2019-2020年秋期高中一年级期中质量评估数学试题【含解析】

合集下载

学2019-2020学年高一数学下学期期中测试试题(含解析)_1

学2019-2020学年高一数学下学期期中测试试题(含解析)_1

学2019-2020学年高一数学下学期期中测试试题(含解析)本卷满分150分,考试时间150分钟.注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、单项选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若,则()A. B.C. D.【答案】D【解析】【分析】由可得,然后由诱导公式和同角三角函数的关系对选项进行逐一判断,即可得到答案.【详解】由可得,则A. ,所以不正确.B. ,所以不正确.C. ,所以不做正确.D. ,所以正确.故选:D【点睛】本题考查诱导公式和同角三角函数的关系,属于基础题.2.下列函数中最小正周期为的函数是( )A. B. C. D.【答案】D【解析】【分析】根据三角函数周期公式即可得到答案.【详解】A选项的最小正周期为;B选项的最小正周期为;C选项的最小正周期为;D选项的最小正周期为.故选:D【点睛】本题考查三角函数的周期性,属基础题.3.已知终边与单位圆的交点,且,则的值等于()A. B. C. 3 D.【答案】C【解析】【分析】根据三角函数的定义求解正余弦值,利用二倍角公式化简求值.【详解】为第二象限角,且,原式=.故选:C【点睛】此题考查三角函数的定义,根据三角函数的定义求解三角函数值,根据二倍角公式进行三角恒等变换化简求值.4.已知,那么=()A. B. C. D.【答案】B【解析】【分析】首先根据同角三角函基本关系求出与,再由诱导公式计算可得.【详解】解:故选:【点睛】本题考查同角三角函数的基本关系及诱导公式,属于基础题.5.已知,若,则λ等于()A. B. C. D.【答案】B【解析】【分析】写出的坐标,由,得,即求.【详解】,,.故选:.【点睛】本题考查向量垂直的坐标表示,考查了向量加法运算,属于基础题.6.已知关于x的方程在区间恰有两个根,则()A. 1B. -1C. 1或-1D. 2a【答案】A【解析】【分析】先利用辅助角公式对已知函数进行化简,然后结合正弦函数的对称性可求,代入即可求解【详解】由在区间恰有两个根.根据对称性可知,或.当时,当时,故选:A【点睛】本题主要考查了正弦函数对称性的应用,属于基础试题7.已知A,B,C是平面上不共线的三个点,若,,则△ABC一定是( )A. 直角三角形B. 等腰三角形C. 等边三角形D. 锐角三角形【答案】B【解析】【分析】设,利用向量加法的平行四边形法则以及向量共线定理可得点P在BC边上的中线,也在的平分线上,结合三角形的性质即可得出选项.【详解】设,则根据平行四边形法则知点P在BC边上的中线所在的直线上.设,,它们都单位向量,由平行四边形法则,知点P也在的平分线上,所以△ABC—定是等腰三角形.故选:B【点睛】本题考查了向量的平行四边形法则、向量的共线定理,属于基础题.8.已知,为锐角,,则的最小值为()A. B. C. D.【答案】A【解析】【分析】由已知结合诱导公式及两角和的正切公式,先进行化简,然后代入到所求式子后,结合基本不等式即可求出最值,即可得出答案.【详解】解:∵,∴,,当且仅当即时取等号,所以的最小值为.故选:A.【点睛】本题考查三角函数的恒等变换以及基本不等式的运用,涉及诱导公式、两角和的正切公式,考查化简计算能力. 9.如图所示,某摩天轮设施,其旋转半径为50米,最高点距离地面110米,开启后按逆时针方向匀速旋转,转一周大约21分钟. 某人在最低点的位置坐上摩天轮的座舱,并开始计时,则第7分钟时他距离地面的高度大约为()A. 75米B. 85米C 米 D. 米【答案】B【解析】【分析】建立直角坐标系,利用三角函数定义将摩天轮的高度求出,即可求解.【详解】以摩天轮的圆心为坐标原点,平行地面的直径所在的直线为轴,建立直角坐标系,设时刻的坐标为,转过的角度为,根据三角函数的定义有,地面与坐标系交线方程为,则第7分钟时他距离地面的高度大约为.故选:B【点睛】本题考查三角函数的应用,属于中档题.10.已知函数的图像与函数的图像交于M,N两点,则的面积为()A. B. C. D.【答案】B【解析】【分析】由题意,利用同角三角函数商数关系和平方关系可得,解方程即可得,,即可得解.详解】由得即,即,解得或,由可得,或,,,显然MN与x轴交于点,.故选:B.【点睛】本题考查了同角三角函数关系的应用,考查了转化化归思想,属于中档题.11.已知函数,则下列说法正确的是()A. f(x)的最小正周期为2πB. f(x)的最大值为C. f(x)在上单调递增D. f(x)的图象关于直线x对称【答案】B【解析】【分析】根据倍角公式和辅助角公式化简,得.可直接判断的正误;选项,求出的取值范围,判断的单调性,即得的正误;选项,把代入,看是否取得最值,即得的正误.【详解】.的最小正周期为,最大值为,故错误,正确.对,当时,,又在上单调递减,在上单调递减.故错误.对,,不是最值,故错误.故选:.【点睛】本题考查三角恒等变换和三角函数的性质,属于中档题.12.己知函数为f(x)的一个零点,x为f(x)图象的一条对称轴,且f(x)在(0,π)上有且仅有7个零点,下述结论正确的是()A. B. f(x)的最小正周期为C. D. f(x)在(0,)上单调递增【答案】D【解析】【分析】根据的零点和对称轴,可以推出为奇数,再结合在上有且仅有7个零点,推出的值,进而推出的值以及函数单调性.【详解】为的一个零点,x为f(x)图象的一条对称轴,所以且,将两式相减得:,.设,当时,(0,π)上有且仅有7个零点,即在上有且仅有7个零点,又所以,即又,,所以,再由x为f(x)图象的一条对称轴有:所以,由,所以.则,则由.得,所以在上单调递增.所以在上单调递增.故选:D【点睛】本题考查了正弦函数的奇偶性和对称性,考查了正弦型函数的单调性,考查分析和解决问题的能力和计算能力,属于难题.二.填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡的相应位置.13.化简:__________.【答案】【解析】【分析】原式利用诱导公式化简,约分即可得到答案.【详解】原式.故答案为【点睛】本题考查了运用诱导公式化简求值,熟练掌握诱导公式是解决本题的关键,属于中档题.14.已知函数的最小正周期为,其图象向左平移个单位后所得图象关于轴对称,则:_____________;当时,的值域为___________.【答案】 (1). (2).【解析】【分析】首先根据函数的性质计算函数的解析式,再根据函数的定义域计算的范围,计算函数的值域.【详解】因为,可得,函数向左平移个单位后得到,因为函数是偶函数,所以,,因为,所以,所以;当时,,所以的值域为.故答案为:;【点睛】本题考查三角函数的性质和解析式,意在考查对称性和函数的值域,属于中档题型.15.若,,则x的取值范围是________;若,则x的取值范围是________.【答案】 (1). (2). ,【解析】【分析】根据,又因为,结合特殊的三角函数值,即可就出解;利用换元法令,则转化为,解得,结合即可求出不等式的的解.【详解】解:由,又因为,解得:;令,则,,,,解得,,故答案为:(1);(2),.【点睛】本题考查特殊角的三角函数值,以及根据三角函数的值域求参数,属于简单题.16.在直角坐标系中,已知点和点,若点在的平分线上,且,则向量的坐标为___________.【答案】【解析】【分析】点在的平分线可知与向量共线,利用线性运算求解即可.【详解】因为点在的平线上,所以存在使,而,可解得,所以,故答案为:【点睛】本题主要考查了向量的线性运算,利用向量的坐标求向量的模,属于中档题.三、解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.17.已知是关于的方程的一个实根,且是第三象限角.(1)求的值;(2)求的值.【答案】(1);(2).【解析】【分析】(1)形如,分子,分母同时除以,运算即可得解.(2)形如,除以,构造齐次式运算即可.【详解】解:∵是关于的方程个实根,且是第三象限角,∴或(舍去).(1).(2).【点睛】本题考查了同角三角函数的基本关系,中档题.18.已知平面向量,满足.(1),求与的夹角;(2)若对一切实数,不等式恒成立,求与的夹角.【答案】(1)(2)【解析】【分析】(1)根据向量数量积的定义及性质即可求解(2)利用平方化简不等式可得恒成立,利用判别式求解即可.【详解】(1)∵,,即,∴,∴.(2)不等式两边平方可得:恒成立,∴,即,故,只能,而,所以.【点睛】本题主要考查了向量的数量积定义,性质,不等式恒成立,属于中档题.19.如图,函数,其中的图象与y轴交于点.(1)求的值;(2)求函数的单调递增区间;(3)求使的x的集合.【答案】(1),(2),,(3)【解析】【分析】(1)由函数图像过定点,代入运算即可得解;(2)由三角函数的单调增区间的求法求解即可;(3)由,求解不等式即可得解.【详解】解:(1)因为函数图象过点,所以,即.因为,所以.(2)由(1)得,所以当,,即,时,是增函数,故的单调递增区间为,.(3)由,得,所以,,即,,所以时,x的集合为.【点睛】本题考查了利用函数图像的性质求解函数解析式,重点考查了三角函数单调区间的求法及解三角不等式,属基础题.20.已知为坐标原点,,,.(1)求函数在上的单调增区间;(2)当时,若方程有根,求的取值范围.【答案】(1)单调增区间为,(2)【解析】【分析】(1)通过向量的坐标运算求出,通过三角公式整理化简,然后可求得其单调区间;(2)将方程有根转化为在上有解,求出在上的值域即可.【详解】(1),则此函数单调增区间:,,设,,则,所以函数在上的单调增区间为,;(2)当时,若方程有根,所以在上有解,由,得,所以,则,所以.【点睛】本题考查三角函数恒等变形,三角函数的性质,是基础题.21.某同学用“五点法”画函数f(x)=Asin(ωx+φ)(ω>0,|φ|)在某一个周期内的图象时,列表并填入了部分数据,如表:π2π(1)请将上表数据补充完整,并直接写出函数f(x)的解析式;(2)将y=f(x)图象上所有点向左平移θ(θ>0)个单位长度,得到y=g(x)的图象.若y=g(x)图象的一个对称中心为(,0),求θ的最小值.(3)若,求的值.【答案】(1)表格见解析,;(2);(3).【解析】【分析】(1)由表中数据求出,即可补全表格,写出解析式;(2)求出函数的解析式.根据的图象的对称中心为和,可求θ的最小值;(3)由得.由,根据诱导公【详解】(1)由表中数据可得,解得.数据补全如下表:2π函数解析式为.(2)由(1)知,将图象上所有点向左平移个单位长度,得.图象的一个对称中心为,,时,.(3),.【点睛】本题考查求三角函数的解析式、图象变换和三角恒等变换,属于较难的题目.22.已知向量.(1)求函数f(x)的单调增区间.(2)若方程上有解,求实数m的取值范围.(3)设,已知区间[a,b](a,b∈R且a<b)满足:y=g(x)在[a,b]上至少含有100个零点,在所有满足上述条件的[a,b]中求b﹣a的最小值.【答案】(1);(2);(3).【解析】【分析】(1)根据数量积运算和倍角公式、辅助角公式,求出.令,求出的取值范围,即得函数的单调递增区间;(2)由(1)知.当时,求得.令,则方程在上有解,即方程在上有解,即求实数的取值范围;(3)求出函数的解析式,令,得零点的值,可得零点间隔依次为和.若最小,则均为零点,结合函数在上至少含有100个零点,求得的最小值.【详解】(1),.令,得,函数的单调递增区间为.(2)由(1)知.,即.令,则.方程在上有解,即方程在上有解.又在上单调递增,在上单调递减,,即.实数的取值范围为.(3).令,得或,或.函数的零点间隔依次为和.若最小,则均为零点.函数在上至少含有100个零点,.【点睛】本题考查三角恒等变换、三角函数的性质、函数与方程及函数的零点,属于难题.学2019-2020学年高一数学下学期期中测试试题(含解析)本卷满分150分,考试时间150分钟.注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上3.考试结束后,将本试卷和答题卡一并交回.一、单项选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若,则()A. B.C. D.【答案】D【解析】【分析】由可得,然后由诱导公式和同角三角函数的关系对选项进行逐一判断,即可得到答案.【详解】由可得,则A. ,所以不正确.B. ,所以不正确.C. ,所以不做正确.D. ,所以正确.故选:D【点睛】本题考查诱导公式和同角三角函数的关系,属于基础题.2.下列函数中最小正周期为的函数是( )A. B. C. D.【答案】D根据三角函数周期公式即可得到答案.【详解】A选项的最小正周期为;B选项的最小正周期为;C选项的最小正周期为;D选项的最小正周期为.故选:D【点睛】本题考查三角函数的周期性,属基础题.3.已知终边与单位圆的交点,且,则的值等于()A. B. C. 3 D.【答案】C【解析】【分析】根据三角函数的定义求解正余弦值,利用二倍角公式化简求值.【详解】为第二象限角,且,原式=.故选:C【点睛】此题考查三角函数的定义,根据三角函数的定义求解三角函数值,根据二倍角公式进行三角恒等变换化简求值.4.已知,那么=()A. B. C. D.首先根据同角三角函基本关系求出与,再由诱导公式计算可得.【详解】解:故选:【点睛】本题考查同角三角函数的基本关系及诱导公式,属于基础题.5.已知,若,则λ等于()A. B. C. D.【答案】B【解析】【分析】写出的坐标,由,得,即求.【详解】,,.故选:.【点睛】本题考查向量垂直的坐标表示,考查了向量加法运算,属于基础题.6.已知关于x的方程在区间恰有两个根,则()A. 1B. -1C. 1或-1D. 2a先利用辅助角公式对已知函数进行化简,然后结合正弦函数的对称性可求,代入即可求解【详解】由在区间恰有两个根.根据对称性可知,或.当时,当时,故选:A【点睛】本题主要考查了正弦函数对称性的应用,属于基础试题7.已知A,B,C是平面上不共线的三个点,若,,则△ABC一定是( )A. 直角三角形B. 等腰三角形C. 等边三角形D. 锐角三角形【答案】B【解析】【分析】设,利用向量加法的平行四边形法则以及向量共线定理可得点P在BC边上的中线,也在的平分线上,结合三角形的性质即可得出选项.【详解】设,则根据平行四边形法则知点P在BC边上的中线所在的直线上.设,,它们都单位向量,由平行四边形法则,知点P也在的平分线上,所以△ABC—定是等腰三角形.故选:B8.已知,为锐角,,则的最小值为()A. B. C. D.【答案】A【解析】【分析】由已知结合诱导公式及两角和的正切公式,先进行化简,然后代入到所求式子后,结合基本不等式即可求出最值,即可得出答案.【详解】解:∵,∴,,当且仅当即时取等号,所以的最小值为.故选:A.【点睛】本题考查三角函数的恒等变换以及基本不等式的运用,涉及诱导公式、两角和的正切公式,考查化简计算能力.9.如图所示,某摩天轮设施,其旋转半径为50米,最高点距离地面110米,开启后按逆时针方向匀速旋转,转一周大约21分钟. 某人在最低点的位置坐上摩天轮的座舱,并开始计时,则第7分钟时他距离地面的高度大约为()A. 75米B. 85米C米 D. 米【答案】B【解析】【分析】建立直角坐标系,利用三角函数定义将摩天轮的高度求出,即可求解.【详解】以摩天轮的圆心为坐标原点,平行地面的直径所在的直线为轴,建立直角坐标系,设时刻的坐标为,转过的角度为,根据三角函数的定义有,地面与坐标系交线方程为,则第7分钟时他距离地面的高度大约为.故选:B【点睛】本题考查三角函数的应用,属于中档题.10.已知函数的图像与函数的图像交于M,N两点,则的面积为()A. B. C. D.【答案】B【解析】【分析】由题意,利用同角三角函数商数关系和平方关系可得,解方程即可得,,即可得解.详解】由得即,即,解得或,由可得,或,,,显然MN与x轴交于点,.故选:B.【点睛】本题考查了同角三角函数关系的应用,考查了转化化归思想,属于中档题.11.已知函数,则下列说法正确的是()A. f(x)的最小正周期为2πB. f(x)的最大值为C. f(x)在上单调递增D. f(x)的图象关于直线x对称【答案】B【解析】【分析】根据倍角公式和辅助角公式化简,得.可直接判断的正误;选项,求出的取值范围,判断的单调性,即得的正误;选项,把代入,看是否取得最值,即得的正误.【详解】.的最小正周期为,最大值为,故错误,正确.对,当时,,又在上单调递减,在上单调递减.故错误.对,,不是最值,故错误.故选:.【点睛】本题考查三角恒等变换和三角函数的性质,属于中档题.12.己知函数为f(x)的一个零点,x为f(x)图象的一条对称轴,且f(x)在(0,π)上有且仅有7个零点,下述结论正确的是()A. B. f(x)的最小正周期为C. D. f(x)在(0,)上单调递增【答案】D【解析】【分析】根据的零点和对称轴,可以推出为奇数,再结合在上有且仅有7个零点,推出的值,进而推出的值以及函数单调性.【详解】为的一个零点,x为f(x)图象的一条对称轴,所以且,将两式相减得:,.设,当时,(0,π)上有且仅有7个零点,即在上有且仅有7个零点,又所以,即又,,所以,再由x为f(x)图象的一条对称轴有:所以,由,所以.则,则由.得,所以在上单调递增.所以在上单调递增.故选:D【点睛】本题考查了正弦函数的奇偶性和对称性,考查了正弦型函数的单调性,考查分析和解决问题的能力和计算能力,属于难题.二.填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡的相应位置.13.化简:__________.【答案】【解析】【分析】原式利用诱导公式化简,约分即可得到答案.【详解】原式.故答案为【点睛】本题考查了运用诱导公式化简求值,熟练掌握诱导公式是解决本题的关键,属于中档题.14.已知函数的最小正周期为,其图象向左平移个单位后所得图象关于轴对称,则:_____________;当时,的值域为___________.【答案】 (1). (2).【解析】【分析】首先根据函数的性质计算函数的解析式,再根据函数的定义域计算的范围,计算函数的值域.【详解】因为,可得,函数向左平移个单位后得到,因为函数是偶函数,所以,,因为,所以,所以;当时,,所以的值域为.故答案为:;【点睛】本题考查三角函数的性质和解析式,意在考查对称性和函数的值域,属于中档题型.15.若,,则x的取值范围是________;若,则x的取值范围是________.【答案】 (1). (2). ,【解析】【分析】根据,又因为,结合特殊的三角函数值,即可就出解;利用换元法令,则转化为,解得,结合即可求出不等式的的解.【详解】解:由,又因为,解得:;令,则,,,,解得,,故答案为:(1);(2),.【点睛】本题考查特殊角的三角函数值,以及根据三角函数的值域求参数,属于简单题. 16.在直角坐标系中,已知点和点,若点在的平分线上,且,则向量的坐标为___________.【答案】【解析】【分析】点在的平分线可知与向量共线,利用线性运算求解即可.【详解】因为点在的平线上,所以存在使,而,可解得,所以,故答案为:【点睛】本题主要考查了向量的线性运算,利用向量的坐标求向量的模,属于中档题.三、解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.17.已知是关于的方程的一个实根,且是第三象限角.(1)求的值;(2)求的值.【答案】(1);(2).【解析】【分析】(1)形如,分子,分母同时除以,运算即可得解.(2)形如,除以,构造齐次式运算即可.【详解】解:∵是关于的方程个实根,且是第三象限角,∴或(舍去).(1).(2).【点睛】本题考查了同角三角函数的基本关系,中档题.18.已知平面向量,满足.(1),求与的夹角;(2)若对一切实数,不等式恒成立,求与的夹角.【答案】(1)(2)【解析】【分析】(1)根据向量数量积的定义及性质即可求解(2)利用平方化简不等式可得恒成立,利用判别式求解即可.【详解】(1)∵,,即,∴,∴.(2)不等式两边平方可得:恒成立,∴,即,故,只能,而,所以.【点睛】本题主要考查了向量的数量积定义,性质,不等式恒成立,属于中档题.19.如图,函数,其中的图象与y轴交于点.(1)求的值;(2)求函数的单调递增区间;(3)求使的x的集合.【答案】(1),(2),,(3)【解析】【分析】(1)由函数图像过定点,代入运算即可得解;(2)由三角函数的单调增区间的求法求解即可;(3)由,求解不等式即可得解.【详解】解:(1)因为函数图象过点,所以,即.因为,所以.(2)由(1)得,所以当,,即,时,是增函数,故的单调递增区间为,.(3)由,得,所以,,即,,所以时,x的集合为.【点睛】本题考查了利用函数图像的性质求解函数解析式,重点考查了三角函数单调区间的求法及解三角不等式,属基础题.20.已知为坐标原点,,,.(1)求函数在上的单调增区间;(2)当时,若方程有根,求的取值范围.【答案】(1)单调增区间为,(2)【解析】【分析】(1)通过向量的坐标运算求出,通过三角公式整理化简,然后可求得其单调区间;(2)将方程有根转化为在上有解,求出在上的值域即可.【详解】(1),则此函数单调增区间:,,设,,则,所以函数在上的单调增区间为,;(2)当时,若方程有根,所以在上有解,由,得,所以,则,所以.【点睛】本题考查三角函数恒等变形,三角函数的性质,是基础题.21.某同学用“五点法”画函数f(x)=Asin(ωx+φ)(ω>0,|φ|)在某一个周期内的图象时,列表并填入了部分数据,如表:π2π(1)请将上表数据补充完整,并直接写出函数f(x)的解析式;(2)将y=f(x)图象上所有点向左平移θ(θ>0)个单位长度,得到y=g(x)的图象.若y =g(x)图象的一个对称中心为(,0),求θ的最小值.(3)若,求的值.【答案】(1)表格见解析,;(2);(3).【解析】【分析】(1)由表中数据求出,即可补全表格,写出解析式;(2)求出函数的解析式.根据的图象的对称中心为和,可求θ的最小值;(3)由得.由,根据诱导公式和倍角公式可求.【详解】(1)由表中数据可得,解得.数据补全如下表:2π函数解析式为.(2)由(1)知,将图象上所有点向左平移个单位长度,得.图象的一个对称中心为,,时,.(3),.【点睛】本题考查求三角函数的解析式、图象变换和三角恒等变换,属于较难的题目.22.已知向量.(1)求函数f(x)的单调增区间.(2)若方程上有解,求实数m的取值范围.(3)设,已知区间[a,b](a,b∈R且a<b)满足:y=g(x)在[a,b]上至少含有100个零点,在所有满足上述条件的[a,b]中求b﹣a的最小值.【答案】(1);(2);(3).【解析】【分析】(1)根据数量积运算和倍角公式、辅助角公式,求出.令,求出的取值范围,即得函数的单调递增区间;(2)由(1)知.当时,求得.令,则方程在上有解,即方程在上有解,即求实数的取值范围;(3)求出函数的解析式,令,得零点的值,可得零点间隔依次为和.若最小,则均为零点,结合函数在上至少含有100个零点,求得的最小值.【详解】(1),.令,得,函数的单调递增区间为.(2)由(1)知.,即.令,则.方程在上有解,即方程在上有解.又在上单调递增,在上单调递减,,即.实数的取值范围为.(3).令,得或,或.函数的零点间隔依次为和.若最小,则均为零点.函数在上至少含有100个零点,.【点睛】本题考查三角恒等变换、三角函数的性质、函数与方程及函数的零点,属于难题.。

