7.2.1组合逻辑电路的分析与测试
组合逻辑电路的功能测试实验
组合逻辑电路的功能测试实验
一、实验目的
掌握组合逻辑电路的设计与测试方法
二、实验原理
1、使用中、小规模集成电路来设计组合电路是最常见的逻辑电
路。
设计
组合电路的一般步骤如图2-1所示。
图2-1 组合逻辑电路设计流程图
根据设计任务的要求建立输入、输出变量,并列出真值表。
然后用逻辑代数或卡诺图化简法求出简化的逻辑表达式。
并按实际选用逻辑门的类型修改逻辑表达式。
根据简化后的逻辑表达式,画出逻辑图,用标准器件构成逻辑电路。
最后,用实验来验证设计的正确性。
2、组合逻辑电路设计举例
用“与非”门设计一个表决电路。
当四个输入端中有三个或四个为“1”时,输出端才为“1”。
由卡诺图得出逻辑表达式,并演化成“与非”的形式
Z=ABC+BCD+ACD+ABD
根据逻辑表达式画出用“与非门”构成的逻辑电路如图2-2所示。
图2-2 表决电路逻辑图
三、实验设备与器件
1、数字电路试验箱
2、74LS00 74LS20 CC4030(74LS86)
四、实验内容
1、验证表决电路的逻辑功能,画出其真值表。
2、设计用与非门及用异或门组成的半加器电路。
3、设计一个一位全加器,要求用异或门及与非门组成。
五、实验报告
1、列写实验任务的设计过程,画出设计的电路图。
2、对所设计的电路进行实验测试,记录测试结果。
组合逻辑电路的设计与测试实验
文章标题:深度探析:组合逻辑电路的设计与测试实验1. 前言组合逻辑电路是数字电路中的重要组成部分,它在计算机领域、通信领域、工业控制等领域都有着广泛的应用。
在本文中,我们将深入探讨组合逻辑电路的设计与测试实验,旨在帮助读者更深入地理解这一主题。
2. 组合逻辑电路的基本原理组合逻辑电路由多个逻辑门按照一定的逻辑功能组成,并且没有存储功能。
其输入变量的取值和逻辑门的连接方式确定了输出变量的取值。
在组合逻辑电路中,常见的逻辑门包括与门、或门、非门等。
通过这些逻辑门的组合,可以实现各种复杂的逻辑功能。
3. 组合逻辑电路的设计方法(1)真值表法:通过列出输入变量的所有可能取值,计算输出的取值,得到真值表。
然后根据真值表来设计逻辑门的连接方式。
(2)卡诺图法:将真值表中的1和0用图形方式表示出来,然后通过化简操作,得到最简的逻辑表达式。
(3)逻辑代数法:利用逻辑代数的基本定理,将逻辑函数化简到最简形式。
4. 组合逻辑电路的测试实验组合逻辑电路的测试实验是为了验证设计的电路是否符合设计要求和功能。
常用的测试方法包括输入端给定法、输出端测量法、故障诊断法等。
在进行测试实验时,需要注意测试的充分性和有效性,避免遗漏潜在的故障。
5. 个人观点和理解组合逻辑电路的设计与测试实验是数字电路课程中非常重要的一部分,它不仅需要对逻辑门的基本原理有深入的理解,还需要具备灵活运用逻辑门的能力。
测试实验则是验证设计是否符合要求,是课程中的一次实际应用练习。
6. 总结与回顾通过本文的探讨,我们更深入地了解了组合逻辑电路的设计与测试实验。
通过对其基本原理和设计方法的分析,我们可以更好地掌握其设计和实验的要点。
在参与实验的过程中,我们也能够理解数字电路理论知识的实际应用。
结语组合逻辑电路的设计与测试实验是一门充满挑战的学科,通过不断地学习和实践,我们可以逐步掌握其中的精髓,为将来的应用打下坚实的基础。
在此,我希望读者能够在实践中不断提升自己,探索数字电路领域更多的精彩,期待你也能在这片领域中取得更多的成就。
