2013年全国高考理科数学试题分类汇编14:导数与积分

合集下载

2013年高考理科数学试题分类汇:导数与积分

2013年高考理科数学试题分类汇:导数与积分

请考生在第 以以 以3 以4 题中任选一题做答,如果多做,则按所做的第一题计 .作答时 用 以B 铅笔在答题卡 把所选题目对 题号 方的方框涂黑. 答案
令3. 以0令3 普通高等学校招生全 统一招生考试江 卷 数学 题 本小题满 令6 . 设函数 f ( x) = ln x − ax , g ( x ) = e x − ax ,其中 a 为实数. Ⅲ令)若 f ( x ) 在 (1,+∞ ) 围; 是单调 函数,且 g ( x ) 在 (1,+∞ )
以0令3
一 选择题 高考湖
高考理科数学试题
类汇编:令4 导数
令 . 以0令3


已知 a 为常数,函数
f ( x ) = x ( ln x − ax )
有两个极值点
x1 , x2 ( x1 < x2 ) ,则
A.
f ( x1 ) > 0, f ( x2 ) > − f ( x1 ) > 0, f ( x2 ) < −
已校对纯 上OR价 版含 加
有最小值,求 a 的取值范
Ⅲ以)若 g ( x ) 在 ( −1,+∞ )
是单调增函数,试求 f ( x ) 的零点个数,并证明你的结论.
卷 加题部 答案 wor北 版 与选做题成第 以令 题,本题包括 A B 件 价 四小题,请选定其中两题 ,并在相 的答题区域 ...... 内作答,若多做,则按作答的前两题评 .解答时 写出文 说明 证明过程或演算 答案 解:Ⅲ令)由 f ' ( x) = 而由 x ∈ (1,+∞ ) 知 由 g ' ( x) = e x − a 骤.

2
1
x 2 dx, S , S3 = ∫ e x dx, 则 S1S2 S3 的大小 1 x

2013年全国各地高考试题分类汇编(函数与导数)

2013年全国各地高考试题分类汇编(函数与导数)

2013年全国各地高考试题分类汇编(函数与导数)1.(2013广东.理)(14分)设函数()()21x f x x e kx =--(其中k ∈R ).(Ⅰ) 当1k =时,求函数()f x 的单调区间;(Ⅱ) 当1,12k ⎛⎤∈ ⎥⎝⎦时,求函数()f x 在[]0,k 上的最大值M .2.(本小题满分14分)(2013广东文)设函数x kx x x f +-=23)( ()R k ∈.(1) 当1=k 时,求函数)(x f 的单调区间;(2) 当0<k 时,求函数)(x f 在[]k k -,上的最小值m 和最大值M .3(本小题共13分)(2013北京.理)设l 为曲线ln :x C y x =在点(1,0)处的切线. (Ⅰ)求l 的方程;(Ⅱ)证明:除切点(1,0)之外,曲线C 在直线l 的下方.4.(13分)(2013•北京.文)已知函数2()sin cos f x x x x x =++(1)若曲线()y f x =在点(,())a f a 处与直线y b =相切,求a 与b 的值;(2)若曲线()y f x =与直线y b =有两个不同交点,求b 的取值范围.5.(2013大纲版.文)(12分)已知函数32()331f x x ax x =+++(1)求当a =,讨论()f x 的单调性;(1)若[2,)x ∈+∞时,()0f x ≥,求a 的取值范围.6.(13分)(2013•福建)已知函数()ln ()f x x a x a R =-∈(1)当2a =时,求曲线()y f x =在点(1,(1))A f 处的切线方程;(2)求函数()f x 的极值.7.(14分)(2013•福建)已知函数()1(),xa f x x a R e =-+∈(e 为自然对数的底数) (1)若曲线()y f x =在点(1,(1))f 处的切线平行于x 轴,求a 的值;(2)求函数()f x 的极值;(3)当1a =时,若直线:1l y kx =-与曲线()y f x =没有公共点,求k 的最大值.8.(13分)(2013•安徽)设函数23*222()1(,)23nn x x x f x x x R n N n=-+++++∈∈ ,证明: (1)对每个*n N ∈,存在唯一的2[,1]3n x ∈,满足()0n n f x =; (2)对于任意*p N ∈,由(1)中n x 构成数列{}n x 满足10n n p x x n+<-<. 9. (本小题满分14分) (2013陕西.理)已知函数()e ,x f x x =∈R . (Ⅰ) 若直线1y kx =+与()f x 的反函数的图像相切, 求实数k 的值;(Ⅱ) 设0x >, 讨论曲线()y f x =与曲线2(0)y mx m => 公共点的个数.(Ⅲ) 设a b < , 比较()()2f a f b +与()()f b f a b a--的大小, 并说明理由.10. (本小题满分14分) (2013陕西.文)已知函数()e ,x f x x =∈R .(Ⅰ) 求()f x 的反函数的图象上图象上点(1,0)处的切线方程;(Ⅱ) 证明: 曲线()y f x =与曲线2112y x x =++有唯一公共点. (Ⅲ) 设a b <, 比较2a b f +⎛⎫ ⎪⎝⎭与()()f b f a b a --的大小, 并说明理由.14(本小题满分13分)(2013湖南.理)已知0a >,函数()2x a f x x a-=+ (1) 记()f x 在区间[0,4]上的最大值为()g a ,求()g a 的表达式(2) 是否存在a ,使函数()y f x =在区间(0,4)内的图象上存在两点,在该两点处的切线互相垂直?若村子啊,求出a 的取值范围,若不存在,请说明理由(1)求()f x 的单调区间,最大值;(2)讨论关于x 的方程|ln |()x f x =根的个数.17(山东.文)(本小题满分12分)已知函数2()ln (,)f x ax bx x a b R =+-∈(Ⅰ)设0a ≥,求)(x f 的单调区间(Ⅱ) 设0a >,且对于任意0x >,()(1)f x f ≥。

