模拟线性调制系统实验1

合集下载

AM—调制与解调仿真

AM—调制与解调仿真

引言本次实践开设的计算机课程设计为软件仿真,利用matla b编写程序建立M文件对计算机实验进行仿真。

随着通信技术的发展日新月异,通信系统也日趋复杂,在通信系统的设计研发过程中,软件仿真已成为必不可少的一部分.随着信息技术的不断发展,涌现出了许多功能强大的电子仿真软件,如Work be enc h、Pr ote l、Sys temview 、Matlab 等。

虚拟实验技术发展迅速,应用领域广泛,一些在现实世界无法开展的科研项目可借助于虚拟实验技术完成,例如交通网的智能控制、军事上新型武器开发等。

调制就是使一个信号(如光等)的某些参数(如振幅、频率等)按照另一个欲传输的信号(如声音、图像等)的特点变化的过程.解调是调制的逆过程,它的作用是从已调波信号中取出原来的调制信号。

对于幅度调制来说,解调是从它的幅度变化提取调制信号的过程。

对于频率调制来说,解调是从它的频率变化提取调制信号的过程。

在信号和模拟通信的中心问题是要把载有消息的信号经系统加工处理后,送入信道进行传送,从而实现消息的相互传递.消息是声音、图像、文字、数据等多种媒体的集合体。

把消息通过能量转换器件,直接转变过来的电信号称为基带信号。

A M是调幅(Amplitud eModu lation),用AM 调制与解调可以在电路里面实现很多功能,制造出很多有用又实惠的电子产品,为我们的生活带来便利.用MAT LAB 仿真工具仿真的AM 调制解调与解调器抗干扰性能分析的工作原理和工作过程,完成对调制与解调过程的分析以及相干解调器的抗干扰性能的分析.通过对波形图的分析给出不同信噪比情况下的解调结果对比.寻找最佳调试解调途径已相当重要。

其中将数字信息转换成模拟形式称调制,将模拟形式转换回数字信息称为解调。

本文主要的研究内容是了解AM 信号的数学模型及调制方式以及其解调的方法在不同的信噪比情况下的解调结果.先从AM 的调制研究,其次研究A M的解调以及一些有关的知识点,得出AM 信号的数学模型及其调制与解调的框图和调制解调波形图,然后利用MATLAB 编程语言实现对A M信号的调制与解调,给出不同信噪比情况下的解调结果对比。

西南大学通信原理第五章模拟调制系统1

西南大学通信原理第五章模拟调制系统1

电路与通信教研室 高渤
第一节 幅度调制(线性调制)的原理
一、调幅(AM) 1、AM调制器模型
m t
sm t
A0 cosct
2、时域表达式
sAM (t) [ A0 m(t)]cosct A0 cosct m(t) cosct
式中, m(t) —— 调制信号,均值为0;
A0 —— 常数,表示叠加的直流分量。
西南大学通信原理第五 章模拟调制系统1
2021/5/24
学习内容
第五章 模拟调制系统
1 幅度调制(线性调制)的原理 2 线性调制系统的抗噪声性能 3 非线性(角度调制)的原理 4 调频系统的抗噪声性能
5 各种模拟调制系统的比较
6 频分复用和调频立体声
通信原理【 第五章:模拟 调制系统 】
电路与通信教研室 高渤
通信原理【 第五章:模拟 调制系统 】
电路与通信教研室 高渤
学习内容
第五章 模拟调制系统
1 幅度调制(线性调制)的原理 2 线性调制系统的抗噪声性能 3 非线性(角度调制)的原理 4 调频系统的抗噪声性能
5 各种模拟调制系统的比较
6 频分复用和调频立体声
通信原理【 第五章:模拟 调制系统 】
电路与通信教研室 高渤
Sm ()
A M (
2
c ) M
c )
可见,在频谱结构上,它的频谱完全是基带信号频谱在频
域内的简单搬移。由于这种搬移是线性的,因此,幅度调制通
常又称为线性调制。
注意,这里的“线性”并不意味着已调信号与调制信号之
间符合线性变换关系。事实上,任何调制过程都是一种非线性
的变换过程。
通信原理【 第五章:模拟 调制系统 】

第三章模拟调制系统-1DSB_SSB

第三章模拟调制系统-1DSB_SSB
载波幅度, 载波幅度,已调 信号的组成部分
则已调信号的频谱为: 则已调信号的频谱为:
1 SAM(ω) = πA0 [δ(ω − ωc ) + δ(ω + ωc )] + [F(ω − ωc ) + F(ω + ωc )] 2
12 教师:黄晗
1. 形状相同,位置搬移; 形状相同,位置搬移;
已调信号的频谱图: 已调信号的频谱图:
数字调制: 数字调制:ASK、FSK、PSK 、 、
3 教师:黄晗
调制的目的
提高无线通信时的天线辐射效率。 提高无线通信时的天线辐射效率。 传输频率: 传输频率:3kHz,天线高度:25km ,天线高度: 传输频率: 900MHz ,天线高度:8cm 传输频率: 天线高度: 把多个基带信号分别搬移到不同的载频处, 把多个基带信号分别搬移到不同的载频处,以 实现信道的多路复用,提高信道利用率。 实现信道的多路复用,提高信道利用率。 扩展信号带宽,提高系统抗干扰、抗衰落能力, 扩展信号带宽,提高系统抗干扰、抗衰落能力, 还可实现传输带宽与信噪比之间的互换。 还可实现传输带宽与信噪比之间的互换。
2 教师:黄晗
信号、传输方式、调制方式的分类
电信号
携带有用信息的信号,未调制) 基带信号 (携带有用信息的信号,未调制) 基带信号经过某种调制) 频带信号 (基带信号经过某种调制)
传输方式
基带传输 调制(频带) 调制(频带)传输
模拟调制
线性调制:AM、DSB、SSB、VSB 线性调制: 、 、 、 非线性调制: 非线性调制:PM、FM调制 、 调制
β AM = f (t ) max / A0
11 教师:黄晗
当载波初相为0时 已调信号为: 当载波初相为 时,已调信号为: sAM (t ) = [ A0 + f (t ) ] cosω ct 频 域 = A0 cosω ct + f (t )cosω ct 特 性 分 析 若有: 若有:

