2013年高三数学一轮复习专题第02讲_函数概念与表示
2013届高考数学一轮复习讲义第二章 2.1 函数及其表示
主页
变式训练 1
试判断以下各组函数是否表示同一函数: (1)y=1,y=x0; (2)y= x-2· x+2,y= x2-4; (3)y=x,y= t3; (4)y=|x|,y=( x)2.
(1)y=1 的定义域为 R,y=x0 的定义域为{x|x∈R 且 x≠0},∴它们不是同一函数.
(2)y= x-2· x+2的定义域为{x|x≥2}. y= x2-4的定义域为{x|x≥2 或 x≤-2}, ∴它们不是同一函数.
由函数解析式可以看出, 组装第 A 件产品所需时间为 c c =15, 故组装第 4 件产品所需时间为 =30, 解得 c=60, A 4 c 将 c=60 代入 =15,得 A=16. A
主页
易错警示
忽略分段函数中自变量的限制条件致误
(14 分)设函数
x2+bx+c(x≤0) f(x)= 2 (x>0)
由于(1)中集合 P 中元素 0 在集合 Q 中没有对应元素, 并且(3)中集合 P 不是数集,所以(1)和(3)都不是集合 P 上的 函数.由题意知,(2)正确.
主页
探究提高
函数是一种特殊的对应,要检验给定的两个变量之间是否具 有函数关系,只需要检验:①定义域和对应法则是否给出; ②根据给出的对应法则,自变量在其定义域中的每一个值, 是否都有惟一确定的函数值.
3
主页
(3)y=x,y= t3=t,它们的定义域和对应法则都相同, ∴它们是同一函数.
3
(4)y=|x|的定义域为 R,y=( x)2 的定义域为{x|x≥0},∴它 们不是同一合 P 上的函数的是________.
(1)P=Z,Q=N*,对应法则 f:对集合 P 中的元素取绝对 值与集合 Q 中的元素相对应; (2)P={-1,1,-2,2},Q={1,4},对应法则:f:x→y=x2, x∈P,y∈Q; (3)P={三角形},Q={x|x>0},对应法则 f:对 P 中三角形 求面积与集合 Q 中元素对应.
高三数学第一轮复习课件函数的概念及其表示课件演示文稿
-x2+2x,x≤0, lnx+1,x>0.
❶若|f(x)|≥ax❷,则 a 的取值范围是
( ).
A.(-∞,0]
B.(-∞,1]
C.[-2,1]
D.[-2,0]
第29页,共31页。
[审题]一审条件❶:f(x)=- lnxx2++12x,,xx>≤00,, 转化为一元二次函数 与对数函数的图象问题.如图(1).
(1) 二审条件❷:|f(x)|≥ax,由 f(x)的图象得到|f(x)|的图象如图(2).
(2)
第30页,共31页。
三审图形:观察y=ax的图象总在y=|f(x)|的下方,则当a>0时, 不合题意;当a=0时,符合题意;当a<0时,若x≤0,f(x)=- x2+2x≤0, 所以|f(x)|≥ax化简为x2-2x≥ax, 即x2≥(a+2)x,所以a+2≥x恒成立,所以a≥-2. 综上-2≤a≤0. 答案 D [反思感悟] (1)问题中参数值影响变形时,往往要分类讨论,需 有明确的标准、全面的考虑; (2)求解过程中,求出的参数的值或范围并不一定符合题意,因 此要检验结果是否符合要求.
(5)分段函数 若函数在其定义域的不同子集上,因 对应关系 不同而分别用几 个不同的式子来表示,这种函数称为分段函数. 分段函数的定义域等于各段函数的定义域的 并集 ,其值域等于 各段函数的值域的 并集 ,分段函数虽由几个部分组成,但它 表示的是一个函数.
第6页,共31页。
2.函数定义域的求法
类型
第21页,共31页。
【 训 练 2 】 (2014·烟 台 诊 断 ) 已 知 函 数 f(x) =
2cos
π3x,x≤2 000,
则 f[f(2 013)]=
2x-2 008,x>2 000,
2013高考数学一轮复习——函数概念
函数的概念一.命题走向函数是整个高中数学的重点,其中函数思想是最重要的数学思想方法,函数问题在历年的高考中都占据相当大的比例。
高考对函数概念与表示考察是以选择或填空为主,以解答题形式出现的可能性相对较小,本节知识作为工具和其他知识结合起来命题的可能性依然很大。
预测高考对本节的考察是:1.题型是1个选择和一个填空;2.热点是函数概念及函数的工具作用,以中等难度、题型新颖的试题综合考察函数成为新的热点。
二.要点精讲1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B 中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数。
记作:y=f(x),x ∈A。
其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域。
注意:(1)“y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;(2)函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x.2.构成函数的三要素:定义域、对应关系和值域(1)解决一切函数问题必须认真确定该函数的定义域,函数的定义域包含三种形式:①自然型:指函数的解析式有意义的自变量x的取值范围(如:分式函数的分母不为零,偶次根式函数的被开方数为非负数,对数函数的真数为正数,等等);②限制型:指命题的条件或人为对自变量x的限制,这是函数学习中重点,往往也是难点,因为有时这种限制比较隐蔽,容易犯错误;③实际型:解决函数的综合问题与应用问题时,应认真考察自变量x的实际意义。
(2)求函数的值域是比较困难的数学问题,中学数学要求能用初等方法求一些简单函数的值域问题①配方法(将函数转化为二次函数);②判别式法(将函数转化为二次方程);③不等式法(运用不等式的各种性质);④函数法(运用基本函数性质,或抓住函数的单调性、函数图象等)。
高考数学一轮复习 第二章 函数 第一节 函数及其表示课件 文
当a=0时,显然不符合题意,
当a≠0时,要满足f(x)min≥- 1 ,
e
a 0,
只需
4 4a
1 e
,
解得a≥e,故选D.
6.(2015北京西城二模)设函数f(x)=
1 x
,
x
1,
则f (f(2))=
x 2, x 1,
f(x)的值域是
.
答案 - 5 ;[-3,+∞)
2
解析
f(2)=
log2 (x 2)
A.(-∞,2)
B.(2,+∞)
C.(2,3)∪(3,+∞) D.(2,4)∪(4,+∞)
答案
C
若函数y=
log
2
1 (x
2)
有意义,则
x x
2 2
0, 1,
解得x>2且x≠3,故选
C.
4.已知f
1 2
x
1
=2x-5,且f(a)=6,则a等于
A.- 7 B. 7 C. 4 D.- 4
4
4
3
3
(B)
答案 B 令t= 1 x-1,则x=2t+2,
2
∴f(t)=2(2t+2)-5=4t-1,
∴f(a)=4a-1=6,即a= 7 .
