDG =∠E+∠F 进而可求解【详解】解:连解析:540°【分析】连接GD ,根据多边形的内角和定理可求解∠A+∠B+∠C+∠CDG+∠DGA =540°,再利用三角形的内角和定理结合对顶角的性质可求得∠FGD+∠EDG =∠E+∠F ,进而可求解.【详解】解:连接GD ,∠A+∠B+∠C+∠CDG+∠DGA =(5﹣2)×180°=540°,∵∠1+∠FGD+∠EDG =180°,∠2+∠E+∠F =180°,∠1=∠2,∴∠FGD+∠EDG =∠E+∠F ,∴∠A+∠B+∠C+∠CDE+∠E+∠F+∠FGA =540°,故答案为540°.【点睛】本题主要考查多边形的内角和定理,三角形的内角和定理,掌握相关定理是解题的关键.18.如图,△ABC 的面积为1,分别倍长(延长一倍)AB ,BC ,CA 得到△A 1B 1C 1,再分别倍长A 1B 1,B 1C 1,C 1A 1得到△A 2B 2C 2.…按此规律,倍长2020次后得到的△A 2020B 2020C 2020的面积为_____.72020【分析】连接AB1BC1CA1根据等底等高的三角形面积相等可得=7S △ABC 由此即可解题【详解】连接AB1BC1CA1根据等底等高的三角形面积相等△A1BC △A1B1C △AB1C △AB1C解析:72020【分析】连接AB 1、BC 1、CA 1,根据等底等高的三角形面积相等,可得111A B C S △=7S △ABC ,由此即可解题.【详解】连接AB 1、BC 1、CA 1,根据等底等高的三角形面积相等,△A 1BC 、△A 1B 1C 、△AB 1C 、△AB 1C 1、△ABC 1、△A 1BC 1、△ABC 的面积都相等,所以,111A B C S △=7S △ABC ,同理222A B C S △=7111A B C S △=72S △ABC ,依此类推,△A 2020B 2020C 2020的面积为=72020S △ABC ,∵△ABC 的面积为1,∴202020202020A S B C ∆=72020.故答案为:72020.【点睛】本题考查了三角形的面积,根据等底等高的三角形的面积相等求出一次倍长后所得的三角形的面积等于原三角形的面积的7倍是解题的关键.19.多边形每一个内角都等于90︒,则从此多边形一个顶点出发的对角线有____条.1【分析】先根据多边形内角和公式求出它是几边形就可以得到结果【详解】解:设这个多边形是n 边形解得∴是四边形∴从一个顶点出发的对角线有1条故答案是:1【点睛】本题考查多边形内角和公式解题的关键是掌握多 解析:1【分析】先根据多边形内角和公式求出它是几边形,就可以得到结果.【详解】解:设这个多边形是n 边形,()180290n n ︒-=︒,解得4n =,∴是四边形,∴从一个顶点出发的对角线有1条.故答案是:1.【点睛】本题考查多边形内角和公式,解题的关键是掌握多边形的内角和公式.20.AD 为ABC 的中线,AE 为ABC 的高,ABD △的面积为14,7,2AE CE ==则DE 的长为_________.2或6【分析】利用面积法求出BD 即可求得CD 再分AE 在内部和外部求出DE 即可【详解】解:为的高△ABD 的面积为14AE=7∴∵为的中线∴CD=BD=4当AE 在内部时∵CE=2∴DE=CD-CE=2当 解析:2或6【分析】利用面积法求出BD ,即可求得CD ,再分AE 在ABC 内部和外部,求出DE 即可.【详解】解:AE 为ABC 的高,△ABD 的面积为14,AE=7,1142∴⋅⋅=BD AE ,∴2828=4,B 7D ==AE ∵AD 为ABC 的中线, ∴CD=BD=4, 当AE 在ABC 内部时∵CE=2,∴DE=CD-CE=2,当AE 在ABC 外部时∵CE=2,∴DE=CD+CE=6,故答案为:2或6【点睛】本题考查三角形的高、中线和面积,注意高可在三角形的内部和外部是解题的关键.三、解答题21.如图,在ABC 中,30A ∠=︒,80ACB ∠=︒,ABC 的外角CBD ∠的平分线BE 交AC 的延长线于点E .(1)求CBE ∠的度数;(2)过点D 作//DF BE ,交AC 的延长线于点F ,求F ∠的度数.解析:(1)55CBE ∠=︒;(2)25F ∠=︒.【分析】(1)利用三角形的外角性质和角的平分线性质求解即可;(2)根据三角形外角的性质和两直线平行,同位角相等求解.【详解】(1)在ABC 中,30A ∠=︒,80ACB ∠=︒,3080110CBD A ACB ∴∠=∠+∠=︒+︒=︒, BE 是CBD ∠的平分线, 111105522CBE CBD ∴∠=∠=⨯︒=︒; (2)80ACB ∠=︒,55CBE ∠=︒,805525CEB ACB CBE ∴∠=∠--︒∠=︒=︒,//DF BE ,25F CEB ∴∠=∠=︒.【点睛】本题考查了运用三角形外角性质,角平分线性质,平行线的性质求角的度数,熟练并灵活运用这些性质是解题的关键.22.如图,在ABC 中,ABC ∠和ACB ∠的平分线相交于点P ,根据下列条件,求BPC ∠的度数.(1)若40ABC ∠=︒,60ACB ∠=︒,则BPC ∠=______;(2)若110ABC ACB ∠+∠=︒,则BPC ∠=______;(3)若90A ∠=︒,则BPC ∠=______;(4)从以上的计算中,你能发现已知A ∠,求BPC ∠的公式是:BPC ∠=______(提示:用A ∠表示).解析:(1)130°;(2)125°;(3)135°;(4)1902A ︒+∠. 【分析】 (1)依据∠ABC 和∠ACB 的平分线相交于点P ,可得∠2+∠4的度数,依据三角形内角和定理,即可得到∠BPC 的度数;(2)依据∠ABC 和∠ACB 的平分线相交于点P ,可得∠2+∠4的度数,依据三角形内角和定理,即可得到∠BPC 的度数;(3)依据∠A=90°,可得∠ABC+∠ACB 的度数,依据∠ABC 和∠ACB 的平分线相交于点P ,可得∠2+∠4的度数,依据三角形内角和定理,即可得到∠BPC 的度数;(4)根据三角形的内角和定理可得∠ABC+∠ACB 的度数,依据∠ABC 和∠ACB 的平分线相交于点P ,可得∠2+∠4的度数,依据三角形内角和定理,即可得到∠BPC=90°+12∠A . 