通信系统仿真实验报告

通信系统仿真实验报告

《通信系统仿真技术》实验报告姓名:李傲班级:14050Z01学号: 1405024239实验一:Systemview操作环境的认识与操作1、实验目的:熟悉systemview软件的基本环境,为后续实验打下基础,熟悉基本操作,并使用其做出第一个自己的project,并截图2、实验内容:1>按照实验指导书的1.7进行练习2>正弦信号(频率为学号*10,幅度为(1+学号*0.1)V)、及其平方谱分析;并讨论定时窗口的设计对仿真结果的影响。

3、实验仿真:图1系统连结图(实验图中标注参数,并对参数设置、仿真结果进行分析)4、实验结论输出信号底部有微弱的失真,调节输入的频率的以及平方器的参数,可以改变输入信号的波形失真,对于频域而言,sin信号平方之后,其频率变为原来的二倍,这一点可有三角函数的化简公式证明实验二:滤波器使用及参数设计1、实验目的:1、学习使用SYSTEMVIEW 中的线性系统图符。

2、掌握典型FIR 滤波器参数和模拟滤波器参数的设置过程。

3、按滤波要求对典型滤波器进行参数设计。

实验原理:2、实验内容:参考实验指导书,设计出一个低通滤波器,并对仿真结果进行截图,要求在所截取的图片上用便笺的形式标注自己的姓名、学号、班级。

学号统一使用序号3、实验仿真:系统框架图输入输出信号的波形图输入输出信号的频谱图4、实验结论对于试验中低通滤波器的参数设置不太容易确定,在输入完通带宽度、截止频率和截止点的衰落系数等滤波器参数后,如果选择让SystemView 自动估计抽头,则可以选择“Elanix Auto Optimizer”项中的“Enabled”按钮,再单击“Finish”按钮退出即可。

此时,系统会自动计算出最合适的抽头数通常抽头数设置得越大,滤波器的精度就越实验三、模拟线性调制系统仿真(AM)(1学时)1、实验目的:1、学习使用SYSTEMVIEW 构建简单的仿真系统。

3、掌握模拟幅度调制的基本原理。

基于Matlab的模拟调制与解调实验报告

基于Matlab的模拟调制与解调实验报告

基于Matlab的模拟调制与解调(开放实验)一、实验目的(一)了解AM、DSB和SSB 三种模拟调制与解调的基本原理(二)掌握使用Matlab进行AM调制解调的方法1、学会运用MATLAB对基带信号进行AM调制2、学会运用MATLAB对AM调制信号进行相干解调3、学会运用MATLAB对AM调制信号进行非相干解调(包络检波)(三)掌握使用Matlab进行DSB调制解调的方法1、学会运用MATLAB对基带信号进行DSB调制2、学会运用MATLAB对DSB调制信号进行相干解调(四)掌握使用Matlab进行SSB调制解调的方法1、学会运用MATLAB对基带信号进行上边带和下边带调制2、学会运用MATLAB对SSB调制信号进行相干解调二、实验环境MatlabR2020a三、实验原理(一)滤波法幅度调制(线性调制)(二)常规调幅(AM)1、AM表达式2、AM波形和频谱3、调幅系数m(三)抑制载波双边带调制(DSB-SC)1、DSB表达式2、DSB波形和频谱(四)单边带调制(SSB)(五)相关解调与包络检波四、实验过程(一)熟悉相关内容原理 (二)完成作业已知基带信号()()()sin 10sin 30m t t t ππ=+,载波为()()cos 2000c t t π= 1、对该基带信号进行AM 调制解调(1)写出AM 信号表达式,编写Matlab 代码实现对基带进行进行AM 调制,并分别作出3种调幅系数(1,1,1m m m >=<)下的AM 信号的时域波形和幅度频谱图。

代码 基带信号fs = 10000; % 采样频率 Ts = 1/fs; % 采样时间间隔t = 0:Ts:1-Ts; % 时间向量m = sin(10*pi*t) + sin(30*pi*t); % 基带信号载波信号fc = 1000; % 载波频率c = cos(2*pi*fc*t); % 载波信号AM调制Ka = [1, 0.5, 2]; % 调制系数m_AM = zeros(length(Ka), length(t)); % 存储AM调制信号相干解调信号r = zeros(length(Ka), length(t));绘制AM调制信号的时域波形和幅度频谱图figure;for i = 1:length(Ka)m_AM(i, :) = (1 + Ka(i)*m).*c; % AM调制信号subplot(3, 2, i);plot(t, m_AM(i, :));title(['AM调制信号(Ka = ' num2str(Ka(i)) ')']);xlabel('时间');ylabel('幅度');ylim([-2, 2]);subplot(3, 2, i+3);f = (-fs/2):fs/length(m_AM(i, :)):(fs/2)-fs/length(m_AM(i, :));M_AM = fftshift(abs(fft(m_AM(i, :))));plot(f, M_AM);title(['AM调制信号的幅度频谱图(Ka = ' num2str(Ka(i)) ')']);xlabel('频率');ylabel('幅度');r(i, :) = m_AM(i, :) .* c; % 相干解调信号end绘制相干解调信号的时域波形和幅度频谱图figure;for i = 1:length(Ka)subplot(length(Ka), 1, i);plot(t, r(i, :));title(['相干解调信号(Ka = ' num2str(Ka(i)) ')']);xlabel('时间');ylabel('幅度');end图像(2)编写Matlab代码实现对AM调制信号的相干解调,并作出图形。