4
5.(2018北京海淀期中)若函数f(x)=
xe x ax2
,x
0, 2x, x
0
的值域为
1 e
,
,则实
数a的取值范围是 ( D )
A.(0,e) B.(e,+∞)
C.(-2,0)∪[1,2) D.[-2,0]∪[1,2]
答案 C
【走向高考】(2013春季发行)高三数学第一轮总复习 2-1函数及其表示 新人教A版
2-1函数及其表示基础巩固强化1.(2011·浙江嘉兴一中模拟)设集合M ={x |-2≤x ≤2},N ={y |0≤y ≤2},给出下列四个图形,其中能表示以集合M 为定义域,N 为值域的函数关系的是( )[答案] B[解析] 函数的定义要求定义域内的任一变量都有唯一的函数值与之对应,A 中x ∈(0,2]时没有函数值,C 中函数值不唯一,D 中的值域不是N ,所以选B.2.(文)(2011·广州市综合测试)函数y =1-2x 的定义域为集合A ,函数y =ln(2x +1)的定义域为集合B ,则A ∩B 等于( )A .(-12,12B .(-12,12)C .(-∞,-12)D .[12[答案] A[解析] 由⎩⎪⎨⎪⎧1-2x ≥0,2x +1>0,得⎩⎪⎨⎪⎧x ≤12x >-12.∴-12<x ≤12,故A ∩B =(-12,12.(理)(2010·湖北文,5)函数y =1log 0.54x -3的定义域为( )A.⎝⎛⎭⎫34,1 B.⎝⎛⎭⎫34 C .(1,+∞) D.⎝⎛⎭⎫341∪(1,+∞) [答案] A[解析] log 0.5(4x -3)>0=log 0.51,∴0<4x -3<1, ∴34<x <1. 3.(2011·山东潍坊模拟)已知f (x )=⎩⎪⎨⎪⎧12x,x ≥3,f x +1,x <3.则f (log 23)的值是( )A.112B.124C .24D .12[答案] A[解析] ∵1<log 23<2,∴3<log 23+2<4, ∴f (log 23)=f (log 23+1) =f (log 23+2)=f (log 212) =(12)log 212=112.4.(2011·福建文,8)已知函数f (x )=⎩⎪⎨⎪⎧2x,x >0,x +1,x ≤0,若f (a )+f (1)=0,则实数a的值等于( )A .-3B .-1C .1D .3[答案] A[解析] ∵f (1)=21=2,∴由f (a )+f (1)=0知 f (a )=-2. 当a >0时 2a=-2不成立.当a <0时a +1=-2,a =-3.5.(文)(2010·广东六校)设函数f (x )=⎩⎪⎨⎪⎧2x x ∈-∞,2],log 2x x ∈2,+∞.则满足f (x )=4的x 的值是( )A .2B .16C .2或16D .-2或16[答案] C[解析] 当f (x )=2x 时.2x =4,解得x =2.当f (x )=log 2x 时,log 2x =4,解得x =16. ∴x =2或16.故选C.(理)设函数f (x )=⎩⎪⎨⎪⎧21-x -1 x <1,lg x x ≥1.若f (x 0)>1,则x 0的取值范围是( )A .(-∞,0)∪(10,+∞)B .(-1,+∞)C .(-∞,-2)∪(-1,10)D .(0,10) [答案] A[解析] 由⎩⎪⎨⎪⎧x 0<1,21-x 0-1>1,或⎩⎪⎨⎪⎧x 0≥1,lg x 0>1.⇒x 0<0或x 0>10.6.(2012·山东聊城市质检)具有性质f (1x)=-f (x )的函数,我们称为满足“倒负”交换的函数,下列函数:①f (x )=x -1x ;②f (x )=x +1x ;③f (x )=⎩⎪⎨⎪⎧x ,0<x <1,0,x =1,-1x,x >1.中满足“倒负”变换的函数是( )A .①②B .①③C .②③D .只有①[答案] B[解析] ①f (1x )=1x-x =-f (x )满足.②f (1x )=1x+x =f (x )不满足.③0<x <1时,f (1x)=-x =-f (x ),x =1时,f (1x)=0=-f (x ),x >1时,f (1x )=1x=-f (x )满足.故选B.7.(文)(2011·济南模拟)已知函数f (x )=x -1x +1f (x )+f (1x)=________. [答案] 0[解析] ∵f (1x )=1x-11x+1=1-x 1+x , ∴f (x )+f (1x )=x -1x +1+1-x1+x=0.(理)若f (a +b )=f (a )·f (b )且f (1)=1,则f 2f 1+f 3f 2+f 4f 3+…+f 2012f 2011=________.[答案] 2011 [解析] 令b =1,则f a +1f a =f (1)=1,∴f 2f 1+f 3f 2+f 4f 3+…+f 2012f 2011=2011.8.(文)(2011·武汉模拟)已知f (2x+1)=lg x ,则f (x )=________. [答案] lg2x -1(x >1) [解析] 令2x +1=t ,∵x >0,∴t >1,则x =2t -1,∴f (t )=lg2t -1,f (x )=lg 2x -1(x >1). (理)对于任意实数a ,b ,定义min{a ,b }=⎩⎪⎨⎪⎧a ,a ≤b ,b ,a >b .设函数f (x )=-x +3,g (x )=log 2x ,则函数h (x )=min{f (x ),g (x )}的最大值是__________.[答案] 1[解析] 结合f (x )与g (x )的图象,h (x )=⎩⎪⎨⎪⎧log 2x 0<x ≤2-x +3 x >2,易知h (x )的最大值为h (2)=1.9.(文)(2011·广东文,12)设函数f (x )=x 3cos x +1.若f (a )=11,则f (-a )=________.[答案] -9[解析] 令g (x )=x 3cos x ,则f (x )=g (x )+1,g (x )为奇函数.f (a )=g (a )+1=11,所以g (a )=10,f (-a )=g (-a )+1=-g (a )+1=-9.(理)(2011·安徽省淮南市高三第一次模拟)已知定义在R 上的函数f (x )满足:f (x )·f (x +2)=13,若f (1)=2,则f (2011)=________.[答案]132[解析] ∵f (x +4)=13f x +2=1313f x f (x ),∴函数f (x )的周期为4,所以f (2011)=f (4×502+3)=f (3)=13f 1=132. 10.已知函数f (x )=⎩⎪⎨⎪⎧x 2+12, -1<x <0,e x -1 x ≥0.若f (1)+f (a )=2,求a 的值.[解析] ∵f (1)=e 1-1=1,又f (1)+f (a )=2, ∴f (a )=1.若-1<a <0,则f (a )=a 2+12=1,此时a 2=12,又-1<a <0,∴a =-22. 若a ≥0,则f (a )=e a -1=1,∴a =1. 综上所述,a 的值是1或-22. 能力拓展提升11.(文)(2011·天津一中)若函数f (x )=x -4mx 2+4mx +3R ,则实数m 的取值范围是( )A .(-∞,+∞)B .(0,34)C .(34,+∞)D .[0,34)[答案] D[解析] ①m =0时,分母为3,定义域为R . ②由⎩⎪⎨⎪⎧m ≠0,Δ<0得0<m <34.综上得0≤m <34.(理)(2011·黑龙江哈尔滨模拟)如果函数f (x )对于任意实数x ,存在常数M ,使得不等式|f (x )|≤M |x |恒成立,那么就称函数f (x )为有界泛函.下面有4个函数:①f (x )=1; ②f (x )=x 2; ③f (x )=(sin x +cos x )x; ④f (x )=xx 2+x +1.其中有两个属于有界泛函,它们是( ) A .①② B .②④ C .①③ D .③④[答案] D[解析] 由|f (x )|≤M |x |对x ∈R 恒成立,知|f x x|max ≤M . ①中⎪⎪⎪⎪f x x =|1x|∈(0,+∞),故不存在常数M 使不等式恒成立; ②中⎪⎪⎪f x x =|x |∈[0,+∞),故不存在常数M 使不等式恒成立; ③中⎪⎪⎪⎪f x x =|sin x +cos x |=2|sin(x +π4)|≤2,故存在M 使不等式恒成立;④中⎪⎪⎪⎪f x x =⎪⎪⎪⎪1x 2+x +1=⎪⎪⎪⎪⎪⎪⎪⎪1x +122+34≤43 故存在M 使不等式恒成立.[点评] 作为选择题判断①后即排除A 、C ,判断②后排除B ,即可选出D.12.(文)(2011·海南海口模拟)对a ,b ∈R ,记min{a ,b }=⎩⎪⎨⎪⎧a a <b ,b a ≥b ,函数f (x )=min{12x ,-|x -1|+2}(x ∈R )的最大值为________.