【详解】解:如下图所示,(1)∵∠ABC=40°,∠ACB=60°,∠ABC 和∠ACB 的平分线相交于点P ,∴∠2+∠4=20°+30°=50°,∴△BCP 中,∠P=180°-50°=130°,故答案为:130°;(2)∵∠ABC+∠ACB=110°,∠ABC 和∠ACB 的平分线相交于点P ,∴∠2+∠4=12×110°=55°, ∴△BCP 中,∠P=180°-55°=125°,故答案为:125°;(3)∵∠A=90°,∴∠ABC+∠ACB=90°,∠ABC 和∠ACB 的平分线相交于点P ,∴∠2+∠4=12×90°=45°, ∴△BCP 中,∠P=180°-45°=135°,故答案为:135°;(4)∵∠ABC+∠ACB=180°-∠A ,∠ABC 和∠ACB 的平分线相交于点P ,∴124(180)2A ∠+∠=⨯︒-∠, ∴△BCP 中,11180(180)9022P A A =︒-⨯︒-∠=︒+∠∠. 故答案为:1902A ︒+∠. 【点睛】 本题主要考查了三角形内角和定理以及角平分线的定义的运用,解题时注意:三角形内角和是180°.23.已知,a ,b ,c 为ABC 的三边,化简|a ﹣b ﹣c|﹣2|b ﹣c ﹣a|+|a+b ﹣c|. 解析:﹣2a+4b ﹣2c【分析】根据三角形三边关系:两边之和大于第三边,两边之差小于第三边,来判定绝对值里的式子的正负值,然后去绝对值进行计算即可.【详解】解:∵a ,b ,c 为ABC 的三边,∴a+b >c ,b+c >a ,a+c >b∴|a ﹣b ﹣c|﹣2|b ﹣c ﹣a|+|a+b ﹣c|=|a-(b+c)|-2|b-(c+a)|+ |a+b ﹣c|=﹣[a ﹣(b+c )]+2[b ﹣(c+a )]+(a+b ﹣c )=-a+(b+c)+2b-2(c+a)+a+b-c=﹣a+b+c+2b ﹣2c ﹣2a+a+b ﹣c=﹣2a+4b ﹣2c .【点睛】此题主要考查了三角形三边关系,以及绝对值的性质,关键是掌握三边关系定理. 24.如图ABC 中,45B ∠=︒,70ACB ∠=︒,AD 是ABC 的角平分线,F 是AD 上一点EF AD ⊥,交AC 于E ,交BC 的延长线于G .求G ∠的度数.解析:12.5︒【分析】根据角平分线的定义以及三角形的内角和定理即可得出∠ADC 的度数,再根据垂直定义以及三角形的内角和即可得出∠G 的度数.【详解】解:∵∠B =45°,∠ACB =70°,AD 是ABC 的角平分线,∴∠BAC =2∠CAD =65°,∴∠ADC =180°﹣70°﹣32.5°=77.5°,∵EF ⊥AD ,∴∠G =180°﹣90°﹣77.5°=12.5°.【点睛】本题主要考查了三角形的内角和定理以及角平分线的定义,难度适中.25.从7根长度都是1的牙签中选取部分或者全部来摆放三角形(牙签不可以折断),你能摆放出多少种形状不同的三角形(两个全等三角形视为一种三角形)?并请你一一写出每种三角形的三边长.解析:能摆放出5种形状不同的三角形,它们的三边长分别是1,1,1、1,2,2、2,2,2、1,3,3、2,2,3.【分析】根据三角形的三边关系定理逐一摆放出来即可.【详解】由题意,根据选取牙签的根数,分以下五种情况:(1)当选取3根牙签时,三边长只能是1,1,1,满足三角形的三边关系定理,能摆出三角形;(2)当选取4根牙签时,三边长只能是1,1,2,不满足三角形的三边关系定理,不能摆出三角形;(3)当选取5根牙签时,三边长可以是1,1,3或1,2,2,其中,1,1,3不满足三角形的三边关系定理,不能摆出三角形,1,2,2满足三角形的三边关系定理,能摆出三角形;(4)当选取6根牙签时,三边长可以是1,1,4或1,2,3或2,2,2,其中,1,1,4和1,2,3均不满足三角形的三边关系定理,均不能摆出三角形,2,2,2满足三角形的三边关系定理,能摆出三角形;(5)当选取7根牙签时,三边长可以是1,1,5或1,2,4或1,3,3或2,2,3,其中,1,1,5和1,2,4均不满足三角形的三边关系定理,均不能摆出三角形,1,3,3和2,2,3均满足三角形的三边关系定理,均能摆出三角形;综上,能摆放出5种形状不同的三角形,它们的三边长分别是1,1,1、1,2,2、2,2,2、1,3,3、2,2,3.【点睛】本题考查了三角形的三边关系定理的应用,依据题意,正确分情况讨论是解题关键. 26.如图,在ABC 中,D 是AB 上一点,E 是AC 上一点,BE 、CD 相交于点F ,62A ∠=︒,35ACD ∠=︒,20ABE ∠=︒.求:(1)BDC ∠的度数;(2)BFD ∠的度数.对于上述问题,在以下解答过程的空白处填上适当的内容(理由或数学公式)解:(1)∵BDC A ACD ∠=∠+∠( )∴623597BDC ∠=︒+︒=︒(等量代换)(2)∵BFD BDC ABE ∠+∠+∠=______( )∴180BFD BDC ABE ∠=︒-∠-∠(等式的性质)1809720=︒-︒-︒(等量代换)63=︒解析:(1)三角形的外角性质;(2)180,三角形内角和定理【分析】(1)在△ACD中,利用三角形的外角性质,三角形的一个外角等于与它不相邻的两个内角的和计算即可;(2)在△BFD中,利用三角形的内角和定理计算即可.【详解】(1)∵∠BDC=∠A+∠ACD(三角形的外角性质),∴∠BDC=62°+35°=97°(等量代换),故答案为:三角形的外角性质;(2)∵∠BFD+∠BDC+∠ABE=180°(三角形内角和定理),∴∠BFD=180°-∠BDC-∠ABE(等式的性质),=180°-97°-20°(等量代换)=63°;故答案为:180°,三角形内角和定理.【点睛】本题主要考查了三角形的外角性质与三角形的内角和定理,熟记性质与定理是解题的关键.27.如图,AB∥CD,点E是CD上一点,连结AE.EB平分∠AED,且DB⊥BE,AF⊥AC,AF与BE交于点M.(1)若∠AEC=100°,求∠1的度数;(2)若∠2=∠D,则∠CAE=∠C吗?请说明理由.解析:(1)40°;(2)∠CAE=∠C,理由见解析.