有理数混合运算法则
有理数混合运算的方法技巧
有理数混合运算的方法技巧一、有理数混合运算的原则有理数的混合运算的关键是运算的顺序,为此,必须进一步对加,减,乘,除,乘方运算法则和性质的理解与强化,熟练掌握,始终遵循四个方面:一是运算法则,二是运算律,三是运算顺序,四是近似计算,为了提高运算速度,要灵活运用运算律,还要能创造条件利用运算律,如拆数,移动小数点等,对于复杂的有理数运算,要善于观察,分析,类比与联想,从中找出规律,再运用运算律进行计算.二、理解运算顺序有理数混合运算的运算顺序:①从高级到低级:先算乘方,再算乘除,最后算加减;有理数的混合运算涉及多种运算,确定合理的运算顺序是正确解题的关键例1:3+50÷22×(51-)-1解:原式=3+50÷4×(51-)-1············(先算乘方) =15141503-⎪⎪⎭⎫ ⎝⎛-⨯⨯+···············(化除为乘) =21125315141503-=--=-⨯⨯-···(先定符号,再算绝对值) ②从内向外:如果有括号,就先算小括号里的,再算中括号里的,最后算大括号里的.例2:计算:()[]232315.011--⨯⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⨯-- 解原式[]926111-⨯⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛--=[]926111-⨯⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛--=()()677617651-=-⨯=-⨯⎪⎪⎭⎫ ⎝⎛- 也可这样来算:解原式==()926111-⨯⎪⎪⎭⎫ ⎝⎛+-=()67761-=-⨯。
③从左向右:同级⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛-÷⎪⎪⎭⎫ ⎝⎛--388712787431运算,按照从左至右的顺序进行;例3:计算: 解⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛-÷⎪⎪⎭⎫ ⎝⎛--3887241424212442原式==⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-⨯3878247=33831-=--。
有理数混合运算总结
1.运算规则:
加法规则:同号两数相加,取与它们相同的符号,再把绝对值相加
异号两数相加,取绝对值较大数的符号,再把绝对值相减
减法法则:减去一个数,等于加上这个数的相反数
乘法法则:两数相乘,同号为正,异号为负
多个有理数相乘,先确定负数的个数,有奇数个为负,偶数个为正,再把绝对值相乘
除法法则:除以一个数,等于乘以这个数的倒数
2.注意点:
加减:
把减法统一变成加法在进行运算
在加法运算中,把正数放在一起相加,负数放在一起相加,然后再把结局相加有理数的混合运算
有理数混合运算的运算顺序规定如下:
例
=-7+(-5)+(-4)+10
=-16+10
=-6
而在碰到特殊情况时,需改变方法
乘除:
先确定符号,再把假分数都化成带分数,小数化成分数进行运算例
3.简便运算
4.应用
5.规律题运算。
有理数乘除混合运算
有理数乘除混合运算
有理数乘除混合运算是指在计算过程中既有乘法,又有除法的运算。
为了保证计算的准确性,需要遵循一定的运算规则。
下面是有理数乘除混合运算的规则:
1. 先进行乘法运算,再进行除法运算。
2. 如果表达式中存在括号,先计算括号内的乘除法运算。
3. 如果有连续的乘除法,从左往右依次进行运算。
4. 乘法和除法的优先级高于加法和减法,即先计算乘除法,再计算加减法。
5. 乘法法则:两个有理数的乘积等于它们的绝对值相乘,符号取决于其符号的乘法规则(正正得正,正负得负,负负得正)。
6. 除法法则:两个有理数的除法等于第一个有理数乘以第二个有理数的倒数,即被除数乘以除数的倒数。
7. 如果分母为0,则运算结果为无穷大或不存在。
需要注意的是,在进行除法运算时,需要注意分母不能为0,
否则运算结果为无穷大或不存在。
以下是一些例子:
1. 2/3 × 4/5 ÷ (1/2) = (2/3) × (4/5) ÷ (1/2) = 8/15 ÷ 1/2 = (8/15) ×(2/1) = 16/15
2. 5/6 × (2/3 ÷ 1/4) = 5/6 × (2/3) ÷ (1/4) = (5/6) × (2/3) ÷ (1/4) =
10/18 ÷ 1/4 = (10/18) × (4/1) = 20/18 = 10/9。
有理数混合运算(6种题型)(解析版)