组合逻辑电路的实验报告
一、实验目的1. 理解组合逻辑电路的基本概念和组成。
2. 掌握组合逻辑电路的设计方法。
3. 学会使用基本逻辑门电路构建组合逻辑电路。
4. 验证组合逻辑电路的功能,并分析其输出特性。
二、实验原理组合逻辑电路是一种数字电路,其输出仅取决于当前的输入,而与电路的先前状态无关。
它主要由与门、或门、非门等基本逻辑门组成。
组合逻辑电路的设计通常遵循以下步骤:1. 确定逻辑功能:根据实际需求,确定电路应实现的逻辑功能。
2. 设计逻辑表达式:根据逻辑功能,设计相应的逻辑表达式。
3. 选择逻辑门电路:根据逻辑表达式,选择合适的逻辑门电路进行搭建。
4. 搭建电路并进行测试:将逻辑门电路搭建成完整的电路,并进行测试,验证其功能。
三、实验设备1. 逻辑门电路芯片:与门、或门、非门等。
2. 连接导线。
3. 逻辑分析仪。
4. 电源。
四、实验内容及步骤1. 设计逻辑表达式以一个简单的组合逻辑电路为例,设计一个4位二进制加法器。
设输入为两个4位二进制数A3A2A1A0和B3B2B1B0,输出为和S3S2S1S0和进位C。
根据二进制加法原理,可以得到以下逻辑表达式:- S3 = A3B3 + A3'B3B2 + A3'B3'B2A2 + A3'B3'B2'B2A1 + A3'B3'B2'B2'B1A0- S2 = A2B2 + A2'B2B1 + A2'B2'B1B0 + A2'B2'B1'B0A0- S1 = A1B1 + A1'B1B0 + A1'B1'B0A0- S0 = A0B0 + A0'B0- C = A3B3 + A3'B3B2 + A3'B3'B2A2 + A3'B3'B2'B2A1 + A3'B3'B2'B2'B1A0 + A2B2 + A2'B2B1 + A2'B2'B1B0 + A2'B2'B1'B0A0 + A1B1 + A1'B1B0 +A1'B1'B0A0 + A0B0 + A0'B02. 选择逻辑门电路根据上述逻辑表达式,选择合适的逻辑门电路进行搭建。
组合逻辑电路分析
实验名称组合逻辑电路分析、设计与测试一、实验目的1.掌握组合逻辑电路的分析与测试方法;2.掌握用门电路设计组合逻辑电路的方法。
二、实验原理1.组合逻辑电路的分析与测试组合逻辑电路是最常见的逻辑电路,即通过基本的门电路(比如与门,与非门,或门,或非门等)来组合成具有一定功能的逻辑电路。
组合逻辑电路的分析,就是根据给定的逻辑电路,写出其输入与输出之间的逻辑函数表达式,或者列出真值表,从而确定该电路的逻辑功能。
组合逻辑电路的测试,就运用实验设备和仪器,搭建出实验电路,测试输入信号和输出信号是否符合理论分析出来的逻辑关系,从而验证该电路的逻辑功能。
组合逻辑电路的分析与测试的步骤通常是:(1)根据给定的组合逻辑电路图,列出输入量和中间量、输出量的逻辑表达式;(2)根据所得的逻辑式列出相应的真值表或者卡诺图;(3)根据真值表分析出组合逻辑电路的逻辑功能;(4)运用实验设备和器件搭建出该电路,测试其逻辑功能。
2.组合逻辑电路的设计与测试组合逻辑电路的设计与测试,就是根据设计的功能要求,列出输入量与输出量之间的真值表,通过化简获得输入量与输出量之间的逻辑表达式,然后根据逻辑表达式用相应的门电路设计该组合逻辑电路,然后运用实验设备与器件搭建实验电路,测试该电路是否符合设计要求。
组合逻辑电路的设计与测试的步骤通常是:(1)根据设计的功能要求,列出真值表或者卡诺图;(2)化简逻辑函数,得到最简的逻辑表达式;(3)根据最简的逻辑表达式,画出逻辑电路;(4)搭建实验电路,测试所设计的电路是否满足要求。