模拟调制系统~幅度调制(一)

模拟调制系统~幅度调制(一)

模拟调制系统~幅度调制(⼀)⼀、信号的调制在通信系统中,信源输出的是由原始信息变换成的电信号,这种信号通常具有较宽的频谱,并且在频谱的低端分布较⼤的能量,称为基带信号。

但是多数信道是低频端受限的,⽆法长距离传输低频信号。

因此在传输过程中需要将基带信号所蕴含的信息转载到⾼频载波上,这⼀过程叫做信号的调制。

⽽在接收端将接收到的信号进⾏解调,以获取传递的信息。

⼆、调制定理我们知道⼀个余弦函数的傅⾥叶变换为\cos(w_0t)<\frac{Fourier}{}>\pi [δ(w+w_0)+δ(w-w_0)]那么⼀个信号m(t)与之相乘,其结果的傅式变换为\pi [M(w+w_0)+M(w-w_0)],它所表⽰的物理含义就是是信号m(t)的幅度谱M(\omega)分别向⾼频和低频搬移\omega_0。

我们将信号m(t)看作信源所产⽣的最⾼频率为\omega_m低频宽带信号,要使其能够在信道上传输,就可以乘以⼀个频率⾼到⾜以匹配信道的余弦信号(即⾼频载波),使其所包含的频谱信息都搬移⾄[\omega_0-\omega_m,\omega_0+\omega_m]的位置,这就是调制定理。

调制的过程实质是完成信息的转载。

三、希尔伯特变换在信号处理领域中,⼀个实信号的希尔伯特变换(Hilbert transform)是将其通过⼀个冲激响应为h(t)=\frac{1}{\pi t}的系统所得到的输出信号。

该系统的频率响应为H(j\omega)=-sgn(\omega)。

这种变换所表⽰的物理含义为信号正频域的部分相移-\frac{\pi}{2},信号负频域的部分相移\frac{\pi}{2}。

欧拉公式e^{j\omega_0t}=cos(\omega_0t)+jsin(\omega_0t)中我们可以将cos(\omega_0t)与sin(\omega_0t)看作⼀对希尔伯特变换,⽽任⼀实信号x(t)均可表⽰为⼀系列e^{j\omega_0t}的线性组合,那么x(t)与其希尔伯特变换也可以通过这种⽅式扩展成⼀个复信号,⽅便信号的处理。

线性调制

线性调制

第3章模拟线性调制系统 3.1 概述3.1.1 调制的目的.频谱搬移 - 适应信道传输、合并多路信号; 提高抗干扰性。

3.1.2 基本概念基带信号:由消息直接变换成的电信号。

频带从零频开始,低频端谱能量大,不宜在信道中远距离传输。

调 制:按调制信号(基带信号)的变化规律去改变载波某些参数的过程叫调制。

(频谱搬迁)调制信号:f(t)载 波:c(t)=Acos[ωc t+θ0]已调信号:s(t)=m (t)·c(t) =A(t)cos[ωc t+φ(t)+θ0] 模拟调制:当调制信号为模拟基带信号m(t),载波为连续的正弦或余弦高频信号c(t)=Acos[ωc t+θ0]时,称模拟调制。

3.1.3 调制的分类数字调制3.2 双边带调幅一. 常规调幅1. 时域表达式:调制信号f(t)(平均值)(t f =0)加直流后对载波幅度调制(称标准或完全调幅)s AM (t)= [A 0+f(t)]·cos[ωc t+θc ]ωc 载波角频率, θc 载波初相位()()()()()()()()()()⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧成比例变化随常数,调相:成比例变化随常数,调频:非线性调制角度调制为常数成比例变化随线性调制幅度调制模拟调制t f t t A t f dt t d t A VSBSSB DSBAM t t f t A φφφ)(,波形图3-1当调制信号f(t)为单频信号时:f(t)= A m cos(ωm t+θm )则: s AM (t)= [A 0+ A m cos(ωm t+θm)]cos[ωc t+θc ]= A 0 [1+βAM cos(ωm t+θm)]cos[ωc t+θc ]A A m AM =β称调幅指数,х100%叫调制度⎪⎩⎪⎨⎧><=过调幅通常取正常调幅满调幅...1-60%)-30%(...1......1AMβ 2.频域表达式θc =0的时域表达式:s AM (t)= [A 0+ f (t)]cosωc t = A 0 cosωc t+ m (t) cosωc t因m(t) F (ω)A 0 cosωc t [])()(000ωωδωωδπ++-↔A注: ))((21cos )(tj tj c c c eet f t t f ωωω-+=tj tj c c et f et f ωω-+=)(21)(21其付氏变换为因为根据平移故S AM (ω) 的频域表达式为:[])]()([21)()()(00000ωωωωωωδωωδπω++-+++-=F F A S AM频谱图:()()00ωωω-↔F et f tj ()()0021ωωωω++-F F [])()(21cos )(00ωωωωω++-↔F F t t f c频谱搬迁到适合通信系统传输的频率范围。