河南省南阳市2019-2020学年高一上学期期终质量评估数学试卷 扫描版含答案

河南省南阳市2019-2020学年高一上学期期终质量评估数学试卷 扫描版含答案

2019年秋期高中一年级期终质量评估数学参考答案一、选择题:DACBD DCBAD BB二、填空题:13、212 14、21 15、⎪⎭⎫ ⎝⎛230,(⎥⎦⎤ ⎝⎛230,也可以) 16、[]1,1- 三、解答题:17、解: (1)由题意知:联立方程组⎩⎨⎧=+-=-+08320543y x y x ,解得交点M(-1,2),......2分 因为所求直线与直线0532=++y x 平行,可以设所求直线的方程为032=++c y x , ...........4分 代入(-1,2),解得c=-4,即所求直线方程为04-32=+y x ...........6分(2)设与0532=++y x 垂直的直线方程为023=+-b y x ,...........8分 因为过点(-1,2),代入得7=b ,故所求直线方程为0723=+-y x . ...........10分18、(1)证明 平面BEG ∥平面ACH ,证明如下:因为ABCD-EFGH 为正方体,所以BC ∥FG ,BC =FG ,又FG ∥EH ,FG =EH ,所以BC ∥EH ,BC =EH ,于是BCHE 为平行四边形,所以BE ∥CH ,又CH ⊂平面ACH ,BE ⊄平面ACH ,所以BE ∥平面ACH ,同理BG ∥平面ACH ,又BE ∩BG =B ,所以平面BEG ∥平面ACH ............4分(2)证明 连接FH ,因为ABCDEFGH 为正方体,所以DH ⊥平面EFGH ,因为EG ⊂平面EFGH ,所以DH ⊥EG ,又EG ⊥FH ,EG ∩FH =O ,所以EG ⊥平面BFHD ,又DF ⊂平面BFHD ,所以DF ⊥EG ,同理DF ⊥BG ,又EG ∩BG =G ,所以DF ⊥平面BEG ............8分(3)设F 到平面BEG 距离为d ,EFG B BEG F V V --=,得d=33............12分 19. 解:(1)由题意可知,1,1)0(==c f 解得 ...........1分由x c bx ax c x b x a x x f x f 2)()1()1(,2)()1(22=++-++++=-+可知: 化简得:x b a ax 22=++ ...........3分 因为上式对任意的实数x 恒成立,所以⎩⎨⎧=+=022b a a 解得⎩⎨⎧==1-1b a ..........5分 所以1)(2+-=x x x f …………6分(2)由m x x f +>2)(在[]1,1-上恒成立,即m x x >+-132在[]1,1-上恒成立。

2019-2020年高一期中考试数学试卷含答案

2019-2020年高一期中考试数学试卷含答案

2019-2020年高一期中考试数学试卷含答案本试卷满分150分考试时间120分钟共60分,有一项是符合题目要求的。

1 •集合,集合,则等于(A. B. C. D.A. B. C. D.6•函数的单调递增区间为()A. B. C. D.7•定义运算若函数,则的值域是()A. B. C. D.&若函数f (x) = ax' ::;,blog2(x • ; x2• 1)■■■2在上有最小值-5,(为常数),则函数在上()A.有最大值 5B.有最小值 5C.有最大值 3D.有最大值99•已知是定义在上的偶函数,当时,,则不等式的解集为()A. B. C. D.10.函数f(x)=log2、x log2(2x)的最小值为()A. 0B.C.D.11. 已知函数,若方程有四个不同的解,,,,且,则的取值范围是()A. B. C. D.12. 设是定义在上的函数,对任意正实数,,且/(x>l-|x-2|, 1<^<3,则使得的最小实数为()2.已知幕函数的图象过点, 则的值为(D.C. 2A. B.-5.函数的图象向右平移个单位长度, )所得图象与曲线关于轴对称,则(王治洪在每小题给出的四个选项中,只、选择题:本大题共12小题,每小题A. 172B. 415C. 557D. 89二、填空题:本大题共4小题,每小题5分,共20分,把答案填在横线上13. 已知”若,则.14 ______________ .若函数满足,则. 15.的定义域是,则函数的定义域是."(3a —2)x +6a —1,x16 .已知函数f(x)=! 在上单调递减,则实数的取值范围0x,xQ是 ____ .三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤。

17. (本小题满分10分)计算下列各式:f 2 1、f 1 1 >/ 1 5 >(1)2a3b2-6a2b3-3a®b6(a > 0,b > 0 )< 丿< 丿< 丿(2) 2(lgU2f +lg +J(lg — lg2 + 118. (本小题满分12分)已知集合,集合.-(1)求;(2)若集合,且,求实数的取值范围19. (本小题满分12分)已知幕函数f (x)二(-2m2m ■ 2)x m 1为偶函数.(1)求的解析式;(2)若函数在区间(2, 3) 上为单调函数,求实数的取值范围.20. (本小题满分12分)]4 -x2|, x 兰0已知函数f(x)二22二0 ::: x _2 ,log 2 X , x 2(1)画出函数的图象;(2 )求的值;(3)求的最小值.21.(本小题满分12分)二次函数满足,且(1)求的解析式;(2)在区间[-1 , 1]上,的图象恒在的图象上方,试确定实数的范围22 (本小题满分12分)已知定义在上的函数有当时且对任意的有(1)求的值(2)证明在上为增函数(3 )若求的取值范围XX第一学期高一期中考试数学试题答案一•选择题:BABC DACD DCDB二. 填空题:13. 0,-1, 14. 15. 16.三. -计算题:17. (1) 4a (2) 1.18. 解:(1), ,•••,(2)时,2a _ a 1 I 3时,2a •-3 a :::-1 综上:或2 a 1 ::019. (1)由,得可知符合题意,(2)=,对称轴为,则,即20. 解:(1)作出函数图象如右图所示,(2)T f ( 3) =log 23,• 0v f (3)v 2,• f (f (3)) =f (log 23)=.…(3)由函数图象可知f (x)在[1 , 2]上是减函数,在(2, +8)上是增函数,:a 2+1> 1,•••当a2+1=2 时,21. 解:(1 )设f (x)=ax2+bx+c,由f (0) =1 _4 _2得c=1,故f (x) =ax+bx+1 .2 2…因为 f (x+1)- f (x) =2x,所以 a (x+1) +b (x+1) +1 -( ax +bx+1) =2x.即2ax+a+b=2x,所以,•,所以 f (x) =x2- x+1(2)由题意得x2- x+1> 2x+m在[-1, 1]上恒成立.J _____ I_____ X ____ I__________ I __ I __ I__ L-4 -3 -2 -1 O 12 3 4-1 -▼3 ■2即x - 3x+1 - m> 0在[-1, 1]上恒成立.设g (x) =x2- 3x+1 - m其图象的对称轴为直线,所以g (x)在[-1, 1]上递减.故只需g (1 )> 0,即12 - 3X 1+1 - m> 0,解得m<- 1.22.解:(1)令,则f(0) = f(0) f (0) = f2(0),又所以(2)设任意的且,则x^ x10 = f(x2-xj .1f (x )f(X2)= f[(X2 7)幻二f (X2 -xjf (xj 2f (X2 - 为)仁f(xj ::: f(X2)f(xj因此在上为增函数(3 )由f(x) f(2x-x2) 1 二f[x (2x — x2)] 仁f (3x-x2) f (0)在上为增函数23x -x 0 二x(x -3) : 0 二0 ::x 3故的取值范围是2019-2020年高一期中考试生物试卷含答案本试卷满分100分考试时间90分钟徐志宏-、选择题(共60分,每小题2分)1•在下列结构中,其成分不含磷脂分子的一组细胞器是①线粒体②核糖体③叶绿体④细胞核⑤内质网⑥中心体⑦高尔基体A. ①③B.④⑤C.⑤⑦D.②⑥2. 下图是用显微镜观察植物细胞实验中的两个视野,要把视野中的物像从图甲转为图乙,下列操作步骤正确的排序是①转动细准焦螺旋②转动粗准焦螺旋③移动装片④调节光圈(或转换反光镜)⑤转动转换器A. ③一⑤一④一①B. ④一③一②一⑤C. ③—①—④—⑤D. ③—⑤—②—①3. 在洋葱根细胞中,含有双层膜结构的细胞器是A .叶绿体B .叶绿体、线粒体C .线粒体D .线粒体、细胞核4. 细胞是最基本的生命系统,生命系统的各个层次既层层相依,又有各自的组成、结构和功能。

