一元二次方程根与系数的关系练习题 (2)
一元二次方程根与系数的关系练习题
一元二次方程根与系数的关系练习题1、如果方程ax2+bx+c=0(a ≠0)的两根是x1、x2,那么x1+x2= ,x1·x2= 。
2、已知x1、x2是方程2x2+3x -4=0的两个根,那么:x1+x2= ;x1·x2= ;2111x x + ;x21+x22= ;(x1+1)(x2+1)= ;|x1-x2|= 。
3、以2和3为根的一元二次方程(二次项系数为1)是 。
4、如果关于x 的一元二次方程x2+2x+a=0的一个根是1-2,那么另一个根是 ,a 的值为 。
5、如果关于x 的方程x2+6x+k=0的两根差为2,那么k= 。
6、已知方程2x2+mx -4=0两根的绝对值相等,则m= 。
7、一元二次方程px2+qx+r=0(p ≠0)的两根为0和-1,则q ∶p= 。
8、已知方程x2-mx+2=0的两根互为相反数,则m= 。
9、已知关于x 的一元二次方程(a2-1)x2-(a+1)x+1=0两根互为倒数,则a= 。
10、已知关于x 的一元二次方程mx2-4x -6=0的两根为x1和x2,且x1+x2=-2,则m= ,(x1+x2)21x x ⋅= 。
11、已知方程3x2+x -1=0,要使方程两根的平方和为913,那么常数项应改为 。
12、已知一元二次方程的两根之和为5,两根之积为6,则那个方程为 。
13、若α、β为实数且|α+β-3|+(2-αβ)2=0,则以α、β为根的一元二次方程为 。
(其中二次项系数为1)14、已知关于x 的一元二次方程x2-2(m -1)x+m2=0。
若方程的两根互为倒数,则m= ;若方程两根之和与两根积互为相反数,则m = 。
15、已知方程x2+4x -2m=0的一个根α比另一个根β小4,则α= ;β= ;m= 。
16、已知关于x 的方程x2-3x+k=0的两根立方和为0,则k=17、已知关于x 的方程x2-3mx+2(m -1)=0的两根为x1、x2,且43x 1x 121-=+,则m= 。
初中数学一元二次方程解法根与系数关系练习题(附答案)
初中数学一元二次方程解法根与系数关系练习题一、单选题1.一元二次方程293x x -=-的解是( )A.3x =B.4x =-C.123,4x x ==-D.123,4x x ==2.直角三角形两条直角边长的和是7,面积是6,则斜边长是()B.5D.73.一元二次方程220x x -=的两根分别为1x 和2x ,则12x x 为( )A.2-B.1C.2D.0A.2m =±B.2m =C.2m =-D.2m ≠±5.若a ,β为方程22510x x --=的两个实数根,则2235a a ββ++的值为( )A.13-B.12C.14D.15A.2B. 1-C.2或1-D.不存在7.已知关于x 的一元二次方程2(1)2(1)0a x bx a ++++=有两个相等的实数根,下列判断正确的是( )A.1一定不是关于x 的方程20x bx a ++=的根B.0一定不是关于x 的方程20x bx a ++=的根C.1和1-都是关于x 的方程20x bx a ++=的根D.1和1-不都是关于x 的方程20x bx a ++=的根8.关于x 的一元二次方程2(1)320a x x -+-=有实数根,则a 的取值范围是( )A.18a >-B.18a ≥-C. 18a >-且1a ≠D. 18a ≥-且1a ≠9.一个正方体的表面展开图如图所示,已知正方体相对两个面上的数值相同,且不相对两个面上的数值不相同,则“★”面上的数为( )A.1B.1或2C.2D.2或310.定义一种新运算:()a b a a b =-♣.例如,434(43)4=⨯-=♣.若23x =♣,则x 的值是( )A.3x =B.1x =-C.123,1x x ==D.123,1x x ==-二、解答题11.已知关于x 的一元二次方程2(1)210m x mx m --++=.(1)求方程的根;(2)当m 为何整数时,此方程的两个根都为正整数?12.阅读材料:把形如2ax bx c ++ (,,a b c 为常数)的二次三项式(或其一部分)配成完全平方式的方法叫做配方法.配方法的基本形式是完全平方公式的逆写,即2222()a ab b a b ±+=±.例如:222213(1)3,(2)2,(2)24x x x x x -+-+-+是224x x -+的三种不同形式的配方,即“余项”分别是常数项、一次项、二次项.请根据阅读材料解决下列问题:(1)仿照上面的例子,写出242x x -+的三种不同形式的配方;(2)已知2223240a b c ab b c ++---+=,求a b c ++的值.14.关于x 的方程2()0a x m b ++=的解是12x =-,21x =(a ,m ,b 均为常数,0a ≠),则方15.若关于x 的一元二次方程220mx x m ++=的两根之积为-1,则m 的值为 .16.小明设计了一个魔术盒,当任意实数对(,)a b 进入其中时,会得到一个新的实数223a b -+.若17.已知关于x 的方程260x x k -+=的两根分别是12,x x ,且满足12113x x +=,则k = .参考答案1.答案:C解析:方程293x x -=-变形为(3)(3)(3)0x x x +-+-=,将方程左边因式分解得(3)(4)0x x -+=,所以123,4x x ==-.2.答案:B解析:设其中一条直角边的长为x ,则另一条直角边的长为7x -,由题意,得1(7)62x x -=,解得1234x x ==,5=.故选B3.答案:D解析:∵一元二次方程220x x -=的两根分别为1x 和2x ,∴120x x =.故选:D .4.答案:B方程,故2m =5.答案:B解析:a β,为方程22510x x --=的两个实数根,故251251022a a ββββ+==---=,,,从而2521ββ=- 222225123523212()1211222a a a a a a ββββββ⎛⎫⎛⎫∴++=++-=+--=---= ⎪ ⎪⎝⎭⎝⎭. 6.答案:A解析:由题意得0m ≠,2(2)44404m m m m ⎡⎤∆=-+-=+>⎣⎦,解得1m >-且0m ≠. 121212211414m x x m m x x x x +++=== 解得1221m m ==-,(舍去),所以m 的值为2.7.答案:D解析:关于x 的一元二次方程2(1)2(1)0a x bx a ++++=有两个相等的实数根,2210(2)4(1)0a b a +≠⎧∴⎨∆=-+=⎩ 1b a ∴=+或(1)b a =-+.当1b a =+时,有10a b -+=,此时1-是方程20x bx a ++=的根;当(1)b a =-+时,有10a b ++=,此时1是方程20x bx a ++=的根.10a +≠,1(1)a a ∴+≠-+1∴和1-不都是关于x 的方程20x bx a ++=的根.当0a =时,0是关于x 的方程20x bx a ++=的根.综上,D 正确.8.答案:D解析:根据一元二次方程的定义和根的判别式的意义得到1a ≠且234(1)(2)0a ∆=--⋅-≥,然后求出两个不等式解集的公共部分即可. 9.答案:C解析:正方体的平面展开图共有六个面,其中面“2x ”与面“32x -”相对,面“★”与面“1x +”相对.因为相对两个面上的数值相同,所以232x x =-,解得1x =或2x =.又因为不相对两个面上的数值不相同,当2x =时,2324x x +=-=,所以x 只能为1,即12x =+=★.10.答案:D解析:23,(2)3x x x =∴-=♣整理,得2230x x --=,因式分解,得(3)(1)0x x -+=,30x ∴-=或10x +=,123,1x x ∴==-.故选D.11.答案:(1)解:根据题意,得1m ≠1,2,1a m b m c m =-=-=+224(2)4(1)(1)4b ac m m m ∴∆=-=---+=(2)12(1)1m m x m m --±∴==--则121,11m x x m +==- (2)由(1),知112111m x m m +==+--. 方程的两个根都为正整数,21m ∴-是正整数, 11m ∴-=或12m -=,解得2m =或3.即m 为2或3时,此方程的两个根都为正整数。
根与系数的关系(韦达定理)练习题 (2)
一元二次方程根与系数的关系练习题一.选择题(共14小题)1.下列一元二次方程中,两根之和为2的是()A.x2﹣x+2=0 B.x2﹣2x+2=0 C.x2﹣x﹣2=0 D.2x2﹣4x+1=02.小明和小华解同一个一元二次方程时,小明看错一次项系数,解得两根为2,﹣3,而小华看错常数项,解错两根为﹣2,5,那么原方程为()A.x2﹣3x+6=0 B.x2﹣3x﹣6=0 C.x2+3x﹣6=0 D.x2+3x+6=03.(2011?锦江区模拟)若方程x2﹣3x﹣2=0的两实根为x1、x2,则(x1+2)(x2+2)的值为()A.﹣4 B.6C.8D.124.(2007?泰安)若x1,x2是方程x2﹣2x﹣4=0的两个不相等的实数根,则2x12﹣2x1+x22+3的值是()A.19 B.15 C.11 D.35.(2006?贺州)已知a,b是一元二次方程x2+4x﹣3=0的两个实数根,则a2﹣ab+4a的值是()A.6B.0C.7D.﹣16.(1997?天津)若一元二次方程x2﹣ax﹣2a=0的两根之和为4a﹣3,则两根之积为()A.2B.﹣2 C.﹣6或2 D.6或﹣27.已知x的方程x2+mx+n=0的一个根是另一个根的3倍.则()A.3n2=16m2B.3m2=16n C.m=3n D.n=3m28.a、b是方程x2+(m﹣5)x+7=0的两个根,则(a2+ma+7)(b2+mb+7)=()A.365 B.245 C.210 D.1759.在斜边AB为5的Rt△ABC中,∠C=90°,两条直角边a、b是关于x的方程x2﹣(m﹣1)x+m+4=0的两个实数根,则m的值为()A.﹣4 B.4C.8或﹣4 D.810.设m、n是方程x2+x﹣2012=0的两个实数根,则m2+2m+n的值为()A.2008 B.2009 C.2010 D.201111.设x1、x2是二次方程x2+x﹣3=0的两个根,那么x13﹣4x22+19的值等于()A.﹣4 B.8C.6D.012.m,n是方程x2﹣2008x+2009=0的两根,则(m2﹣2007m+2009)(n2﹣2007n+2009)的值是()A.2007 B.2008 C.2009 D.201013.已知x1、x2是一元二次方程x2+x﹣1=0两个实数根,则(x12﹣x1﹣1)(x22﹣x2﹣1)的值为()A.0B.4C.﹣1 D.﹣414.设m,n是方程x2﹣x﹣2012=0的两个实数根,则m2+n的值为()A.1006 B.2011 C.2012 D.2013二.填空题(共5小题)15.若关于x的方程x2+2mx+m2+3m﹣2=0有两个实数根x1、x2,则x1(x2+x1)+x22的最小值为_________.16若关于x的一元二次方程x2+x﹣3=0的两根为x1,x2,则2x1+2x2+x1x2=_________.17.已知关于x的方程x2﹣2ax+a2﹣2a+2=0的两个实数根x1,x2,满足x12+x22=2,则a的值是_________.18.一元二次方程2x2+3x﹣1=0和x2﹣5x+7=0所有实数根的和为_________.19.已知m、n是关于x的一元二次方程x2﹣3x+a=0的两个解,若(m﹣1)(n﹣1)=﹣6,则a的值为_________.三.解答题(共11小题)20.已知关于x的一元二次方程x2+(2m﹣3)x+m2=0的两个不相等的实数根α、β满足,求m 的值.21.是否存在实数m,使关于x的方程2x2+mx+5=0的两实根的平方的倒数和等于?若存在,求出m;若不存在,说明理由.22.已知关于x的方程kx2﹣2x+3=0有两个不相等的实数根x1、x2,则当k为何值时,方程两根之比为1:3?23.已知斜边为5的直角三角形的两条直角边a、b的长是方程x2﹣(2m﹣1)x+4(m﹣1)=0的两个根,求m的值.24.实数k为何值时,方程x2+(2k﹣1)x+1+k2=0的两实数根的平方和最小,并求出这两个实数根.25.已知关于x的方程x2+(2k﹣1)x﹣2k=0的两个实数根x1、x2满足x1﹣x2=2,试求k的值.26.已知x1、x2是方程x2﹣kx+k(k+4)=0的两个根,且满足(x1﹣1)(x2﹣1)=,求k的值.27.关于x的一元二次方程x2+2x+k+1=0的实数解是x1和x2.(1)求k的取值范围;(2)如果x1+x2﹣x1x2<﹣1且k为整数,求k的值.28.已知x1,x2是一元二次方程(a﹣6)x2+2ax+a=0的两个实数根.(1)是否存在实数a,使﹣x1+x1x2=4+x2成立?若存在,求出a的值;若不存在,请你说明理由;(2)求使(x1+1)(x2+1)为负整数的实数a的整数值.29.已知一元二次方程x2﹣2x+m=0.(1)若方程有两个实数根,求m的范围;(2)若方程的两个实数根为x1,x2,且x1+3x2=3,求m的值.30.已知x1、x2是一元二次方程2x2﹣2x+m+1=0的两个实根.(1)求实数m的取值范围;(2)如果m满足不等式7+4x1x2>x12+x22,且m为整数.求m的值.一元二次方程要与系数的关系练习题参考答案与试题解析一.选择题(共14小题)1.下列一元二次方程中,两根之和为2的是()A.x2﹣x+2=0 B.x2﹣2x+2=0 C.x2﹣x﹣2=0 D.2x2﹣4x+1=0考点:根与系数的关系.专题:方程思想.分析:利用一元二次方程的根与系数的关系x1+x2=﹣对以下选项进行一一验证并作出正确的选择.解答:解:A、∵x1+x2=1;故本选项错误;B、∵△=4﹣8=﹣4<0,所以本方程无根;故本选项错误;C、∵x1+x2=1;故本选项错误;D、∵x1+x2=2;故本选项正确;故选D.点评:本题考查了一元二次方程根与系数的关系.解答该题时,需注意,一元二次方程的根与系数的关系是在原方程有实数解的情况下成立的.2.小明和小华解同一个一元二次方程时,小明看错一次项系数,解得两根为2,﹣3,而小华看错常数项,解错两根为﹣2,5,那么原方程为()A.x2﹣3x+6=0 B.x2﹣3x﹣6=0 C.x2+3x﹣6=0 D.x2+3x+6=0考点:根与系数的关系.分析:利用根与系数的关系求解即可.解答:解:小明看错一次项系数,解得两根为2,﹣3,两根之积正确;小华看错常数项,解错两根为﹣2,5,两根之和正确,故设这个一元二次方程的两根是α、β,可得:α?β=﹣6,α+β=﹣3,那么以α、β为两根的一元二次方程就是x2﹣3x﹣6=0,故选:B.点评:此题主要考查了根与系数的关系,若x1、x2ax2+bx+c=0的两根,则有x1+x2=﹣,x1x2=.3.(2011?锦江区模拟)若方程x2﹣3x﹣2=0的两实根为x1、x2,则(x1+2)(x2+2)的值为()A.﹣4 B.6C.8D.12考点:根与系数的关系.分析:根据(x1+2)(x2+2)=x1x2+2x1+2x2+4=x1x2+2(x1+x2)+4,根据一元二次方程根与系数的关系,即两根的和与积,代入数值计算即可.解答:解:∵x1、x2是方程x2﹣3x﹣2=0的两个实数根.∴x1+x2=3,x1?x2=﹣2.又∵(x1+2)(x2+2)=x1x2+2x1+2x2+4=x1x2+2(x1+x2)+4.将x1+x2=3、x1?x2=﹣2代(x1+2)(x2+2)=x1x2+2x1+2x2+4=x1x2+2(x1+x2)+4=(﹣2)+2×3+4=8.故选C点评:将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.4.(2007?泰安)若x1,x2是方程x2﹣2x﹣4=0的两个不相等的实数根,则代数式2x12﹣2x1+x22+3的值是()A.19 B.15 C.11 D.3考点:根与系数的关系;一元二次方程的解.专题:压轴题.分析:欲求2x12﹣2x1+x22+3的值,先把此代数式变形为两根之积或两根之和的形式,代入数值计算即可.解答:解:∵x1,x2是方程x2﹣2x﹣4=0的两个不相等的实数根.∴x12﹣2x1=4,x1x2=﹣4,x1+x2=2.∴2x12﹣2x1+x22+3=x12﹣2x1+x12+x22+3=x12﹣2x1+(x1+x2)2﹣2x1x2+3=4+4+8+3=19.故选A.点评:将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.5.(2006?贺州)已知a,b是一元二次方程x2+4x﹣3=0的两个实数根,则a2﹣ab+4a的值是()A.6B.0C.7D.﹣1考点:根与系数的关系;一元二次方程的解.专题:压轴题.分析:由a,b是一元二次方程x2+4x﹣3=0的两个实数根,可以得到如下四个等式:a2+4a﹣3=0,b2+4b﹣3=0,a+b=﹣4,ab=﹣3;再根据问题的需要,灵活变形.解答:解:把a代入方程可得a2+4a=3,根据根与系数的关系可得ab=﹣3.∴a2﹣ab+4a=a2+4a﹣ab=3﹣(﹣3)=6.故选A点评:本题考查了一元二次方程根与系数的关系.解此类题目要利用解的定义找一个关于a、b的相等关系,再根据根与系数的关系求出ab的值,把所求的代数式化成已知条件的形式,代入数值计算即可.一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系为:x1+x2=﹣,x1?x2=.6.(1997?天津)若一元二次方程x2﹣ax﹣2a=0的两根之和为4a﹣3,则两根之积为()A.2B.﹣2 C.﹣6或2 D.6或﹣2考点:根与系数的关系.专题:方程思想.分析:由两根之和的值建立关于a的方程,求出a的值后,再根据一元二次方程根与系数的关系求两根之积.解答:解;由题意知x1+x2=a=4a﹣3,∴a=1,∴x1x2=﹣2a=﹣2.故选B.点评:本题考查了一元二次方程根与系数的关系,在列方程时要注意各系数的数值与正负,避免出现错误.7.已知x的方程x2+mx+n=0的一个根是另一个根的3倍.则()A.3n2=16m2B.3m2=16n C.m=3n D.n=3m2考点:根与系数的关系.分析:设方程的一个根为a,则另一个根为3a,然后利用根与系数的关系得到两根与m、n之间的关系,整理即可得到正确的答案;解答:解:∵方程x2+mx+n=0的一个根是另一个根的3倍,∴设一根为a,则另一根为3a,由根与系数的关系,得:a?3a=n,a+3a=﹣m,整理得:3m2=16n,故选B.点评:本题考查了根与系数的关系,解题的关键是熟练记忆根与系数的关系,难度不大.8.a、b是方程x2+(m﹣5)x+7=0的两个根,则(a2+ma+7)(b2+mb+7)=()A.365 B.245 C.210 D.175考点:根与系数的关系;一元二次方程的解.专题:计算题.分析:根据一元二次方程的解的意义,知a、b满足方程x2+(m﹣5)x+7=0①,又由韦达定理知a?b=7②;所以,根据①②来求代数式(a2+ma+7)(b2+mb+7)的值,并作出选择即可.解答:解:∵a、b是方程x2+(m﹣5)x+7=0的两个根,∴a、b满足方程x2+(m﹣5)x+7=0,∴a2+ma+7﹣5a=0,即a2+ma+7=5a;b2+mb+7﹣5b=0,即b2+mb+7=5b;又由韦达定理,知a?b=7;∴(a2+ma+7)(b2+mb+7)=25a?b=25×7=175.故选D.点评:本题综合考查了一元二次方程的解、根与系数的关系.求代数式(a2+ma+7)(b2+mb+7)的值时,采用了根与系数的关系与代数式变形相结合的解题方法.9.在斜边AB为5的Rt△ABC中,∠C=90°,两条直角边a、b是关于x的方程x2﹣(m﹣1)x+m+4=0的两个实数根,则m的值为()A.﹣4 B.4C.8或﹣4 D.8考点:根与系数的关系;勾股定理.分析:根据勾股定理求的a2+b2=25,即a2+b2=(a+b)2﹣2ab①,然后根据根与系数的关系求的a+b=m﹣1②ab=m+4③;最后由①②③联立方程组,即可求得m的值.解答:解:∵斜边AB为5的Rt△ABC中,∠C=90°,两条直角边a、b,∴a2+b2=25,又∵a2+b2=(a+b)2﹣2ab,∴(a+b)2﹣2ab=25,①∵a、b是关于x的方程x2﹣(m﹣1)x+m+4=0的两个实数根,∴a+b=m﹣1,②ab=m+4,③由①②③,解得m=﹣4,或m=8;当m=﹣4时,ab=0,∴a=0或b=0,(不合题意)∴m=8;故选D.点评:本题综合考查了根与系数的关系、勾股定理的应用.解答此题时,需注意作为三角形的两边a、b均不为零这一条件.10.设m、n是方程x2+x﹣2012=0的两个实数根,则m2+2m+n的值为()A.2008 B.2009 C.2010 D.2011考点:根与系数的关系;一元二次方程的解.专题:计算题.分析:由于m、n是方程x2+x﹣2012=0的两个实数根,根据根与系数的关系可以得到m+n=﹣1,并且m2+m﹣2012=0,然后把m2+2m+n可以变为m2+m+m+n,把前面的值代入即可求出结果解答:解:∵m、n是方程x2+x﹣2012=0的两个实数根,∴m+n=﹣1,并且m2+m﹣2012=0,∴m2+m=2011,∴m2+2m+n=m2+m+m+n=2012﹣1=2011.点评:此题主要考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.11.设x1、x2是二次方程x2+x﹣3=0的两个根,那么x13﹣4x22+19的值等于()A.﹣4 B.8C.6D.0考点:根与系数的关系.专题:计算题.分析:首先利用根的定义使多项式降次,对代数式进行化简,然后根据根与系数的关系代入计算.解答:解:由题意有x12+x1﹣3=0,x22+x2﹣3=0,即x12=3﹣x1,x22=3﹣x2,所以x13﹣4x22+19=x1(3﹣x1)﹣4(3﹣x2)+19=3x1﹣=3x1﹣(3﹣x1)+4x2+7=4(x1+x2)+4,又根据根与系数的关系知道x1+x2=﹣1,所以原式=4×(﹣1)+4=0.故选D.点评:本题考查根与系数的关系和代数式的化简.求出x1、x2的值再代入计算,则计算繁难,解题的关键是利用根的定义及变形,使多项式降次,如x12=3﹣x1,x22=3﹣x2.12.m,n是方程x2﹣2008x+2009=0的两根,则代数式(m2﹣2007m+2009)(n2﹣2007n+2009)的值是()A.2007 B.2008 C.2009 D.2010考点:根与系数的关系;一元二次方程的解.分析:首先根据方程的解的定义,得m2﹣2008m+2009=0,n2﹣2008n+2009=0,则有m2﹣2007m=m﹣2009,n2﹣2007n=n﹣2009,再根据根与系数的关系,得mn=2009,进行求解.解答:解:∵m,n是方程x2﹣2008x+2009=0的两根,∴m2﹣2008m+2009=0,n2﹣2008n+2009=0,mn=2009.∴(m2﹣2007m+2009)(n2﹣2007n+2009)=(m﹣2009+2009)(n﹣2009+2009)=mn=2009.故选C.点评:此题综合运用了方程的解的定义和根与系数的关系.13.已知x1、x2是一元二次方程x2+x﹣1=0两个实数根,则(x12﹣x1﹣1)(x22﹣x2﹣1)的值为()A.0B.4C.﹣1 D.﹣4考点:根与系数的关系.专题:计算题.分析:根据一元二次方程的解的定义,将x1、x2分别代入原方程,求得x12=﹣x1+1、x22=﹣x2+1;然后根据根与系数的关系求得x1x2=﹣1;最后将其代入所求的代数式求值即可.解答:解:∵x1、x2是一元二次方程x2+x﹣1=0两个实数根,∴x12+x1﹣1=0,即x12=﹣x1+1;x22+x2﹣1=0,即x22=﹣x2+1;又根据韦达定理知x1?x2=﹣1∴(x12﹣x1﹣1)(x22﹣x2﹣1)=﹣2x1?(﹣2x2)=4x1?x2=﹣4;故选D.点评:此题主要考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.14.设m,n是方程x2﹣x﹣2012=0的两个实数根,则m2+n的值为()A.1006 B.2011 C.2012 D.2013考点:根与系数的关系;一元二次方程的解.分析:利用一元二次方程解的定义,将x=m代入已知方程求得m2=m+2012;然后根据根与系数的关系知m+n=1;最后将m2、m+n的值代入所求的代数式求值即可.解答:解:∵m,n是方程x2﹣x﹣2012=0的两个实数根,∴m2﹣m﹣2012=0,即m2=m+2012;又由韦达定理知,m+n=1,∴m2+n=m+n+2012=1+2012=2013;故选D.