山东省各地市2013届高三理科数学试题分类汇编14:导数与积分_Word版含答案

山东省各地市2013届高三理科数学试题分类汇编14:导数与积分_Word版含答案

山东省各地市2013届高三理科数学试题分类汇编14:导数与积分一、选择题1 .(山东省潍坊市2013届高三第二次模拟考试理科数学)定义在R 上的函数()f x 的导函数为'()f x ,已知(1)f x +是偶函数(1)'()0x f x -<. 若12x x <,且122x x +>,则1()f x 与2()f x 的大小关系是( )A .12()()f x f x <B .12()()f x f x =C .12()()f x f x >D .不确定【答案】C 由(1)'()0x f x -<可知,当1x >时,'()0f x <函数递减.当1x <时,'()0f x >函数递增.因为函数(1)f x +是偶函数,所以(1)(1)f x f x +=-,()(2)f x f x =-,即函数的对称轴为1x =.所以若121x x <<,则12()()f x f x >.若11x <,则必有22x >,则2121x x >->,此时由21()(2)f x f x <-,即211()(2)()f x f x f x <-=,综上12()()f x f x >,选C .2 .(山东省济南市2013届高三3月高考模拟理科数学)设235111111,,a dx b dx c dx xxx===⎰⎰⎰,则下列关系式成立的是 ( )A .235a b c << B .325b a c<< C .523c a b <<D .253a cb <<【答案】C22111ln ln 2a dx x x ===⎰,33111ln ln 3b dx x x ===⎰,55111ln ln 5c dx x x ===⎰,所以ln 222a ==,ln 3ln 33b ==,ln 555c ==.因为6328==,6239==,所以<.105232==,102525==,<,<<所以523c a b<<,选 C .3 .(山东省泰安市2013届高三第一轮复习质量检测数学(理)试题)设函数()()3402f x x x a a =-+<<有三个零点1x 、x 2、x 3,且123,x x x <<则下列结论正确的是 ( )A .11x >-B .20x <C .32x >D .201x <<【答案】D∵函数()()3402f x x x a a =-+<<,∴f′(x)=3x 2﹣4.令f′(x)=0,得 x=±.∵当x <,'()0f x >;在(上,'()0f x <;在)+∞上,'()0f x >.故函数在(,-∞)上是增函数,在(上是减函数,在)+∞上是增函数.故(f是极大值,f 是极小值.再由 f (x)的三个零点为x 1,x 2,x 3,且123,x x x <<得 x 1<﹣,﹣<x 2,x 3>.根据f(0)=a>0,且f()=a ﹣<0,得>x 2>0.∴0<x 2<1.选D .4 .(山东省枣庄市2013届高三3月模拟考试数学(理)试题)若()y f x =既是周期函数,又是奇函数,则其导函数'()y f x =( )A .既是周期函数,又是奇函数B .既是周期函数,又是偶函数C .不是周期函数,但是奇函数D .不是周期函数,但是偶函数【答案】B因为()y f x =是周期函数,则有()()f x T f x +=,两边同时求导,得'()()''()f x T x T f x ++=,即'()'()f x T f x +=,所以导函数为周期函数.因为()y f x =是奇函数,所以()()f x f x -=-,两边求导得'()()''()f x x f x --=-,即'()'()f x f x --=-,所以'()'()f x f x -=,即导函数为偶函数,选B .5 .(山东省烟台市2013届高三上学期期末考试数学(理)试题)设函数()sin cos f x x x x =+的图像在点(,())t f t 处切线的斜率为k,则函数k=g(t)的部分图像为【答案】B【解析】函数的导数为'()sin cos cos f x x x x x x =+=,即()cos k g t t t ==.则函数()g t 为奇函数,所以图象关于原点对称,所以排除A,C .当02t π<<时,()0g t >,所以排除排除D,选 B .6 .(山东省泰安市2013届高三上学期期末考试数学理)由曲线1xy =,直线,3y x x ==及x 轴所围成的曲边四边形的面积为 ( )A .116 B .92C .1ln 32+ D .4ln 3-【答案】C【解析】由1xy =得1y x =,由1y xy x =⎧⎪⎨=⎪⎩得1D x =,所以曲边四边形的面积为132130101111ln ln 322xdx dx x x x +=+=+⎰⎰,选 C .7 .(山东省临沂市2013届高三5月高考模拟理科数学)若函数1()e (0,)axf x a b b=->>0的图象在0x =处的切线与圆221x y +=相切,则a b +的最大值是 ( )A .4B.C .2D【答案】D 函数的导数为1'()e ax f x a b =-⋅,所以01'(0)e af a b b=-⋅=-,即在0x =处的切线斜率为a k b =-,又011(0)e f b b =-=-,所以切点为1(0,)b -,所以切线方程为1ay x b b+=-,即10ax by ++=,圆心到直线10ax by ++=的距离1d ==,即221a b +=,所以2212a b ab +=≥,即102ab <≤.又222()21a b a b ab +=+-=,所以2()21112a b ab +=+≤+=,即a b +≤所以a b +,选D .8 .(山东省临沂市2013届高三5月高考模拟理科数学)函数sin e ()x yx =-π≤≤π的大致图象为【答案】D 因为函数为非奇非偶函数,所以排除A,C .函数的导数为sin 'cos xy e x =⋅由sin 'cos 0x y e x =⋅=,得cos 0x =,此时2x π=或2x π=-.当02x π<<时,'0y >,函数递增.当2x ππ<<时,'0y <,函数递减,所以2x π=是函数的极大值,所以选D .(A)(B)(C)(D)9 .(山东省青岛市2013届高三第一次模拟考试理科数学)已知函数()f x 对定义域R 内的任意x 都有()f x =(4)f x -,且当2x ≠时其导函数()f x '满足()2(),xf x f x ''>若24a <<则( )A .2(2)(3)(log )a f f f a <<B .2(3)(log )(2)a f f a f <<C .2(log )(3)(2)a f a f f <<D .2(log )(2)(3)a f a f f <<【答案】C 由()f x =(4)f x -,可知函数关于2x =对称.由()2(),xf x f x ''>得(2)()0x f x '->,所以当2x >时,()0f x '>,函数递增,所以当2x <时,函数递减.当24a <<,21log 2a <<,24222a <<,即4216a <<.所以22(log )(4log )f a f a =-,所以224log 3a <-<,即224log 32a a <-<<,所以2(4log )(3)(2)af a f f -<<,即2(log )(3)(2)a f a f f <<,选C .10.(山东省青岛即墨市2013届高三上学期期末考试数学(理)试题)已知偶函数)(x f 在R 上的任一取值都有导数,且'(1)1f =,(2)(2),f x f x +=-则曲线)(x f y =在5-=x 处的切线的斜率为 ( ) A .2B .-2C .1D .-1【答案】D【 解析】由(2)(2),f x f x +=-得(4)(),f x f x +=可知函数的周期为4,又函数)(x f 为偶函数,所以(2)(2)=(2)f x f x f x +=--,即函数的对称轴为2x =,所以(5)(3)(1)f f f -==,所以函数在5-=x 处的切线的斜率'(5)'(1)1k f f =-=-=-,选D .二、填空题11.(山东省威海市2013届高三上学期期末考试理科数学)10(2)x e x dx -=⎰____________________.【答案】2e -12100(2)()2x x e x dx e x e -=-=-⎰.12.(山东省济南市2013届高三上学期期末考试理科数学)221x dx =⎰_____________;【答案】73【 解析】22321118173333x dx x ==-=⎰. 13.(山东省烟台市2013届高三上学期期末考试数学(理)试题)由曲线23yx =-和直线2y x =所围成的面积为【答案】323【解析】由232y x y x⎧=-⎨=⎩得1x =或3x =-,所以曲线23y x =-和直线2y x =所围成的面积为1232133132(32)(3)33x x dx x x x ----=--=⎰. 14.(山东省德州市2013届高三上学期期末校际联考数学(理))已知2(),()(1),x f x xe g x x a ==-++若12,,x x R ∃∈使得21()()f x g x ≤成立,则实数a 的取值范围是.【答案】1a e≥-【解析】'()(1)xxxf x e xe x e =+=+,当1x >-时,'()0f x >函数递增;当1x <-时,'()0f x <函数递减,所以当1x =-时()f x 取得极小值即最小值1(1)f e-=-.函数()g x 的最大值为a ,若12,,x x R ∃∈使得21()()f x g x ≤成立,则有()g x 的最大值大于或等于()f x 的最小值,即1a e≥-.15.(山东省德州市2013届高三上学期期末校际联考数学(理))抛物线2yx =在A(l,1)处的切线与y 轴及该抛物线所围成的图形面积为.【答案】13【解析】函数2y x =的导数为'2y x =,即切线斜率为2k =,所以切线方程为12(1)y x -=-,即21y x =-,由221y x y x=-⎧⎨=⎩,解得1x =,所以所求面积为112232100011((21))(21)()33x x dx x x dx x x x --=-+=-+=⎰⎰. 16.(山东省青岛市2013届高三第一次模拟考试理科数学)若11(2)3ln 2(1)ax dx a x+=+>⎰,则a 的值是_____________ ;【答案】2 由 22111(2)(ln )ln 13+ln2aax dx x x a a x+=+=+-=⎰,所以213ln ln2a a ⎧-=⎨=⎩,解得2a =. 17.(山东省泰安市2013届高三上学期期末考试数学理)已知函数()f x 的定义域为[]1,5-,部分对应值如下表,()f x 的导函数()y f x '=的图像如图所示,给出关于()f x 的下列命题:①函数()2y f x x ==在时,取极小值②函数()[]0,1f x 在是减函数,在[]1,2是增函数,③当12a <<时,函数()y f x a =-有4个零点④如果当[]1,x t ∈-时,()f x 的最大值是2,那么t 的最小值为0,其中所有正确命题序号为_________. 【答案】①③④【解析】由导数图象可知,当10x -<<或24x <<时,'()0f x >,函数递增.当02x <<或45x <<时,'()0f x <,函数递减.所以在2x =处,函数取得极小值,所以①正确,②错误.当12a <<时,由()0y f x a =-=得()f x a =.由图象可知,此时有四个交点,所以③正确.当[]1,x t ∈-时,()f x 的最大值是2,由图象可知0t ≥,所以t 的最小值为0,所以④正确.综上所有正确命题序号为①③④.18.(山东省枣庄三中2013届高三上学期1月阶段测试理科数学)已知(),103202=+⎰dx t x则常数t =_________.【答案】1【解析】()2232003()8210xt dx x tx t +=+=+=⎰,解得1t =.19.(山东省烟台市2013届高三3月诊断性测试数学理试题)给出下列命题:①函数24xy x =+在区间[1,3]上是增函数;②函数f(x)=2x -x 2的零点有3个;③函数y= sin x(x ∈],[ππ-)图像与x 轴围成的图形的面积是S= ⎰-ππxdx sin ;④若ξ~N(1,2σ),且P(0≤ξ≤1)=0.3,则P(ξ≥2)=0.2. 其中真命题的序号是(请将所有正确命题的序号都填上): 【答案】②④①2224'(4)x y x -+=+,由2224'0(4)x y x -+=>+,解得22x -<<,即函数的增区间为(2,2)-,所以①错误.②正确.③当0x π-≤≤时,sin 0x ≤,所以函数y= sin x(x ∈],[ππ-)图像与x 轴围成的图形的面积是sin x dx ππ-⎰,所以③错误.④因为12(01)10.6(2)0.222P P ξξ-≤≤-≥===,所以④正确,所以正确的为②④.三、解答题20.(山东省潍坊市2013届高三上学期期末考试数学理(A ))函数()R a x ax nx x x f ∈--=21)(.(I)若函数)(x f 在1=x 处取得极值,求a 的值;(II)若函数)(x f 的图象在直线x y -=图象的下方,求a 的取值范围; (III)求证:2012201320132012<.【答案】21.(山东省烟台市2013届高三上学期期末考试数学(理)试题)设函数1()(01)1f x x x x nx=≠>且 (1)求函数()f x 的单调区间;(2)已知1121n a nx x>对任意(0,1)x ∈成立,求实数a 的取值范围.【答案】22.(山东省济南市2013届高三上学期期末考试理科数学)设函数()2ln f x x ax x =+-.(1)若1a =,试求函数()f x 的单调区间;(2)过坐标原点O 作曲线)(x f y =的切线,证明:切点的横坐标为1;(3)令()()xf xg x e =,若函数()g x 在区间(0,1]上是减函数,求a 的取值范围.【答案】解: (1)1a =时, 2()(0)f x x x lnx x =+->1'()21f x x x ∴=+-(21)(1)x x x -+=()()110,,'0,,,'022x f x x f x ⎛⎫⎛⎫∈<∈+∞> ⎪ ⎪⎝⎭⎝⎭()f x 的减区间为10,2⎛⎫ ⎪⎝⎭,增区间1,2⎛⎫+∞ ⎪⎝⎭(2)设切点为()(),M t f t ,()1'2f x x ax x=+- 切线的斜率12k t a t=+-,又切线过原点()f t k t=()22212ln 211ln 0f t t a t at t t at t t tt =+-+-=+-∴-+=,即:1t =满足方程21ln 0t t -+=,由21,ln y x y x =-=图像可知21ln 0x x -+=有唯一解1x =,切点的横坐标为1; 或者设()21ln t t t ϕ=-+,()1'20t t tϕ=+>()()0+t ϕ∞在,递增,且()1=0ϕ,方程21ln 0t t -+=有唯一解(3)()()()''xf x f xg x e-=,若函数()g x 在区间(0,1]上是减函数,则()()()(0,1],'0,:'x g x f x f x ∀∈≤≤即,所以()212ln 10x x x a x x-+-+-≥---(*) ()()212ln 1h x x x x a x x =-+-+-设()()()222122111'222x x x h x x a a x x x -++=---+=--+若2a ≤,则()'0,h x ≤()h x 在(]0,1递减,()()10h x h ≥=即不等式()()',(0,1],f x f x x ≤∀∈恒成立若2a >,()()232112122'20x x x x x x x ϕϕ=---∴=++> ()x ϕ在(]0,1上递增,()()12x ϕϕ≤=-()()000,1,x x aϕ∃∈=-使得()()0,1,x x x a ϕ∈>-,即()'0h x >,()(]0,1h x x 在上递增,()()10h x h ≤=这与(]0,1x ∀∈,()212ln 10x x x a x x -+-+-≥矛盾综上所述,2a ≤解法二:()()()''xf x f xg x e-=,若函数()g x 在区间(0,1]上是减函数,则()()()(0,1],'0,:'x g x f x f x ∀∈≤≤即,所以()212ln 10x x x a x x-+-+-≥ 显然1x =,不等式成立 当()0,1x ∈时,212ln 1x x x x a x-+-≤-恒成立 设()()()22221112ln 21ln ,'11x x x x x x x x x h x h x x x -+--+--+-==-- 设()()()()()223121121ln ,'210x x x x x x x x x x x ϕϕ-+=-+--+-=-+> ()x ϕ在()0,1上递增,()()10x ϕϕ<= 所以()'0h x <()h x 在()0,1上递减,()()221112ln 111limlim 2221x x x x xx h x h x x x x →→-+-⎛⎫>==-+++= ⎪-⎝⎭所以 2a ≤23.(山东省威海市2013届高三上学期期末考试理科数学)已知函数32()f x ax bx =+在点(3,(3))f 处的切线方程为122270x y +-=,且对任意的[)0,x ∈+∞,()ln(1)f x k x '≤+恒成立. (Ⅰ)求函数()f x 的解析式; (Ⅱ)求实数k 的最小值; (Ⅲ)求证:1111ln(1)223n n++++<++ (*N n ∈). 【答案】解:(Ⅰ)将3x =代入直线方程得92y =-,∴92792a b +=-① 2()32,(3)6f x ax bx f ''=+=-,∴2766a b +=-②①②联立,解得11,32a b =-= ∴3211()32f x x x =-+ (Ⅱ)2()=f x x x '-+,∴2ln(1)x x k x -+≤+在[)0,x ∈+∞上恒成立; 即2ln(1)0x x k x -++≥在[)0,x ∈+∞恒成立;设2()ln(1)g x x x k x =-++,(0)0g =, ∴只需证对于任意的[)0,x ∈+∞有()(0)g x g ≥[)221()21,0,11k x x k g x x x x x ++-'=-+=∈+∞++设2()21h x x x k =++-,【D 】1.)当=18(1)0k ∆--≤,即98k ≥时,()0h x ≥,∴()0g x '≥ ()g x 在[)0,+∞单调递增,∴()(0)g x g ≥【D 】2.)当=18(1)0k ∆-->,即98k <时,设12,x x 是方程2210x x k ++-=的两根且12x x < 由1212x x +=-,可知10x <,分析题意可知当20x ≤时对任意[)0,x ∈+∞有()(0)g x g ≥;∴10,1k k -≥≥,∴918k ≤<综上分析,实数k 的最小值为1(Ⅲ)令1k =,有2ln(1),x x x -+≤+即2ln(1)x x x ≤++在[)0,x ∈+∞恒成立;令1x n=,得221111ln(1)ln(1)ln n n n n n n ≤++=++-∴22222211111111(ln 2ln1)(ln 3ln 2)(ln(1)ln )2323111=1ln(1)231111ln(1)1223(1)12ln(1)2ln(1)n n n nn nn n n n n n++++≤+++++-+-+++-++++++<++++++⨯⨯-=-++<++ ∴原不等式得证24.(山东省济南市2013届高三上学期期末考试理科数学)设函数()sin x f x e x =(1)求函数()f x 单调递增区间;(2)当[0,]x π∈时,求函数()f x 的最大值和最小值.【答案】解:(1)'()(sin cos )x f x e x x =+sin()4x x π=+'()0,sin()0.4f x x π≥∴+≥322,22,444k x k k x k ππππππππ∴≤+≤+-≤≤+即 3()2,2,44f x k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦单调增区间为(2)[]0,,x π∈ 3310,,44x x πππ⎡⎤⎡⎤∈∈⎢⎥⎢⎥⎣⎦⎣⎦由()知,是单调增区间,是单调减区间343(0)0,()0,(),4f f f e πππ===所以43max22)43(ππe f f ==,0)()0(min ===πf f f25.(山东省枣庄三中2013届高三上学期1月阶段测试理科数学)设函数1()(2)ln 2f x a x ax x=-++. (Ⅰ)当0a =时,求()f x 的极值; (Ⅱ)当0a ≠时,求()f x 的单调区间;(Ⅲ)当2a =时,对任意的正整数n ,在区间11[,6]2n n++上总有4m +个数使得1231234()()()()()()()()m m m m m f a f a f a f a f a f a f a f a +++++++<+++ 成立,试问:正整数m 是否存在最大值?若存在,求出这个最大值;若不存在,说明理由【答案】解:(I)函数()f x 的定义域为(0,)+∞当0a =时,1()2ln f x x x =+,∴222121()x f x x x x -'=-= 由()0f x '=得12x =. ()f x ,()f x '随x 变化如下表:由上表可知,()()22ln 22f x f ==-极小值,没有极大值(II)由题意,222(2)1()ax a x f x x +--'=.令()0f x '=得11x a =-,212x = 若0a >,由()0f x '≤得1(0,]2x ∈;由()0f x '≥得1[,)2x ∈+∞若0a <,① 当2a <-时,112a -<,1(0,]x a ∈-或1[,)2x ∈+∞,()0f x '≤;11[,]2x a ∈-,()0f x '≥.②当2a =-时,()0f x '≤. ③当20a -<<时,112a ->,1(0,]2x ∈或1[,)x a ∈-+∞,()0f x '≤;11[,]2x a∈--,()0f x '≥.综上,当0a >时,函数的单调递减区间为1(0,]2,单调递增区间为1[,)2+∞; 当2a <-时,函数的单调递减区间为1(0,]a -,1[,)2+∞,单调递增区间为11[,]2a -; 当2a =-时,函数的单调减区间是(0,)+∞, 当20a -<<时,函数的单调递减区间为1(0,]2,1[,)a -+∞,单调递增区间为11[,]2a--. (Ⅲ) 当2a =时,1()4f x x x=+,2241()x f x x -'=. ∵11[,6]2x n n∈++,∴()0f x '≥.∴min 1()()42f x f ==,max 1()(6)f x f n n=++ 由题意,11()4(6)2mf f n n<++恒成立.令168k n n =++≥,且()f k 在1[6,)n n +++∞上单调递增,min 1()328f k =,因此1328m <,而m 是正整数,故32m ≤,所以,32m =时,存在123212a a a ==== ,12348m m m m a a a a ++++====时,对所有n 满足题意.∴32max m =26.(山东省烟台市2013届高三3月诊断性测试数学理试题)已知函数f(x)=axlnx 图像上点(e,f(e))处的切线与直线y=2x 平行(其中e= 2.71828),g(x)=x 2-x 2-tx-2.(1)求函数f(x)的解析式;(2)求函数f(x)在[n,n+2](n>0)上的最小值;(3)对一切x ∈(]e ,0,3f(x)≥g(x)恒成立,求实数t 的取值范围.【答案】27.(【解析】山东省济宁市2013届高三第一次模拟考试理科数学 )(本小题满分l3分)已知函数3f (x )a ln x ax (a R )=--∈.(I)若a=-1,求函数f (x )的单调区间;(Ⅱ)若函数y f (x )=的图象在点(2,f (2))处的切线的倾斜角为45o,对于任意的t ∈ [1,2],函数322mg(x )x x [f '(x )](f '(x )=++是f (x )的导函数)在区间(t,3)上总不是单调函数,求m 的取值范围;(Ⅲ)求证:23412234*ln ln ln ln n ...(n ,n N )n n⨯⨯⨯⨯<≥∈ 【答案】解:(Ⅰ)当1a =-时,(1)'() (0)x f x x x-=> 解'()0f x >得),1(+∞∈x ;解'()0f x <得)1,0(∈x )(x f 的单调增区间为()+∞,1,减区间为()1,0(Ⅱ)∵)0()1()('>-=x xx a x f ∴12)2('=-=af 得2-=a ,32ln 2)(-+-=x x x fx x mx x g 2)22()(23-++=,∴2)4(3)('2-++=x m x x g ∵)(x g 在区间)3,(t 上总不是单调函数,且()02'g =-∴⎩⎨⎧><0)3('0)('g t g由题意知:对于任意的]2,1[∈t ,'()0g t <恒成立,所以,'(1)0'(2)0'(3)0g g g <⎧⎪<⎨⎪>⎩,∴9337-<<-m . (Ⅲ)证明如下: 由(Ⅰ)可知当),1(+∞∈x 时)1()(f x f >,即01ln >-+-x x , ∴0ln 1x x <<-对一切),1(+∞∈x 成立∵2,≥∈N *n n ,则有1ln 0-<<n n ,∴nn n n 1ln 0-<<ln 2ln 3ln 4ln 12311(2,N )234234n n n n n n n*-∴⋅⋅⋅⋅<⋅⋅⋅⋅=≥∈28.(山东省青岛市2013届高三第一次模拟考试理科数学)已知向量(,ln )xm e x k =+ ,(1,())n f x = ,//m n (k 为常数, e 是自然对数的底数),曲线()y f x =在点(1,(1))f 处的切线与y 轴垂直,()()x F x xe f x '=.(Ⅰ)求k 的值及()F x 的单调区间;(Ⅱ)已知函数2()2g x x ax =-+(a 为正实数),若对于任意2[0,1]x ∈,总存在1(0,)x ∈+∞, 使得21()()g x F x <,求实数a 的取值范围.【答案】解:(I)由已知可得:()f x =1xnx k e+1ln ()x x k x f x e --'∴=,由已知,1(1)0kf e-'==,∴1k = ∴()()x F x xe f x '=1(ln 1)1ln x x x x x x=--=--所以()ln 2F x x '=--由21()ln 200F x x x e '=--≥⇒<≤,由21()ln 20F x x x e'=--≤⇒≥()F x ∴的增区间为21(0,]e ,减区间为21[,)e+∞(II) 对于任意2[0,1]x ∈,总存在1(0,)x ∈+∞, 使得21()()g x F x <,∴max max ()()g x F x < 由(I)知,当21x e =时,()F x 取得最大值2211()1F e e=+ 对于2()2g x x ax =-+,其对称轴为x a =当01a <≤时,2max ()()g x g a a ==, ∴2211a e <+,从而01a <≤ 当1a >时,max ()(1)21g x g a ==-, ∴21211a e -<+,从而21112a e<<+综上可知: 21012a e<<+29.(山东省滨州市2013届高三第一次(3月)模拟考试数学(理)试题)已知函数()ln(1)(1)1()f x x k x k =---+∈R ,(Ⅰ)求函数()f x 的单调区间;(Ⅱ)若()0f x ≤恒成立,试确定实数k 的取值范围; (Ⅲ)证明:ln 2ln 334++ln 1n n ++<(1)4n n -(,n N n ∈>1).【答案】30.(2013年临沂市高三教学质量检测考试理科数学)已知函数22af(x)a ln x x(a)x=-++≠(I)若曲线y f (x )=在点(1,1f ()))处的切线与直线20x y -=垂直,求实数a 的值; (Ⅱ)讨论函数f (x )的单调性;(Ⅲ)当0a (,)∈-∞时,记函数f (x )的最小值为g(a),求证:4()g a e -≥-【答案】31.(山东省实验中学2013届高三第一次诊断性测试数学(理)试题)已知32()1,()2f x x nx g x x ax x ==+-+(1)求函数()f x 的单调区间;(2)求函数()f x 在[t,t+2](0t >)上的最小值;(3)对一切的(0,),2()'()2x f x g x ∈+∞≤+恒成立,求实数a 的取值范围.【答案】32.(山东省临沂市2013届高三5月高考模拟理科数学)已知函数21()e ln ,()ln 1,()2f x xg x x xh x x ==--=. (Ⅰ)求函数()g x 的极大值.(Ⅱ)求证:存在0(1,)x ∈+∞,使01()()2g x g =;(Ⅲ)对于函数()f x 与()h x 定义域内的任意实数x ,若存在常数k,b,使得()f x kx b +≤和()h x kx b +≥都成立,则称直线y kx b =+为函数()f x 与()h x 的分界线.试探究函数()f x 与()h x 是否存在“分界线”?若存在,请给予证明,并求出k ,b 的值;若不存在,请说明理由.【答案】解:(Ⅰ)11()1(0).x g x x x x-'=-=> 令()0,g x '>解得01;x << 令()0,g x '<解得1x >.∴函数()g x 在(0,1)内单调递增,在(1,)+∞上单调递减. 所以()g x 的极大值为(1) 2.g =-(Ⅱ)由(Ⅰ)知()g x 在(0,1)内单调递增,在(1,)+∞上单调递减,令1()()()2x g x g ϕ=- ∴1(1)(1)()0,2g g ϕ=->取e 1,x '=>则111(e)(e)()ln e (e 1)ln (1)222g g ϕ=-=-+-++3e ln 20.2=-++<故存在0(1,e),x ∈使0()0,x ϕ=即存在0(1,),x ∈+∞使01()().2g x g = (说明:x '的取法不唯一,只要满足1,x '>且()0x ϕ'<即可) (Ⅱ)设21()()()eln (0)2F x h x f x x x x =-=->则2e e ()x F x x x x -'=-==则当0x <,()0F x '<,函数()F x 单调递减;当x 时,()0F x '>,函数()F x 单调递增.∴x =()F x 的极小值点,也是最小值点,∴min ()0.F x F ==∴函数()f x 与()h x 的图象在x =1e 2).设()f x 与()h x 存在“分界线”且方程为1e (2y k x -=,令函数1()e 2u x kx =+-①由()h x ≥()u x ,得211e 22x kx +-≥在x ∈R 上恒成立,即22e 20x kx --+在x ∈R 上恒成立,∴2=44(e 20k ∆--+≤,即24(0k -≤,∴k =故1() e.2u x =-②下面说明:()()f x u x ≤,即1eln e(0)2x x ->恒成立.设1()eln e 2V x x =+则e ()V x x '==∵当0x <,()0V x '>,函数()V x 单调递增,当x 时,()0V x '<,函数()V x 单调递减,∴当x =,()V x 取得最大值0,max ()()0V x V x =≤.∴1eln e(0)2x x ->成立.综合①②知1()e,2h x -且1()e,2f x -故函数()f x 与()h x 存在“分界线”1e 2y =-,此时1e.2k b ==-33.(山东省烟台市2013届高三上学期期末考试数学(理)试题)某幼儿园准备建一个转盘,转盘的外围是一个周长为k 米的圆.在这个圆上安装座位,且每个座位和圆心处的支点都有一根直的钢管相连经预算,转盘上的每个座位与支点相连的钢管的费用为3k 元/根,且当两相邻的座位之间的圆弧长为x 米时,相邻两座位之间的钢管和其中一个座位的总费用为2k ⎡+⎢⎢⎣元.假设座位等距分布,且至少有两个座位,所有座位都视为点,且不考虑其他因素,记转盘的总造价为y 元.(1)试写出y 关于x 的函数关系式,并写出定义域; (2)当k=50米时,试确定座位的个数,使得总造价最低? 【答案】34.(山东省泰安市2013届高三上学期期末考试数学理)已知函数()()ln f x x x ax a R =+∈(I)若函数()f x 在区间)2,e ⎡+∞⎣上为增函数,求a 的取值范围;(II)若对任意()()()1,,1x f x k x ax x ∈+∞>-+-恒成立,求正整数k 的值.【答案】35.(山东省潍坊市2013届高三第二次模拟考试理科数学)已知函数()ln ,()x f x ax x g x e =+=.(I)当0a ≤时,求()f x 的单调区间(Ⅱ)若不等式()g x<,求实数m 的取值菹围; (Ⅲ)定义:对于函数()y F x =和()y G x =在其公共定义域内的任意实数0x .,称00()()F x G x -的值为两函数在0x 处的差值.证明:当a=0时,函数()y f x =和()y g x =在其公共定义域内的所有差值都大干2.【答案】36.(山东省青岛即墨市2013届高三上学期期末考试数学(理)试题)已知函数),1()1ln()1(2)1(2)(2+∞∈--+-+=x x a x a x x f .(1)23=x 是函数的一个极值点,求a 的值; (2)求函数)(x f 的单调区间; (3)当2=a 时,函数)0(,)(2>--=b b x x g ,若对任意⎥⎦⎤⎢⎣⎡++∈1,11,21e e m m ,e e m f m g 22|)()(|212+<-都成立,求b 的取值范围.【答案】解:(1)函数)1(1)1(2)1(2)(2--+-+=x n a x a x x f 1)1(2)1(22)(--+-+='x a a x x f , 23=x 是函数的一个极值点 0)23(='∴f解得:23=a(2)1)(21)1(2)1(22--=--+-+='x a x x x a a x f ),的定义域是(又∞+1)(x f),)的单调增区间为((时,函数当∞+≤∴11x f a 为增区间)为减区间,(,时,(当),11+∞〉a a a(3)当a=2时,由(2)知f(x)在(1,2)减,在(2,+∞)增.3)1(,11)11(,0)2(22-=++=+=e e f e e f f]3,0[]1,11[)(2-++=∴e e ex f y 的值域在为减函数在]1,11[)(2++--=e e b x x g])11(,1[]1,11[)(22b eb e e e x g y -+--+-++=∴)(的值域为在b>0成立,只要所以e e m g m f b e b e22)()(0)1(,0)11(22122+〈-〈-+-〈-+-∴成立即可e e b e e b e e b e e 22222)1(3))1(3222222+〈+-+=+++-=-+---解得:0<b<237.(山东省淄博市2013届高三复习阶段性检测(二模)数学(理)试题)已知(),P x y 为函数1ln y x =+图象上一点,O 为坐标原点,记直线OP 的斜率()k f x =.(I)若函数()f x 在区间1,3m m ⎛⎫+ ⎪⎝⎭()0m >上存在极值,求实数m 的取值范围; (II)当 1x ≥时,不等式()1tf x x ≥+恒成立,求实数t 的取值范围; (III)求证()()()22*1!1n n n e n N -+>+∈⎡⎤⎣⎦ .【答案】解:(Ⅰ)由题意()1ln xk f x x+==,0x > 所以()21ln ln x x f x x x '+⎛⎫'==- ⎪⎝⎭当01x <<时,()0f x '>;当1x >时,()0f x '<. 所以()f x 在()0,1上单调递增,在()1,+∞上单调递减. 故()f x 在1x =处取得极大值 因为函数()f x 在区间1,3m m ⎛⎫+⎪⎝⎭(其中0m >)上存在极值, 所以01113m m <<⎧⎪⎨+>⎪⎩得213m <<. 即实数m 的取值范围是213⎛⎫⎪⎝⎭,(Ⅱ)由()1tf x x ≥+得()()11ln x x t x ++≤令()()()11ln x x g x x++=则()2ln x xg x x-'=令()ln h x x x =- 则()111=xh x x x-'=-因为1,x ≥所以()0h x '≥,故()h x 在[)1+∞,上单调递增 所以()()110h x h ≥=>,从而()0g x '>()g x 在[)1+∞,上单调递增, ()()12g x g ≥=所以实数t 的取值范围是(],2-∞(Ⅲ)由(Ⅱ) 知()21f x x ≥+恒成立, 即 1ln 2122ln 11111x x x x x x x x+-≥⇔≥=->-+++令()1,x n n =+则()()2ln 111n n n n +>-+所以()2ln 12112⨯>-⨯, ()2ln 23123⨯>-⨯, ,()()2ln 111n n n n +>-+.所以()()222111ln 1231212231n n n n n ⎡⎤⎡⎤⨯⨯⨯⋅⋅⋅⨯⨯+>-++⋅⋅⋅+⎢⎥⎣⎦⨯⨯+⎣⎦12121n n n ⎛⎫=-->- ⎪+⎝⎭所以()22221231n n n e-⨯⨯⨯⋅⋅⋅⨯⨯+>所以()()()221!1n n n en -*+>+⋅∈⎡⎤⎣⎦N38.(山东省德州市2013届高三3月模拟检测理科数学)已知函数21()122f x nx ax x =-- (1)若函数()f x 在x=2处取得极值,求实数a 的值; (2)若函数()f x 在定义域内单调递增,求实数a 的取值范围; (3)当12a =-时,关于x 的方程1()2f x x b =-+在[1,4]上恰有两个不相等的实数根,求实数b 的取值范围.【答案】39.(山东省枣庄市2013届高三3月模拟考试数学(理)试题)某分公司经销某种品牌产品,每件产品的成本为30元,并且每件产品须向总公司缴纳a 元(a 为常数,2≤a≤5)的管理费,根据多年的统计经验,预计当每件产品的售价为x 元时,产品一年的销售量为x ke(e 为自然对数的底数)万件,已知每件产品的售价为40元时,该产品一年的销售量为500万件.经物价部门核定每件产品的售价x 最低不低于35元,最高不超过41元.(1)求分公司经营该产品一年的利润L(x)万元与每件产品的售价x 元的函数关系式; (2)当每件产品的售价为多少元时,该产品一年的利润L(x)最大,并求出L(x)的最大值.【答案】40.(山东省济南市2013届高三3月高考模拟理科数学)设函数x xe x f =)(.(1) 求)(x f 的单调区间与极值;(2)是否存在实数a ,使得对任意的),(21+∞∈a x x 、,当21x x <时恒有ax a f x f a x a f x f -->--1122)()()()(成立.若存在,求a 的范围,若不存在,请说明理由.【答案】解: (1)x e x x f )1()(+='.令0)(='x f ,得1-=x ;)(x f ∴的单调递减区间是)1,(--∞,单调递增区间是),1(+∞-)(x f 极小值=e f 1)1(-=-(2) 设a x a f x f x g --=)()()(,由题意,对任意的),(21+∞∈a x x 、,当21x x <时恒有)()(12x g x g >,即)(x g y =在),(+∞a 上是单调增函数222222()()[()()](1)()()()()()()()x x axxaxxxaf x x a f x f a x e x a xe aeg x x a x a x x ax a e xe ae x e axe ae aex a x a '---+--+'==--+---+--+==--),(+∞∈∀a x ,0)(≥'x g令0)(2≥+--=axxxae ae axe e x x h2()2(1)(2)(2)x x x x x x h x xe x e a x e ae x x e a x e '=+-+-=+-+ (2)()x x x a e =+-若2-≥a ,当a x >时,0)(>'x h ,)(x h 为),[+∞a 上的单调递增函数,0)()(=>∴a h x h ,不等式成立若2-<a ,当)2,(-∈a x 时,0)(<'x h ,)(x h 为]2,[-a 上的单调递减函数,)2,(0-∈∃∴a x ,0)()(0=<a h x h ,与),(+∞∈∀a x ,0)(≥x h 矛盾所以,a 的取值范围为)[-2,+∞41.(山东省泰安市2013届高三第一轮复习质量检测数学(理)试题)已知函数()()()()201,10.x f x ax bx c e f f =++==且(I)若()f x 在区间[]0,1上单调递减,求实数a 的取值范围;(II)当a=0时,是否存在实数m 使不等式()224141xf x xe mx x x +≥+≥-++对任意x R ∈恒成立?若存在,求出m 的值,若不存在,请说明理由.【答案】42.(山东省潍坊市2013届高三第一次模拟考试理科数学)设函数321()(4),()ln(1)3f x mx m xg x a x =++=-,其中0a ≠. ( I )若函数()y g x =图象恒过定点P,且点P 关于直线32x =的对称点在()y f x =的图象上,求m 的值;(Ⅱ)当8a =时,设()'()(1)F x f x g x =++,讨论()F x 的单调性; (Ⅲ)在(I)的条件下,设(),2()(),2f x x G x g x x ≤⎧=⎨>⎩,曲线()y G x =上是否存在两点P 、Q, 使△OPQ(O 为原点)是以O 为直角顶点的直角三角形,且斜边的中点在y 轴上?如果存在,求a 的取值范围;如果不存在,说明理由.【答案】(Ⅰ)令ln(1)0x -=,则2x =,(2,0)P \关于32x =的对称点为(1,0), 由题知1(1)0,(4)0,33f m m m =\++=\=- (Ⅱ)2()2(4)8ln F x mx m x x =+++,定义域为(0,)+ , 8()2(82)F x mx m x¢=+++ 22(82)8mx m x x+++= (28)(1)mx x x++= 0,x >Q 则10x +>,\当0m ³时,280,()0,mx F x ¢+>>此时()F x ¥在(0,+)上单调递增, 当0m <时,由4()00,F x x m ¢><<-得 由4()0,F x x m ¢<>-得 此时4()0,F x m骣÷ç-÷ç÷ç桫在上为增函数, 在4,m骣÷ç-+ ÷ç÷ç桫为减函数, 综上当0m ³时,()F x ¥在(0,+)上为增函数, 0m <时,在40,m 骣÷ç-÷ç÷ç桫上为增函数,在4,m骣÷ç-+ ÷ç÷ç桫为减函数 (Ⅲ)由条件(Ⅰ)知32,2,()ln(1),2,x x x G x a x x ìï-+ ï=íï->ïî. 假设曲线()y G x =上存在两点P 、Q 满足题意,则P 、Q 两点只能在y 轴两侧,设(,())(0),P t G t t >则32(,),Q t t t -+ POQ D Q 是以O 为直角顶点的直角三角形,2320,()()0OP OQ t G t t t \?\-++=uur uuu r .①(1)当02t < 时,32(),G t t t \=-+此时方程①为23232()()0,t t t t t -+-++=化简得4210t t -+=.此方程无解,满足条件的P 、Q 两点不存在(2)当2t >时,()ln(1)G t a t =-,方程①为232ln(1)()0,t a t t t -+-+= 即1(1)ln(1),t t a=+- 设()(1)ln(1)(1),h t t t t =+->则1()ln(1),1t h t t t +¢=-+- 显然当2t >时()0()h t h t > 即在(2,+)为增函数, ()h t \的值域为((2),),h +ゥ即(0,+),\当0a >时方程①总有解.综上若存在P 、Q 两点满足题意,则a 的取值范围是¥(0,+)43.(山东省德州市2013届高三上学期期末校际联考数学(理))已知函数2(),()1(1)f x ax x g x n x =+=+.(1)若a=l,求()()()F x g x f x =-在(1,)-+∞上的最大值;(2)利用(1)的结论证明:对任意的正整数n,不等式234121(1)49n n n n++++>+ 都成立: (3)是否存在实数a(a>0),使得方程2(1)'()(41)g x f x a x -=--在区间1(,)e e 内有且只有两个不相等的实数根?若存在,请求出a 的取值范围;若不存在,请说明理由.【答案】。