2019-2020年高一下学期期中学业水平测试数学试题 含答案

2019-2020年高一下学期期中学业水平测试数学试题 含答案

2019-2020年高一下学期期中学业水平测试数学试题 含答案一、选择题:(本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求,请将正确的答案填在答题卡上。

) 1.2400化成弧度制是( ) A B C D2.集合{1,2,3}的真子集共有( )A 5个B 6个C 7个3. 函数在区间(,)内的图象是( )4.为了得到函数y =sin(3x +)的图像,只需把函数y =sin3x 的图像 ( ) A. 向左平移 B. 向左平移 C. 向右平移 D. 向右平移5.若角满足,则的取值范围是 ( )6. 设sin α=,cos α=,那么下列的点在角α的终边上的是( )A. (-3,4)B. (-4,3)C. (4,-3)D. (3,-4) 7. 下列函数中,以为π最小正周期的偶函数,且在(0,)内递增的是( ) A y=sin|x| B y=|sinx| C y=|cosx| D y=cos|x| 8.已知,则( )A .2B .1C .4D .9.若集合则a 的取值范围是( ) A . B . C . D .10.以下四个命题中,正确的有几个( )① 直线a ,b 与平面a 所成角相等,则a ∥b ;② 两直线a ∥b ,直线a ∥平面a ,则必有b ∥平面a ;③ 一直线与平面的一斜线在平面a 内的射影垂直,则该直线必与斜线垂直;④ 两点A ,B 与平面a 的距离相等,则直线o32ππ2πy A2-︒Bo32ππ2πy2-︒2-o 32ππ2πyC -︒o 32ππ2πyD2--︒AB∥平面a A0个 B1个 C2个 D3个二、填空题:(本大题共4小题,每小题5分,满分20分.请将正确的答案填在答题卡上。

)11函数的单调减区间是12.在半径为2的圆中,圆心角为所对的弧长是。

13.已知函数内有零点,内有零点,若m为整数,则m的值为14.已知圆,则两圆的外公切线段长等于三、解答题:(本大题共6小题,共80分,请将正确答案写在答题卡相应的位置上,作答时必须详细写出演算过程和逻辑推理过程。

2019-2020年高一下学期期中数学试卷 含解析

2019-2020年高一下学期期中数学试卷 含解析

2019-2020年高一下学期期中数学试卷含解析一、选择题(本大题共12个小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.一枚硬币连掷三次至少出现一次正面的概率为()A. B. C. D.2.从12个同类产品(其中10个是正品,2个是次品)中任意抽取3个的必然事件是()A.3个都是正品B.至少有1个是次品C.3个都是次品D.至少有1个是正品3.某公司xx~xx年的年利润x(单位:百万元)与年广告支出y(单位:百万元)的统计资料如表所示:年份xx xx xx xx xx xx利润x 12.2 14.6 16 18 20.4 22.3支出y 0.62 0.74 0.81 0.89 1 1.11根据统计资料,则()A.利润中位数是16,x与y有正线性相关关系B.利润中位数是18,x与y有负线性相关关系C.利润中位数是17,x与y有正线性相关关系D.利润中位数是17,x与y有负线性相关关系4.程序框图如图所示:如果输入x=5,则输出结果为()A.325 B.109 C.973 D.2955.用“更相减损术”求98和63的最大公约数,要做减法的次数是()A.3次B.4次C.5次D.6次6.从一堆苹果中任取10只,称得它们的质量如下(单位:克)125 120 122 105 130 114 116 95 120 134,则样本数据落在[114.5,124.5)内的频率为()A.0.2 B.0.3 C.0.4 D.0.57.从学号为1号至50号的高一某班50名学生中随机选取5名同学参加数学测试,采用系统抽样的方法,则所选5名学生的学号可能是()A.1,2,3,4,5 B.5,15,25,35,45C.2,4,6,8,10 D.4,13,22,31,408.给出以下四个问题:①输入一个正数x,求它的常用对数值;②求面积为6的正方形的周长;③求三个数a,b,c中的最大数;④求函数的函数值.其中不需要用条件语句来描述其算法的有()A.1个B.2个C.3个D.4个9.向顶角为120°的等腰三角形ABC(其中AC=BC)内任意投一点M,则AM小于AC的概率为()A. B. C. D.10.某大学共有本科生5000人,其中一、二、三、四年级的人数比为4:3:2:1,要用分层抽样的方法从所有本科生中抽取一个容量为200的样本,则应抽取三年级的学生人数为()A.80 B.40 C.60 D.2011.阅读如图所示的程序框图,运行相应的程序,则程序运行后输出的结果为()A.7 B.9 C.10 D.1112.甲袋中装有3个白球和5个黑球,乙袋中装有4个白球和6个黑球,现从甲袋中随机取出一个球放入乙袋中,充分混合后,再从乙袋中随机取出一个球放回甲袋中,则甲袋中白球没有减少的概率为()A. B. C. D.二、填空题(本大题共4小题,每小题4分,共16分,把答案填在答题卷的横线上.)13.把xx转化为二进制数为.14.如图是某学校抽取的n个学生体重的频率分布直方图,已知图中从左到右的前3个小组的频率之比为1:2:3,第3小组的频数为18,则n的值是.15.用秦九韶算法求多项式:f(x)=1+x+2x2+3x3+4x4+5x5+7x7在x=2的值时,v3的值为.16.日前,广佛肇城际轨道已开通投入运营,假设轻轨列车每15分钟一班,在车站停2分钟,则乘客到达站台能立即上车的概率是.三、解答题(本大题共6小题,共56分,解答应写出文字说明、证明过程或演算步骤.)17.若二进制数100y011和八进制数x03相等,求x+y的值.18.(1)函数,编写出求函数的函数值的程序(使用嵌套式);(2)“求的值.”写出用基本语句编写的程序(使用当型).19.在某幼儿园的美术课上,老师带领小朋友用水彩笔为本子上两个大小不同的气球涂色,要求一个气球只涂一种颜色,两个气球分别涂不同的颜色.小朋友豆豆可用的有暖色系水彩笔红色、橙色各一支,冷色系水彩笔绿色、蓝色、紫色各一支.(1)豆豆从他可用的五支水彩笔中随机取出两支按老师要求给气球涂色,求两个气球同为冷色的概率.(2)一般情况下,老师发出开始指令到涂色活动全部结束需要10分钟,豆豆至少需要2分钟完成该项任务.老师发出开始指令1分钟后随时可能来到豆豆身边查看涂色情况.求当老师来到豆豆身边时,豆豆已经完成任务的概率.20.已知集合A=[﹣2,2],B=[﹣1,1],设M={(x,y)|x∈A,y∈B},在集合M内随机取出一个元素(x,y).(1)求以(x,y)为坐标的点落在圆x2+y2=1内的概率;(2)求以(x,y)为坐标的点到直线x+y=0的距离不大于的概率.21.运行如图所示的程序框图,当输入实数x的值为﹣1时,输出的函数值为2;当输入实数x的值为3时,输出的函数值为7.(Ⅰ)求实数a,b的值;并写出函数f(x)的解析式;(Ⅱ)求满足不等式f(x)>1的x的取值范围.22.为调查我校学生的用电情况,学校后勤部门组织抽取了100间学生宿舍某月用电量调查,发现每间宿舍用电量都在50度到350度之间,其频率分布直方图如图所示.(1)为降低能源损耗,节约用电,学校规定:每间宿舍每月用电量不超过200度时,按每度0.5元收取费用;超过200度,超过部分按每度1元收取费用.以t表示某宿舍的用电量(单位:度),以y表示该宿舍的用电费用(单位:元),求y与t的函数关系式?(2)求图中月用电量在(200,250]度的宿舍有多少间?(3)在直方图中,以各组的区间中点值代表该组的各个值,宿舍用电量落入该区间的频率作为宿舍用电量取该区间中点值的频率(例如:若t∈[150,200),则取t=175,且t=175发生的频率等于落入[150,200)的频率),试估计我校学生宿舍的月均用电费用.xx学年湖南省娄底市高一(下)期中数学试卷参考答案与试题解析一、选择题(本大题共12个小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.一枚硬币连掷三次至少出现一次正面的概率为()A. B. C. D.【考点】n次独立重复试验中恰好发生k次的概率.【专题】计算题.【分析】本题是一个等可能事件的概率,试验发生包含的事件是将一枚硬币连续抛掷三次共有23=8种结果,满足条件的事件的对立事件是三枚硬币都是反面,有1种结果,根据对立事件的概率公式得到结果【解答】解:由题意知本题是一个等可能事件的概率,试验发生包含的事件是将一枚硬币连续抛掷三次共有23=8种结果,满足条件的事件的对立事件是三枚硬币都是反面,有1种结果,∴至少一次正面向上的概率是1﹣=,故选A.【点评】本题考查等可能事件的概率,本题解题的关键是对于比较复杂的事件求概率时,可以先求对立事件的概率.2.从12个同类产品(其中10个是正品,2个是次品)中任意抽取3个的必然事件是()A.3个都是正品B.至少有1个是次品C.3个都是次品D.至少有1个是正品【考点】随机事件.【分析】任意抽取3个一定会发生的事:最少含有一个正品,根据题目条件选出正确结论,分清各种不同的事件是解决本题的关键.【解答】解:任意抽取3个一定会发生的事:最少含有一个正品,故选D【点评】我们学过的事件的定义:随机事件:在一定条件下可能发生也可能不发生的事件;必然事件:在一定条件下必然发生的事件;不可能事件:在一定条件下不可能发生的事件.3.某公司xx~xx年的年利润x(单位:百万元)与年广告支出y(单位:百万元)的统计资料如表所示:年份xx xx xx xx xx xx利润x 12.2 14.6 16 18 20.4 22.3支出y 0.62 0.74 0.81 0.89 1 1.11根据统计资料,则()A.利润中位数是16,x与y有正线性相关关系B.利润中位数是18,x与y有负线性相关关系C.利润中位数是17,x与y有正线性相关关系D.利润中位数是17,x与y有负线性相关关系【考点】变量间的相关关系;众数、中位数、平均数.【专题】计算题.【分析】求出利润中位数,而且随着利润的增加,支出也在增加,故可得结论.【解答】解:由题意,利润中位数是=17,而且随着利润的增加,支出也在增加,故x与y有正线性相关关系故选C.【点评】本题考查变量间的相关关系,考查中位数,解题的关键是理解正线性相关关系,属于基础题.4.程序框图如图所示:如果输入x=5,则输出结果为()A.325 B.109 C.973 D.295【考点】程序框图.【专题】计算题;数形结合;定义法;算法和程序框图.【分析】方法一:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用循环计算变量x的值,并输出.模拟程序的运行,用表格对程序运行过程中各变量的值进行分析,不难得到输出结果.方法二:由程序框图可知:此问题相当于先求出满足以下条件:数列{a n}的a1=5,a n+1=3a n﹣2,要求其通项公式第一次大于或等于200时即输出其值.【解答】解:方法一:程序在运行过程中各变量的值如下表示:x 是否继续循环循环前5/第一圈13 是第二圈37 是第三圈109 是第四圈325 否故最后输出的x值为325,方法二:由序框图可知:此问题相当于先求出满足以下条件数列的通项公式,数列{a n}的a1=5,a n+1=3a n﹣2,当a n≥200时,即输出a n.∵a n+1=3a n﹣2,∴a n+1﹣1=3(a n﹣1),∵a1﹣1=5﹣1=4≠0,∴数列{a n}是以4为首项,3为公比的等比数列,∴an﹣1=4×3n﹣1,∴an=4×3n﹣1+1,令4×3n﹣1+1≥200,解得n≥5.故当n=5时,输出的x应是4×34+1=325.选:A.【点评】根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是::①分析流程图(或伪代码),从流程图(或伪代码)中即要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模.5.用“更相减损术”求98和63的最大公约数,要做减法的次数是()A.3次B.4次C.5次D.6次【考点】用辗转相除计算最大公约数.【专题】计算题;算法和程序框图.【分析】我们根据“以较大的数减较小的数,接着把所得的差与较小的数比较,并以大数减小数.继续这个操作,直到所得的减数和差相等为止.”的原则,易求出98和63的最大公约数.统计减法次数可得答案.【解答】解:用“更相减损术”求98和63的最大公约数,98﹣63=35,63﹣35=28,35﹣28=7,28﹣7=21,21﹣7=14,14﹣7=7,共需要6次减法运算,故选:D【点评】本题考查的知识点是最大公因数和更相减损术,更相减损术的方法和步骤是:以较大的数减较小的数,接着把所得的差与较小的数比较,并以大数减小数.继续这个操作,直到所得的减数和差相等为止.6.从一堆苹果中任取10只,称得它们的质量如下(单位:克)125 120 122 105 130 114 116 95 120 134,则样本数据落在[114.5,124.5)内的频率为()A.0.2 B.0.3 C.0.4 D.0.5【考点】频率分布表.【专题】计算题.【分析】从所给的十个数字中找出落在所要求的范围中的数字,共有4个,利用这个频数除以样本容量,得到要求的频率.【解答】解:∵在125 120 122 105 130 114 116 95 120 134十个数字中,样本数据落在[114.5,124.5)内的有116,120,120,122共有四个,∴样本数据落在[114.5,124.5)内的频率为=0.4,故选C【点评】本题考查频率分布表,频数、频率和样本容量三者之间的关系是知二求一,这种问题会出现在选择和填空中,有的省份也会以大题的形式出现,把它融于统计问题中.7.从学号为1号至50号的高一某班50名学生中随机选取5名同学参加数学测试,采用系统抽样的方法,则所选5名学生的学号可能是()A.1,2,3,4,5 B.5,15,25,35,45C.2,4,6,8,10 D.4,13,22,31,40【考点】系统抽样方法.【专题】概率与统计.【分析】计算系统抽样的抽取间隔,由此可得答案.【解答】解:系统抽样的抽取间隔为=10,由此可得所选5名学生的学号间隔为10,由此判定B正确,故选:B.【点评】本题考查了系统抽样方法,熟练掌握系统抽样方法的特征是解题的关键.8.