三、预习要求1.阅读理论教材上有关组合逻辑电路的分析与综合以及半加器等章节内容,以达到明确实验内容的目的。
2.查阅附录有关芯片管脚定义和相关的预备材料。
四、实验设备与仪器1.数字电路实验箱;2.芯片74LS00;74LS20。
五、实验内容1.半加器逻辑电路的分析与测试SC图5.5.1 半加器的逻辑电路(1) 根据图5.5.1写出中间量(1Z 、2Z 和3Z )和输出量(S 和C )关于输入量(A 和B )的逻辑表达式。
组合逻辑电路的分析
数字电子技术基础
9
竞争-冒险现象
两个输入信号同时向相反的逻辑电平跳变,
输出端可能会产生尖峰脉冲。
检测
存在 = + ′ 或 = · ′
如 = + ′ 令 = =
消除
修改逻辑设计: = + ′ +
计算机系
数字电子技术基础
(4)由真值表分析电路的逻辑功能。
计算机系
数字电子技术基础
6
实例
例1 分析图1所示电路的逻辑功能。
Bˊ
(AB ˊ) ˊ
((AˊB) ˊ(ABˊ) ˊ) ˊ
Aˊ
SH
(AˊB) ˊ
A
B
((AB) ˊ) ˊ
(AB) ˊ
CH
图1 组合逻辑电路
计算机系
数字电子技术基础
7
实例
(1)输出端的逻辑函数式
S H ((A B ) • (AB ) )
10
课堂练习
分析图2所示电路的逻辑功能。
A
B
C
Y
图2
计算机系
数字电子技术基础
11
组合逻辑电路的分析
计算机系
数字电子技术基础
1
回顾
门电路:
Y=AB
计算机系
Y=A+B
数字电子技术基础
Y=A′
2
回顾
门电路:
计算机系
数字电子技术基础
3
组合逻辑电路的特点:
任意时刻的输出仅仅取决于该时刻的输入,
与电路原来的状态无关。
功能特点:无记忆作用,输出只取决于当
前输入,与电路过去的状态无关。
C H ((AB ) )
电工电子技术课程标准(两学期共176学时)
《电工电子技术》课程标准课程编码:课程类别:专业核心课程适用专业:工业机器人与自动化应用技术方向专业授课单位:学时:176学时(分两学期实施,第一学期理64+实训30学时,第二学期理52+实训30学时)编写执笔人及编写日期:审定负责人及审定日期:1.课程性质和任务课程的性质:本课程是工业机器人与自动化应用技术方向专业核心课程,是校企合作开发的基于工作过程课程。
课程的作用:《电工电子技术》是机电一体化的专业基础课程之一。
内容包括电路的基本知识、电路的过渡过程、正弦交流电路、磁路和变压器、异步电动机及其控制等内容。
也是工业机器人与自动化应用技术方向专业的基础课程。
在这基础上,学生才能继续学习后续的课程。
后续的课程包括电机与电气技术、PLC应用技术、电气工程制图、电气控制系统设计及装调、工业机器人自动线系统设计及典型应用等。
2.职业行动领域(典型工作任务)描述本专业毕业生主要面向设备生产企业及工业生产、经营单位企业。
从事一般自动化装备的设计、装配、调试、检测或维修工作。
以及自动化产品、元器件的采购和销售工作。
分析岗位群对电工电子基础课程相关内容的要求确立课程的内容知识点。
在教学中要根据高职学生的知识基础及就业岗位需求组织教学内容,同时采取适宜的教学方法,教、学、做一体化,注重理论与实践的融合,从而提高学生分析问题和解决问题的能力。
进一步提高学生综合素质,增强适应职业变化的能力。
培养工业机器人从业人员所需的职业技能为课程最终目标。