第四章模拟调制系统习题(30道)

第四章模拟调制系统习题(30道)

第四章 模拟调制系统 习题(30道)1. 已知调制信号 m(t)=cos(2000πt)+cos(4000πt),载波为cos104πt,进行单边带调制,试确定该单边带信号的表达试,并画出频谱图。

解:方法一:若要确定单边带信号,须先求得m(t)的希尔伯特变换 m ’(t)=cos(2000πt-π/2)+cos(4000πt-π/2) =sin(2000πt )+sin(4000πt ) 故上边带信号为S USB (t)=1/2m(t) cos w c t -1/2m ’(t)sin w c t =1/2cos(12000πt )+1/2cos(14000πt ) 下边带信号为S LSB (t)=1/2m(t) cos w c t +1/2m ’(t) sin w c t=1/2cos(8000πt )+1/2cos(6000πt ) 其频谱如图所示。

方法二:先产生DSB 信号:s m (t)=m(t)cos w c t =···,然后经过边带滤波器,产生SSB 信号。

2. 将调幅波通过残留边带滤波器产生残留边带信号。

若次信号的传输函数H(w )如图所示。

当调制信号为m(t)=A[sin100πt +sin6000πt ]时,试确定所得残留边带信号的表达式。

解:设调幅波sm(t)=[m 0+m(t)]coswct,m0≥|m(t)|max,且s m (t)<=>S m (w)根据残留边带滤波器在f c 处具有互补对称特性,从H(w)图上可知载频f c =10kHz ,因此得载波cos20000πt。

故有sm(t)=[m0+m(t)]cos20000πt=m0cos20000πt+A[sin100πt+sin6000πt]cos20000πt=m0cos20000πt+A/2[sin(20100πt)-sin(19900πt)+sin(26000πt)-sin(14000πt)Sm(w)=πm0[σ(w+20000π)+σ(W-20000π)]+jπA/2[σ(w+20100π)-σ(w+19900π)+σ(w-19900π)+σ(w+26000π)-σ(w-26000π)-σ(w+14000π)+σ(w-14000π)残留边带信号为F(t),且f(t)<=>F(w),则F(w)=Sm(w)H(w)故有:F(w)=π/2m0[σ(w+20000π)+σ(w-20000π)]+jπA/2[0.55σ(w+20100π)-0.55σ(w-20100π)-0.45σ(w+19900π)+ 0.45σ(w-19900π)+σ(w+26000π) -σ(w-26000π)f(t)=1/2m0cos20000πt+A/2[0.55sin20100πt-0.45sin19900πt+sin26000πt]3.设某信道具有均匀的双边噪声功率谱密度Pn(f)=0.5*10-3W/Hz,在该信道中传输抑制载波的双边带信号,并设调制信号m(t)的频带限制在5kHz,而载波为100kHz,已调信号的功率为10kW.若接收机的输入信号在加至解调器之前,先经过一理想带通滤波器滤波,试问:1.)该理想带通滤波器应具有怎样的传输特性H(w)?2.)解调器输入端的信噪功率比为多少?3.)解调器输出端的信噪功率比为多少?4.)求出解调器输出端的噪声功率谱密度,并用图型表示出来。

通信原理第5章 模拟调制系统

通信原理第5章  模拟调制系统
c (t) m (t)co (t)s t ((t))
幅度调制:调幅、双边带、单边带和残留边带 角度调制:频率调制、相位调制
.
3
第5章 模拟调制系统
5.1幅度调制(线性调制)的原理
一般原理
表示式: c(t)Acosct0
设:正弦型载波为
式中,A — 载波幅度;
c — 载波角频率; 0 — 载波初始相位(以后假定0 = 0)。
通信原理
.
1
通信原理
第5章 模拟调制系统
.
2
第5章 模拟调制系统
调制的目的 提高无线通信时的天线辐射效率。 把多个基带信号分别搬移到不同的载频处,以实 现信道的多路复用,提高信道利用率。 (调频)扩展信号带宽,提高系统抗干扰、抗衰落 能力,还可实现传输带宽与信噪比之间的互换。
常见的模拟调制
t
时,其包络与调制信号波形相同, A0 mt
因此用包络检波法很容易恢复出原
始调制信号。
t 载波
否则,出现“过调幅”现象。这时用 t
包络检波将发生失真。但是,可以
采用其他的解调方法,如同步检波。sAM t
t
.
7
第5章 模拟调制系统
频谱图 由频谱m 可t 以看出,AM信号的频谱由
载频分量
t
上 下边 边A0 带 带mt
sm t
s p t LPF sd t
c t cosct
.
14
第5章 模拟调制系统
相干解调器性能分析
已调信号的一般表达式为
s m (t) s I(t)c o sc t s Q (t)sinc t
与同频同相的相干载波c(t)相乘后,得
sptsm(t)cosct

Commsim仿真部分-指导书

Commsim仿真部分-指导书

S/N:DN-3807-03526-3143-00128实验一 模拟线性调制系统(AM)一、 概述连续波调制是以正弦波为载波c(t)的调制方式,分为线性调制和非线性两大类。