给出以下四个问题:①输入一个正数x,求它的常用对数值;②求面积为6的正方形的周长;③求三个数a,b,c中的最大数;④求函数的函数值.其中不需要用条件语句来描述其算法的有()A.1个B.2个C.3个D.4个【考点】条件语句;设计程序框图解决实际问题.【专题】阅读型.【分析】对于选项①,②值,代入相应的公式求即可,对于选项③,④值域代入相应的公式时需要分类讨论,故要用到条件语句来描述其算法.【解答】解:对于①输入一个正数x,求它的常用对数值,代入lgx求即可;对于②,求面积为6的正方形的周长,代入a2求即可;对于③,求三个数a,b,c中的最大数,必须先进行大小比较,要用条件语句;对于④,求函数的函数值,必须对所给的x进行条件判断,也要用条件语句.其中不需要用条件语句来描述其算法的有2个.故选B.【点评】本题考查算法适宜用条件结构的问题,是在解决时需要讨论的问题.属于基础题.9.向顶角为120°的等腰三角形ABC(其中AC=BC)内任意投一点M,则AM小于AC的概率为()A. B. C. D.【考点】几何概型.【专题】数形结合;定义法;概率与统计.【分析】根据几何概型的概率公式求出满足条件的区域对应的面积即可得到结论.【解答】解:若AM小于AC,则M位于阴影部分,∵∠C=120°,∴∠A=30°,则三角形ABC的面积为S△ABC==×AC2=AC2,扇形的面积S=AC2=πAC2,则对应的概率P===,故选:B.【点评】本题主要考查几何概型的概率的计算,根据条件求出对应区域的面积是解决本题的关键.10.某大学共有本科生5000人,其中一、二、三、四年级的人数比为4:3:2:1,要用分层抽样的方法从所有本科生中抽取一个容量为200的样本,则应抽取三年级的学生人数为()A.80 B.40 C.60 D.20【考点】分层抽样方法.【专题】计算题.【分析】要用分层抽样的方法从该系所有本科生中抽取一个容量为200的样本,根据一、二、三、四年级的学生比为4:3:2:1,利用三年级的所占的比例数除以所有比例数的和再乘以样本容量即得抽取三年级的学生人数.【解答】解:∵要用分层抽样的方法从该系所有本科生中抽取一个容量为200的样本,一、二、三、四年级的学生比为4:3:2:1,∴三年级要抽取的学生是=40,故选B.【点评】本题考查分层抽样方法,本题解题的关键是看出三年级学生所占的比例,本题也可以先做出三年级学生数和每个个体被抽到的概率,得到结果.11.阅读如图所示的程序框图,运行相应的程序,则程序运行后输出的结果为()A.7 B.9 C.10 D.11【考点】程序框图.【专题】计算题;整体思想;定义法;推理和证明.【分析】算法的功能是求S=0+lg+lg+lg+…+lg的值,根据条件确定跳出循环的i值.【解答】解:由程序框图知:算法的功能是求S=0+lg+lg+lg+…+lg的值,∵S=lg+lg+…+lg=lg>﹣1,而S=lg+lg+…+lg=lg<﹣1,∴跳出循环的i值为9,∴输出i=9.故选:B【点评】本题考查了循环结构的程序框图,根据框图的流程判断算法的功能是解题的关键.12.甲袋中装有3个白球和5个黑球,乙袋中装有4个白球和6个黑球,现从甲袋中随机取出一个球放入乙袋中,充分混合后,再从乙袋中随机取出一个球放回甲袋中,则甲袋中白球没有减少的概率为()A. B. C. D.【考点】古典概型及其概率计算公式.【专题】概率与统计.【分析】白球没有减少的情况有:①抓出黑球,抓入任意球,概率是:.抓出白球,抓入白球,概率是,再把这2个概率相加,即得所求.【解答】解:白球没有减少的情况有:①抓出黑球,抓入任意球,概率是:.抓出白球,抓入白球,概率是=,故所求事件的概率为=,故选C .【点评】本题考查古典概型及其概率计算公式的应用,属于基础题.二、填空题(本大题共4小题,每小题4分,共16分,把答案填在答题卷的横线上.) 13.把xx 转化为二进制数为 11111100000(2) .【考点】进位制.【专题】计算题;转化思想;转化法;算法和程序框图.【分析】利用“除k 取余法”是将十进制数除以2,然后将商继续除以2,直到商为0,然后将依次所得的余数倒序排列即可得到答案.【解答】解:xx ÷2=1008 01008÷2=504 0504÷2=252 0252÷2=126 0126÷2=63 063÷2=31 (1)31÷2=15 (1)15÷2=7 (1)7÷2=3 (1)3÷2=1 (1)1÷2=0 (1)故xx (10)=11111100000(2)故答案为:11111100000(2)【点评】本题考查的知识点是十进制与其它进制之间的转化,其中熟练掌握“除k 取余法”的方法步骤是解答本题的关键,属于基础题.14.如图是某学校抽取的n 个学生体重的频率分布直方图,已知图中从左到右的前3个小组的频率之比为1:2:3,第3小组的频数为18,则n 的值是 48 .【考点】频率分布直方图.【专题】应用题;概率与统计.【分析】根据频率和为1,求出前3个小组的频率和以及第3小组的频率,再求样本容量n的值.【解答】解:根据频率分布直方图,得从左到右的前3个小组的频率和为:1﹣(0.0375+0.0125)×5=0.75;又这三组频率之比为1:2:3,∴第3小组的频率为×0.75=0.375,且对应的频数为18,∴样本容量n==48.故答案为:48.【点评】本题考查了频率分布直方图的应用问题,也考查了频率=的应用问题,是基础题目.15.用秦九韶算法求多项式:f(x)=1+x+2x2+3x3+4x4+5x5+7x7在x=2的值时,v3的值为70.【考点】秦九韶算法.【专题】算法和程序框图.【分析】根据秦九韶算法先别多项式进行改写,然后进行计算即可.【解答】解:根据秦九韶算法,把多项式改成如下形式解:f(x)=7x7+0x6+5x5+4x4+3x3+2x2+x+1=((((((7x+0)x+5)x+4)x+3)x+2)x+1)x+1 当x=2时,v1=7×2+0=14,v2=14×2+5=33,v3=33×2+4=70,故答案为:70【点评】本题主要考查秦九韶算法的应用,根据秦九韶算法的步骤把多项式进行改写是解决本题的关键.16.日前,广佛肇城际轨道已开通投入运营,假设轻轨列车每15分钟一班,在车站停2分钟,则乘客到达站台能立即上车的概率是.【考点】几何概型.【专题】计算题;方程思想;综合法;概率与统计.【分析】本题是一个几何概型,试验发生包含的事件是轻轨列车每15分钟一班,共有15分钟,满足条件的事件是乘客到达站台立即乘上车,只有2分钟,根据概率等于时间长度之比,得到结果.【解答】解:由题意知本题是一个几何概型,试验发生包含的事件是轻轨列车每15分钟一班,共有15分钟满足条件的事件是乘客到达站台立即乘上车,只要2分钟,记“乘客到达站台立即乘上车”为事件A,∴事件A发生的概率P=,故答案为:.【点评】本题是一个等可能事件的概率,概率之比是时间长度之比,是一个不能列举出的事件数,是一个几何概型,注意解题的格式.三、解答题(本大题共6小题,共56分,解答应写出文字说明、证明过程或演算步骤.)17.若二进制数100y011和八进制数x03相等,求x+y的值.【考点】进位制.【专题】计算题;规律型;分类讨论;转化思想;算法和程序框图.【分析】直接利用进位制运算法则化简求解即可.【解答】解:100y011=1×26+y×23+1×2+1=67+8y,x03=x×82+3=64x+3,∴67+8y=64x+3,∵y=0或1,x可以取1、2、3、4、5、6、7,y=0时,x=1;y=1时,64x=72,无解;∴x+y=1.【点评】本题考查进位制的应用,函数与方程思想的应用,考查计算能力.18.(1)函数,编写出求函数的函数值的程序(使用嵌套式);(2)“求的值.”写出用基本语句编写的程序(使用当型).【考点】绘制简单实际问题的流程图.【专题】算法和程序框图.【分析】(1)根据题目已知中分段函数的解析式,根据分类标准,设置两个选择语句的并设置出判断的条件,再由函数各段的解析式,确定判断条件的“是”与“否”分支对应的操作,由此即可编写满足题意的程序.(2)这是一个累加求和问题,共99项相加,可设计一个计数变量,一个累加变量,用循环结构实现这一算法.【解答】解:(1)INPUT“x=”;xIF x>=0 and x<=4 THENy=2*xELSE IF x<=8 THENy=8ELSEy=2*(12﹣x)END IFEND IFPRINT yEND …(2).S=0K=1DOs=s+1/k(k+1)k=k+1LOOP UNTIL k>99PRINT sEND …【点评】本题考查了设计程序框图解决实际问题,(1)主要考查编写程序解决分段函数问题.(2)主要考查利用循环结构进行累加.19.在某幼儿园的美术课上,老师带领小朋友用水彩笔为本子上两个大小不同的气球涂色,要求一个气球只涂一种颜色,两个气球分别涂不同的颜色.小朋友豆豆可用的有暖色系水彩笔红色、橙色各一支,冷色系水彩笔绿色、蓝色、紫色各一支.(1)豆豆从他可用的五支水彩笔中随机取出两支按老师要求给气球涂色,求两个气球同为冷色的概率.(2)一般情况下,老师发出开始指令到涂色活动全部结束需要10分钟,豆豆至少需要2分钟完成该项任务.老师发出开始指令1分钟后随时可能来到豆豆身边查看涂色情况.求当老师来到豆豆身边时,豆豆已经完成任务的概率.【考点】列举法计算基本事件数及事件发生的概率;简单线性规划.【专题】概率与统计.【分析】(1)由题意得到两个气球共20种涂色方案,其中有6种全冷色方案.由此能求出两个气球同为冷色的概率为;(2)老师发出开始指令起计时,设豆豆完成任务的时刻为x,老师来到豆豆身边检查情况的时刻为y,利用几何概率能求出老师来到豆豆身边时豆豆完成任务的概率.【解答】答案:(1)如下表格,假设非同冷色为1,同为冷色为2,红色橙色绿色蓝色紫色红色0 1 1 1 1橙色1 0 1 1 1绿色1 1 0 2 2蓝色1 1 2 0 2紫色1 1 2 2 0易知两个气球共20种涂色方案,其中有6种全冷色方案,故所求概率为:.(2)老师发出开始指令起计时,设豆豆完成任务的时刻为x,老师来到豆豆身边检查情况的时刻为y,则由题有…式①,若当老师来到豆豆身边时豆豆已经完成任务,则…式②,如图所示,所求概率为几何概型,阴影部分(式②)面积为×(10﹣2)×(10﹣2)=32,可行域(式①)面积为(10一1)×(10﹣2)=72,所求概率为.【点评】本题考查概率的求法,是中档题,解题时要认真审题,注意可行域的合理运用.20.已知集合A=[﹣2,2],B=[﹣1,1],设M={(x,y)|x∈A,y∈B},在集合M内随机取出一个元素(x,y).(1)求以(x,y)为坐标的点落在圆x2+y2=1内的概率;(2)求以(x,y)为坐标的点到直线x+y=0的距离不大于的概率.【考点】几何概型.【专题】概率与统计.【分析】(1)画出区域,其面积表示所有基本事件,此圆x2+y2=1的面积表示满足条件的基本事件,所求为面积比;(2)由以(x,y)为坐标的点到直线x+y=0的距离不大于,求出x,y满足的关系,得到区域面积,求面积比.【解答】解:(1)由题意,画出区域,如图,所求概率满足几何概型,所以所求为圆的面积与矩形面积比,所以以(x,y)为坐标的点落在圆x2+y2=1内的概率为;(2)由以(x,y)为坐标的点到直线x+y=0的距离不大于,所以,即|x+y|≤1,满足条件的事件是图中阴影部分,所以以(x,y)为坐标的点到直线x+y=0的距离不大于的概率为.【点评】本题考查了几何概型的概率求法,关键是将所求的概率利用基本事件的集合度量即区域的长度或者面积或者体积表示,求比值.21.运行如图所示的程序框图,当输入实数x的值为﹣1时,输出的函数值为2;当输入实数x的值为3时,输出的函数值为7.(Ⅰ)求实数a,b的值;并写出函数f(x)的解析式;(Ⅱ)求满足不等式f(x)>1的x的取值范围.【考点】程序框图.【专题】综合题;算法和程序框图.【分析】(I)算法的功能是求f(x)=的值,根据输入实数x的值为﹣1时,输出的函数值为2;当输入实数x的值为3时,输出的函数值为7求得a、b;(II)分别在不同的段上求得函数的值域,再求并集.【解答】解:(Ⅰ)由程序框图知:算法的功能是求f(x)=的值,∵输入x=﹣1<0,输出f(﹣1)=﹣b=2,∴b=﹣2.∵输入x=3>0,输出f(3)=a3﹣1=7,∴a=2.∴.(Ⅱ)由(Ⅰ)知:①当x<0时,f(x)=﹣2x>1,∴;②当x≥0时,f(x)=2x﹣1>1,∴x>1.综上满足不等式f(x)>1的x的取值范围为或x>1}.【点评】本题借助考查选择结构程序框图,考查了分段函数求值域,解题的关键是利用程序框图求得分段函数的解析式.22.为调查我校学生的用电情况,学校后勤部门组织抽取了100间学生宿舍某月用电量调查,发现每间宿舍用电量都在50度到350度之间,其频率分布直方图如图所示.(1)为降低能源损耗,节约用电,学校规定:每间宿舍每月用电量不超过200度时,按每度0.5元收取费用;超过200度,超过部分按每度1元收取费用.以t表示某宿舍的用电量(单位:度),以y表示该宿舍的用电费用(单位:元),求y与t的函数关系式?(2)求图中月用电量在(200,250]度的宿舍有多少间?(3)在直方图中,以各组的区间中点值代表该组的各个值,宿舍用电量落入该区间的频率作为宿舍用电量取该区间中点值的频率(例如:若t∈[150,200),则取t=175,且t=175发生的频率等于落入[150,200)的频率),试估计我校学生宿舍的月均用电费用.【考点】频率分布直方图.【专题】应用题;概率与统计.【分析】(1)按分段函数求出宿舍的用电费用函数;(2)利用频率=,计算对应的频数即可;(3)利用频率分布直方图估算我校学生宿舍的月均用电费用是多少.【解答】解:(1)根据题意,得;当0≤t≤200时,用电费用为y=0.5x;当t>200时,用电费用为y=200×0.5+(t﹣200)×1=t﹣100;综上:宿舍的用电费用为y=;(2)∵月用电量在(200,250]度的频率为50x=1﹣(0.0060+0.0036+0.0024+0.0024+0.0012)×50=1﹣0.0156×50=0.22,∴月用电量在(200,250]度的宿舍有100×0.22=22(间);(3)估计我校学生宿舍的月均用电费用为75×0.0024×50+125×0.0036×50+175×0.0060×50+225×0.22+275×0.0024×50+325×0.0012×50=186(度).【点评】本题考查了频率分布直方图的应用问题,也考查了利用直方图求平均数的应用问题,是基础题目.。