点评:本题考查了根与系数的关系、一元二次方程的解.正确理解一元二次方程的解的定义是解题的关键.二.填空题(共5小题)15.(2014?广州)若关于x的方程x2+2mx+m2+3m﹣2=0有两个实数根x1、x2,则x1(x2+x1)+x22的最小值为.考点:根与系数的关系;二次函数的最值.专题:判别式法.分析:由题意可得△=b2﹣4ac≥0,然后根据不等式的最小值计算即可得到结论.解答:解:由题意知,方程x2+2mx+m2+3m﹣2=0有两个实数根,则△=b2﹣4ac=4m2﹣4(m2+3m﹣2)=8﹣12m≥0,∴m≤,∵x1(x2+x1)+x22=(x2+x1)2﹣x1x2=(﹣2m)2﹣(m2+3m﹣2)=3m2﹣3m+2=3(m2﹣m+﹣)+2=3(m﹣)2+;∴当m=时,有最小值;∵<,∴m=成立;∴最小值为;故答案为:.点评:本题考查了一元二次方程根与系数关系,考查了一元二次不等式的最值问题.总结一元二次方程根的情况与判别式△的关系:(1)△>0?方程有两个不相等的实数根;(2)△=0?方程有两个相等的实数根;(3)△<0?方程没有实数根.16.(2013?江阴市一模)若关于x的一元二次方程x2+x﹣3=0的两根为x1,x2,则2x1+2x2+x1x2=﹣5.考点:根与系数的关系.分析:根据根与系数的关系列式计算即可求出x1+x2与x1?x2的值,再整体代入即可求解.解答:解:根据根与系数的关系可得,x1?x2=﹣1,x1+x2=﹣23.则2x1+2x2+x1x2=2(x1+x2)+x1x2=﹣2﹣3=﹣5.故答案为:﹣5.点评:本题主要考查了一元二次方程的解和根与系数的关系等知识,在利用根与系数的关系x1+x2=﹣、x1?x2=时,要注意等式中的a、b、c所表示的含义.17.已知关于x的方程x2﹣2ax+a2﹣2a+2=0的两个实数根x1,x2,满足x12+x22=2,则a的值是1.考点:根与系数的关系;根的判别式.分析:先根据根与系数的关系,根据x12+x22=(x1+x2)2﹣2x1x2,即可得到关于a的方程,求出a的值.解答:解:根据一元二次方程的根与系数的关系知:x1+x2=2a,x1x2=a2﹣2a+2.x12+x22=(x1+x2)2﹣2x1x2=(2a)2﹣2(a2﹣2a+2)=2a2+4a﹣4=2.解a2+2a﹣3=0,得a1=﹣3,a2=1.又方程有两实数根,△≥0即(2a)2﹣4(a2﹣2a+2)≥0.解得a≥1.∴a=﹣3舍去.∴a=1.点评:应用了根与系数的关系得到方程两根的和与两根的积,根据两根的平方和可以用两根的和与两根的积表示,即可把求a的值的问题转化为方程求解的问题.18.一元二次方程2x2+3x﹣1=0和x2﹣5x+7=0所有实数根的和为﹣.考点:根与系数的关系.专题:计算题.分析:根据根与系数的关系可知,两根之和等于﹣,两根之积等于,由两个一元二次方程分别找出a,b和c的值,计算出两根之和,然后再把所有的根相加即可求出所求的值.解答:解:由2x2+3x﹣1=0,得到:a=2,b=3,c=﹣1,∵b2﹣4ac=9+8=17>0,即方程有两个不等的实数根,设两根分别为x1和x2,则x1+x2=﹣;由x2﹣5x+7=0,找出a=1,b=﹣5,c=7,∵b2﹣4ac=25﹣28=﹣3<0,∴此方程没有实数根.综上,两方程所有的实数根的和为﹣.故答案为:﹣点评:此题考查了一元二次方程的根与系数的关系,是一道基础题.学生必须掌握利用根与系数关系的前提是根的判别式大于等于0即方程有实数根.19.已知m、n是关于x的一元二次方程x2﹣3x+a=0的两个解,若(m﹣1)(n﹣1)=﹣6,则a的值为﹣4.考点:根与系数的关系.分析:由m、n是关于x的一元二次方程x2﹣3x+a=0的两个解,得出m+n=3,mn=a,整理(m﹣1)(n﹣1)=﹣6,整体代入求得a的数值即可.解答:解:∵m、n是关于x的一元二次方程x2﹣3x+a=0的两个解,∴m+n=3,mn=a,∵(m﹣1)(n﹣1)=﹣6,∴mn﹣(m+n)+1=﹣6即a﹣3+1=﹣6解得a=﹣4.故答案为:﹣4.点评:此题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根为x1,x2,则x1+x2=﹣,x1?x2=.三.解答题(共11小题)20.(2004?重庆)已知关于x的一元二次方程x2+(2m﹣3)x+m2=0的两个不相等的实数根α、β满足,求m的值.考点:根与系数的关系;解一元二次方程-因式分解法;根的判别式.分析:首先根据根的判别式求出m的取值范围,利用根与系数的关系可以求得方程的根的和与积,将转化为关于m的方程,求出m的值并检验.解答:解:由判别式大于零,得(2m﹣3)2﹣4m2>0,解得m<.∵即.∴α+β=αβ.又α+β=﹣(2m﹣3),αβ=m2.代入上式得3﹣2m=m2.解之得m1=﹣3,m2=1.∵m2=1>,故舍去.∴m=﹣3.点评:本题主要考查一元二次方程根的判别式,根与系数的关系的综合运用.21.(1998?内江)是否存在实数m,使关于x的方程2x2+mx+5=0的两实根的平方的倒数和等于?若存在,求出m;若不存在,说明理由.考点:根与系数的关系;根的判别式.分析:根据根与系数的关系,两实根的平方的倒数和.即可确定m的取值情况.解答:解:设原方程的两根为x1、x2,则有:,∴.又∵,∴m2﹣20=29,解得m=±7,∴△=m2﹣4×2×5=m2﹣40=(±7)2﹣40=9>0∴存在实数±7,使关于原方程的两实根的平方的倒数和等于.点评:利用根与系数的关系和根的判别式来解决.容易出现的错误是忽视所求的m的值是否满足判别式△.22.已知关于x的方程kx2﹣2x+3=0有两个不相等的实数根x1、x2,则当k为何值时,方程两根之比为1:3?考点:根与系数的关系.分析:利用一元二次方程根与系数的关系可得:,不妨设x1:x2=1:3,则可得x2=3x1,分别代入两个式子,即可求出k的值,再利用一元二次方程根的判别式进行取舍即可.解答:解:由根与系数的关系可得:,不妨设x1:x2=1:3,则可得x2=3x1,分别代入上面两个式子,消去x1和x2,整理得:4k2﹣k=0,解得k=0或k=,当k=0时,显然不合题意,当k=时,其判别式△=1≥0,所以当k=时,方程两根之比为1:3.点评:本题主要考查一元二次方程根与系数的关系,解题的关键是利用一元二次方程根与系数的关系得到关于k的方程,注意检验是否满足判别式大于0.23.已知斜边为5的直角三角形的两条直角边a、b的长是方程x2﹣(2m﹣1)x+4(m﹣1)=0的两个根,求m的值.考点:根与系数的关系;勾股定理.分析:先利用一元二次方程根与系数的关系得:a+b=2m﹣1,ab=4(m﹣1),再由勾股定理可得a2+b2=52,即(a+b)2﹣2ab=25,把上面两个式子代入可得关于m的方程,解出m的值,再利用一元二次方程根的判别式满足大于或等于0及实际问题对所求m的值进行取舍即可.解答:解:由一元二次方程根与系数的关系得:a+b=2m﹣1,ab=4(m﹣1),再由勾股定理可得a2+b2=52,即(a+b)2﹣2ab=25,把上面两个式子代入可得关于m的方程:(2m﹣1)2﹣8(m﹣1)=25,整理可得:m2﹣3m﹣4=0,解得m=4或m=﹣1,当m=4或m=﹣1一元二次方程的判别式都大于0,但当m=﹣1时,ab=﹣8,不合题意(a,b为三角形的边长,所以不能为负数),所以m=4.点评:本题主要考查一元二次方程根与系数的关系及勾股定理的应用,解题的关键是得出关于m的方程进行求解,容易忽略实际问题所满足的条件而导致错误.24.实数k为何值时,方程x2+(2k﹣1)x+1+k2=0的两实数根的平方和最小,并求出这两个实数根.考点:根与系数的关系;根的判别式.分析:利用一元二次方程根与系数的关系表示出两实根的平方和,得到一个关于k的二次函数,求出取得最小值时k的值,再利用根的判别式进行验证.解答:解:设方程的两根分别为x1和x2,由一元二次方程根与系数的关系可得:,令y=,则y==(2k﹣1)2﹣2(1+k2)=2k2﹣4k﹣1=2(k﹣1)2﹣3,其为开口向上的二次函数,当k=1时,有最小值,但当k=1时,一元二次方程的判别式为△=﹣7<0,所以没有满足△≥0的k的值,所以该题目无解.点评:本题主要考查地一元二次方程根与系数的关系,解题时容易忽略还需要满足一元二次方程有实数根.25.已知关于x的方程x2+(2k﹣1)x﹣2k=0的两个实数根x1、x2满足x1﹣x2=2,试求k的值.考点:根与系数的关系;解一元二次方程-配方法;根的判别式.分析:先根据根与系数的关系,可求出x1+x2,x1?x2的值,再结合x1﹣x2=2,可求出k的值,再利用根的判别式,可求出k的取值范围,从而确定k的值.解答:解:根据题意得x1+x2=﹣=﹣(2k﹣1),x1?x2==﹣2k,又∵x1﹣x2=2,∴(x1﹣x2)2=22,∴(x1+x2)2﹣4x1x2=4,∴(2k﹣1)2﹣4(﹣2k)=4,∴(2k+1)2=4,∴k1=,k2=﹣,又∵△=(2k﹣1)2﹣4×1×(﹣2k)=(2k+1)2,方程有两个不等的实数根,∴(2k+1)2>0,∴k≠﹣,∴k1=,k2=﹣.点评:一元二次方程的两个根x1、x2具有这样的关系:x1+x2=﹣,x1?x2=.26.已知x1、x2是方程x2﹣kx+k(k+4)=0的两个根,且满足(x1﹣1)(x2﹣1)=,求k的值.考点:根与系数的关系;根的判别式.分析:(x1﹣1)(x2﹣1)=,即x1x2﹣(x1+x2)+1=,根据一元二次方程中根与系数的关系可以表示出两个根的和与积,代入x1x2﹣(x1+x2)+1=,即可得到一个关于k的方程,从而求得k的值.解答:解:∵x1+x2=k,x1x2=k(k+4),∵(x1﹣1)(x2﹣1)=,∴x1x2﹣(x1+x2)+1=,∴k(k+4)﹣k+1=,解得k=±3,当k=3时,方程为x2﹣3x+=0,△=9﹣21<0,不合题意舍去;当k=﹣3时,方程为x2+3x﹣=0,△=9+3>0,符合题意.故所求k的值为﹣3.点评:本题考查了根与系数的关系:x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=,x1x2=.注意运用根与系数的关系的前提条件是:一元二次方程ax2+bx+c=0的根的判别式△≥0.27.(2011?南充)关于x的一元二次方程x2+2x+k+1=0的实数解是x1和x2.(1)求k的取值范围;(2)如果x1+x2﹣x1x2<﹣1且k为整数,求k的值.考点:根与系数的关系;根的判别式;解一元一次不等式组.专题:代数综合题;压轴题.分析:(1)方程有两个实数根,必须满足△=b2﹣4ac≥0,从而求出实数k的取值范围;(2)先由一元二次方程根与系数的关系,得x1+x2=﹣2,x1x2=k+1.再代入不等式x1+x2﹣x1x2<﹣1,即可求得k的取值范围,然后根据k为整数,求出k的值.解答:解:(1)∵方程有实数根,∴△=22﹣4(k+1)≥0,(2分)解得k≤0.故K的取值范(4分)围是k≤0.(2)根据一元二次方程根与系数的关系,得x1+x2=﹣2,x1x2=k+1(5分)x1+x2﹣x1x2=﹣2﹣(k+1).由已知,得﹣2﹣(k+1)<﹣1,解得k>﹣2.(6分)又由(1)k≤0,∴﹣2<k≤0.(7分)∵k为整数,∴k的值为﹣1和0.(8分)点评:本题综合考查了根的判别式和根与系数的关系.在运用一元二次方程根与系数的关系解题时,一定要注意其前提是此方程的判别式△≥0.28.(2012?怀化)已知x1,x2是一元二次方程(a﹣6)x2+2ax+a=0的两个实数根.(1)是否存在实数a,使﹣x1+x1x2=4+x2成立?若存在,求出a的值;若不存在,请你说明理由;(2)求使(x1+1)(x2+1)为负整数的实数a的整数值.考点:根与系数的关系;根的判别式.分析:根据根与系数的关系求得x1x2=,x1+x2=﹣;根据一元二次方程的根的判别式求得a的取值范围;(1)将已知等式变形为x1x2=4+(x2+x1),即=4+,通过解该关于a的方程即可求得a的值;(2)根据限制性条件“(x1+1)(x2+1)为负整数”求得a的取值范围,然后在取值范围内取a的整数值.解答:解:∵x1,x2是一元二次方程(a﹣6)x2+2ax+a=0的两个实数根,∴由根与系数的关系可知,x1x2=,x1+x2=﹣;∵一元二次方程(a﹣6)x2+2ax+a=0有两个实数根,∴△=4a2﹣4(a﹣6)?a≥0,且a﹣6≠0,解得,a≥0,且a≠6;(1)∵﹣x1+x1x2=4+x2,∴x1x2=4+(x1+x2),即=4﹣,解得,a=24>0;∴存在实数a,使﹣x1+x1x2=4+x2成立,a的值是24;(2)∵(x1+1)(x2+1)=x1x2+(x1+x2)+1=﹣+1=﹣,∴当(x1+1)(x2+1)为负整数时,a﹣6>0,且a﹣6是6的约数,∴a﹣6=6,a﹣6=3,a﹣6=2,a ﹣6=1,∴a=12,9,8,7;∴使(x1+1)(x2+1)为负整数的实数a的整数值有12,9,8,7.点评:本题综合考查了根与系数的关系、根的判别式.注意:一元二次方程ax2+bx+c=0(a、b、c是常数)的二次项系数a≠0.29.(2010?东莞)已知一元二次方程x2﹣2x+m=0.(1)若方程有两个实数根,求m的范围;(2)若方程的两个实数根为x1,x2,且x1+3x2=3,求m的值.考点:根与系数的关系;根的判别式.专题:压轴题.分析:(1)一元二次方程x2﹣2x+m=0有两个实数根,△≥0,把系数代入可求m的范围;(2)利用两根关系,已知x1+x2=2结合x1+3x2=3,先求x1、x2,再求m.解答:解:(1)∵方程x2﹣2x+m=0有两个实数根,∴△=(﹣2)2﹣4m≥0,解得m≤1;(2)由两根关系可知,x1+x2=2,x1?x2=m,解方程组,解得,∴m=x1?x2=.点评:本题考查了一元二次方程根的判别式,两根关系的运用,要求熟练掌握.30.(2005?福州)已知x1、x2是一元二次方程2x2﹣2x+m+1=0的两个实根.(1)求实数m的取值范围;(2)如果m满足不等式7+4x1x2>x12+x22,且m为整数.求m的值.考点:根与系数的关系;根的判别式.分析:(1)方程有两个实数根,必须满足△=b2﹣4ac≥0,从而求出实数m的取值范围;(2)利用根与系数的关系,不等式7+4x1x2>x12+x22,即(x1+x2)2﹣6x1x2﹣7<0.由一元二次方程根与系数的关系,得x1+x2=1,x1x2=.代入整理后的不等式,即可求得m的值.解答:解:(1)∵a=2,b=﹣2,c=m+1.∴△=(﹣2)2﹣4×2×(m+1)=﹣4﹣8m.当﹣4﹣8m≥0,即m≤﹣时.方程有两个实数根.(2)整理不等式7+4x1x2>x12+x22,得(x1+x2)2﹣6x1x2﹣7<0.由一元二次方程根与系数的关系,得x1+x2=1,x1x2=.代入整理后的不等式得1﹣3(m+1)﹣7<0,解得m>﹣3.又∵m≤﹣,且m为整数.∴m的值为﹣2,﹣1.点评:一元二次方程ax2+bx+c=0(a,b,c为常数,且a≠0,b2﹣4ac≥0),根与系数的关系是:x1+x2=,x1x2=.。
一元二次方程根与系数的关系专题训练
11
x12
x
2 2
28、已知x1和x2是方程2x2-3x-1=0的两个根,利用根与系数的关系,求下列各式的值: (x21-x22)2
2
欢迎加入教学教研探讨交流Ⅱ群(QQ 群)241229702 参与研讨!
29、已知x1和x2是方程2x2-3x-1=0的两个根,利用根与系数的关系,求下列式子的值: x1-x2
A.3x2-2x+3=0
B.3x2+2x-3=0
C.3x2-6x-9=0
D.3x2+6x-9=0
69、两个实数根的和为2的一元二次方程可能是
()
A.x2+2x-3=0
B.x2-2x+3=0
C.x2+2x+3=0 D.x2-2x-3=0
70、以-3,-2为根的一元二次方程为
,
3 1 3 1
以 2 , 2 为根的一元二次方程为
(1)(2x1-3)(2x2-3);
(2)x13x2+x1x23。
79、已知a2=1-a,b2=1-b,且a≠b,求(a-1)(b-1)的值。
80、如果x=1是方程2x2-3mx+1=0的一个根,则m=
,另一个根为
81、已知m2+m-4=0,
1 n2
1 n
4
0
m
,m,n为实数,且
1 n
m
,则
1 n
=
4
欢迎加入教学教研探讨交流Ⅱ群(QQ 群)241229702 参与研讨!
《一元二次方程根与系数的关系》专题训练(二)
41、已知方程x2+bx+c=0有两个不相等的正实根,两根之差等于3,两根的平方和等于29,求b、c 的值。
初中数学一元二次方程根与系数的关系练习题含答案
初中数学一元二次方程根与系数的关系练习题含答案学校:__________ 班级:__________ 姓名:__________ 考号:__________1. 如果关于x的一元二次方程x2+px+q=0的两根分别为x1=3,x2=1,那么这个一元二次方程是()A.x2+3x+4=0B.x2+4x−3=0C.x2−4x+3=0D.x2+3x−4=02. 一元二次方程x2−2x+b=0的两根分别为x1,x2,则x1+x2等于( )A.−2B.bC.2D.−b3. 若x1,x2是一元二次方程2x2−7x+5=0的两根,则x1+x2−x1x2的值是()A.1B.6C.−1D.−64. 若关于x的一元二次方程kx2−3x+1=0的两根之积为4,则这个方程的两根之和为( )A.3 4B.−34C.12D.−125. 下列方程中两个实数根的和等于2的方程是()A.2x2−4x+3=0B.2x2−2x−3=0C.2y2+4y−3=0D.2t2−4t−3=06. 王刚同学在解关于x的方程x2−3x+c=0时,误将−3x看作+3x,结果解得x1=1,x2=−4,则原方程的解为()A.x1=−1,x2=−4B.x1=1,x2=4C.x1=−1,x2=4D.x1=2,x2=37. 已知x1,x2是方程x2=2x+1的两个根,则1x1+1x2的值为()A.−12B.2 C.12D.−28. x1,x2是关于x的一元二次方程x2−mx+m−2=0的两个实数根,是否存在实数m使1x1+1x2=0成立?则正确的结论是()9. 设方程x2−4x−1=0的两个根为x1与x2,则x1x2的值是()A.−4B.−1C.1D.010. 若2,3是方程x2+px+q=0的两实根,则x2−px+q可以分解为()A.(x−2)(x−3)B.(x+1)(x−6)C.(x+1)(x+5)D.(x+2)(x+3)11. 设x1,x2是方程5x2−3x−2=0的两个实数根,则1x1+1x2的值为________.12. 若关于x的方程x2+3x+k=0的一个根是1,则另一个根是________.13. 一元二次方程x2−4x+2=0的两根分别为x1,x2,则x12−4x1+2x1x2的值为________.14. 已知α,β是一元二次方程x2+x−2=0的两个实数根,则α+β−αβ的值是________.15. 如果m,n是两个不相等的实数,且满足m2−m=3,n2−n=3,那么代数式2n2−mn+2m+2009=________.16. 一元二次方程x2−4x+2=0的两根为x1,x2,则x12−4x1+2x1x2的值为________.17. 若m,n是方程x2+3x−2019=0的两个实数根,则m2+4m+n的值为________.18. 设方程x2+3x−4=0的两个实数根为x1,x2,求1x1+1x2=________.19. 试写出一个以−1,−3为两根的一元二次方程________.20. 已知,α、β是关于x的一元二次方程x2+4x−1=0的两个实数根,则α+β的值是________.21. 已知关于x的方程x2+5x−c=0一根为2,求另一根及c的值.x1+x2+12√x1x2.(1)当a≥0时,求y的取值范围;(2)当a<0时,比较y与−a2+3a−9的大小,并说明理由.23. 已知x1、x2是方程x2+6x+3=0的两实数根,求x2x1+x1x2的值.24. 已知a,b是关于x的方程x2+2x−3=0的两个实数根.求a+b与ab的值.25. 已知实数a,b是方程x2−x−1=0的两根,求ba +ab的值.26. 已知x1,x2是一元二次方程x2−3x−1=0的两根,不解方程求下列各式的值.(1)x12+x22;(2)1x1+1x2.27. 已知方程x2+4x−2=0的两个实数根分别为x1,x2,试求:(1)x12+x22;(2)1x12+1x22.28. 在一元二次方程x2−2ax+b=0中,若a2−b>0,则称a是该方程的中点值.(1)方程x2−8x+3=0的中点值是________;(2)已知x2−mx+n=0的中点值是3,其中一个根是2,求mn的值.29. 关于r的一元二次方程x2−4x−k−3=0的两个实数根是x1,x2(1)已知k=2(2)若x=3x试求上的值30. 已知关于x的一元二次方程x2−(2m−2)x+(m2−2m)=0的两实数根分别为x1,x2.(1)求x1−x2的值;(2)若x12+x22=10,求m的值.31. 阅读材料:已知实数m,n满足m2−m−1=0,n2−n−1=0,求nm +mn的值.解:由题知m,n是方程x2−x−1=0的两个不相等的实数根,根据根与系数关系得m+n=1,mn=−1,所以nm +mn=m2+n2mn=(m+n)2−2mnmn=1+2−1=−3.根据上述材料解决以下问题:(1)一元二次方程5x2+10x−1=0的两个根为x1,x2,则x1+x2=_______,x1x2=_______;(2)类比探究:已知m,n满足7m2−7m−1=0,7n2−7n−1=0,求m2n+mn2的值;(3)思维拓展:已知p,q满足p2=9p−6,3q2=9q−2,求p2+9q2的值.32. 已知x1,x2是一元二次方程x2−2x−3=0的两个实数根,则x1+x2=________.33. 阅读材料:如果x1,x2是一元二次方程ax2+bx+c=0的两根,那么有x1+x2=−ba ,x1x2=ca.这是一元二次方程根与系数的关系,我们利用它可以用来解题,例x1,x2是方程x2+6x−3=0的两根,求x12+x22的值.解法可以这样:∵x1+x2=−6,x1x2=−3,则x12+x22=(x1+x2)2−2x1x2=(−6)2−2×(−3)=42.请你根据以上解法解答下题:已知x1,x2是方程x2−4x+2=0的两根,求:(1)1x1+1x2的值;(2)(x1−x2)2的值.34. 已知关于x的方程x2+x+a−1=0有一个根是1,求a的值及方程的另一个根.35. 设一元二次方程x2−6x+3=0的两根为x1和x2,求x2x1+x1x2的值.36. 若x1,x2是方程x2+2x−2007=0的两个根,试求下列各式的值:(1)x12+x22;(2)1x1+1x2;(3)(x1−5)(x2−5);(4)|x1−x2|.37. 先阅读,再回答问题:如果x1、x2是关于x的一元二次方程ax2+bx+c=0(a≠0)的两个根,那么x1+x2,x1x2与系数a、b、c的关系是:x1+x2=−ba ,x1x2=ca,例如:若x1、x2是方程2x2−x−1=0的两个根,则x1+x2=−ba =−−12=12,x1x2=c a =−12=−12.若x1、x2是方程2x2+x−3=0的两个根.(1)求x1+x2,x1x2;(2)求x2x1+x1x2的值.38. 阅读材料:如果x1,x2是一元二次方程ax2+bx+c=0的两根,那么有x1+x2=−ba ,x1x2=ca.这是一元二次方程根与系数的关系,我们利用它可以用来解题,例x1,x2是方程x2+6x−3=0的两根,求x12+x22的值.解法可以这样:∵x1+x2=−6,x1x2=−3,则x12+x22=(x1+x2)2−2x1x2=(−6)2−2×(−3)= 42.请你根据以上解法解答下题:已知x1,x2是方程x2+x−1=0的两根,求:(1)1x1+1x2的值;(2)(x1−x2)2的值.(3)试求x22−x12的值.39. 已知关于x的一元二次方程ax2+bx+c=0的两根分别为x、x,有如下结论:3x2−x−2019=0的两根分别为x1、x2,求(x1+2)(x2+2)的值.40. 韦达定理:若一元二次方程ax2+bx+c=0(a≠0)的两根分别为x1、x2,则x1+x2=−ba ,x1⋅x2=ca,阅读下面应用韦达定理的过程:若一元二次方程−2x2+4x+1=0的两根分别为x1、x2,求x12+x22的值.解:该一元二次方程的△=b2−4ac=42−4×(−2)×1=24>0由韦达定理可得,x1+x2=−ba =−4−2=2,x1⋅x2=ca=1−2=−12x12+x22=(x1+x2)2−2x1x2=22−2×(−1 2 )=5然后解答下列问题:(1)设一元二次方程2x2+3x−1=0的两根分别为x1,x2,不解方程,求x12+x22的值;(2)若关于x的一元二次方程(k−1)x2+(k2−1)x+(k−1)2=0的两根分别为α,β,且α2+β2=4,求k的值.