2013年全国高考理科数学分类汇编(45页)

2013年全国高考理科数学分类汇编(45页)

2013年全国高考理科数学分类汇编一、集合与简易逻辑辽宁2013(2)已知集合{}{}4|0log 1,|2A x x B x x AB =<<=≤=,则A .()01,B .(]02,C .()1,2D .(]12, 辽宁2013(4)下面是关于公差0d >的等差数列()n a 的四个命题:{}1:n p a 数列是递增数列;{}2:n p na 数列是递增数列; 3:n a p n ⎧⎫⎨⎬⎩⎭数列是递增数列;{}4:3n p a nd +数列是递增数列; 其中的真命题为(A )12,p p (B )34,p p (C )23,p p (D )14,p p 江西2013.1.已知集合M={1,2,zi},i ,为虚数单位,N={3,4},则复数z=A.-2iB.2iC.-4iD.4i 全国1.1、已知集合A={x |x 2-2x >0},B={x |-5<x <5},则 ( ) A 、A∩B=∅ B 、A ∪B=R C 、B ⊆A D 、A ⊆B全国2.1.已知集合{}{}3,2,1,0,1,,4)1(|2-=∈<-=N R x x x M ,则=⋂N M ( )A {}2,1,0B {}2,1,0,1-C {}3,2,0,1-D {}3,2,1,0北京2013.1.已知集合A={-1,0,1},B={x |-1≤x <1},则A∩B= ( ) A.{0} B.{-1,0} C.{0,1} D.{-1,0,1}四川1.设集合{|20}A x x =+=,集合2{|40}B x x =-=,则AB =( )(A ){2}- (B ){2} (C ){2,2}- (D )∅ 重庆(1)已知集合{1,2,3,4}U =,集合={1,2}A ,={2,3}B ,则()U AB =ð(A ){1,3,4} (B ){3,4} (C ){3} (D ){4} 天津卷(1) 已知集合A = {x ∈R | |x |≤2}, A = {x ∈R | x ≤1}, 则A B ⋂= (A) (,2]-∞ (B) [1,2] (C) [-2,2] (D) [-2,1]2013安微(1)设集合{}{}{}1,2,3,4,5,|,,,A B M x x a b a A b B ====+∈∈则M 中元素的个数为(A )3 (B )4 (C )5 (D )6山东(2)设集合A={0,1,2},则集合B={x-y|x ∈A, y ∈A }中元素的个数是( )A. 1B. 3C. 5D.9重庆(2)命题“对任意x R ∈,都有20x ≥”的否定为(A )对任意x R ∈,使得20x < (B )不存在x R ∈,使得20x <(C )存在0x R ∈,都有200x ≥ (D )存在0x R ∈,都有200x <2013广东1.设集合M={x ∣x 2+2x=0,x ∈R},N={x ∣x 2-2x=0,x ∈R},则M ∪N= A. {0} B. {0,2} C. {-2,0} D {-2,0,2} 北京2013.3.“φ=π”是“曲线y=sin(2x +φ)过坐标原点的” A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件四川4.设x Z ∈,集合A 是奇数集,集合B 是偶数集.若命题:,2p x A x B ∀∈∈,则( ) (A ):,2p x A x B ⌝∃∈∉ (B ):,2p x A x B ⌝∀∉∉ (C ):,2p x A x B ⌝∃∉∈ (D ):,2p x A x B ⌝∃∈∈2013广东8.设整数n ≥4,集合X={1,2,3……,n }。

