江西省重点中学协作体2018届高三下学期第一次联考 数学(理)

合集下载

江西省重点中学协作体高三下学期第一次联考——数学理

江西省重点中学协作体高三下学期第一次联考——数学理

江西省重点中学协作体 2017届高三下学期第一次联考数学(理)试题考试用时:120分 全卷满分:150分一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数满足,则复数在复平面内对应的点在( )A.第一象限B.第二象限C.第三象限D.第四象限 2.设集合{}2230A x x x =--<,,则( ) A. B. C. D.3. 已知变量呈现线性相关关系,回归方程为,则变量是( ) A .线性正相关关系B .由回归方程无法判断其正负相关关系C .线性负相关关系D .不存在线性相关关系4. 若直线过三角形内心(三角形内心为三角形内切圆的圆心),则“直线平分三角形周长”是“直线平分三角形面积”的( ) 条件 A .充分不必要 B .必要不充分 C .充要 D .既不充分也不必要5. 如果执行如图所示的程序框图,输入正整数和实数,,…,,输出,,则( )A . +为,,…,的和B .和分别是,,…,中最大的数和最小的数C .为,,…,的算术平均数D .和分别是,,…,中最小的数和最大的数6. 已知函数是定义在上的偶函数,且在上是增函数,若不等式对任意恒成立,则实数的取值范围是( ) A . B . C . D .7. 若一个空间几何体的三视图如右图所示,且已知该几何体的体积为俯视图侧视图正视图3r 2rr,则其表面积为( ) A. B. C. D.8. 已知实数满足,且11≤≤-y ,则的最大值( ) A .2B .4C .5D .69. 已知函数和函数在区间上的图像交于 三点,则的面积是( )A. B. C. D. 10. 等差数列的前项和为,若公差,则( ) A .B .C .D .11. 我国古代数学家祖暅是著名数学家祖冲之之子,祖暅原理叙述道 :“夫叠棋成立积,缘 幂势既同,则积不容异。

”意思是:夹在两个平行平面之间的两个几何体被平行于这两个 平行平面的任意平面所截,如果截得的两个截面面积总相等,那么这两个几何体的体积 相等。

2018届江西省重点中学四校高三第一次联考理科数学试卷及答案

2018届江西省重点中学四校高三第一次联考理科数学试卷及答案

2018届高三第一次联考数学(理科)试卷一、选择题(共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

) 1.已知集合{}2A=|20x x x --≤,集合{}4B=|log (2),A y y x x =+∈,则A B=( )A .[-1,0]B .[0,1]C .[0,2]D .[-1,1]2.已知n Z=(1+i),若Z 为实数,则正整数n 的最小值为( ) A .2B .3C .4D .53.设1sin()sin 243πθθ+==,则( )A .19-B .19C .79D .79-4.下列命题正确的个数有( )(1)存在00x >,使得00sin x x < (2)“lna lnb >”是“1010a b >”的充要条件 (3)若1sin 2α≠,则6πα≠(4)若函数322()3f x x ax bx a =+++在1x =-有极值0,则2,9a b ==A .1个B .2个C .3个D .4个5.已知某种程序框图如图所示,则执行该程序后输出的结果是( ) A .1- B .1 C .2D .126.在集合{}1,2,3,4,5M =的所有非空子集中,任取一个集合A ,恰好满足条件“若x A ∈,则6x A -∈”的概率是( ) A .331B .531C .731D .9317.已知下面正三棱柱的俯视图如右图所示,则这个三棱柱外接球的体积为( )A .28πB.C .283πD8.向边长为2米的正方形木框ABCD 内随机投掷一粒绿豆,记绿豆落在P 点,则∠DPC∈(0,2π)的概率为( )A . 1-8πB .1-38πC .38πD .8π 9.双曲线C 的左、右焦点分别为122F F F ,,且恰 为抛物线24y x =的焦点,设双曲线C 与该抛物线的一个交点为A ,若12AF F ∆是以A 1F 为底边的等腰三角形,则双曲线C 的离心率为( ) A .1BC.1 D.2+10.若非零向量,a b 满足||||a b b +=,则( )A .|2||2|a a b >+B .|2||2|a a b <+C .|2||2|b a b <+D .|2||2|b a b >+11.已知函数|1|3()2|1|()x f x x x R -=--∈有4个零点1234,,,x x x x ,且1234x x x x <<<,则14()f x x +=( )3俯视图A .0B .1C .2D .3212.已知数列{}n a 是等差数列,且[]10,1a ∈,[]21,2a ∈,[]32,3a ∈,则4a 的取值范围为( ) A .[]3,4B .59,22⎡⎤⎢⎥⎣⎦C .813,33⎡⎤⎢⎥⎣⎦D .[]2,5二、填空题(本大题共4小题,每小题5分,共20分) 13.使10(x 的展开式中系数大于200的项共有 项.14.设椭圆2214x y +=的左焦点为1F ,右焦点为2F ,以12F F 为直径的圆与椭圆在x轴上方部分交于点,M N,则1112|||||F |F M F N F += .15.在ABC ∆中,内角A 、B 、C 的对边分别是a b c 、、,若22425a b a b +=+-,且222a b c =+bc -,则sin B= _____________。

2018届江西省重点中学协作体高三第一次联考理科综合试题及答案

2018届江西省重点中学协作体高三第一次联考理科综合试题及答案

江西省重点中学协作体2018届高三第一次联考理综试题本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至3页,第Ⅱ卷第3至7 页,考试结束,将答题卡交回。

试卷满分300分,考试时间150分钟。

注意事项:1.答第Ⅰ卷前,考生务必将自己所在学校、班级、姓名、座号填写在答题卷的相应位置处。

2.试题所有的答案均应答在本试卷的答题卷上。

可能用的到的相对原子质量:H—1,O—16,N—14, C—12,S — 32 , Cl — 35.5 ,Cu— 64 , Fe—56 , Ag—108第I卷(选择题 126分)一、选择题:本题共13小题,每小题6分。

在每小题给出的四个选项中只有一个选项符合题目要求。

1.下列关于细胞结构及功能,叙述正确的是A.细胞壁能控制物质进出植物细胞B.成人心肌细胞中数量显著多于腹肌细胞的细胞器是线粒体C.生物膜是对生物体内所有膜结构的统称D.细胞核位于细胞的正中央,所以它是细胞的控制中心2.高等生物体内时刻都有许多细胞在进行分裂、生长、衰老、凋亡,下列相关的描述错误的是A.无丝分裂名称的由主要原因是分裂过程中无纺缍丝和染色体的出现B.有丝分裂间期时间大约占细胞周期的90%-95%C.高度分化的细胞不能再分裂、分化D.细胞凋亡是由细胞内的遗传物质所控制的3.图甲是青蛙离体的神经-肌肉标本示意图,图中AB+BC=CD,乙是突触放大模式图。

据图分析,下列说法正确的是A.③的内容物释放到②中主要借助生物膜的流动性B.刺激D处,肌肉和F内的线粒体活动均明显增强C.兴奋从E到F,发生“电信号→化学信号→电信号”的转变D.刺激C处,A、D处可同时检测到膜电位变化4.关于植物激素及其类似物在农业生产实践上的应用,符合实际的是A.黄瓜结果后,喷洒一定量的脱落酸可防止果实的脱落B.番茄开花后,喷洒一定浓度乙烯利,可促进子房发育成果实C.辣椒开花后,喷洒适宜浓度的生长素类似物,可获得无子果实D.用一定浓度赤霉素溶液处理黄麻、芦苇植物,可使植株增高5.下列关于人体生命活动的说法,错误的是A.免疫系统既是机体的防御系统,也是维持稳态的调节系统B.短期记忆与大脑皮层下海马区有关,长期记忆可能与新突触的建立有关C.抗体不能进入宿主细胞,但病毒可能侵入机体细胞D.激素经靶细胞接受后仍可作信号分子作用于另一靶细胞6. 一百多年前,人们就开始了对遗传物质的探索历程。

江西省七校高三数学第一次联考试题 理-人教版高三全册数学试题

江西省七校高三数学第一次联考试题 理-人教版高三全册数学试题

江西省七校2018届高三数学第一次联考试题 理一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.在右边Venn 图中,设全集,U =R 集合,A B 分别用椭圆内图形表示,若集合{}(){}22,ln 1A x x x B x y x =<==-,则阴影部分图形表示的集合为A .{}1x x ≤B .{}1x x ≥C .{}01x x <≤D .{}12x x ≤<2.已知复数201811⎪⎭⎫⎝⎛-+=i i zi (i 为虚数单位),则z 的虚部( )A. 1B. -1C. iD. -i 3.若110a b<<,则下列结论不正确的是 A .22a b < B .2ab b < C .0a b +< D .a b a b +>+ 4.已知,是两条不同直线, 是一个平面,则下列命题中正确的是( ) A. 若,,则 B. 若,,则 C. 若,,则 D. 若,,则5.在斜三角形ABC 中, tan tan tan 2tan tan tan A B CA B C++=⋅⋅( )A. 1B.12C. 2D. 3 6.下列命题中,正确的是( ) A .23cos sin ,000=+∈∃x x R x B. 已知x 服从正态分布()20σ,N ,且()6.022-=≤<x P ,则()2.02=>x P C. 已知a ,b 为实数,则0=+b a 的充要条件是1-=baD. 命题:“01,2>+-∈∀x x R x ”的否定是“01,0200<+-∈∃x x R x ”7.观察数组: ()1,1,1--, ()1,2,2, ()3,4,12, ()5,8,40,…, (),,n n n a b c ,则n c 的值不可能为( )A. 112B. 278C. 704D. 16648.《九章算术》是我国古代内容极为丰富的数学典籍,其中第七章“盈不足”中有一道两鼠穿墙问题:“今有垣厚十尺,两鼠对穿,初日各一尺,大鼠日自倍,小鼠日自半,问几何日相逢?”现用程序框图描述,如图所示,则输出结果=n ( )A. 5B. 4C. 3D. 29.已知函数()sin 3()f x x x x R =∈, 先将()y f x =的图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),再将得到的图象上所有点向右平行移动θ(0θ>)个单位长度,得到的图象关于直线π43=x 对称, 则θ的最小值为( )A. 6πB. 3πC. 512πD. 23π10.已知F 为双曲线C : 22221x y a b-=(0a >, 0b >)的右焦点, 1l , 2l 为C 的两条渐近线,点A 在1l 上,且1FA l ⊥,点B 在2l 上,且1FB l ,若45FA FB =,则双曲线C 的离心率为( )A 555355511.如图,梯形ABCD 中, AB CD , 2AB =,4CD =, 5BC AD ==E 和F 分别为AD 与BC的中点,对于常数λ,在梯形ABCD 的四条边上恰好有8个不同的点P ,使得PE PF λ⋅=成立,则实数λ的取值范围是( ) A. 59,420⎛⎫-- ⎪⎝⎭B. 511,44⎛⎫-- ⎪⎝⎭C. 111,44⎛⎫-⎪⎝⎭ D. 91,204⎛⎫-- ⎪⎝⎭12.已知函数()ln(2)x f x x=,关于x 的不等式()()20f x af x +>只有两个整数解,则实数a 的取值范围是A .1(,ln 2]3B . 1(ln 2,ln 6)3--C .1(ln 2,ln 6]3--D .1(ln 6,ln 2)3- 二、填空题(每小题5分,共20分) 13.设⎰-=π)sin (cos dx x x a ,则二项式6)1(xx a -的展开式中含2x 项的系数为__________.14.设,x y 满足约束条件⎪⎩⎪⎨⎧≤≥+-≥-+30102x y x y x ,若z mx y =+的最小值为3-,则m 的值为 .15.设1x 、2x 、3x 、4x 为自然数1、2、3、4的一个全排列,且满足123412346x x x x -+-+-+-=,则这样的排列有________个.16.已知正六棱柱的顶点都在同一个球面上,且该六棱柱的体积为2,当球的体积最小时,正六棱柱底面边长为 .三、解答题(17题10分,其余每题12分,共70分)17.如图,在中,已知点在边上,,,,.(1)求的值; (2)求的长.18.已知数列{}n a 满足2312232222n n a a a a n n ++++=+ (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)若()12nnn a b -=,求数列{}n b 的前n 项和n S .19.(本小题满分12分)为了解患肺心病是否与性别有关,在某医院对入院者用简单随机抽样方法抽取50人进行调查,结果如下列联表:(Ⅰ)是否有99.5%的把握认为入院者中患肺心病与性别有关?请说明理由; (Ⅱ)已知在患肺心病的10位女性中,有3位患胃病.现在从这10位女性中,随机选出3名进行其它方面的排查,记选出患胃病的女性人数为ξ,求ξ的分布列和数学期望;附:2()P K k ≥0.15 0.10 0.05 0.025 0.010 0.005 0.001k2.072 2.7063.841 5.024 6.635 7.879 10.82822()()()()()n ad bc K a b c d a c b d -=++++.20.(本小题满分12分)有一个侧面是正三角形的四棱锥P ABCD -如图(1),它的三视图如图(2). (Ⅰ)证明:AC ⊥平面PAB ;(Ⅱ)求平面PAB 与正三角形侧面所成二面角的余弦值.21、已知椭圆C 的中心在原点,焦点在x 轴上,离心率等于21,它的一个顶点恰好是抛物线y x 382=的焦点。

江西省等三省十校2018届高三下学期联考数学(理)试卷(含答案)

江西省等三省十校2018届高三下学期联考数学(理)试卷(含答案)