调制信号m(t)为模拟信号时为模拟调制。

本实验主要介绍并验证了常规AM 调制和DSB 调制。

二、 原理1. AM 调制原理任意AM 已调信号可以表示为S am (t)=c(t)m(t)当)()(0t f A t m +=;)cos()(0θω+=t t c c 且A 0不等于0时称为常规调幅,其时域表达式为:)cos()]([)()()(00θω++==t t f A t m t c t s c amA 0是外加的直流分量,f(t)是调制信号,它可以是确知信号也可以是随机信号,为方便起见通要使输出已调信号的幅度与输入调制信号f(t)呈线性对应关系,应满足max 0)(t f A ≥,否则会出现过调制现象三、 步骤a) 点击菜单栏comm 选Modulators 中的AM 。

参数设置为:b) 点击菜单栏comm 选Complex Math 中的Complex to Real/Phase 。

c) 构造复杂模块Input 、Bias 。

复杂模块的具体图解:1、Input1)点击菜单栏comm选signal sources 中的sinusoid。

参数设置为:2)在工具栏Signal Producer中选Step 。

3)在工具栏Arithmetic中选SummingJunction。

1)工具栏Signal Producers中选const。

参数设置为:2) 在工具栏Arithmetic 中选SummingJunction 。

实验二 抑制载波双边带调制(DSB )一、概述在常规调幅时,由于已调波中含有不携带信息的载波分量,故调制效率较低,为了提高调制效率,在常规调幅的基础上抑制载波分量,使总功率全部包含在双边带中,这种调制方式称为抑制载波双边带调制。

通信原理实验报告实验一

通信原理实验报告实验一

实验一模拟线性调制系统仿真实验1实验目的掌握常规AM调制、DSB调制、单边带调制(SSB)的原理和方法,并验证这三种方法的可行性。

并掌握Commsim的常用使用方法。

2实验内容和结果2.1模拟线性调制系统(AM)2.2抑制载波双边带调制(DSB)2.3单边带调制(SSB)3 实验分析3.1模拟线性调制系统(AM)的分析:任意AM 已调信号可以表示为Sam(t)=c(t)m(t)当)()(0t f A t m +=,)cos()(0θω+=t t c c 且A0不等于0时称为常规调幅,其时域表达式为:)cos()]([)()()(00θω++==t t f A t m t c t s c am 3.2抑制载波双边带调制(DSB ):任意DSB 已调信号都可以表示为DSB S )()()(t m t c t =当)()(0t f A t m +=;)cos()(0θω+=t t c c 且A 0等于0时称为抑制载波双边带调制。

其时域表达式为t t f t m t c t s c DSB ωcos )()()()(==;频域表达式为:C DSB F t s ωω+=([)(C F ωω-+()2)]÷3.3单边带调制(SSB ):设调制信号为单边带信号f(t)=A m cosωm t ,载波为c(t)=cosωc t 则调制后的双边带时域波形为:2/])cos()cos([cos cos )(t A t A t t A t S m c m m c m c m m DSB ωωωωωω-++==保留上边带,波形为:2/)sin sin cos (cos 2/])cos([)(t t t t A t A t S m c m c m m c m USB ωωωωωω-=+=保留下边带,波形为:2/)sin sin cos (cos 2/])cos([)(t t t t A t A t S m c m c m m c m LSB ωωωωωω+=-=4 实验体会通过此次实验我进一步理解了AM 、DSB 、SSB 的调制方法的原理和方法,以及如何通过Commsim 软件来模拟这一调制的过程。

软件无线电实验 模拟调制制式识别

软件无线电实验 模拟调制制式识别

模拟调制制式自适应识别
一、实验要求
1、设计一个模拟调制信号自适应识别器,该调制器可以识别AM 、DSB 、USB 、LSB 、FM 以及AM-FM 调制方式。

2、假设接收信号的载波30KHz ,采样率为100KHz ,调制方式未知,计算各种模拟特征参数值,并进行自动识别。

二、实验原理
模拟信号识别,关键要从接收信号中提取用于信号样式识别的信号特征参数:
1、零中心归一化瞬时幅度之谱密度的最大值
2、零中心非弱信号段瞬时相位非线性分量绝对值的标准偏差
3、零中心非弱信号段瞬时相位非线性分量的标准偏差
4、谱对称性
可以依据信号的以上4个特征参数,对信号的调制样式进行有效识别。

下图为模拟调制识别的决策树:
三、实验内容与结果
选取输入信号为:)/100002cos(5.1)/20002cos(s s f n pi f n pi S ***+**= 各种调制样式产生已调信号的特征参数如下图:
r可从图中可以看出,由参数P可以清楚的识别出LSB、USB信号,再由参数
m ax 以识别出FM信号。

理论上,DSB信号的ap值应该最小,AM信号的dp值应该最小,但由于瞬时相位非线性分量提取的困难,本实验并未能够非常清晰的识别DSB以及AM信号。

不过从实验数据来看,AM信号还是基本能够有效识别出来的,DSB信号的ap值虽为最小,但与其他调制信号的值相差不大,识别效果不是很好。

本实验在完成了模拟信号通用调制(正交调制)的基础上,探讨了对模拟调制进行自适应识别的方法,取得了一定的分类效果,但在瞬时相位非线性分量的提取上仍需改进。

AM、DSB、SSB实验报告

AM、DSB、SSB实验报告

AM、DSB、SSB实验报告成绩信息与通信工程学院实验报告(软件仿真性实验)课程名称:通信系统仿真技术实验题目:模拟幅度调制系统仿真指导教师:李海真班级:15050243 学号:21 学生姓名:窦妍博一、实验目的1、学习使用SystemView构建简单的仿真系统;2、掌握模拟幅度调制的基本原理;3、掌握常规条幅、DSB、SSB的解调方法;4、掌握AM信号调制指数的定义。