2013年全国高考函数与导数真题汇编 -

2013年全国高考函数与导数真题汇编 -

2013年全国高考函数与导数真题汇编一、选择题1. 【2013·安徽理·4】" a≤0"是"函数f(x)=∣(ax−1)x∣在区间(0,+∞)内单调递增"的( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件2. 【2013·安徽理·8】函数y=f(x)的图象如图所示,在区间[a,b]上可找到n(n≥2)个不同的数x1,x2,⋯,x n,使得f(x1)x1=f(x2)x2=⋯=f(x n)x n,则n的取值范围是( )A. {3,4}B. {2,3,4}C. {3,4,5}D. {2,3}3. 【2013·安徽理·10】若函数f(x)=x3+ax2+bx+c有极值点x1,x2,且f(x1)=x1,则关于x的方程3(f(x))2+2af(x)+b=0的不同实根个数是( )A. 3B. 4C. 5D. 64. 【2013·北京理·10】函数f(x)的图象向右平移1个单位长度,所得图象与曲线y=e x 关于y轴对称,则f(x)=( )A. e x+1B. e x−1C. e−x+1D. e−x−15. 【2013·福建理·8】设函数f(x)的定义域为R,x0(x0≠0)是f(x)的极大值点,以下结论一定正确的是( )A. ∀x∈R,f(x)≤f(x0)B. −x0是f(−x)的极小值点C. −x0是−f(x)的极小值点D. −x0是−f(−x)的极小值点6. 【2013·广东理·8】定义域为R的四个函数y=x3,y=2x,y=x2+1,y=2sinx中,奇函数的个数是( )A. 4B. 3C. 2D. 17. 【2013·湖北理·8】已知a为常数,函数f(x)=x(lnx−ax)有两个极值点x1,x2(x1<x2),则( )A. f(x1)>0,f(x2)>−12B. f(x1)<0,f(x2)<−12C. f(x1)>0,f(x2)<−12D. f(x1)<0,f(x2)>−128. 【2013·湖南理·8】函数f(x)=2lnx的图象与函数g(x)=x2−4x+5的图象的交点个数为( )A. 3B. 2C. 1D. 09. 【2013·江西理·2】函数y=√xln(1−x)的定义域为( )A. (0,1)B. [0,1)C. (0,1]D. [0,1]10.【2013·江西理·10】如图,半径为1的半圆O与等边三角形ABC夹在两平行线l1,l2之间,l∥l1,l与半圆相交于F,G两点,与三角形ABC两边相交于E,D两点.设弧FG⏜的长为x(0<x<π),y=EB+BC+CD,若l从l1平行移动到l2,则函数y=f(x)的图象大致是( )A. B.C. D.11. 【2013·辽宁理·11】已知函数f(x)=x2−2(a+2)x+a2,g(x)=−x2+2(a−2)x−a2+8,设H1(x)=max{f(x),g(x)},H2(x)=min{f(x),g(x)}(max{p,q}表示p,q中的较大值,min{p,q}表示p,q中的较小值).记H1(x)的最小值为A,H2(x)的最大值为B,则A−B=( )A. 16B. −16C. a2−2a−16D. a2+2a−1612. 【2013·辽宁理·12】设函数f(x)满足x2fʹ(x)+2xf(x)=e xx ,f(2)=e28,则x>0时,f(x)( )A. 有极大值,无极小值B. 有极小值,无极大值C. 既有极大值又有极小值D. 既无极大值也无极小值13. 【2013·全国大纲理·4】已知函数f(x)的定义域为(−1,0),则函数f(2x+1)的定义域为( )A. (−1,1)B. (−1,−12)C. (−1,0)D. (12,1)14. 【2013·全国大纲理·5】函数f(x)=log2(1+1x)(x>0)的反函数f−1(x)=( )A. 12x−1(x>0) B. 12x−1(x≠0)C. 2x−1(x∈R)D. 2x−1(x>0)15. 【2013·全国大纲理·9】若函数f(x)=x2+ax+1x 在(12,+∞)是增函数,则a的取值范围是( )A. [−1,0]B. [−1,+∞)C. [0,3]D. [3,+∞)16. 【2013·新课标Ⅱ理·8】设a=log36,b=log510,c=log714,则( )A. c>b>aB. b>c>aC. a>c>bD. a>b>c17. 【2013·新课标Ⅱ理·10】已知函数f(x)=x3+ax2+bx+c,下列结论中错误的是( )A. ∃x0∈R,f(x0)=0B. 函数y=f(x)的图象是中心对称图形C. 若x0是f(x)的极小值点,则f(x)在区间(−∞,x0)单调递减D. 若x0是f(x)的极值点,则fʹ(x0)=018. 【2013·陕西理·3】已知函数f(x)为奇函数,且当x>0时,f(x)=x2+1x,则f(−1)=( )A. 2B. 1C. 0D. −219. 【2013·四川理·7】函数y=x33x−1的图象大致是( )A. B. C. D.20. 【2013·四川理·10】设函数 f (x )=√e x +x −a (a ∈R ,e 为自然对数的底数).若曲线 y =sinx 上存在 (x 0,y 0) 使得 f(f (y 0))=y 0,则 a 的取值范围是 ( ) A. [1,e ] B. [e −1−1,1] C. [1,1+e ] D . [e −1−1,e +1]21. 【2013·天津理·7】函数 f (x )=2x ∣log 0.5x ∣−1 的零点个数为 ( ) A. 1 B. 2 C. 3 D. 422. 【2013·天津理·8】已知函数 f (x )=x (1+a∣x∣).设关于 x 的不等式 f (x +a )<f (x ) 的解集为 A ,若 [−12,12]⊆A ,则实数 a 的取值范围是 ( ) A. (1−√52,0) B. (1−√32,0)C. (1−√52,0)∪(0,1+√32) D. (−∞,1−√52)23. 【2013·浙江理·3】已知 x ,y 为正实数,则 ( )A. 2lgx+lgy =2lgx +2lgyB. 2lg (x+y )=2lgx ⋅2lgyC. 2lgx⋅lgy =2lgx +2lgyD. 2lg (xy )=2lgx ⋅2lgy 24. 【2013·浙江理·8】已知 e 为自然对数的底数,设函数 f (x )=(e x −1)(x −1)k (k =1,2) ,则 ( ) A. 当 k =1 时, f (x ) 在 x =1 处取得极小值 B. 当 k =1 时, f (x ) 在 x =1 处取得极大值 C. 当 k =2 时, f (x ) 在 x =1 处取得极小值 D. 当 k =2 时, f (x ) 在 x =1 处取得极大值25. 【2013·重庆理·6】若 a <b <c ,则函数 f (x )=(x −a )(x −b )+(x −b )(x −c )+(x −c )(x −a ) 的两个零点分别位于区间 ( ) A. (a,b ) 和 (b,c ) 内 B. (−∞,a ) 和 (a,b ) 内 C. (b,c ) 和 (c,+∞) 内 D. (−∞,a ) 和 (c,+∞) 内二、填空题1.【2013·湖北理·12】若曲线 y =kx +lnx 在点 (1,k ) 处的切线平行于 x 轴, 则 k = .2. 【2013·湖南理·12】若 ∫x 2T0dx =9,则常数 T 的值为________________ .3. 【2013·湖南理·16】设函数 f (x )=a x +b x −c x ,其中 c >a >0,c >b >0. (1)记集合 M ={(a,b,c )∣ a,b,c 不能构成一个三角形的三条边长,且 a =b},则 (a,b,c )∈M 所对应的 f (x ) 的零点的取值集合为________________ ;(2)若 a ,b ,c 是 △ABC 的三条边长,则下列结论正确的是________________ .(写出所有正确结论的序号) ① ∀x ∈(−∞,1),f (x )>0; ② ∃x ∈R ,使 a x ,b x ,c x 不能构成一个三角形的三条边长; ③若 △ABC 为钝角三角形,则 ∃x ∈(1,2),使 f (x )=0.4. 【2013·江苏理·11】已知 f (x ) 是定义在 R 上的奇函数.当 x >0 时, f (x )=x 2−4x ,则不等式 f (x )>x 的解集用区间表示为________________ .5. 【2013·江苏理·13】在平面直角坐标系 xOy 中,设定点 A (a,a ) , P 是函数 y =1x(x >0) 图象上一动点,若点 P,A 之间的最短距离为 2√2 ,则满足条件的实数 a 的所有值为________________ .6. 【2013·江西理·13】设函数 f (x ) 在 (0,+∞) 内可导,且 f (e x )=x +e x ,则 fʹ(1)=________________ .7. 【2013·新课标Ⅰ理·16】若函数 f (x )=(1−x 2)(x 2+ax +b ) 的图象关于直线 x =−2 对称,则 f (x ) 的最大值是________________ .8. 【2013·陕西理·16】定义"正对数":ln +x ={0,0<x <1lnx,x ≥1,现有四个命题:①若 a >0,b >0,则 ln +(a b )=bln +a ;②若 a >0,b >0,则 ln +(ab )=ln +a +ln +b ; ③若 a >0,b >0,则 ln +(ab)≥ln +a −ln +b ;④若 a >0,b >0,则 ln +(a +b )≤ln +a +ln +b +ln2.其中真命题有________________ (写出所有真命题的编号).9. 【2013·上海理·12】设 a 为实常数,y =f (x ) 是定义在 R 上的奇函数,当 x <0 时,f (x )=9x +a 2x+7,若 f (x )≥a +1 对一切 x ≥0 成立,则 a 的取值范围为________________ .10. 【2013·上海理·14】对区间 I 上有定义的函数 g (x ),记 g (I )={y∣ y =g (x ),x ∈I },已知定义域为 [0,3] 的函数 y =f (x ) 有反函数 y =f −1(x ),且 f −1([0,1))=[1,2),f −1((2,4])=[0,1),若方程 f (x )−x =0 有解 x 0,则 x 0=________________ .11. 【2013·四川理·14】已知 f (x ) 是定义域为 R 的偶函数,当 x ≥0 时, f (x )=x 2−4x ,那么,不等式 f (x +2)<5 的解集是________________ .2013参考答案一、选择题1. C2. B3. A4. D5. D6. C7. D8. B9. B 10. D 11. B 12. D 13. B 14. A 15 D 16. D 17. C 18. D 19. C 20. A 21. B 22. A 23. D 24. C 25. A二、填空题1. -12. 33. {x∣ 0<x≤1};①②③4. (−5,0)∪(5,+∞)5. −1;√106. 27. 168. ①③④9. a≤−8710. 211. {x∣ −7<x<3}2013年高考真题1. 【2013·安徽理·20】设函数f n(x)=−1+x+x222+x332+⋯+x nn2(x∈R,n∈N∗).证明:Ⅰ 对每个n∈N∗,存在唯一的x n∈[23,1],满足f n(x n)=0;Ⅰ 对任意p∈N∗,由(1)中x n构成的数列{x n}满足0<x n−x n+p<1n.2. 【2013·北京理·20】设L为曲线C:y=lnxx在点(1,0)处的切线.Ⅰ 求L的方程;Ⅰ 证明:除切点(1,0)之外,曲线C在直线L的下方.3. 【2013·广东理·17】已知函数f(x)=x−alnx(a∈R).Ⅰ 当a=2时,求曲线y=f(x)在点A(1,f(1))处的切线方程;Ⅰ 求函数f(x)的极值.4. 【2013·福建理·17】设函数 f (x )=(x −1)e x −kx 2(k ∈R ). Ⅰ 当 k =1 时,求函数 f (x ) 的单调区间;Ⅰ 当 k ∈(12,1] 时,求函数 f (x ) 在 [0,k ] 上的最大值 M .5. 【2013·湖北理·22】设 n 为正整数,r 为正有理数. Ⅰ 求函数 f (x )=(1+x )r+1−(r +1)x −1(x >−1) 的最小值; Ⅰ 证明:n r+1−(n−1)r+1r+1<n r <(n+1)r+1−n r+1r+1;Ⅰ 设 x ∈R ,记 [x ] 为不小于 x 的最小整数,例如 [2]=2,[π]=4,[−32]=−1.令 S =√813+√823+√833+⋯+√1253,求 [S ] 的值.(参考数据:8043≈344.7,8143≈350.5,12443≈618.3,12643≈631.7)6. 【2013·湖南理·22】已知 a >0,函数 f (x )=∣∣x−a x+2a ∣∣.Ⅰ 记 f (x ) 在区间 [0,4] 上的最大值为 g (a ),求 g (a ) 的表达式;Ⅰ 是否存在 a ,使函数 y =f (x ) 在区间 (0,4) 内的图象上存在两点,在该两点处的切线相互垂直?若存在,求 a 的取值范围;若不存在,请说明理由.7. 【2013·江苏理·20】设函数 f (x )=lnx −ax,g (x )=e x −ax ,其中 a 为实数.Ⅰ 若 f (x ) 在 (1,+∞) 上是单调减函数,且 g (x ) 在 (1,+∞) 上有最小值,求 a 的取值范围;Ⅰ 若 g (x ) 在 (−1,+∞) 上是单调增函数,试求 f (x ) 的零点个数,并证明你的结论.8. 已知函数f(x)=a(1−2∣∣x−12∣∣),a为常数且a>0.Ⅰ 证明:函数f(x)的图象关于直线x=12对称;Ⅰ 若x0满足f(f(x0))=x0,但f(x0)≠x0,则称x0为函数f(x)的二阶周期点,如果f(x)有两个二阶周期点x1,x2,试确定a的取值范围;Ⅰ 对于(2)中的x1,x2和a,设x3为函数f(f(x))的最大值点,A(x1,f(f(x1))),B(x2,f(f(x2))),C(x3,0),记△ABC的面积为S(a),讨论S(a)的单调性9. 【2013·辽宁理·21】已知函数f(x)=(1+x)e−2x,g(x)=ax+x32+1+2xcosx,当x∈[0,1]时,Ⅰ 求证:1−x≤f(x)≤11+x;Ⅰ 若f(x)≥g(x)恒成立,求实数a的取值范围.10. 【2013·全国大纲理·22】已知函数f(x)=ln(1+x)−x(1+λx)1+x.Ⅰ 若x≥0时f(x)≤0,求λ的最小值;Ⅰ 设数列{a n}的通项a n=1+12+13+⋯+1n,证明:a2n−a n+14n>ln2.11. 【2013·新课标Ⅰ理·21】设函数f(x)=x2+ax+b,g(x)=e x(cx+d),若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+ 2.Ⅰ 求a,b,c,d的值;Ⅰ 若 x ≥−2 时, f (x )≤kg (x ) ,求 k 的取值范围.12. 【2013·新课标Ⅱ理·21】已知函数 f (x )=e x −ln (x +m ). Ⅰ 设 x =0 是 f (x ) 的极值点,求 m ,并讨论 f (x ) 的单调性; Ⅰ 当 m ≤2 时,证明 f (x )>0.13. 【2013·陕西理·21】设函数 f (x )=xe 2x +c (e =2.71828⋯ 是自然对数的底数,c ∈R ). Ⅰ 求f (x ) 的单调区间、最大值;Ⅰ 讨论关于 x 的方程 ∣lnx∣=f (x ) 根的个数14. 【2013·四川理·21】已知函数 f (x )={x 2+2x +a,x <0lnx,x >0,其中 a 是实数.设A(x 1,f (x 1)),B(x 2,f (x 2)) 为该函数图象上的两点,且 x 1<x 2.Ⅰ 指出函数 f (x ) 的单调区间;Ⅰ 若函数 f (x ) 的图象在点 A ,B 处的切线互相垂直,且 x 2<0,求 x 2−x 1 的最小值; Ⅰ 若函数 f (x ) 的图象在点 A ,B 处的切线重合,求 a 的取值范围.15. 【2013·天津理·20】 已知函数 f (x )=x 2lnx . Ⅰ 求函数 f (x ) 的单调区间;Ⅰ 证明:对任意的t>0,存在唯一的s,使t=f(s).Ⅰ 设(2)中所确定的s关于t的函数为s=g(t),证明:当t>e2时,有25<lng(t)lnt<12.16. 【2013·浙江理·20】已知a∈R,函数f(x)=x3−3x2+3ax−3a+3Ⅰ 求曲线y=f(x)在点(1,f(1))处的切线方程;Ⅰ 当x∈[0,2]时,求∣f(x)∣的最大值.17. 【2013·重庆理·17】设f(x)=a(x−5)2+6lnx,其中a∈R,曲线y=f(x)在点(1,f(1))处的切线与y轴相交于点(0,6).Ⅰ 确定a的值;Ⅰ 求函数f(x)的单调区间与极值.2013参考答案1. (1) 对每个 n ∈N ∗,当 x >0 时,f n ′(x )=1+x 2+⋯+x n−1n>0,故 f n (x ) 在 (0,+∞) 内单调递增. 由于 f 1(1)=0,当 n ≥2,f n (1)=122+132+⋯+1n 2>0, 故 f n (1)≥0.又f n (23)=−1+23+∑(23)kk2nk=2≤−13+14∑(23)knk=2=−13+14⋅(23)2[1−(23)n−1]1−23=−13⋅(23)n−1<0,所以存在唯一的 x n ∈[23,1],满足 f n (x n )=0.(2) 当 x >0 时,f n+1(x )=f n (x )+x n+1(n +1)2>f n (x ),故f n+1(x n )>f n (x n )=f n+1(x n+1)=0.由 f n+1(x ) 在 (0,+∞) 内单调递增知,x n+1<x n ,故 {x n } 为单调递减数列.从而对任意的 n,p ∈N ∗,x n+p <x n ,对任意的 p ∈N ∗,由于f n (x n )=−1+x n +x n 222+⋯+x n nn2=0, ⋯⋯①f n+p (x n+p )=−1+x n+p +x n+p 222+⋯+x n+p n n 2+x n+pn+1(n +1)2+⋯+x n+p n+p (n +p )2=0, ⋯⋯②①式减去②式并移项,利用 0<x n+p <x n ≤1,得x n −x n+p=∑x n+pk−x nk k 2nk=2+∑x n+pk k 2n+pk=n+1≤∑x n+pk k 2n+pk=n+1≤∑12n+pk=n+1<∑1k (k −1)n+pk=n+1=1n −1n +p <1n .因此,对任意 p ∈N ∗,都有0<x n −x n+p <1n.2(1) 设 f (x )=lnx x,则fʹ(x )=1−lnxx 2. 所以 fʹ(1)=1 ,所以 L 的方程为 y =x −1 .(2) 令 g (x )=x −1−f (x ) ,则除切点之外,曲线 C 在直线 L 的下方等价于g (x )>0(∀x >0,x ≠1).g (x ) 满足 g (1)=0 ,且gʹ(x )=1−fʹ(x )=x 2−1+lnx x 2.当 0<x <1 时,x 2−1<0,lnx <0,所以 gʹ(x )<0 ,故 g (x ) 单调递减; 当 x >1 时,x 2−1>0,lnx >0,所以 gʹ(x )>0 ,故 g (x ) 单调递增.所以,g (x )>g (1)=0(∀x >0,x ≠1).所以除切点之外,曲线 C 在直线 L 的下方.3(1) 当 a =2 时,f (x )=x −2lnx,fʹ(x )=1−2x(x >0),因而f (1)=1,fʹ(1)=−1,所以曲线 y =f (x ) 在点 A(1,f (1)) 处的切线方程为y −1=−(x −1),即x +y −2=0.(2) 由fʹ(x )=1−a x =x −ax,x >0知:①当 a ≤0 时,fʹ(x )>0,函数 f (x ) 为 (0,+∞) 上是增函数,函数 f (x ) 无极值. ②当 a >0 时,由 fʹ(x )=0,解得 x =a . 又当 x ∈(0,a ) 时,fʹ(x )<0; 当 x ∈(a,+∞) 时,fʹ(x )>0,从而函数 f (x ) 在 x =a 处取得极小值,且极小值为f (a )=a −alna,无极大值.综上,当 a ≤0 时,函数 f (x ) 无极值;当 a >0 时,函数 f (x ) 在 x =a 处取得极小值 a −alna ,无极大值. 4(1)fʹ(x )=(x −1)e x +e x −2kx=xe x −2kx=x (e x−2k ).当 k =1 时,令 fʹ(x )=x (e x −2)=0,得x 1=0,x 2=ln2;当 x <0 时,fʹ(x )>0;当 0<x <ln2 时,fʹ(x )<0;当 x >ln2 时,fʹ(x )>0; Ⅰ函数 f (x ) 的单调递增区间为 (−∞,0),(ln2,+∞);单调递减区间为 (0,ln2). (2) Ⅰ 12<k ≤1,Ⅰ 1<2k ≤2,所以0<ln (2k )<ln2.记 h (k )=k −ln (2k ),则 hʹ(k )=1−22k=k−1k在 k ∈(12,1) 有 hʹ(k )<0,Ⅰ当 k ∈(12,1) 时,h (k )=k −ln (2k )>h (1)=1−ln2>0,即k >ln (2k )>0.Ⅰ当 k ∈(12,1) 时,函数 f (x ) 在 [0,ln (2k )) 单调递减,在 (ln (2k ),k ] 单调递增. f (0)=−1,f (k )=(k −1)e k −k 3,记 g (k )=f (k )=(k −1)e k −k 3,下证明 g (k )≥−1.gʹ(k )=k(e k −3k),设 p (k )=e k −3k ,令pʹ(k )=e k −3=0,得k =ln3>1, Ⅰ p (k )=e k −3k 在 (12,1] 为单调递减函数,而p (12)=√e −32>√2.25−1.5=0,p (1)=e −3<0,Ⅰ gʹ(k )=k(e k −3k)=0 的一个非零的根为 k 0∈(12,1],且 e k 0=3k 0. 显然 g (k )=(k −1)e k −k 3 在 (12,k 0) 单调递增,在 (k 0,1] 单调递减, Ⅰ g (k )=f (k )=(k −1)e k −k 3 在 (12,1) 上的最大值为g (k 0)=(k 0−1)3k 0−k 03=−k 03+3k 02−3k 0=(1−k 0)3−1>−1,g (12)=−12√e −18>−1⇔74>√e 而 74>√3>√e 成立,Ⅰ g (12)>−1,g (1)=−1.综上所述,当 k ∈(12,1] 时,函数 f (x ) 在 [0,k ] 的最大值M =(k −1)e k −k 3.5(1)因为fʹ(x)=(r+1)(1+x)r−(r+1)=(r+1)[(1+x)r−1],令fʹ(x)=0,解得x=0.当−1<x<0时,fʹ(x)<0,所以f(x)在(−1,0)内是减函数;当x>0时,fʹ(x)>0,所以f(x)在(0,+∞)内是增函数.故函数f(x)在x=0处取得最小值f(0)=0.(2)由(1)知,当x∈(−1,+∞)时,f(x)≥f(0)=0,即(1+x)r+1≥1+(r+1)x,当且仅当x=0时等号成立,故当x>−1且x≠0时,有(1+x)r+1>1+(r+1)x. ⋯⋯①在①中,令x=1n(这时x>−1且x≠0),得(1+1n)r+1>1+r+1n.上式两边同乘n r+1,得(n+1)r+1>n r+1+n r(r+1),即n r<(n+1)r+1−n r+1r+1. ⋯⋯②当n>1时,在①中令x=−1n(这时x>−1且x≠0),类似可得n r>n r+1−(n−1)r+1r+1. ⋯⋯③且当n=1时,③也成立.综合②③,得n r+1−(n−1)r+1r+1<n r<(n+1)r+1−n r+1r+1. ⋯⋯④(3)在④中,令r=13,n分别取值81,82,83,⋯,125,得34(8143−8043)<√813<34(8243−8143),34(8243−8143)<√823<34(8343−8243),34(8343−8243)<√833<34(8443−8343),⋯⋯,34(12543−12443)<√1253<34(12643−12543). 