【分析】(1)根据邻补角的定义可求∠AED,再根据角平分线的定义和平行线的性质可求∠1的度数;(2)根据三角形内角和定理可求∠BED=∠C,根据平行线的判定可知AC∥BE,根据平行线的性质可得∠CAE=∠AEB,根据角平分线的定义和等量关系即可求解.【详解】(1)∵∠AEC=100°,∴∠AED=80°,∵EB平分∠AED,∴∠BED=40°,∵AB ∥CD ,∴∠1=∠BED =40°;(2)∵DB ⊥BE ,AF ⊥AC ,∴∠EBD =∠CAF =90°,∵∠2=∠D ,∴∠BED =∠C ,∴AC ∥BE ,∴∠CAE =∠AEB ,∵EB 平分∠AED ,∴∠AEB =∠BED ,∴∠CAE =∠C .【点睛】本题考查平行线的判定和性质,邻补角的定义,角平分线的定义,三角形内角和定理.熟悉相应的性质和定义是解答本题的关键.28.如图,AD 、AE 分别是ABC 的高和角平分线.(1)已知∠B =40°,∠C =60°,求∠DAE 的度数;(2)设∠B =α,∠C =β(α<β),请用含α,β的代数式表示∠DAE ,并证明.解析:(1)10°;(2)12DAE,证明见解析.【分析】 (1)根据三角形的内角和等于180︒列式求出BAC ∠,再根据角平分线的定义求出BAE ∠,根据直角三角形两锐角互余求出BAD ∠,然后根据DAE BAD BAE ∠=∠-∠代入数据计算即可得解;(2)根据三角形的内角和等于180︒列式表示出BAC ∠,再根据角平分线的定义求出BAE ∠,根据直角三角形两锐角互余求出BAD ∠,然后根据DAE BAD BAE ∠=∠-∠整理即可得解.【详解】解:(1)40B ∠=︒,60C ∠=°,180180406080BAC B C ∴∠=︒-∠-∠=︒-︒-︒=︒, AE ∵是角平分线, 11804022BAE BAC ,AD 是高,90904050BADB , 504010DAE BAD BAE ;(2)1()2.B α∠=,()C βαβ∠=<,180()BAC ,AE ∵是角平分线, 1190()22BAE BAC ,AD 是高,9090BADB , 1190[90()]()22DAE BAD BAE .【点睛】本题考查了三角形的内角和定理,角平分线的定义,直角三角形两锐角互余的性质,熟练掌握定理与概念并准确识图理清图中各角度之间的关系是解题的关键.。

(人教版)成都八年级数学上册第十一章《三角形》(答案解析)

(人教版)成都八年级数学上册第十一章《三角形》(答案解析)

一、选择题1.如图,//,40,50,AB CD B C ∠=︒∠=︒则E ∠的度数为( )A .70︒B .80︒C .90︒D .100︒C解析:C【分析】 根据平行线的性质求出140∠=︒,根据三角形内角和定理计算,得到答案.【详解】解:∵//AB CD ,40B ∠=︒,50C ∠=︒,∴140B ∠=∠=︒,∴ 1801180405090E C ∠=︒-∠-∠=︒-︒-︒=︒.故选:C【点睛】本题考查的是平行线的性质、三角形内角和定理,掌握两直线平行,同位角相等是解题的关键.2.下列长度的三条线段能构成三角形的是( )A .1,2,3B .5,12,13C .4,5,10D .3,3,6B解析:B【分析】根据三角形的三边关系进行分析判断即可.【详解】解:根据三角形任意两边的和大于第三边,得A 中,1+2=3,不能组成三角形;B 中,5+12=17>13,能组成三角形;C 中,4+5=9<10,不能够组成三角形;D 中,3+3=6,不能组成三角形.故选:B .【点睛】本题考查了能够组成三角形三边的条件:用两条较短的线段相加,如果大于最长的那条线段就能够组成三角形.3.如图,AD 是ABC 的外角CAE ∠的平分线,35B ∠=︒,60=︒∠DAC ,则ACD ∠的度数为( )A .25︒B .85︒C .60︒D .95︒D解析:D【分析】 根据角平分线的定义可得∠DAC =∠DAE ,根据三角形的一个外角等于与它不相邻的两个内角的和可得∠D ,然后利用三角形的内角和定理列式计算即可得解.【详解】解:∵AD 是∠CAE 的平分线,60=︒∠DAC ,∴∠DAC =∠DAE =60°,又∵35B ∠=︒由三角形的外角性质得,∠D =∠DAE−∠B =60°−35°=25°,∴在△ACD 中,∠ACD =180°−∠DAC -∠D =180°−60°−25°=95°.故选:D .【点睛】本题考查了三角形的一个外角等于与它不相邻的两个内角的和,三角形的内角和定理,熟记性质并准确识图理清图中各角度之间的关系是解题的关键.4.如图,//AB CD ,40C ∠=︒,60A ∠=︒,则F ∠的度数为( )A .10°B .20°C .30°D .40°B解析:B【分析】 利用平行线和三角形外角的性质即可求解.【详解】∵//AB CD ,∴60DEF A ∠=∠=︒.∵DEF C F ∠=∠+∠,∴604020F DEF C ∠=∠-∠=︒-︒=︒.故选:B .【点睛】本题考查平行线和三角形外角的性质,熟练利用其性质找到角的等量关系是解答本题的关键.5.如图,1∠等于( )A .40B .50C .60D .70D解析:D【分析】 根据三角形外角的性质直接可得出答案.【详解】解:由三角形外角的性质,得160=130∠+︒︒11306070∴∠=︒-︒=︒故选D .【点睛】本题考查了三角形外角的性质,比较简单.6.下列命题是真命题的个数为( )①两条直线被第三条直线所截,内错角相等.②三角形的内角和是180°.③在同一平面内平行于同一条直线的两条直线平行.④相等的角是对顶角.⑤两点之间,线段最短.A .2B .3C .4D .5B解析:B【分析】首先判断所给命题的真假,再选出正确的选项.【详解】解:∵两条直线被第三条直线所截,两直线平行,内错角相等,∴①错误;∵三角形的内角和是180°,∴②正确;∵在同一平面内平行于同一条直线的两条直线平行,∴③正确;∵相等的角可以是对顶角,也可以是内错角、同位角等等,∴④错误;∵连接两点的所有连线中,线段最短,∴⑤正确;∴真命题为②③⑤,故选B .