2019—2020学年第二学期期中考试高一数学试题(含答案)

2019—2020学年第二学期期中考试高一数学试题(含答案)

2019—2020学年第二学期期中考试高一数学试题一、单项选择题:(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.在中,已知,则角为( )A .A .C .D .或2.若向量,,且,则( ) A . B .C .D . 3.复数的共轭复数为( )A .B .C .D .4.设两个单位向量,的夹角为,则( ) A .CD .5.已知一条边在x 轴上的正方形的直观图是一个平行四边形,此平行四边形中有一边长为4,则原正方形的面积是( )A .16B . 16或64 C. 64 D .以上都不对6.若实数,,满足,则的值是( ) A .2B .-3C .D.17.在中,若,则的形状是( ) A .等腰直角三角形 B.直角三角形C .等腰三角形D .等边三角形8.已知(,为虚数单位),则“”是“为纯虚数”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件二、多项选择题:(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.)9.给出下列结论,则结论正确的为( )A .若向量,,且,则B .,,与的夹角为,则ABC △222a b c bc =++A 2π3π3π6π32π3(3,2)=a (1,)m =-b ∥a b m =23-233232-()2019i 12i z =--2i -2i +2i --2i -+a b 2π334+=a b 17x y ()()1i 1i 2x y ++-=xy 2-ABC △2cos sin sin B A C ⋅=ABC △221(32)i z m m m =-+-+m ∈R i 1m =-z (1,3)=a (2,)x =b ∥a b 6x =||2=a ||4=b a b 60°|2|+=a bC .向量,,m.n=0则 D .已知向量,,则与的夹角为 10.下列命题中,不正确的是( ) A .两个复数不能比较大小;B .若,则当且仅当且时,为纯虚数;C .,则;D .若实数与对应,则实数集与纯虚数集一一对应.11.在中,角的对边分别为,若,且,,则的面积为( ) A .3B .C .D .12.对于两个复数,,则下列说法正确的是( )A .B .C .D .第Ⅱ卷三、填空题:本大题共4小题,每小题5分,共20分.13.已知复数,,且是实数,则实数等于 .14.如图,在斜度一定的山坡上的一点测得山顶上一建筑物顶端对于山坡的斜度为,向山顶前进后,又从点测得斜度为,假设建筑物高,设山对于平地的斜度,则 .(,2)x =m (4,2)x =+n 23x =-=a =b a b π6i(,)z a b a b =+∈R 0a =0b ≠z 221223()()0z z z z -+-=123z z z ==a i a ABC △,,A B C ,,a b c cos cos a A b B =2c =3sin 5C =ABC △231361α=-+122β=--1αβ=2αβ=||2||αβ=337αβ-=134i z =+2i z t =+12z z ×t A C 15︒100m B 45︒50m θcos θ=15.用一张4×8(cm 2)的矩形硬纸卷成圆柱的侧面,则该圆柱的表面积等于-------------------16.在中角,,的对边分别是,,,且,,若,则的最小值为 .四·解答题:(本大题共6大题,共70分,解答应写出文字说明、证明过程或演算步骤)17.(10分)已知关于的方程有实根,求这个实数根以及实数的值.18. (12分)如图,组合体下面是一个直三棱柱.△A 1B 1C 1为等腰直角三角形,BC =CE =2.上面是一个三棱锥,且AA 1⊥底面A 1B 1C 1,且AE =A1E =3,求组合体的表面积和体积.19.(12分)已知复数,m是实数,根据下列条件,求值.(1)是实数; (2)是虚数; (3)是纯虚数; (4).ABC△A B C a b c sin sin sin sin sin 3a Ab B cC B C +-=a =[1,3]b ∈c x 2(2i)2i 0x k x k ++++=k 22(232)(2)i z m m m m =+-++-m z z z 0z =20.(12分)在中,角所对的边分别为,且.(1)求角的大小;(2)若,求的周长的取值范围. 21.(12分)已知a =(1,2),b =(-3,1). (1)求a -2b;(2)设a,b 的夹角为θ,求cos θ的值;(3)若向量a +k b 与a -k b 互相垂直,求实数k 的值.22.(12分)已知向量,,且.(1)求及;(2)若的最小值为,求实数的值.高一数学答案一.AACCB DCC二.9.ACD 10,ACD 11,AC 12,BCD17.(12分)已知关于的方程有实根,求这个实数根以及实数的值.【答案】方程的实根为或值为或.【解析】设是方程的实数根,代入方程并整理得,由复数相等的条件得,解得或∴方程的实根为,相应的值为或.ABC△,,A B C ,,a b c222sin sin sin sin sinA C A CB +-=B ABC △ABC △33(cos ,sin )22x x =a (cos ,sin )22x x =-b π[0,]2x ∈⋅a b +a b ()2f x λ=⋅-+a b a b 32-λx 2(2i)2i 0x k x k ++++=k x =x =k k =-k =0x 2000(2)(2)i 0x kx x k ++++=20002020x kx x k ⎧++=⎨+=⎩0x k ⎧=⎪⎨=-⎪⎩0x k ⎧=⎪⎨=⎪⎩x =x =k k =-k =18.19.(10分)已知复数,,根据下列条件,求值.(1)是实数; (2)是虚数; (3)是纯虚数; (4).【答案】(1)或;(2)且;(3);(4). 【解析】(1)当,即或时,为实数. (2)当,即且时,为虚数.(3)当,解得,即时,为纯虚数.(4)令,解得,即时,.20.(12分)在中,角所对的边分别为,且.22(232)(2)i z m m m m =+-++-m R Îm z z z 0z =2m =-1m =2m ≠-1m ≠12m =2m =-220m m +-=2m =-1m =z 220m m +-≠2m ≠-1m ≠z 22232020m m m m ⎧+-=⎨+-≠⎩12m =12m =z 22232020m m m m ⎧+-=⎨+-=⎩2m =-2m =-0z =ABC △,,A B C ,,a b c 222sin sin sin sin sin A C A C B +-=(1)求角的大小;(2)若,求的周长的取值范围. 【答案】(1);(2).【解析】(1)由题意,由正弦定理得,,,即,又∵,. (2)由(1)知,且外接圆的半径为,,解得, 由正弦定理得,又,, 21.(10分)已知a =(1,2),b =(-3,1).(1)求a -2b;(2)设a,b 的夹角为θ,求cos θ的值; (3)若向量a +k b 与a -k b 互相垂直,求k 的值.【答案】(1)(7,0),(2)-√5050.(3)k=±√22.【解析】(1)a -2b =(1,2)-2(-3,1)=(1+6,2-2)=(7,0). (2)cos θ=a ·b|a |·|b |=√2√2=-√5050.(3)因为向量a +k b 与a -k b 互相垂直, 所以(a +k b)·(a -k b)=0,即a 2-k 2b 2=0,因为a 2=5,b 2=10,所以5-10k 2=0,解得k=±√22.B ABC △ABC △π3B =(5+⎤⎦222sin sin sin sin sin A C A C B +-=222a c acb +-=222a b b ac +-=222122a b b ac +-=1cos 2B =()0,πB ∈π3B =π3B =323=⨯5b =2sin sin a c A C ===sin )a c A C +=+2π3A C +=2ππsin()]10sin()336a c A A A +=+-=+22.(12分)已知向量,,且. (1)求及;(2)若的最小值为,求的值. 【答案】(1),;(2). 【解析】(1)由已知可得, , ,,.(2)由(1)得,,.①当时,当且仅当时,取得最小值,这与已知矛盾; ②当,当且仅当时,取得最小值,由已知可得,解得;③当时,当且仅当时,取得最小值, 由已知可得,解得,与矛盾, 综上所得,. 为锐角三角形,且, 又,得,,, 33(cos ,sin )22x x =a (cos ,sin )22x x =-b π[0,]2x ∈⋅a b +a b ()2f x λ=⋅-+a b a b 32-λcos2x ⋅=a b 2cos x +=a b 12λ=33coscos sin sin cos 22222x xx x x ⋅=⋅-⋅=ab +===a b π[0,]2x ∈Q cos 0x ∴≥2cos x ∴+=a b 222()cos 24cos 2cos 4cos 12(cos )12f x x x x x x λλλλ=-=--=---π[0,]2x ∈Q 0cos 1x ≤≤0λ<cos 0x =()f x 1-01λ≤≤cos x λ=()f x 12λ--23122λ--=-12λ=1λ>cos 1x =()f x 14λ-3142λ-=-58λ=1λ>12λ=ABC △π02A <<π02C <<2π3C A =-ππ62A <<πsin()62A +∈(a c +∈⎤⎦故的周长的取值范围是.ABC△(5+⎤⎦。

2020秋期中高一数学答案

2020秋期中高一数学答案

故 f (x) 在 (500,) 上无最大值.
.....................11 分
综上,当 x 475 时, f (x)max 107812.5.
......................12 分
高一数学答案 第 2 页 共 3 页
22.解:(1)由题知 f (0) 0 ,即 3 6 a 0, a 3. 3a
,则要满足条件有
m
1 2m m1 7
1,

m 1 2m 1,
2m 1 3
......10 分
解得 m 6 .
....................11 分
综上,实数 m 的取值范围为 (,2) (6,) .
....................12 分
19.解:(1)由题意得 16 4(a 3) 0 , a 1
综上 a 0, 或 a 1
17
.
2
20.解:(1)由题意得 a a x 0,即a x a
....................12 分 ......................2 分
①当 a 1 时,定义域为 (,1) ;
......................4 分
②当 0 a 1时,定义域为 (1,) .
设 3x tt 01 2t 3t 2 , (t 1)(3t 1) 0 ,t 1 , 或t 1(舍去) ...........4 分
3
3x 1 , x 1 3
.....................5 分
(2) x x 1
1
3 x 2
1
x 2
x x 1 2
5,
.....................7 分

【解析】2019高一期中统考数学

【解析】2019高一期中统考数学

9. 已知奇函数 f (x) 在 R 上单调递增,且 f (1) 1,则不等式 0 f (x) 1的解集是( )
A. (0,1)
B. (1, 0)
C. (1,1)
D. (1, )
【答案】A
【考点】奇偶性与单调性综合
【难度】易
【解析】由 f x 为 R 上的奇函数知 f 0 0 , f 1 f 1 1,则 0 f x 1等价于
类比赛的有 2 人,没有人同时参加三项比赛,则同时参加田径比赛和球类比赛的人数为( )
A. 1
B. 2
C. 3
D. 4
【答案】D
-3-
【考点】集合计数 【难度】中 【解析】只参加游泳比赛的有 15-3-2=10(人),同时参加田径比赛和球类比赛的有
8+14-(28-10)=4(人). 故选 D.
11. 设集合 A a,b , B 0, a2, b2 ,若 A B ,则 a b ( )
x
2
(1) 求 f (x) 的解析式;
(2) 判断函数 f (x) 在 (0, ) 上的单调性,并证明你的判断.
【答案】(1) f (x) x 1 ;(2) f (x) 在 0,+ 上单调递增,证明见解析.
x 【考点】求函数解析式与单调性的证明 【难度】中
【解析】(1)
f
f
(1) a b 1
1 x1 x2
)
0,
∴f (x2 ) f (x1) ,∴ f (x) 在 0,+ 上单调递增.
【答案】(1) = 1 ;图像略; 2
(2) f (x) 在 ,0 上单调递增;在 0,1 上单调递减,
在 1,+ 上单调递增. 值域为 1, 0 1, .

2019-2020学年高一数学下学期期中试题(含解析)

2019-2020学年高一数学下学期期中试题(含解析)