[答案] 1[解析] y =f (x )是y =12x 与y =-|x -1|+2两者中的较小者,数形结合可知,函数的最大值为1.(理)(2011·山东烟台模拟)设函数y =f (x )在(-∞,+∞)内有定义,对于给定的正数K ,定义函数f K (x )=⎩⎪⎨⎪⎧f x ,f x ≤K ,K , f x >K .取函数f (x )=a -|x |(a >1).当K =1a时,函数f K (x )在下列区间上单调递减的是( )A .(-∞,0)B .(-a ,+∞)C .(-∞,-1)D .(1,+∞)[答案] D[解析] 当K =1a 时,f K(x )=⎩⎪⎨⎪⎧a -|x |,a -|x |≤1a ,1a ,a -|x |>1a.=⎩⎪⎨⎪⎧1a |x |,x ≤-1或x ≥1,1a ,-1<x <1.∵a >1,∴0<1a<1,如图,作出函数f K (x )的图象可得其单调减区间为(1,+∞).13.(文)(2011·上海交大附中月考)函数f (x )=x 2x 2+1,则f (14)+f (13)+f (12)+f (1)+f (2)+f (3)+f (4)=________.[答案]72[解析] f (1)=12,f (x )+f (1x )=x 2x 2+1+1x 21x2+1=x 2x 2+1+11+x 2=1,则f (14)+f (13)+f (12)+f (1)+f (2)+f (3)+f (4)=3+12=72.(理)(2011·襄樊检测)设函数f (x )=⎩⎪⎨⎪⎧x 2+bx +c ,x ≤0,2, x >0.若f (-4)=f (0),f (-2)=-2,则关于x 的方程f (x )=x 的解的个数为( )A .1B .2C .3D .4 [答案] C[解析] 法一:若x ≤0,则f (x )=x 2+bx +c . ∵f (-4)=f (0),f (-2)=-2,∴⎩⎪⎨⎪⎧-42+b ·-4+c =c ,-22+b ·-2+c =-2,解得⎩⎪⎨⎪⎧b =4,c =2.∴f (x )=⎩⎪⎨⎪⎧x 2+4x +2,x ≤0,2, x >0.当x ≤0时,由f (x )=x ,得x 2+4x +2=x , 解得x =-2,或x =-1; 当x >0时,由f (x )=x ,得x =2. ∴方程f (x )=x 有3个解.法二:由f (-4)=f (0)且f (-2)=-2,可得f (x )=x 2+bx +c 的对称轴是x =-2,且顶点为(-2,-2),于是可得到f (x )的简图(如图所示).方程f (x )=x 的解的个数就是函数y =f (x )的图象与y =x 的图象的交点的个数,所以有3个解.14.(2011·洛阳模拟)已知函数f (x )=4|x |+2-1的定义域是[a ,b ](a ,b ∈Z ),值域是[0,1],则满足条件的整数数对(a ,b )共有________个.[答案] 5 [解析] 由0≤4|x |+2-1≤1,即1≤4|x |+2≤2得0≤|x |≤2,满足条件的整数数对有(-2,0),(-2,1),(-2,2),(0,2),(-1,2)共5个.[点评] 数对(a ,b )的取值必须能够使得|x |的取值最小值为0,最大值为2,才能满足f (x )的值域为[0,1]的要求.15.(文)已知函数f (x )=x ax +b(ab ≠0),f (2)=1,又方程f (x )=x 有唯一解,求f (x )的解析式.[解析] 由f (2)=1得22a +b =1,即2a +b =2;由f (x )=x 得xax +b=x ,变形得x (1ax +b-1)=0, 解此方程得x =0或x =1-ba,又因方程有唯一解,∴1-ba=0,解得b =1,代入2a +b =2得a =12,∴f (x )=2x x +2. (理)(2011·广东普宁模拟)已知函数f (x )=lg(x +a x-2),其中a 是大于0的常数. (1)求函数f (x )的定义域;(2)当a ∈(1,4)时,求函数f (x )在[2,+∞)上的最小值; (3)若对任意x ∈[2,+∞)恒有f (x )>0,试确定a 的取值范围.[解析] (1)由x +a x -2>0,得x 2-2x +ax >0,a >1时,x 2-2x +a >0恒成立,定义域为(0,+∞). a =1时,定义域为{x |x >0且x ≠1},0<a <1时,定义域为{x |0<x <1-1-a 或x >1+1-a }.(2)设g (x )=x +a x -2,当a ∈(1,4),x ∈[2,+∞)时,g ′(x )=1-a x 2=x 2-ax2>0恒成立,∴g (x )=x +ax-2在[2,+∞)上是增函数. ∴f (x )=lg(x +a x -2)在[2,+∞)上是增函数.∴f (x )=lg(x +ax -2)在[2,+∞)上的最小值为f (2)=lg a2. (3)对任意x ∈[2,+∞)恒有f (x )>0,即x +a x-2>1对x ∈[2,+∞)恒成立. ∴a >3x -x 2,而h (x )=3x -x 2=-(x -32)2+94在x ∈[2,+∞)上是减函数,∴h (x )max =h (2)=2,∴a >2.16.某自来水厂的蓄水池存有400t 水,水厂每小时可向蓄水池中注水60t ,同时蓄水池又向居民小区不间断供水,t h 内供水总量为1206t t ,(0≤t ≤24).(1)从供水开始到第几小时时,蓄水池中的存水量最少?最少水量是多少吨? (2)若蓄水池中水量少于80t 时,就会出现供水紧张现象,请问在一天的24h 内,有几小时出现供水紧张现象.[解析] (1)设t h 后蓄水池中的水量为y t , 则y =400+60t -1206t (0≤t ≤24)令6t =x ,则x 2=6t 且0≤x ≤12,∴y =400+10x 2-120x =10(x -6)2+40(0≤x ≤12); ∴当x =6,即t =6时,y min =40,即从供水开始到第6h 时,蓄水池水量最少,只有40t. (2)依题意400+10x 2-120x <80, 得x 2-12x +32<0,解得4<x <8,即4<6t <8,∴83<t <323;∵323-83=8,∴每天约有8h 供水紧张.1.(2011·江西文,3)若f (x )=1log 122x +1f (x )的定义域为( )A .(-12,0)B .(-12,+∞)C .(-12,0)∪(0,+∞)D .(-12,2)[答案] C[解析] 要使函数有意义,则有⎩⎪⎨⎪⎧2x +1>02x +1≠1,所以⎩⎪⎨⎪⎧x >-12x ≠0.故选C.2.值域为{2,5,10},对应关系为y =x 2+1的函数个数为( ) A .1 B .8 C .27 D .39[答案] C[解析] 本题的关键是寻找满足条件的定义域有多少种情况.当y =2,即x 2=1时,x =1,-1或±1有三种情况,同理当y =5,10时,x 的值各有三种情况,由分步乘法计数原理知,共有3×3×3=27种可能.故选C.3.水池有2个进水口,1个出水口,每个水口的进出水速度如下图(1)(2)所示.某天0点到6点,该水池的蓄水量如下图(3)所示(至少打开一个水口).给出以下3个论断:①0点到3点只进水不出水;②3点到4点不进水只出水;③4点到6点不进水不出水.则一定正确的论断是( )A .①B .①②C .①③D .①②③[答案] A[解析] 由(1)、(2)两图得到每一个进水口的速度是出水口的速度的一半,在(3)图中从0点到3点进了6个单位水量,因此这段时间是只进水不出水,故①对;从3点到4点水量下降了1个单位,故应该是一个进水口开着,一个出水口开着,故②不正确;从4点到6点蓄水量保持不变,一种情况是不进水不出水,另一种情况是2个进水口与1个出水口同时开着,进水量和出水量相同,故③不一定正确.4.设函数f (x )=⎩⎪⎨⎪⎧log 2x , x >0,log 12-x , x <0.若f (a )>f (-a ),则实数a 的取值范围是( )A .(-1,0)∪(0,1)B .(-∞,-1)∪(1,+∞)C .(-1,0)∪(1,+∞)D .(-∞,-1)∪(0,1) [答案] C[解析] 解法1:由图象变换知函数f (x )图象如图,且f (-x )=-f (x ),即f (x )为奇函数,∴f (a )>f (-a )化为f (a )>0,∴当x ∈(-1,0)∪(1,+∞),f (a )>f (-a ),故选C.解法2:当a >0时,由f (a )>f (-a )得,log 2a >log 12a ,∴a >1;当a <0时,由f (a )>f (-a )得,log 12(-a )>log 2(-a ),∴-1<a <0,故选C.5.a 、b 为实数,集合M ={ba,1},N ={a,0},f 是M 到N 的映射,f (x )=x ,则a +b 的值为( )A .