【点睛】本题考查命题的真假判断,根据所学知识判断一个命题条件成立的情况下,结论是否一定成立来判断命题是真命题还是假命题是解题关键.7.下列长度(单位:cm)的三条线段能组成三角形的是()A.13,11,12 B.3,2,1 C.5,12,7 D.5,13,5A解析:A【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”进行分析.【详解】解:根据三角形的三边关系,A、11+12>13,能组成三角形,符合题意;B、1+2=3,不能组成三角形,不符合题意;C、5+7=12,不能组成三角形,不符合题意;D、5+5<13,不能组成三角形,不符合题意;故选A.【点睛】此题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.8.在△ABC中,∠A=x°,∠B=(2x+10)°,∠C的外角大小(x+40)°,则x的值等于()A.15 B.20 C.30 D.40A解析:A【分析】根据三角形的一个外角等于与它不相邻的两个内角的和,列出方程求解即可.【详解】解:∵∠C的外角=∠A+∠B,∴x+40=2x+10+x,解得x=15.故选:A.【点睛】本题考查了三角形的外角性质,熟记三角形的一个外角等于与它不相邻的两个内角的和是解题的关键.9.长度分别为2,3,4,5的四根细木棒首尾相连,围成一个三角形(木棒允许连接,但不允许折断),得到的三角形的最长边长为()A.8 B.5 C.6 D.7C解析:C【分析】利用三角形的三边关系列举出所围成三角形的不同情况,通过比较得到结论.【详解】解:①长度分别为5、4、5,能构成三角形,且最长边为5;②长度分别为2、7、5,不能构成三角形;③长度分别为2、3、9,不能构成三角形;④长度分别为7、3、4,不能构成三角形;⑤长度分别为3、5、6,能构成三角形,且最长边为6;⑥长度分别为2、4、8,不能构成三角形;综上所述,得到三角形的最长边长为6.故选:C .【点睛】本题考查了三角形的三边关系,利用了三角形中三边的关系求解.注意分类讨论,不重不漏.10.如图,△ABC 中AC 边上的高是哪条垂线段.( )A .AEB .CDC .BFD .AF C解析:C【分析】 根据三角形的高的定义,△ABC 中AC 边上的高是过B 点向AC 作的垂线段,即为BF .【详解】解:∵BF ⊥AC 于F ,∴△ABC 中AC 边上的高是垂线段BF .故选:C .【点睛】本题考查了三角形的高的定义,关键是根据从三角形的一个顶点向它的对边作垂线,垂足与顶点之间的线段叫做三角形的高解答.二、填空题11.如图,在Rt ACB ∆中,90ACB ∠=︒,25A ∠=︒,D 是AB 上一点,将Rt ABC ∆沿CD 折叠,使点B 落在AC 边上的B '处,则ADB '∠等于_______.【分析】根据翻折变换的性质得出∠ACD=∠BCD∠CDB=∠CDB′进而利用三角形内角和定理得出∠BDC=∠B′DC再利用平角的定义即可得出答案【详解】解:∵将Rt△ABC沿CD折叠使点B落在AC边解析:40【分析】根据翻折变换的性质得出∠ACD=∠BCD,∠CDB=∠CDB′,进而利用三角形内角和定理得出∠BDC=∠B′DC,再利用平角的定义,即可得出答案.【详解】解:∵将Rt△ABC沿CD折叠,使点B落在AC边上的B′处,∴∠ACD=∠BCD,∠CDB=∠CDB′,∵∠ACB=90°,∠A=25°,∴∠ACD=∠BCD=45°,∠B=90°-25°=65°,∴∠BDC=∠B′DC=180°-45°-65°=70°,∴∠ADB′=180°-70°-70°=40°.故答案为:40°.【点睛】此题主要考查了翻折变换的性质以及三角形内角和定理,得出∠BDC和∠B′DC的度数是解题关键.12.如果三角形两条边分别为3和5,则周长L的取值范围是________10<L<16【分析】根据三角形的三边关系确定第三边的取值范围再根据不等式的性质求出答案【详解】设第三边长为x∵有两条边分别为3和5∴5-3<x<5+3解得2<x<8∴2+3+5<x+3+5<8+3解析:10<L<16【分析】根据三角形的三边关系确定第三边的取值范围,再根据不等式的性质求出答案.【详解】设第三边长为x,∵有两条边分别为3和5,∴5-3<x<5+3,解得2<x<8,∴2+3+5<x+3+5<8+3+5,∵周长L=x+3+5,∴10<L<16,故答案为: 10<L<16.【点睛】此题考查三角形三边关系,不等式的性质,熟记三角形的三边关系确定出第三条边长是解题的关键.13.如图:70B ∠=︒,60A ∠=︒,将ABC 沿一条直线MN 折叠,使点C 落到1C 位置,则12∠-∠=______.100°【分析】由三角形内角和定理可求得∠C 的度数又由折叠的性质求得∠C1的度数然后由三角形外角的性质求得答案【详解】解:如图∵∠B =70°∠A =60°∴∠C =180°﹣∠B ﹣∠C =50°由折叠可知 解析:100°【分析】由三角形内角和定理,可求得∠C 的度数,又由折叠的性质,求得∠C 1的度数,然后由三角形外角的性质,求得答案.【详解】解:如图,∵∠B =70°,∠A =60°,∴∠C =180°﹣∠B ﹣∠C =50°,由折叠可知:∠C 1=∠C =50°,∵∠3=∠2+∠C 1∠1=∠3+∠C ,∴∠1=∠2+∠C 1+∠C ,∴∠1﹣∠2=2∠C =100°.故答案为:100°.【点睛】此题考查了折叠的性质、三角形内角和定理以及三角形外角等于和它不相邻的两个内角和的性质.此题难度适中,注意折叠中的对应关系,注意掌握转化思想的应用.14.三角形有两条边的长度分别是5和7,则第三边a 的取值范围是_____.2<a <12【分析】已知三角形两边的长根据三角形三边关系定理知:第三边的取值范围应该是大于已知两边的差而小于已知两边的和【详解】解:根据三角形三边关系定理知:第三边a 的取值范围是:(7-5)<a <(解析:2<a <12.【分析】已知三角形两边的长,根据三角形三边关系定理知:第三边的取值范围应该是大于已知两边的差而小于已知两边的和.【详解】解:根据三角形三边关系定理知:第三边a 的取值范围是:(7-5)<a <(7+5),即2<a <12.