二、实验原理1、AM①AM信号的基本原理在图1.1中,若假设滤波器为全通网络(=1),调制信号叠加直流后再与载波相乘,则输出的信号就是常规双边带调幅AM调制器模型如图所示。

图1.1 AM调制器模型AM信号的时域和频域表达式分别为式中,为外加的直流分量;可以是确知信号也可以是随机信号,但通常认为其平均值为0,即[1]。

AM信号的典型波形和频谱分别如图 1.2(a)、(b)所示,图中假定调制信号的上限频率为。

显然,调制信号的带宽为。

图1.2 AM信号的波形和频谱由图1,2(a)可见,AM信号波形的包络与输入基带信号成正比,故用包络检波的方法很容易恢复原始调制信号。

但为了保证包络检波时不发生失真,必须满足,否则将出现过调幅现象而带来失真。

AM信号的频谱是由载频分量和上、下两个边带组成(通常称频谱中画斜线的部分为上边带,不画斜线的部分为下边带)。

上边带的频谱与原调制信号的频谱结构相同,下边带是上边带的镜像。

显然,无论是上边带还是下边带,都含有原调制信号的完整信息。

故AM信号是带有载波的双边带信号,带宽为基带信号带宽的两倍,即式中,为调制信号的带宽,为调制信号的最高频率。

② AM信号的解调——相干解调由AM信号的频谱可知,如果将已调信号的频谱搬回到原点位置,即可得到原始的调制信号频谱,从而恢复出原始信号。

解调中的频谱搬移同样可用调制时的相乘运算来实现[2]。

相干解调的原理框图如图3-3所示。

图1.3 相干解调原理框图将已调信号乘上一个与调制器同频同相的载波,得由上式可知,只要用一个低通滤波器,就可以将第1项与第2项分离,无失真的恢复出原始的调制信号③AM信号的解调——包络检波包络解调器通常由半波或全波整流器和低通滤波器组成。

模拟电路相位调制

模拟电路相位调制

模拟电路相位调制相位调制(Phase Modulation,简称PM)是一种常见的调制方式,在模拟电路领域有着广泛应用。

它通过改变信号的相位来传递信息,具有抗干扰性强、带宽利用效率高等优点。

本文将详细介绍模拟电路相位调制的原理和应用。

一、相位调制的原理相位调制是将基频信号与调制信号相乘后,通过改变调制信号的相位来改变基频信号的相位。

具体而言,相位调制可以分为线性相位调制(PM)和非线性相位调制(FM)两种。

1. 线性相位调制(PM)线性相位调制中,相位的变化与调制信号的幅值成正比。

常见的线性相位调制方法有频率调相(Frequency Modulation,简称FM)和全相调制(Phase Modulation,简称PM)。

2. 非线性相位调制(FM)非线性相位调制中,相位的变化与调制信号的幅值的平方成正比。

非线性相位调制的一个典型例子是调频调制(Frequency Modulation,简称FM)。

二、相位调制的应用相位调制广泛应用于通信系统、无线电和广播等领域。

以下是相位调制的几个典型应用示例:1. 模拟调制解调系统相位调制通常用于模拟调制解调系统中,实现信息的传输。

例如,调频广播系统中,音频信号通过相位调制的方式传输到载波信号中,然后在接收端进行解调。

2. 调频收音机调频收音机中使用的广播信号就是经过相位调制的信号。

调频收音机通过接收、解调并放大信号,使用户能够收听到各类广播节目。

3. 数字调制相位调制也可以应用于数字通信中。

数字调制中使用的相位调制技术(如相位偏移键控调制,Phase Shift Keying, PSK)可以将二进制数字转化为相位差不同的信号波形,实现高速数据传输。

4. 雷达系统雷达系统中的信号也经常使用相位调制的方式进行传输。

雷达系统通过改变发射信号的相位来实现测量目标物体的距离和速度。

总结:相位调制是一种常见的调制方法,通过改变信号的相位来传递信息。

相位调制具有抗干扰性强、带宽利用率高等优点,广泛应用于通信系统、无线电和广播等领域。

第三章 模拟调制系统(通信原理)

第三章 模拟调制系统(通信原理)
20
例题
21
单边带调幅—SSB

DSB信号虽然节省了载波功率,调制效率提高了, 但频带宽度仍是调制信号带宽的两倍,同AM信号 DSB信号的上、下两个边带是完全对称的,它们都 携带了调制信号的全部信息 仅传输双边带信号中一个边带。 节省发送功率,节省一半传输频带。 产生SSB信号的方法:



c
下边带(LSB)调制
23
SSB—滤波法

SSB信号的频谱
SSSB ( ) S DSB ( ) H
SDSB

上边带频谱图:
c
0
c

H USB
c
0
S USB
c

c
0
c

24
SSB—滤波法(技术难点)

用滤波法形成SSB信号的技术难点是:
滤波法产生SSB的多级频率搬移过程
26
SSB—相移法
1 H ( ) sgn( c ) sgn( c ) 2
S SSB ( ) 1 M ( c ) M ( c )H ( ) 2 1 M ( c ) sgn( c ) M ( c ) sgn( c ) 4 1 M ( c ) sgn( c ) M ( c ) sgn( c ) 4 1 M ( c ) M ( c ) 4 1 M ( c ) sgn( c ) M ( c ) sgn( c ) 4