江西省等三省十校2018届高三下学期联考数学(理科)试题(考试时间:120分钟 总分:150分)第Ⅰ卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个是符合题目要求的.)1. 已知集合{}2560A x x x =--≤,(){}ln 1B x y x ==-,则A B I 等于A. []1,6-B. (]1,6C. [)1,-+∞D. []2,3 2.设复数z 满足(1)3i z i -=+,则z = A .2 B .2 C .22 D .53.《九章算术》中有如下问题:“今有勾五步,股一十二步,问勾中容圆,径几何? ”其大意:“已知直角三角形两直角边长分别为5步和12步,问其内切圆的直径为多少步?”现若向此三角形内随机投一粒豆子,则豆子落在其内切圆外的概率是 A .215π B . 320π C. 2115π- D . 3120π- 4.执行如右图所示的程序框图,则输出的s 的值是 A .7 B .6 C .5 D .35.在等差数列{}n a 中,已知47,a a 是函数2()43f x x x =-+的两个零点,则{}n a 的前10项和等于A . 18-B . 9C .18D .206.已知Rt ABC ∆,点D 为斜边BC 的中点, 62AB =u u u r , 6AC =u u u r , 12AE ED =u u u r u u u r ,则AE EB ⋅u u u r u u u r等于A. 14-B. 9-C. 9D.147. 已知12e a dx x=⎰,则()()4x y x a ++ 展开式中3x 的系数为A.24B.32C.44D.56 8.函数321y x =-的图象大致是A. B. C. D.9.已知双曲线2222:1(0,0)x y C a b a b-=>>的实轴长为16,左焦点分别为F ,M 是双曲线C 的一条渐近线上的点,且OM MF ⊥,O 为坐标原点,若16OMF S ∆=,则双曲线C 的离心率为A .5B .5C . 3D . 3310.已知函数()()sin 0,0,02f x A x A πωϕωϕ⎛⎫=+≠><< ⎪⎝⎭,若()03f f π⎛⎫=-⎪⎝⎭,则ω的最小值是 A . 3 B . 2 C. D 111. 如图,格纸上小正方形的边长为1,粗实线画出的 是某多面体的三视图,则该多面体的外接球表面积为 A. 31π B. 32π C. 41π D. 48π12.已知函数()f x 的定义域为R ,(2)()f x f x -=--且满足,其导函数'()f x ,当1x <-时,(1)[()(1)'()]0x f x x f x +++<,且(1)4,f =则不等式(1)8xf x -<的解集为A . (),2-∞-B .()2,+∞C . ()2,2-D . ()(),22,-∞-+∞U第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4小题,每小题5分,共20分.)13. 若实数x y ,满足条件1230x x y y x≥⎧⎪-+≥⎨⎪≥⎩,则1y z x =+的最大值为14. 3sin 2,sin 2θθθθ=已知sin +cos =则 . 15. 已知,A B 是以F 为焦点的抛物线24y x =上两点,且满足4AF FB =u u u r u u u r,则弦AB 中点到准线距离为 .16. ∆∆在ABC 中,AB=AC,D 为AC 中点,BD=1,则ABC 的面积最大值为 . 三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或验算步骤.) 17. (12分)已知等比数列{}n a 的公比0q >,2318a a a =,且46,36,2a a 成等差数列.32()1求数列{}n a 的通项公式 ()2记2n nnb a =,求数列{}n b 的前n 项和n T 18. (12分)如图所示,该几何体是由一个直三棱柱ADE BCF -和一个四棱锥P ABCD -组合而成,其中AD AF ⊥,PA PB PC PD ===,2AE AD AB ===. (Ⅰ)证明:AD ⊥平面ABFE ;(Ⅱ)若四棱锥P ABCD -的高2,求二面角C AF P --的余弦值.19. (12分)“中国人均读书4.3本(包括络文学和教科书),比韩国的11本、法国的20本、日本的40本、犹太人的64本少得多,是世界上人均读书最少的国家.”这个论断被各种媒体反复引用,出现这样的统计结果无疑是令人尴尬的,而且和其他国家相比,我国国民的阅读量如此之低,也和我国是传统的文明古国、礼仪之邦的地位不相符.某小区为了提高小区内人员的读书兴趣,特举办读书活动,准备进一定量的书籍丰富小区图书站,由于不同年龄段需看不同类型的书籍,为了合理配备资源,现对小区内看书人员进行年龄调查,随机抽取了一天40名读书者进行调查,将他们的年龄分成6段:[)20,30, [)30,40, [)40,50, [)50,60, [)60,70, []70,80后得到如图所示的频率分布直方图.问:(1)估计在40名读书者中年龄分布在[)30,60的人数;(2)求40名读书者年龄的平均数和中位数; (3)若从年龄在[)60,80的读书者中任取2名,求这两名读书者年龄在[)70,80的人数X 的分布列及数学期望.20. (12分)已知椭圆2226:1(2)2x y C b b +=<< ,动圆P :22002()()3x x y y -+-= (圆心P 为椭圆C 上异于左右顶点的任意一点),过原点O 作两条射线与圆P 相切,分别交椭圆于M ,N 两点,且切线长最小值时,tan 2MOP ∠=. (Ⅰ)求椭圆C 的方程;(Ⅱ)判断MON ∆的面积是否为定值,若是,则求出该值;不是,请说明理由。

2018年江西省重点中学协作体高考数学一模试卷(理科)(解析版)

2018年江西省重点中学协作体高考数学一模试卷(理科)(解析版)

2018年江西省重点中学协作体高考数学一模试卷(理科)一、选择题(本大题共12小题,每小题5分,共60分)1.(5分)设集合A=,B={﹣1,0,1,2},则A∩B=()A.{﹣1,0,1}B.{0,1,2}C.{﹣1,0,1,2}D.{1,2}2.(5分)设复数z 1,z2互为共轭复数,,则z1z2=()A.﹣2+i B.4C.﹣2D.﹣2﹣i3.(5分)已知数列{a n}满足a n﹣a n﹣1=2(n≥2),且a1,a3,a4成等比数列,则数列{a n}的通项公式为()A.a n=2n B.a n=2n+10C.a n=2n﹣10D.a n=2n+44.(5分)如图是一边长为8的正方形苗圃图案,中间黑色大圆与正方形的内切圆共圆心,圆与圆之间是相切的,且中间黑色大圆的半径是黒色小圆半径的2倍,若在正方形图案上随机取一点,则该点取自白色区域的概率为()A.B.C.D.5.(5分)若,则sin2θ=()A.B.C.D.6.(5分)已知函数f(x)=x2+log2|x|,则不等式f(x﹣1)﹣f(1)<0的解集为()A.(0,2)B.(﹣1,2)C.(0,1)∪(1,2)D.(﹣1,1)∪(1,3)7.(5分)设向量与满足||=2,||=1,且⊥(+),则向量在向量+2方向上的投影为()A.﹣B.C.1D.﹣18.(5分)已知某三棱锥的三视图如图所示,则该三棱锥的所有面中,面积最大的那个面的面积为()A.2B.2C.2D.9.(5分)我国古代名著《九章算术》用“更相减损术”求两个正整数的最大公约数是一个伟大创举.这个伟大创举与我国古老的算法﹣“辗转相除法”实质一样.如图的程序框图即源于“辗转相除法”,当输入a=6402,b=2046时,输出的a=()A.66B.12C.36D.19810.(5分)已知抛物线C:y2=8x上的一点P,直线l1:x=﹣2,l2:3x﹣5y+30=0,则P 到这两条直线的距离之和的最小值为()A.2B.2C.D.11.(5分)已知函数f(x)=,函数g(x)=b﹣f(3﹣x),其中b∈R,若函数y=f(x)﹣g(x)恰有4个零点,则实数b的取值范围是()A.B.C.D.(﹣3,0)12.(5分)设x=1是函数的极值点,数列{a n}中满足a1=1,a2=2,b n=log2a n+1,若[x]表示不超过x的最大整数,则=()A.2017B.2018C.2019D.2020二、填空题(本大题共4小题,每小题5分,共20分)13.(5分)若(其中n>0),则(2x﹣1)n的展开式中x2的系数为.14.(5分)已知O为坐标原点,点M的坐标为(2,1),点N(x,y)的坐标满足,则的最小值为.15.(5分)设双曲线C:(a>0,b>0)的左焦点为F1,过F1作x轴的垂线交双曲线C于M,N两点,其中M位于第二象限,B(0,b),若∠BMN是锐角,则双曲线C的离心率的取值范围是.16.(5分)已知菱形ABCD中,,∠BAD=60°,沿对角线BD折成二面角A﹣BD ﹣C为600的四面体,则四面体ABCD的外接球的表面积为.三、解答题(本大题共5小题,17-21题必答题,每小题12分;22、23题为选做题,任选一题作答,每小题12分,共70分)17.(12分)已知函数.(1)求函数y=f(x)的对称中心;(2)已知在△ABC中,角A、B、C所对的边分别为a、b、c,且的外接圆半径为,求△ABC周长的最大值.18.(12分)交强险是车主必须为机动车购买的险种,若普通6座以下私家车投保交强险第一年的费用(基准保费)统一为a元,在下一年续保时,实行的是费率浮动机制,保费与上一年度车辆发生道路交通事故的情况相联系,发生交通事故的次数越多,费率也就越高,具体浮动情况如表:某机构为了研究某一品牌普通6座以下私家车的投保情况,随机抽取了80辆车龄已满三年的该品牌同型号私家车的下一年续保时的情况,统计得到了下面的表格:以这80辆该品牌车的投保类型的频率代替一辆车投保类型的概率,完成下列问题:(1)按照我国《机动车交通事故责任强制保险条例》汽车交强险价格的规定,a=950.某同学家里有一辆该品牌车且车龄刚满三年,记X为该品牌车在第四年续保时的费用,求X的分布列与数学期望值;(数学期望值保留到个位数字)(2)某二手车销售商专门销售这一品牌的二手车,且将下一年的交强险保费高于基本保费的车辆记为事故车.假设购进一辆事故车亏损4000元,一辆非事故车盈利8000元:①若该销售商购进三辆(车龄已满三年)该品牌二手车,求这三辆车中至多有一辆事故车的概率;②若该销售商一次购进100辆(车龄已满三年)该品牌二手车,求他获得利润的期望值.19.(12分)如图四棱锥P﹣ABCD中,PD⊥平面ABCD,底面ABCD是梯形,AB∥CD,BC⊥CD,AB=PD=4,CD=2,AD=2,M为CD的中点,N为PB上一点,且=(0<λ<1).(1)若时,求证:MN∥平面P AD;(2)若直线AN与平面PBC所成角的正弦值为,求异面直线AD与直线CN所成角的余弦值.20.(12分)如图,已知椭圆C:,其左右焦点为F1(﹣1,0)及F2(1,0),过点F1的直线交椭圆C于A,B两点,线段AB的中点为G,AB的中垂线与x轴和y轴分别交于D,E两点,且|AF1|、|F1F2|、|AF2|构成等差数列.(1)求椭圆C的方程;(2)记△GF1D的面积为S1,△OED(O为原点)的面积为S2,试问:是否存在直线AB,使得S1=12S2?说明理由.21.(12分)已知函数f(x)=xlnx﹣.(1)若函数f(x)≥m在(0,2)上恒成立,求实数m的取值范围.(2)设函数g(x)=﹣a(a>0,且a≠1),若函数F(x)=g(x)[f′(x)+x﹣1]的图象与x轴交于点A(x1,0),B(x2,0)两点,且x0是函数y=F(x)的极值点,试比较的大小.选做题,从22、23题任选一题作答,两题都答以第一题作答为准记分.[选修4-4:坐标系与参数方程]22.(10分)在平面直角坐标系xOy中,曲线C1的参数方程为(α为参数),π≤α≤2π)以原点O为极点,x轴正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρsin(θ﹣)=.(1)求曲线C1与C2的直角坐标方程;(2)当C1与C2有两个公共点时,求实数t的取值范围.[选修4-5:不等式选讲]23.已知函数f(x)=|x﹣1|+|2x+m|(m∈R).(1)若m=2时,解不等式f(x)≤3;(2)若关于x的不等式f(x)≤|2x﹣3|在x∈[0,1]上有解,求实数m的取值范围.2018年江西省重点中学协作体高考数学一模试卷(理科)参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分)1.【解答】解:A==[﹣1,2),B={﹣1,0,1,2},则A∩B={﹣1,0,1},故选:A.2.【解答】解:∵,且z 1,z2互为共轭复数,∴z1z2==4.故选:B.3.【解答】解:由a n﹣a n﹣1=2(n≥2),可知数列是公差为2的等差数列,又a1,a3,a4成等比数列,∴,即,解得a1=﹣8.∴数列{a n}的通项公式为a n=﹣8+2(n﹣1)=2n﹣10.故选:C.4.【解答】解:根据题意知,正方形的内切圆半径为4,中间黑色大圆的半径为2,黑色小圆的半径为1,所以白色区域的面积为π×42﹣π×22﹣4×π×12=8π,所以所求的概率为P==.故选:D.5.【解答】解:由,得,∴sinθ+cosθ=,又1=sin2θ+cos2θ=(sinθ+cosθ)2﹣2sinθcosθ,∴1=3(sinθcosθ)2﹣2sinθcosθ,即sinθcosθ=1(舍)或sinθcosθ=.∴sin2θ=2sin.故选:C.6.【解答】解:根据题意,函数f(x)=x2+log2|x|,则f(﹣x)=(﹣x)2+log|﹣x|=x2+log2|x|=f(x),即函数f(x)为偶函数,又由当x>0时,函数f(x)=x2+log2x,易得其在(0,+∞)上为增函数,f(x﹣1)﹣f(1)<0⇒f(|x﹣1|)<f(1)⇒0<|x﹣1|<1,解可得:0<x<1或1<x<2,即不等式的解集为(0,1)∪(1,2);故选:C.7.【解答】解:∵向量与满足||=2,||=1,且⊥(+),∴•()=+=+1=0,解得•=﹣1,∴向量在向量+2方向上的投影为:||•cos<,>=||×===.故选:B.8.【解答】解:三棱锥的直观图如图所示:P﹣ABC,过点P作PD⊥AC垂足为D,连接BD,由已知可得PD=2,BD=2,AC=1,CD=1,S△ACP=S△ACB=,可得P A=PB=AB=.PC=BC=.S△PCB==.=2∴面积最大的那个面的面积为2.故选:B.9.【解答】解:模拟程序框图的运行过程,如下;a=6402,b=2046执行循环体,r=264,a=2046,b=264不满足退出循环的条件,执行循环体,r=198,a=264,b=198,不满足退出循环的条件,执行循环体,r=66,a=198,b=66,不满足退出循环的条件,执行循环体,r=0,a=66,b=0,满足退出循环的条件r=0,退出循环,输出a的值为66.故选:A.10.【解答】解:抛物线C:y2=8x的焦点为F(2,0),准线为l1:x=﹣2.∴P到l1的距离等于|PF|,∴P到直线l1,l2的距离之和的最小值为F(2,0)到直线l2的距离d==.故选:D.11.【解答】解:∵f(x)=,∴f(3﹣x)=,由y=f(x)﹣g(x)=f(x)+f(3﹣x)﹣b=0,得b=f(x)+f(3﹣x),令h(x)=f(x)+f(3﹣x)=,函数y=f(x)﹣g(x)恰有4个零点,即y=b与h(x)=f(x)+f(3﹣x)的图象有4个不同交点,作出函数图形如图:结合函数的图象可得,当﹣3<b<﹣时,函数y=f(x)﹣g(x)恰有4个零点,∴实数b的取值范围是(﹣3,﹣).故选:B.12.【解答】解:函数f(x)=a n+1x3﹣a n x2﹣a n+2x+1(n∈N+)的导数为f′(x)=3a n+1x2﹣2a n x﹣a n+2,由x=1是f(x)=a n+1x3﹣a n x2﹣a n+2x的极值点,可得f′(1)=0,即3a n+1﹣2a n﹣a n+2=0,即有2(a n+1﹣a n)=a n+2﹣a n+1,设c n=a n+1﹣a n,可得2c n=c n+1,可得数列{c n}为首项为1,公比为2的等比数列,即有c n=2n﹣1,则a n=a1+(a2﹣a1)+(a3﹣a2)+…+(a n﹣a n﹣1)=1+1+2+…+=2n﹣2=1+=2n﹣1,则b n=log2a n+1=n,∴==﹣,∴++…+=1++…+﹣=1﹣,∴2018(++…+)=2018﹣,∴=[2018﹣]=[2017+]=2017,故选:A.二、填空题(本大题共4小题,每小题5分,共20分)13.【解答】解:由,如图,得n2=36,即n=6.∴(2x﹣1)n=(2x﹣1)6,其展开式中含x2的项为.∴(2x﹣1)n的展开式中x2的系数为60.故答案为:60.14.【解答】解:作出不等式组,表示的平面区域,点N是区域内的动点,当MN⊥直线2x+y=2时,距离最短,此时最小值为为=故答案为:15.【解答】解:根据题意,双曲线C:(a>0,b>0)的左焦点为F1,则F1(﹣c,0),将x=﹣c代入双曲线的方程,可得y=±,则设,又由B(0,b),若∠BMN是锐角,则有>b,变形可得b>a.所以.故;故答案为:(,+∞).16.【解答】解:由题意,菱形ABCD中,连接AC和BD交于O,可知AC⊥BD.∵,∠BAD=60°,∴OA=OC=9;沿对角线BD折成二面角A﹣BD﹣C为600,底面BCD等边三角形.∴AOC是等边三角形.底面BCD也是等边三角形.可得四面体为正四面体其边长为a=;外接球的半径R==外接球的表面积S=4πR2=162π.故答案为:162π.三、解答题(本大题共5小题,17-21题必答题,每小题12分;22、23题为选做题,任选一题作答,每小题12分,共70分)17.【解答】解:由==.(1)令2x﹣(k∈Z),得x=(k∈Z).∴函数y=f(x)的对称中心为(,0),k∈Z;(2)由f()=,得sin(B+)=,可得,则.又∵sin B≠0,∴,即sin(A﹣)=.由0<A<π,得<A﹣<,∴A﹣,即A=.又△ABC的外接圆的半径为,∴a=2sin A=3.由余弦定理得:a2=b2+c2﹣2bc cos A=b2+c2﹣bc=(b+c)2﹣3bc,即b+c≤6,当且仅当b=c时取等号,∴周长的最大值为9.18.【解答】解:(1)由题意可知X的可能取值为0.9a,0.8a,0.7a,a,1.1a,1.3a.由统计数据可知:P(X=0.9a)=,P(X=0.8a)=,P(X=0.7a)=,P(X=a)=,P(X=1.1a)=,P(X=1.3a)=,所以X的分布列为:所以……(6分)(2)①由统计数据可知任意一辆该品牌车龄已满三年的二手车为事故车的概率为,三辆车中至多有一辆事故车的概率为………………(9分)②设Y为该销售商购进并销售一辆二手车的利润,Y的可能取值为﹣4000,8000.所以Y的分布列为:所以.所以该销售商一次购进100辆该品牌车龄已满三年的二手车获得利润的期望为100E(Y)=50万元.………………(12分)19.【解答】解:(1)如图取AH=,∴PN=,∴NH∥P A,∵AH=DM,AH∥DM,∴MN∥AD又AP∩AD=A,NH∩MH=H∴面APD∥面NHM.∴MN∥平面P AD;(2)如图,在面ABCD内,过D作AB的垂线,作为x轴,DP所在直线为z轴建立空间直角坐标系.则D(0,0,0),C(0,2,0),B(2,2,0),A(2,﹣2,0),P(0,0,4).,,..,,可得,=(﹣2,2,4)+λ(2,2,﹣4)=(﹣2+2λ,2+2λ,4﹣4λ),∴,解得λ=.,=(0,﹣2,4)+=().cos==.∴异面直线AD与直线CN所成角的余弦值为.20.【解答】解:(1)因为椭圆C:,其左右焦点为F1(﹣1,0)及F2(1,0),过点F1的直线交椭圆C于A,B两点,线段AB的中点为G,AB的中垂线与x轴和y轴分别交于D,E两点,且|AF1|、|F1F2|、|AF2|构成等差数列.所以2a=|AF1|+|AF2|=2|F1F2|=4,所以a=2,又因为c=1,所以b2=4﹣1=3,所以椭圆C的方程为.………………(4分)(2)假设存在直线AB,使得S1=12S2,由题意直线AB不能与x,y轴垂直.设AB方程为y=k(x+1),(k≠0),将其代入=1,整理得(4k2+3)x2+8k2x+4k2﹣12=0,………………(5分)设A(x1,y1),B(x2,y2),所以x1+x2=,故点G的横坐标为=,所以G(,).………………(7分)设D(X0,0),因为DG⊥AB,所以×k=﹣1,解得,即D(,0).………………(8分)∵Rt△GDF1和Rt△ODE相似,且S1=12S2,则,………(9分)∴整理得﹣3k2+9=0,因此k2=3,所以存在直线AB:,使得S1=12S2.………………(12分)21.【解答】解:(1)f'(x)=lnx+1﹣x,令h(x)=lnx+1﹣x,则,∴当0<x<1时,h'(x)>0,h(x)单调递增,当1<x<2时,h'(x)<0,h(x)单调递减.∴h(x)≤h(1)=0,∴f'(x)≤0即lnx+1﹣x≤0…………①∴f(x)在(0,2)单调递减,∴m≤f(2)=2ln2﹣2,故实数m的取值范围是(﹣∞,2ln2﹣2].…………………………………………(5分)(2),则,不妨取又,令,则,∴φ(x)在(0,+∞)上单调递增.…………………………………(6分)又,由①式可知lna﹣a+1<0(a>0,且a≠1)所以…………………………………(8分)又由①式知,取,∴,∴,又x0是F(x)的极值点,∴F'(x0)=0,即φ(x0)=0∴,又φ(x)在(0,+∞)上单调递增∴………………………(12分)选做题,从22、23题任选一题作答,两题都答以第一题作答为准记分.[选修4-4:坐标系与参数方程]22.【解答】解:(1)∵曲线C1的参数方程为,∴曲线C1的普通方程为:(x﹣2)2+(y﹣3)2=4(0≤x≤4,1≤y≤3),∵曲线C2的极坐标方程为,∴曲线C2的直角坐标方程为x﹣y+t=0.………………………………(5分)(2)∵曲线C1的普通方程为:(x﹣2)2+(y﹣3)2=4(0≤x≤4,1≤y≤3)为半圆弧,由曲线C2与C1有两个公共点,则当C2与C1相切时,得,∴(舍去)当C2过点(4,3)时,4﹣3+t=0,∴当C1与C2有两个公共点时,.……………………………(10分)[选修4-5:不等式选讲]23.【解答】解:(1)若m=2时,|x﹣1|+|2x+2|≤3,当x≤﹣1时,原不等式可化为﹣x+1﹣2x﹣2≤3解得x≥﹣,所以,当﹣1<x<1时,原不等式可化为1﹣x+2x+2≤3得x≤0,所以﹣1<x≤0,当x≥1时,原不等式可化为x﹣1+2x+2≤3解得x≤,所以x∈Φ,综上述:不等式的解集为;(2)当x∈[0,1]时,由f(x)≤|2x﹣3|得1﹣x+|2x+m|≤3﹣2x,即|2x+m|≤2﹣x,故x﹣2≤2x+m≤2﹣x得﹣x﹣2≤m≤2﹣3x,又由题意知:(﹣x﹣2)min≤m≤(2﹣3x)max,即﹣3≤m≤2,故m的范围为[﹣3,2].。