将以上各式相加并整理,得34(12543−8043)<S <34(12643−8143). 代入数据计算,可得34(12543−8043)≈210.2,34(12643−8143)≈210.9. 由 [S ] 的定义,得 [S ]=211.6(1) 当 0≤x ≤a 时,f (x )=a−x x+2a ;当 x >a 时,f (x )=x−a x+2a.因此,当 x ∈(0,a ) 时,fʹ(x )=−3a(x+2a )2<0,f (x ) 在 (0,a ) 上单调递减; 当 x ∈(a,+∞) 时,fʹ(x )=3a(x+2a )2>0,f (x ) 在 (a,+∞) 上单调递增. ①当 a ≥4 时,则 f (x ) 在 x ∈(0,4) 上单调递减,g (a )=f (0)=12.②当 0<a <4 时,则 f (x ) 在 (0,a ) 上单调递减,在 (a,4) 上单调递增,所以g (a )=max {f (0),f (4)}. 而f (0)−f (4)=12−4−a 4+2a =a −12+a, 故当 0<a ≤1 时,g (a )=f (4)=4−a4+2a ;当 1<a <4 时,g (a )=f (0)=12. 综上所述,g (a )={4−a4+2a ,0<a ≤1,12,a >1.(2) 由(1)知,当 a ≥4 时,f (x ) 在 x ∈(0,4) 上单调递减,故不满足要求. 当 0<a <4 时,f (x ) 在 (0,a ) 上单调递减,在 (a,4) 上单调递增.若存在x1,x2∈(0,4)(x1<x2)使曲线y=f(x)在(x1,f(x1)),(x2,f(x2))两点处的切线互相垂直,则x1∈(0,a),x2∈(a,4),且fʹ(x1)⋅fʹ(x2)=−1,即−3a (x1+2a)2⋅3a(x2+2a)2=−1亦即x1+2a=3ax2+2a. ⋯⋯①由x1∈(0,a),x2∈(a,4)得x1+2a∈(2a,3a),3ax2+2a ∈(3a4+2a,1).故①成立等价于集合A={x∣ 2a<x<3a}与集合B={x∣ 3a4+2a<x<1}的交集非空.因为3a4+2a <3a,所以当且仅当0<2a<1,即0<a<12时,A∩B≠∅.综上所述,存在a使函数f(x)在区间(0,4)内的图象上存在两点,在该两点处的切线互相垂直,且a的取值范围是(0,12).7(1)令fʹ(x)=1−a=1−ax<0,考虑到f(x)的定义域为(0,+∞),故a>0,进而解得x>a−1,即f(x)在(a−1,+∞)上是单调减函数.同理,f(x)在(0,a−1)上是单调增函数.由于f(x)在(1,+∞)上是单调减函数,故(1,+∞)⊆(a−1,+∞),从而a−1≤1,即a≥1.令gʹ(x)=e x−a=0,得x=lna.当x<lna时,gʹ(x)<0;当x>lna时,gʹ(x)>0.又g(x)在(1,+∞)上有最小值,所以lna>1,即a>e.综上可知,a∈(e,+∞).(2)当a≤0时,g(x)必为单调增函数;当a>0时,令gʹ(x)=e x−a>0,解得a<e x,即x>lna.因为g(x)在(−1,+∞)上是单调增函数,类似(1)有lna≤−1,即0<a≤e−1.结合上述两种情况,得a≤e−1.①当a=0时,由f(1)=0以及fʹ(x)=1x>0,得f(x)存在唯一的零点;②当a<0时,由于f(e a)=a−ae a=a(1−e a)<0,f(1)=−a>0,且函数f(x)在[e a,1]上的图象连续,所以f(x)在(e a,1)上存在零点.另外,当x>0时,fʹ(x)=1x−a>0,故f(x)在(0,+∞)上是单调增函数,所以f(x)只有一个零点.③当0<a≤e−1时,令fʹ(x)=1−a=0,解得x=a−1.当0<x<a−1时,fʹ(x)>0;当x>a−1时,fʹ(x)<0,所以,x=a−1是f(x)的最大值点,且最大值为f(a−1)=−lna−1.a.当−lna−1=0,即a=e−1时,f(x)有一个零点x=e.b.当−lna−1>0,即0<a<e−1时,f(x)有两个零点.实际上,对于0<a<e−1,由于f(e−1)=−1−ae−1<0,f(a−1)>0,且函数f(x)在[e−1,a−1]上的图象连续,所以f(x)在(e−1,a−1)上存在零点.另外,当x∈(0,a−1)时,fʹ(x)=1x−a>0,故f(x)在(0,a−1)上是单调增函数,所以f(x)在(0,a−1)上只有一个零点.下面考虑f(x)在(a−1,+∞)上的情况.先证f(e a−1)=a(a−2−e a−1)<0.为此,我们要证明:当x>e时,e x>x2.设h(x)=e x−x2,则hʹ(x)=e x−2x,再设l(x)=hʹ(x)=e x−2x,则lʹ(x)=e x−2.当x>1时,lʹ(x)=e x−2>e−2>0,所以l(x)=hʹ(x)在(1,+∞)上是单调增函数.故当x>2时,hʹ(x)=e x−2x>hʹ(2)=e2−4>0,从而h(x)在(2,+∞)上是单调增函数,进而当x>e时,h (x )=e x −x 2>h (e )=e e −e 2>0,即当 x >e 时,e x >x 2.当 0<a <e −1,即 a −1>e 时,f(e a −1)=a −1−ae a−1=a(a −2−e a −1)<0. 又 f (a −1)>0,且函数 f (x ) 在 [a −1,e a −1] 上的图象连续,所以 f (x ) 在 (a −1,e a −1) 上存在零点. 又当 x >a −1 时,fʹ(x )=1x−a <0, 故 f (x ) 在 (a −1,+∞) 上是单调减函数, 所以 f (x ) 在 (a −1,+∞) 上只有一个零点. 综合①②③可知,当 a ≤0 或 a =e −1 时,f (x ) 的零点个数为 1,当 0<a <e −1 时,f (x ) 的零点个数为 2.8(1) 因为f (1+x)=a (1−2∣x∣), f (12−x)=a (1−2∣x∣), 有f (1+x)=f (1−x). 所以函数 f (x ) 的图象关于直线 x =12 对称. (2) 当 0<a <12 时,有f(f (x ))={4a 2x,x ≤12,4a 2(1−x ),x >12,所以 f(f (x ))=x 只有一个解 x =0. 又 f (0)=0,故 0 不是二阶周期点. 当 a =12 时,有f(f (x ))={x,x ≤12,1−x,x >12,所以 f(f (x ))=x 有解集 {x∣ x ≤12}.又当 x ≤12时,f (x )=x ,故 {x∣ x ≤12} 中的所有点都不是二阶周期点.当 a >12 时,有f(f (x ))={4a 2x,x ≤14a ,2a −4a 2x,14a <x ≤12,2a (1−2a )+4a 2x,12<x ≤4a −14a ,4a 2−4a 2x,x >4a −14a,所以 f(f (x ))=x 有四个解:0,2a 1+4a2,2a1+2a ,4a 21+4a 2.又f (0)=0,f (2a )=2a,f (2a 1+4a 2)≠2a 1+4a 2,f (4a 21+4a 2)≠4a 21+4a 2, 故只有 2a1+4a 2,4a 21+4a 2 是 f (x ) 的二阶周期点. 综上所述,所求 a 的取值范围为 a >12. (3) 由(2)得x 1=2a1+4a 2,x 2=4a 21+4a 2, 因为 x 3 为函数 f(f (x )) 的最大值点,所以x 3=14a 或 x 3=4a −14a. 当 x 3=14a 时,S (a )=2a−14(1+4a 2),求导得Sʹ(a )=2(a −1+√22)(a −1−√22)(1+4a 2)2,所以当 a ∈(12,1+√22) 时,S (a ) 单调递增,当 a ∈(1+√22,+∞) 时,S (a ) 单调递减;当x3=4a−14a 时,S(a)=8a2−6a+14(1+4a2),求导得Sʹ(a)=12a2+4a−32(1+4a2)2,因为a>12,从而有Sʹ(a)=12a2+4a−32(1+4a2)2>0,所以当a∈(12,+∞)时,S(a)单调递增.9(1)要证x∈[0,1]时,(1+x)e−2x≥1−x,只需证明(1+x)e−x≥(1−x)e x.记h(x)=(1+x)e−x−(1−x)e x,则hʹ(x)=x(e x−e−x),当x∈(0,1)时,hʹ(x)>0,因此h(x)在[0,1]上是增函数,故h(x)≥h(0)=0.所以f(x)≥1−x,x∈[0,1].要证x∈[0,1]时,(1+x)e−2x≤11+x,只需证明e x≥x+1.记K(x)=e x−x−1,则Kʹ(x)=e x−1,当x∈(0,1)时,Kʹ(x)>0,因此K(x)在[0,1]上是增函数,故K(x)≥K(0)=0.所以f(x)≤11+x,x∈[0,1].综上,1−x≤f(x)≤11+x,x∈[0,1].(2)方法一:f(x)−g(x)=(1+x)e−2x−(ax+x32+1+2xcosx)≥1−x−ax−1−x32−2xcosx=−x(a+1+x22+2cosx).设G(x)=x22+2cosx,则Gʹ(x)=x−2sinx.记H(x)=x−2sinx,则Hʹ(x)=1−2cosx,当x∈(0,1)时,Hʹ(x)<0,于是Gʹ(x)在[0,1]上是减函数,从而当x∈(0,1)时,Gʹ(x)<Gʹ(0)=0,故G(x)在[0,1]上是减函数,于是G(x)≤G(0)=2,从而a+1+G(x)≤a+3,所以,当a≤−3时,f(x)≥g(x)在[0,1]上恒成立,下面证明,当a>−3时,f(x)≥g(x)在[0,1]上不恒成立.f(x)−g(x)≤11+x−1−ax−x32−2xcosx=−x1+x−ax−x32−2xcosx=−x(11+x +a+x22+2cosx).记I(x)=11+x+a+x22+2cosx=11+x+a+G(x),则Iʹ(x)=−1(1+x)2+Gʹ(x),当x∈(0,1)时,Iʹ(x)<0.故I(x)在[0,1]上是减函数.于是I(x)在[0,1]上的值域为[a+1+2cos1,a+3].因为当a>−3时,a+3>0,所以存在x0∈(0,1),使得I(x0)>0,此时f(x0)<g(x0),即f(x)≥g(x)在[0,1]上不恒成立.综上,实数a的取值范围是(−∞,−3].方法二:先证当x∈[0,1]时,1−12x2≤cosx≤1−14x2.记F(x)=cosx−1+12x2,则Fʹ(x)=−sinx+x.记G(x)=−sinx+x,则Gʹ(x)=−cosx+1,当x∈(0,1)时,Gʹ(x)>0,于是G(x)在[0,1]上是增函数,因此当x∈(0,1)时,G(x)>G(0)=0,从而F(x)在[0,1]上是增函数,因此F(x)≥F(0)=0,所以当x∈[0,1]时,1−12x2≤cosx.同理可证,当x∈[0,1]时,cosx≤1−14x2.综上,当x∈[0,1]时,1−12x2≤cosx≤1−14x2.因为当x∈[0,1]时,f(x)−g(x)=(1+x)e−2x−(ax+x32+1+2xcosx)≥(1−x)−ax−x32−1−2x(1−14x2)=−(a+3)x.所以当a≤−3时,f(x)≥g(x)在[0,1]上恒成立.下面证明,当a>−3时,f(x)≥g(x)在[0,1]上不恒成立.因为f(x)−g(x)=(1+x)e−2x−(ax+x32+1+2xcosx)≤1−1−ax−x3−2x(1−1x2)=x2+x3−(a+3)x≤32x[x−23(a+3)],所以存在x0∈(0,1)(例如x0取a+33和12中的较小值)满足f(x0)<g(x0),即f(x)≥g(x)在[0,1]上不恒成立.综上,实数a的取值范围是(−∞,−3].10(1) 由已知f (0)=0,fʹ(x )=(1−2λ)x −λx 2(1+x )2,fʹ(0)=0.若 λ≤0,则在 (0,+∞) 上,fʹ(x )>0,f (x ) 单调递增,f (x )>f (0)=0,不符题意; 若 0<λ<12,则当 0<x <1−2λλ时,fʹ(x )>0,所以 f (x )>0.若 λ≥12,则当 x >0 时,fʹ(x )<0,f (x ) 单调递减,所以当 x >0 时,f (x )<0. 综上,λ 的最小值是 12.(2) 令 λ=12.由(1)知,当 x >0 时,f (x )<0,即x (2+x )2+2x>ln (1+x ).取 x =1k ,则2k +12k (k +1)>ln (k +1k).于是a 2n −a n +14n =∑(12k +12(k +1))2n−1k=n=∑2k +12k (k +1)2n−1k=n >∑lnk +1k2n−1k=n=ln2n −lnn =ln2,所以a 2n −a n +14n>ln2.11. (1) 由已知得 f (0)=2,g (0)=2,fʹ(0)=4,gʹ(0)=4. 而fʹ(x)=2x+a,gʹ(x)=e x(cx+d+c),故b=2,d=2,a=4,d+c=4.从而a=4,b=2,c=2,d=2.(2)由(1)知f(x)=x2+4x+2,g(x)=2e x(x+1).设函数F(x)=kg(x)−f(x)=2ke x(x+1)−x2−4x−2,则Fʹ(x)=2ke x(x+2)−2x−4=2(x+2)(ke x−1).由题设可得F(0)≥0,即k≥1.令Fʹ(x)=0,得x1=−lnk,x2=−2.(i)若1≤k<e2,则−2<x1≤0,从而当x∈(−2,x1)时,Fʹ(x)<0;当x∈(x1,+∞)时,Fʹ(x)>0,即F(x)在(−2,x1)上单调递减,在(x1,+∞)上单调递增,故F(x)在[−2,+∞)上的最小值为F(x1),而F(x1)=2x1+2−x12−4x1−2=−x1(x1+2)≥0.故当x≥−2时,F(x)≥0,即f(x)≤kg(x)恒成立.(ii)若k=e2,则Fʹ(x)=2e2(x+2)(e x−e−2),从而当x>−2时,Fʹ(x)>0,即F(x)在(−2,+∞)上单调递增,而F(−2)=0,故当x≥−2时,F(x)≥0,即f(x)≤kg(x)恒成立.(iii)若k>e2,则F(−2)=−2ke−2+2=−2e−2(k−e2)<0.从而当x≥−2时,f(x)≤kg(x)不可能恒成立.综上,k的取值范围是[1,e2].12. (1)fʹ(x)=e x−1x+m.由x=0是f(x)的极值点得fʹ(0)=0,所以m=1.于是f(x)=e x−ln(x+1),定义域为(−1,+∞),fʹ(x)=e x−1 x+1.函数fʹ(x)=e x−1x+1在(−1,+∞)上单调递增,且fʹ(0)=0,因此,当x∈(−1,0)时,fʹ(x)<0;当x∈(0,+∞)时,fʹ(x)>0.所以f(x)在(−1,0)上单调递减,在(0,+∞)上单调递增.(2)当m≤2,x∈(−m,+∞)时,ln(x+m)≤ln(x+2),故只需证明当m=2时,f(x)>0.当m=2时,函数fʹ(x)=e x−1 x+2在(−2,+∞)上单调递增.又fʹ(−1)<0,fʹ(0)>0,故fʹ(x)=0在(−2,+∞)上有唯一实根x0,且x0∈(−1,0).当x∈(−2,x0)时,fʹ(x)<0;当x∈(x0,+∞)时,fʹ(x)>0,从而当x=x0时,f(x)取得最小值.由fʹ(x0)=0得e x0=1x0+2,ln(x0+2)=−x0,故f(x)≥f(x0)=1x0+2+x0=(x0+1)2 x0+2>0.综上,当m≤2时,f(x)>0.13. (1)因为fʹ(x)=(1−2x)e−2x,由fʹ(x)=0,解得x=1 2 .当x<12时,fʹ(x)>0,f(x)单调递增;当x>12时,fʹ(x)<0,f(x)单调递减.所以,函数f(x)的单调递增区间是(−∞,12),单调递减区间是(12,+∞),最大值为f(12)=12e−1+c.(2)令g(x)=∣lnx∣−f(x)=∣lnx∣−xe−2x−c,x∈(0,+∞).(1)当x∈(1,+∞)时,lnx>0,则g (x )=lnx −xe −2x −c,所以gʹ(x )=e−2x(e 2x x+2x −1). 因为e 2x x>0,2x −1>0,所以gʹ(x )>0.因此 g (x ) 在 (1,+∞) 上单调递增. (2)当 x ∈(0,1) 时,lnx <0,则g (x )=−lnx −xe −2x −c,所以gʹ(x )=e −2x(−e 2xx +2x −1).因为 e 2x ∈(1,e 2),e 2x >1>x >0,所以−e 2x x<−1. 又 2x −1<1,所以 −e 2x x+2x −1<0,即gʹ(x )<0.因此 g (x ) 在 (0,1) 上单调递减. 综合(1)(2)可知,g (x ) 在 (0,1) 单调递减,在 (1,+∞) 单调递增; 所以,g (x ) 的最小值是 g (1)=−e −2−c .①当 g (1)=−e −2−c >0,即 c <−e −2 时,g (x ) 没有零点,故关于 x 的方程 ∣lnx ∣=f (x ) 根的个数为 0;②当 g (1)=−e −2−c =0,即 c =−e −2 时,g (x ) 只有一个零点,故关于 x 的方程 ∣lnx ∣=f (x ) 根的个数为 1;③当 g (1)=−e −2−c <0,即 c >−e −2 时, 当 x ∈(1,+∞) 时,由(1)知g (x )=lnx −xe −2x −c ≥lnx −(12e −1+c)>lnx −1−c,要使 g (x )>0,只需 lnx −1−c >0,,即 x ∈(e 1+c ,+∞); 当 x ∈(0,1) 时,由(1)知g (x )=−lnx −xe −2x −c ≥−lnx −(12e −1+c)>−lnx −1−c,要使 g (x )>0,只需 −lnx −1−c >0,即 x ∈(0,e −1−c ).所以当 c >−e −2 时,g (x ) 有两个零点,故关于 x 的方程 ∣lnx ∣=f (x ) 根的个数为 2. 综上所述,当 c <−e −2 时,关于 x 的方程 ∣lnx ∣=f (x ) 根的个数为 0; 当 c =−e −2 时,关于 x 的方程 ∣lnx ∣=f (x ) 根的个数为 1; 当 c >−e −2 时,关于 x 的方程 ∣lnx ∣=f (x ) 根的个数为 2.14. (1)函数f(x)的单调递减区间为(−∞,−1),单调递增区间为[−1,0),(0,+∞).(2)由导数的几何意义可知,点A处的切线斜率为fʹ(x1),点B处的切线斜率为fʹ(x2),故当点A处的切线与点B处的切线垂直时,有fʹ(x1)fʹ(x2)=−1.当x<0时,对函数f(x)求导,得fʹ(x)=2x+2.因为x1<x2<0,所以(2x1+2)(2x2+2)=−1,所以2x1+2<0,2x2+2>0.因此x2−x1=12[−(2x1+2)+2x2+2]≥√[−(2x1+2)](2x2+2)=1,当且仅当−(2x1+2)=2x2+2=1,即x1=−32且x2=−12时,等号成立.所以函数f(x)的图象在点A,B处的切线互相垂直时,x2−x1的最小值为1.(3)当x1<x2<0或x2>x1>0时,fʹ(x1)≠fʹ(x2),故x1<0<x2.当x1<0时,函数f(x)的图象在点(x1,f(x1))处的切线方程为y−(x12+2x1+a)=(2x1+2)(x−x1),即y=(2x1+2)x−x12+a.当x2>0时,函数f(x)的图象在点(x2,f(x2))处的切线方程为y−lnx2=1x2(x−x2),即y=12⋅x+lnx2−1.两切线重合的充要条件是{1x2=2x1+2, ⋯⋯①lnx2−1=−x12+a. ⋯⋯②由①及x1<0<x2知,−1<x1<0.由①②,得a=x12+ln12x1+2−1=x12−ln(2x1+2)−1.∵函数y=x12−1,y=−ln(x1+2)在区间(−1,0)上单调递减,∴a(x1)=x12−ln(2x1+2)−1在(−1,0)上单调递减,且x1→−1时,a(x1)→+∞;x1→0时,a(x1)→−1−ln2.∴a的取值范围是(−1−ln2,+∞).15. (1)函数f(x)的定义域为(0,+∞).fʹ(x)=2xlnx+x=x(2lnx+1),令fʹ(x)=0,得x=√e.当x变化时,fʹ(x),f(x)的变化情况如下表:所以函数f(x)的单调递减区间是√e ),单调递增区间是(√e+∞).(2)当0<x≤1时,f(x)≤0.t>0,令h(x)=f(x)−t,x∈[1,+∞).由(1)知,h(x)在区间(1,+∞)内单调递增.h(1)=−t<0,h(e t)=e2t lne t−t=t(e2t−1)>0.故存在唯一的s∈(1,+∞),使得t=f(s)成立.(3)因为s=g(t),由(2)知,t=f(s),且s>1,从而lng(t)=lns ()=lnsln(s2lns)=lns2lns+ln(lns)=u2u+lnu,其中u=lns.要使2 5<lng(t)lnt<12成立,只需0<lnu<u2.当t>e2时,若s=g(t)≤e,则由f(s)的单调性,有t=f(s)≤f(e)=e2,矛盾,所以s>e,即u>1,从而lnu>0成立.另一方面,令F(u)=lnu−u,u>1,Fʹ(u)=1u−12,令Fʹ(u)=0,得u=2,当1<u<2时,Fʹ(u)>0,当u>2时,Fʹ(u)<0.故对u>1,F(u)≤F(2)<0,因此lnu<u2成立.综上,当t>e2时,有2 5<lng(t)lnt<12.16. (1)由题意fʹ(x)=3x2−6x+3a,故fʹ(1)=3a−3.又f(1)=1,所以所求的切线方程为y=(3a−3)x−3a+4.(2)由于fʹ(x)=3(x−1)2+3(a−1),0≤x≤2.故①当a≤0时,有fʹ(x)≤0,此时f(x)在[0,2]上单调递减,故∣f(x)∣max=max{∣f(0)∣,∣f(2)∣}=3−3a.② 当a≥1时,有fʹ(x)≥0,此时f(x)在[0,2]上单调递增,故∣f(x)∣max=max{∣f(0)∣,∣f(2)∣}=3a−1.③ 当0<a<1时,设x1=1−√1−a,x2=1+√1−a,则0<x1<x2<2,fʹ(x)=3(x−x1)(x−x2).列表如下:由于 f (x 1)=1+2(1−a )√1−a,f (x 2)=1−2(1−a )√1−a,故f (x 1)+f (x 2)=2>0,f (x 1)−f (x 2)=4(1−a )√1−a >0,从而f (x 1)>∣f (x 2)∣.所以∣f (x )∣max =max {f (0),∣f (2)∣,f (x 1)}.① 当 0<a <23 时,f (0)>∣f (2)∣.又f (x 1)−f (0)=2(1−a )√1−a −(2−3a )=a 2(3−4a )2(1−a )√1−a +2−3a>0,故 ∣f (x )∣max=f (x 1)=1+2(1−a )√1−a . ② 当 23≤a <1 时,∣f (2)∣=f (2),且 f (2)≥f (0). 又f (x 1)−∣f (2)∣=2(1−a )√1−a −(3a −2)=a 2(3−4a )2(1−a )√1−a +3a −2所以1)当 23≤a <34 时,f (x 1)>∣f (2)∣.故∣f (x )∣max =f (x 1)=1+2(1−a )√1−a.2)当 34≤a <1 时,f (x 1)≤∣f (2)∣.故∣f (x )∣max =∣f (2)∣=3a −1.综上所述,∣f (x )∣max={ 3−3a,a ≤0,1+2(1−a )√1−a,0<a <34,3a −1,a ≥34.17. (1)因为f(x)=a(x−5)2+6lnx,故fʹ(x)=2a(x−5)+6 x .令x=1,得f(1)=16a,fʹ(1)=6−8a,所以曲线y=f(x)在点(1,f(1))处的切线方程为y−16a=(6−8a)(x−1).由点(0,6)在切线上可得6−16a=8a−6,故a=1 2 .(2)由(1)知,f(x)=12(x−5)2+6lnx(x>0),fʹ(x)=x−5+6x=(x−2)(x−3)x.令fʹ(x)=0,解得x1=2,x2=3.当0<x<2或x>3时,fʹ(x)>0,故f(x)在(0,2),(3,+∞)上为增函数;当2<x<3时,fʹ(x)<0,故f(x)在(2,3)上为减函数.由此可知,f(x)在x=2处取得极大值f(2)=9+6ln2,在x=3处取得极小值f(3)=2+6ln3.。