参考答案与试题解析初中数学一元二次方程根与系数的关系练习题含答案一、 选择题 (本题共计 10 小题 ,每题 3 分 ,共计30分 ) 1.【答案】 C【考点】根与系数的关系 【解析】由根与系数的关系求得p ,q 的值. 【解答】解:方程两根分别为x 1=3,x 2=1,则x 1+x 2=−p =3+1=4,x 1x 2=q =3 ∴ p =−4,q =3,∴ 原方程为x 2−4x +3=0. 故选C . 2. 【答案】 C【考点】根与系数的关系 【解析】根据“一元二次方程x 2−2x +b =0的两根分别为x 1和x 2”,结合根与系数的关系,即可得到答案. 【解答】解:根据题意得: x 1+x 2=−−21=2.故选C . 3.【答案】 A【考点】根与系数的关系 【解析】首先利用韦达定理计算,再代入求值即可. 【解答】解:由题可知, x 1+x 2=72,x 1x 2=52, 所以x 1+x 2−x 1x 2=72−52=1. 故选A .【答案】C【考点】根与系数的关系【解析】设出两根,利用根已悉数的关系,构造方程,解出即可. 【解答】解:设两根分别为x1,x2,由根与系数的关系可知,x1+x2=3k ,x1x2=1k=4,∴k=14,∴x1+x2=3k=3×4=12.故选C.5.【答案】D【考点】根与系数的关系【解析】利用判别式对A进行判断;根据根与系数的关系对B、C、D进行判断.【解答】解:A、△=(−4)2−4×2×3<0,方程没有实数解,所以A选项错误;B、两个实数根的和等于1,所以B选项错误;C、两个实数根的和等于−2,所以C选项错误;D、两个实数根的和等于2,所以D选项正确.故选D.6.【答案】C【考点】根与系数的关系【解析】利用根与系数的关系求得c的值;然后利用因式分解法解原方程即可.【解答】依题意得关于x的方程x2+3x+c=0的两根是:x1=1,x2=−4.则c=1×(−4)=−4,则原方程为x2−3x−4=0,整理,得(x+1)(x−4)=0,解得x1=−1,x2=4.7.【答案】D根与系数的关系【解析】先把方程化为一般式得x2−2x−1=0,根据根与系数的关系得到x1+x2=−2,x1⋅x2=−1,再把原式通分得x1+x2x1x2,然后利用整体思想进行计算.【解答】解:方程化为一般式得x2−2x−1=0,根据题意得x1+x2=2,x1⋅x2=−1,∴原式=x1+x2x1x2=2−1=−2.故选D.8.【答案】A【考点】根与系数的关系【解析】先由一元二次方程根与系数的关系得出,x1+x2=m,x1x2=m−2.假设存在实数m使1x1+1x2=0成立,则x1+x2⋅=0,求出m=0,再用判别式进行检验即可.【解答】解:∵x1,x2是关于x的一元二次方程x2−mx+m−2=0的两个实数根,∴x1+x2=m,x1x2=m−2.假设存在实数m使1x1+1x2=0成立,则x1+x2x1x2=0,∴mm−2=0,∴m=0.当m=0时,方程x2−mx+m−2=0即为x2−2=0,此时Δ=8>0,∴m=0符合题意.故选A.9.【答案】B【考点】根与系数的关系【解析】关于x的一元二次方程ax2+bx+c=0(a≠0)根与系数的关系为:x1+x2=−ba,x1⋅x2=ca.【解答】解:a=1,c=−1,所以x1⋅x2=ca =−11=−1.【答案】 D【考点】根与系数的关系 【解析】本题考查了根与系数的关系这一知识点. 【解答】解:根据根与系数的关系可得p =−(2+3)=−5,q =2×3=6. 因此x 2+5x +6=(x +2)(x +3). 故选D .二、 填空题 (本题共计 10 小题 ,每题 3 分 ,共计30分 ) 11. 【答案】−32【考点】根与系数的关系 【解析】根据根与系数的关系得到x 1+x 2、x 1x 2的值,然后将所求的代数式进行变形并代入计算即可. 【解答】解:∵ 方程x 1,x 2是方程5x 2−3x −2=0的两个实数根, ∴ x 1+x 2=35,x 1x 2=−25, ∴1x 1+1x 2=x 1+x 2x 1x 2=35−25=−32.故答案为:−32. 12.【答案】 −4【考点】根与系数的关系 【解析】设方程的两根分别为x 1,x 2,则由根与系数关系得,x 1+x 2=−3,由x 1=1可得x 2=−4. 【解答】解:根据题意,设方程的两根分别为x 1,x 2,令x 1=1, 则由根与系数关系得,x 1+x 2=−3, ∵ x 1=1, ∴ x 2=−4. 故答案为:−4. 13.【答案】 2【解析】本题考查了根与系数的关系以及一元二次方程的解,牢记两根之和等于−b,两根之积a .根据根与系数的关系及一元二次方程的解可得出x12−4x1=−2,x1x2=2,将等于ca其代入所求式子中即可求出结论.【解答】解:根据题意得,x12−4x1=−2,x1x2=2,x12−4x1+2x1x2=−2+4=2.故答案为:2.14.【答案】1【考点】根与系数的关系【解析】据根与系数的关系α+β=−1,αβ=−2,求出α+β和αβ的值,再把要求的式子进行整理,即可得出答案.【解答】解:∵α,β是方程x2+x−2=0的两个实数根,∴α+β=−1,αβ=−2,∴α+β−αβ=−1+2=1.故答案为:1.15.【答案】2020【考点】根与系数的关系【解析】由于m,n是两个不相等的实数,且满足m2−m=3,n2−n=3,可知m,n是x2−x−3=0的两个不相等的实数根.则根据根与系数的关系可知:m+n=2,mn=−3,又n2=n+3,利用它们可以化简2n2−mn+2m+2015=2(n+3)−mn+2m+2015=2n+6−mn+2m+2015=2(m+n)−mn+2021,然后就可以求出所求的代数式的值.【解答】解:由题意可知:m,n是两个不相等的实数,且满足m2−m=3,n2−n=3,所以m,n是x2−x−3=0的两个不相等的实数根,则根据根与系数的关系可知:m+n=1,mn=−3,又n2=n+3,则2n2−mn+2m+2009=2(n+3)−mn+2m+2009=2n+6−mn+2m+2009=2(m+n)−mn+2015=2×1−(−3)+2015=2+3+2015=2020.故答案为:2020.16.【答案】2【考点】根与系数的关系【解析】根据根与系数的关系及一元二次方程的解可得出x12−4x1=−2、x1x2=2,将其代入x12−4x1+2x1x2中即可求出结论.【解答】∵一元二次方程x2−4x+2=0的两根为x1、x2,∴x12−4x1=−2,x1x2=2,∴x12−4x1+2x1x2=−2+2×2=2.17.【答案】2016【考点】根与系数的关系【解析】此题暂无解析【解答】解:∵m,n是方程x2+3x−2019=0的两个根,∴m2+3m=2019,m+n=−3,∴m2+4m+n=m2+3m+(m+n)=2019−3=2016.故答案为:2016.18.【答案】34【考点】根与系数的关系【解析】根据根与系数的关系得到x1+x2=−3,x1⋅x2=−4,再变形1x1+1x2得到x1+x2x1x2,然后利用代入法计算即可.【解答】解:∵一元二次方程x2+3x−4=0的两根是x1,x2,∴x1+x2=−3,x1⋅x2=−4,∴1x1+1x2=x1+x2x1x2=−3−4=34.故答案为:34.19.【答案】x 2+4x +3=0 【考点】根与系数的关系 【解析】根据根与系数的关系:两根之和=−ba,两根之积=ca,首先写出两根之和,再写出两根之积,可直接得到方程. 【解答】解:∵ −1+(−3)=−4,(−1)×(−3)=3, ∴ 方程为:x 2+4x +3=0, 故答案为:x 2+4x +3=0. 20.【答案】 −4【考点】根与系数的关系 【解析】 此题暂无解析 【解答】 此题暂无解答三、 解答题 (本题共计 20 小题 ,每题 10 分 ,共计200分 ) 21.【答案】解:设另一根为x 1,则{x 1+2=−5,2x 1=−c,解得{x 1=−7,c =14,∴ 另一根为−7,c 的值为14. 【考点】根与系数的关系 【解析】 暂无 【解答】解:设另一根为x 1,则{x 1+2=−5,2x 1=−c,解得{x 1=−7,c =14,∴ 另一根为−7,c 的值为14. 22. 【答案】解:(1)14x 2+(a −2)x +a 2=0,∵ △=(a −2)2−4×14×a 2≥0,∴ a ≤1,根据题意得x 1+x 2=−4(a −2),x 1x 2=4a 2, ∵ 0≤a ≤1,∴ y =−4(a −2)+a =−3a +8∴5≤y≤8;(2)当a<0时,y=−4(a−2)−a=−5a+8,y−(−a2+3a−9)=−5a+8+a2−3a+9=(a−4)2+1,∵(a−4)2+1>0,∴y>−a2+3a−9.【考点】根与系数的关系【解析】(1)先把方程化为一般式得到14x2+(a−2)x+a2=0,再利用判别式得到a≤1,根据根与系数的关系得到y=−4(a−2)+a=−3a+8,然后计算当0≤a≤1时对应的y的范围;(2)当a<0时,y=−4(a−2)−a=−5a+8,然后利用求差法比较大小.【解答】解:(1)14x2+(a−2)x+a2=0,∵△=(a−2)2−4×14×a2≥0,∴a≤1,根据题意得x1+x2=−4(a−2),x1x2=4a2,∵0≤a≤1,∴y=−4(a−2)+a=−3a+8∴5≤y≤8;(2)当a<0时,y=−4(a−2)−a=−5a+8,y−(−a2+3a−9)=−5a+8+a2−3a+9=(a−4)2+1,∵(a−4)2+1>0,∴y>−a2+3a−9.23.【答案】解:∵x1、x2是方程x2+6x+3=0的两实数根,∴由韦达定理,知x1+x2=−6,x1⋅x2=3,∴x2x1+x1x2=x1⋅x2˙=(−6)2−2×33=10,即x2x1+x1x2的值是10.【考点】根与系数的关系【解析】利用根与系数的关系求得x1+x2=−6,x1⋅x2=3,然后将其代入整理后的所求的代数式求值.【解答】解:∵x1、x2是方程x2+6x+3=0的两实数根,∴由韦达定理,知x1+x2=−6,x1⋅x2=3,∴x2x1+x1x2=x1⋅x2˙=(−6)2−2×33=10,即x2x1+x1x2的值是10.24.【答案】解:a+b=−21=−2,ab=−31=−3.【考点】根与系数的关系【解析】此题暂无解析【解答】解:a+b=−21=−2,ab=−31=−3.25.【答案】解:∵实数a,b是方程x2−x−1=0的两根,∴a+b=1,ab=−1,∴ba +ab=b2+a2ab=(a+b)2−2abab=−3.【考点】根与系数的关系【解析】根据根与系数的关系得到a+b=1,ab=−1,再利用完全平方公式变形得到ba +ab=b2+a2 ab =(a+b)2−2abab,然后利用整体代入的方法进行计算.【解答】解:∵实数a,b是方程x2−x−1=0的两根,∴a+b=1,ab=−1,∴ba +ab=b2+a2ab=(a+b)2−2abab=−3.26.【答案】解:(1)∵x1,x2是一元二次方程x2−3x−1=0的两根,∴x1+x2=3,x1x2=−1,∴x12+x22=(x1+x2)2−2x1x2=32−2×(−1)=11.(2)1x1+1x2=x1+x2x1x2=3−1=−3.【考点】根与系数的关系【解析】无无【解答】解:(1)∵x1,x2是一元二次方程x2−3x−1=0的两根,∴x1+x2=3,x1x2=−1,∴x12+x22=(x1+x2)2−2x1x2=32−2×(−1)=11.(2)1x 1+1x 2=x 1+x 2x 1x 2=3−1=−3.27.【答案】解:(1)∵ x 1,x 2是x 2+4x −2=0的两个实数根, ∴ x 1+x 2=−4,x 1x 2=−2, x 12+x 22=(x 1+x 2)2−2x 1x 2 =(−4)2−2×(−2) =16+4 =20.(2)由(1)得,x 1+x 2=−4,x 1x 2=−2, 1x 12+1x 22 =x 12+x 22x 12x 22=20(−2)2=5.【考点】根与系数的关系 【解析】(1)将原式变形为(x 1+x 2)2−2x 1x 2,然后代入计算即可; (2)将原式变形为含有x 1+x 2和x 1x 2,然后代入计算即可. 【解答】解:(1)∵ x 1,x 2是x 2+4x −2=0的两个实数根, ∴ x 1+x 2=−4,x 1x 2=−2, x 12+x 22=(x 1+x 2)2−2x 1x 2 =(−4)2−2×(−2) =16+4 =20.(2)由(1)得,x 1+x 2=−4,x 1x 2=−2, 112+122 =x 12+x 22x 12x 22=202=5. 28. 【答案】 4(2)∵ m2=3,∴ m=6,把x=2代入x2−mx+n=0得4−6×2+n=0,解得n=8,∴ mn=6×8=48.【考点】根与系数的关系【解析】此题暂无解析【解答】解:(1)在方程x2−8x+3=0中,a=4,b=3,∴a2−b=42−3=13>0,符合题意,∴ a=4是该方程的中点值.故答案为:4.(2)∵m=3,2∴ m=6,把x=2代入x2−mx+n=0得4−6×2+n=0,解得n=8,∴ mn=6×8=48.29.【答案】(1)−1;(2)k=−6.【考点】根与系数的关系【解析】(1)当k=2时,方程为:x2−4x−2−3=0,即x2−4x−5=0,所以可得:x1+x2= 4,x1×x2=−5,代入即可求得代数式的值;(2)先求得x2=1,x1=3,再代入求得答案.【解答】解:(1)当k=2时,方程为:x2−4x−2−3=0,即x2−4x−5=0,所以可得:x1+x2=4,x1×x2=−5,所以x1+x2+x1×x2=4−5=−1;(2)x1+x2=4,x1=3x2,即3x2+x2=4,解得:x2=1,所以x1=3,即:x1x2=−k−3=3,解得:k=−6.30.【答案】解:(1)∵x1,x2是方程x2−(2m−2)x+(m2−2m)=0的两实数根,x1+x2=2m−2,x1x2=m2−2m.(x1−x2)2=x12+x22−2x1x2=(x1+x2)2−2x1x2−2x1x2=(x1+x2)2−41x1x2=(2m−2)2−4(m2−2m)=4m2−8m+4−4m2+8m=4.x1−x2=±2,即x1−x2的值为2或−2.(2)∵x12+x22=10,∴(x1+x2)2−2x1x2=10,∴(2m−2)2−2(m2−2m)=10,4m2−8m+4−2m2+4m=10,m2−2m−3=0,∴m1=3, m2=−1即m的值为3或−1.【考点】根与系数的关系【解析】(1)根据方程根的个数结合根的判别式,可得出关于m的一元一次不等式,解不等式即可得出结论;(2)根据方程的解析式结合根与系数的关系找出x1+x2=−2,x1⋅x2=2m,再结合完全平方公式可得出x12+x22=(x1+x2)2−2x1⋅x2,代入数据即可得出关于关于m的一元一次方程,解方程即可求出m的值,经验值m=−1符合题意,此题得解.【解答】解:(1)∵x1,x2是方程x2−(2m−2)x+(m2−2m)=0的两实数根,x1+x2=2m−2,x1x2=m2−2m.(x1−x2)2=x12+x22−2x1x2=(x1+x2)2−2x1x2−2x1x2=(x1+x2)2−41x1x2=(2m−2)2−4(m2−2m)=4m2−8m+4−4m2+8m=4.x1−x2=±2,即x1−x2的值为2或−2.(2)∵x12+x22=10,∴(x1+x2)2−2x1x2=10,∴(2m−2)2−2(m2−2m)=10,4m2−8m+4−2m2+4m=10,m2−2m−3=0,∴m1=3, m2=−1即m的值为3或−1.【答案】−2;−15(2)∵7m2−7m−1=0,7n2−7n−1=0,∴m,n可看作方程7x2−7x−1=0的两个根,∴m+n=1,mn=−17,∴m2n+mn2=mn(m+n)=−17×1=−17.(3)∵p,q满足p2=9p−6,3q2=9q−2,∴9q2=27q−6,即(3q)2=9⋅(3q)−6,∴p,3q可看作方程x2−9x+6=0的两个根,∴p+3q=9,p⋅(3q)=6,∴原式=(p+3q)2−6pq=92−6×2=69 .【考点】根与系数的关系【解析】(1)直接利用根与系数的关系求解;(2)把m、n可看作方程7x2−7x−1=0,利用根与系数的关系得到m+n=1,mn=−17,再利用因式分解的方法得到m2n+mn2=mn(m+n),然后利用整体的方法计算;(3)把p、3q可看作方程x2−9x+6=0的两个根,利用根与系数的关系得到p+3q=9,p⋅(3q)=6,再利用配方法得到p2+9q2=(p+3q)2−6pq,然后利用整体的方法计算;【解答】解:(1)x1+x2=−105=−2,x1x2=−15.故答案为:−2;−15.(2)∵7m2−7m−1=0,7n2−7n−1=0,∴m,n可看作方程7x2−7x−1=0的两个根,∴m+n=1,mn=−17,∴m2n+mn2=mn(m+n)=−17×1=−17.(3)∵p,q满足p2=9p−6,3q2=9q−2,∴9q2=27q−6,即(3q)2=9⋅(3q)−6,∴p,3q可看作方程x2−9x+6=0的两个根,∴p+3q=9,p⋅(3q)=6,∴原式=(p+3q)2−6pq=92−6×2=69 .32.【答案】【考点】根与系数的关系【解析】本题考查一元二次方程根与系数的关系.关于一元二次方程ax2+bx+c=0(a≠0),当方程有两根据x1、x2,则x1+x2=−ba ,x1⋅x2=ca.据此求解即可.【解答】解:x1+x2=−ba =−−21=2.故答案为:2.33.【答案】解:(1)∵x1+x2=4,x1x2=2,∴1x1+1x2=x1+x2x1x2=42=2.(2)(x1−x2)2=(x1+x2)2−4x1x2=42−4×2=8.【考点】根与系数的关系【解析】根据一元二次方程ax2+bx+c=0的根与系数关系即韦达定理可得x1+x2−ba=4,x1x2=ca=2,把代数式变形成与两根之和和两根之积有关的式子,代入两根之和与两根之积,求得代数式的值.【解答】解:(1)∵x1+x2=4,x1x2=2,∴1x1+1x2=x1+x2x1x2=42=2.(2)(x1−x2)2=(x1+x2)2−4x1x2=42−4×2=8.34.【答案】解:将x=1代入方程x2+x+a−1=0得1+1+a−1=0,解得a=−1,方程为x2+x−2=0,解得x1=−2,x2=1.所以另一个根为−2.【考点】根与系数的关系【解析】将x=1代入方程x2+x+a−1=0可得a的值,再将a的值代回方程,解方程得出另一个根.【解答】解:将x=1代入方程x2+x+a−1=0得1+1+a−1=0,解得a=−1,方程为x2+x−2=0,解得x1=−2,x2=1.所以另一个根为−2.解:根据题意得x 1+x 2=6,x 1x 2=3, 所以x 2x 1+x 1x 2=x 12+x 22x 1x 2=(x 1+x 2)2−2x 1x 2x 1x 2=62−2×33=10.【考点】根与系数的关系 【解析】根据根与系数的关系得到x 1+x 2=6,x 1x 2=3,再利用通分和完全平方公式把x 2x 1+x 1x 2变形为(x 1+x 2)2−2x 1x 2x 1x 2,然后利用整体代入的方法计算.【解答】解:根据题意得x 1+x 2=6,x 1x 2=3, 所以x 2x 1+x 1x 2=x 12+x 22x 1x 2=(x 1+x 2)2−2x 1x 2x 1x 2=62−2×33=10.36.【答案】解:∵ x 1,x 2是方程x 2+2x −2007=0的两个根,∴ x 1+x 2=−2,x 1⋅x 2=−2007.(1)x 12+x 22=(x 1+x 2)2−2x 1⋅x 2=(−2)2−2×(−2007)=4018;(2)1x 1+1x 2=x 1+x 2⋅=−2−2007=22007;(3)(x 1−5)(x 2−5)=x 1⋅x 2−5(x 1+x 2)+25=−2007−5×(−2)+25=−1972; (4)|x 1−x 2|=√(x 1−x 2)2=√(x 1+x 2)2−4x 1⋅x 2=√(−2)2−4×(−2007)=4√502.【考点】根与系数的关系 【解析】由一元二次方程根与系数的关系可得x 1+x 2=−2,x 1⋅x 2=−2007.(1)将x 12+x 22变形为(x 1+x 2)2−2x 1⋅x 2,再代入计算即可求得结果; (2)将1x 1+1x 2变形为x 1+x 2⋅,再代入计算即可求得结果;(3)将(x 1−5)(x 2−5)变形为x 1⋅x 2−5(x 1+x 2)+25,再代入计算即可求得结果; (4)将|x 1−x 2|变形为√(x 1+x 2)2−4x 1⋅x 2,再代入计算即可求得结果. 【解答】解:∵ x 1,x 2是方程x 2+2x −2007=0的两个根,∴ x 1+x 2=−2,x 1⋅x 2=−2007.(1)x 12+x 22=(x 1+x 2)2−2x 1⋅x 2=(−2)2−2×(−2007)=4018;(2)1x 1+1x 2=x 1+x 2⋅=−2−2007=22007;(3)(x 1−5)(x 2−5)=x 1⋅x 2−5(x 1+x 2)+25=−2007−5×(−2)+25=−1972; (4)|x 1−x 2|=√(x 1−x 2)2=√(x 1+x 2)2−4x 1⋅x 2=√(−2)2−4×(−2007)=4√502.解:(1)∵ x 1、x 2是方程2x 2+x −3=0的两个根, ∴ x 1+x 2=−12,x 1⋅x 2=−32; (2)原式=(x 1+x 2)2−2x 1x 2x 1x 2=(−12)2−2×(−32)−32 =−136.【考点】根与系数的关系 【解析】(1)直接利用根与系数的关系解答即可;(2)通分变形后,整体代入(1)中的数值得出答案即可. 【解答】 解:(1)∵ x 1、x 2是方程2x 2+x −3=0的两个根, ∴ x 1+x 2=−12,x 1⋅x 2=−32; (2)原式=(x 1+x 2)2−2x 1x 2x 1x 2=(−12)2−2×(−32)−32 =−136.38.【答案】解:(1)∵ x 1,x 2是方程x 2+x −1=0的两根, ∴ x 1+x 2=−1,x 1x 2=−1, 则1x 1+1x 2=x 1+x 2x 1x 2=−1−1=1;(2)(x 1−x 2)2=(x 1+x 2)2−4x 1x 2=1+4=5;(3)x 22−x 12=(x 2−x 1)(x 2+x 1)当x 1<x 2时,x 22−x 12=√5×(−1)=−√5, 当x 1>x 2时,x 22−x 12=−√5×(−1)=√5.【考点】根与系数的关系 【解析】(1)由根与系数的关系可得x 1+x 2=−1,x 1x 2=−1,将其代入到1x 1+1x 2=x 1+x 2x 1x 2即可得;(2)将x 1+x 2=−1,x 1x 2=−1代入到(x 1−x 2)2=(x 1+x 2)2−4x 1x 2即可得;(3)根据x 22−x 12=−(x 12−x 22),结合(2)中结果即可得.【解答】解:(1)∵ x 1,x 2是方程x 2+x −1=0的两根, ∴ x 1+x 2=−1,x 1x 2=−1, 则1x 1+1x 2=x 1+x 2x 1x 2=−1−1=1;(2)(x 1−x 2)2=(x 1+x 2)2−4x 1x 2=1+4=5;(3)x 22−x 12=(x 2−x 1)(x 2+x 1)当x 1<x 2时,x 22−x 12=√5×(−1)=−√5, 当x 1>x 2时,x 22−x 12=−√5×(−1)=√5.39. 【答案】由一元二次方程的根与系数的关系得到x 1+x 2=13,x 1⋅x 2=−673, (x 1+2)(x 2+2)=x 1⋅x 2+2(x 1+x 2)+4 =−673+2×13+4 =−66813.【考点】根与系数的关系 【解析】根据一元二次方程的根与系数的关系得到x 1+x 2=13,x 1⋅x 2=−673,再将(x 1+2)(x 2+2)变形为x 1⋅x 2+2(x 1+x 2)+4代入计算即可求解. 【解答】由一元二次方程的根与系数的关系得到x 1+x 2=13,x 1⋅x 2=−673, (x 1+2)(x 2+2)=x 1⋅x 2+2(x 1+x 2)+4 =−673+2×13+4 =−66813.40.【答案】 解:(1)∵ 一元二次方程的△=b 2−4ac =32−4×2×(−1)=17>0, 由根与系数的关系得:x 1+x 2=−32,x 1⋅x 2=−12,∴ x 12+x 22=(x 1+x 2)2−2x 1x 2=(−32)2−2×(−12)=134;(2)由根与系数的关系知:α+β=k 2−1k−1=−k −1,αβ=(k−1)2k−1=k −1,α2+β2=((α+β)2−2αβ=(k +1)2−2(k −1)=k 2+3 ∴ k 2+3=4, ∴ k =±1, ∵ k −1≠0 ∴ k ≠1, ∴ k =−1,将k =−1代入原方程:−2x 2+4=0, △=32>0,∴ k =−1成立, ∴ k 的值为−1. 【考点】根与系数的关系 【解析】(1)先根据根与系数的关系得到x 1+x 2=−32,x 1⋅x 2=−12,再利用完全平方公式变形得到x 12+x 22=(x 1+x 2)2−2x 1x 2,然后利用整体代入的方法计算即可;(2)根据一元二次方程(k −1)x 2+(k 2−1)x +(k −1)2=0的两根分别为α,β,求出两根之积和两根之和的关于k 的表达式,再将α2+β2=4变形,将表达式代入变形后的等式,解方程即可.【解答】 解:(1)∵ 一元二次方程的△=b 2−4ac =32−4×2×(−1)=17>0, 由根与系数的关系得:x 1+x 2=−32,x 1⋅x 2=−12,∴ x 12+x 22=(x 1+x 2)2−2x 1x 2=(−32)2−2×(−12)=134;(2)由根与系数的关系知:α+β=k 2−1k−1=−k −1,αβ=(k−1)2k−1=k −1,α2+β2=((α+β)2−2αβ=(k +1)2−2(k −1)=k 2+3 ∴ k 2+3=4, ∴ k =±1, ∵ k −1≠0∴ k ≠1, ∴ k =−1,将k =−1代入原方程:−2x 2+4=0, △=32>0,∴ k =−1成立, ∴ k 的值为−1.。