江西省重点中学盟校2018届高三第一次联考试题(理)数学试题及答案解析

江西省重点中学盟校2018届高三第一次联考试题(理)数学试题及答案解析

江西省重点中学盟校2018届高三第一次联考数学试题(理)一、选择题1. 已知集合,则( )A. B. C. D.2. 已知复数满足(是虚数单位),则()A. B. C. D.3. 执行如图所示的程序框图,若输出的值为,则判断框内应填入()A. B. C. D.4. 如图该长为2、宽为1的长方形是某石拱桥的截面图,整个图形是轴对称图形,中间桥洞的轮廓为抛物线,抛物线和水平面之间为桥洞,现从该图形中任取一点,该点落在桥洞中的概率为()A. B. C. D.5. 下列命题是真命题的是()A. 已知随机变量,若,则B. 在三角形中,是的充要条件C. 向量,则在的方向上的投影为D. 命题“或为真命题”是命题“且为假命题”的充分不必要条件6. 已知平面区域夹在两条斜率为的平行直线之间,则这两条平行直线间的最短距离为()A. 1B. 2C.D.7. 若将函数向右平移个单位,所得的函数图像关于原点对称,则角的终边可能过以下的哪个点()A. B. C. D.8. 若多项式展开式仅在第项的二项式系数最大,则多项式展开式中的系数为()A. B. C. D.9. 棱长为的正方体内有一个内切球O,过正方体中两条互为异面直线的,的中点作直线,该直线被球面截在球内的线段的长为()A. B. C. D.10. 一般情况下,过双曲线作双曲线的切线,其切线方程为,若过双曲线上一点作双曲线的切线,该切线过点且该切线的斜率为,则该双曲线的离心率为()A. B. C. D.11. 已知函数,满足图像始终在图像的下方,则实数的取值范围是()A. B. C. D.12. 如图,平面四边形中,与交于点,若,,则A. B. C. D.二、填空题13. 函数的图象必过定点__________________ .14. 某几何体的三视图如图所示,且该几何体的体积是,则正视图中的的值是__________________15. 平面几何中有如下结论:如图,设O是等腰直角底边的中点,,过点O 的动直线与两腰或其延长线的交点分别为,则有.类比此结论,将其拓展到空间,如图(2),设O是正三棱锥的中心,两两垂直,,过点O的动平面与三棱锥的三条侧棱或其延长线的交点分别为则有_____________________ .16. 在平面直角坐标系中,直线与抛物线相交于不同的A,B两点,且,则的面积的最小值为______________.三、解答题17. 已知数列的前项和。

最新题库2018年江西省重点中学协作体高考数学一模试卷(理科)

最新题库2018年江西省重点中学协作体高考数学一模试卷(理科)

与上一年度车辆发生道路交通事故的情况相联系,发生交通事故的次数越多,费率也就
越高,具体浮动情况如表:
交强险浮动因素和浮动费率比率表
第 3 ** 百 度 文 库
精 品 文 库 --
比较
的大小.
选做题,从 22、 23 题任选一题作答,两题都答以第一题作答为准记分. 与参数方程 ]
[选修 4-4:坐标系
22.( 10 分)在平面直角坐标系 xOy 中,曲线 C1 的参数方程为
( α为参数),
π≤α≤ 2π)以原点 O 为极点, x 轴正半轴为极轴,建立极坐标系,曲线
为 ρsin(θ﹣ )=
上 0% 一
A5
第 6 页(共 24 页)
个 年 度 发 生 一 次 有 责 任 不 涉 及 死 亡 的 道 路 交 通 事 故 上上 一浮 个 10% 年 度 发 生 两
A6
第 7 页(共 24 页)
次 及 两 次 以 上 有 责 任 道 路 交 通 事 故 上上 一浮 个 30% 年 度 发 生 有 责 任 道 路 交 通 死

C2 的极坐标方程
( 1)求曲线 C1 与 C2 的直角坐标方程; ( 2)当 C1 与 C2 有两个公共点时,求实数 t 的取值范围. [选修 4-5:不等式选讲 ] 23.已知函数 f( x)= |x﹣ 1|+|2x+m|(m∈R). ( 1)若 m=2 时,解不等式 f( x)≤ 3; ( 2)若关于 x 的不等式 f( x)≤ |2x﹣ 3|在 x∈[0 ,1]上有解,求实数 m 的取值范围.
第 9 页(共 24 页)
2018 年江西省重点中学协作体高考数学一模试卷
参考答案与试题解析
一、选择题(本大题共 12 小题,每小题 5 分,共 60 分)