2019-2020学年高一数学下学期期中试题(含解析)一、选择题(本大题共10小题,共50分)1.设复数满足,则()A. B. C. D. 2【答案】A【解析】【分析】化简得到,得到模长.【详解】,故.故选:.【点睛】本题考查了复数的化简,复数模,意在考查学生的计算能力.2.已知向量与向量共线,则实数的值是()A. 2B. 3C. 4D. 6【答案】C【解析】【分析】直接根据向量共线公式得到答案.【详解】向量与向量共线,则,故.故选:.【点睛】本题考查了根据向量平行求参数,意在考查学生的计算能力.3.下列问题中,最适合用简单随机抽样方法抽样的是()A. 某县从该县中、小学生中抽取200人调查他们的视力情况B. 从15种疫苗中抽取5种检测是否合格C. 某大学共有学生5600人,其中专科生有1300人、本科生3000人、研究生1300人,现抽取样本量为280的样本调查学生利用因特网查找学习资料的情况,D. 某学校兴趣小组为了了解移动支付在大众中的熟知度,要对岁的人群进行随机抽样调查【答案】B【解析】【分析】依次判断每个选项的合适的抽样方法得到答案.【详解】A. 中学,小学生有群体差异,宜采用分层抽样;B. 样本数量较少,宜采用简单随机抽样;C. 中专科生、本科生、研究生有群体差异,宜采用分层抽样;D. 年龄对于移动支付的了解有较大影响,宜采用分层抽样;故选:.【点睛】本题考查了抽样方法,意在考查学生对于抽样方法的掌握情况.4.在中,若,则是()A. 正三角形B. 等腰三角形C. 等腰直角三角形D. 有一内角为60°的直角三角形【答案】C【解析】【分析】根据正弦定理得到,,故,得到答案.【详解】根据正弦定理:,故,,即,,故,故.故选:.【点睛】本题考查了利用正弦定理判断三角形形状,意在考查学生的计算能力和应用能力.5.在中,角所对的边分别为.若,则()A. B. C. D.【答案】C【解析】【分析】根据余弦定理得到,再利用正弦定理计算得到答案.【详解】根据余弦定理:,故,根据正弦定理:,即,解得.故选:.【点睛】本题考查了正弦定理余弦定理解三角形,意在考查学生的计算能力和应用能力.6.甲、乙两名射击运动员分别进行了5次射击训练,成绩(单位:环)如下:甲:7,8,8,8,9 乙:6,6,7,7,10;若甲、乙两名运动员的平均成绩分别用表示,方差分别为表示,则()A. B.C D.【答案】B【解析】【分析】计算,,,得到答案.【详解】,,故.;,故.故选:B.【点睛】本题考查了平均值和方差的计算,意在考查学生的计算能力和观察能力.7.某单位对某村的贫困户进行“精准扶贫”,若甲、乙贫困户获得扶持资金的概率分别为和,两户是否获得扶持资金相互独立,则这两户中至少有一户获得扶持资金的概率为()A. B. C. D.【答案】A【解析】【分析】考虑都没有获得扶持资金的情况,再计算对立事件概率得到答案.【详解】根据题意:.故选:.【点睛】本题考查了概率的计算,意在考查学生的计算能力和应用能力.8.抛掷一枚质地均匀的骰子,记事件为“向上的点数是偶数”,事件为“向上的点数不超过3”,则概率()A. B. C. D.【答案】D【解析】【分析】满足向上的点数是偶数或向上的点数不超过3的点数有:五种情况,得到答案.【详解】满足向上的点数是偶数或向上的点数不超过3的点数有:五种情况,故.故选:.【点睛】本题考查了概率的计算,意在考查学生的计算能力和应用能力.9.对某自行车赛手在相同条件下进行了12次测试,测得其最大速度(单位:)的数据如下:27,38,30,36,35,31,33,29,38,34,28,36,则他的最大速度的第一四分位数是()A. 29B. 29.5C. 30D. 36【答案】B【解析】【分析】数据从小到大排列,,计算得到答案.【详解】数据从小到大排列为:,,故最大速度第一四分位数是.故选:.【点睛】本题考查了分位数,意在考查学生的计算能力和应用能力.10.已知是边长为2的等边三角形,点分别是边的中点,连接并延长到点,使得,则的值为()A. B. C. D.【答案】C【解析】【分析】计算得到,,计算得到答案.【详解】根据题意:,,故.故选:.【点睛】本题考查了向量的数量积,将向量作为基向量是解题的关键.二、填空题(本大题共9小题,共50分)11.某学院的三个专业共有1500名学生,为了调查这些学生勤工俭学的情况,拟采用分层随机抽样的方法抽取一个容量为100的样本.已知该学院的专业有700名学生,专业有500名学生,则在该学院的专业应抽取_____________名学生.【答案】【解析】【分析】直接根据分层抽样的比例关系得到答案.【详解】该学院的专业应抽取:.故答案为:.【点睛】本题考查了分层抽样,意在考查学生计算能力和应用能力.12.已知i为虚数单位,复数为纯虚数,则a的值为__________.【答案】2【解析】【分析】首先把复数化简为代数形式,然后根据复数分类求解.【详解】,它为纯虚数,则且,解得.故答案为:2.【点睛】本题考查复数的运算,考查复数的分类,掌握复数的除法运算是解题关键.13.已知向量,满足,,若,则=_____________.【答案】5【解析】【分析】根据即可得到,再由即可求出,从而可得出的值.【详解】∵;∴,且;∴;∴.故答案为5.【点睛】本题考查向量垂直的充要条件,向量的数量积运算,向量长度的概念.14.从装有2个红球和2个白球口袋内任取2个球,是互斥事件的序号为___________.(1)至少有1个白球;都是白球;(2)至少有1个白球;至少有1个红球;(3)恰有1个白球;恰有2个白球;(4)至少有1个白球;都是红球【答案】(3)(4)【解析】【分析】根据互斥事件的概念依次判断每个选项中是否为互斥事件得到答案.【详解】(1)至少有1个白球,都是白球,都是白球的情况两个都满足,故不是互斥事件;(2)至少有1个白球,至少有1个红球,一个白球一个红球都满足,故不是互斥事件;(3)恰有1个白球,恰有2个白球,是互斥事件;(4)至少有1个白球;都是红球,是互斥事件.故答案为:(3)(4).【点睛】本题考查了互斥事件,意在考查学生对于互斥事件的理解和掌握.15.袋中有5个大小质地完全相同的球,其中2个红球、3个黄球,从中不放回地依次随机摸出2个球,第二次摸到红球的概率是____________.【答案】【解析】【分析】分为第一次是红球和第一次是黄球两种情况,计算得到答案.【详解】第一次是红球:;第一次是黄球:.故.故答案为:.【点睛】本题考查了概率的计算,意在考查学生的计算能力和应用能力.16.已知点,则向量在上的投影向量的模为___________.【答案】【解析】【分析】计算,,根据投影公式得到答案.【详解】根据题意:,,向量在上的投影向量的模为.故答案为:.【点睛】本题考查了向量的投影,意在考查学生的计算能力和转化能力.17.某校从参加高二年级学业水平测试的学生中抽出80名学生,其数学成绩(均为整数)的频率分布直方图,如图,估计这次测试中数学成绩的平均分约为______________、众数约为____________、中位数约为__________.(结果不能整除的精确到0.1)【答案】 (1). (2). (3).【解析】【分析】根据平均值,众数,中位数的概念依次计算得到答案.详解】根据频率分布直方图:平均数为:;众数约为;前三个矩形概率和为,设中位数为,则,解得.故答案为:;;.【点睛】本题考查了平均值,众数,中位数的计算,意在考查新学生的计算能力和应用能力.18.甲船在岛处南偏西50°的处,且的距离为10海里,另有乙船正离开岛沿北偏西10°的方向以每小时8海里的速度航行,若甲船要用2小时追上乙船,则速度大小为__________海里.【答案】【解析】【分析】计算,根据余弦定理得到,得到速度.【详解】根据题意知:,,根据余弦定理:,故,故速度为.故答案为:.【点睛】本题考查了余弦定理的应用,意在考查学生的计算能力和应用能力.19.中,角所对的边分别为.已知.则角的大小为___________,若,则的值为___________.【答案】 (1). (2).【解析】【分析】根据正弦定理得到,计算,再利用余弦定理计算得到答案.【详解】,故,,故,即,即,,故.,故.故答案为:;.【点睛】本题考查了正弦定理,余弦定理,意在考查学生的计算能力和应用能力.2019-2020学年高一数学下学期期中试题(含解析)一、选择题(本大题共10小题,共50分)1.设复数满足,则()A. B. C. D. 2【答案】A【解析】【分析】化简得到,得到模长.【详解】,故.故选:.【点睛】本题考查了复数的化简,复数模,意在考查学生的计算能力.2.已知向量与向量共线,则实数的值是()A. 2B. 3C. 4D. 6【答案】C【解析】【分析】直接根据向量共线公式得到答案.【详解】向量与向量共线,则,故.故选:.【点睛】本题考查了根据向量平行求参数,意在考查学生的计算能力.3.下列问题中,最适合用简单随机抽样方法抽样的是()A. 某县从该县中、小学生中抽取200人调查他们的视力情况B. 从15种疫苗中抽取5种检测是否合格C. 某大学共有学生5600人,其中专科生有1300人、本科生3000人、研究生1300人,现抽取样本量为280的样本调查学生利用因特网查找学习资料的情况,D. 某学校兴趣小组为了了解移动支付在大众中的熟知度,要对岁的人群进行随机抽样调查【答案】B【解析】【分析】依次判断每个选项的合适的抽样方法得到答案.【详解】A. 中学,小学生有群体差异,宜采用分层抽样;B. 样本数量较少,宜采用简单随机抽样;C. 中专科生、本科生、研究生有群体差异,宜采用分层抽样;D. 年龄对于移动支付的了解有较大影响,宜采用分层抽样;故选:.【点睛】本题考查了抽样方法,意在考查学生对于抽样方法的掌握情况.4.在中,若,则是()A. 正三角形B. 等腰三角形C. 等腰直角三角形D. 有一内角为60°的直角三角形【答案】C【解析】【分析】根据正弦定理得到,,故,得到答案.【详解】根据正弦定理:,故,,即,,故,故.故选:.【点睛】本题考查了利用正弦定理判断三角形形状,意在考查学生的计算能力和应用能力.5.在中,角所对的边分别为.若,则()A. B. C. D.【答案】C【解析】【分析】根据余弦定理得到,再利用正弦定理计算得到答案.【详解】根据余弦定理:,故,根据正弦定理:,即,解得.故选:.【点睛】本题考查了正弦定理余弦定理解三角形,意在考查学生的计算能力和应用能力.6.甲、乙两名射击运动员分别进行了5次射击训练,成绩(单位:环)如下:甲:7,8,8,8,9 乙:6,6,7,7,10;若甲、乙两名运动员的平均成绩分别用表示,方差分别为表示,则()A. B.C D.【答案】B【解析】【分析】计算,,,得到答案.【详解】,,故.;,故.故选:B.【点睛】本题考查了平均值和方差的计算,意在考查学生的计算能力和观察能力.7.某单位对某村的贫困户进行“精准扶贫”,若甲、乙贫困户获得扶持资金的概率分别为和,两户是否获得扶持资金相互独立,则这两户中至少有一户获得扶持资金的概率为()A. B. C. D.【答案】A【解析】【分析】考虑都没有获得扶持资金的情况,再计算对立事件概率得到答案.【详解】根据题意:.故选:.【点睛】本题考查了概率的计算,意在考查学生的计算能力和应用能力.8.抛掷一枚质地均匀的骰子,记事件为“向上的点数是偶数”,事件为“向上的点数不超过3”,则概率()A. B. C. D.【答案】D【解析】【分析】满足向上的点数是偶数或向上的点数不超过3的点数有:五种情况,得到答案.【详解】满足向上的点数是偶数或向上的点数不超过3的点数有:五种情况,故.故选:.【点睛】本题考查了概率的计算,意在考查学生的计算能力和应用能力.9.对某自行车赛手在相同条件下进行了12次测试,测得其最大速度(单位:)的数据如下:27,38,30,36,35,31,33,29,38,34,28,36,则他的最大速度的第一四分位数是()A. 29B. 29.5C. 30D. 36【答案】B【解析】【分析】数据从小到大排列,,计算得到答案.【详解】数据从小到大排列为:,,故最大速度第一四分位数是.故选:.【点睛】本题考查了分位数,意在考查学生的计算能力和应用能力.10.已知是边长为2的等边三角形,点分别是边的中点,连接并延长到点,使得,则的值为()A. B. C. D.【答案】C【解析】【分析】计算得到,,计算得到答案.【详解】根据题意:,,故.故选:.【点睛】本题考查了向量的数量积,将向量作为基向量是解题的关键.二、填空题(本大题共9小题,共50分)11.某学院的三个专业共有1500名学生,为了调查这些学生勤工俭学的情况,拟采用分层随机抽样的方法抽取一个容量为100的样本.已知该学院的专业有700名学生,专业有500名学生,则在该学院的专业应抽取_____________名学生.【答案】【解析】【分析】直接根据分层抽样的比例关系得到答案.【详解】该学院的专业应抽取:.故答案为:.【点睛】本题考查了分层抽样,意在考查学生计算能力和应用能力.12.已知i为虚数单位,复数为纯虚数,则a的值为__________.【分析】首先把复数化简为代数形式,然后根据复数分类求解.【详解】,它为纯虚数,则且,解得.故答案为:2.【点睛】本题考查复数的运算,考查复数的分类,掌握复数的除法运算是解题关键.13.已知向量,满足,,若,则=_____________.【答案】5【解析】【分析】根据即可得到,再由即可求出,从而可得出的值.【详解】∵;∴,且;∴;∴.故答案为5.【点睛】本题考查向量垂直的充要条件,向量的数量积运算,向量长度的概念.14.从装有2个红球和2个白球口袋内任取2个球,是互斥事件的序号为___________.(1)至少有1个白球;都是白球;(2)至少有1个白球;至少有1个红球;(3)恰有1个白球;恰有2个白球;(4)至少有1个白球;都是红球【答案】(3)(4)根据互斥事件的概念依次判断每个选项中是否为互斥事件得到答案.【详解】(1)至少有1个白球,都是白球,都是白球的情况两个都满足,故不是互斥事件;(2)至少有1个白球,至少有1个红球,一个白球一个红球都满足,故不是互斥事件;(3)恰有1个白球,恰有2个白球,是互斥事件;(4)至少有1个白球;都是红球,是互斥事件.故答案为:(3)(4).【点睛】本题考查了互斥事件,意在考查学生对于互斥事件的理解和掌握.15.袋中有5个大小质地完全相同的球,其中2个红球、3个黄球,从中不放回地依次随机摸出2个球,第二次摸到红球的概率是____________.【答案】【解析】【分析】分为第一次是红球和第一次是黄球两种情况,计算得到答案.【详解】第一次是红球:;第一次是黄球:.故.故答案为:.【点睛】本题考查了概率的计算,意在考查学生的计算能力和应用能力.16.已知点,则向量在上的投影向量的模为___________.【答案】【解析】【分析】计算,,根据投影公式得到答案.【详解】根据题意:,,向量在上的投影向量的模为.故答案为:.【点睛】本题考查了向量的投影,意在考查学生的计算能力和转化能力.17.某校从参加高二年级学业水平测试的学生中抽出80名学生,其数学成绩(均为整数)的频率分布直方图,如图,估计这次测试中数学成绩的平均分约为______________、众数约为____________、中位数约为__________.(结果不能整除的精确到0.1)【答案】 (1). (2). (3).【解析】【分析】根据平均值,众数,中位数的概念依次计算得到答案.详解】根据频率分布直方图:平均数为:;众数约为;前三个矩形概率和为,设中位数为,则,解得.故答案为:;;.【点睛】本题考查了平均值,众数,中位数的计算,意在考查新学生的计算能力和应用能力.18.甲船在岛处南偏西50°的处,且的距离为10海里,另有乙船正离开岛沿北偏西10°的方向以每小时8海里的速度航行,若甲船要用2小时追上乙船,则速度大小为__________海里.【答案】【解析】【分析】计算,根据余弦定理得到,得到速度.【详解】根据题意知:,,根据余弦定理:,故,故速度为.故答案为:.【点睛】本题考查了余弦定理的应用,意在考查学生的计算能力和应用能力.19.中,角所对的边分别为.已知.则角的大小为___________,若,则的值为___________.【答案】 (1). (2).【解析】【分析】根据正弦定理得到,计算,再利用余弦定理计算得到答案.【详解】,故,,故,即,即,,故.,故.故答案为:;.【点睛】本题考查了正弦定理,余弦定理,意在考查学生的计算能力和应用能力.。

2019-2020学年度高一上学期期中测试数学试卷及答案解析

2019-2020学年度高一上学期期中测试数学试卷及答案解析

第 1 页 共 10 页 启用前★绝密2019-2020学年高一年级期中测试数 学 试 题(考试时间:120分钟;满分:150分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合}01|{2=-=x x A ,则下列式子表示正确的有()①A ∈1 ②A ∈-}1{ ③A ⊆φ ④A ⊆-}1,1{A .1个B .2个C .3个D .4个2.设集合{|12},{|}.A x x B x x a =<<=<若,A B ⊆则a 的范围是() A .2a ≥ B .1a ≤ C .1a ≥ D .2a ≤ 3.下列函数中,与函数()f x x =是同一函数的是( )A .2()x g x x = B .2()1x xg x x -=-C.()g x = D.()g x =4.已知函数2()1f x x ax =-+在[2,)+∞上单调递增,则实数a 的取值范围是() A .{4} B .(,4]-∞ C .(,4)-∞ D .(,2]-∞5.已知函数2(1)1()2a x f x x -+=+是定义在R 上的偶函数,则实数a 值为( )A .1B .0C .1-D . 26.已知函数9,1()72,1x x f x x x +≤⎧=⎨->⎩,则不等式()3f x >的解集为( )A .(6,1]-B .(1,2)C .(6,2)-D .(6,2]-7.三个数 1.10.80.70.8,log 0.6,log 0.6a b c ===之间的大小关系是( )A .c b a >>B .b c a >>C .c a b >>D .a c b >>8.设函数f(x)=⎩⎨⎧<-≥-1,1,1x x x x ,则f(f(-1))=( )。

部分高中2019-2020学年高一数学下学期期中试题(含解析)

部分高中2019-2020学年高一数学下学期期中试题(含解析)