初中数学一元二次方程根与系数的关系专项训练题二(附答案详解)
初中数学一元二次方程根与系数的关系专项训练题二(附答案详解)1.阅读材料:如果,是一元二次方程的两根,那么有,.这是一元二次方程根与系数的关系,我们利用它可以用来解题,例,是方程的两根,求的值.解法可以这样:∵,,则.请你根据以上解法解答下题:已知,是方程的两根,求:的值;的值.试求的值.2.细心的小明发现,一元二次方程ax2+bx+c=0(a≠0)根与系数之间的“秘密”关系.(1)当x=1时有a+b+c=0,当x=﹣1时有a﹣b+c=0.若9a+c=3b,求x;(2)若2a+b=0,3a+c=0,写出满足条件的一个一元二次方程,并求另一个根;(3)当老师写出方程2x2﹣3x﹣1=0,要求不解方程判断根的情况时,小明立即回答,有两个不相等的实数根.据此,你能根据一元二次方程系数a、b、c的符号以及相互之间的数量关系,写出一些关于一元二次方程ax2+bx+c=0(a≠0)根与系数之间的规律吗?请写一写(至少两条).3.法国数学家弗朗索瓦·韦达于1615年在著作《论方程的识别与订正》中建立了方程根与系数的关系,由于韦达最早发现代数方程的根与系数之间有这种关系,人们把这个关系称为韦达定理.它的内容如下:在一元二次方程中,它的两根、有如下关系:,.韦达定理还有逆定理,它的内容如下:如果两数和满足如下关系:,,那么这两个数和是方程的根.通过韦达定理的逆定理,我们就可以利用两数的和积关系构造一元二次方程.例如:,,那么和是方程的两根.请应用上述材料解决以下问题: (1)已知是两个不相等的实数,且满足,,求的值.(2)已知实数,满足,,求的值.4.设x 1,x 2是方程2x 2+4x -3=0的两个根,利用根与系数的关系,求下列各式的值: (1)(x 1-x 2)2; (2)(x 1+21x )(x 2+11x ).5.已知一元二次方程ax 2+bx +c=0(a≠0)中的两根为请你计算x 1+x 2=____________, x 1·x 2=____________. 并由此结论解决下面的问题:(1)方程2x 2+3x -5=0的两根之和为______,两根之积为______.(2)方程2x 2+mx +n=0的两根之和为4,两根之积为-3,则m=______,n=______. (3)若方程x 2-4x +3k=0的一个根为2,则另一根为______.(4)已知x 1,x 2是方程3x 2-2x -2=0的两根,不解方程,用根与系数的关系计算代数式的值.,24,221a acb b x x -±-=xx 2111+6.请阅读下列材料:若是关于的一元二次方程的两个根,则方程的两个根和系数有如下关系:.我们把它们称为根与系数关系定理.如果设二次函数的图象与x轴的两个交点为.利用根与系数关系定理我们又可以得到A、B两个交点间的距离为:请你参考以上定理和结论,解答下列问题:设二次函数的图象与x轴的两个交点为,抛物线的顶点为,显然为等腰三角形。
九年级数学一元二次方程根与系数的关系练习题
一元二次方程根与系数的关系1、如果方程ax 2+bx+c=0(a ≠0)的两根是x 1、x 2,那么x 1+x 2= ,x 1·x 2= 。
2、已知x 1、x 2是方程2x 2+3x -4=0的两个根,那么:x 1+x 2= ;x 1·x 2= ;2111x x + ;x 21+x 22= ;(x 1+1)(x 2+1)= ;|x 1-x 2|= 。
3、以2和3为根的一元二次方程(二次项系数为1)是 。
4、如果关于x 的一元二次方程x 2+2x+a=0的一个根是1-2,那么另一个根是 ,a 的值为 。
5、如果关于x 的方程x 2+6x+k=0的两根差为2,那么k= 。
6、已知方程2x 2+mx -4=0两根的绝对值相等,则m= 。
7、一元二次方程px 2+qx+r=0(p ≠0)的两根为0和-1,则q ∶p= 。
8、已知方程x 2-mx+2=0的两根互为相反数,则m= 。
9、已知关于x 的一元二次方程(a 2-1)x 2-(a+1)x+1=0两根互为倒数,则a= 。
10、已知关于x 的一元二次方程mx 2-4x -6=0的两根为x 1和x 2,且x 1+x 2=-2,则m= ,(x 1+x 2)21x x ⋅= 。
11、已知方程3x 2+x -1=0,要使方程两根的平方和为913,那么常数项应改为 。
12、已知一元二次方程的两根之和为5,两根之积为6,则这个方程为 。
13、若α、β为实数且|α+β-3|+(2-αβ)2=0,则以α、β为根的一元二次方程为 。
(其中二次项系数为1)14、已知关于x 的一元二次方程x 2-2(m -1)x+m 2=0。
若方程的两根互为倒数,则m= ;若方程两根之和与两根积互为相反数,则m= 。
15、已知方程x 2+4x -2m=0的一个根α比另一个根β小4,则α= ;β= ;m= 。
16、已知关于x 的方程x 2-3x+k=0的两根立方和为0,则k=17、已知关于x 的方程x 2-3mx+2(m -1)=0的两根为x 1、x 2,且43x 1x 121-=+,则m= 。
(完整版)一元二次方程根与系数关系(附答案)
一元二次方程根与系数的关系(附答案)评卷人得分一.选择题(共6小题)1.已知关于x的一元二次方程3x2+4x﹣5=0,下列说法正确的是()A.方程有两个相等的实数根B.方程有两个不相等的实数根C.没有实数根D.无法确定2.关于x的一元二次方程x2+2x﹣m=0有实数根,则m的取值范围是()A.m≥﹣1 B.m>﹣1 C.m≤﹣1 D.m<﹣13.关于x的一元二次方程x2+3x﹣1=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能确定4.设x1、x2是一元二次方程2x2﹣4x﹣1=0的两实数根,则x12+x22的值是()A.2 B.4 C.5 D.65.若α、β是一元二次方程x2﹣5x﹣2=0的两个实数根,则α+β的值为()A.﹣5 B.5 C.﹣2 D.6.已知关于x的方程x2﹣4x+c+1=0有两个相等的实数根,则常数c的值为()A.﹣1 B.0 C.1 D.3评卷人得分二.填空题(共1小题)7.若关于x的一元二次方程x2﹣3x+a=0(a≠0)的两个不等实数根分别为p,q,且p2﹣pq+q2=18,则的值为.评卷人得分三.解答题(共8小题)8.已知关于x的方程x2﹣(2k+1)x+k2+1=0.(1)若方程有两个不相等的实数根,求k的取值范围;(2)若方程的两根恰好是一个矩形两邻边的长,且k=2,求该矩形的对角线L 的长.9.已知关于x的方程x2+ax+a﹣2=0.(1)若该方程的一个根为1,求a的值;(2)求证:不论a取何实数,该方程都有两个不相等的实数根.10.已知关于x的一元二次方程(x﹣m)2﹣2(x﹣m)=0(m为常数).(1)求证:不论m为何值,该方程总有两个不相等的实数根;(2)若该方程一个根为3,求m的值.11.已知关于x的一元二次方程x2﹣x+a﹣1=0.(1)当a=﹣11时,解这个方程;(2)若这个方程有两个实数根x1,x2,求a的取值范围;(3)若方程两个实数根x1,x2满足[2+x1(1﹣x1)][2+x2(1﹣x2)]=9,求a的值.12.已知x1,x2是关于x的一元二次方程4kx2﹣4kx+k+1=0的两个实数根.(1)是否存在实数k,使(2x1﹣x2)(x1﹣2x2)=﹣成立?若存在,求出k的值;若不存在,说明理由;(2)求使+﹣2的值为整数的实数k的整数值;(3)若k=﹣2,λ=,试求λ的值.13.已知关于x的方程(k+1)x2﹣2(k﹣1)x+k=0有两个实数根x1,x2.(1)求k的取值范围;(2)若x1+x2=x1x2+2,求k的值.14.已知关于x的方程x2﹣2(m+1)x+m2﹣3=0.(1)当m取何值时,方程有两个不相等的实数根?(2)设x1、x2是方程的两根,且x12+x22=22+x1x2,求实数m的值.15.已知关于x的一元二次方程x2﹣2x+m﹣1=0有两个实数根x1、x2.(1)求m的取值范围;(2)若x12+x22=6x1x2,求m的值.参考答案与试题解析一.选择题(共6小题)1.已知关于x的一元二次方程3x2+4x﹣5=0,下列说法正确的是()A.方程有两个相等的实数根B.方程有两个不相等的实数根C.没有实数根D.无法确定【解答】解:∵△=42﹣4×3×(﹣5)=76>0,∴方程有两个不相等的实数根.故选:B.2.关于x的一元二次方程x2+2x﹣m=0有实数根,则m的取值范围是()A.m≥﹣1 B.m>﹣1 C.m≤﹣1 D.m<﹣1【解答】解:∵关于x的一元二次方程x2+2x﹣m=0有实数根,∴△=22﹣4×1×(﹣m)=4+4m≥0,解得:m≥﹣1.故选:A.3.关于x的一元二次方程x2+3x﹣1=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能确定【解答】解:∵a=1,b=3,c=﹣1,∴△=b2﹣4ac=32﹣4×1×(﹣1)=13>0,∴方程有两个不相等的实数根.故选:A.4.设x1、x2是一元二次方程2x2﹣4x﹣1=0的两实数根,则x12+x22的值是()A.2 B.4 C.5 D.6【解答】解:∵x1、x2是一元二次方程2x2﹣4x﹣1=0的两实数根,∴x1+x2=2,x1x2=﹣,∴x12+x22=(x1+x2)2﹣2x1x2=22﹣2×(﹣)=5.故选:C.5.若α、β是一元二次方程x2﹣5x﹣2=0的两个实数根,则α+β的值为()A.﹣5 B.5 C.﹣2 D.【解答】解:∵α、β是一元二次方程x2﹣5x﹣2=0的两个实数根,∴α+β=5.故选:B.6.已知关于x的方程x2﹣4x+c+1=0有两个相等的实数根,则常数c的值为()A.﹣1 B.0 C.1 D.3【解答】解:∵关于x的方程x2﹣4x+c+1=0有两个相等的实数根,∴△=(﹣4)2﹣4×1×(c+1)=12﹣4c=0,解得:c=3.故选:D.二.填空题(共1小题)7.若关于x的一元二次方程x2﹣3x+a=0(a≠0)的两个不等实数根分别为p,q,且p2﹣pq+q2=18,则的值为﹣5.【解答】解:∵关于x的一元二次方程x2﹣3x+a=0(a≠0)的两个不等实数根分别为p、q,∴p+q=3,pq=a,∵p2﹣pq+q2=(p+q)2﹣3pq=18,即9﹣3a=18,∴a=﹣3,∴pq=﹣3,∴+====﹣5.故答案为:﹣5.三.解答题(共8小题)8.已知关于x的方程x2﹣(2k+1)x+k2+1=0.(1)若方程有两个不相等的实数根,求k的取值范围;(2)若方程的两根恰好是一个矩形两邻边的长,且k=2,求该矩形的对角线L 的长.【解答】解:(1)∵方程x2﹣(2k+1)x+k2+1=0有两个不相等的实数根,∴△=[﹣(2k+1)]2﹣4×1×(k2+1)=4k﹣3>0,∴k>.(2)当k=2时,原方程为x2﹣5x+5=0,设方程的两个为m、n,∴m+n=5,mn=5,∴==.9.已知关于x的方程x2+ax+a﹣2=0.(1)若该方程的一个根为1,求a的值;(2)求证:不论a取何实数,该方程都有两个不相等的实数根.【解答】(1)解:将x=1代入原方程,得:1+a+a﹣2=0,解得:a=.(2)证明:△=a2﹣4(a﹣2)=(a﹣2)2+4.∵(a﹣2)2≥0,∴(a﹣2)2+4>0,即△>0,∴不论a取何实数,该方程都有两个不相等的实数根.10.已知关于x的一元二次方程(x﹣m)2﹣2(x﹣m)=0(m为常数).(1)求证:不论m为何值,该方程总有两个不相等的实数根;(2)若该方程一个根为3,求m的值.【解答】(1)证明:原方程可化为x2﹣(2m+2)x+m2+2m=0,∵a=1,b=﹣(2m+2),c=m2+2m,∴△=b2﹣4ac=[﹣(2m+2)]2﹣4(m2+2m)=4>0,∴不论m为何值,该方程总有两个不相等的实数根.(2)解:将x=3代入原方程,得:(3﹣m)2﹣2(3﹣m)=0,解得:m1=3,m2=1.∴m的值为3或1.11.已知关于x的一元二次方程x2﹣x+a﹣1=0.(1)当a=﹣11时,解这个方程;(2)若这个方程有两个实数根x1,x2,求a的取值范围;(3)若方程两个实数根x1,x2满足[2+x1(1﹣x1)][2+x2(1﹣x2)]=9,求a的值.【解答】解:(1)把a=﹣11代入方程,得x2﹣x﹣12=0,(x+3)(x﹣4)=0,x+3=0或x﹣4=0,∴x1=﹣3,x2=4;(2)∵方程有两个实数根,∴△≥0,即(﹣1)2﹣4×1×(a﹣1)≥0,解得;(3)∵是方程的两个实数根,,∴.∵[2+x1(1﹣x1)][2+x2(1﹣x2)]=9,∴,把代入,得:[2+a﹣1][2+a﹣1]=9,即(1+a)2=9,解得a=﹣4,a=2(舍去),所以a的值为﹣412.已知x1,x2是关于x的一元二次方程4kx2﹣4kx+k+1=0的两个实数根.(1)是否存在实数k,使(2x1﹣x2)(x1﹣2x2)=﹣成立?若存在,求出k的值;若不存在,说明理由;(2)求使+﹣2的值为整数的实数k的整数值;(3)若k=﹣2,λ=,试求λ的值.【解答】解:(1)∵x1、x2是一元二次方程4kx2﹣4kx+k+1=0的两个实数根,∴x1+x2=1,x1x2=,∴(2x1﹣x2)(x1﹣2x2)=2x12﹣4x1x2﹣x1x2+2x22=2(x1+x2)2﹣9x1x2=2×12﹣9×=2﹣,若2﹣=﹣成立,解上述方程得,k=,∵△=16k2﹣4×4k(k+1)=﹣16k>0,∴k<0,∵k=,∴矛盾,∴不存在这样k的值;(2)原式=﹣2=﹣2=﹣4=﹣,∴k+1=1或﹣1,或2,或﹣2,或4,或﹣4解得k=0或﹣2,1,﹣3,3,﹣5.∵k<0.∴k=﹣2,﹣3或﹣5;(3)∵k=﹣2,λ=,x1+x2=1,∴λx2+x2=1,x2=,x1=,∵x1x2==,∴=,∴λ=3±3.13.已知关于x的方程(k+1)x2﹣2(k﹣1)x+k=0有两个实数根x1,x2.(1)求k的取值范围;(2)若x1+x2=x1x2+2,求k的值.【解答】解:(1)∵关于x的方程(k+1)x2﹣2(k﹣1)x+k=0有两个实数根,∴,解得:k≤且k≠﹣1.(2)∵关于x的方程(k+1)x2﹣2(k﹣1)x+k=0有两个实数根x1,x2.∴x1+x2=,x1x2=.∵x1+x2=x1x2+2,即=+2,解得:k=﹣4,经检验,k=﹣4是原分式方程的解,∴k=﹣4.14.已知关于x的方程x2﹣2(m+1)x+m2﹣3=0.(1)当m取何值时,方程有两个不相等的实数根?(2)设x1、x2是方程的两根,且x12+x22=22+x1x2,求实数m的值.【解答】解:(1)△=[﹣2(m+1)]2﹣4(m2﹣3)=8m+16,当方程有两个不相等的实数根时,则有△>0,即8m+16>0,解得m>﹣2;(2)根据一元二次方程根与系数之间的关系,得x1+x2=2(m+1),x1x2=m2﹣3,∵x12+x22=22+x1x2=(x1+x2)2﹣2x1x2,∴[2(m+1)]﹣2(m2﹣3)=6+(m2﹣3),化简,得m2+8m﹣9=0,解得m=1或m=﹣9(不合题意,舍去),∴实数m的值为1.15.已知关于x的一元二次方程x2﹣2x+m﹣1=0有两个实数根x1、x2.(1)求m的取值范围;(2)若x12+x22=6x1x2,求m的值.【解答】解:(1)∵方程有两个实数根,∴△≥0,即(﹣2)2﹣4(m﹣1)≥0,解得m≤2;(2)由根与系数的关系可得x1+x2=2,x1x2=m﹣1,∵x12+x22=6x1x2,∴(x1+x2)2﹣2x1x2=6x1x2,即(x1+x2)2=8x1x2,∴4=8(m﹣1),解得m=1.5.。
一元二次方程根与系数的关系专项练习(含解析)
同步测验一、选择题(本题共计10小题,每题3分,共计30分)1.若关于x的一元二次方程x2−4x−m2=0有两个实数根x1,x2,则m2(1x1+1x2)=()A.m 44B.−m44C.4D.−42.关于x的一元二次方程x2+mx−6=0的一个根是3,则另一个根是()A.−1B.1C.−2D.23.已知x1,x2是方程x2−2x−1=0的两根,则x1+x2的值为()A.1B.−2C.−1D.24.一元二次方程x2+4x−3=0的两根为x1、x2,则x1⋅x2的值是()A.4B.−4C.3D.−35.已知a、b是方程x2−4x+2=0的两个根,则a2−2a+2b的值为()A.−4B.6C.−8D.86.若x1、x2是一元二次方程2x2−3x+1=0的两个根,则x12+x22的值是()A.54B.94C.114D.77.已知x1,x2是关于x的元二次方程x2−(5m−6)x+m2=0的两个不相等的实根,且满足x1+x2=m2,则m的值是()A.2B.3C.2或3D.−2或−38.x1,x2是关于x的一元二次方程x2−mx+m−2=0的两个实数根,是否存在实数m使1x1+1x2=0成立?则正确的结论是()A.m=0时成立B.m=2时成立C.m=0或2时成立D.不存在9.关于x的方程x2−(k+3)x+3k=0的两根为x1,x2,1x1+1x2=23,则k值为()A.1B.2C.3D.410.下列方程中,两根是−2和−3的方程是()A.x2−5x+6=0B.x2−5x−6=0C.x2+5x−6=0D.x2+5x+6=0二、填空题(本题共计10小题,每题3分,共计30分)11.一元二次方程x2−2x−1=0的两根为x1,x2,则x12+2x1−2x1x2的值为________.12.设x1,x2是方程2x2+4x−3=0的两个根,则x12+x22=________.13.方程x2−2ax+3=0有一个根是1,则另一根为________,a的值是________.14.已知2−√5是一元二次方程x2−4x+c=0的一个根,则方程的另一个根是________.15.已知x1,x2分别是一元二次方程x2−x−6=0的两个实数根,则x1+x2=________.16.请写出方程两个根互为相反数的一个一元二次方程________.17.已知m,n是方程x2−2017x+2018=0的两根,则(n2−2018n+2 019)(m2−2018m+2019)=________.18.以−3,4为解的一元二次方程可以为________.19.已知关于x的一元二次方程x2+bx+c=0的两根分别为x1=1,x2=2,则b=________;c=________.20.关于x的方程x2−2√3x+1=0的两根分别为x1,x2,则x1x2+x2x1=________.三、解答题(本题共计6小题,每题10分,共计60分)21.已知方程x2−2x−15=0的两个根分别是a和b,求代数式(a−b)2+4b(a−b)+4b2的值.22.已知关于x的一元二次方程x2−2(k−1)x+k2−1=0有两个不相等的实数根.(1)求k的取值范围;(2)若该方程的两根分别为x1,x2,且满足|x1+x2|=2x1x2,求k的值.23.回答下列问题:(1)解方程:x2−2x−1=0;(2)已知α,β是方程x2+2x−3=0的两个实数根,求α2β+αβ2的值.24.已知关于x的一元二次方程x2+4x+m−1=0.(1)若m是使得方程有两个不相等的实数根的最大正整数,求m的值;(2)设x1、x2是(1)中你所得到的方程的两个实数根,求:−x1−x2+x1x2的值.25.设x1、x2是方程x2+2x−2=0的两个实数根,求x2x1+x1x2的值.26.已知x1、x2为方程x2+3x+1=0的两实根.(1)填空:x1+x2=________;x1⋅x2=________.(2)求代数式x12+x22的值.同步测验学校:__________班级:__________姓名:__________考号:__________ 一、选择题(本题共计10小题,每题3分,共计30分)1.若关于x的一元二次方程x2−4x−m2=0有两个实数根x1,x2,则m2(1x1+1x2)=()A.m 44B.−m44C.4D.−4【解答】解:∵x2−4x−m2=0有两个实数根x1,x2,∴{x1+x2=4,x1x2=−m2,∴则m2(1x1+1x2)=m2⋅x1+x2x1x2=m2⋅4−m2=−4.故选D.2.关于x的一元二次方程x2+mx−6=0的一个根是3,则另一个根是()A.−1B.1C.−2D.2【解答】解:设关于x的一元二次方程x2+mx−6=0的另一个根为t,则3t=−6,解得t=−2.故选C.3.已知x1,x2是方程x2−2x−1=0的两根,则x1+x2的值为()A.1B.−2C.−1D.2【解答】解:∵x1,x2是方程x2−2x−1=0的两根,∴x1+x2=2.故选D.4.一元二次方程x2+4x−3=0的两根为x1、x2,则x1⋅x2的值是()A.4B.−4C.3D.−3【解答】解:x 1⋅x 2=−3. 故选D .5.已知a 、b 是方程x 2−4x +2=0的两个根,则a 2−2a +2b 的值为( ) A.−4 B.6 C.−8 D.8【解答】解:∵a 、b 是方程x 2−4x +2=0的两个根, ∴a 2−4a +2=0,a +b =4, ∴a 2−4a =−2,2a +2b =8, ∴a 2−4a +2a +2b =6, ∴a 2−2a +2b =6, 故选B .6.若x 1、x 2是一元二次方程2x 2−3x +1=0的两个根,则x 12+x 22的值是( )A.54 B.94C.114D.7【解答】 解:由题意知,x 1x 2=12,x 1+x 2=32,∴x 12+x 22=(x 1+x 2)2−2x 1x 2=(32)2−2×12=54.故选A .7.已知x 1,x 2是关于x 的元二次方程x 2−(5m −6)x +m 2=0的两个不相等的实根,且满足x 1+x 2=m 2,则m 的值是( ) A.2 B.3 C.2或3 D.−2或−3【解答】∵x 1,x 2是关于x 的元二次方程x 2−(5m −6)x +m 2=0的两个不相等的实根, ∴x 1+x 2=5m −6,△=[−(5m −6)]2−4m 2>0, 解得m <67或m >2, ∵x 1+x 2=m 2, ∴5m −6=m 2,解得m =2(舍)或m =3,8.x 1,x 2是关于x 的一元二次方程x 2−mx +m −2=0的两个实数根,是否存在实数m 使1x 1+1x 2=0成立?则正确的结论是()A.m=0时成立B.m=2时成立C.m=0或2时成立D.不存在【解答】解:∵x1,x2是关于x的一元二次方程x2−mx+m−2=0的两个实数根,∴x1+x2=m,x1x2=m−2.假设存在实数m使1x1+1x2=0成立,则x1+x2x1x2=0,∴mm−2=0,∴m=0.当m=0时,方程x2−mx+m−2=0即为x2−2=0,此时Δ=8>0,∴m=0符合题意.故选A.9.关于x的方程x2−(k+3)x+3k=0的两根为x1,x2,1x1+1x2=23,则k值为()A.1B.2C.3D.4【解答】解:∵关于x的方程x2−(k+3)x+3k=0的两根为x1,x2,∴x1+x2=k+3,x1⋅x2=3k,∵1x1+1x2=23,∴x1+x2x1⋅x2=23,即k+33k =23,解得k=3.经检验k=3符合题意.故选C.10.下列方程中,两根是−2和−3的方程是()A.x2−5x+6=0B.x2−5x−6=0C.x2+5x−6=0D.x2+5x+6=0【解答】解:设两根是−2和−3的方程为:x2+ax+b=0,根据根与系数的关系,∴(−2)+(−3)=−a=5,(−2)×(−3)=b=6,故方程为:x2+5x+6=0.