【点睛】本题考查了三角形三边关系,两边之和大于第三边,两边之差小于第三边.15.已知等腰三角形的一边长等于11cm ,一边长等于5cm ,它的周长为______.【分析】题目给出等腰三角形有两条边长为11和5而没有明确腰底分别是多少所以要进行讨论还要应用三角形的三边关系验证能否组成三角形【详解】分两种情况:当腰为11时11+11>511-11<5所以能构成三解析:27cm【分析】题目给出等腰三角形有两条边长为11和5,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】分两种情况:当腰为11时,11+11>5,11-11<5,所以能构成三角形,周长是:11+11+5=27cm ;当腰为5时,5+5<11,所以不能构成三角形,故答案为:27cm .【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.16.一块含45°角的直角三角板如图放置,其中,直线//a b ,185∠=︒,则2∠=______度.40【分析】如图(见解析)先根据直角三角板的定义可得再根据平行线的性质可得然后根据三角形的外角性质可得最后根据对顶角相等即可得【详解】如图由题意得:由对顶角相等得:故答案为:40【点睛】本题考查了平解析:40【分析】∠=︒,再根据平行线的性质可得如图(见解析),先根据直角三角板的定义可得445∠=︒,然后根据三角形的外角性质可得340=∠1585∠=︒,最后根据对顶角相等即可得.【详解】∠=︒,如图,由题意得:445∠=︒,a b,185//=︒,∴∠∠=1855∴∠=∠-∠=︒,35440∠=∠=︒,由对顶角相等得:2340故答案为:40.【点睛】本题考查了平行线的性质、对顶角相等、三角形的外角性质,熟练掌握三角形的外角性质是解题关键.∠的度数是______.17.一副分别含有30°和45°的直角三角板,拼成如图,则BFD15°【分析】先根据直角三角板的性质得出∠B 及∠CDE的度数再由补角的定义得出∠BDF 的度数根据三角形内角和定理即可得出结论【详解】解:∵图中是一副直角三角板∴∠B=45°∠CDE=60°∴∠BDF 解析:15°【分析】先根据直角三角板的性质得出∠B 及∠CDE 的度数,再由补角的定义得出∠BDF 的度数,根据三角形内角和定理即可得出结论.【详解】解:∵图中是一副直角三角板,∴∠B=45°,∠CDE=60°,∴∠BDF=180°-60°=120°,∴∠BFD=180°-45°-120°=15°.故答案为:15°.【点睛】本题考查的是三角形内角和定理,熟知三角形内角和是180°是解答此题的关键. 18.如图,ABC 面积为1,第一次操作:分别延长,,AB BC CA 至点111,,A B C 使111,,A B AB B C BC C A CA ===顺次结111,,A B C ,得到111A B C △,第二次操作:分别延长111111,,A B B C C A 至点222A B C ,使211121112111,,A B A B B C B C C A C A ===,顺次连结222,,A B C ,得到222A B C △…,按此规律,则333A B C △的面积为_______.343【分析】先根据已知条件求出△A1B1C1及△A2B2C2的面积再根据两三角形的倍数关系求解即可【详解】△ABC 与△A1BB1底相等(AB =A1B )高为1:2(BB1=2BC )故面积比为1:2∵解析:343【分析】先根据已知条件求出△A 1B 1C 1及△A 2B 2C 2的面积,再根据两三角形的倍数关系求解即可.【详解】△ABC 与△A 1BB 1底相等(AB =A 1B ),高为1:2(BB 1=2BC ),故面积比为1:2, ∵△ABC 面积为1,∴112A BB S =△,同理可得11112C B C A C A S S ==△△, ∴1112317A B C S =⨯+=△;同理可证222111749A B C A B C S S ==△△,所以333749343A B C S =⨯=△,故答案为:343.【点睛】本题考查了图形面积的规律探究,准确找到每变化一次之后图形面积的变化规律是解决问题的关键.19.如图,ABC 的角平分线OB 、OC 相交于点O ,40A ∠︒=,则BOC ∠=______.【分析】根据三角形的角平分线定义和三角形的内角和定理求出∠OBC+∠OCB 的度数再根据三角形的内角和定理即可求出∠BOC 的度数【详解】解:∵OBOC 分别是∠ABC 和∠ACB 的角平分线∴∠OBC+∠O 解析:110︒.【分析】根据三角形的角平分线定义和三角形的内角和定理求出∠OBC+∠OCB 的度数,再根据三角形的内角和定理即可求出∠BOC 的度数.【详解】解:∵OB 、OC 分别是∠ABC 和∠ACB 的角平分线,∴∠OBC+∠OCB=111()222ABC ACB ABC ACB ∠+∠=∠+∠ ∵∠A=40°, ∴∠OBC+∠OCB=1(18040)2︒︒- =70°, ∴∠BOC=180°-(∠OBC+∠OCB )=180°-70°=110°.故答案是110.【点睛】本题主要利用角平分线的定义和三角形内角和定理求解,熟记概念和定理是解题的关键.20.如图,线段AD,BE,CF两两相交于点H,I,G,分别连接AB,CD,∠+∠+∠+∠+∠+∠=____.EF.则A B C D E F360°【分析】根据三角形的外角性质和三角形的内角和求出即可【详解】解:∵∠BHI=∠A+∠B∠DIF=∠C+∠D∠FGH=∠E+∠F∴∠BHI+∠DIF+∠FGH=∠A+∠B +∠C+∠D+∠E+∠解析:360°【分析】根据三角形的外角性质和三角形的内角和求出即可.【详解】解:∵∠BHI=∠A+∠B,∠DIF=∠C+∠D,∠FGH=∠E+∠F,∴∠BHI+∠DIF+∠FGH=∠A+∠B+∠C+∠D+∠E+∠F,∵∠BHI+∠DIF+∠FGH=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°,故答案为:360°.