江西省九校2018届高三联考理科数学试题含答案.docx

江西省九校2018届高三联考理科数学试题含答案.docx

江西省九校 2018 届高三联考理科数学试题含答案分宜中学 玉山一中 临川一中2018 年江西省 南城一中 南康中学 高安中学高三联合考试彭泽一中 泰和中学 樟树中学数学试卷(理科)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分. 满分 150 分 . 考试时间为 120 分钟 .2.本试卷分试题卷和答题卷,第Ⅰ卷(选择题)的答案应填在答题卷卷首相应的空格内,做 在第Ⅰ卷的无效 .第 Ⅰ卷(选择题共 60 分)一、 选择题:本大题共 12 小题 ,每小题5分 ,共 60 分 .在每小题给出的四个选项中,只有一项是符合题目要求的 .1.已知集合 A2 1 , Bx (x2)( x 1) 0 ,则 A B 等于()xxA . (0, 2)B . (1,2)C . ( 2,2)D . ( , 2) (0,)2.设 (12i )x x yi ,其中 x, y 是实数,则yi()xA . 1B . 2C . 3D .53.下面框图的 S 的输出值为 ()A . 5B . 6C . 8D . 13N (2, 2)4X 服从正态分布且.已知随机变量P( x 4)0.88 ,则 P(0 x 4) ()A . 0.88B . 0.76C . 0.24D .0.125.在各项不为零的等差数列a n 中,2a 2017 a 20182 2a 2019 0 ,数列 { b n } 是等比数列,且b2018a 2018 ,则 log 2 (b 2017b 2019 ) 的值为()A . 1B . 2C. 4D . 86.下列命题正确的个数是()( 1)函数 ycos 2 ax sin 2 ax 的最小正周期为”的充分不必要条件是 “a 1”.( 2)设 a { 1,, ,3}1,则使函数 yx a 的定义域为 R 且为奇函数的所有a 的值为 1,1,3 .2a ln x 在定义域上为增函数,则 a 0 .( 3)已知函数 f (x)2xA . 1B . 2C . 3D . 07.已知向量 a( x 2 , x 2), b (3, 1),c (1, 3) ,若 a // b ,则 a 与 c 夹角为( )A .B .2 5C .D .63368.如图,网格纸上小正方形的边长为1,粗线所画出的是某几何体的三视图,则该几何体的各条棱中最长的棱长为()A. 2 5B. 4 2C. 6D. 4 39.若关于 x 的不等式 (a 2a6) x sin a 无解,则 a( ) A. 3B.2C. 2D. 310.若 A 1,2 ,Bx 1 , y 1 ,C x 2 , y 2 是抛物线 y 24x 上不同的点,且 AB BC ,则 y 2 的取值范围是()A .( -,-6 ) [10,+)B .( - ,-6] (8,+ )C .( - ,-5] [8,+ )D .( - ,-5][10,+)2x y 411.已知动点 P( x, y) 满足:x,则 x 2 y 2 +4 y 的最小值为()2 x3 y 2 y3 xA . 2B .24 . 1D . 2Cx12.已知函数 f ( x) =ee ,x,( e 为自然对数的底数) ,则函数 y f ( f ( x)) f ( x)2 + 0x,x0.5x 4的零点的个数为 ()A . 2B . 3C . 4D .5第 II 卷(非选择题共 90 分)二、填空题 :本大题共 4 小题 ,每小题 5 分 ,共 20 分 .13. ( x1)(2x1)3 的展开式中的常数项为.xx14.已知 F 1、F 2 为双曲线的焦点,过F 2 作垂直于实轴的直线交双曲线于A 、B 两点, BF 1 交 y轴于点 C ,若 AC ⊥BF 1,则双曲线的离心率为.15.已知矩形 ABCD 的两边长分别为 AB 3 , BC 4 , O 是对角线 BD 的中点,E 是 AD 边上一点,沿 BE 将 ABE 折起,使得 A 点在平面 BDC 上的投影恰 为 O (如右图所示),则此时三棱锥 A BCD 的外接球的表面积是 .16.在 ABC 中,内角 A,B,C 所对的边分别是 a, b, c , b sin A , a1 b cos A ,1;( 2) S ABC 的最大值为12sin Ccos B 则有如下结论:( 1) c;4( 3)当 S ABC 取最大值时, b5 .3.则上述说法正确的结论的序号为三、解答题:共 70 分。

江西省重点中学协作体2018届高三下学期第一次联考理科

江西省重点中学协作体2018届高三下学期第一次联考理科

7.下列说法中不正确...的是( ) A. 鼓励使用太阳能、风能等清洁能源能减少PM 2.5的污染 B. 与铜质水龙头连接处的钢质水管易发生腐蚀C. 发酵粉中含有较多的NaHCO 3,能使焙制出的糕点疏松多孔D. 东汉魏伯阳在《周易参同契》中对汞的描述“……得火则飞,不见埃尘,将欲制之,黄芽为根。

”这里的“黄芽”是指黄铜8.设N A 为阿伏加德罗常数的值,下列有关说法中正确..的是( ) A.10g46%的乙醇水溶液中所含氢原子的数目为0.6N A B.0.1mol·L -1AlCl 3溶液中含有Cl -数目为0.3N AC.5.6g 乙烯和环丁烷(C 4H 8)的混合气体中含的碳原子数为0.4 N AD.11.2LCO 2与足量的Na 2O 2充分反应,转移的电子数为0.5N A9.化学中常用图像直观地描述化学反应的进程或结果。

下列图像描述正确的是( )A .根据图①溶解度与溶液pH 关系,若除去CuSO 4溶液中的Fe 3+可向溶液中加入适量Cu ,至pH 在4左右。

B .图②可表示乙酸溶液中通入氨气至过量过程中溶液导电性的变化C .图③表示压强对可逆反应2A(g)+2B (g )3C (g )+D (s )的影响,乙的压强大 D .根据图④可判断可逆反应A 2(g )+3B 2(g )2AB 3(g )的化学平衡常数K 随温度升高而变小10.以铬酸钾为原料,电化学法制备重铬酸钾的实验装置示意图如下: 下列说法不正确的是( )A.在阴极室,发生的电极反应为: 2H2O + 2e2OH -+ H 2↑B.在阳极室,通电后溶液逐渐由黄色变为橙色,是因为阳极区H+ 浓度增大,使平衡2CrO42- + 2H+Cr2O72-错误!未找到引用源。

+ H2O向右移动C.该制备过程中总反应的化学方程式为4K2CrO4 + 4H2O 2K2Cr2O7 + 4KOH + 2H2↑+ O2↑D.测定阳极液中K和Cr的含量,若K与Cr的物质的量之比(n K/n Cr) 为d,则此时铬酸钾的转化率为(1-d/2)。

2018届江西省重点中学盟校高三第一次联考理科数学试题word版含答案

2018届江西省重点中学盟校高三第一次联考理科数学试题word版含答案

绝密★启用前2018届江西省重点中学盟校高三第一次联考理科数学试题、试卷分第Ⅰ卷(选择题)和第II 卷(非选择题)两部分,满分150分,时间120分钟第 Ⅰ 卷一、选择题:本大题12小题,每小题5分,共60分,在每小题四个选项中,只有一项符合题目要求。

1、已知复数,若复数Z 在复平面内对应的点在虚轴上, 则实数a 的值为( ) A .2 B ..4 D .2、已知全集为实数集R ,集合,集合,则实数m 的值为( )A .2B .C .1D .3、我国古代的数学大都源于生活,在程大位的《算法统宗》一书中有个“竹筒盛米”问题:“家有九节竹一茎,为因盛米不均平。

下头三节三升九,上梢四节贮三升。

惟有中间二节竹,要将米数次第盛。

若是先生无算法,教君直算到天明。

” 其意思为:有一家人用一根9节长的竹筒盛米,每节竹筒盛米的容积是不均匀的,自上而下成等差数列,已知下端3节可盛米3.9升,上端4节可盛米3升,……; 这个问题中,这根竹筒一共可盛米多少升?( ) A .8.8 B .8.9 C .9 D .9.34、给出下列命题,其中真命题的个数有( ) ①残差的平方和的值越小,变量之间的线性相关程度越高.②函数f(x)在[a,b]上连续,则f(a)·f(b)<0是方程f(x)=0在区间(a,b)上至少有一个解的充要条件;③某项测量结果ξ服从正态分布,则=0.19;④若数列{a n }是等比数列的充要条件为;A .1 B. 2 C. 3 D. 45、某几何体的三视图如图所示,图中的四边形都是边长为2的正方形,两条虚线所成的角为3,则该几何体的体积是( ) A.203 B .24-423 C .24-433D .163 6、已知偶函数f(x)的部分图象如图所示.向图中的矩形区域随机投出100个点,记下落入阴影区域的点数.通过10次这样的试验,算得落入阴影区域的点数平均数约为40个,由此可估计的值约为( )A .65B .25C .45D .1237、过抛物线y 2=8x 的焦点作一条直线与抛物线相交于A,B 两点,它们到直线x=-3的距离之和等于10,则这样的直线( )A .有且仅有一条B .有且仅有两条C .有无穷多条D .不存在 8、执行如图所示的程序框图,则输出的结果是( ) A .14 B. 15 C. 16 D.17 9、若实数x ,y 满足约束件,将一颗骰子投掷两次得到的点数分别为a,b ,则目标函数z=2ax-by+3在点 (-2,-1)处取得最小值的概率为( ) A.56 B .56 C .14 D .1610、各项均为正数的等比数列{a n }满足a 2a 6 =64,a 3a 4=32,若函 数的导函数为,则( )A .10B .C ..5511、如图,已知双曲线C: 的右顶点为A ,O 为坐标原点,以A 为圆心的圆与双曲线 C 的某渐近线交于两点P ,Q ;若,且,则双曲线C 的离心率为( )A.233 B. 72 C. 2 D. 21312、已知对任意x>1,f(x)=lnx+3xk+1-k 大于零恒成立,若k ∈z ,则k 的 最大值为( )第 Ⅱ 卷二、填空题:本大题共4小题,每小题5分,共20分 13、由3个5和4个3可以组成 个不同的七位数。

【数学】江西省重点中学协作体2018届高三下学期第一次联考数学(理)试题

【数学】江西省重点中学协作体2018届高三下学期第一次联考数学(理)试题

江西省重点中学协作体2018届高三第一次联考试卷数学(理科)试卷满分150分考试时间120分钟第I卷(选择题)一、选择题(本大题共12小题,每小题5分,共60分)1. 设集合,()A. B. C. D.【答案】A【解析】由题意得,.......................................∴.选A.2. 设复数互为共轭复数,,则=( )A. -2+iB. 4C. -2D. -2-i【答案】B【解析】由题意得,∴.选B.3. 已知数列满足,且成等比数列,则数列的通项公式为()A. B. C. D.【答案】C【解析】∵数列满足∴数列是公差为2的等差数列.又成等比数列,∴,即,解得.∴.选C.4. 如图是一边长为8的正方形苗圃图案,中间黑色大圆与正方形的内切圆共圆心,圆与圆之间是相切的,且中间黑色大圆的半径是黑色小圆半径的2倍,若在正方形图案上随机取一点,则该点取自白色区域的概率为()A. B. C. D.【答案】D【解析】由题意得正方形的内切圆的半径为4,中间黑色大圆的半径为2,黑色小圆的半径为1,所以白色区域的面积为,由几何概型概率公式可得所求概率为。

选D。

5. 若,则()A. B. C. D.【答案】B【解析】由条件得,将上式两边分别平方,得,即,解得或(舍去),∴.选B.6. 已知函数,则不等式的解集为()A. B.C. D.【答案】C【解析】由题意知函数为偶函数,且在上单调递增.由可得,∴,解得.又,即.∴且.故不等式的解集为.选C.7. 设向量,满足,且,则向量在向量方向上的投影为( )A. 1B. -1C.D.【答案】D【解析】∵,∴,∴.∴.设向量和向量的夹角为,则向量在向量方向上的投影为.选D.8. 已知某三棱锥的三视图如图所示,则该三棱锥的所有面中,面积最大的那个面的面积为( )A. 2B.C.D.【答案】B【解析】由三视图可得,该几何体为如图所示的三棱锥P-ABC,其中C为该棱的中点.结合图形可得三角形PAB面积最大.由题意知是边长为的等边三角形,故其面积为.选B.9. 我国古代名著《九章算术》用“更相减损术”求两个正整数的最大公约数是一个伟大创举.这个伟大创举与我国古老的算法—“辗转相除法”实质一样。