滤波法 相移法
22
SSB—滤波法
m t

sDSB t
H
sSSB t
载波 c t

通信原理实验

通信原理实验

通信原理实验通信原理是现代通信领域的基础知识,通过实验可以更加直观地了解通信原理的相关概念和技术。

本次实验将涉及到模拟调制解调实验、数字调制解调实验以及信道编码和解码实验。

首先,我们将进行模拟调制解调实验。

模拟调制是指利用模拟信号进行调制的过程,而模拟解调则是将调制后的信号还原成原始信号的过程。

在实验中,我们将学习调幅调制(AM)、调频调制(FM)和调相调制(PM)的原理,并通过实验验证调制后的信号特性和解调的效果。

接下来,我们将进行数字调制解调实验。

数字调制是指利用数字信号进行调制的过程,而数字解调则是将调制后的信号还原成原始数字信号的过程。

在实验中,我们将学习脉冲编码调制(PCM)、正交振幅调制(QAM)和频移键控(FSK)等数字调制技术,并通过实验验证数字调制解调的原理和性能。

最后,我们将进行信道编码和解码实验。

信道编码是为了提高通信系统抗干扰能力和改善信道传输质量而对数字信号进行编码的过程,而信道解码则是将经过编码的信号进行解码还原的过程。

在实验中,我们将学习卷积码和纠错码的原理,以及信道编码和解码的实际应用。

通过以上实验,我们可以更加深入地理解通信原理的基本原理和技术,为今后的学习和研究打下坚实的基础。

希望大家能够认真对待本次实验,积极参与实验操作,加深对通信原理的理解和掌握,为将来的学习和工作打下坚实的基础。

总结,通过本次实验,我们对通信原理的模拟调制解调、数字调制解调以及信道编码和解码等方面有了更深入的了解。

希望大家能够在实验中认真学习,掌握相关技术,为今后的学习和工作打下坚实的基础。

同时也希望大家能够在实验中加强合作,共同进步,共同提高。

谢谢大家的参与!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电子科技大学通信学院《通信原理及同步技术系列实验一》模拟线性调制系统实验班级学生学号教师模拟线性调制系统实验一、实验目的1. 研究模拟连续信号在(AM、DSB、SSB、VSB、QAM)几种线性调制中的信号波形与频谱,了解调制信号是如何搬移到载波附近。

2. 加深对模拟线性调制(AM、DSB、SSB、VSB、QAM)的工作原理的理解。

3. 了解产生调幅波(AM)和抑制载波双边带波(DSB—SC)的调制方式,以及两种波之间的关系。

4. 了解用滤波法产生单边带SSB—SC的信号的方式和上下边带信号的不同。

5. 研究在相干解调中存在同步误差(频率误差、相位误差)对解调信号的影响从而了解使用同频同相的相干载波在相干解调中的重要性。

6. 熟悉正交调幅QAM传输系统的原理及作用。

二、实验原理模拟带通传输系统,是将基带信号经过线性调制后形成的已调波送入信道传输,在接收端经过反调制,再从已调波中将基带信号恢复出来。

常用的线性调制包括调幅(AM),双边带调制(DSB),单边带调制(SSB),残留边带调制(VSB),正交调幅(QAM)等五种方式。

这些方式是通过基带信号与单一角频率的余c弦载波相乘后再经过适当滤波实现。

在时域上,就是用基带信号m(t)去控制载波f(t)的幅度参数,使其m(t)的规律而变化;它的频域解释是把基带信号的频谱范围搬迁到载波附近的频谱范围上的搬移过程。

在接收端,如果采用相干解调,在本地载波保持同步关系时,都能正确的解调。

但是当本地载波存在相位误差或频率误差时,不同的调制方式受到的影响是不同的,当只有相位误差时,SSB制式的输出不受影响,AM和DSB制式的输出幅度有所下降,而QAM制式则产生路间窜扰。

在本地载波有频率误差时,SSB 制式的输出使频谱有所偏移,对于话音信号传输而言,频差在20Hz以内时,人耳可以容忍;而对于其他制式,输出会产生严重失真。

本实验利用平衡调制方式进行模拟连续波的调制与解调。

可分别组成AM、DSB、SSB、VSB、QAM五种调制方式的产生原理。

1. 调幅(AM)信号调幅的原理是基带信号()m t去控制高频载波的幅度,使已调信号()Sam t的包络随基本信号成正比例的变化。

设正弦载波:()cos c f t t ω= 调制信号:0()'()m t m m t =+则已调制信号:00()['()]cos cos '()cos AM c c c S t m m t t m t m t t ωωω=+=+ 其中:m 0代表外加直流分量, '()m t 代表基带信号。

()AM S t 便是有载波分量的双边带调制信号。

0cos c m t ω代表载波项。

'()cos c m t t ω代表DSB 项。

调幅信号的包络应与基带信号成比例变化。

显然AM 调制不产生过调制的条件是0max |'()|m m t >,若这个条件不满足,那么AM 信号的包络就与基带信号'()m t 不同而产生过调失真。

2. 双边带(DSB —SC )信号常规调幅波含载波分量,而载波分量不携带任何有用信息,因而AM 波调制的效率较低。

如果我们抑制掉基带信号的直流分量,得到的响应S DSB (t )便是无载波分量的双边带调制信号(DSB —SC ),在常规线性调幅(AM )中,令00m =,也就是将载波分量抑制掉,就可得到DSB —SC 信号,DSB S ()'()cos c t m t t ω=。

3. 单边带(SSB —SC )信号双边带调制信号频谱中含有携带同一信息的上、下两个边带。

因此,我们只需传送一个边带信号就可以达到信息传输的目的,以节省传输带宽、提高信道利用率。

这就是单边带调制(SSB —SC )。

产生SSB 信号有移相法和滤波法。

本实验采用滤波法,即,将已产生的双边带信号通过一个带通滤波器,根据该滤波器传递函数的不同,可分别得到下边带信号和上边带信号。

SSB 信号可表示为:^()()cos ()sin SSB c c S t m t t m t t ωω=+式中:^()m t 是m (t )的所有频率成分移相/2π-的信号,称为()m t 的希尔伯特信号。