【点睛】本题考查了三角形的外角和定理,三角形的外角性质的应用,主要考查学生运用定理进行推理的能力,注意:三角形的一个外角等于和它不相邻的两个内角的和,三角形的外角和等于360°.三、解答题PQ MN,点C是PQ、MN之间(不在直线PQ,MN上)的一个动点.21.如图,直线//(1)如图1,若∠1与∠2都是锐角,请写出∠C与∠1,∠2之间的数量关系并说明理由.(2)把Rt△ABC如图2摆放,直角顶点C在两条平行线之间,CB与PQ交于点D,CA与MN 交于点E ,BA 与PQ 交于点F ,点G 在线段CE 上,连接DG ,有∠BDF =∠GDF ,求AEN CDG ∠∠的值. (3)如图3,若点D 是MN 下方一点,BC 平分∠PBD ,AM 平分∠CAD ,已知∠PBC =25°,求∠ACB +∠ADB 的度数.解析:(1)12C ∠=∠+∠,理由见解析;(2)12;(3)75︒. 【分析】(1)过C 作//l MN ,标注字母,如图1所示,根据平行线公理证明//l PQ ,再根据平行线的性质即可求解.(2)先证明∠GDF =∠PDC ,可得∠CDG +2∠PDC =180°,即∠PDC =1902CDG ︒-∠,再证明∠AEN =∠CEM 90PDC =︒-∠,再代入AEN CDG∠∠计算即可得到答案; (3)利用角平分线的定义与平行线的性质求解:∠ADB =50BKA MAD CAM ∠-∠=︒-∠,再利用(1)的结论可得,∠ACB =∠PBC +∠CAM ,从而可得答案.【详解】解:(1)∠C =∠1+∠2,证明:过C 作//l MN ,标注字母,如图1所示,∵//l MN ,∴∠4=∠2(两直线平行,内错角相等),∵//l MN ,//PQ MN ,∴//l PQ ,∴∠3=∠1(两直线平行,内错角相等),∴∠3+∠4=∠1+∠2,∴12DCE ∠=∠+∠;(2)如图2,∵∠BDF =∠GDF ,∠BDF =∠PDC ,∴∠GDF =∠PDC ,∵∠PDC +∠CDG +∠GDF =180°,∴∠CDG +2∠PDC =180°,∴∠PDC =1902CDG ︒-∠, 由(1)可得,∠PDC +∠CEM =∠C =90°,∠AEN =∠CEM ,1909090122CDG AEN CEM PDC CDG CDG CDG CDG ⎛⎫︒-︒-∠ ⎪∠∠︒-∠⎝⎭∴====∠∠∠∠; (3)如图3,标注字母,∵BC 平分∠PBD ,AM 平分∠CAD ,∠PBC =25°,∴∠PBD =2∠PBC =50°,∠CAM =∠MAD ,∵//PQ MN ,∴BKA ∠=∠PBD =50°,∴∠ADB =5050BKA MAD MAD CAM ∠-∠=︒-∠=︒-∠,由(1)可得,∠ACB =∠PBC +∠CAM ,∴∠ACB +∠ADB =∠PBC +∠CAM 50255075CAM +︒-∠=︒+︒=︒.【点睛】本题考查的是平行公理的应用,平行线的性质,角平分线的定义,平角的定义,三角形的外角的性质,掌握以上知识是解题的关键.22.△ABC 中,AD 是∠BAC 的角平分线,AE 是△ABC 的高.(1)如图1,若∠B =40°,∠C=60°,求∠DAE 的度数;(2)如图2,∠B <∠C ,则DAE 、∠B ,∠C 之间的数量关系为___________;(3)如图3,延长AC到点F,∠CAE和∠BCF的角平分线交于点G,求∠G的度数.解析:(1)10°;(2)∠DAE=12(∠C−∠B);(3)45°.【分析】(1)根据三角形的内角和定理可求得∠BAC=80°,由角平分线的定义可得∠CAD的度数,利用三角形的高线可求∠CAE得度数,进而求解即可得出结论;(2)根据(1)的推理方法可求解∠DAE、∠B、∠C的数量关系;(3)设∠ACB=α,根据角平分线的定义得∠CAG=12∠EAC=12(90°−α)=45°−12α,∠FCG=12∠BCF=12(180°−α)=90°−12α,再利用三角形外角的性质即可求得结果.【详解】解:(1)∵∠B=40°,∠C=60°,∠BAC+∠B+∠C=180°,∴∠BAC=80°,∵AD平分∠BAC,∴∠CAD=∠BAD=12∠BAC=40°,∵AE是△ABC的高,∴∠AEC=90°,∵∠C=60°,∴∠CAE=90°−60°=30°,∴∠DAE=∠CAD−∠CAE=10°;(2)∵∠BAC+∠B+∠C=180°,∴∠BAC=180°−∠B−∠C,∵AD平分∠BAC,∴∠CAD=∠BAD=12∠BAC,∵AE是△ABC的高,∴∠AEC=90°,∴∠CAE=90°−∠C,∴∠DAE=∠CAD−∠CAE=12∠BAC−(90°−∠C)=12(180°−∠B−∠C)−90°+∠C=1 2∠C−12∠B,即∠DAE=12(∠C−∠B).故答案为:∠DAE=12(∠C−∠B).(3)设∠ACB=α,∵AE⊥BC,∴∠EAC=90°−α,∠BCF=180°−α,∵∠CAE和∠BCF的角平分线交于点G,∴∠CAG=12∠EAC=12(90°−α)=45°−12α,∠FCG=12∠BCF=12(180°−α)=90°−12α,∵∠FCG=∠G+∠CAG,∴∠G=∠FCG −∠CAG=90°−12α−(45°−12α)=45°.【点睛】本题考查了三角形的内角和定理、三角形的高及角平分线等知识,熟练掌握三角形内角和定理并能灵活运用三角形的高、角平分线这些知识解决问题是关键.23.如图,所有小正方形的边长都为1个单位,A、B、C均在格点上.(1)过点A画线段BC的垂线,垂足为E;(2)过点A画线段AB的垂线,交线段CB的延长线于点F;(3)线段BE的长度是点到直线的距离;(4)线段AE、BF、AF的大小关系是.(用“<”连接)解析:(1)见解析;(2)见解析;(3)B,AE;(4)AE<AF<BF【分析】(1)根据垂线的做法画出图象;(2)根据垂线的做法画出图象;(3)根据点到直线距离的定义填空;(4)利用直角三角形的斜边和直角边的大小关系,得出结果.【详解】(1)如图所示;(2)如图所示;(3) ∵BE AE ⊥,∴线段BE 的长度是点B 到直线AE 的距离,故答案是:B ,AE ;(4)∵AE 是直角三角形AEF 的直角边,AF 是直角三角形AEF 的斜边,∴AE AF <,∵BF 是直角三角形ABF 的斜边,AF 是直角三角形ABF 的直角边,∴AF BF <,∴AE AF BF <<,故答案是:AE AF BF <<.