机器人及工业自动化行业对自控从业人员技能要求是:能对设备进行配电的设计、制造及调试,能正确及灵活选用各种类型传感器及周边配套件,能对工业机器人工作站进行配套集成并安装调试。
工业设备讲究安全可靠,对于高职毕业从业者,所需要重点培养的能力是设备集成设计、安装及调试能力而非线路板等基础板的设计开发能力,所以课程目标的重心偏向电工技术兼顾电子技术。
掌握电工技术,使学生能正确配电;兼顾电子技术,使学生能正确理解周边配件的特性及性能指标,才能正确选用正确的传感元件。
组合逻辑电路分析与设计实验报告
实验二组合逻辑电路分析与设计一、实验目的1.掌握组合逻辑电路的分析方式与测试方式;2.掌握组合逻辑电路的设计方式。
二、实验预习要求1.熟悉门电路工作原理及相应的逻辑表达式;2.熟悉数字集成电路的引脚位置及引脚用途;3.预习组合逻辑电路的分析与设计步骤。
三、实验原理通常,逻辑电路可分为组合逻辑电路和时序逻辑电路两大类。
电路在任何时刻,输出状态只决定于同一时刻各输入状态的组合,而与先前的状态无关的逻辑电路称为组合逻辑电路。
1.组合逻辑电路的分析进程,一般分为如下三步进行:(1)由逻辑图写出输出端的逻辑表达式;(2)画出真值表;(3)按照对真值表进行分析,肯定电路功能。
2.组合逻辑电路的一般设计进程为图实验所示。
设计进程中,“最简”是指电路所用器件最少,器件的种类最少,而且器件之间的连线也最少。
图实验组合逻辑电路设计方框图四、实验仪器设备1.TPE-ADⅡ实验箱(+5V电源,单脉冲源,持续脉冲源,逻辑电平开关,LED显示,面包板数码管等)1台;2. 四两输入集成与非门74LS00 2片; 3. 四两输入集成异或门74LS86 1片; 4. 两四输入集成与非门74LS20 3片。
五、实验内容及方式1.分析、测试74LS00组成的半加器的逻辑功能。
(1)用74LS00组成半加器,如图实验所示电路,写出逻辑表达式并化简,验证逻辑关系。
按照图实验所示电路,可得出逻辑表达式为: 进位: 和:(2)列出真值表。
真值表如下:AB S iC i+1 0 0 0 0 0 1 1 0 1 0 1 0 111(3)分析、测试用异或门74LS86与74LS00组成的半加器的逻辑功能,自己画出电路,将测试结果填入自拟表格中,并验证逻辑关系。
图实验 由与非门组成的半加器电路2.分析、测试全加器电路,设计用74LS86和74LS00组成全加器电路,用异或门、与门和或门组成的全加器如图实验所示,将测试结果填于真值表内,验证其逻辑关系。
组合逻辑电路分析与测试实验报告
组合逻辑电路分析与测试实验报告实验二组合逻辑电路分析与测试一、实验目的1(掌握组合逻辑电路的分析方法。
2(验证半加器和全加器电路的逻辑功能。
3(了解两个二进制数求和运算的规律。
4(学会数字电子线路故障检测的一般方法。
二、实验原理1(分析逻辑电路的方法:根据逻辑电路图---写出逻辑表达式---化简逻辑表达式(公式法、卡诺图法)---画出逻辑真值表---分析得出逻辑电路解决的实际问题(逻辑功能)。
2(实验线路(1)用与非门组成的半加器,如图4-4-1所示。
&X2 A&&X1Sn&X3B&Cn图4-4-1 与非门组成的半加器(2)用异或门组成的半加器,如图4-4-2所示。
=1 ASn B&&Cn图4-4-2 异或门组成的半加器(3)用与非门、与或非门和异或门组成的全加器,如图4-4-,所示:3(集成块管脚排列图见附录三、实验仪器及器材,(数字实验箱 ,(集成块74LS00,(集成块74LS54 ,(集成块74LS86,(万用表 6(,5V直流电源=1 Cn-1Sn=1AnB&n +Cn图4-4-3 与非门、与或非门和异或门组成的全加器四、实验内容及步骤,(检查所用集成块的好坏。