-1B .0C .1D .±1 [答案] C[解析] ∵f (x )=x ,∴f (1)=1=a ,若f (b a )=1,则有b a=1,与集合元素的互异性矛盾,∴f (b a)=0,∴b =0,∴a +b =1.6.(2011·温州十校二模)某学校要召开学生代表大会,规定各班每10人推选一名代表,当各班人数除以10的余数大于6时再增选一名代表.那么,各班可推选代表人数y 与该班人数x 之间的函数关系用取整函数y =[x ]([x ]表示不大于x 的最大整数)可以表示为( )A .y =[x10] B .y =[x +310] C .y =[x +410]D .y =[x +510][答案] B[解析] 当x 除以10的余数为0,1,2,3,4,5,6时,由题设知y =[x10],且易验证此时[x 10]=[x +310]. 当x 除以10的余数为7,8,9时,由题设知y =[x10+1,且易验证知此时[x10]+1=[x +310].综上知,必有y =[x +310].故选B.7.设函数f (x )、g (x )的定义域分别为F 、G ,且F G .若对任意的x ∈F ,都有g (x )=f (x ),且g (x )为偶函数,则称g (x )为f (x )在G 上的一个“延拓函数”.已知函数f (x )=⎝⎛⎭⎫12x(x ≤0),若g (x )为f (x )在R 上的一个延拓函数,则函数g (x )的解析式为( )A .g (x )=2|x |B .g (x )=log 2|x |C .g (x )=⎝⎛⎭⎫12|x |D .g (x )=log 12|x |[答案] A[解析] 由延拓函数的定义知,当x ≤0时,g (x )=⎝⎛⎭⎫12x ,当x >0时,-x <0,∴g (-x )=⎝⎛⎭⎫12-x =2x , ∵g (x )为偶函数,∴g (x )=2x, 故g (x )=⎩⎪⎨⎪⎧⎝⎛⎭⎫12x x ≤02x x >0,即g (x )=2|x |.8.(2011·合肥模拟)已知函数f (x )=⎩⎪⎨⎪⎧log 21-x ,x ≤0,f x -1+1,x >0.则f (2011)等于( )A .2008B .2009C .2010D .2011[答案] D[解析] 当x >0时,f (x )-f (x -1)=1,∴f (2011)=[f (2011)-f (2010)]+[f (2010)-f (2009)]+…+[f (1)-f (0)]+f (0) =1+1+…+12011个+f (0)=2011+log 21=2011. 9.如图,设点A 是单位圆上的一定点,动点P 从点A 出发在圆上按逆时针方向旋转一周,点P 所旋转过的AP 的长为l ,弦AP 的长为d ,则函数d =f(l)的图象大致是( )[答案] C[解析] 函数在[0,π]上的解析式为 d =12+12-2×1×1×cos l =2-2cos l =4sin 2l 2=2sin l 2.在[π,2π]上的解析式为d =2-2cos 2π-l =2sin l2d =2sin l2,l∈[0,2π].[点评] 这类题目解决的基本方法通过分析变化趋势或者一些特殊的点,采用排除法;或求函数解析式.10.某西部山区的某种特产由于运输的原因,长期只能在当地销售,当地政府通过投资对该项特产的销售进行扶持,已知每投入x 万元,可获得纯利润P =-1160(x -40)2+100万元(已扣除投资,下同),当地政府拟在新的十年发展规划中加快发展此特产的销售,其规划方案为:在未来10年内对该项目每年都投入60万元的销售投资,其中在前5年中,每年都从60万元中拨出30万元用于修建一条公路,公路5年建成,通车前该特产只能在当地销售;公路通车后的5年中,该特产既在本地销售,也在外地销售,在外地销售的投资收益为:每投入x 万元,可获纯利润Q =-159160(60-x)2+1192·(60-x)万元,问仅从这10年的累积利润看,该规划方案是否可行?[解析] 在实施规划前,由题设P =-1160(x -40)2+100(万元),知每年只需投入40万,即可获得最大利润100万元,则10年的总利润为W 1=100×10=1000(万元).实施规划后的前5年中,由题设P =-1160(x -40)2+100知,每年投入30万元时,有最大利润P max =7958(万元),前5年的利润和为7958×5=39758(万元).设在公路通车的后5年中,每年用x 万元投资于本地的销售,而剩下的(60-x)万元用于外地区的销售投资,则其总利润为 W 2=[-1160(x -40)2+100]×5+(-159160x 2+1192x)×5=-5(x -30)2+4950. 当x =30时,W 2=4950(万元)为最大值, 从而10年的总利润为39758+4950(万元).∵39758+4950>1000, ∴该规划方案有极大实施价值.。
高考数学一轮复习 第二章 函数 2.1 函数的概念课件
(2)已知f( x +1)=x+2 x ,求f(x)的解析式;
(3)已知函数f(x)满足f(x)=2f
1 x
+x,求f(x)的解析式.
解析 (1)设f(x)=ax+b(a≠0),则f(f(x))=f(ax+b)=a(ax+b)+b=a2x+ab+b=4x+
3,
∴
a2 ab
4, b
3,
解得
a b
∴f( x +1)=( x +1)2-1,∴f(x)=x2-1(x≥1).
(3)由f(x)=2f
1 x
+x,得f
1 x
=2f(x)+
1 x
,
则f(x)=- 2 -1 x.
3x 3
方法 3 分段函数的相关问题
1.分段函数是一个函数,其定义域是各段定义域的并集,其值域是各段值
域的并集.
2.处理分段函数问题时,首先要确定自变量的取值属于哪个区间段,再选
例2 求下列函数的定义域:
| x 2 | 1
(1)f(x)=
;
log2 (x 1)
(2)f(x)= ln(x 1) .
x2 3x 4
| x 2 | 1 0,
解析 (1)要使函数f(x)有意义,则x 1 0, 解得x≥3,因此函数f(x)的
log2 (x 1) 0,
定义域为[3,+∞).
系 ④ x ,在集合B中都有⑤唯一确定 的 集合B中都有唯一确定的元素y与之对
f:A→B 数f(x)和它对应
应
名称 称⑦ f:A→B 为从集合A到集合B的 称⑧ 对应f:A→B 为从集合A到集合
高考数学一轮复习讲义: 第二章 函数 2.1 函数的概念讲义
§2.1函数的概念命题探究答案:解析:易知函数f(x)的定义域为R,关于原点对称. ∵f(x)=x3-2x+e x -,∴f(-x)=(-x)3-2(-x)+e-x -=-x3+2x+-e x=-f(x),∴f(x)为奇函数,又f '(x)=3x2-2+e x +≥3x2-2+2=3x2≥0(当且仅当x=0时,取“=”),所以f(x)在R上单调递增,所以f(a-1)+f(2a2)≤0⇔f(a-1)≤f(-2a2)⇔-2a2≥a-1,解得-1≤a≤.考纲解读常考题型函数的表求参数分析解读函数的概念是学习函数的基础,重点考查函数定义域和值域的求法,一般和常见的初等函数综合命题.五年高考考点一函数的基本概念1.(2017山东理改编,1,5分)设函数y=的定义域为A,函数y=ln(1-x)的定义域为B,则A∩B=.答案[-2,1)2.(2016江苏,5,5分)函数y=的定义域是.答案[-3,1]3.(2016课标全国Ⅱ改编,10,5分)函数y=10lg x的定义域和值域分别是,.答案(0,+∞);(0,+∞)4.(2014江西改编,2,5分)函数f(x)=ln(x2-x)的定义域为.答案(-∞,0)∪(1,+∞)5.(2014山东改编,3,5分)函数f(x)=的定义域为.答案∪(2,+∞)6.(2013陕西理改编,1,5分)设全集为R,函数f(x)=的定义域为M,则∁R M为.答案(-∞,-1)∪(1,+∞)考点二函数的表示方法1.(2016江苏,11,5分)设f(x)是定义在R上且周期为2的函数,在区间[-1,1)上,f(x)=其中a∈R.若f=f,则f(5a)的值是.答案-2.(2015浙江,10,6分)已知函数f(x)=则f(f(-3))=,f(x)的最小值是.3.(2015山东改编,10,5分)设函数f(x)=则满足f(f(a))=2f(a)的a的取值范围是.答案4.(2014江西改编,3,5分)已知函数f(x)=5|x|,g(x)=ax2-x(a∈R).若f [g(1)]=1,则a=.答案 1考点三分段函数1.(2017课标全国Ⅲ文,16,5分)设函数f(x)=则满足f(x)+f>1的x的取值范围是.答案2.(2017山东文改编,9,5分)设f(x)=若f(a)=f(a+1),则f=.答案 63.