2013年理科全国各省市高考真题——导数(带答案)

2013年理科全国各省市高考真题——导数(带答案)

2013年全国各省市理科数学—导数1、2013辽宁理T12.设函数()()()()()222,2,0,8x e e f x x f x xf x f x f x x '+==>满足则时, (A )有极大值,无极小值 (B )有极小值,无极大值(C )既有极大值又有极小值 (D )既无极大值也无极小值2、2013浙江理T8.已知e 为自然对数的底数,设函数)2,1()1)(1()(=--=k x e x f k x ,则A .当1=k 时,)(x f 在1=x 处取得极小值B .当1=k 时,)(x f 在1=x 处取得极大值C .当2=k 时,)(x f 在1=x 处取得极小值D .当2=k 时,)(x f 在1=x 处取得极大值3、2013福建理T8. 设函数)(x f 的定义域为R ,()000≠x x 是)(x f 的极大值点,以下结论一定正确的是( )A.)()(,0x f x f R x ≤∈∀B.0x -是)-(x f 的极小值点C. 0x -是)(-x f 的极小值点D.0x -是)-(-x f 的极小值点4、2013湖北理T7.一辆汽车在高速公路上行驶,由于遇到紧急情况而刹车,以速度()25731v t t t=-++(t 的单位:s ,v 的单位:/m s )行驶至停止。

在此期间汽车继续行驶的距离(单位;m )是( ) A. 125ln5+ B. 11825ln 3+ C. 425ln5+ D. 450ln 2+ 5、2013湖北理T10.已知a 为常数,函数()()ln f x x x ax =-有两个极值点1212,()x x x x <,则( ) A. 121()0,()2f x f x >>- B. 121()0,()2f x f x <<- C. 121()0,()2f x f x ><- D. 121()0,()2f x f x <>-6、2013江西理T6.若22221231111,,,x S x dx S dx S e dx x===⎰⎰⎰则123S S S 的大小关系为A.123S S S <<B.213S S S <<C.231S S S <<D.321S S S <<7、2013上海理T1.计算:20lim ______313n n n →∞+=+ 8、2013广东理T10.若曲线ln y kx x =+在点()1,k 处的切线平行于x 轴,则k =______.9、2013湖南理T12.若209,T x dx T =⎰则常数的值为 .10、2013江西理T13.设函数()f x 在(0,)+∞内可导,且()x x f e x e =+,则(1)x f = 参考答案:1—6、D C D C D B 7、13 8、-1 9、3 10、2。

山东省2014届高三理科数学备考之2013届名校解析试题精选分类汇编14:导数与积分 Word版含答案.pdf

山东省2014届高三理科数学备考之2013届名校解析试题精选分类汇编14:导数与积分 Word版含答案.pdf

山东省2014届高三理科数学备考之2013届名校解析试题精选分类汇编14:导数与积分 一、选择题 .(山东省潍坊市2013届高三第二次模拟考试理科数学)定义在R上的函数的导函数为,已知是偶函数. 若,且,则与的大小关系是B.C.D.不确定 【答案】C 由可知,当时,函数递减.当时,函数递增.因为函数是偶函数,所以,,即函数的对称轴为.所以若,则.若,则必有,则,此时由,即,综上,选C. .(山东省济南市2013届高三3月高考模拟理科数学)设,则下列关系式成立的是( ) A.B. C.D. 【答案】C ,,,所以,,.因为,,所以.,,所以,即,所以,选C. .(山东省泰安市2013届高三第一轮复习质量检测数学(理)试题)设函数有三个零点、x2、x3,且则下列结论正确的是B.C.D. 【答案】D∵函数, ∴f′(x)=3x24.令f′(x)=0,得 x=±. ∵当时,;在上,;在上,.故函数在)上是增函数,在上是减函数,在上是增函数.故是极大值,是极小值.再由f (x)的三个零点为x1,x2,x3,且得 x1<,. 根据f(0)=a>0,且f()=ax2>0. ∴0<x20)上的最小值; (3)对一切x,3f(x)≥g(x)恒成立,求实数t的取值范围. 【答案】 .(【解析】山东省济宁市2013届高三第一次模拟考试理科数学 )(本小题满分l3分)已知函数. (I)若a=-1,求函数的单调区间; (Ⅱ)若函数的图象在点(2,f(2))处的切线的倾斜角为45o,对于任意的t [1,2],函数是的导函数)在区间(t,3)上总不是单调函数,求m的取值范围; (Ⅲ)求证: 【答案】解:(Ⅰ)当时, 解得;解得的单调增区间为,减区间为 (Ⅱ) ∵∴得, ,∴ ∵在区间上总不是单调函数,且∴ 由题意知:对于任意的,恒成立,所以,,∴. (Ⅲ)证明如下: 由(Ⅰ)可知当时,即, ∴对一切成立 ∵,则有,∴ .(山东省青岛市2013届高三第一次模拟考试理科数学)已知向量,,(为常数, 是自然对数的底数),曲线在点处的切线与轴垂直,. (Ⅰ)求的值及的单调区间; (Ⅱ)已知函数(为正实数),若对于任意,总存在, 使得,求实数的取值范围.【答案】解:(I)由已知可得:=, 由已知,,∴ 所以 由,由的增区间为,减区间为 (II)对于任意,总存在, 使得, 由(I)知,当时,取得最大值 对于,其对称轴为当时,, ,从而 当时,, ,从而 综上可知: .(山东省滨州市2013届高三第一次(3月)模拟考试数学(理)试题)已知函数,(Ⅰ)求函数的单调区间;(Ⅱ)若恒成立,试确定实数的取值范围;(Ⅲ)证明:1). 【答案】 .(2013年临沂市高三教学质量检测考试理科数学)已知函数(I)若曲线在点(1,))处的切线与直线垂直,求实数a的值; (Ⅱ)讨论函数f(x)的单调性; (Ⅲ)当时,记函数f(x)的最小值为g(a),求证: 【答案】 .(山东省实验中学2013届高三第一次诊断性测试数学(理)试题)已知 (1)求函数的单调区间; (2)求函数在[t,t+2]()上的最小值; (3)对一切的恒成立,求实数a的取值范围. 【答案】 .(山东省临沂市2013届高三5月高考模拟理科数学)已知函数.(Ⅰ)求函数的极大值.(Ⅱ)求证:存在,使;(Ⅲ)对于函数与定义域内的任意实数x,若存在常数k,b,使得和都成立,则称直线为函数与的分界线.试探究函数与是否存在“分界线”?若存在,请给予证明,并求出k,b的值;若不存在,请说明理由. 【答案】解:(Ⅰ)令解得令解得.∴函数在(0,1)内单调递增,在上单调递减. 所以的极大值为 (Ⅱ)由(Ⅰ)知在(0,1)内单调递增,在上单调递减,令∴ 取则 故存在使即存在使(说明:的取法不唯一,只要满足且即可)(Ⅱ)设则则当时,,函数单调递减;当时,,函数单调递增.∴是函数的极小值点,也是最小值点,∴ ∴函数与的图象在处有公共点().设与存在“分界线”且方程为,令函数①由≥,得在上恒成立,即在上恒成立,∴, 即,∴,故②下面说明:,即恒成立.设则∵当时,,函数单调递增,当时,,函数单调递减,∴当时,取得最大值0,.∴成立.综合①②知且故函数与存在“分界线”,此时 .(山东省烟台市2013届高三上学期期末考试数学(理)试题)某幼儿园准备建一个转盘,转盘的外围是一个周长为k米的圆.在这个圆上安装座位,且每个座位和圆心处的支点都有一根直的钢管相连经预算,转盘上的每个座位与支点相连的钢管的费用为3k元/根,且当两相邻的座位之间的圆弧长为x米时,相邻两座位之间的钢管和其中一个座位的总费用为元.假设座位等距分布,且至少有两个座位,所有座位都视为点,且不考虑其他因素,记转盘的总造价为y元.(1)试写出y关于x的函数关系式,并写出定义域;(2)当k=50米时,试确定座位的个数,使得总造价最低? 【答案】 .(山东省泰安市2013届高三上学期期末考试数学理)已知函数(I)若函数在区间上为增函数,求的取值范围;(II)若对任意恒成立,求正整数的值.【答案】 .(山东省潍坊市2013届高三第二次模拟考试理科数学)已知函数.(I)当时,求的单调区间(Ⅱ)若不等式有解,求实数m的取值菹围;(Ⅲ)定义:对于函数和在其公共定义域内的任意实数.,称的值为两函数在处的差值.证明:当a=0时,函数和在其公共定义域内的所有差值都大干2.【答案】 .(山东省青岛即墨市2013届高三上学期期末考试数学(理)试题)已知函数. (1)是函数的一个极值点,求a的值;(2)求函数的单调区间;(3)当时,函数,若对任意,都成立,求的取值范围. 【答案】解:(1)函数, 是函数的一个极值点 解得: (2) (3)当a=2时,由(2)知f(x)在(1,2)减,在(2,+∞)增. b>0 解得:0<b0),使得方程在区间内有且只有两个不相等的实数根?若存在,请求出a的取值范围;若不存在,请说明理由. 【答案】 (D) (C) (B) (A)。