故选D.二、填空题(本题共计10小题,每题3分,共计30分)11.一元二次方程x2−2x−1=0的两根为x1,x2,则x12+2x1−2x1x2的值为________.【解答】解:∵一元二次方程x2−2x−1=0的两根为x1,x2,∴x12=1+2x1,x1x2=−1,x1+x2=2,∴x12+2x2−2x1x2=1+2(x1+x2)−2x1x2=1+4+2=7.故答案为:7.12.设x1,x2是方程2x2+4x−3=0的两个根,则x12+x22=________.【解答】,解:根据题意得x1+x2=−2,x1x2=−32)=7.所以x12+x22=(x1+x2)2−2x1x2=(−2)2−2×(−32故答案为7.13.方程x2−2ax+3=0有一个根是1,则另一根为________,a的值是________.【解答】解:设方程的另一根为x2,根据题意得1⋅x2=3,则x2=3;∵1+x2=2a,∴1+3=2a,∴a=2;故答案为3,2.14.已知2−√5是一元二次方程x2−4x+c=0的一个根,则方程的另一个根是________.【解答】解:设方程的另一根为x1,由x1+2−√5=4,得x1=2+√5.15.已知x1,x2分别是一元二次方程x2−x−6=0的两个实数根,则x1+x2=________.【解答】解:∵一元二次方程x2−x−6=0的二次项系数a=1,一次项系数b=−1,又∵x1,x2分别是一元二次方程x2−x−6=0的两个实数根,∴根据韦达定理,知x 1+x 2=−b a =−−11=1;故答案是:1.16.请写出方程两个根互为相反数的一个一元二次方程________. 【解答】解:例如,x 2−4=0.(答案不唯一).17.已知m ,n 是方程x 2−2017x +2018=0的两根,则(n 2−2018n +2 019)(m 2−2018m +2019)=________. 【解答】∵m 、n 是方程x 2−2 017x +2 018=0的两根,∴m 2−2017m =−2018,n 2−2017n =−2018,m +n =2017,mn =2018, ∴原式=(−n +1)(−m +1)=mn −(m +n)+1=2018−2017+1=2. 18.以−3,4为解的一元二次方程可以为________. 【解答】解:根据根与系数的关系可知:在二次项系数为1时,一次项系数等于两根之和的相反数即−(−3+4)=−1,常数项等于两根之积即−3×4=−12, 故以−3,4为解的一元二次方程为:x 2−x +12=0, 故答案为:x 2−x +12=0.19.已知关于x 的一元二次方程x 2+bx +c =0的两根分别为x 1=1,x 2=2,则b =________;c =________. 【解答】解:∵关于x 的一元二次方程x 2+bx +c =0的两根分别为x 1=1,x 2=2, ∴1+2=−b ,1×2=c , ∴b =−3,c =2, 故答案为:−3,2.20.关于x 的方程x 2−2√3x +1=0的两根分别为x 1,x 2,则x 1x 2+x2x 1=________.【解答】解:根据题意得x 1+x 2=2√3,x 1x 2=1, 所以原式=x 12+x 22x 1x 2=(x 1+x 2)2x 1x 2=(2√3)2−2×11=10.故答案为10.三、解答题(本题共计6小题,每题10分,共计60分)21.已知方程x2−2x−15=0的两个根分别是a和b,求代数式(a−b)2+4b(a−b)+4b2的值.【解答】解:根据题意得a+b=2,ab=−15,原式=(a+b)2−4ab+4ab−4b2+4b2=(a+b)2,所以原式=22=4.22.已知关于x的一元二次方程x2−2(k−1)x+k2−1=0有两个不相等的实数根.(1)求k的取值范围;(2)若该方程的两根分别为x1,x2,且满足|x1+x2|=2x1x2,求k的值.【解答】解:(1)由题意知:Δ=[−2(k−1)]2−4(k2−1)=−8k+8,∵方程有两个不相等的实数根,∴−8k+8>0,解得:k<1.故k的取值范围是k<1.(2)由韦达定理可知:x1x2=k2−1,x1+x2=2(k−1),∵|x1+x2|=2x1x2,∴|2(k−1)|=2k2−2,∵k<1,∴2−2k=2k2−2,整理得:k2+k−2=0,解得:k=1(舍去)或k=−2.故k的值为−2.23.回答下列问题:(1)解方程:x2−2x−1=0;(2)已知α,β是方程x2+2x−3=0的两个实数根,求α2β+αβ2的值.【解答】解:(1)x2−2x−1=0,x2−2x=1,(x−1)2=2,x−1=±√2,∴x=√2+1或x=1−√2(2)由根与系数的关系可知,α+β=−2,αβ=−3,∴α2β+αβ2=αβ(α+β)=−3×(−2)=6..24.已知关于x的一元二次方程x2+4x+m−1=0.(1)若m是使得方程有两个不相等的实数根的最大正整数,求m的值;(2)设x1、x2是(1)中你所得到的方程的两个实数根,求:−x1−x2+x1x2的值.【解答】解:(1)当Δ>0时,方程有两个不相等的实数根,即42−4(m−1)>0,解得m<5,∴m的最大正整数为m=4.(2)由(1)得x1x2=3,x1+x2=−4,则−x1−x2+x1x2=−(x1+x2)+x1x2=−(−4)+3=7.25.设x1、x2是方程x2+2x−2=0的两个实数根,求x2x1+x1x2的值.【解答】解:根据题意得x1+x2=−2,x1x2=−2,所以x2x1+x1x2=x12+x22x1x2=(x1+x2)2−2x1x2x1x2=(−2)2−2×(−2)−2=−4.26.已知x1、x2为方程x2+3x+1=0的两实根.(1)填空:x1+x2=________;x1⋅x2=________.(2)求代数式x12+x22的值.【解答】解:(1)x1+x2=−3,x1x2=1;(2)x12+x22=(x1+x2)2−2x1x2=(−3)2−2×1=7.11。
初中九年级数学 一元二次方程根与系数的关系练习题
一元二次方程根与系数的关系1、如果方程ax 2+bx+c=0(a ≠0)的两根是x 1、x 2,那么x 1+x 2= ,x 1·x 2= 。
2、已知x 1、x 2是方程2x 2+3x -4=0的两个根,那么:x 1+x 2= ;x 1·x 2= ;2111x x + ;x 21+x 22= ;(x 1+1)(x 2+1)= ;|x 1-x 2|= 。
3、以2和3为根的一元二次方程(二次项系数为1)是 。
4、如果关于x 的一元二次方程x 2+2x+a=0的一个根是1-2,那么另一个根是 ,a 的值为 。
5、如果关于x 的方程x 2+6x+k=0的两根差为2,那么k= 。
6、已知方程2x 2+mx -4=0两根的绝对值相等,则m= 。
7、一元二次方程px 2+qx+r=0(p ≠0)的两根为0和-1,则q ∶p= 。
8、已知方程x 2-mx+2=0的两根互为相反数,则m= 。
9、已知关于x 的一元二次方程(a 2-1)x 2-(a+1)x+1=0两根互为倒数,则a= 。
10、已知关于x 的一元二次方程mx 2-4x -6=0的两根为x 1和x 2,且x 1+x 2=-2,则m= ,(x 1+x 2)21x x ⋅= 。
11、已知方程3x 2+x -1=0,要使方程两根的平方和为913,那么常数项应改为 。
12、已知一元二次方程的两根之和为5,两根之积为6,则这个方程为 。
13、若α、β为实数且|α+β-3|+(2-αβ)2=0,则以α、β为根的一元二次方程为 。
(其中二次项系数为1)14、已知关于x 的一元二次方程x 2-2(m -1)x+m 2=0。
若方程的两根互为倒数,则m= ;若方程两根之和与两根积互为相反数,则m= 。
15、已知方程x 2+4x -2m=0的一个根α比另一个根β小4,则α= ;β= ;m= 。
16、已知关于x 的方程x 2-3x+k=0的两根立方和为0,则k=17、已知关于x 的方程x 2-3mx+2(m -1)=0的两根为x 1、x 2,且43x 1x 121-=+,则m= 。
九年级数学:一元二次方程根与系数的关系练习题(有答案)
、单项选择题: 一元二次方程根与系数的关系习题1.关于x 的方程ax 2 2x 1 0中,如果a 0,那么根的情况是( B ) (A) (C) 有两个相等的实数根 没有实数根 (B)有两个不相等的实数根 (D)不能确定 解: (2)2 4a 4a 0 原方程有两个不相等的实数根.2.设 (A) 解: X i 4 4a 4 4a 0 X 1,X 2是方程2x 215 (B) 12 方程两根为 X 23, x 1x 2 6x (C) 6 X i, X 2 3 0的两根,那么 (D) 3 2 X 1 3.以下方程中,有两个相等的实数根的是((A)2y 2+5=6y (B) x 2+5=2 5 x (C) 3 x 2 (此题为找出 0〞的方程即可)2 X 1 2 X 22 X 2的值是( (X i 32B ) —2 x+2=0 4.以方程X 2+2X —3=0的两个根的和与积为两根的 (A) y 2+5y —6=0 (B) y 2+5y + 6=0 解:设方程两根为X1, X2,那么: x 1 x 2 2, x 1x 23为根的一元二次方程为 5.如果X 1, X 2是两个不相等实数,且满足 (A) 2(B) -2 X 2)2 21 2x 1x 2 (D) 3x 2—2^x+1=0 二次方程是 (C) y 2-5y + 6=0 (D) 2 - y [( 2)( 3)]y ( 即:y (C) 5y解:X :22x 1 1, x 2 2X 2 x n X 2可看作是方程x2x 二、填空题: 1、如果 二次方程 4x k 2 解:方程X 2 4x k 2有两个相等的实数根2X 1 2x 12X2(D)的两根X 1X22)( 3) 02x 2 1,那么X i ? X 2等于0有两个相等的实数根,那么 k= 2.16 4k 22、如果关于x的方程2x2(4 k 1)x 2k20有两个不相等的实数根,那么k的取值范围是k 9.解:方程2x2 (4 k 1)x 2k2 1 0 8k有两个不相等的实数根[(4k 1)]2 8(2k21)3、x1,x2是方程2x27x 4 0的两根,那么x17 2 x2 = 一 , x〔x? = 2 , (x1 x2)= 2(x1 x2)2 4x1 x2274、假设关于x的方程(m2 2)x2 (m 2)x 1 0的两个根互为倒数,那么m = d3.解:设方程两根为x1, x2,那么: ,32[(m 2)]2 24(m2 2) 0 方程两根互为倒数 2[(m 2)]2 24(m2 2) 014x2 - ------- 1m 2m = 4时,方程mx 4 0有两个相等的实数根;解: 方程x2mx 4 0有两个相等的实数根解:m216m 4且m 0时,方程mx24x 1 0有两个不相等的实数根; 方程mx24x 1 0有两个不相等的实数根16 4m 0 且m 04且m 0时,原方程有两个不相等的实数根.6、关于x的方程10x2 (m 3)x m 7 0,假设有一个根为0,那么m=7,这时方程的另一个根是1;假设…,3 … 八、,、………8 ■两根之和为一工,那么m = 9,这时方程的 两个本!!为X 1x 2 1.5—— 5解 乂1)设方程 10x 2 (m 3)x m 7 0m 7 y---------- ②10由②,得:(5x 8)( x 1) 0m 7, x 1 1时,方程一根为0 x8或x 157、如果x 2 2(m 1)x m 2 5是一个完全平方式,那么方程x 2 2( m 1)x m 2 5 0W 两个相等实根m 2[2(m 1)]2 4(m 2 5) 08、方程2x(mx 4) x 2 6没有实数根,那么最小的整数 m = 2; 解:将方程 2x( mx 4) x 2 648 m 88 0化简,得:(2m 1)x 2 8x 6 0原方程没有实数根64 24 (2m 1) 0另一根为 X i,那么:10m 7100 X i m 3 —— a 10 、一 一 3原方程两根之和为 -5将m 7代入①,得:原方程可化为:5x 2 3x 8 09、方程2(x 1)(x 3m) x(m 4)两根的和与两根的积相等,那么m =2;(2)设原方程两根为a 、b,那么:0?X i10 5m =2 ;解:令 x 2 2( m 1)x m 2 5 0 4(m 2 2m 1) 4m 2 20 0x 2 2(m 1)x m 2 5是完全平方式8m 16 0x 1 1 11 m -6最小整数m 为2解:将方程 2(x 1)(x 3m) x(m 4)化简,得:2x 2 (7m 2)x 6m 0 设方程两根为x1,x 2,那么:7m 2x 1 x 2 ---, x 1x 2 3m方程两根的和与两根的积相等m 2当 m 2时,[(7m 2)]2 48m 0将m 8代入①,得:n 2将m 8, n2代入③,得: k 8 ( 2)16k 16解:原方程有实数根3 m -4 3 .当m -时,原万程有两个实数 根.4解:方程两根为2、;3和2 73,(2 .3)- (2 、3) p , (2 .,3)(2 .3) q解之,得:10、设关于x 的方程x 2 6x k0的两根是m 和n ,且3m 2n20,那么k 值为16;①X 2-③,得:当 k16时, 36 4k 011、假设方程 x 2 (2m 1)x m 2 1 0有实数根,那么 m 的取值范围是 m12、一元二次方程 x 2px q 0两个根分别是273 和 2 13,那么 p= 4 ,q= 1;7m 2 23m解:m 、n 是方程的两根r m n 6①* mn k ②I 3m 2n 20 ③4m 3[(2m 1)]2 4(m 2 1) 01,24m 4m 14m4 0p 4'' q 1 p4, q 113、方程3x219x m 0的一个根是1,那么它的另一个根是16X — , m=16;3解:设方程的另一根为X i,那么:m 16mX1 3当a 16时, 19212a 0由①,得:X116方程另一根为16m 1&方16 , _ 口将X 一代入②,得:314、假设方程x2mx 1 0的两个实数根互为相反数,那么m的值是0;解:设方程两根为X1,X2,那么:x1 x2m 0时,m2 4 0 方程两根互为相反数0时,原方程两根互为相反数.X1x2m 015、m、n是关于x的方程x2(2m 1)X m2 1 0的两个实数根,那么代数式m n =1o解: m、n是方程的两根将①代入②,得:m n 2m 1 m(m 1)2mn m化简,得: 1代入①,得:2mn m (1)216、方程X23x 1 0 的两个根为a ,3,那么a +3=3, "3=1;17、如果关于x的方程x24x m 0与x2x 2m 0有一个根相同,那么m的值为0或3 ;解:方程有一个相同的根将x m代入x24x m 0,得:2 , 2 cx 4x m x x 2m 2m 4m m 0(4 1)x 2m m m(m 3) 0这个相同的根为:18、方程2x23x 0的两根之差为22 ,那么k= 2;解:设方程两根为x1, x2, 那么:2k254x i x2 21 22时,9 8k 0(x i x2)2254关于x的方程2x23x k 0两根19、解:20、解: x1 x2)24x1 x2254、,,1 ,差为2—时,k 22假设方程x2(a22)x 3 0的两根是1和一3,那么a= 2; 方程两根1和(3) (a2 2)D、假设关于x的方程设方程两根为义, x2, x2 2(m 1), x1x2方程两根互为倒数2x1 x2 4m 12(m那么:4m21)x 4m20有两个实数根,且这两个根互为倒数,②、关于x的一元二次方程(a2 1)x2F 1那么m的值为一;2[2(m 1)]2[2(m 1)]216m216m2(a 1)x 1 0两根互为倒数,那么a=J2.a 1 x 1 x 22——,x 1 x 2a 1方程两根互为倒数1 a2 1当 a.2时, (a 1)2 4(a 2 1) 0 当 a..2时,(a 1)24(a 2 1) 0a .. 2a 2 1 1解:设方程的另一根为 x v 那么:a . 2 1当 a 2 1时,2 4a 0方程另一根为x 1, a .2 1将x 1 1代入②,得:36 4k 4k 8k 8寸,36 4k 0 (2)关于x 的方程x 6x k 0的两根23、方程2x 2 mx 40两根的绝对值相等,那么 m=0ox 〔 x 2差为2时,k 8.解:设方程两根为x1, x 2,那么:a 、,221、如果关于x 的一元二次方程x 2 J2x a 0的一个根是1— &,那么另一个根是 x 1,a 的值为J2 1.解:设方程两根为x1, x 2,那么: 当 x 〔 x 2时,x 〔 x 2 0x 1 x 2x 1x 2 x 1 x 21 a2 1( 1 V2 x 1 <2①1(1 &)x 〔 a ②由①,得:x 1 22、如果关于x 的方程x 2 6x k0的两根差为2,那么k=8.解:设方程两根为x1, x 2,那么:x 1 x 2 6, x 1x 2 k x 1 x 2 2(x 〔 x 2)242(x 1 x 2) 4x 1 x 24x1 X2M£X1x2当x i x2 时,m2 32 0 m232 0当m 0时, m232 0 2x2mx 4 0两根绝对值相等时,m 0.x i x2qx r 0( p 0)的两根为0和一1,贝U q : p=1:1.解: 设方程两根为x2, 那么:方程两根为0和x i X29p(1)25、方程3x2x 1 0 ,要使方程两根的平方和为13—,9那么常数项应改为2.解: 设方程两根为xi, x2, (¥2m3139并设方程的常数项为i 6m 13x i x2 1 3,x/22x i 2 x2 1392时,i 12m 0x2)22X1X2139常数项应改为2.26、方程x24x 2m 0的一个根a比另一个根3小4,那么a = 4 ;=0 ;m=0 .解:据题意,得:「 4 ①< 2m ②1 4③①+③,得:4将4代入①,得:0将4, 0代入②,得:m 0当m 0时, 16 8m 04, 0, m 02 1 13 1 27、关于x的万程x 3mx 2(m 1) 0的两根为x1,x2,且———一,那么m= 一.24、一元二次方程px2解:设方程2x 2 3x两根为x1,x 2,那么:9-0 m -时,方程有两个正根8m 0当m 0时,方程有一根为0.(2)、方程有一个正根,一个 负根 三、解答以下各题:1、3-也 是方程x 2 mx 7 0的一个根,求另一个根及 m 的值. 解:设方程的另一根为刈,那么:(3 j2)x1 7②答:方程另一根为3 <2 ,由②,得:x 13 22m 6.解:方程两根为x 1, x 2,那么:X i X 2 3 x 1 x 2 4 3m 3 x 1 x 2 3m, x 1x 2 2(m 1) 一2(m 1)41 1 3 一— — 12m 6( m 1)x 1 x 2 4 m 1时, (3m)2 8(m 1) 0328、关于x 的方程2x 2 3x m _ _ 9 .................................. 0,当0 m 一时,万程有两个正数根;当8m 0时,方程有一个正根,个负根;当m 0时,方程有一个根为 0.x 1 x 2 (1)、方程有两个正数根 方程有一个正根,一个负根9 8m 0x 1, x 2 m 0又方程有两个正数根 9 8m 09 m8m 0当m 0时,方程有一正一负两个根(3)、方程有一根为0x 1, x 23 2将x1 3 代入①,得:2、m取什么值时,方程2x2 (4m 1)x 2m2 1 0(1)有两个不相等的实数根,(2)有两个相等的实数根,(3)没有实数根;解:(4 m 1)2 8(2m2 1)16m28m 1 16m288m 9(1)有两个不相等的实数根8m 9 09 m -8, 9-当m -时,原方程有两个8不相等的实数根.(2)有两个相等的实数根3、求证:方程(m2 1)x2 2mx (m2 4)证实:(2m)2 4(m2 1)(m2 4)4m2 4(m4 5m2 4)4m416m2164(m4 4m2 4)2 24(m2 2)24、求证:不管k为何实数,关于x的式子(x解:令(x 1)(x 2) k2 0即:8m 9 09 m8, 9-当m -时,原方程有两个8相等的实数根.(3)没有实数根8m 9 09 m8当m 9时,原方程无实根.80没有实数根.m22 04(m2 2)2 0即:0方程(m2 1)x2 2mx (m2 4) 0没有实数根.21)(x 2) k都可以分解成两个一次因式的积.x2 33x 2 k209 4(2 k2)4k214k2024k 1 0方程(x 1)(x 2) k2 0有两个不相等的实数根不管k为何实数,关于x的式子 2 .... (x 1)(x 2) k都可以分解成两个一次因式的积.解:令2x2 (4k 1)x 2k2 1 0 8k 9 0a是实数,且方程x22ax 10有两个不相等的实根,试判别方程x2 2ax 1 1(a2x2 a2 1)2解:x2 2ax 1 1(a2x2 a2 2 0有无实根?1) 0 4a24 00 a214a44,20 a2204a4 20a2 24 0即:04a420a224 2 12 2 2万程x 2ax 1 -(ax a 1) 07、关于x的方程mx2nx 2 0两根相等,方程x24mx 3n 0的一个根是另一个根的3倍.求证: 方程x2 (k n)x (k m) 0 一定有实数根.2 2 2 2 」2x 4ax 2 a x a 1 (2 a2)x2 4ax a23 016a2 4(2 a2)(a2 3)16a2 4(2 a2)(a2 3)5、当k取什么实数时,二次三项式2x2 2 ,(4k 1)x 2k 1可因式分解当2x2 (4k 1)x 2k2 1 0 有两个实根时,原二次项式可因式分解2 2(4k 1)2 8( 2k2 1) 0 2x29 , 一,-时,二次三项式8(4 k 1)x 2k2 1可因式分解.方程x22ax 1 0有两个不等实根有两个不相等的实数根.m 2 n 4将m 2, n 4代入方程x 5 (k n)x (k m) 0得: x 2 (k 4)x (k 2) 0#: (k 4)2 4(k 2)k 2 8k 16 4k 8 k 2 4k 242(k 2)2202(k 2)2 0 (k 2)2 20 0方程 x 2 (k n)x (k m) 0 一定有实数根.25mx 3n 0的两根之比为 2 : 3,方程x 2nx 8m 0的两根相等(mnw0).求证:对的两根比为2:3设此方程两根为2a 和3a,那么:i52a 3a mI23 2a?3a -n2n m 2①mx 2 (n k 1)x k 1 0#: 2x 2 (4 k 1)x k 1 02(3 k)28( k 1) _ _2 一 一9 6k k 8k 8 k 2 2k 152证实: 方程2x 5mx 3n 0 将m 2, n 4代入方程证实:方程mx nx 2 0 两根相等m 0 2n 8m 0①方程 x 2 4mx 3n 0 一根是另一根的 设方程一根为x 1 3x 1 x 1 ?3x 12n m将②代入①,得:4m 8m 0m(m 3 8) 0m 0 或 m 2 m 03倍x 1,另一根为3x 1,那么: 4m 3n2)8、方程2x 2方程x22nx 8m 0两根相等 2(k 1)2 4n232m 0 (k 1)2 08m8m 对于任意实数k,方程m(m3 8) 2mX (n k 1)x k 1 0m mn 0或m24恒有实数根.9、设X i, X2是方程2x24X0的两根,利用根与系数关系求以下各式的值:⑴、(X i 1)(X21) 1 ⑵、一X1X2X2X1(31 —X1 X2,八 2 .(4)、x1 x1x2 2x1解: X1, X2是一元二次方程x2(3) >— X1X1X22X24X 3 0的两根2X1 2 X2 X1X2X 1 X2 2, X1X2(x1 x2)2 2x1x2X1X2⑴、〔X11)(X2 1)2 3(2)2 2 ( 2)3X1 X2x1 x214 3~~3227 (3)21 143(4)、X1 X1X2 2X11 1⑵、X1 x2X1(X1 X2 2)2 2⑴ X i X2 (2) X i X2 解:X1, X2是一元二次方程4X27X 3 0的两根7 3X i X2 — X X i X24 42 2⑴ X i X22(x i x2) 2x i x2(7)2 2 34 425i6(2)X i X2..