(2015课标Ⅱ改编,5,5分)设函数f(x)=则f(-2)+f(log212)=.答案94.(2014四川,12,5分)设f(x)是定义在R上的周期为2的函数,当x∈[-1,1)时,f(x)=则f=.答案 1教师用书专用(5)5.(2014浙江,15,5分)设函数f(x)=若f(f(a))≤2,则实数a的取值范围是.答案(-∞,]三年模拟A组2016—2018年模拟·基础题组考点一函数的基本概念1.(2017江苏徐州沛县中学第一次质检,4)函数y=lg(3x+1)+的定义域是.答案2.(2017江苏泰州二中期初,6)函数y=的值域为.答案{y∈R|y≠3}3.(苏教必1,二,3,8,变式)函数f(x)=+的定义域为.4.(2017江苏扬州、泰州、南通、淮安、宿迁、徐州六市联考,8)函数f(x)=的定义域是.答案[-2,2]5.(2017江苏前黄高级中学上学期第二次学情调研,1)函数y=的定义域为A,值域为B,则A∪B=.答案[-4,3]考点二函数的表示方法6.(2018江苏淮安、宿迁高三期中)已知函数f(x)与g(x)的图象关于原点对称,且它们的图象拼成如图所示的“Z”形折线段ABOCD,不含A(0,1),B(1,1),O(0,0),C(-1,-1),D(0,-1)五个点.则满足题意的f(x)的一个解析式为.答案f(x)=7.(苏教必1,二,11,变式)已知函数f(x)的定义域为(0,+∞),且f(x)=2f·-1,则f(x)=.答案+8.(苏教必1,二,11,变式)已知函数f(x)满足f=log2,则f(x)的解析式是.答案f(x)=-log2x考点三分段函数9.(2018江苏天一中学调研)f(x)是定义在R上的奇函数,当x>0时,f(x)=则f的值为.答案-10.(2018江苏无锡高三期中)若函数f(x)=则f(5)=.答案 211.(2018江苏常熟期中)若函数f(x)=(a>0,且a≠1)的值域为[6,+∞),则实数a的取值范围是.答案(1,2]12.(2016江苏扬州中学期初质检,6)设函数f(x)=则f=.答案 1B组2016—2018年模拟·提升题组(满分:20分时间:10分钟)填空题(每小题5分,共20分)1.(2018江苏金陵中学月考)已知函数y=的图象与函数y=kx的图象恰有两个交点,则实数k的取值范围是.答案0<k<1或1<k<22.(苏教必1,二,1,13,变式)已知函数f(x)=-1的定义域是[a,B](a,B∈Z),值域是[0,1],则满足条件的整数数对(a,B)共有个.答案 53.(2016江苏南通海安期末,14)在平面直角坐标系xOy中,将函数y=(x∈[0,2])的图象绕坐标原点O按逆时针方向旋转角θ,若∀θ∈[0,α],旋转后所得曲线都是某个函数的图象,则α的最大值是.答案4.函数f(x)=的值域为.答案C组2016—2018年模拟·方法题组方法1 求函数的定义域1.若函数y=的定义域为R,则实数a的取值范围是.答案[0,3)方法2 求函数解析式的常用方法2.设f(x)是R上的函数,且满足f(0)=1,并且对任意实数x,y,有f(x-y)=f(x)-y(2x-y+1),求f(x)的表达式. 解析解法一:令x=y,则由f(x-y)=f(x)-y(2x-y+1),得f(0)=f(x)-x(2x-x+1).∵f(0)=1,∴f(x)-x(2x-x+1)=1,即f(x)=x2+x+1.解法二:令x=0,得f(0-y)=f(0)-y(-y+1),即f(-y)=1-y(-y+1).再令-y=x,代入上式,得f(x)=1-(-x)(x+1)=1+x(x+1).则f(x)=x2+x+1.方法3 分段函数的相关问题3.已知f(x)=其中i是虚数单位,则f(f(1-i))=.答案 3。
高三数学一轮复习第二章函数第1课时函数的概念及其表示课件
x的取值范围A y=f (x),x∈A 与x的值相对应的y值的集合_{_f_(_x_)|_x_∈__A_}_A Nhomakorabea√B
C
D
√ √
点拨 本例(1)考查对函数概念的理解,注意集合A中任意一个数x在集合B中都 有唯一确定的数y与之对应; 本例(2)特别注意(x-1)0中x-1≠0;本例(3)要注意 f (x)中的“x”与f (2x+1)中“2x+1”的范围一致.
√
√ √
考点三 函数解析式的求法 求函数解析式的常用方法 (1)待定系数法; (2)换元法; (3)配凑法; (4)构造方程组消元法.
√
4x+1
x2+2
11
考点四 分段函数 若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来 表示,这种函数称为分段函数. 提醒:(1)分段函数是一个函数,而不是几个函数. (2)分段函数的定义域是各段定义域的并集,值域是各段值域的并集.
√ √
√
考点二 同一个函数 如果两个函数的_定__义__域_相同,并且对__应__关__系__完全一致,即相同的自变量对应的
函数值也相同,那么这两个函数是同一个函数.
√
点拨 判断两个函数是否为同一个函数的注意点:(1) f (x)与g(x)的(化简之前)定 义域必须相同; (2) f (x)与g(x)的(化简之后)表达式必须相同; (3)二者缺一不可.
第二章 函数
考点一 函数的概念 1.函数的概念
概念
一般地,设A,B是非__空__的__实__数__集__,如果对于集合A中的任意一个数 x,按照某种确定的对应关系f ,在集合B中都有_唯__一__确__定__的__数__y_和 它对应,那么就称f :A→B为从集合A到集合B的一个函数
高考数学一轮复习总教案:2.1函数的概念及表示法
第二章 函 数高考导航 考试要求重难点击 命题展望1.了解构成函数的三要素,会求一些简单函数的定义域和值域;了解映射的概念.2.在实际生活中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.3.了解简单的分段函数,并能简单运用.4.理解函数的单调性、最大值、最小值及其几何意义;结合具体函数,了解函数奇偶性的含义.5.会运用函数的图象理解和研究函数的性质.6.理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算.7.理解指数函数的概念及其单调性,掌握指数函数通过的特殊点.8.理解对数的概念及其运算性质,知道用换底公式能将一般对数化成自然对数或常用对数;了解对数在简化运算中的作用.9.理解对数函数的概念及其单调性,掌握对数函数通过的特殊点.10.了解指数函数y =ax 与对数函数y =logax (a >0且a≠1)互为反函数.11.了解幂函数的概念,结合函数y =x , y =x2, y =x3 ,y =x 1, y =21x 的图象,了解它们的变化情况.12.结合二次函数的图象,了解函数的零点与方程的根的联系,判断一元二次方程根的存在性和根的个数.13.根据具体函数图象,能够用二分法求相应方程的近似解. 14.了解指数函数、对数函数以及幂函数的增长特征;知道直线上升、指数增长、对数增长等不同函数类型增长的含义. 15.了解指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型的广泛应用. 本章重点:1.函数的概念及其三要素; 2.函数的单调性、奇偶性及其几何意义;3.函数的最大(小)值;4.指数函数与对数函数的概念和性质;5.函数的图象及其变换;6.函数的零点与方程的根之间的关系;7.函数模型的建立及其应用. 本章难点:1.函数概念的理解;2.函数单调性的判断;3.函数图象的变换及其应用;4.指数函数与对数函数概念的理解及其性质运用;5.研究二次函数的零点与一元二次方程的根的关系;6.函数模型的建立及求解.高考对函数的考查,常以选择题和填空题来考查函数的概念和一些基本初等函数的图象和性质,解答题则往往不是简单地考查概念、公式和法则的应用,而是常与导数、不等式、数列、三角函数、解析几何等知识及实际问题结合起来进行综合考查,并渗透数学思想方法,突出考查函数与方程、数形结合、分类与整合、化归与转化等数学思想方法.知识网络2.1函数的概念及表示法典例精析题型一 求函数的解析式【例1】 (1)已知f(x +1)=x2+x +1,求f(x)的表达式; (2)已知f(x)+2f(-x)=3x2+5x +3,求f(x)的表达式. 【解析】(1)设x +1=t ,则x =t -1,代入得f(x)=(t -1)2+(t -1)+1=t2-t +1,所以f(x)=x2-x +1. (2)由f(x)+2f(-x)=3x2+5x +3,x 换成-x ,得f(-x)+2 f(x)=3x2-5x +3,解得f(x)=x2-5x +1.【点拨】已知f(x),g(x),求复合函数f[g(x)]的解析式,直接把f(x)中的x 换成g(x)即可,已知f[g(x)],求f(x)的解析式,常常是设g(x)=t ,或者在f[g(x)]中凑出g(x),再把g(x)换成x.