,(测试用与非门组成的半加器的逻辑功能。
(1)按图4-4-1接线,先写出其逻辑表达式,然后将输入端A、B接在实验箱逻辑控制开关插孔,X、X、X、S、C分别接在电平显示插孔接好线后,进行测试。
123nn(2)改变输入端A、B的逻辑状态,观察各点相应的逻辑状态,将结果填入表4-4-1中,测试完毕,切断电源,分析输出端逻辑状态是否正确。
表4-4-1输入端输出端A B X X X SC123n n0 00 11 01 1,(测试用异或门和与非门组成的半加器的逻辑功能(1)按图4-4-2接线,将输入端A、B分别接在逻辑控制开关插孔,C、S分别nn接在电平显示插孔,接好线后进行测试。
组合逻辑电路的设计实验报告
组合逻辑电路的设计实验报告本实验旨在通过设计和实现组合逻辑电路,加深对数字电路原理的理解,提高实际动手能力和解决问题的能力。
1. 实验目的。
本实验的主要目的是:1)掌握组合逻辑电路的设计原理和方法;2)了解组合逻辑电路的实际应用;3)培养实际动手能力和解决问题的能力。
2. 实验原理。
组合逻辑电路由多个逻辑门组成,根据输入信号的不同组合产生不同的输出信号。
常见的组合逻辑电路包括加法器、减法器、译码器、编码器等。
在本实验中,我们将重点学习和设计加法器和译码器。
3. 实验内容。
3.1 加法器的设计。
加法器是一种常见的组合逻辑电路,用于实现数字的加法运算。
我们将学习半加器和全加器的设计原理,并通过实际电路进行实现和验证。
3.2 译码器的设计。
译码器是将输入的数字信号转换为特定的输出信号的组合逻辑电路。
我们将学习译码器的工作原理和设计方法,设计并实现一个4-16译码器电路。
4. 实验步骤。
4.1 加法器的设计步骤。
1)了解半加器和全加器的原理和真值表;2)根据真值表,设计半加器和全加器的逻辑表达式;3)根据逻辑表达式,画出半加器和全加器的逻辑电路图;4)使用逻辑门集成电路,搭建半加器和全加器的电路;5)验证半加器和全加器的功能和正确性。
4.2 译码器的设计步骤。
1)了解译码器的原理和功能;2)根据输入和输出的关系,设计译码器的真值表;3)根据真值表,推导译码器的逻辑表达式;4)画出译码器的逻辑电路图;5)使用逻辑门集成电路,搭建译码器的电路;6)验证译码器的功能和正确性。
5. 实验结果与分析。
通过实验,我们成功设计并实现了半加器、全加器和译码器的电路。
经过验证,这些电路均能正常工作,并能正确输出预期的结果。
实验结果表明,我们掌握了组合逻辑电路的设计原理和方法,提高了实际动手能力和解决问题的能力。
6. 实验总结。
通过本次实验,我们深入学习了组合逻辑电路的设计原理和方法,掌握了加法器和译码器的设计和实现技术。
组合逻辑电路的分析和设计方法
R
A
G
Z
根据题意可列出真值表
例4.2.2的逻辑真值表
R 0 0 0 0 1 1 1 1
A 0 0 1 1 0 0 1 1
G 0 1 0 1 0 1 0 1
Z
2.逻辑函数式
0
0
0
3.选定器件类型为小规模集成门电路。
转换为与非-与非式
化简逻辑函数。
5.画出逻辑电路图。
分析下图电路的逻辑功能,指出其用途。
例:
三个输入变量A、B、CI
两个输出变量S、CO
①列写输出变量函数表达式
解: 写出函数最简表达式 列出逻辑真值表