(X i X2)2(X i X2)2 4X i X2 (3)1r x i 匹(4) X i X2(3) ,X i X2X i X27.3.3i 一2(4 ) X i X2(xix2 )(X i X2)2 4X i X20的两个根,利用根与系数的关系,求以下各式的值: 第i4页共26页2~~3243x1?010、设方程4x27x 3 0的两根为X1, X2,不解方程,求以下各式的值ii、x1,x2是方程2x23x i解:Xi, X 2是一元二次方程 2 ( 9) 9 1612、 解: 19 2x 23x 1 0的两根16X i X 2⑴(2 X i4x i x 24x i x 2实数s 、 19s 231 一,X iX 2一2 23)(2X 2 3) 6X 1 6(X 1 6X 2 9X 2)3 (2) Xi X 2X i X 2(Xi3X 1X 2X i X 2[(X iI)2X 22) X 2)2 2X 1X 2](1) 13t 分别满足方程 99s 1 0 99t t 2 0 1s 、1可看作是方程 t 19x 2 99x 1 0的两根 19s 2 99s1 0和且19st 4s t 4s s 一 t(SI)99 19 99t t 2cst 4s 10求代数式——t —— 的值.4?s4 19 99 19, s?1t 1995 1913、设: 3a 2 6a 11 3b 2 6b 11 0 且aw b,求a 4b 4的值.解: _ 2_3a 6a 11 0 3b 2 6b 11 0 2 2X 2(a b )2a 2b 2a、b 可看作是方程2_2_22[(a b) 2ab] 2a b3x 26x 11 0的两根[22 2 ( ?)]2 2 ( 4) 3 311 a b 2, ab31156 242 914 "Q - "-9"14、 a 2 1 a, b 2 1b ,且 awb,求(a — 1)(b —1)的值.2原方程可化为:x 2x 1 01 ( 1) 1 1, o1115、 m 2 m 4 0,-- n n解:m 2m 4 0x 2 x 4 0的两根1 1m, m —1, m ?一 —4nn n1 一 代数式m —的值为 1.n3st 2s 3(2)———s-^. tst 1⑴、—p s1C 「3(s -) 2?s?- t t解:a 2 1 aa b 1, ab 1 b 2 1 b (a 1)(b 1) a 、b 可看作是方程 ab a b 1 x 2 1 x 的两根ab (a b) 116、 2s 2 4s 74t 2 0 , s, t 为实数,且stw1.求以下各式的值:27t 2 4t 2 03st 2s 3 ⑵ c 2s3s —— t2x 2 4x 7 0的两根3 ( 2) 2 ( |)0 , m, n 为实数,且m 1 ,求代数式m n的值m 、1可看作是方程 nst 1 ⑴一p;解:2s 2 4s 71 1 7s 2, s? 6 ( 7) 1t t 217、关于x的方程x2—(k+1)x+k+2=0的两根的平方和等于6,求k的值;解:设方程两根为x「x2,那么k 3x1 x2k 1, x1x2k 22乂22(x1 x2) 2x1 x2 6 (k 1)2 2(k 2) 62(k 1)2 4(k 2)当k 3寸, 0,不符合题意,应舍去当k 3时, 0,符合题意k的值为3.k2918、方程x2+3x+m=0中的m是什么数值时,方程的两个实数根满足:(1) 一个根比另一个根大2; (2) 一个根是另一个根的3倍;(3)两根差的平方是17解:设方程两根为%、x2,那么9 / 3、27一(一)一4 4 16x〔x2 3, x〔x2 m , 27当m 27时,160,符合题意9 4m⑴、当x〔x2 2时,1 5x1 2,x2 21,55m —(一)一2 2 4当m 5时, 0,符合题意4 m 一时,方程一根是另一根的笳. 16 (3)、当(X x2)2 17时,2(x1 x2) 4x1 x2 179 4m 17m 25时,方程一根比另一根4 2时, 0大2. 2时,方程两根差的平方是17.⑵、当x1 3x2时,9 3X i-, X 2 —4419、a,b,c 是三角形的三边长,且方程 (a 2+b?+c2)x 2+2(a+b+c)x+3=0有两个相等的实数根,求证:这个三角 形是正三角形证实:方程有两个相等实根[2(a b c)]2 12(a 2 b 2 c 2) 02222(a b c)23(a 2 b 2c 2)0 -2-2-2---2a2b2c2ab2ac 2bc22_22_22_(a 2b 22ab) (a 2c 22ac) (b 2c 22bc) 0 22 2(a b)2(a c)2 (b c)2ab0, ac0, b c 0求这个直角三角形的面积. 解:设方程两根为x 、x 2,那么x 〔 x 2 2a 1, x 〔x 2 4(a 1) x 1、x 2是斜边长为5的直角三角形的两直角边2 2x 1 x 225(x 1 x 2)2 2x 1x 2 25 (2a 1)2 8(a 1) 25a 2 3a 4 0x 1、x 2是三角形的两边 x 1 x 2 2a 1 0 且 x 1x 2 4(a 1) 0a ]且a 12a 1只能取a 41 1 S^1x 2 2 4(4 1)(a 4)(a 1) 0解:设方程两根为x 1、x 2,那么4m 2 1 0 或 m 2 2m 3 021、关于x 的一元二次方程3x 2(4 m 2 1)x m(m 2) 0的两实根之和等于两个实根的倒数和,求m 的值.这个三角形是正三角形20、关于x 的方程x 2(2a 1)x 4(a 1) 0的两个根是斜边长为 5的直角三角形的两条直角边的长,X1 X24 m23 一,X〔X21m1 m2p m33, m4 1X1 X24m2134m213 m(4m2[(4m21)]2 12m(m 2) X iX iX2X2X1X24m213m(m 2)34m21m(m 2)1)(m 2) 3(4m 1)(4m2 1)(m22m 3) 0, 1-当m1 一时,2当m i0,不符合题意,应舍去0,符合题意当m1当m i 1时,答:m的值为0,符合题意0,不符合题意,应舍去22、是否存在实数k ,使关于X的方程9X2 (4k 7)X 6k2 0的两个实根X1,X2,满足上-,如果存X2 2 在,试求出所有满足条件的k的值,如果不存在,请说明理由.解:假设存在.据题意 ,得:4k 7X1 X2 9 , X1 X2 2k2 3X1 3X2 2上3或x1 3X2 2 X2 2 少X1 3 3 当一一时,X1 -X2 X2 2 2 当上3时,X1 3X2 X2 2 24k 7 2(4k 7) x1x294k 7 2(4k 7) 2 2------- ? - k3 ------ 9 3(4k 7)2 9k20(4k 7 3k)(4k 7 3k) 0X 1 3(4 k 7) 2(4k 7)453(4k 7)02(4k 7)45 45 [(4k 2 27)]2 4 9?( 6k2)(4k 7)2 225k2当k 1时, 0,符合题意241k256k 49 当k 7时, 0,符合题意5624 241 49 存在k值,当此方程无实根; 方程两根满足X1 X223、关于x的方程2x2(m 1)x 0的两根满足关系式X1 X2 1,求m的值及两个根.解: 设方程两根为X1、x2,那么1或m 11X i X2 m 1——,X1X22m 1""2"2(m 1)]2 8(m 1)X 1 X2 1 1时,4 0, 此时方程两根为: X10, X2 1X 111时,4 0, 此时方程两根为: X12, X2 31?m 3. 4答:m 1时, 方程两根为: X10, X2 1;(m 1)(m 3) 8(m 1) m 11时,方程两根为: X1 2, X2 3. (m 1)(m 3 8) 024、3是关于X的方程4X2 4mxm24m 0的两个实根,并且满足( 1)(1) 2,求m的值.解: 是方程的两根m, m2 4m416m2一, 2、16(m 4m)1) ( 1)2时,0,不符合题意,应舍去2时,0,符合题意4m4m的值为2.m 0,根据以下条件,分别求出m 的值:1⑶有一根为零;(4)有一本为1; (5)两根的平万和为 ——.64(4)、方程有一根为18 (2m 1) m 0 m 7当m 7时, 0m 7时,方程有一根为11(5)、万程两根的平万和为 一642 21x 〔 x 26421(x 1 x 2) 2x 1x 2 一64即 3 1)6 m A644 64625、一元二次方程 8x 2 (2m 1)x(1)两根互为倒数;(2)两根互为相反数;解:设方程两根为x 1、x 2,那么2m 1 m x i x 2, x 〔 x 2882[(2m 1)]232 m(1)、两根互为倒数m 1 8m 8当m 8时,m 8寸,方程两根互为倒数(2)、两根互为相反数Q 0 81 m -2 1当m1时,21m 1时,万程两根互为相反 数2(3)、方程有一根为0 m 0当m 0时, 0m 3m 0m(m 3) 0m 0或m 3当m 0 寸, 0当m 3时, 0,不符合题意,应舍去1 m 0时,万程两根的平万和为——6413 , ___ _ ______ _13时,两方程相同的根为:3a 1或 a 3_― 22[2(a 2)]4(a5)16a 36当a 1时,0,符合题意当a 3寸, 0,不符合题意,应舍去答:a 的值为1.28、方程x 2 bx c 0有两个不相等的正实根,两根之差等于解:设方程两根为x 1、x 2,那么x 〔 x 2 b, x#2 cx 2 3m 0时,方程有一根为026、方程x 2 mx 4 0和x 2 (m 2)x 16 0有一个相同的根,求 m 的值及这个相同的根.解:方程有一个相同的根2, 2 /x mx 4 x (m2)x 16(3m 13)(m 4) 0(m m 2)x 20这个相同的根为:10将x 工-代入x 21 mmx0,4时,两方程相同的根为(10 )2 10m1 m 1 m13 , ___ ______13时,两方程相同的根为:33;23m m 52当m 4时,两方程相同的根为 :x27、关于x 的二次方程2(a 2)x a 2 5 0有实数根,且两根之积等于两根之和的2倍,求a 的值.解:设方程两根为x 1、x 2,那么2 Lx 〔 x 2 2(a 2), x 1x 2 a 52(x 1 x 2) x 〔x 224(a 2) a 2 52a 24a 3 0 (a 1)(a 3) 03,两根的平方和等于 29,求b 、c 的值.b22c 29②①-②得:c 10将c 10代入①,得: b 7b 3cb 3------ ?—— c2 2b24c 9 ①2 2x1 x229(x1 x2)2 2x1x229方程有两个不相等正实根x1 x2b 0, x1x2c 0b 7答:b 7, c 1029、一元二次方程(2k 3)x2 4kx 2k 5 0,且4k+1是腰长为7的等腰三角形的底边长,求:当取何整数时,方程有两个整数根.解:方程有两个实根即:(4k)2 4(2k 3)(2k 5) 04k 1是腰长为7的等腰三角形的底边长4k 1 144k134当k 1时,原方程可化为:x24x 3 0其解为1和3,满足条件当k 2时,原方程可化为:x28x 1 0其解不是整数,不满足条件,应舍去当k 3寸,原方程可化为:3x212x 1 0其解不是整数,不满足条件,应舍去答:当k 1时,原方程两根为整数.15 , 13—k -16 4整数k可能为1、2、330、x1,x2是关于x的方程x2px q 20的两根,x1 1, x2 1是关于x的方程x qx p 0的两根,求常数p、q的值.解:据题意,得:, x〔x2 px〔x2 q将p 1代入⑥,得:q 3答:p 1 , q 320的两个实数根;y b y 2是关于y 的万程y 5my 7 0的两个实数根,且x 1 y 1 2, x 2 解:据题意,得:2x 〔 x 2m )网 ny 〔 y 25m, y 〔 y 2 7x 1 y 1 2, X2 y 2 2 X y 〔 x 2 y 24m 7( 5m) 4m 25m 4 02 ,求m n 的值.(m 1)(m 4) 0 m 1或 m 4当m 1时,方程y 2m 4当m 4时,方程x 216 4n 0答:m 4, n 41 1 n?h2 21K.m 21n 22 24712x 1 1 x 2 1 q ③ p (2p 1) 2(X i 1)(x 2 1) p ④0,其中m n 分别是个等腰三角形的腰长和底边长Om 、n 分别是一个等腰三角形的腰长和底边 在等腰三角形中,h . m 2将①代入③,得:p q 2⑤将①、②代入④,得:31、x 1, x 2是关于x 的方程x 1 2 * 4 m 2x n5my 7 0无实根2m x n 0有两个实根42m n 0,2m n 012这个方程有两个不相等实根. n.'m2 - n2 48②\ 4(2)、设方程两根为x「X2,并设三角形的高为h 将①代入②,得:n 12x1 x282x1 x2642(x1 x2) 4x1x2 64 m 2 A(舍负)该三角形的周长为2m n 4.13 12px q 0时,小张看错了p,解得方程的根为1与一3;小王看错了q,解得方程的根为4与-2.这个方程的根应该是什么将p 2, q 3代入原方程,得:x22x 3 0(x 3)( x 1) 0x1 3, x2 1答:这个方程的根是3和1.34、方程x2ax b 0的两根为x1,x2,且4x1 x? 0 ,又知根的判别式二25,求a, b的值. 解:据题意得x x1 x2 a ①4 4x1 x2 0 ②、x1x2b ③②-①,得:a _x1 —④3将④代入①,得:4a …x2—⑤4a29b 0 ⑥25a24b 25 ⑦⑥-⑦X 4,得:b 4将b 4代入⑥,得: a 3x1 x22m, x1x21 2-n4将n 12代入①,得:33、在解方程x2解:小张看错了pq 1 ( 3) 3小王看错了qP 4 ( 2)任息头数k,万程mx (n k 1)x k 1 0恒有实数根. 1 一,,一、一 s 、1可看作是方程 t1 o32、关于x 的万程x 2mx -n 4(1)求证:这个方程有两个不相等的实根;(2)假设方程两实根之差的绝对值是 8,等腰三角形的面积是 12,求这个三角形的周长.(1)、证实: 4m 2 n 24m 2 n 2 64(2m n)(2m n)m - n 16①4将④、⑤代入③,得: 答:a 3, b 435 x1,x 2 2次万程 x4 mx n 0 的两个实数根,2 x 1 2 x 2 (x 1 x 2)2 3 士 x 1 2-2 X2解: x1, x 2 是 元二次方程 2m 4n5n 2mx n 0的两根, 将①代入②, 得:x i x 2 m, x 1x 2 5n 2 2n 2 x 1 2 x 2(x 1 x 2)2 (5n3)(n 1)2( x 2)22-2x 12?32x 1x 2 (x 1x 2)2 32n2-2x 2乂2〕2 〔泅〕2x 1x 2 2 1时,4n21 1021 10'3. 一 ...........3不符合题意,应舍去52(-m) 2n2 ? --------- 2 ------ 5n。
一元二次方程根与系数的关系习题精选(含答案解析)
. . .一元二次方程根与系数的关系习题精选(含答案)一.选择题(共22 小题)1.(2014?宜宾)若关于x 的一元二次方程的两个根为x1=1,x2=2,则这个方程是()2 2 2 2A .x ﹣3x+2=0 C.x ﹣2x+3=0 D.x+3x﹣2=0 B.x +3x+2=022.(2014?昆明)已知x1,x2 是一元二次方程x ﹣4x+1=0 的两个实数根,则x1?x2 等于()A .﹣4 B.﹣1 C.1 D.423.(2014?玉林)x1,x2 是关于x 的一元二次方程x﹣mx+m ﹣2=0 的两个实数根,是否存在实数m 使+ =0 成立?则正确的结论是()A .m=0 时成立B.m=2 时成立C.m=0 或 2 时成立D.不存在2 22﹣2x﹣3=0 的两个实数根,则α4.(2014?南昌)若α,β是方程x+β的值为()A .10 B.9 C.7 D.525.(2014?贵港)若关于x 的一元二次方程x +bx+c=0 的两个实数根分别为x1=﹣2,x2=4,则 b+c 的值是()A .﹣10 B.10 C.﹣6 D.﹣12﹣ax+2a=0 的两根的平方和是5,则 a 的值是()6.(2014?烟台)关于x 的方程xA .﹣1 或 5 B.1 C.5 D.﹣127.(2014?攀枝花)若方程x +x﹣1=0 的两实根为α、β,那么下列说法不正确的是()2 2A .α+β=﹣1 B.αβ=﹣1 C.α+β=3 D.+ =﹣12﹣(m+6)x+m 8.(2014?威海)方程x 2=0 有两个相等的实数根,且满足x1+x 2=x1x2,则 m 的值是()A .﹣2 或 3 B.3 C.﹣2 D.﹣3 或 229.(2014?长沙模拟)若关于x 的一元二次方程x +(k+3)x+2=0 的一个根是﹣2,则另一个根是()A .2 B.1 C.﹣1 D.02 210.(2014?黄冈样卷)设a,b 是方程x +x﹣2015=0 的两个实数根,则 a +2a+b 的值为()A .2012 B.2013 C.2014 D.20152 2﹣2x﹣3=0 与3x ﹣11x+6=0 的所有根的乘积等于()11.(2014 ?江西模拟)一元二次方程xA .﹣6 B.6 C.3 D.﹣32 12.(2014?峨眉山市二模)已知x1、x2 是方程x ﹣(k﹣2)x+k 2+3k+5=0 的两个实数根,则的最大值是()A .19 B.18 C.15 D.13213.(2014?陵县模拟)已知:x1、x2 是一元二次方程x+2ax+b=0 的两根,且x1+x2=3,x1x2=1,则 a、b 的值分别是()参考学习A .a=﹣3,b=1 B.a=3,b=1 C.a=﹣,b=﹣ 1 D.a=﹣,b=12 22﹣5x﹣2=0 的两个实数根,则α14.(2013?湖北)已知α,β是一元二次方程x+αβ+β的值为()A .﹣1 B.9 C.23 D.272 215.(2013?桂林)已知关于x 的一元二次方程x+2x+a﹣1=0 有两根为x1 和 x2,且 x1 ﹣x1x2=0,则 a 的值是()A .a=1 B.a=1 或 a=﹣2 C.a=2 D.a=1 或 a=22﹣4x+3=0 两根为x1、x2,则 x1+x2=()16.(2013?天河区二模)已知一元二次方程xA .4 B.3 C.﹣4 D.﹣32﹣5x﹣3=0 的两根,则的值等于()17.(2013?青神县一模)已知m 和 n 是方程2xA .B.C.D.218.(2012?莱芜)已知m、n 是方程x +2 x+1=0 的两根,则代数式的值为()A .9 B.±3 C.3 D.5219.(2012?天门)如果关于x 的一元二次方程x+4x+a=0 的两个不相等实数根x1,x2 满足 x1x2﹣2x1﹣2x2﹣5=0,那么 a 的值为()A .3 B.﹣3 C.13 D.﹣132﹣3x﹣2=0 的两实根为x1、x2,则( x1+2)(x2+2)的值为()20.(2011?锦江区模拟)若方程xA .﹣4 B.6 C.8 D.122 2﹣p﹣1=0,1﹣q﹣q21.(2011?鄂州模拟)已知p =0,且 pq≠1,则的值为()A .1 B.2 C.D.2 2﹣5b+6=0,c ﹣5c+6=0,则△ABC 的周 22.(2010?滨湖区一模)若△ABC 的一边a为 4,另两边b、c 分别满足 b长为()A .9 B.10 C.9 或 10 D.8 或 9 或 10二.填空题(共 4 小题)2 23.(2014?莱芜)若关于x 的方程x +(k﹣2)x+k 2=0 的两根互为倒数,则k= _________ .2 2﹣mn+3m+n= _________ . 24.(2014?呼和浩特)已知m,n 是方程x +2x﹣5=0 的两个实数根,则m2 25.(2014?广州)若关于x 的方程x +2mx+m 22+3m﹣2=0 有两个实数根x1、x2,则 x1(x2+x1)+x2的最小值为_________ .2 26.(2014 ?桂林)已知关于x 的一元二次方程x +(2k+1 )x+k则 k 的值是_________ .2﹣2=0 的两根为x1 和 x2,且(x1﹣2)(x1﹣x2)=0,三.解答题(共 4 小题)2 27.(2014?泸州)已知x1,x2 是关于x 的一元二次方程x ﹣2(m+1) x+m(1)若(x1﹣1)(x2﹣1)=28,求m 的值;2+5=0 的两实数根.(2)已知等腰△ABC 的一边长为7,若x1,x2 恰好是△ABC 另外两边的边长,求这个三角形的周长.2 228.(2014?日照二模)已知x1, x2 是关于x 的一元二次方程x ﹣1=0 的两个实数根,其满足(3x1+(3a﹣1)x+2a﹣x2)(x1﹣3x2)=﹣80.求实数 a 的所有可能值.2﹣( 2k+1)x+k 29.(2013?孝感)已知关于x 的一元二次方程x 2+2k=0 有两个实数根x1,x2.(1)求实数k 的取值范围;2 2(2)是否存在实数k 使得x1?x2﹣ x1 ﹣x2≥0 成立?若存在,请求出k的值;若不存在,请说明理由.30.(2001?苏州)已知关于x 的一元二次方程,(1)求证:不论k取何值,方程总有两个不相等的实数根;2(2)设x1、x2 是方程的两个根,且x1 ﹣2kx1+2x 1x2=5,求k 的值.一元二次方程根与系数的关系习题精选(含答案)参考答案与试题解析一.选择题(共22 小题)1.(2014?宜宾)若关于x 的一元二次方程的两个根为x1=1,x2=2,则这个方程是()2 2 2 2A .x ﹣3x+2=0 C.x ﹣2x+3=0 D.x+3x﹣2=0 B.x +3x+2=0考点:根与系数的关系.分析:解决此题可用验算法,因为两实数根的和是1+2=3,两实数根的积是1×2=2.解题时检验两根之和是否为 3 及两根之积是否为 2 即可.解答:解:两个根为x1=1,x2=2 则两根的和是3,积是2.A 、两根之和等于﹣3,两根之积等于﹣2,所以此选项不正确;B、两根之和等于3,两根之积等于2,所以此选项正确;C、两根之和等于2,两根之积等于3,所以此选项不正确;D、两根之和等于﹣3,两根之积等于2,所以此选项不正确,故选: B.点评:验算时要注意方程中各项系数的正负.22.(2014?昆明)已知x1,x2 是一元二次方程x ﹣4x+1=0 的两个实数根,则x1?x2 等于()A .﹣4 B.﹣1 C.1 D.4考点:根与系数的关系.专题:计算题.分析:直接根据根与系数的关系求解.解答:解:根据韦达定理得x1?x2=1.故选: C.点评: 2本题考查了一元二次方程ax+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1,x2,则x1+x2=﹣,x1?x2= .23.(2014?玉林)x1,x2 是关于x 的一元二次方程x ﹣mx+m ﹣2=0 的两个实数根,是否存在实数m 使+ =0 成立?则正确的结论是()A .m=0 时成立B.m=2 时成立C.m=0 或 2 时成立D.不存在考点:根与系数的关系.分析:先由一元二次方程根与系数的关系得出,x1+x2=m,x1x2=m﹣2.假设存在实数m 使+ =0 成立,则=0,求出m=0,再用判别式进行检验即可.2解答:解:∵ x1,x2 是关于x 的一元二次方程x ﹣mx+m ﹣2=0 的两个实数根,∴x1+x2=m,x1x2=m﹣2.假设存在实数m 使+ =0 成立,则=0,∴=0,∴ m=0.2 2当m=0 时,方程x﹣m x+m﹣2=0 即为x﹣2=0,此时△ =8>0,∴ m=0 符合题意.故选:A.2点评:本题主要考查了一元二次方程根与系数的关系:如果x1,x2 是方程x+px+q=0 的两根时,那么x1+x2=﹣p,x1x2=q.2 22﹣2x﹣3=0 的两个实数根,则α4.(2014?南昌)若α,β是方程x+β的值为()A .10 B.9 C.7 D.5考点:根与系数的关系.2分析:根据根与系数的关系求得α+β=2,αβ=﹣3,则将所求的代数式变形为(α+β)﹣2αβ,将其整体代入即可求值.2解答:解:∵α,β是方程x﹣2x﹣3=0 的两个实数根,∴α+β=2,αβ=﹣3,2 2 ∴α+β=(α+β)故选:A.2 2﹣2αβ=2﹣2×(﹣3) =10.点评:此题主要考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.25.(2014?贵港)若关于x 的一元二次方程x +bx+c=0 的两个实数根分别为x1=﹣2, x2=4,则b+c 的值是()A .﹣10 B.10 C.﹣6D.﹣1考点:根与系数的关系.分析:根据根与系数的关系得到﹣2+4=﹣b,﹣2×4=c,然后可分别计算出b、c 的值,进一步求得答案即可.2解答:解:∵关于x 的一元二次方程x+bx+c=0 的两个实数根分别为x1=﹣2,x2=4,∴根据根与系数的关系,可得﹣2+4=﹣b,﹣2×4=c,解得b=﹣2,c=﹣8∴ b+c=﹣10.