【变式训练1】已知f(x x+-11)=2211x x +-,求f(x)的解析式.【解析】设x x +-11=t ,则x =t t +-11,所以f(t)=22)11(1)11(1t t t t +-++--=212t t +, 所以f(x)=212x x+(x≠-1).题型二 求函数的定义域【例2】(1)求函数y =229)2lg(x x x --的定义域;(2)已知f(x)的定义域为[-2,4],求f(x2-3x)的定义域. 【解析】(1)要使函数有意义,则只需要⎩⎨⎧>->-,09,0222x x x 即⎩⎨⎧<<-<>,33,02x x x 或解得-3<x <0或2<x <3,故所求的定义域为(-3,0)∪(2,3). (2)依题意,只需-2≤x2-3x≤4,解得-1≤x≤1或2≤x≤4,故f(x2-3x)的定义域为[-1,1]∪[2,4]. 【点拨】有解析式的函数的定义域是使解析式有意义的自变量的取值范围,往往列不等式组求解.对于抽象函数f[g(x)]的定义域要把g(x)当作f(x)中的x 来对待. 【变式训练2】已知函数f(2x)的定义域为[-1,1],求f(log2x)的定义域.【解析】因为y =f(2x)的定义域为[-1,1],即-1≤x≤1时2-1≤2x≤21,所以y =f(x)的定义域为[12,2].令12≤log2x≤2,所以2≤x≤22=4,故所求y =f(log2x)的定义域为[2,4].题型三 由实际问题给出的函数【例3】 用长为l 的铁丝弯成下部为矩形,上部为半圆形的框架(如图),若矩形底部长为2x ,求此框围成的面积y 与x 的函数关系式,并指出其定义域.【解析】由题意知,此框架围成的面积是由一个矩形和一个半圆组成的图形的面积,而矩形的长AB =2x ,设宽为a ,则有2x +2a +πx =l ,即a =2l -2πx -x ,半圆的半径为x , 所以y =22πx +(2l -π2x -x)·2x =-(2+π2)x2+lx.由实际意义知2l -π2x -x >0,因x >0,解得0<x <π+2l.即函数y =-(2+π2)x2+lx 的定义域是{x|0<x <π+2l}.【点拨】求由实际问题确定的定义域时,除考虑函数的解析式有意义外,还要考虑使实际问题有意义.如本题使函数解析式有意义的x 的取值范围是x ∈R ,但实际问题的意义是矩形的边长为正数,而边长是用变量x 表示的,这就是实际问题对变量的制约.【变式训练3】一张正方形的纸片,剪去两个一样的小矩形得到一个“E”形图案,如图所示,设小矩形的长、宽分别为x 、y ,剪去部分的面积为20,若2≤x≤10,记y =f(x),则y =f(x)的图象是( ) 【解析】由题意得y =10x(2≤x≤10),选A. 题型四 分段函数【例4】 已知函数f(x)=⎩⎨⎧≥+<+).0(1),0(32x x x x(1)求f(1)+f(-1)的值; (2)若f(a)=1,求a 的值;(3)若f(x)>2,求x 的取值范围.【解析】(1)由题意,得f(1)=2,f(-1)=2,所以f(1)+f(-1)=4. (2)当a <0时,f(a)=a +3=1,解得a =-2;当a≥0时,f(a)=a2+1=1,解得a =0.所以a =-2或a =0. (3)当x <0时,f(x)=x +3>2,解得-1<x <0; 当x≥0时,f(x)=x2+1>2,解得x >1. 所以x 的取值范围是-1<x <0或x >1.【点拨】分段函数中,x 在不同的范围内取值时,其对应的函数关系式不同.因此,分段函数往往需要分段处理.【变式训练4】已知函数f(x)=⎪⎩⎪⎨⎧>+-≤<.10,621,100|,lg |x x x x 若a ,b ,c 互不相等,且f(a)=f(b)=f(c),则abc 的取值范围是( )A.(1,10)B.(5,6)C.(10,12)D.(20,24)【解析】不妨设a <b <c ,由f(a)=f(b)=f(c)及f(x)图象知110<a <1<b <10<c <12,所以-lg a =lg b =-12c +6,所以ab =1,所以abc 的范围为(10,12),故选C.总结提高1.在函数三要素中,定义域是灵魂,对应法则是核心,因为值域由定义域和对应法则确定,所以两个函数当且仅当定义域与对应法则均相同时才表示同一个函数,而值域相同是两函数为同一函数的必要非充分条件.2.若一个函数在其定义域不同的子集上,解析式不同,则可用分段函数的形式表示.3.函数的三种表示法各有利弊,一般情况下,研究函数要求出函数的解析式,通过解析式来解题.求函数解析式的方法有:配方法、观察法、换元法和待定系数法等.。
2013高考数学复习课件 2.1 函数的概念及其表示 理 新人教版
2.指数函数 (1)了解指数函数模型的实际背景. (2)理解有理指数幂的含义,了解实数指数幂的意 义,掌握幂的运算. (3)理解指数函数的概念,理解指数函数的单调性, 掌握指数函数图象通过的特殊点. (4)知道指数函数是一类重要的函数模型.
3.对数函数 (1)理解对数的概念及其运算性质,知道用换底公式 能将一般对数转化成自然对数或常用对数;了解对数在简 化运算中的作用. (2)理解对数函数的概念,理解对数函数的单调性, 掌握对数函数图象通过的特殊点. (3)知道对数函数是一类重要的函数模型. (4)了解指数函数y=ax与对数函数y=logax互为反函数 (a>0,且a≠1).
f(x)=- 2,2x+1<4,x<3x;≤1; 2x-4, x≥3.
该函数的图象是由两条射线与一条线段组成的折线, 如图(a)所示.
(a)
(b)
(2)所给函数可写成分段函数:
f(x)=-x2-x2+4x+ 4x-3,3,
x≤1或x≥3; 1<x<3.
图象如图(b)所示.
【即时巩固 5】
函数 y=x22x, -1,
所以2aa≠+0b,=b+1, a+b=1,
解得 a=b=12.
因此 f(x)=12x2+12x.
【即时巩固3】 已知f(x)是一次函数,且f(f(x))=4x +3,求f(x)的解析式.
解:设f(x)=ax+b, 则f(f(x))=f(ax+b)=a(ax+b)+b
=a2x+ab+b=4x+3,
是
()
A.[0,+∞) B.[0,4] C.[0,4) D.(0,4)
解析:因为4x>0,所以-4x<0,
所以0≤16-4x<16,所以0≤y<4.
答案:C
考点五 函数的图象 【案例5】 画出下列函数的图象: (1)y=|x-1|+|3-x|; (2)y=|x2-4x+3|. 关键提示:先去掉绝对值,再画图象. 解:(1)所给函数可写成分段函数:
高三数学一轮复习 第二章函数函数的综合应用课件 文
•11、凡为教者必期于达到不须教。对人以诚信,人不欺我;对事以诚信,事无不成。 •12、首先是教师品格的陶冶,行为的教育,然后才是专门知识和技能的训练。 •13、在教师手里操着幼年人的命运,便操着民族和人类的命运。2022/1/182022/1/18January 18, 2022 •14、孩子在快乐的时候,他学习任何东西都比较容易。 •15、纪律是集体的面貌,集体的声音,集体的动作,集体的表情,集体的信念。 •16、一个人所受的教育超过了自己的智力,这样的人才有学问。 •17、好奇是儿童的原始本性,感知会使儿童心灵升华,为其为了探究事物藏下本源。2022年1月2022/1/182022/1/182022/1/181/18/2022 •18、人自身有一种力量,用许多方式按照本人意愿控制和影响这种力量,一旦他这样做,就会影响到对他的教育和对他发生作用的环境。 2022/1/182022/1/18
(A)70元. (B)60 元. (C)50元. (D)55元.
【解析】设售价为x(50≤x≤100),每个的利润为x-40元, 能卖出的个数为500-10(x-50)=1000-10x, ∴利润为f(x)=(1000-10x)(x-40)=-10(x-70)2+9000≤9000(当且仅当x=7 0时取等号). ∴售价定为70元时,赚到最大利润9000元.
【答案】A
1.建立目标函数解决函数应用题时,一是要注意自变量的取值范围, 二是要检验所得结果,必要时运用估算或近似值分析结果是否符合 实际问题的要求. 2.在将实际问题向数学问题转化的过程中,要充分地利用数学语言, 如引入字母、列表、画图、建立坐标系等理解题意,并使实际问题 数学化.
高三理科数学一轮复习精品讲义02(函数及其表示)
) B.[0,1]
3.下列函数中,不.满.足.f(2x)=2f(x)的是( )
A.f(x)=|x|
B.f(x)=x-|x|
C.f(x)=x+1
D.f(x)=-x
log3x,x>0, 4.已知 f(x)=(13)x,x≤0, 则满足方程 f(a)=1 的所
有 a 的值组成的集合为________.