部分高中2019-2020学年高一数学下学期期中试题(含解析)一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 下面哪个不是算法的特征()A. 抽象性B. 精确性C. 有穷性D. 唯一性【答案】D【解析】根据算法的概念,可知算法具有抽象性、精确性、有穷性等,同一问题,可以有不同的算法,故选D.考点:算法的特征.2. 某班级有50名学生,其中有30名男生和20名女生,随机询问了该班五名男生和五名女生在某次数学测验中的成绩,五名男生的成绩分别为86,94,88,92,90,五名女生的成绩分别为88,93,93,88,93.下列说法一定正确的是()A. 这种抽样方法是一种分层抽样B. 这种抽样方法是一种系统抽样C. 这五名男生成绩的方差大于这五名女生成绩的方差D. 该班级男生成绩的平均数小于该班女生成绩的平均数【答案】C【解析】根据分层抽样和系统抽样定义判断A,B,求出五名男生和五名女生成绩的方差判断C.A,不是分层抽样,因为抽样比不同.B,不是系统抽样,因为随机询问,抽样间隔未知.C,五名男生成绩的平均数是==90,五名女生成绩的平均数是==91,五名男生成绩的方差为s12= (16+16+4+4+0)=8,五名女生成绩的方差为s22= (9+4+4+9+4)=6,显然,五名男生成绩的方差大于五名女生成绩的方差.D,由于五名男生和五名女生的成绩无代表性,不能确定该班男生和女生的平均成绩.3. 下列事件中,随机事件的个数为( )①在学校明年召开的田径运动会上,学生张涛获得100米短跑冠军;②在体育课上,体育老师随机抽取一名学生去拿体育器材,抽到李凯;③从标有1,2,3,4的4张号签中任取一张,恰为1号签;④在标准大气压下,水在4°C时结冰.A. 1B. 2C. 3D. 4【答案】C【解析】【分析】由随机事件的定义判断事件是否即有可能发生也有可能不发生即可.【详解】①张涛获得冠军有可能发生也有可能不发生,所以为随机事件;②抽到的学生有可能是李凯,也有可能不是,所以为随机事件;③有可能抽到1号签也有可能抽不到,所以为随机事件;④标准大气压下,水在4°C时不会结冰,所以是不可能事件,不是随机事件.故选C.【点睛】本题考查随机事件的判断,只需判断成立与否均有可能即可.4. 从个同类产品(其中个是正品,个是次品)中任意抽取个的必然事件是()A. 3个都是正品B. 至少有个是次品C. 个都是次品D. 至少有个是正品【答案】D【解析】试题分析:在一定条件下一定发生的事件,叫做必然事件.从12件同类产品中,其中10件是正品,2件是次品,任意抽取3件,其中至少有一件是正品,故选D.考点:本题主要考查必然事件的概念.点评:在一定条件下一定发生的事件,叫做必然事件.5. 甲、乙、丙三人随机排成一排,乙站在中间的概率是()A. B. C. D.【答案】B【解析】【分析】先求出甲、乙、丙三人随机排成一排的基本事件的个数,再求出乙站在中间的基本事件的个数,再求概率即可.【详解】解:三个人排成一排的所有情况有:甲乙丙,甲丙乙,乙甲丙,乙丙甲,丙乙甲,丙甲乙共6种,乙在中间有2种,所以乙在中间的概率为,故选B.【点睛】本题考查了古典概型,属基础题.6. 已知直角三角形两直角边长为a,b,求斜边长c的一个算法分下列三步:①计算;②输入直角三角形两直角边长a,b的值;③输出斜边长c的值;其中正确的顺序是()A. ①②③B. ②③①C. ①③②D. ②①③【答案】D【解析】试题分析:由算法的概念可知:算法是先后顺序的,结果明确性,每一步操作明确的,根据已知直角三角形两直角边长为a,b,求斜边长c的一个算法的先后顺序,即可判断选项的正误.解:由算法规则得:第一步:输入直角三角形两直角边长a,b的值,第二步:计算,第三步:输出斜边长c的值;这样一来,就是斜边长c的一个算法.故选D.点评:本题考查算法的概念,解题关键是算法的作用,格式.7. 如图(1)、(2),它们都表示的是输出所有立方小于1000的正整数的程序框图,那么应分别补充的条件为()A. (1)n3≥1000?(2)n3<1000?B. (1)n3≤1000?(2)n3≥1000?C. (1)n3<1000?(2)n3≥1000?D. (1)n3<1000?(2)n3<1000?【答案】C【解析】【分析】首先分析两个程序框图分别为当型和直到型循环结构,然后根据两个循环结构的特点分别写出判断框即可.【详解】根据两个程序框图分析:(1)为当型循环结构,故判断框内应为满足循环的条件.(2)为直到型循环结构,故判断框内为不再满足循环的条件.∴(1)内应填n3<1000?(2)内应填n3≥1000?故选C.【点睛】本题考查程序框图,通过对程序框图两个循环结构体的认识进行做题,属于基础题.8. 某医院治疗一种疾病的治愈率为,前4个病人都未治愈,则第5个病人的治愈率为( )A. 1B.C. 0D.【答案】D【解析】因第5个病人治愈与否,与其他四人无任何关系,故治愈率仍为.故选D9. 产品中有正品4件,次品3件,从中任取2件:①恰有一件次品和恰有2件次品;②至少有1件次品和全都是次品;③至少有1件正品和至少有一件次品;④至少有一件次品和全是正品.上述四组事件中,互为互斥事件的组数是()A. 1B. 2C. 3D. 4【答案】B【解析】①恰有一件次品和恰有2件次品是互斥事件,至少有一件次品和全是正品是互斥事件,至少有1件次品和全都是次品不是互斥事件,至少有1件正品和至少有一件次品不是互斥事件,因此互斥的有2组,故选B.10. 右图是求x1,x2,…,x10的乘积S的程序框图,图中空白框中应填入的内容为A.B.C.D.【答案】D【解析】本题主要考查程序框图的运用,重点是分析循环结构.由图知空白框处在一个循环体中,开始时每循环一次增加1,由输出结果可知第K次循环后应为循环前的倍,故选D.11. 如图所示的程序框图运行后,输出的结果是()A. 10B. 0C. -10D. 20【答案】A【解析】【分析】按照程序框图运行,即可得到答案.【详解】第一步:,,,执行,第二步:,,,执行,第三步:,,,执行,第四步:,,,执行,第五步:,,,执行,第六步:,,,执行,所以执行循环体20次后输出的,故选:A【点睛】本题主要考查了程序框图的循环结构,属于基础题.12. 如图所示的茎叶图表示甲、乙两人在5次综合测评中的成绩,其中一个数字被污损,则甲的平均成绩超过乙的平均成绩的概率为()A. B. C. D.【答案】C【解析】【分析】首先求出时的无损数字,再求出时可能的取值情况,根据古典概型即可求出所求事件的概率.【详解】由茎叶图知:.若,则被无损的数字.若,则可能的取值有种情况.故所求事件的概率为.故选:C【点睛】本题主要考查茎叶图,同时考查了平均数的求法和古典概型,属于简单题.二、填空题(本大题共4个小题,每小题5分,共20分)13. 某篮球队6名主力队员在最近三场比赛中投进的三分球个数如下表所示:如图是统计该6名队员在最近三场比赛中投进的三分球总数的程序框图,则图中判断框应填______,输出的s=_______(注:框图中的赋值符号“=”也可以写成“←”或“:=”)【答案】,【解析】顺为是统计该6名队员在最近三场比赛中投进的三分球总数的程序框图,所图中判断框应填,输出的s=.14. 袋中装有100个大小相同的红球、白球和黑球,从中任取一球,摸出红球、白球的概率是0.40和0.35,那么黑球共有________个.【答案】25【解析】【分析】根据对立事件概率公式,求得任取一球是黑球的概率,进而可求得黑球的个数,得到答案.【详解】由题意,根据对立事件概率公式,可得任取一球是黑球的概率为,所以黑球有(个).【点睛】本题主要考查了互斥事件和对立事件的应用,其中解答中熟练应用互斥事件和对立事件的概率加法公式是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.15. 设是半径为的圆周上一定点,在圆周上随机取一点,连接得一弦,若表示事件“所得弦的长大于圆内接等边三角形的边长”,则事件发生的概率____________.【答案】【解析】【分析】利用几何概型的概率求解.【详解】如图圆内接正三角形,当点位于劣弧上时,弦,所以由几何概型的概率得.【点睛】本题主要考查几何概型的概率的计算,意在考查学生对这些知识的理解掌握水平.16. 下面程序表示的算法是______.【答案】求的的最小值【解析】【分析】根据判断条件以及赋值语句可推导出算法的功能.【详解】由题意可知符合循环的条件是,即只要就执行,当程序刚好满足就跳出循环,因此,该循环表示的求的的最小值.故答案为:求的的最小值.【点睛】本题考查算法程序的功能,考查推理能力,属于基础题.三、解答题(本大题共6个小题,共70分.解答应写出文字说明、证明过程或演算步骤)17. 某路公共汽车5分钟一班准时到达某车站,求任一人在该车站等车时间少于3分钟的概率.(假定车到来后每人都能上).【答案】.【解析】【分析】该人到站的时刻的一切可能为,人到站的时刻为,根据概率公式得出结论.【详解】可以认为人在任何时刻到站是等可能的.设上一班车离站时刻为,则该人到站的时刻的一切可能为,若在该车站等车时间少于分钟,则到站的时刻为,.【点睛】本题考查几何概型的知识点,属于基础题型.18. 用WHILE语句求的值.【答案】答案见解析.【解析】【分析】用“”语句时,要弄清循环的条件,以及利用语句^,作为循环体,循环条件是:.最后根据“”语句格式即可写出.【详解】解:程序如下:^【点睛】本题主要考查了循环结构,以及“”语句的运用,属于基础题.19. 从甲、乙、丙、丁四个人中选两名代表,求:(1)甲被选中的概率;(2)丁没被选中的概率.【答案】(1);(2).【解析】【分析】(1)先确定从甲、乙、丙、丁四个人中选两名代表总事件数,再确定甲被选中的事件数,最后根据古典概型概率公式求概率(2)先确定从甲、乙、丙、丁四个人中选两名代表总事件数,再确定丁没被选中的事件数,最后根据古典概型概率公式求概率.【详解】(1)从甲、乙、丙、丁四个人中选两名代表共有:甲乙,甲丙,甲丁,乙丙,乙丁、丙丁共6种基本事件,其中甲被选中包括甲乙,甲丙,甲丁三种基本事件,所以甲被选中的概率为 .(2)丁没被选中包括甲乙,甲丙,乙丙三种基本事件,所以丁没被选中的概率为.点睛:古典概型中基本事件数的探求方法(1)列举法.(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法. (3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化.(4)排列组合法:适用于限制条件较多且元素数目较多的题目.20. 输入一个数x,如果它是正数,则输出它;否则不输出.画出解决该问题的程序框图,并写出对应的程序.【答案】见解析【解析】解:程序框图如图所示:相应的程序如下:21. 某市高三数学抽样考试中,对90分以上(含90分)的成绩进行统计,画出频率分布直方图如图(1)所示,已知130~140分数段的人数为90,90~100分数段的人数为,求图(2)表示的运算的表达式.【答案】.【解析】【分析】先分别求出分数段的频率与分数段的频率,然后根据频率的比值等于人数的比值,求出,然后根据程序框图的含义建立等式关系.【详解】分数段的频率为,人数为90,分数段的频率为,人数为,,解得:,由程序框图知,时,执行循环体,所以程序框图是计算,因此.【点睛】本题考查了频率分步直方图与程序框图循环结构相结合,属于基础题.22.随着我国经济的发展,居民的储蓄存款逐年增长.设某地区城乡居民人民币储蓄存款(年底余额)如下表:时间代号1储蓄存款(千5亿元)(Ⅰ)求y关于t的回归方程(Ⅱ)用所求回归方程预测该地区2015年()的人民币储蓄存款.附:回归方程中【答案】(Ⅰ),(Ⅱ)千亿元.【解析】试题分析:(Ⅰ)列表分别计算出,的值,然后代入求得,再代入求出值,从而就可得到回归方程,(Ⅱ)将代入回归方程可预测该地区2015年的人民币储蓄存款.试题解析:(1)列表计算如下15这里又从而.故所求回归方程.(2)将代入回归方程可预测该地区2015年的人民币储蓄存款为考点:线性回归方程.部分高中2019-2020学年高一数学下学期期中试题(含解析)一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 下面哪个不是算法的特征()A. 抽象性B. 精确性C. 有穷性D. 唯一性【答案】D【解析】根据算法的概念,可知算法具有抽象性、精确性、有穷性等,同一问题,可以有不同的算法,故选D.考点:算法的特征.2. 某班级有50名学生,其中有30名男生和20名女生,随机询问了该班五名男生和五名女生在某次数学测验中的成绩,五名男生的成绩分别为86,94,88,92,90,五名女生的成绩分别为88,93,93,88,93.下列说法一定正确的是()A. 这种抽样方法是一种分层抽样B. 这种抽样方法是一种系统抽样C. 这五名男生成绩的方差大于这五名女生成绩的方差D. 该班级男生成绩的平均数小于该班女生成绩的平均数【答案】C【解析】根据分层抽样和系统抽样定义判断A,B,求出五名男生和五名女生成绩的方差判断C.A,不是分层抽样,因为抽样比不同.B,不是系统抽样,因为随机询问,抽样间隔未知.C,五名男生成绩的平均数是==90,五名女生成绩的平均数是==91,五名男生成绩的方差为s12= (16+16+4+4+0)=8,五名女生成绩的方差为s22= (9+4+4+9+4)=6,显然,五名男生成绩的方差大于五名女生成绩的方差.D,由于五名男生和五名女生的成绩无代表性,不能确定该班男生和女生的平均成绩.3. 下列事件中,随机事件的个数为( )①在学校明年召开的田径运动会上,学生张涛获得100米短跑冠军;②在体育课上,体育老师随机抽取一名学生去拿体育器材,抽到李凯;③从标有1,2,3,4的4张号签中任取一张,恰为1号签;④在标准大气压下,水在4°C时结冰.A. 1B. 2C. 3D. 4【答案】C【解析】【分析】由随机事件的定义判断事件是否即有可能发生也有可能不发生即可.【详解】①张涛获得冠军有可能发生也有可能不发生,所以为随机事件;②抽到的学生有可能是李凯,也有可能不是,所以为随机事件;③有可能抽到1号签也有可能抽不到,所以为随机事件;④标准大气压下,水在4°C时不会结冰,所以是不可能事件,不是随机事件.故选C.【点睛】本题考查随机事件的判断,只需判断成立与否均有可能即可.4. 从个同类产品(其中个是正品,个是次品)中任意抽取个的必然事件是()A. 3个都是正品B. 至少有个是次品C. 个都是次品D. 至少有个是正品【答案】D【解析】试题分析:在一定条件下一定发生的事件,叫做必然事件.从12件同类产品中,其中10件是正品,2件是次品,任意抽取3件,其中至少有一件是正品,故选D.考点:本题主要考查必然事件的概念.点评:在一定条件下一定发生的事件,叫做必然事件.5. 甲、乙、丙三人随机排成一排,乙站在中间的概率是()A. B. C. D.【答案】B【解析】【分析】先求出甲、乙、丙三人随机排成一排的基本事件的个数,再求出乙站在中间的基本事件的个数,再求概率即可.【详解】解:三个人排成一排的所有情况有:甲乙丙,甲丙乙,乙甲丙,乙丙甲,丙乙甲,丙甲乙共6种,乙在中间有2种,所以乙在中间的概率为,故选B.【点睛】本题考查了古典概型,属基础题.6. 已知直角三角形两直角边长为a,b,求斜边长c的一个算法分下列三步:①计算;②输入直角三角形两直角边长a,b的值;③输出斜边长c的值;其中正确的顺序是()A. ①②③B. ②③①C. ①③②D. ②①③【答案】D【解析】试题分析:由算法的概念可知:算法是先后顺序的,结果明确性,每一步操作明确的,根据已知直角三角形两直角边长为a,b,求斜边长c的一个算法的先后顺序,即可判断选项的正误.解:由算法规则得:第一步:输入直角三角形两直角边长a,b的值,第二步:计算,第三步:输出斜边长c的值;这样一来,就是斜边长c的一个算法.故选D.点评:本题考查算法的概念,解题关键是算法的作用,格式.7. 如图(1)、(2),它们都表示的是输出所有立方小于1000的正整数的程序框图,那么应分别补充的条件为()A. (1)n3≥1000?(2)n3<1000?B. (1)n3≤1000?(2)n3≥1000?C. (1)n3<1000?(2)n3≥1000?D. (1)n3<1000?(2)n3<1000?【答案】C【解析】【分析】首先分析两个程序框图分别为当型和直到型循环结构,然后根据两个循环结构的特点分别写出判断框即可.【详解】根据两个程序框图分析:(1)为当型循环结构,故判断框内应为满足循环的条件.(2)为直到型循环结构,故判断框内为不再满足循环的条件.∴(1)内应填n3<1000?(2)内应填n3≥1000?故选C.【点睛】本题考查程序框图,通过对程序框图两个循环结构体的认识进行做题,属于基础题.8. 某医院治疗一种疾病的治愈率为,前4个病人都未治愈,则第5个病人的治愈率为( )A. 1B.C. 0D.【答案】D【解析】因第5个病人治愈与否,与其他四人无任何关系,故治愈率仍为.故选D9. 产品中有正品4件,次品3件,从中任取2件:①恰有一件次品和恰有2件次品;②至少有1件次品和全都是次品;③至少有1件正品和至少有一件次品;④至少有一件次品和全是正品.上述四组事件中,互为互斥事件的组数是()A. 1B. 2C. 3D. 4【答案】B【解析】①恰有一件次品和恰有2件次品是互斥事件,至少有一件次品和全是正品是互斥事件,至少有1件次品和全都是次品不是互斥事件,至少有1件正品和至少有一件次品不是互斥事件,因此互斥的有2组,故选B.10. 右图是求x1,x2,…,x10的乘积S的程序框图,图中空白框中应填入的内容为A.B.C.D.【答案】D【解析】本题主要考查程序框图的运用,重点是分析循环结构.由图知空白框处在一个循环体中,开始时每循环一次增加1,由输出结果可知第K次循环后应为循环前的倍,故选D.11. 如图所示的程序框图运行后,输出的结果是()A. 10B. 0C. -10D. 20【答案】A【解析】【分析】按照程序框图运行,即可得到答案.【详解】第一步:,,,执行,第二步:,,,执行,第三步:,,,执行,第四步:,,,执行,第五步:,,,执行,第六步:,,,执行,所以执行循环体20次后输出的,故选:A【点睛】本题主要考查了程序框图的循环结构,属于基础题.12. 如图所示的茎叶图表示甲、乙两人在5次综合测评中的成绩,其中一个数字被污损,则甲的平均成绩超过乙的平均成绩的概率为()A. B. C. D.【答案】C【解析】【分析】首先求出时的无损数字,再求出时可能的取值情况,根据古典概型即可求出所求事件的概率.【详解】由茎叶图知:.若,则被无损的数字.若,则可能的取值有种情况.故所求事件的概率为.故选:C【点睛】本题主要考查茎叶图,同时考查了平均数的求法和古典概型,属于简单题.二、填空题(本大题共4个小题,每小题5分,共20分)13. 某篮球队6名主力队员在最近三场比赛中投进的三分球个数如下表所示:如图是统计该6名队员在最近三场比赛中投进的三分球总数的程序框图,则图中判断框应填______,输出的s=_______(注:框图中的赋值符号“=”也可以写成“←”或“:=”)【答案】,【解析】顺为是统计该6名队员在最近三场比赛中投进的三分球总数的程序框图,所图中判断框应填,输出的s=.14. 袋中装有100个大小相同的红球、白球和黑球,从中任取一球,摸出红球、白球的概率是0.40和0.35,那么黑球共有________个.【答案】25【解析】【分析】根据对立事件概率公式,求得任取一球是黑球的概率,进而可求得黑球的个数,得到答案.【详解】由题意,根据对立事件概率公式,可得任取一球是黑球的概率为,所以黑球有(个).【点睛】本题主要考查了互斥事件和对立事件的应用,其中解答中熟练应用互斥事件和对立事件的概率加法公式是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.15. 设是半径为的圆周上一定点,在圆周上随机取一点,连接得一弦,若表示事件“所得弦的长大于圆内接等边三角形的边长”,则事件发生的概率____________.【答案】【解析】【分析】利用几何概型的概率求解.【详解】如图圆内接正三角形,当点位于劣弧上时,弦,所以由几何概型的概率得.【点睛】本题主要考查几何概型的概率的计算,意在考查学生对这些知识的理解掌握水平. 16. 下面程序表示的算法是______.【答案】求的的最小值【解析】【分析】根据判断条件以及赋值语句可推导出算法的功能.【详解】由题意可知符合循环的条件是,即只要就执行,当程序刚好满足就跳出循环,因此,该循环表示的求的的最小值.故答案为:求的的最小值.【点睛】本题考查算法程序的功能,考查推理能力,属于基础题.三、解答题(本大题共6个小题,共70分.解答应写出文字说明、证明过程或演算步骤)17. 某路公共汽车5分钟一班准时到达某车站,求任一人在该车站等车时间少于3分钟的概率.(假定车到来后每人都能上).【答案】.【解析】【分析】该人到站的时刻的一切可能为,人到站的时刻为,根据概率公式得出结论.【详解】可以认为人在任何时刻到站是等可能的.设上一班车离站时刻为,则该人到站的时刻的一切可能为,若在该车站等车时间少于分钟,则到站的时刻为,.【点睛】本题考查几何概型的知识点,属于基础题型.18. 用WHILE语句求的值.【答案】答案见解析.【解析】【分析】用“”语句时,要弄清循环的条件,以及利用语句^,作为循环体,循环条件是:.最后根据“”语句格式即可写出.【详解】解:程序如下:^【点睛】本题主要考查了循环结构,以及“”语句的运用,属于基础题.19. 从甲、乙、丙、丁四个人中选两名代表,求:(1)甲被选中的概率;(2)丁没被选中的概率.【答案】(1);(2).【解析】【分析】(1)先确定从甲、乙、丙、丁四个人中选两名代表总事件数,再确定甲被选中的事件数,最后根据古典概型概率公式求概率(2)先确定从甲、乙、丙、丁四个人中选两名代表总事件数,再确定丁没被选中的事件数,最后根据古典概型概率公式求概率.【详解】(1)从甲、乙、丙、丁四个人中选两名代表共有:甲乙,甲丙,甲丁,乙丙,乙丁、丙丁共6种基本事件,其中甲被选中包括甲乙,甲丙,甲丁三种基本事件,所以甲被选中的概率为 .(2)丁没被选中包括甲乙,甲丙,乙丙三种基本事件,所以丁没被选中的概率为.点睛:古典概型中基本事件数的探求方法(1)列举法.(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法.(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化.(4)排列组合法:适用于限制条件较多且元素数目较多的题目.20. 输入一个数x,如果它是正数,则输出它;否则不输出.画出解决该问题的程序框图,并写出对应的程序.【答案】见解析【解析】解:程序框图如图所示:相应的程序如下:21. 某市高三数学抽样考试中,对90分以上(含90分)的成绩进行统计,画出频率分布直方图如图(1)所示,已知130~140分数段的人数为90,90~100分数段的人数为,求图(2)表示的运算的表达式.【答案】.【解析】【分析】先分别求出分数段的频率与分数段的频率,然后根据频率的比值等于人数的比值,求出,然后根据程序框图的含义建立等式关系.【详解】分数段的频率为,人数为90,分数段的频率为,人数为,,解得:,由程序框图知,时,执行循环体,所以程序框图是计算,。