江西省重点中学盟校2018届第一次联考数学(理)试卷

江西省重点中学盟校2018届第一次联考数学(理)试卷

江西省重点中学盟校2018届第一次联考数学(理)试卷景德镇一中 邱金龙 操军华 贵溪一中 何卫中 新余四中 何幼平第Ⅰ卷(选择题 共60分)一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1、已知集合101x M xx +⎧⎫=≥⎨⎬-⎩⎭,则R M =C ( ).A {}11x x -<< .B {}11x x -<≤ .C {}11x x x <-≥或 .D {}11x x x ≤-≥或2、已知11abi i=-+,其中,a b 是实数,i 是虚数单位,则||a bi -=( ).A 3 .B 2 .C 5 .D 3、函数3y x =的图象在原点处的切线方程为( ).A y x = .B 0x = .C 0y = .D 不存在4、函数2lg(2)y x x a =-+的值域不可能是( ).A (,0]-∞ .B [0,)+∞ .C [1,)+∞ .D R5、实数,x y 满足10(2)(26)0x y x y x y -+≥⎧⎨--+≤⎩,若2t y x ≤+恒成立,则t 的取值范围是( ).A 13t ≤ .B 5t ≤- .C 13t ≤- .D 5t ≤6、如图是某算法的程序框图,则程序运行后输出的T 是( ).A 1 .B 2 .C 3 .D 47、已知12F F 、分别是双曲线22221(0,0)x y a b a b-=>>的左、右焦点,过点2F 与双曲线的一条渐近线平行的直线交双曲线另一条渐近线于点M ,若点M 在以线段12F F 为直径的圆外,则双曲线离心率的取值范围是( ).A .B )+∞ .C 2) .D (2,)+∞8、已知()3sin 2cos 2f x x a x =+,其中a 为常数.()f x 的图象关于直线6x =π对称,则()f x 在以下区间上是单调函数的是( ).A 31[,]56--ππ .B 71[,]123--ππ .C 11[,]63-ππ .D 1[0,]π9、一个几何体的三视图如图所示,该几何体外接球的表面积为( ).A 9π .B 283π .C 8π .D 7π10、已知焦点在x 轴上的椭圆方程为222141x y a a +=-, 随着a 的增大该椭圆的形状( ).A 越接近于圆 .B 越扁.C 先接近于圆后越扁 .D 先越扁后接近于圆11、坐标平面上的点集S 满足2442{(,)|log (2)2sin 2cos [,]}84S x y x x y y y =-+=+∈,-ππ,将点集S 中的所有点向x 轴作投影,所得投影线段的长度为( ).A 1 .B.C .D 212.已知函数1ln 1)(-+=x x x f ,*)()(N k xkx g ∈=,若对任意的1c >,存在实数b a ,满足0a b <<c <,使得)()()(b g a f c f ==,则k 的最大值为( ).A 2 .B 3 .C 4 .D 5俯视图2正视图第Ⅱ卷 (非选择题)二、填空题(本题共4小题,每小题5分,共20分.将答案填入答题纸相应位置) 13、在ABC 中,3,2,30a b A ===,则cos B = .14.已知()f x 是定义在R 上周期为4的奇函数,当(0,2]x ∈时,2()2log xf x x =+,则(2015)f = .15、从左至右依次站着甲、乙、丙3个人,从中随机抽取2个人进行 位置调换,则经过两次这样的调换后,甲在乙左边的概率是 . 16、如图所示,在O 中,AB 与CD 是夹角为60°的两条直径,,E F 分别是O 与直径CD 上的动点,若0OE BF OA OC λ⋅+⋅=,则λ的取值范围是________.三、解答题(共6小题,共70分;要求写出必要的文字说明,解题过程和演算步骤) 17、(本小题满分12分)某校随机调查了80位学生,以研究学生中爱好羽毛球运动与性别的关系,得到下面的数据表: (1)将此样本的频率估计为总体的概率,随机调查了本校的3名学生.设这3人中爱好羽毛球运动的人数为X ,求X 的分布列和期望值; (2)根据表中数据,能否有充分证据判定爱好羽毛球运动与性别有关联?若有,有多大把握?附:22()()()()()n ad bc a b c d a c b d χ-=++++ABCDO EF已知数列{}n a 为等差数列,首项11a =,公差0d ≠.若123,,,,,n b b b b a a a a 成等比数列,且11b =,22b =,35b =.(1)求数列{}n b 的通项公式n b ;(2)设3(21)n n c log b =-,求和12233445212221n n n n n T c c c c c c c c c c c c -+=-+-+⋅⋅⋅+-.19、(本小题满分12分)在三棱柱111ABC A B C -中,侧面11ABB A 为矩形,2AB =,1AA =D 是1AA 的中点,BD 与1AB 交于点O ,且CO ⊥平面11ABB A .(1)证明:1BC AB ⊥;(2)若OC OA =,求直线CD 与平面ABC 所成角的正弦值.BAC D1A1B1O已知抛物线2:2(0)C x py p =>的焦点为F ,过F 的直线l45时,AB 的中垂线交y 轴于点(0,5)Q .(1)求p 的值;(2)以AB 为直径的圆交x 轴于点,M N ,记劣弧MN 的长度为S ,当直线l 绕F 旋转时,求SAB的最大值.已知函数()ln ln ,(),()au x x x x v x x a w x x=-=-=,三个函数的定义域均为集合{}|1A x x =>. (1)若()()u x v x ≥恒成立,满足条件的实数a 组成的集合为B ,试判断集合A 与B 的关系,并说明理由; (2)记()()[()()][()]2w x G x u x w x v x =--,是否存在m N *∈,使得对任意的实数(,)a m ∈+∞,函数()G x 有且仅有两个零点?若存在,求出满足条件的最小正整数m ;若不存在,说明理由.(以下数据供参考:1)0.8814e ≈≈ )请考生在第22、23题中任选一题做答,如果多做,则按所做第一题记分.在答题卡选答区域指定位置答题,并写上所做题的题号.注意所做题目的题号必须和所写的题号一致.22、(本小题满分10分)选修4—4:坐标系与参数方程选讲.在平面直角坐标系xoy 中,以O 为极点,x 轴的正半轴为极轴的极坐标系中,直线l 的极坐标方程为(1)写出直线l 与曲线C 的直角坐标方程;(2)过点M 平行于直线l 的直线与曲线C 交于,A B 两点,若83MA MB ⋅=,求点M 轨迹的直角坐标方程.23、(本小题满分10分)选修4-5:不等式选讲. 已知函数()223,()12f x x a x g x x =-++=-+. (1)解不等式()5g x <;(2)若对任意1x R ∈,都有2x R ∈,使得12()()f x g x =成立,求实数a 的取值范围.江西省重点中学盟校2018届第一次联考数学(理)试卷答 案一、CDCAB CDBBA DB12、分析:易知()()g()f c g b c =>,即lnc 1c c kc c+>-lnc 1c c k c +∴<-,1c >. 令ln ()1c c cp c c +=-,1c >, 则()()()()2211ln 1ln 2ln ()11c c c c c c c p c c c ++-----'==--令()2ln 1q c c c c =-->,,1'()10q c c=->, ()q c 递增,()(1)1q c q ∴>=-.又()31ln30q =-<,()42ln 40q =->, ,∴存在()03,4c ∈,使得0()0q c =,即002ln c c -=当()01,c c ∈时,()0q c <,()p c 递减,当()0,c c ∈+∞时,()0q c >,()p c 递增.000min 00ln ()()1c c c p c p c c +==- 002ln c c -=代入得000000min 000ln (2)()11c c c c c c p c c c c ++-===-- 03k c k ∴<≤易知10a e<<,当3k =时可证明()()()f a g b g a =< max 3k ∴=. 二、13.3 14.-2 15. 2316. [- 16、解:设圆的半径为r ,以O 为原点,OB 为x 轴建立直角坐标系,则1(,0),(,)22B rC r r -设(cos ,sin )E r r αα,(,)(11)2OF OC r r μ=μ=-≤μ≤ 212OA OC r λ⋅=- 2[(1)c o s s i n]2OE BF r μ⋅=-αα (2)cos sin ∴λ=μ-αα )3λ[∴λ∈-三、17、解:(1)任一学生爱好羽毛球的概率为38,故X ~3(3,)8B ………………2分 0335125(0)()8512P XC ===12335225(1)()88512P X C === 22335135(2)()88512P X C ===333327(3)()8512P X C === X 的分布列为39388EX =⨯=…………8分(2)2280(20201030)800.3556 2.70630503050225χ⨯-⨯==≈<⨯⨯⨯……………………10分 故没有充分证据判定爱好羽毛球运动与性别有关联. ……………………12分 18、解:(1)222152(1)1(14)12142=0a a a d d d d d d d =⋅⇒+=⨯+++=+⇒=或(舍去)1211, 3.3b b a a a q ===∴=……………………3分11(1)22113n n b n n a b b -=+-⨯=-=⨯ , 1312n n b -+∴=……………………6分(2)3(21)n n c log b =-1n =- ……………………7分213435657221()()()()n nn nT c c c c c c c c c c c c -+=-+-+-+⋅⋅⋅+- 2422()n c c c =-++⋅⋅⋅+22[135(21)]2n n =-+++⋅⋅⋅+-=-……………………12分19、解:(1)由题意tan 2AD ABD AB ∠==,11tan AB AB B BB ∠==, 又0ABD <∠,12AB B π∠<,1ABD AB B ∴∠=∠,1112AB B BAB ABD BAB π∴∠+∠=∠+∠=,2AOB π∠=,1AB BD ∴⊥.又11CO ABB A ⊥平面,1AB CO ∴⊥,BD 与CO 交于点O ,1AB CBD ∴⊥平面,又BC CBD ⊂平面,1AB BC ∴⊥.…6分(2)如图,分别以1,,OD OB OC 所在直线为,,x y z 轴,以O 为坐标原点,建立如图所示的空间直角坐标系O xyz -,则(0,(A B,C D ,262323236(,,0),(0,,),(,0,)333333AB AC CD =-==-, 设平面ABC 的法向量为(,,)n xy z =,则0n AB n AC ⎧⋅=⎪⎨⋅=⎪⎩,即00x y y x ⎧+=⎪⎪+=, 令1y =,则1z =-,2x=,所以(1)2n =-. 设直线CD 与平面ABC 所成角为α,则1)sincos ,||||CD nCDn CD n α⋅-⋅===⋅0((1)++-⨯-==,所以直线CD 与平面ABC 所成角的正弦值为5.……………………12分 20、解:(1)(0,)2p F 当l 的倾斜角为45时,l 的方程为2p y x =+ 设1122(,),(,)A x y B x y 222p y x x py ⎧=+⎪⎨⎪=⎩得2220x px p --=1212122,3x x p y y x x p p +=+=++= 得AB 中点为3(,)2D p p …………3分 AB 中垂线为3()2y p x p -=-- 0x =代入得552y p == 2p ∴=……6分 (2)设l 的方程为1y kx =+,代入24x y =得2440x kx --=212122()444AB y y k x x k =++=++=+ AB 中点为2(2,21)D k k +令2MDN ∠=α 122S AB AB =α⋅=α⋅ S AB ∴=α…………8分 D 到x 轴的距离221DE k =+222211cos 1122222DE k k k AB +α===-++…………10分 当20k =时cos α取最小值12α的最大值为3π 故S AB 的最大值为3π.……………………12分 21.解:(1)()1()()ln ln ().()ln ,1,u x v x a x x x x m x m x x x x '≥⇒≥-+==-∈+∞. 易知1()ln m x x x'=-在(1,)+∞上递减,()(1)1m x m ''∴<=…………6分 存在0(1,)x ∈+∞,使得0()0m x '=,函数()m x 在()01,x x ∈递增,在()0+x x ∈∞,递减0()a m x ≥. 由0()0m x '=得001ln x x = 0000000111()11m x x x x x x x =-⋅+=+-> 1a ∴> B A ⊆……………………6分(2)()()()()ln ln ,()(),(1,)22a w x a f x u x w x x x x g x v x x a x x x =-=--=-=--∈+∞令. ①21()ln 10,(1,)a f x x x x x '=+-+>∈+∞,由于(),1,(1)0,a m a f a ∈+∞⇒>=-< ,()x f x →+∞→+∞,由零点存在性定理可知:()1,,a ∀∈+∞函数()f x 在定义域内有且仅有一个零点……………………8分 ②2()10,(1,)2a g x x x '=+>∈+∞,3(1)10,2a g =-<,()x g x →+∞→+∞,同理可 知()1,,a ∀∈+∞函数()g x 在定义域内有且仅有一个零点……………………9分③假设存在0x 使得()()000f x g x ==,2000000ln ln 2a x x x x a x a x ⎧=-⎪⎨-=⎪⎩消a 得002002ln 021x x x x -=-- 令22()ln 21x h x x x x =--- 222142()0(21)x h x x x x +'=+>-- ()h x ∴递增44132(2)ln 2ln 01)0.88140553h h e =-=<=->()01x ∴∈ 此时200001181,21125422x a x x x ⎛⎫==++-∈ ⎪⎛⎫⎝⎭++ ⎪⎝⎭所以满足条件的最小整数2m =……………………12分22、解:(1)直线:l y x = 曲线22:12x C y +=……………………4分 (2)设点()00,M x y 及过点M的直线为010:2x x l y y ⎧=+⎪⎪⎨⎪=+⎪⎩ 由直线1l 与曲线C 相交可得:222000032202t x y +++-= 220022883332x y MA MB +-⋅=⇒=,即:220026x y += 2226x y +=表示一椭圆……………………8分 取y x m =+代入2212x y +=得:2234220x mx m ++-= 由0∆≥得m ≤≤故点M 的轨迹是椭圆2226x y +=夹在平行直线y x =±10分23.解(1)由125x -+<得5125x -<-+<713x ∴-<-< 得不等式的解为24x -<<……………………5分(2)因为任意1x R ∈,都有2x R ∈,使得12()()f x g x =成立,所以{|()}{|()}y y f x y y g x =⊆=, 又()223|(2)(23)||3|f x x a x x a x a =-++≥--+=+,()|1|22g x x =-+≥,所以|3|2a +≥,解得1a ≥-或5a ≤-,所以实数a 的取值范围为1a ≥-或5a ≤-.……………………10分。

2018-2019学年江西省重点中学盟校高三(下)第一次联考数学试卷(理科)(3月份)(解析版)

2018-2019学年江西省重点中学盟校高三(下)第一次联考数学试卷(理科)(3月份)(解析版)