5.给出下列四个命题: ①函数是其定义域到值域的映射;
例 8.(1)已知 f(x)=2loxg,3xx,≤x0>,0, 则 f(f(19))=______
2x(x≤0), (2)设函数 f(x)=|log2x|(x>0),
则方程 f(x)=12的解集
为________.
4.分段函数问题要分段求解. 5. 求分段函数应注意的问题:
在求分段函数的值 f(x0)时,首先要判断 x0 属于定义 域的哪个子集,然后再代入相应的关系式;分段函 数的值域应是其定义域内不同子集上各关系式的 取值范围的并集.
微信公众号:丰中小码农数学
高三理科数学一轮复习精品讲义
函数及其表示
编辑: 丰城中学 赵志平
基础知识:
1.函数的基本概念
(1)函数的定义
设 A,B 是两个非空的数集,如果按照某种确定的对
应关系 f,使对于集合 A 中的任意一个数 x,在集合
B 中都有唯一确定的数 f(x)和它对应,那么就称 f:
A→B 为从集合 A 到集合 B 的一个函数,记作 y=f(x),
2x+17,则 f(x)=________. 第 1 页,共 8 页
微信公众号:丰中小码农数学
(3)已知函数 f(x)的定义域为(0,+∞), 且 f(x)=2f(1x)· x-1,则 f(x)=________.
2013届高考数学一轮复习讲义:第二章 2[1].11 函数模型及其应用.ppt
函数模型及其应用
要点梳理
忆一忆知识要点
1.几类函数模型及其增长差异
(1)几类函数模型
函数模型
函数解析式
一次函数模型 反比例函数模型
二次函数模型
f(x)=ax+b (a、b 为常数,a≠0) f(x)=kx+b (k,b 为常数且 k≠0)
f(x)=ax2+bx+c (a,b,c 为常数,a≠0)
指数函数模型
f(x)=bax+c (a,b,c 为常数,b≠0,a>0 且 a≠1)
对数函数模型
f(x)=blogax+c (a,b,c 为常数,b≠0,a>0 且 a≠1)
幂函数模型
f(x)=axn+b (a,b 为常数,a≠0)
要点梳理
忆一忆知识要点
(2)三种增长型函数之间增长速度的比较 ①指数函数 y=ax (a>1)与幂函数 y=xn (n>0) 在区间(0,+∞),无论 n 比 a 大多少,尽管在 x 的一定范围 内 ax 会小于 xn,但由于 y=ax 的增长速度快于 y=xn 的增长 速度,因而总存在一个 x0,当 x>x0 时有 ax>xn. ②对数函数 y=logax (a>1)与幂函数 y=xn (n>0) 对数函数 y=logax (a>1)的增长速度,不论 a 与 n 值的大小如 何总会慢于 y=xn 的增长速度,因而在定义域内总存在一个 实数 x0,使 x>x0 时有 logax<xn. 由①②可以看出三种增长型的函数尽管均为增函数,但它们
变式训练 2
某市居民自来水收费标准如下:每户每月用水不超过 4 吨时, 每吨为 1.80 元,当用水超过 4 吨时,超过部分每吨 3.00 元.某 月甲、乙两户共交水费 y 元,已知甲、乙两户该月用水量分 别为 5x,3x(吨). (1)求 y 关于 x 的函数; (2)若甲、乙两户该月共交水费 26.4 元,分别求出甲、乙两 户该月的用水量和水费. 解 (1)当甲的用水量不超过 4 吨时,即 5x≤4,乙的用水量 也不超过 4 吨, y=1.8(5x+3x)=14.4x; 当甲的用水量超过 4 吨,乙的用水量不超过 4 吨,即 3x≤4, 且 5x>4 时,y=4×1.8+3x×1.8+3(5x-4)=20.4x-4.8.
2013届高考数学(文科)大纲版一轮总复习课件2.1映射与函数(第2课时)
-1 2
(1 )x0 2
-112≤(12x)0x<0 (123)-1.
•
(2)当x0<2时,
•
点评:分段函数是在定
义域的不同子集上对应法则不
同,需要用几个式子来表示函
数,解分段函数问题,必须分
段处理,最后进行综合.
•
则拓f[展f(-练2)习]=___已__知__xxf_(2x.3)3(=x(x0)
•即f(n+1)-解f(n:)= 对1 ,任意实数x,2 y有 故f(fx(+n)y=2)=n2f,(x得)+2f2(2010)=1005.
• [f(y)]2.
1
2
•
令x=y=0,得f(0+02)=f(0)+2
•
1. 深化对函数的概念的理解,
能从函数的三要素(定义域、值域与对
应法则)整体上去把握函数的概念.在函
x2 x
• (4)f(x)=
,g(x)=
;
• (5)f(x)=x2-2x-1,g(xt2)=|xt|2-2t-1. 3 x3
•
解:(1)由于f(x)=
,
g(x)= =x,故它|们x| 的值域及对应 x
法函则 数都;不相同,所以它1们-1(x(x不00) )是同一
(3)由于当n∈N*时,2n±1为奇数,
所以f(x)= 2n1 x2n1 =x,g(x)= (2n-1 x )2n-1 =x,
它们的定义域、值域及对应法则都相同,所
以它们是同一函数;
(4)由于函数f(x)= x· x 1 的定义域为 {x|x≥0},而g(x)= x2 x的定义域为{x|x≤-1或 x≥0},它们的定义域不同,所以它们不是同 一函数;
高考数学一轮复习资料 第2讲 函数篇之函数知识点概述.doc
"高考数学一轮复习资料 第2讲 函数篇之函数知识点概述 "1.函数的定义(1)映射的定义:(2) 一一映射的定义:(3)函数的定义: 2.函数的性质(1)定义域: (2)值域:(3)奇偶性(在整个定义域内考虑) ①定义:②判断方法:Ⅰ.定义法 步骤:a.求出定义域;b.判断定义域是否关于原点对称;c.求)(x f -;d.比较)()(x f x f 与-或)()(x f x f --与的关系。
Ⅱ图象法 ③已知:)()()(x g x f x H =若非零函数)(),(x g x f 的奇偶性相同,则在公共定义域内)(x H 为偶函数若非零函数)(),(x g x f 的奇偶性相反,则在公共定义域内)(x H 为奇函数 ④常用的结论:若)(x f 是奇函数,且定义域∈0,则)1()1(0)0(f f f -=-=或; 若)(x f 是偶函数,则)1()1(f f =-;反之不然。
(4)单调性(在定义域的某一个子集内考虑) ①定义:②证明函数单调性的方法: Ⅰ.定义法 步骤:a.设2121,x x A x x <∈且;b.作差)()(21x f x f -; (一般结果要分解为若干个因式的乘积,且每一个因式的正或负号能清楚地判断出)c.判断正负号。
Ⅱ用导数证明: 若)(x f 在某个区间A 内有导数,则⇔∈≥)0)(A x x f ,(’)(x f 在A 内为增函数;⇔∈≤)0)(A x x f ,(’)(x f 在A 内为减函数。
③求单调区间的方法: a.定义法: b.导数法: c.图象法:d.复合函数[])(x g f y =在公共定义域上的单调性:若f 与g 的单调性相同,则[])(x g f 为增函数;若f 与g 的单调性相反,则[])(x g f 为减函数。
注意:先求定义域,单调区间是定义域的子集。
④一些有用的结论:a.奇函数在其对称区间上的单调性相同;b.偶函数在其对称区间上的单调性相反;c.在公共定义域内增函数+)(x f 增函数)(x g 是增函数;减函数+)(x f 减函数)(x g 是减函数; 增函数-)(x f 减函数)(x g 是增函数; 减函数-)(x f 增函数)(x g 是减函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013年高考数学第一轮复习单元第二讲函数概念与表示一.课标要求1.通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念;2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数;3.通过具体实例,了解简单的分段函数,并能简单应用;4.通过已学过的函数特别是二次函数,理解函数的单调性、最大(小)值及其几何意义;结合具体函数,了解奇偶性的含义;5.学会运用函数图象理解和研究函数的性质。
二.命题走向函数是整个高中数学的重点,其中函数思想是最重要的数学思想方法,函数问题在历年的高考中都占据相当大的比例。
从近几年来看,对本部分内容的考察形势稳中求变,向着更灵活的的方向发展,对于函数的概念及表示多以下面的形式出现:通过具体问题(几何问题、实际应用题)找出变量间的函数关系,再求出函数的定义域、值域,进而研究函数性质,寻求问题的结果。
高考对函数概念与表示考察是以选择或填空为主,以解答题形式出现的可能性相对较小,本节知识作为工具和其他知识结合起来命题的可能性依然很大。
预测2013年高考对本节的考察是:1.题型是1个选择和一个填空;2.热点是函数概念及函数的工具作用,以中等难度、题型新颖的试题综合考察函数成为新的热点。