【点睛】本题考查作垂线和直角三角形的性质,解题的关键是掌握作垂线的方法和直角三角形的直角边和斜边的大小关系.24.阅读下面内容,并解答问题在学习了平行线的性质后,老师请学们证明命题:两条平行线被第三条直线所截,一组同旁内角的平分线互相垂直.小颖根据命题画出图形并写出如下的已知条件.已知:如图1,//AB CD ,直线EF 分别交AB ,CD 于点E ,F ,BEF ∠的平分线与DFE ∠的平分线交于点G .(1)直线EG ,FG 有何关系?请补充结论:求证:“__________”,并写出证明过程; (2)请从下列A 、B 两题中任选一题作答,我选择__________题,并写出解答过程. A .在图1的基础上,分别作BEG ∠的平分线与DFG ∠的平分线交于点M ,得到图2,求EMF ∠的度数.B .如图3,//AB CD ,直线EF 分别交AB ,CD 于点E ,F .点O 在直线AB ,CD 之间,且在直线EF 右侧,BEO ∠的平分线与DFO ∠的平分线交于点P ,请猜想EOF ∠与EPF ∠满足的数量关系,并证明它.解析:(1)EG ⊥FG ,证明见解析;(2)A .45;B .2EOF EPF ∠=∠(在A 、B 两题中任选一题即可)【分析】(1)由AB ∥CD ,可知∠BEF 与∠DFE 互补,由角平分线的定义可得90GEF GFE ∠+∠=︒,由三角形内角和定理可得∠G =90︒,则EG FG ⊥; (2)A .由(1)可知90BEG DFG ∠+∠=︒,根据角平分线的定义可得45MEG MFG ∠+∠=︒,故135MEF MFE ∠+∠=︒,根据三角形的内角和即可求出EMF ∠=45︒;B .设OEF α∠=,OFE β∠=,故EOF ∠=180αβ︒--,再得到180BEO DFO αβ∠+∠=--︒,根据角平分线的定义可得190122PEO PFO αβ︒-∠+∠=-,则119022PEF PFE αβ∠+∠=︒++,再求出EPF ∠,即可比较得到结论.【详解】解:(1)由题意可得,求证:“EG ⊥FG”,证明过程如下∵//AB CD∴∠BEF +∠EFD=180° EG 平分BEF ∠,FG 平分DFE ∠,12GEF BEF ∴∠=∠,12GFE DFE ∠=∠, 1111()180902222GEF GFE BEF DFE BEF DFE ∴∠+∠=∠+∠=∠+⨯︒∠==︒. 在EFG 中,180GEF GFE G ∠+∠+∠=︒,180()1809090G GEF GFE ∴∠=-∠+∠=-︒=︒︒︒,EG FG ∴⊥.(2)A .由(1)可知=90BEG DFG GEF GFE ∠+∠=∠+∠︒,∵BEG ∠的平分线与DFG ∠的平分线交于点M∴∠MEG=12∠BEG ,∠MFG=12∠DFG ∴()111190452222MEG MFG BEG DFG BEG DFG ∠+∠=∠+∠=∠+∠=⨯︒=︒ 则4591350MEF MFE ︒+∠︒=+∠=︒, ∴EMF ∠=180135︒-︒=45︒故答案为:A ,45;B.设OEF α∠=,OFE β∠=,∴EOF ∠=180αβ︒--,∵//AB CD∴∠BEF +∠EFD=180°则180BEO DFO αβ∠+∠=--︒∵BEO ∠的平分线与DFO ∠的平分线交于点P∴190122PEO PFO αβ︒-∠+∠=-, ∴111190902222PEF PFE αβαβαβ∠+∠=︒--++=︒++, ∴EPF ∠=111809022αβ⎛⎫︒-︒++ ⎪⎝⎭=121902αβ︒--, ∵EOF ∠=1118029022αβαβ⎛⎫︒--=︒-- ⎪⎝⎭, 故2EOF EPF ∠=∠故答案为:B ,2EOF EPF ∠=∠.(在A 、B 两题中任选一题即可)【点睛】本题考查了平行线的性质、角平分线的定义、三角形内角和定理,熟练掌握平行线的性质和角平分线的定义是解题的关键.25.如图,已知BP 是△ABC 的外角∠ABD 的平分线,延长CA 交BP 于点P .射线CE 平分∠ACB 交BP 于点E .(1)若∠BAC=80°,求∠PEC 的度数;(2)若∠P=20°,分析∠BAC 与∠ACB 的度数之差是否为定值?(3)过点C 作CF ⊥CE 交直线BP 于点F .设∠BAC=α,求∠BFC 的度数(用含α的式子表示).解析:(1)140°;(2)是定值;(3)∠BFC=90°12-α 【分析】(1)首先证明∠CEB 12=∠CAB ,求出∠CEB 即可解决问题. (2)利用三角形的外角的性质解决问题即可.(3)利用是菱形内角和定理以及(1)中结论解决问题即可.【详解】由题意,可以假设∠ACE=∠ECB=x ,∠ABP=∠PBD=y .(1)由三角形的外角的性质可知:2y BAC 2x y CEB x =∠+⎧⎨=∠+⎩, 可得∠CEB 12=∠CAB=40°, ∴∠PEC=180°-40°=140°;(2)由三角形的外角的性质可知,∠BAC=∠P+y ,y=∠P+2x ,∴∠BAC=2∠P+2x ,∴∠BAC -∠ACB=∠BAC-2x=2∠P=40°,∴∠BAC -∠ACB=40°,是定值;(3)∵CF ⊥CE ,∴∠ECF=90°,由(1)得:∠CEB 12=∠CAB , ∴∠BFC=90°-∠CEB=90°12-∠CAB=90°12-α. 【点评】 本题考查了三角形内角和定理,三角形的外角性质等知识,解题的关键是学会利用参数构建方程组解决问题,属于中考常考题型.26.如图,已知在ABC 中,90C ∠=︒,BE 平分ABC ∠,且//BE AD ,20BAD ∠=︒,求AEB ∠的度数.解析:110°【分析】根据平行线的性质和三角形外角的性质即可得到结论.【详解】∵BE ∥AD ,∴∠ABE=∠BAD=20°,∵BE 平分∠ABC ,∴∠EBC=∠ABE=20°,∵∠C=90°,∴∠AEB=∠C+∠CBE=90°+20°=110°.【点睛】考查了三角形的外角的性质、平行线的性质和角平分线的定义,解题关键是正确识别图形得出图中角之间的关系.27.