故选:A.点评:此题考查根与系数的关系,解答此题的关键是熟知一元二次方程根与系数的关系:x1+x2=﹣,x1x2= .2﹣a x+2a=0 的两根的平方和是5,则 a 的值是()6.(2014?烟台)关于x 的方程xA .﹣1或 5 B.1 C.5 D.﹣1考点:根与系数的关系;根的判别式.专题:计算题.2 2分析: 设方程的两根为 x1,x2,根据根与系数的关系得到 x1+x2=a ,x1?x2=2a ,由于 x1 +x2 =5,变形得到( x1+x 2)2 2 ﹣2x 1?x2=5,则 a ﹣4a ﹣5=0,然后解方程,满足△≥0 的 a 的值为所求. 解答: 解:设方程的两根为 x1,x2,则 x1+x2=a ,x1?x2=2a ,2 2 ∵ x 1+x2 =5,2∴( x 1+x 2)﹣2x 1?x2=5,2 ∴ a ﹣4a ﹣5=0,∴ a 1=5,a2=﹣1,2∵△ =a ﹣8a ≥0, ∴ a=﹣1. 故选: D .点评:2 本题考查了一元二次方程ax+bx+c=0 (a ≠0)的根与系数的关系:若方程的两根为 x 1,x 2,则 x 1+x 2=﹣ ,x1?x2= .也考查了一元二次方程的根的判别式.2 7.(2014?攀枝花)若方程 x +x ﹣1=0 的两实根为 α、 β,那么下列说法不正确的是( )2 2A .α+β=﹣1B . αβ=﹣1C .α+β=3 D .+ =﹣1 考点 : 根与系数的关系. 专题 : 计算题. 22分析: 先根据根与系数的关系得到α+β=﹣1,αβ=﹣1,再利用完全平方公式变形α+β2 得到( α+β) ﹣2αβ,利用 通分变形+ 得到,然后利用整体代入的方法分别计算两个代数式的值,这样可对各选项进行判断.解答: 解:根据题意得 α+β=﹣1,αβ=﹣1.2 2 所以 α +β=( α+β) 2 ﹣2αβ=(﹣ 1)2 ﹣2×(﹣ 1)=3;+===1.故选: D .点评:2 本题考查了一元二次方程ax+bx+c=0( a ≠0)的根与系数的关系: 若方程两个为 x 1,x 2,则 x 1+x2=﹣ ,x1?x2= .2 ﹣( m+6)x+m 8.(2014?威海)方程 x2 =0 有两个相等的实数根,且满足 x1+x 2=x1x2,则 m 的值是( ) A .﹣ 2 或 3 B .3 C .﹣2 D .﹣3 或 2 考点 : 根与系数的关系;根的判别式. 专题 : 判别式法. 2分析: 根据根与系数的关系有: x1+x2=m+6,x1x2=m ,再根据 x1+x2=x1x2 得到 m 的方程,解方程即可,进一步由2 2 2方程 x ﹣( m+6) +m ﹣4ac=0,求得 m 的值,由相同的解解决问题. =0 有两个相等的实数根得出b2解答: 解:∵ x 1+x2=m+6 ,x1x2=m , x 1+x2=x1x 2,2∴ m+6=m,解得 m=3 或 m=﹣ 2,2 2∵方程 x ﹣( m+6)x+m =0 有两个相等的实数根,2 2 2 2∴△ =b ﹣ 4ac=(m+6) ﹣4m =﹣3m +12m+36=0 解得 m=6 或 m=﹣ 2∴ m=﹣2.故选:C.2 2点评:本题考查了一元二次方程ax ﹣4ac.当△>0,方程有两+bx+c=0 (a≠0,a,b,c 为常数)根的判别式△=b个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.同时考查了一元二次2方程ax +bx+c=0 (a≠0)的根与系数的关系:若方程的两根为x1,x2,则x1+x2=﹣,x1?x2= .29.(2014?长沙模拟)若关于x的一元二次方程x +(k+3)x+2=0 的一个根是﹣2,则另一个根是()A .2 B.1 C.﹣1 D.0考点:根与系数的关系.分析:根据一元二次方程的根与系数的关系x1?x2= 来求方程的另一个根.2解答:解:设x1、x2 是关于x 的一元二次方程x+(k+3)x+2=0 的两个根,由韦达定理,得x1?x2=2,即﹣2x2=2,解得, x2=﹣1.即方程的另一个根是﹣1.故选 C.点评:此题主要考查了根与系数的关系.在利用根与系数的关系x1+x 2=﹣、x1?x2= 时,要注意等式中的a、b、c 所表示的含义.2 210.(2014?黄冈样卷)设a,b 是方程x +x﹣2015=0 的两个实数根,则 a +2a+b 的值为()A .2012 B.2013 C.2014 D.2015考点:根与系数的关系;一元二次方程的解.专题:计算题.2 2 2分析:先根据一元二次方程的解的定义得到 a+a﹣2015=0,即 a +a=2015,则 a +2a+b 变形为a+b+2015,再根据根与系数的关系得到a+b=﹣1,然后利用整体代入的方法计算.2解答:解:∵ a 是方程 x+x﹣2015=0 的根,2 2∴ a+a﹣2015=0,即 a +a=2015,2∴ a+2a+b=a+b+2015 ,2∵a,b 是方程x+x﹣2015=0 的两个实数根∴a+b=﹣1,2∴ a+2a+b=a+b+2015= ﹣1+2015=2014.故选 C.点评: 2本题考查了根与系数的关系:若 x1,x2 是一元二次方程ax+bx+c=0(a≠0)的两根时, x1+x2= ,x1x2= .也考查了一元二次方程的解.2 2﹣2x﹣3=0 与3x ﹣11x+6=0 的所有根的乘积等于()11.(2014 ?江西模拟)一元二次方程xA .﹣6 B.6 C.3 D.﹣3考点:根与系数的关系.2 2分析:由一元二次方程x ﹣2x﹣3=0 和 3x ﹣11x+6=0 先用判别式判断方程是否有解,再根据根与系数的关系,即可直接得出答案.2解答:解:由一元二次方程x ﹣2x﹣3=0,∵△ =4+16=20>0,∴x1x2=﹣3,2由一元二次方程 3x ﹣11x+6=0 ,∵△ =121﹣4×3×6=49>0, ∴x1x2=2∴﹣ 3×2=﹣6 故选 A .点评: 本题考查了一元二次方程根与系数的关系.解此类题目要把代数式变形为两根之积的形式. 2 12.(2014?峨眉山市二模)已知 x 1、x 2 是方程 x ﹣(k ﹣2)x+k2 +3k+5=0 的两个实数根,则的最大值是 ()A .19B .18C .15D .13考点:根与系数的关系;二次函数的最值.2 2分析:根据x1、x2 是方程x ﹣( k﹣2)x+(k+3k+5)=0 的两个实根,由△≥0 即可求出k 的取值范围,然后根据根与系数的关系求解即可.解答:解:由方程有实根,得△≥0,即(k ﹣2)2所以3k+16k+16 ≤0,所以(3k+4)(k+4)≤0 2 2﹣ 4(k+3k+5 )≥0解得﹣4≤k≤﹣.2又由x1+x2=k﹣2,x1?x2=k+3k+5 ,得2 2 2 2 2 2 2x1 +x2 +3k+5)=﹣k=(x1+x2)﹣2x1x2=(k﹣2)﹣ 2(k ﹣10k﹣6=19﹣( k+5), 2 2当k=﹣4 时, x1 取最大值18.+x2故选:B.点评:本题考查了根与系数的关系,属于基础题,关键是根据△≥0 先求出k 的取值范围再根据根与系数的关系进行求解.213.(2014?陵县模拟)已知:x1、x2 是一元二次方程x+2ax+b=0 的两根,且x1+x2=3,x1x2=1,则a、 b 的值分别是()A .a=﹣3,b=1 B.a=3, b=1C.a=﹣,b=﹣ 1 D.a=﹣,b=1考点:根与系数的关系.专题:计算题.分析:根据根与系数的关系得到得x1+x 2=﹣2a,x1x2=b,即﹣2a=3,b=1,然后解一次方程即可.解答:解:根据题意得x1+x2=﹣2a,x1x2=b,所以﹣2a=3,b=1,解得a=﹣,b=1.故选D.点评: 2本题考查了根与系数的关系:若x1,x2 是一元二次方程ax+bx+c=0(a≠0)的两根时,x1+x2= ,x1x2= .2 22﹣5x﹣2=0 的两个实数根,则α14.(2013?湖北)已知α,β是一元二次方程x+αβ+β的值为()A .﹣ 1 B.9 C.23 D.27考点:根与系数的关系.分析:根据根与系数的关系α+β=﹣,αβ= ,求出α+β和αβ的值,再把要求的式子进行整理,即可得出答案.2解答:解:∵α,β是方程x ﹣5x﹣2=0 的两个实数根,∴α+β=5,αβ=﹣2,2 2 又∵α+αβ+β=(α+β)2 2 2 ∴α+αβ+β=5+2=27;故选D.2﹣βα,点评:此题考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法,若方程两个为x1, x2,则x1+x2=﹣,x1x2= .2 215.(2013?桂林)已知关于x 的一元二次方程x+2x+a﹣1=0 有两根为x1 和x2,且x1 ﹣x1x2=0,则a的值是()A .a=1 B.a=1 或a=﹣2 C.a=2 D.a=1 或a=2考点:根与系数的关系;一元二次方程的解.专题:压轴题.2分析:根据 x1 ﹣x1x2=0 可以求得x1=0 或者 x1=x2,所以①把 x1=0 代入原方程可以求得a=1;②利用根的判别式等于 0 来求 a 的值.2解答:解:解x1 ﹣x1x2=0,得x1=0,或 x1=x2,①把 x1=0 代入已知方程,得a﹣1=0,解得: a=1;②当 x1=x 2 时,△=4﹣4(a﹣1)=0,即 8﹣4a=0,解得: a=2.综上所述,a=1 或 a=2.故选: D.点评:本题考查了根与系数的关系、一元二次方程的解的定义.解答该题的技巧性在于巧妙地利用了根的判别式等于 0 来求 a 的另一值.2﹣4x+3=0 两根为x1、x2,则 x1+x2=()16.(2013?天河区二模)已知一元二次方程xA .4 B.3 C.﹣4 D.﹣3考点:根与系数的关系.分析: 2根据一元二次方程x﹣4x+3=0 两根为x1、x2,直接利用x1+x2=﹣求出即可.2解答:解:∵一元二次方程x ﹣4x+3=0 两根为x1、x2,∴x1+x2=﹣=4.故选 A.点评:此题主要考查了一元二次方程根与系数的关系,正确记忆根与系数关系公式是解决问题的关键.2﹣5x﹣3=0 的两根,则的值等于()17.(2013?青神县一模)已知m 和 n 是方程2xA .B.C.D.考点:根与系数的关系.专题:计算题.分析:根据根与系数的关系得到m+n= ,mn=﹣,再变形+ 得到,然后利用整体思想计算.解答:解:根据题意得m+n= ,mn=﹣,所以+ = = =﹣.故选 D.点评: 2本题考查了一元二次方程ax+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1,x2,则x1+x2=﹣,x1?x2= .218.(2012?莱芜)已知m、n 是方程x +2 x+1=0 的两根,则代数式的值为()A .9 B.±3 C.3 D.5考点:根与系数的关系;二次根式的化简求值.专题:整体思想.分析: 2根据一元二次方程ax+bx+c=0(a≠0)的根与系数的关系得到m+n= ﹣2 ,mn=1,再变形得,然后把m+n=﹣2 ,mn=1 整体代入计算即可.2解答:解:∵ m、n 是方程 x+2 x+1=0 的两根,∴m+n=﹣2 ,mn=1,∴= = = =3.故选 C.点评: 2本题考查了一元二次方程ax+bx+c=0(a≠0)的根与系数的关系:若方程两根分别为x1,x2,则 x1+x2=﹣,x1?x2= .也考查了二次根式的化简求值.219.(2012?天门)如果关于x 的一元二次方程x+4x+a=0 的两个不相等实数根x1,x2 满足 x1x2﹣2x1﹣2x2﹣5=0,那么 a 的值为()A .3 B.﹣3 C.13 D.﹣13考点:根与系数的关系;根的判别式.分析:利用根与系数的关系求得x1x2=a,x1+x2=﹣4,然后将其代入x1x2﹣2x1﹣2x2﹣5=x1x2﹣2(x1+x 2)﹣5=0 列出关于 a 的方程,通过解方程即可求得 a 的值.2解答:解:∵ x1,x2 是关于x 的一元二次方程x+4x+a=0 的两个不相等实数根,∴x1x2=a,x1+x2=﹣4,∴x1x2﹣2x1﹣2x2﹣5=x1x2﹣2(x1+x2)﹣5=a﹣2×(﹣4)﹣5=0,即 a+3=0,解得, a=﹣3;故选 B.点评:本题考查了根与系数的关系.将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.2﹣3x﹣2=0 的两实根为x1、x2,则( x1+2)(x2+2)的值为()20.(2011?锦江区模拟)若方程xA .﹣4 B.6 C.8 D.12考点:根与系数的关系.分析:根据( x1+2)(x2+2)=x1x2+2x1+2x2+4=x 1x2+2(x1+x 2)+4,根据一元二次方程根与系数的关系,即两根的和与积,代入数值计算即可.2解答:解:∵ x1、x2 是方程x﹣3x﹣2=0 的两个实数根.∴x1+x2=3,x1?x2=﹣2.又∵( x1+2)(x2+2)=x1x2+2x1+2x2+4=x 1x2+2(x1+x2)+4.将 x1+x2=3、x1?x2=﹣2 代入,得(x1+2)(x2+2)=x1x2+2x1+2x2+4=x1x2+2(x1+x2)+4=(﹣2)+2×3+4=8.故选 C点评:将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.2 2﹣p﹣1=0,1﹣q﹣q21.(2011?鄂州模拟)已知p =0,且 pq≠1,则的值为()A .1 B.2 C.D.考点:根与系数的关系.专题:计算题.分析:2 2首先把1﹣q﹣q ﹣p﹣1=0,根据一元二次方程根与系数=0 变形为,然后结合p2的关系可以得到p 与是方程 x ﹣x﹣1=0 的两个不相等的实数根,那么利用根与系数的关系即可求出所求代数式的值.2 2解答:解:由p ﹣p﹣1=0 和 1﹣q﹣q=0,可知p≠0,q≠0,又∵pq≠1,∴,2得:,2∴由方程1﹣q﹣q=0 的两边都除以q2∴p 与是方程x ﹣x﹣1=0 的两个不相等的实数根,则由韦达定理,得p+ =1,∴=p+ =1.故选 A.点评:2本题考查了根与系数的关系.首先把1﹣q﹣q=0 变形为是解题的关键,然后利用根与系数的关系就可以求出所求代数式的值.2 2﹣5b+6=0,c ﹣5c+6=0,则△ABC 的周 22.(2010?滨湖区一模)若△ABC 的一边a为 4,另两边b、c 分别满足 b长为()A .9 B.10 C.9 或 10 D.8 或 9 或 10考点:根与系数的关系;三角形三边关系.专题:压轴题.2 2 2分析:由于两边b、c 分别满足 b ﹣5b+6=0,c ﹣5c+6=0,那么 b、c 可以看作方程x ﹣5x+6=0 的两根,根据根与系数的关系可以得到b+c=5,bc=6,而△ABC 的一边 a 为 4,由此即可求出△ABC 的一边 a 为 4 周长.2 2解答:解:∵两边b、c 分别满足 b ﹣5b+6=0 ,c ﹣5c+6=0,2∴b、c 可以看作方程x ﹣5x+6=0 的两根,∴b+c=5,bc=6,而△ABC 的一边 a 为 4,①若 b=c,则 b=c=3 或b=c=2,但 2+2=4,所以三角形不成立,故b=c=3.∴△ABC 的周长为4+3+3=10 或 4+2+2②若 b≠c,∴△ABC 的周长为4+5=9.故选 C.点评:此题把一元二次方程的根与系数的关系与三角形的周长结合起来,利用根与系数的关系来三角形的周长.此题要注意分类讨论.二.填空题(共4小题)2 23.(2014?莱芜)若关于x 的方程x +(k﹣2)x+k 2=0 的两根互为倒数,则k= ﹣1 .考点:根与系数的关系.专题:判别式法.分析: 2根据已知和根与系数的关系x1x2= 得出k=1,求出k 的值,再根据原方程有两个实数根,求出符合题意的k 的值.2解答:解:∵x1x2=k,两根互为倒数, 2∴ k=1,解得k=1 或﹣ 1;∵方程有两个实数根,△>0,∴当k=1 时,△<0,舍去,故k 的值为﹣1.故答案为:﹣1.2点评:本题考查了根与系数的关系,根据x1,x2 是关于x 的一元二次方程ax+bx+c=0 (a≠0,a,b,c 为常数)的两个实数根,则x1+x2=﹣,x1x2= 进行求解.2 2﹣mn+3m+n= 8 . 24.(2014?呼和浩特)已知m,n 是方程x +2x﹣5=0 的两个实数根,则m考点:根与系数的关系;一元二次方程的解.专题:常规题型.分析:根据m+n= ﹣=﹣ 2,m?n=﹣5,直接求出m、n 即可解题.2解答:解:∵m、n 是方程x+2x﹣5=0 的两个实数根,∴ mn=﹣5, m+n=﹣2,2∵ m+2m﹣5=0 2∴ m=5﹣2m 2﹣mn+3m+n= (5﹣2m)﹣(﹣5)+3m+n m=10+m+n=10﹣2=8故答案为:8.点评:此题主要考查了一元二次方程根根的计算公式,根据题意得出m 和n 的值是解决问题的关键.2 25.(2014?广州)若关于x 的方程x +2mx+m 22+3m﹣2=0 有两个实数根x1、x2,则x1(x2+x 1)+x2的最小值为.考点:根与系数的关系;二次函数的最值.专题:判别式法.分析:由题意可得△=b 2﹣4ac≥0,然后根据不等式的最小值计算即可得到结论.2 2解答:解:由题意知,方程x+2mx+m +3m﹣2=0 有两个实数根, 2 22则△=b ﹣ 4ac=4m ﹣4( m+3m﹣2)=8﹣12m≥0,∴ m≤,2∵ x1(x2+x1)+x 22=(x2+x1)﹣x1x22 2﹣( m=(﹣ 2m)+3m﹣2)2﹣3m+2 =3m2﹣m+ ﹣)+2=3(m2=3(m﹣)+ ;∴当m= 时,有最小值;∵<,∴ m= 成立;∴最小值为;故答案为:.点评:本题考查了一元二次方程根与系数关系,考查了一元二次不等式的最值问题.总结一元二次方程根的情况与判别式△的关系:( 1)△>0? 方程有两个不相等的实数根;( 2)△=0? 方程有两个相等的实数根;( 3)△<0? 方程没有实数根.2 26.(2014 ?桂林)已知关于x 的一元二次方程x +(2k+1 )x+k 2﹣2=0 的两根为x1 和x2,且( x1﹣2)(x1﹣x2)=0,则k 的值是﹣2 或﹣.考点:根与系数的关系;根的判别式.分析:先由(x1﹣2)(x1﹣x2) =0,得出x1﹣ 2=0 或x1﹣x2=0,再分两种情况进行讨论:①如果x1﹣2=0,将x=22 2 2代入x ﹣2=0,得4+2(2k+1)+k ﹣2=0,解方程求出k= ﹣2;②如果x1﹣x2=0,那么将x1+x2=+(2k+1 )x+k2﹣( 2k+1),x1x2=k﹣ 2 代入可求出k 的值,再根据判别式进行检验.解答:解:∵(x1﹣2)(x1﹣ x2)=0,∴ x1﹣2=0 或x1﹣x2=0.①如果x1﹣2=0,那么x1=2,2 2将x=2 代入x ﹣2=0,+(2k+1)x+k2得4+2(2k+1)+k ﹣2=0,2整理,得k+4k+4=0 ,解得k=﹣2;②如果x1﹣x2=0,2 2那么(x1﹣x2)=(x1+x 2)﹣4x1x2=[﹣( 2k+1)] 2 2﹣4(k ﹣2)=4k+9=0 ,解得k=﹣.又∵△=(2k+1)2 2﹣4(k ﹣ 2)≥0.解得:k≥﹣.所以k 的值为﹣ 2 或﹣.故答案为:﹣ 2 或﹣ .点评: 本题考查了一元二次方程的根与系数的关系,根的判别式,注意在利用根与系数的关系时,需用判别式进行检验.三.解答题(共4 小题)2 27.(2014?泸州)已知 x1,x2 是关于 x 的一元二次方程 x (1)若( x1﹣1)(x2﹣1)=28,求 m 的值;﹣2(m+1) x+m2 +5=0 的两实数根. (2)已知等腰 △ABC 的一边长为 7,若 x 1,x 2 恰好是 △ABC 另外两边的边长,求这个三角形的周长. 考点 : 根与系数的关系;三角形三边关系;等腰三角形的性质. 专题 : 代数几何综合题. 分析: ( 1)利用( x 1﹣1)(x 2﹣1)=x 1?x 2﹣( x 1+x 2)+1=m2 +5﹣2(m+1)+1=28,求得 m 的值即可;( 2)分 7 为底边和 7 为腰两种情况分类讨论即可确定等腰三角形的周长.2 2解答: 解:(1)∵ x 1,x 2 是关于 x 的一元二次方程 x ﹣ 2(m+1) x+m +5=0 的两实数根,2∴ x 1+x2=2( m+1),x1?x2=m +5,2∴( x 1﹣1)(x 2﹣1)=x 1?x 2﹣( x 1+x 2)+1=m +5﹣2( m+1)+1=28, 解得: m=﹣ 4 或 m=6;当 m=﹣ 4 时原方程无解, ∴ m=6;2( 2)① 当 7 为底边时,此时方程 x ﹣2( m+1)x+m2 2∴△ =4(m+1) ﹣4( m 解得: m=2,+5)=0, 2∴方程变为 x ﹣ 6x+9=0,2 +5=0 有两个相等的实数根,解得: x 1=x2=3, ∵ 3+3< 7, ∴不能构成三角形;② 当 7 为腰时,设x 1=7, 代入方程得: 49﹣ 14(m+1)+m2+5=0, 解得: m=10 或 4, 2当 m=10 时方程变为 x ﹣22x+105=0 ,解得: x=7 或 15∵ 7+7< 15,不能组成三角形;2当 m=4 时方程变为 x ﹣10x+21=0 , 解得: x=3 或 7, 此时三角形的周长为 7+7+3=17 .点评: 本题考查了根与系数的关系及三角形的三边关系,解题的关键是熟知两根之和和两根之积分别与系数的关系.2228.(2014?日照二模)已知 x 1, x 2 是关于 x 的一元二次方程 x﹣1=0 的两个实数根,其满足(3x 1+(3a﹣1)x+2a﹣x2)(x1﹣3x2)=﹣80.求实数 a 的所有可能值.考点:根与系数的关系;根的判别式.题:计算题.专2 2 2 2分析:根据△的意义由一元二次方程x ﹣1=0 的两个实数根得到△≥0,即(3a﹣1)﹣4(2a ﹣1)+(3a﹣ 1)x+2a2 2﹣6a+5≥0,根据根与系数的关系得到x1+x2=﹣( 3a﹣1),x1?x2=2a ﹣1,由( 3x1﹣x2)(x1﹣3x2)=﹣80 =a2 2 2变形得到3(x1+x2)﹣16x1x2=﹣80,于是有3(3a﹣1)﹣ 16(2a ﹣1)=﹣ 80,解方程得到a=3 或a=﹣,然后代入△验算即可得到实数 a 的值.2 2解答:解:∵x1,x2 是关于x 的一元二次方程x+(3a﹣1)x+2a﹣1=0 的两个实数根, 2 2 2 ∴△≥0,即( 3a﹣ 1)﹣4( 2a ﹣1)=a ﹣6a+5≥0所以a≥5 或 a≤1.⋯(3 分)2∴ x1+x2=﹣( 3a﹣1),x1?x2=2a2 2﹣ 1,∵( 3x1﹣x2)(x1﹣3x2)=﹣80,即3(x1 )﹣ 10x1x2=﹣80,+x2 2∴ 3(x1+x2)﹣ 16x1x2=﹣ 80,2 2∴ 3(3a﹣ 1)﹣16(2a ﹣1) =﹣80,2整理得,5a+18a﹣99=0,∴( 5a+33)(a﹣3)=0,解得a=3 或a=﹣,当a=3 时,△=9﹣6×3+5=﹣4<0,故舍去,当a=﹣时,△=(﹣)2﹣6×(﹣)+6=()2+6×+6>0,∴实数 a 的值为﹣点评: 2本题考查了一元二次方程ax+bx+c=0(a≠0)的根与系数的关系:如果方程的两根为x1,x2,则x1+x2=﹣,x1?x2= .也考查了一元二次方程根的判别式以及代数式的变形能力.2﹣( 2k+1)x+k 29.(2013?孝感)已知关于x 的一元二次方程x 2+2k=0 有两个实数根x1,x2.(1)求实数k 的取值范围;2 2(2)是否存在实数k 使得x1?x2﹣ x1 ﹣x2≥0 成立?若存在,请求出k 的值;若不存在,请说明理由.考点:根与系数的关系;根的判别式.专题:压轴题.2 分析:( 1)根据已知一元二次方程的根的情况,得到根的判别式△≥0,据此列出关于k 的不等式[﹣( 2k+1)]2﹣ 4(k+2k)≥0,通过解该不等式即可求得k 的取值范围;( 2)假设存在实数k 使得≥0 成立.利用根与系数的关系可以求得,然后利用完全平方公式可以把已知不等式转化为含有两根之和、两根之积的形式≥0,通过解不等式可以求得k 的值.解答:解:(1)∵原方程有两个实数根,2 2∴ [﹣( 2k+1 )] ﹣4(k+2k)≥0,2 2∴ 4k ﹣8k≥0+4k+1﹣4k∴ 1﹣4k≥0,∴ k≤.∴当k≤时,原方程有两个实数根.( 2)假设存在实数k 使得≥0 成立.∵ x1,x2 是原方程的两根,∴.由≥0,得≥0.2∴ 3(k+2k)﹣(2k+1)2≥0,整理得:﹣(k﹣1)2≥0,∴只有当k=1 时,上式才能成立.又∵由(1)知k≤,∴不存在实数k 使得≥0 成立.点评:本题综合考查了根的判别式和根与系数的关系,在解不等式时一定要注意数值的正负与不等号的变化关系.30.(2001?苏州)已知关于x 的一元二次方程,(1)求证:不论k取何值,方程总有两个不相等的实数根;2(2)设x1、x2 是方程的两个根,且x1 ﹣2kx1+2x1x2=5,求k 的值.考点:根与系数的关系;根的判别式.专题:计算题;证明题;压轴题.分析:( 1)要保证方程总有两个不相等的实数根,就必须使△>0 恒成立;( 2)欲求k 的值,先把此代数式变形为两根之积或两根之和的形式,代入数值计算即可.解答:解:(1)已知关于x 的一元二次方程,∴△ =(﹣2k)2 2 2 ﹣ 4×(k ﹣2) =2k+8,2∵ 2k+8> 0 恒成立,∴不论k取何值,方程总有两个不相等的实数根.( 2)∵ x1、x2 是方程的两个根,2∴ x1+x2=2k,x1?x2= k﹣2,2 2 2∴ x1 ﹣2kx1+2x1x2=x1 ﹣( x1+x2)x1+2x1x2=x1x2= k﹣2=5,解得k=±.点评:此题主要考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.欢迎您的光临, Wor 文档下载后可修改编辑双击可删除页眉页脚谢谢!希望您提出您宝贵的意见,你的意见是我进步的动力。