2013年全国高考理科数学分类汇编

2013年全国高考理科数学分类汇编

2013年全国高考理科数学分类汇编一、集合与简易逻辑辽宁2013(2)已知集合{}{}4|0log 1,|2A x x B x x AB =<<=≤=,则A .()01,B .(]02,C .()1,2D .(]12, 辽宁2013(4)下面是关于公差0d >的等差数列()n a 的四个命题:{}1:n p a 数列是递增数列;{}2:n p na 数列是递增数列; 3:n a p n ⎧⎫⎨⎬⎩⎭数列是递增数列; {}4:3n p a nd +数列是递增数列;其中的真命题为(A )12,p p (B )34,p p (C )23,p p (D )14,p p 江西2013.1.已知集合M={1,2,zi},i ,为虚数单位,N={3,4},则复数z=A.-2iB.2iC.-4iD.4i 全国1.1、已知集合A={x |x 2-2x >0},B={x |-5<x <5},则 ( )A 、A∩B=∅B 、A ∪B=RC 、B ⊆AD 、A ⊆B全国2.1.已知集合{}{}3,2,1,0,1,,4)1(|2-=∈<-=N R x x x M ,则=⋂N M ( )A {}2,1,0B {}2,1,0,1-C {}3,2,0,1-D {}3,2,1,0北京2013.1.已知集合A={-1,0,1},B={x |-1≤x <1},则A∩B= ( ) A.{0} B.{-1,0} C.{0,1} D.{-1,0,1}四川1.设集合{|20}A x x =+=,集合2{|40}B x x =-=,则AB =( )(A ){2}- (B ){2} (C ){2,2}- (D )∅ 重庆(1)已知集合{1,2,3,4}U =,集合={1,2}A ,={2,3}B ,则()UA B =(A ){1,3,4} (B ){3,4} (C ){3} (D ){4} 天津卷(1) 已知集合A = {x ∈R | |x |≤2}, A = {x ∈R | x ≤1}, 则A B ⋂= (A) (,2]-∞ (B) [1,2] (C) [-2,2](D) [-2,1]2013安微(1)设集合{}{}{}1,2,3,4,5,|,,,A B M x x a b a A b B ====+∈∈则M 中元素的个数为(A )3 (B )4 (C )5 (D )6 山东(2)设集合A={0,1,2},则集合B={x-y|x ∈A, y ∈A }中元素的个数是()A. 1B. 3C. 5D.9重庆(2)命题“对任意x R ∈,都有20x ≥”的否定为(A )对任意x R ∈,使得20x < (B )不存在x R ∈,使得20x <(C )存在0x R ∈,都有200x ≥ (D )存在0x R ∈,都有200x <2013广东1.设集合M={x ∣x 2+2x=0,x ∈R},N={x ∣x 2-2x=0,x ∈R},则M ∪N= A. {0} B. {0,2} C. {-2,0} D {-2,0,2} 北京2013.3.“φ=π”是“曲线y=sin(2x +φ)过坐标原点的” A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件四川4.设x Z ∈,集合A 是奇数集,集合B 是偶数集.若命题:,2p x A x B ∀∈∈,则( ) (A ):,2p x A x B ⌝∃∈∉ (B ):,2p x A x B ⌝∀∉∉ (C ):,2p x A x B ⌝∃∉∈ (D ):,2p x A x B ⌝∃∈∈2013广东8.设整数n≥4,集合X={1,2,3……,n }。

2013年高考真题理科数学分类汇编(解析版):函数及答案

2013年高考真题理科数学分类汇编(解析版):函数及答案

2013年高考真题理科数学分类汇编(解析版)函 数1、(2013年高考(安徽卷))函数=()y f x 的图像如图所示、在区间[],a b 上可找到(2)n n ≥ 个不同的数12,...,,n x x x 使得1212()()()==,n nf x f x f x x x x 则n 的取值范围是 (A ){}3,4 (B ){}2,3,4 (C ) {}3,4,5 (D ){}2,3【答案】B【解析】由题知、过原点的直线与曲线相交的个数即n 的取值.用尺规作图、交点可取2,3,4. 所以选B 2、(2013年高考(北京卷))函数f (x )的图象向右平移一个单位长度、所得图象与y =e x 关于y 轴对称、则f (x )= A.1ex + B. 1ex - C. 1ex -+ D. 1ex --3、(2013年高考(广东卷))定义域为R 的四个函数3y x =,2xy =,21y x =+,2sin y x =中,奇函数的个数是( )A . 4B .3C .2D .【解析】C ;考查基本初等函数和奇函数的概念,是奇函数的为3y x =与2sin y x =,故选C .4、(2013年高考(全国(广西)卷))已知函数()()()-1,021f x f x -的定义域为,则函数的定义域为(A )()1,1- (B )11,2⎛⎫- ⎪⎝⎭ (C )()-1,0 (D )1,12⎛⎫ ⎪⎝⎭【答案】B【解析】由题意可知 1210,x -<+<、则112x -<<-。

故选B5、(2013年高考(全国(广西)卷))函数()()1=log 10f x x x ⎛⎫+> ⎪⎝⎭的反函数()1=f x - (A )()1021x x >- (B )()1021xx ≠- (C )()21x x R -∈ (D )()210x x -> 【答案】A【解析】由题意知1112(0)21y y x y x +=⇒=<-、 因此、故选A6、(2013年高考(全国(广西)卷))若函数()211=,2f x x ax a x ⎛⎫++∞ ⎪⎝⎭在是增函数,则的取值范围是(A )[]-1,0 (B )[]-∞1, (C )[]0,3 (D )[]3∞,+7、(2013年高考(湖南卷))函数()2ln f x x =的图像与函数()245g x x x =-+的图像的交点个数为A .3B .2C .1D .0【答案】B【解析】画出两个函数的图象、可得交点数。

2013年全国各地高考试题分类汇编(函数与导数)

2013年全国各地高考试题分类汇编(函数与导数)

函数与导数1.设函数()()21x f x x e kx =--(其中k ∈R ).(Ⅰ) 当1k =时,求函数()f x 的单调区间;(Ⅱ) 当1,12k ⎛⎤∈ ⎥⎝⎦时,求函数()f x 在[]0,k 上的最大值M .2.设函数x kx x x f +-=23)( ()R k ∈.(1) 当1=k 时,求函数)(x f 的单调区间;(2) 当0<k 时,求函数)(x f 在[]k k -,上的最小值m 和最大值M .3设l 为曲线ln :x C y x=在点(1,0)处的切线. (Ⅰ)求l 的方程;(Ⅱ)证明:除切点(1,0)之外,曲线C 在直线l 的下方.4.已知函数2()sin cos f x x x x x =++(1)若曲线()y f x =在点(,())a f a 处与直线y b =相切,求a 与b 的值; (2)若曲线()y f x =与直线y b =有两个不同交点,求b 的取值范围.5.已知函数32()331f x x ax x =+++(1)求当a =,讨论()f x 的单调性;(2)若[2,)x ∈+∞时,()0f x ≥,求a 的取值范围.6.已知函数()ln ()f x x a x a R =-∈(1)当2a =时,求曲线()y f x =在点(1,(1))A f 处的切线方程;(2)求函数()f x 的极值. 当0a >时,函数()f x 在x a =处取得极小值()ln f a a a a =-,无极大值.7.已知函数()1(),xaf x x a R e =-+∈(e 为自然对数的底数) (1)若曲线()y f x =在点(1,(1))f 处的切线平行于x 轴,求a 的值;(2)求函数()f x 的极值; (3)当1a =时,若直线:1l y kx =-与曲线()y f x =没有公共点,求k 的最大值.9. 已知函数()e ,x f x x =∈R .(Ⅰ) 若直线1y kx =+与()f x 的反函数的图像相切, 求实数k 的值; (Ⅱ) 设0x >, 讨论曲线()y f x =与曲线2(0)y mx m => 公共点的个数. (Ⅲ) 设a b < , 比较()()2f a f b +与()()f b f a b a--的大小, 并说明理由.10. (本小题满分14分) (2013陕西.文) 已知函数()e ,x f x x =∈R .(Ⅰ) 求()f x 的反函数的图象上图象上点(1,0)处的切线方程;(Ⅱ) 证明: 曲线()y f x =与曲线2112y x x =++有唯一公共点. (Ⅲ) 设a b <, 比较2a b f +⎛⎫⎪⎝⎭与()()f b f a b a --的大小, 并说明理由. 解(Ⅰ)1y x =+.(Ⅱ) 证明曲线()y f x =与曲线1212++=x x y 有唯一公共点,过程如下。

2013届全国统考区(甘肃、贵州、云南)精选理科试题(大部分详解)分类汇编14:导数与积分

2013届全国统考区(甘肃、贵州、云南)精选理科试题(大部分详解)分类汇编14:导数与积分

备战2014年高考之2013届全国统考区(甘肃、贵州、云南)精选理科试题(大部分详解)分类汇编14:导数与积分一、选择题1 .(云南师大附中2013届高三高考适应性月考卷(三)理科数学试题)如图3,直线y=2x 与抛物线y=3-x 2所围成的阴影部分的面积是( )A .353 B. C.2 D .323【答案】D 【解析】12332(32)d 3S x x x -=--=⎰,故选D. 2 .(云南省昆明一中2013届高三新课程第一次摸底测试数学理)函数22ln yx x e ==在处的切线与坐标轴所围成的三角形的面积为A .292e B .212Se = C .22e D .2e 【答案】D 【解析】212'2y x x x =⨯=,所以在2x e =处的切线效率为22k e=,所以切线方程为2224()y x e e -=-,令0x =,得2y =,令0y =,得2x e =-,所以所求三角形的面积为22122e e ⨯⨯=,选D. 3 .(贵州省六校联盟2013届高三第一次联考理科数学试题)已知函数()y xf x ='的图象如图3所示(其中()f x '是函数)(x f 的导函数).下面四个图象中,)(x f y =的图象大致是( )图3-11OxyyxO 1-1y xO 1-1y xO 1-1-11O xyA .B .C .D .【答案】C 【解析】由条件可知当01x <<时,'()0f x <,函数递减,当1x >时,'()0f x >,函数递增,所以当1x =时,函数取得极小值.当1x <-时,'()0xf x <,所以'()0f x >,函数递增,当10x -<<,'()0xf x >,所以'()0f x <,函数递减,所以当1x =-时,函数取得极大值.所以选C.4 .(【解析】云南省玉溪一中2013届高三上学期期中考试理科数学)已知曲线x x y ln 342-=的一条切线的斜率为21,则切点的横坐标为( ) A. 3B. 2C. 1D.21 【答案】A 【解析】函数的定义域为(0,)+∞,函数的导数为3'2x y x =-,由31'22x y x =-=,得260x x --=,解得3x =或1x =-(舍去),选A. 5 .(云南省昆明一中2013届高三第二次高中新课程双基检测数学理)曲线sin (0)yx x x π=≤≤与轴所围成图形的面积为A .1B .2C .2πD .π【答案】B 【解析】根据积分的应用可知所求面积为sin (cos )2xdx x ππ=-=⎰,选B.6 .(【解析】贵州省四校2013届高三上学期期末联考数学(理)试题)如果231()x x+的展开式中的常数项为a ,则直线y ax =与曲线2y x =围成图形的面积为( )A.272B. 9C.92D.274【答案】C 【解析】展开式的通项为32331331()()kkk k k k T C x C x x--+==,所以当330k -=时,1k =。

【VIP专享】2013年全国各地高考试题分类汇编(函数与导数)

【VIP专享】2013年全国各地高考试题分类汇编(函数与导数)

( 2)n
3 n2
]
1
1
( 2) 2[1 3
( 2 )n 1] 3
34
12 3
1 ( 2)n 1 0 33
根据函数的零点的判定定理,可得存在唯一的
xn [ 2 ,1] ,满足 fn ( xn ) 0 . 3
1 1 n ( 2 )i 3 4 i2 3
9. ( 本小题满分 14 分) (2013 陕西 . 理) 已知函数 f ( x) ex, x R .
5 ,
).
4
6.(13 分)(2013?福建)已知函数 f ( x) x a ln x(a R) ( 1)当 a 2 时,求曲线 y f ( x) 在点 A(1, f (1))处的切线方程; ( 2)求函数 f (x) 的极值. 解:函数 f (x) 的定义域为 (0, ) , f (x) 1 a
x ( 1)当 a 2 时, f (x) x 2ln x , f ( x) 1 2 ,
( Ⅰ) 若直线 y kx 1与 f (x) 的反函数的图像相切 , 求实数 k 的值 ;
( Ⅱ) 设 x 0 , 讨论曲线 y f ( x) 与曲线 y mx2 (m 0) 公共点的个数 .
【解析】( Ⅰ) f ( x) 的反函数 g( x) ln x . 设直线 y kx 1与 g( x) ln x 相切与点
x
,
所以
l
的斜率
k
y x1 1
1
所以 l 的方程为 y x 1
( II )证明:令 f (x) x( x 1) ln x( x 0)
则 f ( x)
1 2x 1
(2 x 1)( x 1)
x
x
f ( x) 在( 0,1)上单调递减,在( 1,+∞)上单调递增,又 f (1) 0