2018-2019学年江西省重点中学盟校高三(下)第一次联考数学试卷(理科)(3月份)一、选择题(本大题共12小题,共60.0分)1.已知集合A={1,2,3,4,5},B={x|x−14−x>0,x∈Z},则A∩B=()A. {2,3}B. {1,2,3,4}C. {1,2,3}D. {1,2,3,5}2.已知复数z=1+3i3−i,则|z|=()A. √22B. 2 C. 1 D. 123.已知R上的奇函数f(x)满足:当x<0时,f(x)=log2(1-x),则f(f(7))=()A. 1B. −1C. 2D. −24.设等差数列{a n}的前n项和为S n,若a1+a3=6,S10=100,则a5=()A. 8B. 9C. 10D. 115.已知条件p:a=-1,条件q:直线x-ay+1=0与直线x+a2y-1=0平行,则p是q的()A. 充要条件B. 必要不充分条件C. 充分不必要条件D. 既不充分也不必要条件6.程序框图如图所示,若上述程序运行的结果S=1320,则判断框中应填入()A. k≤12B. k≤11C. k≤10D. k≤97.已知|a⃗|=1,|b⃗ |=√2,且a⃗⊥(a⃗−b⃗ ),则向量a⃗在b⃗ 方向上的投影为()A. 1B. √2C. 12D. √228.把函数f(x)=√2sin(2x−π6)的图象上每个点的横坐标扩大到原来的2倍,再向左平移π3个单位,得到函数g(x)的图象,则函数g(x)的一个单调递减区间为()A. [π,2π]B. [π3,4π3] C. [π12,π3] D. [π4,5π4]9.已知如图是一个几何体的三视图及有关数据如图所示,则该几何体的棱的长度中,最大的是()A. 2√3B. 2√2C. √5D. √310.以双曲线C:x2a2−y2b2=1(a>0,b>0)上一点M为圆心作圆,该圆与x轴相切于C的一个焦点F,与y轴交于P,Q两点,若|PQ|=2√33c,则双曲线C的离心率是()A. √3B. √5C. 2D. √211.今有6个人组成的旅游团,包括4个大人,2个小孩,去庐山旅游,准备同时乘缆车观光,现有三辆不同的缆车可供选择,每辆缆车最多可乘3人,为了安全起见,小孩乘缆车必须要大人陪同,则不同的乘车方式有()种A. 204B. 288C. 348D. 39612.若曲线f(x)=ae x-ax(0<x<2)和g(x)=-x3+x2(x<0)上分别存在点A,B,使得△AOB是以原点O为直角顶点的直角三角形,AB交y轴于点C,且AC⃗⃗⃗⃗⃗ =12CB⃗⃗⃗⃗⃗ ,则实数a的取值范围是()A. (110(e2−1),16(e−1)) B. (16(e−1),12) C. (1e−1,1) D. (110(e2−1),12)二、填空题(本大题共4小题,共20.0分)13.若a=∫sπinxdx,则(ax−√x)9的展开式中常数项为______.14.在△ABC中,a,b,c分别是内角A,B,C的对边,若a=2,b=2c,cosA=14,则△ABC的面积等于______.15.已知关于实数x,y的不等式组{x+2y−19≥0x−y+8≥02x+y−14≤0构成的平面区域为Ω,若∀(x,y)∈Ω,使得(x-1)2+(y-4)2≤m恒成立,则实数m的最小值是______.16.已知四棱锥S-ABCD的所有顶点都在球O的球面上,SD⊥平面ABCD,底面ABCD是等腰梯形,AB∥CD且满足AB=2AD=2DC=2,∠DAB=π3,SC=√2,则球O的表面积是______.三、解答题(本大题共7小题,共82.0分)17.已知数列{a n}为正项等比数列,满足a3=4,且a5,3a4,a6构成等差数列,数列{b n}满足b n=log2a n+log2a n+1.(Ⅰ)求数列{a n},{b n}的通项公式;(Ⅱ)若数列{b n}的前n项和为S n,数列{c n}满足c n=14S n−1,求数列{c n}的前n项和T n.18.如图,在四棱锥P-ABCD中,底面ABCD是正方形,且AD=PD=1,平面PCD⊥平面ABCD,∠PDC=120°,点E为线段PC的中点,点F是线段AB上的一个动点.(Ⅰ)求证:平面DEF⊥平面PBC;(Ⅱ)设二面角C-DE-F的平面角为θ,试判断在线段AB上是否存在这样的点F,使得tanθ=2√3,若存在,求出|AF||FB|的值;若不存在,请说明理由.19. 为了适应高考改革,某中学推行“创新课堂”教学.高一平行甲班采用“传统教学”的教学方式授课,高一平行乙班采用“创新课堂”的教学方式授课,为了比较教学效果,期中考试后,分别从两个班中20120(Ⅰ)由以上统计数据填写下面的列联表,并判断是否有以上的把握认为“成绩优秀与教学方式有关”?(Ⅱ)现从上述样本“成绩不优秀”的学生中,抽取人进行考核,记“成绩不优秀”的乙班人数为X ,求X 的分布列和期望.参考公式:K 2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d),其中n =a +b +c +d . 临界值表20. 已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的离心率为√22,焦点分别为F 1,F 2,点P 是椭圆C 上的点,△PF 1F 2面积的最大值是2.(Ⅰ)求椭圆C 的方程;(Ⅱ)设直线l 与椭圆C 交于M ,N 两点,点D 是椭圆C 上的点,O 是坐标原点,若OM⃗⃗⃗⃗⃗⃗⃗ +ON ⃗⃗⃗⃗⃗⃗ =OD ⃗⃗⃗⃗⃗⃗ ,判定四边形OMDN 的面积是否为定值?若为定值,求出定值;如果不是,请说明理由.21. 已知函数f(x)=√x(1−alnx),a ∈R .(Ⅰ)若f (x )在(0,1]上存在极大值点,求实数a 的取值范围;(Ⅱ)求证:∑l n i=1ni >2(√n −1)2,其中n ∈N +,n ≥2.22. 在平面直角坐标系中,以原点为极点,以x 轴非负半轴为极轴建立极坐标系,已知曲线C 的极坐标方程为ρ2=2ρcosθ-4ρsinθ+4,直线l 1的极坐标方程为ρ(cosθ-sinθ)=3. (Ⅰ)写出曲线C 和直线l 1的直角坐标方程;(Ⅱ)设直线l 2过点P (-1,0)与曲线C 交于不同两点A ,B ,AB 的中点为M ,l 1与l 2的交点为N ,求|PM |•|PN |.23. 若关于x 的不等式|2x +2|-|2x -1|-t ≥0在实数范围内有解.(Ⅰ)求实数t 的取值范围;(Ⅱ)若实数t 的最大值为a ,且正实数m ,n ,p 满足m +2n +3p =a ,求证:1m+p +2n+p ≥3.答案和解析1.【答案】A【解析】解:B={x|1<x<4,x∈Z}={2,3};∴A∩B={2,3}.故选:A.可求出集合B,然后进行交集的运算即可.考查列举法、描述法的定义,分式不等式的解法,以及交集的运算.2.【答案】C【解析】解:∵=,∴|z|=1.故选:C.利用复数代数形式的乘除运算化简,再由复数模的计算公式求解.本题考查复数代数形式的乘除运算,考查复数模的求法,是基础题.3.【答案】C【解析】解:∵f(x)是R上的奇函数,且x<0时,f(x)=log2(1-x);∴f(7)=-f(-7)=-log28=-3;∴f(f(7))=f(-3)=log24=2.故选:C.根据f(x)为奇函数,以及x<0时的f(x)解析式,即可求出f(-7)的值,从而求出f(7)=-3,进而得出f(f(7))=f(-3)=2.考查奇函数的定义,以及已知函数求值的方法,对数的运算.4.【答案】B【解析】解:设等差数列{a n}的公差为d,∵a1+a3=6,S10=100,∴2a1+2d=6,10a1+d=100,联立解得:a1=1,d=2.则a5=1+2×4=9.故选:B.利用等差数列的通项公式与求和公式即可得出.本题考查了等差数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.5.【答案】C【解析】解:当a=0时,两直线方程为x+1=0和x-1=0,满足两直线平行,当a≠0时,若两直线平行,得,由=-a,即a=-1,综上a=-1或a=0,即p是q的充分不必要条件,故选:C.根据直线平行的等价条件,结合充分条件和必要条件的定义进行判断即可.本题主要考查充分条件和必要条件的判断,结合直线平行的等价条件是解决本题的关键.6.【答案】D【解析】解:第一次执行循环体后S=12,K=11;第二次执行循环体后S=132,K=10;第三次执行循环体后S=1320,K=9;然后退出循环体,输出后S=1320.所以判断框中应填入k≤9?.故选:D.根据程序框图,列出每次执行循环体后得到的S、K的值,当S=1320时退出循环体,这时就可以得出判断框中的条件.本题考查了程序框图的三种结构,解题的关键是列出每次执行循环体后得到的S与K值,属于基础题.7.【答案】D【解析】解:由题意得,•(-)=0 ∴2-•=0∴•=1设与的夹角为θ∴cosθ===∴向量在方向上的投影为cosθ=1×=故选:D.运用向量的夹角公式,投影的概念,垂直的充要条件可解决此问题.本题考查平面向量的数量积和投影的定义.8.【答案】B【解析】解:把函数的图象上每个点的横坐标扩大到原来的2倍,可得y=sin(x-)的图象;再向左平移个单位,得到函数g(x)=sin(x+-)=sin(x+)的图象,令2kπ+≤x+≤2kπ+,求得2kπ+≤x≤2kπ+,可得函数g(x)的减区间为[2kπ+,2kπ+ ],k∈Z,故选:B.利用函数y=Asin(ωx+φ)的图象变换规律求得g(x)得解析式,再利用正弦函数的单调性,得出结论.本题主要考查函数y=Asin(ωx+φ)的图象变换规律,正弦函数的单调性,属于基础题.9.【答案】B【解析】解:几何体可以看作长方体的一部分,也可以看作是正三棱柱去掉一个三棱锥的几何体,如图所示;则该几何体的棱长为:AE=AD=2,AC=BC=BE=ED=DC=AC=BC=2.所以该几何体的棱长最大的是2.故选:B.根据三视图知该几何体是长方体的一部分,结合图形求出几何体棱长的最大值.本题考查了由三视图求几何体棱长最大值的应用问题,解题的关键是得到该几何体的形状.10.【答案】A【解析】解:由题意可设F(c,0),MF⊥x轴,可设M(c,n),n>0,设x=c,代入双曲线的方程可得y=b =,即有M(c ,),可得圆的圆心为M,半径为,即有M到y轴的距离为c,可得|PQ|=2=c,化简可得3b4=4a2c2,由c2=a2+b2,可得3c4-10c2a2+3a4=0,由e=,可得3e4-10e2+3=0,解得e2=3(舍去),即有e=.故选:A.由题意可设F(c,0),MF⊥x轴,可设M(c,n),n>0,设x=c,代入双曲线的方程,可得M的坐标,圆的半径,运用弦长公式,可得|PQ|=2=c,可得a,c的方程,运用离心率公式计算即可得到所求值.本题考查双曲线的离心率的求法,注意运用直线和圆相交的弦长公式,考查化简整理的运算能力,属于中档题.11.【答案】C【解析】解:①若6人乘坐3辆缆车,则将4个大人分成2,1,1三组有=6种方法,然后将三组排到三个缆车有=6种方法,再将两个小孩排到三个缆车有3×3-1=8种方法,所以共有6×6×8=288种方法.②若6人乘坐2辆缆车,(1)两个小孩不在一块:则大人分成2,2两组的方法有=3种方法,将两组排到两辆缆车有=6种方法,再将两个小孩排到两辆缆车有=2种方法,故共有3×6×2=36种方法.(2)两个小孩在一块:则大人分成3,1两组,分组方法为=4种方法,小孩加入1人的组有1种方法,再将两组从3辆缆车中选两辆排入有=6种方法,故共有4×1×6=24种方法.综上共有:288+36+24=348种方法.故选:C.分乘坐3辆缆车和乘坐两辆缆车讨论,①乘坐3辆缆车则4个大人被分成2,1,1三组按分步原理计算方法数即可,②若乘两辆缆车,则4个大人被分成2,2或者3,1两组,然后按计算原理处理即可,最后将两类相加即可.本题考查了分类加法原理,分步乘法原理,考查了排列数公式,组合数公式等知识,但是本题容易漏掉一些情况,分类时要注意.本题属于难题.12.【答案】D【解析】解:设A,B点坐标为(x1,y1),(x2,y2),C点坐标为(0,b),则由得,x2=-2x1,又因为y1=,y2=,且,所以x1•x2+y1•y2=0,即a ()()=2,因为0<x1<2.所以a(4x1+2)=1,又因为当0<x1<2时,>0,4x1+2>0,所以a=,(0<t<2),设h(t)=(e t-t)(4t+2)=(4t+2)e t-2t2-2t,h′(t)=(4t+6)e t-8t-2,设p(x)=h′(t)=(4t+6)e t-8t-2,(0<t<2),则p′(x)=(4t+10)e t-8,因为0<t<2,所以p'(x)>0,即p(x)在(0,2)上单调递增,所以p(x)=h′(x)>h′(0)=6>0,所以h(t)在(0,2)上单调递增,所以h(t)∈(2,10(e2-2)),因为a=,(0<t<2).所以a∈(,).故选:D.由题意设出A,B的坐标,代入函数解析式,利用,把B的坐标用A的坐标表示,由=0,可得关于A的横坐标的方程,分离参数a后构造函数h(x)=,利用导数求其在(0<x<2)上的单调性,得到函数的值域得答案.本题考查利用导数研究函数的单调性,考查数学转化思想方法,考查逻辑思维能力和推理运算能力,属中档题.13.【答案】672【解析】解:若=-cosx=2,则=展开式的通项公式为T r+1=•29-r•(-1)r •,令-9=0,求得r=6,故展开式中常数项为•23=672,故答案为:672.计算定积分求出a的值,在二项展开式的通项公式中令x的幂指数等于零,求得r的值,可得展开式中常数项.本题主要考查定积分的运算,二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.14.【答案】√154【解析】解:∵△ABC中,a=2,b=2c,cosA=,∴由余弦定理,得a2=b2+c2-2bccosA=5c2-c2=4,∴解之得c=1,可得b=2c=2.∵A ∈(0,π),可得sinA==,∴△ABC的面积S=bcsinA=×2×1×=.故答案为:.在△ABC中由余弦定理a2=b2+c2-2bccosA的式子,建立关于c的方程解出c,可得b=2c=2.最后利用同角三角函数的关系算出sinA,即可得到△ABC的面积.本题给出三角形中边b、c之间的关系式,在已知边a 和的情况下求三角形的面积.着重考查了正余弦定理解三角形、三角形的面积公式和同角三角函数的关系等知识,属于基础题.15.【答案】37【解析】解:画出不等式组构成的平面区域Ω,如图所示;求得A(2,10),C(3,8),B(1,9).若∀(x,y)∈Ω,使得(x-1)2+(y-4)2≤m恒成立,则问题转化为求平面区域内的点M 到定点P (1,4)距离的平方最大值,由图形知点A到点P的距离最大,为d==,所以m≥37,即m的最小值为37.故答案为:37.画出不等式组构成的平面区域Ω,把问题转化为求平面区域内的点到定点P(1,4)距离的平方最大值,利用图形求出m的取值范围,即可得出m的最小值.本题主要考查了线性规划的基本应用问题,也考查了数形结合解题的方法,是中档题.16.【答案】5π【解析】解:∵AB=2AD=2DC=2,,∴由余弦定理得:BD===,∴AD2+DB2=AB2,∴,又四边形ABCD是等腰梯形,∴四边形ABCD的外接圆的直径为AB,设AB的中点为O1,球半径为R,∵SD⊥平面ABCD,AB∥CD 且满足AB=2AD=2DC=2,,∴SD=CD=1,∴R 2=12+()2=,∴球O的表面积S=4πR2==5π.故选:A.由余弦定理得BD=,从而AD2+DB2=AB2,进而,推导出四边形ABCD的外接圆的直径为AB,设AB 的中点为O1,球半径为R,则R2=12+()2=,由此能求出球O的表面积.本题考查球的表面积的求法,考查空间中线线、线面、面面间的位置的关系等基础知识,考查运算求解能力,考查数形结合思想,是中档题. 17.【答案】解:(Ⅰ)设等比数列{a n }的公比为q (q >0),由题意,得a 5+a 6=6a 4⇒q +q 2=6, 解得q =2或q =-3(舍), 又a 3=4⇒a 1=1,所以 a n =a 1q n−1=2n−1, b n =log 2a n +log 2a n +1=n -1+n =2n -1; (Ⅱ)S n =n(b 1+b n )2=n[1+(2n−1)]2=n 2,∴c n =14n 2−1=12(12n−1−12n+1),∴T n =12[(1−13)+(13−15)+⋯+(12n−1−12n+1)]=n2n+1. 【解析】(Ⅰ)设等比数列{a n }的公比为q (q >0),运用等比数列的通项公式以及等差数列中项性质,解方程可得首项和公比,再由对数的运算性质,可得所求通项公式;(Ⅱ)运用等差数列的求和公式和裂项相消求和,化简计算即可得到所求和.本题考查等比数列和等差数列的通项公式和求和公式的运用,考查数列的裂项相消求和,以及方程思想和运算能力,属于基础题.18.【答案】解:(Ⅰ)∵四边形ABCD 是正方形,∴BC ⊥DC .∵平面PCD ⊥平面ABCD ,平面PCD ∩平面ABCD =CD , ∴BC ⊥平面PCD .∵DE ⊂平面PDC , ∴BC ⊥DE .∵AD =PD =DC ,点E 为线段PC 的中点, ∴PC ⊥DE .又∵PC ∩CB =C ,∴DE ⊥平面PBC . 又∵DE ⊂平面DEF , ∴平面DEF ⊥平面PBC .(Ⅱ)在平面PCD 内过D 作DG ⊥DC 交PC 于点G , ∵平面PCD ⊥平面ABCD ,平面PCD ∩平面ABCD =CD , ∴DG ⊥平面ABCD .以D 为原点,以DA ,DC ,DG 所在直线分别为x ,y ,z 轴,建立如图所示空间直角坐标系D -xyz .则D (0,0,0),C (0,1,0),P (0,-12,√32),又E 为PC 的中点,∴E (0,14,√34),假设在线段AB 上存在这样的点F ,使得tanθ=2√3,设F (1,m ,0)(0≤m ≤1), 则DE⃗⃗⃗⃗⃗⃗ =(0,14,√34),DF ⃗⃗⃗⃗⃗ =(1,m ,0), 设平面DEF 的法向量为n ⃗ 1=(x ,y ,z),则{n 1⃗⃗⃗⃗ ⋅DE ⃗⃗⃗⃗⃗⃗ =0n 1⃗⃗⃗⃗ ⋅DF ⃗⃗⃗⃗⃗ =0, ∴{x +my =014y +√34z =0,令y =√3,则n 1⃗⃗⃗⃗ =(-√3m ,√3,-1), ∵AD ⊥平面PCD ,∴平面PCD 的一个法向量n 2⃗⃗⃗⃗ =(1,0,0), ∵tanθ=2√3,∴cosθ=√1313,∴cosθ=|cos <n 1⃗⃗⃗⃗ ,n 2⃗⃗⃗⃗ >|=|−√3m|√3m 2+3+1=√1313. ∵0≤m ≤1,解得m =13, ∴|AF||FB|=12.【解析】(I )证明BC ⊥平面PCD 可得DE ⊥BC ,由PD=CD 可得DE ⊥PC ,故而DE ⊥平面PBC ,于是平面DEF ⊥平面PBC ;(II )以D 为原点建立空间坐标系,设F (1,m ,0),求出平面CDE 和平面DEF 的法向量,根据二面角的大小列方程计算m 的值即可得出结论.本题考查了面面垂直的判定,考查空间向量与空间角的计算,属于中档题.19.【答案】解:(1)补充的2×2列联表如下表:甲班 乙班 总计 成绩优秀 9 16 25 成绩不优秀 11 4 15 总计202040根据2×2列联表中的数据,得K 2的观测值为k =40(9×4−16×11)225×15×20×20≈5.227>3.841,所以有95%以上的把握认为“成绩优秀与教学方式有关”.………………(5分)(2)X 的可能取值为0,1,2,3,P(X =0)=C 113C 153=165455=3391,………………(6分)P(X =1)=C 112C 41C 153=220455=4491,………………(7分)P(X =2)=C 111C 42C 153=66455,………………(8分)P (X =3)=C 43C 153=4455,………………(9分)所以X 的分布列为 X 0123P33914491664554455……………(10分) EX =0×3391+1×4491+2×66455+3×4455=45………………(12分) 【解析】(1)补充完整2×2列联表,根据表中的数据,带入k 2公式,查表对比即可. (2)确定随机变量X 的取值为0,1,2,3,不优秀的学生中甲班有11人,乙班有4人,随机变量X 对应的概率类似于超几何分布,计算出X 对应的概率,列出分布列,求出期望即可.本题考查了独立性检验的问题和离散型随机变量的分布列与数学期望问题,是中档题.20.【答案】解:(Ⅰ)由{ca=√22bc =4a 2=b 2+c 2,解得a =2,b =c =√2,则椭圆C 的方程为x 24+y 22=1.(Ⅱ)当直线l 的斜率不存在时,直线MN 的方程为x =-1或x =1, 此时可求得四边形OMDN 的面积为√6.当直线l 的斜率存在时,设直线l 方程是y =kx +m , 代入x 24+y 22=1得(1+2k 2)x 2+4kmx +2m 2-4=0,∴x 1+x 2=−4km1+2k 2,y 1+y 2=2m1+2k 2, △=8(4k 2+2-m 2)>0, ∴|MN|=√1+k 22√2√4k 2+2−m 21+2k 2,点O 到直线MN 的距离是d =|m|√1+k 2,由OM ⃗⃗⃗⃗⃗⃗⃗ +ON ⃗⃗⃗⃗⃗⃗ =OD ⃗⃗⃗⃗⃗⃗ ,得x D =−4km 1+2k 2,y D =2m1+2k 2, ∵点D 在曲线C 上,所以有(−4km 1+2k 2)24+(2m 1+2k 2)22=1,整理得1+2k 2=2m 2,由题意四边形OMDN 为平行四边形, ∴OMDN 的面积为 S OMDN =|MN|d =√1+k 22√2√4k 2+2−m 21+2k 2×|m|√1+k2=2√2|m|√4k 2+2−m 21+2k 2,由1+2k 2=2m 2得S OMDN =√6,故四边形OMDN 的面积是定值,其定值为√6. 【解析】(Ⅰ)由,解得即可得到所求椭圆方程;(Ⅱ)当直线l 的斜率不存在时,直线MN 的方程为x=-1或x=1,此时可求得四边形OMDN 的面积为.当直线l 的斜率存在时,设直线l 方程是y=kx+m ,根据弦长公式,即可求出四边形OMDN 的面积.本题考查了椭圆的标准方程及其性质、直线与椭圆相交问题转化为方程联立可得根与系数的关系、向量的平行四边形法则、考查了分类讨论的思想方法,考查了推理能力与计算能力,属于难题.21.【答案】解:(1)由于f′(x)=12x −12(1−2a −alnx), 则①当a >0时,f′(x)>0⇔lnx <1−2a a,即当x ∈(0,e 1−2a a)时,f '(x )>0,f (x )单调递增;当x ∈(e1−2a a,+∞)时,f '(x )<0,f (x )单调递减;故f (x )在x =e 1−2a a处取得极大值,则0<e1−2a a≤1,解得:a ≥12;②当a =0时,f '(x )>0恒成立,f (x )无极值,不合题意舍去; ③当a <0时,f′(x)>0⇔lnx >1−2a a,即当x ∈(0,e 1−2a a)时,f '(x )<0,f (x )单调递减;当x ∈(e1−2a a,+∞)时,f '(x )>0,f (x )单调递增;故f (x )在x =e1−2a a处取得极小值,不合题意舍去;因此当a ≥12时,f (x )在(0,1]上存在极大值点; (2)法一:令a =12,f(x)=√x(1−12lnx),由(1)得:f (x )在x =1处取得极大值1,且该极值是唯一的, 则√x(1−12lnx)≤1,即lnx ≥2(1−√x ),当且仅当x =1时取“=”, 故当i ≥2时,lni >2(1√i )=2√i 2−√i+√i−1=2−4(√i −√i −1),因此∑l n i=1ni =∑l n i=2ni >∑[n i=22−4(√i −√i −1)]=2(n −1)−4(√n −1)=2(√n −1)2.法二:下面用数学归纳法证明:∑l n i=1ni >2(√n −1)2,对∀n ∈N +,n ≥2恒成立.(1)当n =2时,左边=ln2>ln √e =12,右边=2(√2−1)2<2⋅(12)2=12, 左边>右边,结论成立;(2)假设当n =k 时,结论成立,即∑l k i=1ni >2(√k −1)2,当n =k +1时,左边=∑l k+1i=1ni =∑l k i=1ni +ln(k +1)>2(√k −1)2+ln(k +1)=2(√k +1−1)2−2(1+2√k −2√k +1)+ln(k +1),而ln(k +1)−2(1+2√k −2√k +1)=ln(k +1)−2+4√k+1+√k >ln(k +1)−2+2√k+1, 令a =12,f(x)=√x(1−12lnx),由(1)得:f (x )在x =1处取得极大值1,且该极值是唯一的, 则√x(1−12lnx)≤1,即lnx ≥2(1−1√x ),当且仅当x =1时取“=”,则ln(k +1)−2+1√k+1>0对∀k ∈N +恒成立,即2(√k +1−1)2−2(1+2√k −2√k +1)+ln(k +1)>2(√k +1−1)2成立故当n =k +1时,结论成立,因此,综合(1)(2)得∑l n i=1ni >2(√n −1)2,对∀n ∈N +,n ≥2恒成立.【解析】(1)对函数f (x )求导,对a 与0的大小进行分类讨论,结合单调性进行分析,在存在极值点时,将极值点限制在区间(0,1),并分析函数f (x )在该极值点处导数符号的变化,可得出答案; (2)解法一:取,先写出函数f (x )的解析式,由(1)中的结论得知f (x )≤1,可得出,x 分别取1、2、3、…、n ,然后将所有不等式相加可证明结论;解法二:用数学归纳法证明,先对n=2这种情况成立进行验证,然后假设当n=k 时,不等式成立,结合(1)中的结论推出当n=k+1时也成立,从而证明不等式成立. 本题考查利用导数研究函数的极值,同时也考查数列不等式的证明,考查推理能力与分析能力,属于难题.22.【答案】解:(Ⅰ)曲线C :ρ2=2ρcosθ-4ρsinθ+4的直角坐标方程为:x 2+y 2=2x -4y +4,即(x -1)2+(y +2)2=9,l 1:ρ(cosθ-sinθ)=3的直角坐标方程为:x -y -3=0; (Ⅱ)直线l 2的参数方程{y =tsinαx=−1+tcosα(t 为参数),将其代入曲线C 的普通方程并整理得t 2-4(cosα-sinα)t -1=0, 设A ,B 两点的参数分别为t 1,t 2,则t 1+t 2=4(cosα-sinα). ∵M 为AB 的中点,故点M 的参数为t 1+t 22=2(cosα−sinα),设N 点的参数为t 3,把{y =tsinαx=−1+tcosα代入x -y -3=0, 整理得t 3=4cosα−sinα.∴|PM|⋅|PN|=|t 1+t 22|⋅|t 3|=2|cosα−sinα|⋅|4cosα−sinα|=8.【解析】(Ⅰ)直接利用x=ρcosθ,y=ρsinθ,ρ2=x 2+y 2即可化曲线C 与直线l 1的极坐标方程为直角坐标方程;(Ⅱ)直线l 2的参数方程(t 为参数),将其代入曲线C 的普通方程,利用根与系数的关系可得M 的参数为,设N 点的参数为t 3,把代入x-y-3=0求得.则|PM|•|PN|可求.本题考查简单曲线的极坐标方程,着重考查直线参数方程中参数t 的几何意义的应用,考查计算能力,是中档题.23.【答案】解:(1)因为|2x +2|-|2x -1|-t ≥0所以|2x +2|-|2x -1|≥t又因为|2x +2|-|2x -1|≤|2x +2-(2x -1)|=3………………………(3分) 所以t ≤3………………………(5分) (2)由(1)可知,a =3,则方法一:1m+p +2n+p =13(1m+p +42n+2p )[(m +p)+(2n +2p)]=13[1+4+2n+2p m+p+4(m+p)2n+2p]≥13(1+4+2√2n+2p m+p⋅4(m+p)2n+2p)=3,∴1m+p +2n+p ≥3………………………(10分)方法二:利用柯西不等式1m+p +2n+p =13(1m+p +42n+2p )[(m +p)+(2n +2p)]≥13(√1m+p ⋅√m +p +√42n+2p ⋅√2n +2p)2=3,∴1m+p +2n+p ≥3…………………(10分) 【解析】(1)根据绝对值不等式的性质求得|2x+2|-|2x-1|的最大值,再将关于x 的不等式|2x+2|-|2x-1|-t≥0在实数范围内有解转化为最大值可解决;(2)由(1)可知,a=3,然后利用基本不等式或柯西不等式可证. 本题考查了绝对值不等式的解法,属中档题.。