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
④电路的逻辑功能
A 0 0 0 0 1 1 1 1
输出与输入之间的逻辑关系可表示为:
或写成向量的形式:
输入变量
输出变量
组合逻辑 电路
组合逻辑电路的框图
…
…
结构上特点:不含记忆(存储)元件
组合逻辑电路的分析方法和设计方法
组合逻辑电路的分析方法
组合逻辑电路的设计方法
组合逻辑电路的分析方法
逻辑电路图 逻辑函数式 最简 表达式 化简 从输入到输出逐级写出 给定逻辑电路图,通过分析找出电路的逻辑功能 分析步骤: 例如:
例4.2.2的逻辑图之一
用与-非门和反相器实现
例4.2.2的逻辑图之二
设计实现上述功能的逻辑电路。
灯亮为1,
每室分别装有A、B、C、D四个呼唤按钮,按下为1,
医院有1,2,3,4四间病室,
呼唤按钮优先级别由高到低依次为A、B、C、D,
组合逻辑电路的设计实验报告
组合逻辑电路的设计实验报告摘要:本次实验以组合逻辑电路的设计为主题,通过使用门电路和逻辑元件,构建和测试了一个复杂的逻辑电路。
实验结果表明,我们成功地设计出了一个功能稳定、正确运行的组合逻辑电路。
本实验的目的是培养学生对于数字逻辑和组合电路设计的理解能力,提高学生的实践能力和创新意识。
一、引言组合逻辑电路是由多个门电路和逻辑元件组成的数字电路。
设计和实现一个功能稳定、正确运行的组合逻辑电路对于电子工程专业的学生来说是至关重要的。
本实验通过组合逻辑电路的设计和实验,旨在加深学生对逻辑电路设计原理的理解,提高他们的实践能力。
二、实验材料和方法1.实验材料:门电路芯片、逻辑元件、电源、示波器、电路板等。
2.实验方法:(1)根据实验要求,准备所需的材料和工具。
(2)根据设计要求和逻辑关系,选择合适的门电路芯片和逻辑元件进行组合。
(3)按照设计图纸,将电路连接好,确保每个元件的引脚正确连接。
(4)将电源接入电路板,同时将示波器连接至所需的信号端口。
(5)打开电源,观察示波器上的信号输出情况,检查电路的运行状态。
(6)记录实验结果和观察到的现象。
三、实验结果我们设计的组合逻辑电路是一个基于门电路实现的计数器电路。
电路由多个与门、或门和触发器构成,通过时钟信号进行计数。
实验中,我们观察到电路的输出信号在时钟脉冲信号的驱动下能够正确计数,并在达到特定计数值后正确地复位。
通过实验,我们成功地设计出了一个功能稳定、正确运行的组合逻辑电路。
在测试过程中,我们对电路进行了多次测试和调试,确保了电路的稳定性和正确性。
四、实验分析通过本次实验,我们巩固了对组合逻辑电路设计原理的理解。
我们深入了解了与门、或门、触发器等逻辑元件的原理和功能,并通过实践掌握了它们的用法和连接方式。
在实验的过程中,我们遇到了一些困难和问题。
例如,当连接电路时,我们发现几个引脚的连接不正确,导致电路无法正常工作。
通过仔细检查和调试,我们最终找到了问题的原因并解决了它。
组合逻辑电路分析与设计实验报告
一、页组合逻辑电路分析与设计实验报告二、目录1.页2.目录3.摘要4.背景和现状分析4.1逻辑电路的基础概念4.2组合逻辑电路的应用领域4.3当前组合逻辑电路设计的挑战5.项目目标5.1实验目的和预期成果5.2技术和方法论5.3创新点和实际应用6.章节一:逻辑门和基本组合电路7.章节二:组合逻辑电路的设计方法8.章节三:实验操作和数据分析9.章节四:实验结果和讨论10.结论与建议三、摘要四、背景和现状分析4.1逻辑电路的基础概念逻辑电路是数字电路的基本组成部分,它们执行基本的逻辑运算,如与、或、非等。