2013年全国高考理科数学函数与导数分类汇编

2013年全国高考理科数学函数与导数分类汇编

2013年全国高考理科数学函数与导数分类汇编全国1.11、已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x x ≤0ln(x +1) x >0,若| f (x )|≥ax ,则a 的取值范围是()A 、(-∞,0]B 、(-∞,1]C 、[-2,1]D 、[-2,0]北京2013.5.函数f (x )的图象向右平移一个单位长度,所得图象与y =e x关于y 轴对称,则f (x )= A.1ex + B. 1ex - C. 1ex -+ D. 1ex --2013广东2.定义域为R 的四个函数y=x 3,y=2x,y=x 2+1,y=2sinx 中,奇函数的个数是 A. 4 B.3 C. 2 D.1湖北2013.7.一辆汽车在高速公路上行驶,由于遇到紧急情况而刹车,以速度25()73(,/)1v t t t s v m s t=-++的单位:的单位:行驶至停止,在此期间汽车继续行驶的距离(单位:m )是 A .1+25ln5 B .118+25ln3C .4+25ln5D .4+50ln 2 2天津卷(7) 函数0.5()2|log |1x f x x =-的零点个数为(A) 1(B) 2(C) 3(D) 4四川10.设函数()x f x e x a =+-(a R ∈,e 为自然对数的底数).若曲线sin y x =上存在00(,)x y 使得00(())f f y y =,则a 的取值范围是( )(A )[1,]e (B )1[,1]e - (C )[1,1]e + (D )1[,1]e e -+013安微江西2013.10.如图,半径为1的半圆O 与等边三角形ABC 夹在两平行线,12,l l 之间l //1l ,l 与半圆相交于F,G 两点,与三角形ABC 两边相交于E,D两点,设弧FG 的长为(0)x x π<<,y EB BC CD =++,若l 从1l 平行移动到2l ,则函数()y f x =的图像大致是江西2013.2.函数y=x ln(1-x)的定义域为A .(0,1) B.[0,1) C.(0,1] D.[0,1] 江西2013.6.若22221231111,,,x S x dx S dx S e dx x===⎰⎰⎰则123S S S 的大小关系为A.123S S S <<B.213S S S <<C.231S S S <<D.321S S S <<2013安微(4)已知函数()()()-1,021f x f x -的定义域为,则函数的定义域为(A )()1,1- (B )11,2⎛⎫- ⎪⎝⎭ (C )()-1,0 (D )1,12⎛⎫ ⎪⎝⎭2013安微(5)函数()()1=log 10f x x x ⎛⎫+> ⎪⎝⎭的反函数()1=f x - (A )()1021x x >- (B )()1021xx ≠- (C )()21x x R -∈ (D )()210x x -> 2013安微(9)若函数()211=,2f x x ax a x ⎛⎫++∞ ⎪⎝⎭在是增函数,则的取值范围是 (A )[]-1,0 (B )[]-∞1, (C )[]0,3 (D )[]3∞,+山东(3)已知函数f(x)为奇函数,且当x>0时, f(x) =x 2+,则f(-1)= ()(A )-2 (B )0 (C )1 (D )2天津卷(8) 已知函数()(1||)f x x a x =+. 设关于x 的不等式()()f x a f x +< 的解集为A , 若11,22A ⎡⎤-⊆⎢⎥⎣⎦, 则实数a 的取值范围是(A) 15⎫-⎪⎪⎝⎭(B) 13⎫-⎪⎪⎝⎭(C) 1513⎛+⋃ ⎝⎫-⎪⎝⎭⎪⎭(D) 51⎛-- ⎝⎭∞ 四川7.函数231x x y =-的图象大致是( )重庆(6)若a b c <<,则函数()()()()()()()f x x a x b x b x c x c x a =--+--+--两个零点分别位于区间(A )(,)a b 和(,)b c 内 (B )(,)a -∞和(,)a b 内 (C )(,)b c 和(,)c +∞内 (D )(,)a -∞和(,)c +∞内 重庆(3(3)(6)a a -+63a -≤≤)的最大值为(A )9 (B )92(C )3 (D 32全国2.10.已知函数c bx ax x x f +++=23)(,下列结论错误的是( ) A 0)(,=∈∃ x f R x B 函数)(x f 的图象是中心对称图形 C 若 x 是的极值点,则)(x f 在区间),( x -∞单调递减。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013年全国高考理科数学试题分类汇编14:导数与积分一、选择题1 .(2013年高考湖北卷(理))已知a 为常数,函数()()ln f x x x ax =-有两个极值点1212,()x x x x <,则( )A .121()0,()2f x f x >>- B .121()0,()2f x f x <<-C .121()0,()2f x f x ><-D .121()0,()2f x f x <>-【答案】D2 .(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))已知函数32()f x x ax bx c =+++,下列结论中错误的是( )A .0x ∃∈R,0()0f x =B .函数()y f x =的图像是中心对称图形 C .若0x 是()f x 的极小值点,则()f x 在区间0(,)x -∞上单调递减 D .若0x 是()f x 的极值点,则0'()0f x =【答案】C3 .(2013年高考江西卷(理))若22221231111,,,x S x dx S dx S e dx x===⎰⎰⎰则123S S S 的大小关系为( )A .123S S S <<B .213S S S <<C .231S S S <<D .321S S S <<【答案】B4 .(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))设函数()()()()()222,2,0,8x e e f x x f x xf x f x f x x '+==>满足则时,( )A .有极大值,无极小值B .有极小值,无极大值C .既有极大值又有极小值D .既无极大值也无极小值【答案】D5 .(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))设函数()f x 的定义域为R,00(0)x x ≠是()f x 的极大值点,以下结论一定正确的是 ( )A .0,()()x R f x f x ∀∈≤B .0x -是()f x -的极小值点C .0x -是()f x -的极小值点D .0x -是()f x --的极小值点【答案】D6 .(2013年高考北京卷(理))直线l 过抛物线C : x 2=4y 的焦点且与y 轴垂直,则l 与C 所围成的图形的面积等于 ( )A .43 B .2C .83D 【答案】C7 .(2013年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))已知e 为自然对数的底数,设函数)2,1()1)(1()(=--=k x e x f k x ,则 ( )A .当1=k 时,)(x f 在1=x 处取得极小值B .当1=k 时,)(x f 在1=x 处取得极大值C .当2=k 时,)(x f 在1=x 处取得极小值D .当2=k 时,)(x f 在1=x 处取得极大值【答案】C 二、填空题8 .(2013年高考江西卷(理))设函数()f x 在(0,)+∞内可导,且()x x f e x e =+,则(1)x f =______________【答案】2 9 .(2013年高考湖南卷(理))若209,Tx dx T =⎰则常数的值为_________.【答案】310.(2013年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))若曲线ln y kx x =+在点()1,k 处的切线平行于x 轴,则k =______.【答案】1- 三、解答题11.(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))已知函数)ln()(m x e x f x +-=.(Ⅰ)设0x =是()f x 的极值点,求m ,并讨论()f x 的单调性; (Ⅱ)当2m ≤时,证明()0f x >.【答案】12.(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))已知函数()()21xf x x e-=+⋅()3,12cos .2x g x ax x x =+++当[]0,1x ∈时,(I )求证:()11-;1x f x x≤≤+ (II )若()()f x g x ≥恒成立,求实数a 的取值范围。

(I )要证当[]0,1x ∈时,()211xx e x -+⋅≥-,只需证明()1(1)x x x e x e -+⋅≥-⋅。

记()()1(1)xx h x x ex e -=+⋅--⋅,则()()x x h x x e e -'=-。

当[]0,1x ∈时,()0h x '>。

因此()h x 在[]0,1上是增函数,故()(0)0h x h ≥=。

所以当[]0,1x ∈时,()(1)f x x ≥-。

………………………………………………………………………………………………3分 要证当[]0,1x ∈时,()2111x x e x-+⋅≤+,只需证明1x e x ≥+。

记()1xk x e x =--,则 ()1x k x e '=-。

当(0,1)x ∈时,()0k x '>。

所以()k x 在[]0,1上是增函数,故()(0)0k x k ≥=。

所以当[]0,1x ∈时,()11f x x≤+。

综上所述,当[]0,1x ∈时, ()11-1x f x x≤≤+。

………………………………………………………………………5分-∞-。

……………………………………12分综上所述,a的取值范围是(,3]13.(2013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))本小题满分16分.设函数ax x x f -=ln )(,ax e x g x -=)(,其中a 为实数.(1)若)(x f 在),1(+∞上是单调减函数,且)(x g 在),1(+∞上有最小值,求a 的取值范围; (2)若)(x g 在),1(+∞-上是单调增函数,试求)(x f 的零点个数,并证明你的结论.【答案】解:(1)由01)('≤-=a x x f 即a x ≤1对),1(+∞∈x 恒成立,∴max 1⎥⎦⎤⎢⎣⎡≥x a 而由),1(+∞∈x 知x1<1 ∴1≥a 由a e x g x -=)('令0)('=x g 则a x ln =当x <a ln 时)('x g <0,当x >a ln 时)('x g >0, ∵)(x g 在),1(+∞上有最小值 ∴a ln >1 ∴a >e综上所述:a 的取值范围为),(+∞e(2)证明:∵)(x g 在),1(+∞-上是单调增函数∴0)('≥-=a e x g x即x e a ≤对),1(+∞-∈x 恒成立, ∴[]min xea ≤而当),1(+∞-∈x 时,x e >e 1 ∴ea 1≤ 分三种情况:(Ⅰ)当0=a 时, xx f 1)('=>0 ∴f(x)在),0(+∞∈x 上为单调增函数 ∵0)1(=f ∴f(x)存在唯一零点 (Ⅱ)当a <0时,a xx f -=1)('>0 ∴f(x)在),0(+∞∈x 上为单调增函数 ∵)1()(aaae a ae a ef -=-=<0且a f -=)1(>0 ∴f(x)存在唯一零点 (Ⅲ)当0<e a 1≤时,a x x f -=1)(',令0)('=x f 得ax 1=∵当0<x <a 1时,x a x a x f )1()('--=>0;x >a1时,x a x a x f )1()('--=<0 ∴a x 1=为最大值点,最大值为1ln 11ln )1(--=-=a aa a a f①当01ln =--a 时,01ln =--a ,e a 1=,)(x f 有唯一零点e ax ==1②当1ln --a >0时,0<e a 1≤,)(x f 有两个零点实际上,对于0<e a 1≤,由于e a e a e e f --=-=111ln )1(<0,1ln 11ln )1(--=-=a aa a a f >0且函数在⎪⎭⎫ ⎝⎛a e 1,1上的图像不间断 ∴函数)(x f 在⎪⎭⎫⎝⎛a e 1,1上有存在零点 另外,当⎪⎭⎫ ⎝⎛∈a x 1,0,a x x f -=1)('>0,故)(x f 在⎪⎭⎫ ⎝⎛a 1,0上单调增,∴)(x f 在⎪⎭⎫ ⎝⎛a 1,0只有一个零点下面考虑)(x f 在⎪⎭⎫⎝⎛+∞,1a 的情况,先证)(ln ln )(1111121------=-=-=--a a a a a e a a ae e a ae e e f <0 为此我们要证明:当x >e 时,x e >2x ,设2)(x e x h x -= ,则x e x h x 2)('-=,再设x e x l x2)(-= ∴2)('-=xe x l当x >1时,2)('-=xe x l >e -2>0,x e x l x2)(-=在()+∞,1上是单调增函数故当x >2时,x e x h x 2)('-=>4)2(2'-=e h >0从而2)(x e x h x-=在()+∞,2上是单调增函数,进而当x >e 时,2)(x e x h x-=>2)(e e e h e-=>0即当x >e 时,x e >2x ,当0<a <e 1时,即1-a >e 时,)(ln ln )(1111121------=-=-=--a a a a a e a a ae e a ae e e f <0 又1ln 11ln )1(--=-=a aa a a f >0 且函数)(x f 在[]1,1--a e a 上的图像不间断,∴函数)(x f 在()1,1--a e a 上有存在零点,又当x >a1时,x a x a x f )1()('--=<0故)(x f 在()+∞-,1a 上是单调减函数∴函数)(x f 在()+∞-,1a 只有一个零点综合(Ⅰ)(Ⅱ)(Ⅲ)知:当0≤a 时,)(x f 的零点个数为1;当0<a <e1时,)(x f 的零点个数为214.(2013年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))设函数()()21x f x x e kx =--(其中k ∈R ).(Ⅰ) 当1k =时,求函数()f x 的单调区间; (Ⅱ) 当1,12k ⎛⎤∈⎥⎝⎦时,求函数()f x 在[]0,k 上的最大值M . 【答案】(Ⅰ) 当1k =时,()()21x f x x e x =--,()()()1222x x x x f x e x e x xe x x e '=+--=-=-令()0f x '=,得10x =,2ln 2x = 当x 变化时,()(),f x f x '的变化如下表:x (),0-∞()0,ln 2ln 2 ()ln 2,+∞()f x ' +-+()f x极大值极小值右表可知,函数()f x 的递减区间为()0,ln 2,递增区间为(),0-∞,()ln 2,+∞.(Ⅱ) ()()()1222x x x x f x e x e kx xe kx x e k '=+--=-=-,令()0f x '=,得10x =,()2ln 2x k =, 令()()ln 2g k k k =-,则()1110k g k k k -'=-=>,所以()g k 在1,12⎛⎤⎥⎝⎦上递增, 所以()ln 21ln 2ln 0g k e ≤-=-<,从而()ln 2k k <,所以()[]ln 20,k k ∈ 所以当()()0,ln 2x k ∈时,()0f x '<;当()()ln 2,x k ∈+∞时,()0f x '>; 所以()(){}(){}3max 0,max 1,1k M f f k k e k ==---令()()311kh k k e k =--+,则()()3k h k k e k '=-,令()3kk e k ϕ=-,则()330kk e e ϕ'=-<-<所以()k ϕ在1,12⎛⎤⎥⎝⎦上递减,而()()1313022e ϕϕ⎛⎫⎫⋅=--< ⎪⎪⎝⎭⎭所以存在01,12x ⎛⎤∈⎥⎝⎦使得()00x ϕ=,且当01,2k x ⎛⎫∈ ⎪⎝⎭时,()0k ϕ>,当()0,1k x ∈时,()0k ϕ<, 所以()k ϕ在01,2x ⎛⎫⎪⎝⎭上单调递增,在()0,1x 上单调递减.因为17028h ⎛⎫=+>⎪⎝⎭,()10h =,所以()0h k ≥在1,12⎛⎤⎥⎝⎦上恒成立,当且仅当1k =时取得“=”.综上,函数()f x 在[]0,k 上的最大值()31kM k e k =--.15.(2013年高考江西卷(理))已知函数1()=(1-2-)2f x a x ,a 为常数且>0a . (1) 证明:函数()f x 的图像关于直线1=2x 对称; (2) 若0x 满足00(())=f f x x ,但00()f x x ≠,则称0x 为函数()f x 的二阶周期点,如果()f x 有两个二阶周期点12,,x x 试确定a 的取值范围; (3) 对于(2)中的12,x x 和a, 设x 3为函数f(f(x))的最大值点,A(x 1,f(f(x 1))),B(x 2,f(f(x 2))),C(x 3,0),记△A BC 的面积为S(a),讨论S(a)的单调性.【答案】(1)证明:因为11()(12),()(12)22f x a x f x a x +=--=-,有11()()22f x f x +=-, 所以函数()f x 的图像关于直线12x =对称.(2)解:当102a <<时,有224,(())4(1),a x f f x a x ⎧⎪=⎨-⎪⎩1,21.2x x ≤>所以(())f f x x =只有一个解0x =,又(0)0f =,故0不是二阶周期点.当12a =时,有,(())1,x f f x x ⎧=⎨-⎩1,21.2x x ≤>所以(())f f x x =有解集1|2x x ⎧⎫≤⎨⎬⎩⎭,又当12x ≤时,()f x x =,故1|2x x ⎧⎫≤⎨⎬⎩⎭中的所有点都不是二阶周期点.当12a >时,有222221,44,11,24,42(())1412(12)4,,2444,41.4x aa x x a a x a f f x a a a a x x a a a x a x a≤⎧⎪<≤-⎪=⎨--+⎪<≤⎪-⎩->所以(())f f x x =有四个解2222240,,,141214a a a a a a +++,又22(0)0,()1212a af f a a ==++, 22222244(),()14141414a a a af f a a a a≠≠++++,故只有22224,1414a a a a ++是()f x 的二阶周期点.综上所述,所求a 的取值范围为12a >. (3)由(2)得2122224,1414a a x x a a ==++, 因为3x 为函数(())f f x 的最大值点,所以314x a =或3414a x a-=. 当314x a =时,221()4(14)a S a a -=+.求导得:'()S a =,所以当1(2a ∈时,()S a 单调递增,当)a ∈+∞时()S a 单调递减;当3414a x a -=时,22861()4(14)a a S a a -+=+,求导得:2221243'()2(14)a a S a a +-=+,因12a >,从而有2221243'()02(14)a a S a a +-=>+, 所以当1(,)2a ∈+∞时()S a 单调递增.16.(2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))设()()256ln f x a x x =-+,其中a R ∈,曲线()y f x =在点()()1,1f 处的切线与y 轴相交于点()0,6.(1)确定a 的值; (2)求函数()f x 的单调区间与极值.【答案】(3)26ln 3f =+17.(2013年高考四川卷(理))已知函数22,0()ln ,0x x a x f x x x ⎧++<=⎨>⎩,其中a 是实数.设11(,())A x f x ,22(,())B x f x 为该函数图象上的两点,且12x x <.(Ⅰ)指出函数()f x 的单调区间;(Ⅱ)若函数()f x 的图象在点,A B 处的切线互相垂直,且20x <,求21x x -的最小值; (Ⅲ)若函数()f x 的图象在点,A B 处的切线重合,求a 的取值范围.【答案】解:()I 函数()f x 的单调递减区间为(),1-∞-,单调递增区间为[)1,0-,()0,+∞()II 由导数的几何意义可知,点A 处的切线斜率为()1f x ',点B 处的切线斜率为()2f x ',故当点A 处的切线与点B 处的切垂直时,有()()121f x f x ''=-. 当0x <时,对函数()f x 求导,得()22f x x '=+. 因为120x x <<,所以()()1222221x x ++=-,所以()()12220,220x x +<+>.因此()()21121222212x x x x -=-+++≥=⎡⎤⎣⎦ 当且仅当()122x -+=()222x +=1,即123122x x =-=且时等号成立.所以函数()f x 的图象在点,A B 处的切线互相垂直时,21x x -的最小值为1()III 当120x x <<或210x x >>时,()()12f x f x ''≠,故120x x <<.当10x <时,函数()f x 的图象在点()()11,x f x 处的切线方程为()()()21111222y x x a x x x -++=+-,即()21122y x x x a =+-+当20x >时,函数()f x 的图象在点()()22,x f x 处的切线方程为()2221ln y x x x x -=-,即221ln 1y x x x =∙+-. 两切线重合的充要条件是1222112 2 ln 1 x x x x a ⎧=+⎪⎨⎪-=-+⎩①②由①及120x x <<知,110x -<<. 由①②得,()2211111ln1ln 22122a x x x x =+-=-+-+.设()()21111ln 221(10)h x x x x =-+--<<, 则()1111201h x x x '=-<+. 所以()()1110h x x -<<是减函数. 则()()10ln 21h x h >=--, 所以ln 21a >--.又当1(1,0)x ∈-且趋近于1-时,()1h x 无限增大,所以a 的取值范围是()ln 21,--+∞. 故当函数()f x 的图像在点,A B 处的切线重合时,a 的取值范围是()ln 21,--+∞18.(2013年高考湖南卷(理))已知0a >,函数()2x af x x a-=+.(I)记[]()0,4f x a 在区间上的最大值为g(),求a g()的表达式;(II)是否存在a ,使函数()y f x =在区间()0,4内的图像上存在两点,在该两点处的切线相互垂直?若存在,求a 的取值范围;若不存在,请说明理由.【答案】解:⎪⎪⎩⎪⎪⎨⎧<<-++=++-≥-<+=+-=>时,是单调递减的。

相关文档
最新文档