式中符号取“—”产生上边带,取“+”产生下边带。

4. 残留边带(V DSB )信号SSB 信号与AM 和DSB 信号比较,具有带宽窄的优点,但工程上实现却比较困难,为了克服这种困难,提出了残留边带调制方式。

5. 正交幅度调制(QAM )信号用同一载频但相位正交的两个载波分别对两路独立的信号进行DSB —SC 调制,两个已调信号可以同时在同一信道的同一频带内传输。

到了接收端,分别用相位正交的载波进行同步解调。

这种方法称为正交幅度调制,平均每路占用的带宽与SSB 方式相当。

设同相滤波()c f t 为:()cos c c f t t ω= 正交载波为0()f t 为:()sin Q c f t t ω=两路独立的信号分别为12()()m t m t 和,分别进行DSB 调制,得到1122()()cos ()()cos c c S t m t tS t m t tωω==相加后得到总信号()QAM S t 为:1212()()()()cos ()sin QAM c c S t S t S t m t t m t t ωω=+=+三、实验系统的组成本实验系统是采用Analog Signal System 应用最广泛的PC 机和Windows 操作系统作为软硬件平台,使用MATLAB 软件的SIMULINK 的集成开发工具实现对AM 、DSB 、SSB 、VSB 及QAM 系统的调制与解调的仿真。

每个子系统都是由各个模块组成,实验时,可以在系统上进行参数的设置与更改。

可对上述调制与解调各种参数进行更为深入的研究。

四、实验系统功能1常规调幅(AM )Amplitude modulation and demodulation (AM ) [sim] 2抑制载波双边带(DSB —SC )调制与解调 DSB —SC modulation and demodulation [sim] 3抑制载波单边带(SSB —SC )调制与解调 SSB modulation and demodulation [sim] 4残留边带(VSB )调制与解调 5正交幅度调制(QAM )与解调Quadure amplitude modulation and demodulation IQ五、实验步骤及内容在PC 机上以windows 操作系统作为软件平台,启动windows 后,双击MATLAB 图标,进入界面菜单,它是系统所实现的实验功能选择框图。

图1-1系统菜单它的功能:选择实验类型,并给出该类型实验的信息内容,同时列出该类型中的实验项目。

在选择了具体实验项目之后,可利用按钮Run来运行实验。

选择Analog Signal System(模拟信号系统),就进入了实验系统。

在选择要具体实验的项目之后按Run按钮,进入AM仿真实验窗口。

(一)、常规幅度调制(AM)。

AM仿真参数值框图。

按Simulation按钮,再按start钮,系统便开始进行仿真运行。

1. 从Scopel可观察到已调制(AM)波与调制f(t)波的对比图形。

观察并记录之。

单击,便可激活对全波、x轴、y轴的放大,鼠标左键放大,右键还原。

由Scope2可观察到解调波形与调波形的对比波形,观察并记录之。

2. 由FFTScope1、FFTScope2可分别观察到调制信号、已调信号的频谱,观测并记录。

3. 调整直流分量(双击直流分量图标,将原值A=2,改为A=0.5,按Apply 按钮),其他参数不变。

(观测后请返回原值)再观测Scope1,将波形记录下来。

调节本地载波的频率或相位(双击本地载波图标,将原值频率或相位进行改动)使其相位为/6π,或频率为32020。

步骤同上。

再从Scope2上观测解调结果,并记录。

π的解调结果相位更改为/6载波频率更改为32020的解调波形相位为/6π,或频率为32020的解调结果(二)、抑制载波双边带调制(DSB—SC)关闭上述仿真实验窗口,选择DSB—SC modulation and demodulation[sim]按Run按钮,进入DSB仿真实验窗口。

图略。

仿真步骤同上1. 从Scope1可获得抑制载波双边带调幅波形与载波波形的对比,在时间范围0.0015—0.00135s内放大Scope1,在0.00125s处可观看到翻现象。

2. 从FFT Scope1、FFT Scope2可分别观测到调制信号,已调制信号的频谱。

3. 从Scpoe2可观测到解调波形与调制波形的对比情况;(DSB未经过高斯信道)FFT Scope3可观测到解调信号的频谱。

观测上述波形与频谱并记录。

4. 从Scope2观测DSB经过高斯信道后调制与解调波形的对比。

5. 调整本地载波信号的相位,使其为/6π,其他不变,(步骤同上)。

从Scope2观测解调波形的幅度变化。

相位更改为/6π,未经过高斯信道的解调波形相位更改为/6π,经过高斯信道的解调波形6. 调整本地载波的频率,±20Hz,其它不变,从Scope2观测解调波形。

本地载波频率为16020 Hz时,解调信号的波形本地载波频率为15980 Hz时,解调信号的波形六、实验结果分析与结论1、常规调幅波含载波分量,而载波分量不携带任何有用信息,因而AM波调制的效率较低。

2、双边带调制信号频谱中含有携带同一信息的上、下两个边带。

单边带(SSB—SC)信号是采用其中的一个边带传输信息,节省传输带宽、提高信道利用率,但工程上实现比较困难,为了克服此缺点,可以采用残留边带调制3、正交幅度调制,平均每路占用的带宽与SSB方式相当。

相关文档
最新文档