三.要点精讲1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数。
记作:y=f(x),x∈A。
其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域。
注意:(1)“y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;(2)函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x。
2.构成函数的三要素:定义域、对应关系和值域(1)解决一切函数问题必须认真确定该函数的定义域,函数的定义域包含三种形式:①自然型:指函数的解析式有意义的自变量x的取值范围(如:分式函数的分母不为零,偶次根式函数的被开方数为非负数,对数函数的真数为正数,等等);②限制型:指命题的条件或人为对自变量x的限制,这是函数学习中重点,往往也是难点,因为有时这种限制比较隐蔽,容易犯错误;③实际型:解决函数的综合问题与应用问题时,应认真考察自变量x的实际意义。
(2)求函数的值域是比较困难的数学问题,中学数学要求能用初等方法求一些简单函数的值域问题。
①配方法(将函数转化为二次函数);②判别式法(将函数转化为二次方程);③不等式法(运用不等式的各种性质);④函数法(运用基本函数性质,或抓住函数的单调性、函数图象等)。
3.两个函数的相等:函数的定义含有三个要素,即定义域A、值域C和对应法则f。
当函数的定义域及从定义域到值域的对应法则确定之后,函数的值域也就随之确定。
因此,定义域和对应法则为函数的两个基本条件,当且仅当两个函数的定义域和对应法则都分别相同时,这两个函数才是同一个函数。
4.区间(1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的数轴表示。
5.映射的概念一般地,设A 、B 是两个非空的集合,如果按某一个确定的对应法则f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,那么就称对应f :A →B 为从集合A 到集合B 的一个映射。
记作“f :A →B ”。
函数是建立在两个非空数集间的一种对应,若将其中的条件“非空数集”弱化为“任意两个非空集合”,按照某种法则可以建立起更为普通的元素之间的对应关系,这种的对应就叫映射。
注意:(1)这两个集合有先后顺序,A 到B 的射与B 到A 的映射是截然不同的.其中f 表示具体的对应法则,可以用汉字叙述。
(2)“都有唯一”什么意思?包含两层意思:一是必有一个;二是只有一个,也就是说有且只有一个的意思。
6.常用的函数表示法(1)解析法:就是把两个变量的函数关系,用一个等式来表示,这个等式叫做函数的解析表达式,简称解析式;(2)列表法:就是列出表格来表示两个变量的函数关系; (3)图象法:就是用函数图象表示两个变量之间的关系。
7.分段函数若一个函数的定义域分成了若干个子区间,而每个子区间的解析式不同,这种函数又称分段函数; 8.复合函数若y =f (u),u=g(x ),x ∈(a ,b ),u ∈(m,n),那么y =f [g(x )]称为复合函数,u 称为中间变量,它的取值范围是g(x )的值域。
四.典例解析题型1:函数概念例1.(1)设函数).89(,)100()]5([)100(3)(f x x f f x x x f 求⎩⎨⎧<+≥-=解:(1)这是分段函数与复合函数式的变换问题,需要反复进行数值代换,)))101((())))104(((()))99((())94(()89(f f f f f f f f f f f f f =====)99())102(()97())100(()))103((())98((f f f f f f f f f f f ======.98)101())104((==f f f 点评:讨论了函数的解析式的一些常用的变换技巧(赋值、变量代换、换元等等),这都是函数学习的常用基本功。
变式题:(2011山东 文2)设1232,2()((2))log (1) 2.x e x f x f f x x -⎧⎪=⎨-≥⎪⎩<,则的值为,( ) A .0 B .1 C .2 D .3解:选项为C 。
例2.1)函数()f x 对于任意实数x 满足条件()()12f x f x +=,若()15,f =-则()()5f f =__ ________; (2)函数()f x 对于任意实数x 满足条件()()12f x f x +=,若()15,f =-则()()5f f =__________。
解:(1)由()()12f x f x +=得()()14()2f x f x f x +==+, 所以(5)(1)5f f ==-,则()()115(5)(1)(12)5ff f f f =-=-==--+。
(2)由()()12f x f x +=得()()14()2f x f x f x +==+,所以(5)(1)5f f ==-,则()()115(5)(1)(12)5f f f f f =-=-==--+。
点评:通过对抽象函数的限制条件,变量换元得到函数解析式,考察学生的逻辑思维能力。
题型二:判断两个函数是否相同例3.试判断以下各组函数是否表示同一函数? (1)f (x )=2x ,g (x )=33x ;(2)f (x )=x x ||,g (x )=⎩⎨⎧<-≥;01,01x x(3)f (x )=1212++n n x ,g (x )=(12-n x )2n -1(n ∈N *);(4)f (x )=x1+x ,g (x )=x x +2;(5)f (x )=x 2-2x -1,g (t )=t 2-2t -1。
解:(1)由于f (x )=2x =|x |,g (x )=33x =x ,故它们的值域及对应法则都不相同,所以它们不是同一函数; 2)由于函数f (x )=x x ||的定义域为(-∞,0)∪(0,+∞),而g (x )=⎩⎨⎧<-≥;01,01x x 的定义域为R ,所以它们不是同一函数;3)由于当n ∈N *时,2n ±1为奇数,∴f (x )=1212++n n x =x ,g (x )=(12-n x )2n -1=x ,它们的定义域、值域及对应法则都相同,所以它们是同一函数; 4)由于函数f (x )=x1+x 的定义域为{x |x ≥0},而g (x )=x x +2的定义域为{x |x ≤-1或x ≥0},它们的定义域不同,所以它们不是同一函数;5)函数的定义域、值域和对应法则都相同,所以它们是同一函数。
点评:对于两个函数y =f (x )和y =g (x ),当且仅当它们的定义域、值域、对应法则都相同时,y =f (x )和y =g (x )才表示同一函数若两个函数表示同一函数,则它们的图象完全相同,反之亦然。
(1)第(5)小题易错判断成它们是不同的函数,原因是对函数的概念理解不透要知道,在函数的定义域及对应法则f 不变的条件下,自变量变换字母,以至变换成其他字母的表达式,这对于函数本身并无影响,比如f (x )=x 2+1,f (t )=t 2+1,f (u +1)=(u +1)2+1都可视为同一函数。
(2)对于两个函数来讲,只要函数的三要素中有一要素不相同,则这两个函数就不可能是同一函数。
题型三:函数定义域问题 例4.求下述函数的定义域:(1)02)23()12lg(2)(x x x x x f -+--=;解:(1)⎪⎪⎩⎪⎪⎨⎧≠-≠->-≥-023112012022x x x x x ,解得函数定义域为]2,23()23,1()1,21( .点评:在这里只需要根据解析式有意义,列出不等式,但第(2)小题的解析式中含有参数,要对参数的取值进行讨论,考察学生分类讨论的能力。
例5.已知函数()f x 定义域为(0,2),求下列函数的定义域:(1) 2()23f x +;(2)2y =解:(1)由0<x 2<2, 得点评:本例不给出f (x )的解析式,即由f (x )的定义域求函数f [g (x )]的定义域关键在于理解复合函数的意义,用好换元法;求函数定义域的第三种类型是一些数学问题或实际问题中产生的函数关系,求其定义域,后面还会涉及到。
变式题:已知函数f (x )=31323-+-ax ax x 的定义域是R ,则实数a 的取值范围是( )A .a >31 B .-12<a ≤0C .-12<a <0D .a ≤31 解:由a =0或⎩⎨⎧<-⨯-=≠,0)3(4,02a a Δa 可得-12<a ≤0,答案B 。
题型四:函数值域问题例6.求下列函数的值域:(1)232y x x =-+;(2)y =;(3)312x y x +=-; (4)y x =+(5)y x =(6)|1||4|y x x =-++;(7)22221x x y x x -+=++;(8)2211()212x x y x x -+=>-;(9)1sin 2cos x y x -=-。