如图,在ABC 中,AD 是高,AE 、BF 是角平分线,它们相交于点O ,60BAC ∠=︒,70C ∠=︒.求EAD ∠和∠BOE 的度数.解析:10EAD ∠=︒,55BOE ∠=︒【分析】根据三角形内角和定理求出∠BAC=180°-60°-70°=50°,再由AE 是角平分线,求出∠EAC=12∠BAC=30°,由AD 是高,求出∠CAD=90°-∠C=20°,最后即可求出∠EAD=∠EAC-∠CAD=10°;根据角平分线的性质,得∠OAB=12∠BAC ,∠OBA=12∠ABC ,所以∠BOE=∠OAB+∠OBA=12(∠BAC+∠ABC )=12(180°-∠C )=12×(180°-70°)=55°. 【详解】解:∠B AC =60°,∠C =70°∴∠ABC =180°−∠ABC −∠C =180°−60°-70°=50°,∵AE 是角平分线,∴∠EAC =12∠BAC =12×60°=30°, ∵AD 是高,∴∠ADC =90°,∴∠CAD =90°−∠C =90°−70°=20°,∴∠DAE =∠EAC −∠CAD =30°−20°=10°;∵AE ,BF 是角平分线,∴∠OAB =12∠BAC ,∠OBA =12∠ABC , ∴∠BOE =∠OAB +∠OBA =12(∠BAC +∠ABC )=12(180°−∠C )=12×(180°−70°) =55°. 【点睛】本题考查了三角形内角和定理、角平分线性质,解题的关键是明确题意,找出所求问题需要的条件.28.阅读材料在平面中,我们把大于180︒且小于360︒的角称为优角.如果两个角相加等于360︒,那么称这两个角互为组角,简称互组.(1)若1∠,2∠互为组角,且1135∠=︒,则2∠=______.习惯上,我们把有一个内角大于180︒的四边形俗称为镖形.(2)如图,在镖形ABCD 中,优角BCD ∠与钝角BCD ∠互为组角,试探索内角A ∠,B ,D ∠与钝角BCD ∠之间的数量关系,并至少用两种以上的方法说明理由. 解析:(1)225°;(2)钝角∠BCD=∠A+∠B+∠D ,理由见解析.【分析】(1)根据互为组角的定义可知∠2=360°-∠1,代入数据计算即可;(2)理由①:根据四边形内角和定理可得∠A+∠B+优角∠BCD+∠D=360°,根据周角的定义可得优角∠BCD+钝角∠BCD=360°´,再利用等式的性质得出钝角∠BCD=∠A+∠B+∠D ; 理由②:连接AC 并延长,根据三角形外角的性质即可得出结论.【详解】解:(1)∵∠1、∠2互为组角,且∠1=135°,∴∠2=360°-∠1=225°,故答案为:225°;(2)钝角∠BCD=∠A+∠B+∠D .理由如下:理由①:∵在四边形ABCD 中,∠A+∠B+优角∠BCD+∠D=360°,又∵优角∠BCD+钝角∠BCD=360°´,∴钝角∠BCD=∠A+∠B+∠D ;理由②:如下图,连接AC 并延长,∵∠BAC+∠B=∠BCE ,∠DAC+∠D=∠DCE (三角形外角的性质),∴钝角∠BCD=∠BCE+∠DCE=∠BAC+∠B+∠DAC+∠D=∠A+∠B+∠D .【点睛】本题考查三角形的外角,四边形内角和.能正确作出辅助线,将四边形分成两个三角形是理由②的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学生做题前请先回答以下问题
问题1:由角的关系得平行,可以考虑哪些定理?
问题2:由平行得角的关系,可以考虑哪些定理?
问题3:三角形的内角和等于_______.
问题4:直角三角形两锐角_______.
平行线与三角形内角和计算(人教版)
一、单选题(共10道,每道10分)
1.如图,在△ABC中,AD平分∠BAC,且与BC相交于点D,∠B=40°,∠BAD=30°,则∠C 的度数为( )
A.80°
B.90°
C.100°
D.110°
答案:A
解题思路:
试题难度:三颗星知识点:三角形内角和定理
2.已知在△ABC中,∠B是∠A的2倍,∠C比∠A大20°,则∠A的度数为( )
A.30°
B.40°
C.60°
D.80°
答案:B
解题思路:
试题难度:三颗星知识点:三角形内角和定理
3.如图,在△ABC中,∠B=∠C,FD⊥BC,DE⊥AB,垂足分别为D,E.
若∠AFD=158°,则∠EDF=( )
A.42°
B.44°
C.68°
D.79°
答案:C
解题思路:
试题难度:三颗星知识点:互余
4.如图,在△ABC中,AE平分∠BAC,AD⊥BC,垂足为D,若∠BAC=128°,∠C=36°,则∠DAE的度数为( )
A.10°
B.12°
C.15°
D.18°
答案:A
解题思路:
试题难度:三颗星知识点:互余
5.如图,在△ABC中,∠BAC=4∠1=4∠C,BD⊥CA于点D,则∠DBA=( )
A.20°
B.60°
C.45°
D.30°
答案:D
解题思路:
试题难度:三颗星知识点:互余
6.如图,在四边形ABCD中,点E在BC上,AB∥DE,∠B=78°,∠C=60°,则∠EDC的度数为( )
A.42°
B.60°
C.78°
D.80°
答案:A
解题思路:
试题难度:三颗星知识点:三角形内角和定理
7.如图,直线BD∥EF,AE与BD交于点C,若∠B=30°,∠A=75°,则∠CEF的度数为( )
A.60°
B.75°
C.90°
D.105°
答案:D
解题思路:
试题难度:三颗星知识点:三角形内角和定理
8.如图,直线AB∥CD,∠EFA=28°,∠EHC=50°,则∠E=( )
A.28°
B.22°
C.32°
D.38°
答案:B
解题思路:
试题难度:三颗星知识点:三角形内角和定理
9.如图,AB∥CD,AE平分∠CAB,CE平分∠ACD,则∠E=( )
A.60°
B.75°
C.90°
D.105°
答案:C
解题思路:
试题难度:三颗星知识点:三角形内角和定理
10.将一副直角三角板如图放置,已知AE∥BC,则∠AFE的度数为( )
A.95°
B.100°
C.110°
D.105°
答案:D
解题思路:
试题难度:三颗星知识点:三角形内角和定理。

相关文档
最新文档