江西省重点中学协作体2018届高三下学期第一次联考理科综合试卷

江西省重点中学协作体2018届高三下学期第一次联考理科综合试卷

理科综合能力测试卷本试卷分选择题和非选择题两部分。

满分300分。

考试时间150分钟。

可能用到的相对原子质量:H-1 C-12 N-14 O-16 Na-23 P-31 S-32 Cl-35.5 K-39Fe-56 Cu-64一、选择题:本题共13小题,每小题6分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.作为系统的边界,细胞膜在细胞的生命活动中具有重要作用。

下列相关叙述正确的是()A.细胞膜的选择透过性保证了对细胞有害的物质都不能进入细胞B.细胞膜上的受体是细胞间进行信息交流的必需结构C.一切细胞均具有以磷脂双分子层为骨架的细胞膜D.与动物细胞相比,植物细胞放在清水中不会涨破主要是细胞膜起着重要作用2.下列关于ATP和RNA的叙述,错误的是()A.植物叶肉细胞的线粒体中既有ATP的合成,也有RNA的合成B.ATP水解去除两个磷酸基团后得到的产物为RNA的基本组成单位之一C.真核细胞中细胞呼吸合成的ATP可用于细胞核中合成RNAD.细胞中RNA可为细胞代谢提供活化能,ATP可降低反应所需的活化能3.下列关于免疫的叙述中正确的是()A.被病原体感染后,人体内的抗体、淋巴因子、溶菌酶等免疫活性物质都是由免疫细胞产生的B.有的免疫活性物质可以与病原体结合形成沉淀或细胞集团C.天花疫苗的发明和使用,可根除由少部分病原菌引起的传染疾病D.吞噬细胞吞噬、处理外来病原体并将抗原呈递给T淋巴细胞的过程,必须有抗体参与4.生物实验中常用到对照,以下实验对照设置正确的是()A.研究甲状腺激素对小鼠新陈代谢的影响,分别给不同组小鼠注射蒸馏水和甲状腺激素溶液B.研究低温对不同植物染色体数目的影响,分别将植物甲的根尖和植物乙的芽尖用低温处理C.研究温度对淀粉酶活性的影响分别在0℃、60℃、80℃、100℃条件下进行D.研究细胞核的功能时,把蝾螈的受精卵横缢成有细胞核和无细胞核两部分。

5.果蝇翅的形状有3种类型:长翅、小翅和残翅,分别受位于一对常染色体上的基因E、E1、E2控制,且具有完全显隐性关系。

江西省重点中学协作体2018届高三第一次联考理科数学试卷答案

江西省重点中学协作体2018届高三第一次联考理科数学试卷答案

江西省重点中学协作体2018届高三第一次联考数学(理科)参考答案一、选择题(本大题共12小题,每小题5分,共60分)123456789101112A B C DBC D B AD BA二,填空题13.603515.16.156提示:一,选择题8.几何体为如图所示的三棱锥P-ABC ,其中C 为该棱的中点。