组合逻辑电路(CLC)是由多个逻辑门组成的电路,其输出仅取决于当前输入的组合,而与电路以前的状态无关。
这种电路广泛应用于各种电子设备中,从计算机处理器到简单的电子玩具。
4.2组合逻辑电路的应用领域组合逻辑电路在现代技术中扮演着关键角色。
它们是计算机处理器、数字信号处理器、通信设备和其他许多电子系统的基础。
随着技术的进步,组合逻辑电路的设计和应用也在不断扩展,例如在、物联网和高速通信领域。
4.3当前组合逻辑电路设计的挑战尽管组合逻辑电路的设计原理相对简单,但在实际应用中面临着一系列挑战。
这些挑战包括提高电路的速度和效率、减少能耗、以及设计更复杂的逻辑功能。
随着集成电路尺寸的不断缩小,量子效应和热效应也对电路的设计和性能提出了新的挑战。
五、项目目标5.1实验目的和预期成果本实验的主要目的是深入理解和掌握组合逻辑电路的设计原理和实验方法。
预期成果包括成功设计和实现一个具有特定功能的组合逻辑电路,并对其进行性能分析。
5.2技术和方法论实验将采用现代电子设计自动化(EDA)工具进行电路设计和仿真。
实验方法将包括理论分析、电路设计、仿真测试和性能评估。
5.3创新点和实际应用本实验的创新点在于探索新的设计方法和优化技术,以提高组合逻辑电路的性能和效率。
实验成果将有望应用于实际电子产品的设计和开发,特别是在需要高性能和低功耗的场合。
组合逻辑电路的分析
*
3.5.1 产生竞争冒险的原因
竞争:G2的两输入信号分别由G1和A端两个路径在不同时刻到达的现象。 冒险:由竞争而产生输出干扰脉冲的现象。
*
*
进一步分析产生竞争冒险的原因: 冒险现象出现的原因:当电路中存在反相器产生的互补信号,且在互补信号的状态发生变化时可能出现冒险现象。
*
*
3.5.2 消去竞争冒险的方法
0
1
1
0
1
1
0
1
1
1
0
0
1
0
1
1
1
0
1
1
0
1
0
1
0
1
0
0
0
0
0
0
0
C
B
A
(3)分析功能:为三位数奇偶校验电路。
*
*
式中: 画波形图进行分析:根据输入波形,逐级画出输出波形;根据输入、输出波形关系确定电路功能。
*
*
分析所示逻辑电路的功能。
解: 据逻辑图写出逻辑表达式,并化简
*
*
(2)列真值表
(3)分析功能: 符合二进制相加原则,A、B为两加数,S为和,C为高位进位;该电路为运算器中的半加器。
1
0
0
1
0
0
0
1
0
×
1
0
0
0
1
×
×
1
0
0
0
0
0
0
L2
L1
L0
I2
I1
I0
输 出
输 入
*
*
1
0
0
1
0
组合逻辑电路的分析与测试
组合逻辑电路的分析与测试
一、实验目的
1.掌握组合逻辑电路的功能测试。
0
1
0
1
1
1
1
2.测试用异或门(74LS86)和与非门组成的半加器的逻辑功能。
根据半加器的逻辑表达式可知,半加器Y是A、B的异或,而进位Z是A、B相与,故半加器可用一个集成异或门和二个与非门组成如图8-2-1-.2。
(1)在学习机上用异或门和与门接成以上电路,A、B接电平开关S,Y、Z接电平显示。
(2)按表8-2-1-2要求改变A、B状态,填表。
(2)图中A、B、C接电平开关,Y1,Y2接发光管电平显示。
(3)按表8-2-1-1要求,改变A、B、C的状态填表并写出Y1,Y2逻辑表达式。
= + B
=
(4)将运算结果与实验比较。
表8-2-1-1逻辑功能测试表
输入
输出
A
B
C