《一元二次方程根与系数的关系》综合练习
2.4 一元二次方程根与系数的关系综合练习一、填空题:1、如果关于的方程的两根之差为2,那么8 。
2、已知关于的一元二次方程两根互为倒数,则±√2 。
3、已知关于的方程的两根为,且,则1/3 。
4、已知是方程的两个根,那么:65/4 ;5/2 ;9/2 。
5、已知关于的一元二次方程的两根为和,且,则-2 ;-8 。
6、如果关于的一元二次方程的一个根是,那么另一个根是-1 ,的值为√2-1 。
7、已知是的一根,则另一根为2-√3 ,的值为 1 。
8、一个一元二次方程的两个根是和,那么这个一元二次方程为:x2-4x-2=0 。
二、求值题:1、已知是方程的两个根,利用根与系数的关系,求的值。
1、提示:由韦达定理得:,,∴2、已知是方程的两个根,利用根与系数的关系,求的值。
2、提示:由韦达定理得:,,∴4、已知两数的和等于6,这两数的积是4,求这两数。
5、已知关于x的方程的两根满足关系式,求的值及方程的两个根。
6、已知方程和有一个相同的根,求的值及这个相同的根。
4、提示:设这两个数为,于是有,,因此可看作方程的两根,即,,所以可得方程:,解得:,,所以所求的两个数分别是,。
5、提示:由韦达定理得,,∵,∴,∴,∴,化简得:;解得:,;以下分两种情况:①当时,,,组成方程组:;解这个方程组得:;②当时,,,组成方程组:;解这个方程组得:6、提示:设和相同的根为,于是可得方程组:;①②得:,解这个方程得:;以下分两种情况:(1)当时,代入①得;(2)当时,代入①得。
所以和相同的根为,的值分别为,。
一元二次方程的根与系数的关系习题
1.3 一元二次方程的根与系数的关系一、选择题(本题包括8小题.每小题只有1个选项符合题意)1.若1x ,2x 是一元二次方程0322=--x x 的两个根,则21x x 的值是( )A .2-B . 3-C .2D .32.已知1x ,2x 是一元二次方程022=-x x 的两个根,则21x x +的值是( )A .0B . 2C .2-D .43.已知实数b a ,分别满足0462=+-a a ,0462=+-b b ,且b a ≠,则b a +的值是( )A .6B . 6-C .4D .4-4.已知方程0122=--x x ,则此方程( )A .无实数根B .两根之和为2-C .两根之积为1-D .有一个根为21+-5.已知一元二次方程062=+-c x x 有一个根为2,则另一个根为( )A .2B .3C .4D .86.已知n m ,是关于x 的一元二次方程032=+-a x x 的两个根,若6)1)(1(-=--n m ,则a 的值为( )A .10-B .4C .4-D .107.已知一元二次方程0132=--x x 的两个根分别是1x ,2x ,则221221x x x x +的值为( )A .3-B .3C .6-D .68.已知βα,是关于x 的方程0)32(22=+++m x m x 的两个不相等的实数根,且满足111-=+βα,则m 的值是( )A .3B .1C .3或1-D .3-或1二、填空题(本题包括4小题)9.若11-=x 是关于x 的方程052=-+mx x 的一个根,则方程的另一个根=2x .10.若两个不相等的实数n m ,满足条件:0122=--m m ,0122=--n n ,则22n m + 的值是 .11.已知n m ,是关于x 的方程02222=-++-a a ax x 的两个实数根,则n m +的最大值是 .12.设b a ,是方程020152=-+x x 的两个不相等的实数根,则b a a ++22的值为 .三、解答题(本题包括4小题)13.已知n m ,是方程01222=++x x 的两个根,求代数式mn n m 322++的值.14.已知关于x 的一元二次方程032=--x x 的两个实数根分别为βα,,求)3)(3(++βα的值.15.已知n m ,是方程03522=--x x 的两个根,求nm 11+的值.16.设1x ,2x 是方程020142=--x x 的两个实数根,求20142015231-+x x 的值.1.3 一元二次方程的根与系数的关系参考答案一、选择题(本题包括8小题.每小题只有1个选项符合题意)1.B2.B3.A4.C5.C6.C7.A8.A二、填空题(本题包括4小题)9.5 10.6 11.4 12.2014三、解答题(本题包括4小题)13.314.915.35 16.2015。
初中数学一元二次方程解法根与系数关系练习题(附答案)
初中数学一元二次方程解法根与系数关系练习题一、单选题1.一元二次方程293x x -=-的解是( )A.3x =B.4x =-C.123,4x x ==-D.123,4x x ==2.直角三角形两条直角边长的和是7,面积是6,则斜边长是()B.5D.73.一元二次方程220x x -=的两根分别为1x 和2x ,则12x x 为( )A.2-B.1C.2D.0@A.2m =±B.2m =C.2m =-D.2m ≠±5.若a ,β为方程22510x x --=的两个实数根,则2235a a ββ++的值为( )A.13-B.12C.14D.15A.2B. 1-C.2或1-D.不存在7.已知关于x 的一元二次方程2(1)2(1)0a x bx a ++++=有两个相等的实数根,下列判断正确的是( )A.1一定不是关于x 的方程20x bx a ++=的根B.0一定不是关于x 的方程20x bx a ++=的根C.1和1-都是关于x 的方程20x bx a ++=的根D.1和1-不都是关于x 的方程20x bx a ++=的根》8.关于x 的一元二次方程2(1)320a x x -+-=有实数根,则a 的取值范围是( )A.18a >- B.18a ≥- C. 18a >-且1a ≠ D. 18a ≥-且1a ≠ 9.一个正方体的表面展开图如图所示,已知正方体相对两个面上的数值相同,且不相对两个面上的数值不相同,则“★”面上的数为( )A.1B.1或2C.2D.2或310.定义一种新运算:()a b a a b =-♣.例如,434(43)4=⨯-=♣.若23x =♣,则x 的值是( )A.3x =B.1x =-C.123,1x x ==D.123,1x x==-二、解答题@11.已知关于x 的一元二次方程2(1)210m x mx m --++=.(1)求方程的根;(2)当m 为何整数时,此方程的两个根都为正整数?12.阅读材料:把形如2ax bx c ++ (,,a b c 为常数)的二次三项式(或其一部分)配成完全平方式的方法叫做配方法.配方法的基本形式是完全平方公式的逆写,即2222()a ab b a b ±+=±. 例如:222213(1)3,(2)2,(2)24x x x x x -+-+-+是224x x -+的三种不同形式的配方,即“余项”分别是常数项、一次项、二次项.请根据阅读材料解决下列问题: (1)仿照上面的例子,写出242x x -+的三种不同形式的配方;)(2)已知2223240a b c ab b c ++---+=,求a b c ++的值.三、填空题14.关于x 的方程2()0a x m b ++=的解是12x =-,21x =(a ,m ,b 均为常数,0a ≠),则方15.若关于x 的一元二次方程220mx x m ++=的两根之积为-1,则m 的值为 .16.小明设计了一个魔术盒,当任意实数对(,)a b 进入其中时,会得到一个新的实数223a b -+.若17.已知关于x 的方程260x x k -+=的两根分别是12,x x ,且满足12113x x +=,则k = .参考答案<1.答案:C解析:方程293x x -=-变形为(3)(3)(3)0x x x +-+-=,将方程左边因式分解得(3)(4)0x x -+=,所以123,4x x ==-.2.答案:B解析:设其中一条直角边的长为x ,则另一条直角边的长为7x -,由题意,得1(7)62x x -=,解得1234x x ==,5=.故选B3.答案:D解析:∵一元二次方程220x x -=的两根分别为1x 和2x ,{∴120x x =.故选:D .4.答案:B方程,故2m =5.答案:B解析:a β,为方程22510x x --=的两个实数根,故251251022a a ββββ+==---=,,,从而2521ββ=-222225123523212()1211222a a a a a a ββββββ⎛⎫⎛⎫∴++=++-=+--=---= ⎪ ⎪⎝⎭⎝⎭. 6.答案:A^解析:由题意得0m ≠,2(2)44404m m m m ⎡⎤∆=-+-=+>⎣⎦,解得1m >-且0m ≠. 121212211414m x x m m x x x x +++=== 解得1221m m ==-,(舍去),所以m 的值为2.7.答案:D解析:关于x 的一元二次方程2(1)2(1)0a x bx a ++++=有两个相等的实数根, 2210(2)4(1)0a b a +≠⎧∴⎨∆=-+=⎩ 1b a ∴=+或(1)b a =-+.当1b a =+时,有10a b -+=,此时1-是方程20x bx a ++=的根;当(1)b a =-+时,有10a b ++=,此时1是方程20x bx a ++=的根.10a +≠,1(1)a a ∴+≠-+'1∴和1-不都是关于x 的方程20x bx a ++=的根.当0a =时,0是关于x 的方程20x bx a ++=的根.综上,D 正确.8.答案:D解析:根据一元二次方程的定义和根的判别式的意义得到1a ≠且234(1)(2)0a ∆=--⋅-≥,然后求出两个不等式解集的公共部分即可. 9.答案:C解析:正方体的平面展开图共有六个面,其中面“2x ”与面“32x -”相对,面“★”与面“1x +”相对.因为相对两个面上的数值相同,,所以232x x =-,解得1x =或2x =.又因为不相对两个面上的数值不相同,当2x =时,2324x x +=-=,所以x 只能为1,即12x =+=★.10.答案:D解析:23,(2)3x x x =∴-=♣整理,得2230x x --=,因式分解,得(3)(1)0x x -+=,30x ∴-=或10x +=,$123,1x x ∴==-.故选D.11.答案:(1)解:根据题意,得1m ≠1,2,1a m b m c m =-=-=+224(2)4(1)(1)4b ac m m m ∴∆=-=---+=(2)12(1)1m m x m m --±∴==-- 则121,11m x x m +==-(2)由(1),知112111m x m m +==+--. 方程的两个根都为正整数,21m ∴-是正整数, ^11m ∴-=或12m -=,解得2m =或3.即m 为2或3时,此方程的两个根都为正整数。
初中数学专题复习一元二次方程根与系数的关系(2)(含答案)
第13课 一元二次方程根与系数的关系(二)目的:复习x 1+x 2=-b a ,x 1x 2=c a,并应用. 中考基础知识1.对于ax 2+bx+c=0(a ≠0)若其二根为x 1x 2,且△≥0,则x 1+x 2=________,x 1x 2=______.2.对1212b x x a c x x a ⎧+=-⎪⎪⎨⎪=⎪⎩来讲,其中5个可变量x 1、x 2、a 、b 、c ,有两个方程,知其中的三个可求另外的两个,但一定要注意使用条件△≥0.换句话说,在使用△时必须考虑a ≠0,在使用x 1+x 2=-b a ,x 1x 2=c a时,必考虑△≥0条件.3.已知方程的二根为m ,n ,还原方程的公式为:x 2-(m+n )x+_____=0,即要写出一个一元二次方程必须求出两根之和x 1+x 2与两根之积x 1x 2.备考例题指导例1.已知方程x 2+(k-2)x+4=0的两实根为a 、b ,且a=4b ,求实数k 的值.分析:由题意得2,4,4.a b k ab a b +=-⎧⎪=⎨⎪=⎩三个方程三个未知数即可求k ,但要注意检验是否△≥0.例2.已知方程2x 2-kx-2k+1=0的两实根的平方和是294,求实数k 的值. 分析:∵x 1+x 2=2k , x 1x 2=122k -, ① 而x 12+x 22=294. ② 把②配方将①代入可得关于k 的一元二次方程,从而求出k ,但要注意检验是否△≥0. 例3.(2005,江西)设关于x 的一元二次方程x 2-4x-2(k-1)=0有两个实数根x 1,x 2,•问是否存在x 1+x 2<x 1·x 2的情况?解析:不存在.由一元二次方程根与系数的关系,得x 1+x 2=4,x 1·x 2=-2(k-1).假设存在x 1+x 2<x 1·x 2,即有4<-2(k-1), k<-1.因为方程有实根,由根的判别式△=(-4)2-4[-2(k-1)]≥0,得k ≥-1. ∴k 值不存在,即不存在x 1+x 2<x 1·x 2的情况.例4.已知一元二次方程2x 2+3x-5=0,不解方程,求以该方程的两根的倒数为根的一元二次方程.分析:要求新方程需求y 1+y 2,y 1y 2的值,根据题意得y 1=11x ,y=21x . ∴y 1+y 2=11x +21x =1212x x x x , y 1y 2=121x x ,而x 1+x 2=-32,x 1x 2=-52,可求. 备考巩固练习1.填空题(1)已知3x 2-2x-1=0的二根为x 1,x 2,则x 1+x 2=______,x 1x 2=______,•11x +21x =•_______,•x 12+x 22=_______,x 1-x 2=________.(2)已知一元二次方程3x 2-kx-1=•0•的一根为3,则该方程的另一根为_____,•k=_______.(3)已知一元二次方程的两根为_______.2.(2002,成都)已知x 1,x 2是一元二次方程4k x 2-4kx+k+1=0的两个实数根.(1)是否存在实数k ,使(2x 1-x 2)(x 1-2x 2)=-32成立?若存在,求出k 值;若不存在,•请说明理由.(2)求使12x x +21x x -2的值为整数的实数k 的整数值.3.(2005,南通)已知关于x的方程x2-kx+k2+n=0有两个不相等的实数根x1,x2,且(2x1+x2)-8(2x1+x2)+15=0(1)求证:n<0;(2)试用k的代数式表示x1;(3)当n=-3时,求k的值.4.(2002,北京)在Rt△ABC中,∠C=90°,斜边c=5,两直角边的长分别为a、b是关于x的一元二次方程x2-mx+2m-2=0的两个根,求Rt△ABC中较小锐角的正弦值.5.(2005,徐州)已知α、β是关于x 的一元二次方程(m-1)x 2-x+1=0的两个实数根,• 且满足(α+1)(β+1)=m+1,求实数m 的值.6.(2003,黑龙江)关于x 的方程kx 2+(k+1)x+4k =0,有两个不相等的实数根. (1)求k 的取值范围;(2)是否存在实数k ,使方程的两个实数根的倒数和等于0?若存在,求出k 的值;若不存在,说明理由.答案:1.(1)x 1+x 2=23,x 1x 2=-13,11x +21x =1212x x x x +=-2 x 12+x 22=(x 1+x 2)2-2x 1x 2=49+23=109∵(x 1-x 2)2=(x 1+x 2)2-4x 1x 2=49+43=169∴x 1-x 2=±43 (2)2233133k x x ⎧+=⎪⎪⎨⎪=-⎪⎩∴x 2=-19,k=263 (3)∵,((=1∴这个方程为:x 2-4x+1=02.(1)12121212221121221143(2)(2)232422x x k x x k x x x x x x x x x x +=⎧⎪+⎪=⎪⎪⎨--=-⎪⎪⎪⇒--+=-⎪⎩ ①②代入③得2(x 1+x 2)2-9x 1x 2=-32,2-9(1)4k k +=-32 ∵k ≠0, ∴72=9(1)4k k +,k=95 而当k=95时,△<0,∴不存在 (2)12x x +21x x -2=221212x x x x +-=2121212()2x x x x x x +--2=11214k k k k +-+-2=4221k k k --+-221k k ++=41k -+ ∵值为整数,k 为整数 ∴k+1=±1,±2,±4∴k=0,-2,1,-3,3,-5∴由△≥0即16k 2-16k (k+1)≥0得k<0∴k+1<1 ∴k+1=-1,-2,-4 ∴k=-2,-3,-53.(1)证明:∵关于x 的方程x 2-kx+k 2+n=0有两个不相等的实数根,∴△=k 2-4(k 2+n )=-3k 2-4n>0∴n<-34k 2 又-k 2≤0 ∴n<0 (2)x 1=3-k 或x 1=5-k(3)当x 1=3-k 时,k=1,当x 1=5-k 时,k 不存在,所求的k 的值为1. 4.22a b m ab m +=⎧⇒⎨=-⎩ a 2+2ab+b 2=m 2∵c 2=a 2+b 2=25∴25+2(2m-2)=m 2,m 2-4m-21=0(m-7)(m+3)=0 ∴m 1=7,m 2=-3∵a>0,b>0 ∴a+b>0 m=7∴712a b ab +=⎧⎨=⎩ ∴34a b =⎧⎨=⎩ 或43a b =⎧⎨=⎩∴较小角的正弦值为355.∵一元二次方程(m-1)x-x+1=0有两个实数根αβ, ∴210(1)4(1)0m m -≠⎧⎨∆=---≥⎩ 解之得m ≤54且m ≠1, 而α+β=11m -,αβ=11m -, 又(α+1)(β+1)=(α+β)+αβ+1=m+1∴11m -+11m -=m 解之得m 1=-1,m 2=2,经检验,m 1=-1,m 2=2都是原方程的根. ∵m ≤54, ∴m 2=2不合题意,舍去,∴m 的值为-1注:如果没有求出m 的取值范围,但在求出m 值后代入原方程检验,舍去m=2也正确.6.解:(1)由题意知,k ≠0,且△=(k+1)2-4k ·4k >0 ∴k>-12且k ≠0 (2)不存在,设方程的两根是x 1,x 2, ∵x 1x 2=14≠0 ∴ 11x +21x =1212x x x x +=0 ∴x 1+x 2=0∵x 1+x 2=-1k k+ ∴k+1=0 k=-1 由(1)知k<-12,所以满足条件的实数k 不存在.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元二次方程根与系数的关系练习题(1)
一、 填空:
1、 如果一元二次方程c bx ax ++2=0)(0≠a 的两根为1x ,2x ,那么1x +2x = ,1x 2x = .
2、如果方程02=++q px x 的两根为1x ,2x ,那么1x +2x = ,1x 2x = .
3、方程01322=--x x 的两根为1x ,2x ,那么1x +2x = ,1x 2x = .
4、如果一元二次方程02=++n mx x 的两根互为相反数,那么m = ;如果两根互为倒数,那么n = .
5方程0)1(2=-++n mx x 的两个根是2和-4,那么m = ,n = .
6、以1x ,2x 为根的一元二次方程(二次项系数为1)是 .
7、以13+,13-为根的一元二次方程是 .
8、若两数和为3,两数积为-4,则这两数分别为 .
9、若两数和为4,两数积为3,则这两数分别为 .
10、已知方程04322=-+x x 的两根为1x ,2x ,那么2
221x x += .
11、若方程062=+-m x x 的一个根是23-,则另一根是 ,m 的值是 .
12、若方程01)1(2=----k x k x 的两根互为相反数,则k = ,
若两根互为倒数,则k = .
13、如果是关于x 的方程02=++n mx x 的根是2-和3,那么n mx x ++2在实数范围内可分解为
14、已知方程0232=--x x 的两根为1x 、2x ,则
(1)1x 2+2x 2= _; (2)2111x x += ; (3)=-221)(x x _ _; (4))1)(1(21++x x = .
二、选择题:
1、关于x 的方程p x x --822=0有一个正根,一个负根,则p 的值是( )
(A )0 (B )正数 (C )-8 (D )-4
2、已知方程122-+x x =0的两根是1x ,2x ,那么=++12
21221x x x x ( )
(A )-7 (B) 3 (C ) 7 (D) -3
3、已知方程0322=--x x 的两根为1x ,2x ,那么2
111x x +=( ) (A )-31 (B) 3
1 (C )3 (D) -3 4、下列方程中,两个实数根之和为2的一元二次方程是( )
(A )0322=-+x x (B ) 0322=+-x x
(C )0322=--x x (D )0322=++x x
5、若方程04)103(422=+--+a x a a x 的两根互为相反数,则a 的值是( )
(A )5或-2 (B) 5 (C ) -2 (D) -5或2
6、若方程04322=--x x 的两根是1x ,2x ,那么)1)(1(21++x x 的值是( )
(A )-
21 (B) -6 (C ) 21 (D) -2
5 三、解答题: 1、若关于x 的方程02352=++m x x 的一个根是-5,求另一个根及m 的值.
2、关于x 的方程04)2(222=++-+m x m x 有两个实数根,且这两根平方和比两根积大21. 求m 的值.
3、 若关于x 的方程03)2(2=---+m x m x 两根的平方和是9. 求m 的值.
4、已知方程032=--m x x 的两根之差的平方是7,求m 的值.
5、已知方程0)54(22=+--+m x m m x 的两根互为相反数,求m 的值.
6、关于x 的方程0)2()14(322=++--m m x m x 的两实数根之和等于两实数根的倒数和,求m 的值.
7、已知方程m x x 322+-=0,若两根之差为-4,求m 的值.
8、已知关于x 的方程222(1)740x a x a a +-+--=的两根为1x 、2x ,且满足12123320x x x x ---=.求242(1)4a a a
++⋅-的值。
9、关于x 的一元二次方程230x x k --=有两个不相等的实数根.(1)求k 的取值范围.(2)请选择一个k 的负整数值,并求出方程的根
10、已知关于x 的一元二次方程22(21)0x m x m +-+=有两个实数根1x 和2x .(1)求
实数m 的取值范围;(2)当2212
0x x -=时,求m 的值.
11、22、关于x 的方程04
)2(2=+
++k x k kx 有两个不相等的实数根.(1)求k 的取值范围。
(2)是否存在实数k ,使方程的两个实数根的倒数和等于0?若存在,求出k 的值;若不存在,说明理由 12、已知一元二次方程022=+-m x x 。
(1)若方程有两个实数根,求m 的范围;(2)若方程的两个实数根为x 1,x 2,且3321=+x x ,求m 的值。
13、已知12x x ,是方程220x x a -+=的两个实数根,且1223x x +=-(1)求12x x ,及a 的值;(2)求32111232x x x x -++的值.
14、储蓄问题
王红梅同学将1000元压岁钱第一次按一年定期含蓄存入“少儿银行”,到期后将本金和利息取出,并将其中的500元捐给“希望工程”,剩余的又全部按一年定期存入,这时存款的年利率已下调到第一次存款时年利率的90%,这样到期后,可得本金和利息共530元,求第一次存款时的年利率.(假设不计利息税)
15、趣味问题
一个醉汉拿着一根竹竿进城,横着怎么也拿不进去,量竹竿长比城门宽4米,旁边一个醉汉嘲笑他,你没看城门高吗,竖着拿就可以进去啦,结果竖着比城门高2米,二人没办法,只好请教聪明人,聪明人教他们二人沿着门的对角斜着拿,二人一试,不多不少刚好进城,你知道竹竿有多长吗。