2019-2020年度高一数学期中考试试卷

2019-2020年度高一数学期中考试试卷

2019-2020年度高一期中考试(考试总分:150 分 考试时长: 0 分钟)一、 单选题 (本题共计12小题,总分60分)1.(5分)(5分)已知集合{1,3,5,6}A =,集合{2,3,4,5}B =,那么A B =( )A. {3,5}B. {1,2,3,4,5,6}C. {7}D. {1,4,7}2.(5分)(5分)已知集合M ={x|x +1≥0},N ={x|2x <4},则M ∩N =( )A .(−∞,−1]B .[−1,2)C .(−1,2]D .(2,+∞)3.(5分)(5分)函数()ln(32)f x x =-的定义域为( ) A.3[1,)2B.3(1,)2C.3[1,]2D.3(,)2+∞4.(5分)(5分)幂函数的图象经过点(3,27),则()f x =( )A.3xB.3xC.9xD.3log x5.(5分)(5分)哪个函数与函数y x =相同 ( )A.y =B .2x y x=C.2y =D.y =6.(5分)(5分)下列区间中,函数()25x f x =-存在零点的区间是( )A .(1,0)-B .(0,1)C .(1,2)D .(2,3)7.(5分)(5分)下面四个结论:①偶函数的图象一定与y 轴相交;①奇函数的图象一定通过原点;①偶函数的图象关于y 轴对称;①既是奇函数又是偶函数的函数一定是f(x)=0(x①R),其中正确命题的个数是A .1B .2C .3D .48.(5分)(5分)当1x ≤时,函数1422x x y +=-+的值域为( )A.[1,)+∞B.[2,)+∞C.[1,2)D.[1,2]9.(5分)(5分)函数f(x)=a x 与g(x)=ax-a 的图象有可能是下图中的( )A.B.C. D.10.(5分)(5分)函数2()42f x x ax =++在(,6)-∞内是减函数,则实数a 的取值范围是( ).A.[3,)+∞B.(,3]-∞C.[3,)-+∞D.(,3]-∞-11.(5分)(5分)70.37log 0.3,0.3,7,a b c 设则===( ) A .a c b <<B .b c a <<C .a b c <<D .b a c <<12.(5分)(5分)函数()()2ln 2f x x x =--+的单调递减区间为( )A.()(),21,-∞-⋃+∞B.1-2-2(,)C.1-12(,) D.1+∞(,)二、 填空题 (本题共计4小题,总分20分) 13.(5分)(5分)若函数()120,1x y aa a -=+>≠的图像恒过定点,则该定点坐标是______.14.(5分)(5分)幂函数()2()33mf x m m x =-+的图象关于y 轴对称,则实数m =_______.15.(5分)(5分)如图所示,向高为H的水瓶A,B,C,D同时以等速注水,注满为止;(1)若水深h与注水时间t的函数图象是下图中的a,则水瓶的形状是________;(2)若水量ν与水深h的函数图像是下图中的b,则水瓶的形状是________;(3)若水深h与注水时间t的函数图象是下图中的c,则水瓶的形状是________;(4)若注水时间t与水深h的函数图象是下图中的d,则水瓶的形状是________。

2019-2020学年河南省南阳市高一上学期期中质量评估数学试题 扫描版含答案

2019-2020学年河南省南阳市高一上学期期中质量评估数学试题 扫描版含答案

2019年秋期高中一年级期中质量评估数学试题参考答案1-5 ABBCB 6-10 AADDC 11-12 CD 13.32 14. 91 15.()∞+,0 16. 8 17. 解:(1).10218125=++-=原式 ………………………………………………5分 (2)342332log 212425lg 3log +-⨯+=)(原式 232-223++= 3= ………………………………………………………10分(得分分解:4项中每项算对各得1分,最后结果正确再得1分)18. 解:(1)由题可知[]4,2=A , …………………………………………2分()e B ,1=, …………………………………………4分所以[)e B A ,2= . …………………………………………6分 (2)因为,所以, …………………………………………7分 ①若是空集,则,得到, …………………………………………8分 ②若非空,则,得,…………………………………………11分 综上所述,,即的取值范围是..…………………………………12分19.解:(1)①由于函数()f x 是定义域为R 的奇函数,则(0)0f =;②当0x <时,0x ->,因为()f x 是奇函数,所以()()f x f x -=-. 所以22()()[()2()]2f x f x x x x x =--=----=--. 综上:222,0()0,02,0x x x f x x x x x ⎧->⎪==⎨⎪--<⎩…………4分. (2)图象如图所示.(图像给2分)单调增区间:),1[],1,(+∞--∞单调减区间:)1,1(- ………8分.(3)∵方程12)(+=a x f 有三个不同的解∴1121<+<-a …………… …………………………………10分. ∴01<<-a∴)0,1(-∈a ……………………………………………12分. 20.解:(1)当10x =时,由(10)(10)(2010)(10)600f g a ⋅=+-=,解得30a =. ………… …………………………………3分. 从而可得(15)(15)2515375f g =⨯=(元),即第15天该商品的销售收入为375元. ………………………………… 5分 (2)由题意可知(20)(30),110(40)(30),1030x x x y x x x +-≤≤⎧=⎨--<≤⎩, 即2210600,110701200,1030x x x y x x x ⎧-++≤≤=⎨-+<≤⎩当110x ≤≤时,2210600(5)625y x x x =-++=--+,故当5x =时y 取最大值,max 625y =,当1030x <≤时,21070101200600y <-⨯+=,故当5x =时,该商品日销售收入最大,最大值为625元. ……………………12分21.(5分(2)由题意,函数f(x)在区间[,1]t t +上是减函数,因此 min max ()(1),()()f x f t f x f t =+=化简得2(1)10at a t ++-≥,该式对任意的⎥⎦⎤⎢⎣⎡∈2,21t 恒成立。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

9.已知二次函数 f (x) x2 2x 4 在区间[1, a) 上的 最小值为 5 ,最大值为 1,则实数 a 的取值范围是( )
A. [1,3)
B. [1,3]
C. [1, )
D. (1,3]
【答案】D
【解析】
【分析】
先由二次函数性质,得到函数 f (x) x2 2x 4 单调性,求出最小值,再令
f (x) 5x 5x f (x)
【详解】因 为
3 , x R ,所以
3

因此函数 f (x) 是奇函数;

y
5x 单调递增,
y
5x
单调递减,所以
f
(x)
5x
5x 3
单调递增;
故选:A
【点睛】本题主要考查函数奇偶性与单调性的判定,熟记奇偶性的概念,以及指数函数的单 调性即可,属于常考题型.
y f (x) 有三个交点,不妨令 x1 x2 x3 ,根据图像得到 0 k 4 , x1 x2 4 ,求出 3 x3 18
再由 0 log2 (x3 m) 4 ,求出1 m x3 16 m ,列出等式求解,即可得出结果.
【详解】画出函数
f
(x)
x2 ,x 2
log
f
(x)
x2
2x
4
1 ,得出当
x
1, 3 时,
f
(x)
x2
2x
4
的值域为
5,
1 ;结
合题意,即可求出结果.
【详解】因为二次函数 f (x) x2 2x 4 开口向上,且对称轴为: x 1 ,
所以
f
(x)
x2
2x
4在
,1 上单调递减,在
1, 上单调递增,
因此,当且仅当 x 1 时, f (x) x2 2x 4 取最小值 f (1) 5 ;
【详解】因为U {1, 2,3, 4,5,6}, M {2,3,5} ,
所以 CU M {1, 4, 6},又 N {4,6},
所以 CU
M
N
{4, 6}
.
故选:A
【点睛】本题主要考查集合的交集与补集的混合运算,熟记概念即可,属于基础题型.
2.下列函数 f (x) , g(x) 表示的是相同函数的是( )
log2
3
f (8) log2 22
3
3
2 。答案: 2

14.函数 f x lo3gx2 x
x x
0 0 ,则
f
f
1 4
__________.
1 【答案】 9
【解析】
【分析】
先求
f
1 () 4 的值,再求
f
f
1 4 的值.
【详解】由题得
f
1 ( 4)= log2
1 4
2

所以
故选:C
【点睛】本题主要考查由对数型复合函数的单调性求参数的问题,熟记对数函数与二次函数 的性质即可,属于常考题型.
11.已知定义在实数 R 上的函数 y=f(x)不恒为零,同时满足 f(x+y)=f(x)f(y),且当 x>0 时,f(x)>1,那么当 x<0 时,一定有( )
A. f(x)<-1
f (x) log1
【详解】因为函数
2
x2 ax 3a
在区间[2, ) 是减函数,
所以只需二次函数 y x2 ax 3a 在区间[2, ) 是增函数,且 x2 ax 3a 0 在 [2, ) 上恒成立;
a 2 2 所以有: 22 2a 3a 0 ,解得 4 a 4 ;
4.已知 f (x) 2x2 2x ,则在下列区间中, f (x) 有零点的是( )
A. (3, 2)
B. (2, 1)
C. (1, 0)
D. (0,1)
【答案】C 【解析】 【分析】 根据函数的零点存在定理,直接判断,即可得出结果.
【详解】因为
f
(x)
2x2
2x
,所以
f
(3)
2 32
23
18
8.设函数
f
(x)
21x , x 1
1
log2
x,
x
1 则满足
f
(x)
4

x
的取值范围是(
)
A. [1, 2]
B. [0, 2]
C. [1, )
D. [1, )
【答案】D
【解析】
【分析】
根据函数解析式,分别求出 x 1, x 1 时, f (x) 4 的解集,即可得出结果.
【详解】由题意,当 x 1时, f (x) 21x ,所以 f (x) 4 可化为 21x 22 ,
A 选项,函数 f (x) 2x 的定义域为 R , g(x) log2 x 的定义域为 0, ,定义域不同,不
是相同函数,故 A 错;
B 选项,函数 f (x) | x | 与 g(x)
x2 的定义域为 R ,且 g(x)
x2 x
,对应关系也相
同,故 B 正确;
C
选项,函数
f
(x)
x
的定义域为
A. [2,3)
B. [3,5)
C. (,3)
D. (2,3)
【答案】B
【解析】
【分析】
由题中解析式,列出不等式求解,即可得出结果.
5 x 0 【详解】由题意, 2x 8 0 ,解得 3 x 5 ,
即函数 y ln(5 x) 2x 8 的定义域是[3, 5) .
故选:B 【点睛】本题主要考查求具体函数的定义域,只需求出使解析式有意义的自变量的范围即可, 属于基础题型.
f (x) log1
10.已知函数
2
x2 ax 3a
在区间[2, ) 是减函数,则实数 a 的取值范围是(
)
A. (, 4]
B. [4, )
C. (4, 4]
D. [4, 4]
【答案】C
【解析】
【分析】
先由题意得到二次函数 y x2 ax 3a 在区间[2, ) 是增函数,且 x2 ax 3a 0 在 [2, ) 上恒成立;列出不等式组求解,即可得出结果.
B. -1<f(x)<0
C. f(x)>1
D. 0<f(x)<1
【答案】D
【解析】
对任意 x, y R ,恒有
f
x
y
f
x
f
y ,
可令 x 1, y 0 可得 f 0 1 f 0. f 1
因为当 x 0 时, f x 1, 故 f 1 1 0
f 0 1
所以
再取 x y, 可得 f 0 f y y f y f y 1 ,
f y
所以
f
1
y
,同理得
f
x
1
f x,

x
0
时,
x
0
,根据已知条件得
f
x
11
,即
f
x
1
0 f x1
变形得

故选 D.
点睛:解抽象函数问题的一般思路都是赋值法,由自变量的任意性,结合题意给予变量特殊 取值,从而解得函数性质.
12.已知函数
f
(x)
x2 ,x 2
log
2
(
x
m),
x
2 ,若
先设元素 (3, 1) 在 f 的作用下的原像为 (x, y) ,根据题意列出方程组求解,即可得出结果.
【详解】设元素 (3, 1) 在 f 的作用下的原像为 (x, y) ,
因为 f : (x, y) (2x y, x 2 y) ,
2x y 3
x 1
所以
x
2
y
1
,解得
y
1
,即原像为
(1,
R
,函数
g(x)
x2 x
,0 0,
的定义域为
,定义
域不同,不是相同函数,故 C 错;
D
选项,函数
f
(x)
2
lg
x

g(x)
lg(2x)
0,
的定义域均为
,但对应关系不一致,故
D 错;
故选:B
【点睛】本题主要考查相同函数的判定,熟记概念即可,属于基础题型.
3.函数 y ln(5 x) 2x 8 的定义域是( )
f
f
1 4
f
(2) 32
1 9
.
1 故答案为: 9
【点睛】本题主要考查指数对数运算和分段函数求值,意在考查学生对这些知识的理解掌握 水平,属于基础题.
f x 2
由 0 log2 (x3 m) 4 得1 x3 m 16 ,即1 m x3 16 m , 1 m 3
因此 16 m 18 ,解得: m 2 .
故选:D
【点睛】本题主要考查分段函数的应用,以及函数与方程的综合应用,利用数形结合的方法
处理即可,属于常考题型. 二、填空题
12
y
1)
.
故选:B
【点睛】本题主要考查映射的应用,熟记映射的概念,以及二元一次方程组的解法即可,属 于基础题型.
a
6.设
log1 3 b
2,
1 3
0.2

c
1
23

( )
A. b a c
B. c b a
C. c a b
D.
abc
【答案】D
【解析】
【分析】
先分析得到 a 0,b 0,c 0 ,再比较 b,c 的大小关系得解.
a=log1 3 log11 0,b 0,c 0
相关文档
最新文档