Y1
Y2
0
0
0
1
1
1
1
0
0
0
1
1
1ห้องสมุดไป่ตู้
0
0
1
0
1
1
1
0
0
1
0
0
0
0
1
1
1
1
0
1
1
1
0
0
1
表8-2-1-4全加器真值表
组合逻辑电路实验分析
实验四组合逻辑电路实验分析一、实验目的1.掌握组合逻辑电路的分析方法与测试方法;2.了解组合电路的冒险现象及消除方法;3.验证半加器、全加器的逻辑功能。
二、预习要求1.复习组合逻辑电路的分析方法;2.复习用与非门和异或门等构成的半加器、全加器的工作原理;3.复习组合电路冒险现象(险象)的种类、产生原因,如何消除?三、实验原理1.组合逻辑电路由很多常用的门电路组合在一起,实现某种功能的电路,它在任意时刻的输出,仅取决于该时刻输入信号的逻辑取值,而与信号作用前电路原来的状态无关。
2.组合逻辑电路的分析是指根据所给的逻辑电路,写出其输入与输出之间的逻辑函数表达式或真值表,从而确定该电路的逻辑功能。
其分析步骤为:3.组合电路的冒险现象(1)实际情况下,由于器件的延时效应,在一个组合电路中,输入信号发生变化时,输出出现瞬时错误的现象,把这现象叫做组合电路中的冒险现象,简称险象。
这里研究静态险象,即电路达到稳定时,出现的险象。
可分为0型静态险象(如图4-1)和1型静态险象(如图4-2):图4-1 0型静态险象其输出函数Y=A+A,在电路达到稳定时,即静态时,输出Y总是1。
然而在输入A变化时,输出Y的某些瞬间会出现0,Y出现窄脉冲,存在有静态0型险象。
图4-2 1型静态险象其输出函数Y=A+A,在电路达到稳定时,即静态时,输出Y总是O。
然而在输入A变化时,在输出Y的某些瞬间会出现1,Y出现窄脉冲,存在有静态1型险象。
(2)进一步研究得知,对于任何复杂的组合逻辑电路,只要能成为A+A或A A的形式,必然存在险象。
为了消除险象,通常用增加校正项的方法,如果表达式中出现A+A形式的电路,校正项为被赋值各变量的“乘积项”;表达式中出现A A形式的电路,校正项为被赋值各变量的“和项”。
例如:逻辑电路的表达式为Y=A B+AC;当B=C=1时,Y=A+A,Y正常情况下,稳定后应输出1,但实际中出现了0型静态险象。
这时可以添加校正项BC,则Y A B+AC+ BC=A+A+1=1,从而消除了险象。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7.2.1组合逻辑电路的分析与测试
一、实验目的
1.掌握组合逻辑电路的功能测试方法。
2.验证半加器和全加器的逻辑功能。
3 学会二进制数的运算规律。
二、实验仪器及材料
器件
74LS00 二输入端四与非门2片
74L86 二输入端四异或门1片
74LS54 四组输入与或非门1片
三、实验内容
1.组合逻辑功能测试
(1) 用两片74LS00组成图2.1所示的逻辑电路。
(2)A、B、C接开关电平,Y1、Y2接发光二极管电平显示。
(3)按表7-9要求,改变A、B、C的状态并填表,写出Y1、Y2表达式。
表7-9
输入输出
A B C Y1Y2
000
001
010
011
100
2.测试用异或门(74LS86)和与非门组成的半加器的逻辑功能 (1)按表7-10要求改变A 、B 状态,填表。
3. 测
试全加器的功能 (1) 写出下列逻辑表达式。
(2)根据逻辑表达式列真值表
S i =
图7-21 全加和输出卡诺图
i 图7-21 全
加和输出卡诺图
表2.3
【关闭窗口】。