则三角形PAB 面积最大。

是边长为2的等边三角形,其面积为2.9.模拟程序框图的运行过程,如下;a =6402,b =2046,执行循环体,r =264,a =2046,b =264,不满足退出循环的条件,执行循环体,r=198,a =264,b =198,不满足退出循环的条件,执行循环体,r =66,a =198,b =66不满足退出循环的条件,执行循环体,r =0,a =66,b =0满足退出循环的条件r =0,退出循环,输出a 的值为66.故选A.10.距离之和的最小值即为抛物线的焦点到2l 的距离。

11.由题可知,()23,0()3,033,3x x f x x x x x ⎧--<⎪⎪=-≤≤⎨⎪-->⎪⎩,2,0(3),036,3x x f x x x x x ⎧-<⎪-=-≤≤⎨⎪->⎩。

()()y f x g x =-恰有4个零点,即函数y b =与函数()()3y f x f x =+-的图像恰有4个交点。

()()223,033,03715,3x x x f x f x x x x x ⎧---<⎪+-=-≤≤⎨⎪-+->⎩,画出图像可知113,4b ⎛⎫∈-- ⎪⎝⎭。

故选B 。

12.由题可知,212()32n n n f x a x a x a ++'=--,则1221(1)320320n n n n n n f a a a a a a ++++'=--=-+=即()2112n n n n a a a a +++-=-,211a a -=,32212a a -=⨯=,243222a a -=⨯=, ,212n n n a a ---=,累加得12n n a -=。

江西省九校2018年高三联考试卷理数试卷

江西省九校2018年高三联考试卷理数试卷

3图题数学试卷(理科)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间为120分钟. 2.本试卷分试题卷和答题卷,第Ⅰ卷(选择题)的答案应填在答题卷卷首相应的空格内,做在第Ⅰ卷的无效.第Ⅰ卷(选择题共60分)一、 选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合21A x x ⎧⎫=>⎨⎬⎩⎭,{}(2)(1)0B x x x =+->,则A B I 等于( )A .(0,2)B .(1,2)C .(2,2)-D .(,2)(0,)-∞-+∞U 2.设(12)i x x yi +=+,其中y x ,是实数, 则yi x=+( ) A .1 BC D 3.下面框图的S 的输出值为 ( )A .5B .6C .8D .134.已知随机变量X 服从正态分布2(2,)N σ且(4)0.88P x ≤=, 则(04)P x <<=( ) A .0.88B .0.76C .0.24D .0.125.在各项不为零的等差数列{}n a 中,2201720182019220a a a -+=,数列{}n b 是等比数列,且20182018b a =,则220172019log ()b b 的值为( )A .1B .2 C. 4 D .86.下列命题正确的个数是( )(1)函数22cos sin y ax ax =-的最小正周期为π”的充分不必要条件是“1a =”.(2)设1{1,1,,3}2a ∈-,则使函数a y x =的定义域为R 且为奇函数的所有a 的值为1,1,3-.(3)已知函数()2ln f x x a x =+在定义域上为增函数,则0a ≥.A .1B .2C .3D .0 7.已知向量2(,2),(1),a x x b c =+=-=r r r ,若//a b r r ,则a r 与c r 夹角为( )A .6πB .3πC .23πD .56π8.如图,网格纸上小正方形的边长为1,粗线所画出的是某几何体的三视图,则该几何体的各条棱中最 长的棱长为( )A.52B.24C.6D.349.若关于x 的不等式a x a a sin )6(2<-+无解,则=a ( ) A.3- B.2- C.2 D.310.若()()()11221,2,,,,A B x y C x y 是抛物线24y x =上不同的点,且AB BC ⊥,则2y 的取值范围是( )A .∞⋃∞(-,-6)[10,+) B .∞⋃∞(-,-6](8,+)C .∞⋃∞(-,-5][8,+)D .∞⋃∞(-,-5][10,+) 11.已知动点),(y x P 满足:2402323x y y x x y x --+≤⎧⎪≥⎨⎪+≥+⎩,则22+4x y y +的最小值为( )AB 4C . 1-D .2-12.已知函数()f x =20540.x ee x x x x ⎧⎪≥⎨⎪+<⎩,,+,(e 为自然对数的底数),则函数(())()yf f x f x =-的零点的个数为( )A .2B .3C .4D .5第II 卷(非选择题共90分)二、填空题:本大题共4小题,每小题5分,共20分. 13.3)121(xx x x -+的展开式中的常数项为 .14.已知F 1、F 2为双曲线的焦点,过F 2作垂直于实轴的直线交双曲线于A 、B 两点,BF 1交y 轴于点C ,若AC ⊥BF 1,则双曲线的离心率为 .15.已知矩形ABCD 的两边长分别为3=AB ,4=BC ,O 是对角线BD 的中点,E 是AD 边上一点,沿BE将ABE ∆折起,使得A 点在平面BDC 上的投影恰 为O (如右图所示),则此时三棱锥BCD A -的外接球的表面积是 . 16.在ABC ∆中,内角A,B,C 所对的边分别是,,a b c ,sin 1cos ,2sin cos A b Ab a C B-==则有如下结论:(1)1c =;(2)ABC S ∆的最大值为14; (3)当ABC S ∆取最大值时,b =则上述说法正确的结论的序号为 .三、解答题:共70分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江西省重点中学协作体2018届高三第一次联考试卷数学(理科)试卷满分150分考试时间120分钟第I 卷(选择题)一、选择题(本大题共12小题,每小题5分,共60分) 1 .设集合,( )A .}{1,0,1- B.}{2,1,0 C.}{2,1,0,1- D.}{2,1 2. 设复数21,z z 互为共轭复数,i z 311+=,则21z z =( )A .-2+iB .4C .-2D .-2-i 3. 已知数列{}n a 满足12(2)n n a a n --=≥,且成等比数列,则数列{}n a 的通项公式为()A. B. C. D.4.如图是一边长为8的正方形苗圃图案,中间黑色大圆与正方形的内切圆共圆心,圆与圆之间是相切的,且中间黑色大圆的半径是黑色小圆半径的2倍,若在正方形图案上随机取一点,则该点取自白色区域的概率为( )A.64πB.32πC.16πD.8π5.若2cos()4θθ=+,则sin 2θ=( )A .13B .23-C .23 D .13-6. 已知函数22()log f x x x=+,则不等式0)1()1(<--f x f 的解集为()A .)2,0(B .)2,1(-1{|0}2x A x x +=≥-{1,0,1,2}B A B =- ,则134,,a a a 10-24n a n =+C .)2,1()1,0(D .(1,1)(1,3)-7.设向量a ,b 满足1,2==b a ,且)(b a b +⊥,则向量b 在向量2a b + 方向上的投影为( )A .1B .1- C.21-D .218. 已知某三棱锥的三视图如图所示,则该三棱锥的所有面中,面积最大的那个面的面积为( )B.D.9. 我国古代名著《九章算术》用“更相减损术”求两个正整数的最大公约数是一个伟大创举.这个伟大创举与我国古老的算法—“辗转相除法”实质一样。

如图的程序框图即源于“辗转相除法”,当输入时,输出的=a ()A. 66B. 12C. 36D. 19810. 已知抛物线 ,则P 到这两条直线的距离之和的最小值为( )B. C. D. 4个零点,则实数b 的取值范围是() A. B. C. D. 12. 设1=x 是函数3212()1()n n n f x a x a x a x n N +++=--+∈的极值点,数列{}n a 中满足11a =,22a =,21log n n b a +=,若[]x 表示不超过x 的最大整数,则122320182019201820182018[]b b b b b b +++ =()A .2017B .2018C .2019D .2020第II 卷(非选择题)二、填空题(本大题共4小题,每小题5分,共20分)13.若36=⎰-dx x nn(其中0n >),则的展开式中的系数为.14.已知O 为坐标原点,点M 的坐标为)1,2(,点N ),(y x 的坐标满足⎪⎩⎪⎨⎧≤+≤-≥+2211y x x y y x 的最小值为.正视图侧视图俯视图22111164022046a b ==,2:8C y x P =上一点,1:2l x =-直线,2:35300l x y -+=2||33()()(3)(3)3x x f x g x b f x x x -≤⎪==--⎨-->⎪⎩,,函数,)()g x -11,)4-+∞113,)4-11(,4-∞-(3,0)-15.设双曲线C :作x 轴的垂线交双曲线C 于M ,N 两点,其中M 位于第二象限,B (0,b ),若是锐角,则双曲线C 的离心率的取值范围是__________. 16. 已知边长为36的菱形ABCD 中,∠BAD =60°,沿对角线BD 折成二面角A -BD -C 的大小为60°的四面体,则四面体ABCD 的外接球的表面积为________.三、解答题(本大题共6小题,17-21题必答题,每小题12分;22、23题为选做题,任选一题作答,每小题10分,共70分) 17.(本小题满分12分)已知函数(1)求函数的对称中心;2)已知在中,角A 、B 、C 所对的边分别为a 、b 、c ,且的外接圆半径为,求周长的最大值。

18.(本小题满分12分)交强险是车主必须为机动车购买的险种,若普通6座以下私家车投保交强险第一年的费用(基准保费)统一为a 元,在下一年续保时,实行的是费率浮动机制,保费与上一年度车辆发生道路交通事故的情况相联系,发生交通事故的次数越多,费率也就越高,具体浮动情况如表:2211221(0,0)x y a b F F a b -=>>的左焦点为,过BMN ∠22()2sin 2sin (),6f x x x x R π=--∈()y f x =),62b c ABC aπ++=∆牌同型号私家车的下一年续保时的情况,统计得到了下面的表格:(1)按照我国《机动车交通事故责任强制保险条例》汽车交强险价格的规定,950=a .某同学家里有一辆该品牌车且车龄刚满三年,记为该品牌车在第四年续保时的费用,求的分布列与数学期望值;(数学期望值保留到个位数字)(2)某二手车销售商专门销售这一品牌的二手车,且将下一年的交强险保费高于基本保费的车辆记为事故车.假设购进一辆事故车亏损4000元,一辆非事故车盈利8000元:①若该销售商购进三辆(车龄已满三年)该品牌二手车,求这三辆车中至多有一辆事故车的概率; ②若该销售商一次购进100辆(车龄已满三年)该品牌二手车,求他获得利润的期望值.19.(本小题满分12分)AB ∥CD ,,AB=PD=4,CD=2,,M 为CD 的为PB 上一点,且。

(1)若MN ∥平面P AD ;(2)若直线AN 与平面PBC 所成角的正弦值为,求异面直线AD 与直线CN 所成角的余弦值。

ABCDPNMP -PD ABCD ABCD ,底面BC ⊥AD (01)PNλ=<< 1时,求证:20.(本小题满分12分) 如图,已知椭圆C :)0(12222>>=+b a b y a x , 其左右焦点为)0,1(1-F 及)0,1(2F ,过点1F 的直线交椭圆C 于B A ,两点,线段AB 的中点为G ,AB 的中垂线与x 轴和y 轴分别交于E D ,两点,且||1AF 、||21F F 、||2AF 构成等差数列.(1)求椭圆C 的方程; (2)记D GF 1∆的面积为1S ,OED ∆(O 为原点)的面积为2S ,试问:是否存在直线AB ,使得2112S S =?说明理由.21.(本小题满分12分)已知函数。

(1)若函数上恒成立,求实数m 的取值范围. (2)设函数,若函数的图象与轴交于点A(,0),B(,0)两点,且是函数的极值点,试比较2,,21021x x x x x +的大小.选做题,从22、23题任选一题作答,两题都答以第一题作答为准记分。

选修4-4:坐标系与参数方程21()ln 2f x x x x =-()(0,2)f x m ≥在()(01)x g x a a a a=->≠且()()['()1]F x g x f x x =+-x 120x ()y F x =22.(本小题满分10分)中,曲线C 1的参数方程为以原点O 为极点,x 轴正半轴为极轴,建立极坐标系,曲线C 2的极坐标方程为 (1)求曲线C 1与C 2的直角坐标方程;(2)当C 1与C 2有两个公共点时,求实数t 的取值范围.选修4-5:不等式选讲 23.(本小题满分10分)已知函数(1)若m=2时,解不等式 (2)若关于的不等式上有解,求实数m 的取值范围。

22cos 2)32sin x y παπ=+⎧≤≤⎨=+⎩sin()4πρθ-=()|1||2|()f x x x m m R =-++∈()3f x ≤x ()|23|[0,1]f x x x ≤-∈在江西省重点中学协作体2018届高三第一次联考数学(理科)参考答案一、选择题(本大题共12小题,每小题5分,共60分)13. 60 14. 15. 16. 156 提示:一,选择题8.几何体为如图所示的三棱锥P-ABC ,其中C 为该棱的中点。

则三角形PAB 面积最大。

是边长为2的等边三角形,其面积为2.9.模拟程序框图的运行过程,如下; a =6402,b =2046,执行循环体,r =264,a =2046,b =264,不满足退出循环的条件,执行循环体,r =198,a =264,b =198, 不满足退出循环的条件,执行循环体,r =66,a =198,b =66 不满足退出循环的条件,执行循环体,r =0,a =66,b =0满足退出循环的条件r =0,退出循环,输出a 的值为66.故选A.10.距离之和的最小值即为抛物线的焦点到2l的距离。

11.由题可知,()23,0()3,033,3x x f x x x x x ⎧--<⎪⎪=-≤≤⎨⎪-->⎪⎩,2,0(3),036,3x x f x x x x x ⎧-<⎪-=-≤≤⎨⎪->⎩。

()()y f x g x =-恰有4个零点,即函数y b =与函数()()3y f x f x =+-的图像恰有4个交点。

()()223,033,03715,3x x x f x f x x x x x ⎧---<⎪+-=-≤≤⎨⎪-+->⎩,画出图像可知113,4b ⎛⎫∈-- ⎪⎝⎭。

故选B 。

12.由题可知,212()32n n n f x a x a x a++'=--, 则1221(1)320320n n n n n n f a a a a a a ++++'=--=-+=即()2112n n n n a a a a +++-=-,211a a -=,32212a a -=⨯=,243222a a -=⨯=,,212n n n a a ---=,累加得12n n a -=。

故n b n =。

122320182019201820182018b b b b b b +++ =1112018()122320182019+++⨯⨯⨯ =12018(1)2019-=201820182019-=120172019+。

所以1223201820192018201820182017b b b b b b ⎡⎤+++=⎢⎥⎣⎦ 。

故选A 。

二、填空题13. 6014.15.22M ,,N ,,b bc c a a ⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭因为BMN ∠是锐角,故MB 与MN的数量积为正数。

经计算可得b a >。

相关文档
最新文档