有理数混合运算(6种题型)会进行有理数的混合运算,合理应用运算律,进行简便运算.一.有理数的混合运算(1)有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.(2)进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.【规律方法】有理数混合运算的四种运算技巧1.转化法:一是将除法转化为乘法,二是将乘方转化为乘法,三是在乘除混合运算中,通常将小数转化为分数进行约分计算.2.凑整法:在加减混合运算中,通常将和为零的两个数,分母相同的两个数,和为整数的两个数,乘积为整数的两个数分别结合为一组求解.3.分拆法:先将带分数分拆成一个整数与一个真分数的和的形式,然后进行计算.4.巧用运算律:在计算中巧妙运用加法运算律或乘法运算律往往使计算更简便.二.计算器—基础知识(1)计算器的面板是由键盘和显示器组成.(2)开机键和关机键各是AC/ON,OFF,在使用计算器时要按AC/ON键,停止使用时要按OFF键.(3)显示器是用来显示计算时输入的数据和计算结果的装置.键上的功能是第一功能,直接输入,下面对应的是第二功能,需要切换成才能使用.(4)开方运算按用到乘方运算键x2的第二功能键”和的第二功能键“”.(5)对于开平方运算的按键顺序是:2ndfx2被开方数ENTE.(6)对于开立方运算的按键顺序是:32ndf∧被开方数ENTE.(7)部分标准型具备数字存储功能,它包括四个按键:MRC、M﹣、M+、MU.键入数字后,按M+将数字读入内存,此后无论进行多少步运算,只要按一次MRC即可读取先前存储的数字,按下M﹣则把该数字从内存中删除,或者按二次MRC.注意:由于计算器的类型不一样操作方式也不尽相同,可以参考说明书进行操作.三.计算器—有理数计算器包括标准型和科学型两种,其中科学型使用方法如下: (1)键入数字时,按下相应的数字键,如果按错可用(DEL )键消去一次数值,再重新输入正确的数字. (2)直接输入数字后,按下对应的功能键,进行第一功能相应的计算.(3)按下(﹣)键可输入负数,即先输入(﹣)号再输入数值.(4)开方运算按用到乘方运算键x 2的第二功能键”和的第二功能键“”.(5)对于开平方运算的按键顺序是:2ndfx 2被开方数ENTE 或直接按键,再输入数字后按“=”即可.(6)对于开立方运算的按键顺序是:32ndf ∧被开方数ENTE 或直接按x 3,再输入数字后按“=”即可 注意:由于计算器的类型不一样操作方式也不尽相同,可以参考说明书进行操作.题型一:有理数四则混合运算一、填空题1.(2022秋·江苏无锡·七年级统考期中)定义一种新运算:x y x y xy =+−★,则计算()32−=★___________.【答案】5【详解】解:∵x y x y xy =+−★,∴()()3232323265−=−+−−⨯=−++=★,故答案为:5【点睛】本题考查了新运算和有理数的混合运算,理解新运算的定义是解题的关键.二、解答题 2.(2022秋·江苏徐州·七年级校考阶段练习)计算(1)13251216−+−(2)()()()0510037÷−⨯+−÷−(3)()()()25549−⨯−÷−+【答案】(1)16− (2)37(3)47(4)1−【分析】(1)原式结合后,相加即可求出值;(2)原式先算乘除运算,再算加减运算即可求出值;(3)原式先算乘除运算,再算加法运算即可求出值;(4)原式利用减法法则变形,结合后相加即可求出值.【详解】(1)原式()1312251616=+−−=−; (2)原式33077=+=;(3)原式24947=−+=;(4)原式223331212113344=−++−=−+=−.【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.【答案】(1)24−(2)14 【分析】(1)利用乘法分配律进行计算即可;(2)先计算乘除法,再计算加减法即可.【详解】(1)解:1336124⎛⎫⨯− ⎪⎝⎭ 133636124⎛⎫=⨯+⨯− ⎪⎝⎭327=−24=−(2)()()18632−÷−⨯−()118623⎛⎫=−⨯−⨯− ⎪⎝⎭184=−14=【点睛】此题考查了有理数的混合运算,熟练掌握运算法则和运算律是解题的关键.【答案】(1)5−(2)11−(3)1179919− (4)6−(5)81(6)75=【分析】(1)根据有理数加法的运算律,同分母的相结合,能凑整的相结合,再进行计算.(2)运用乘法分配律进行计算即可.(3)将原式写成1(100)(18)19−⨯−,再根据乘法分配律进行计算即可. (4)倒用乘法分配律+ab ac ad a b c d +=++()进行计算即可.(5)先根据“除以一个数等于乘以它的倒数”,将除法运算变为乘法运算,再运用乘法分配律进行计算即可.(6)按照有理数混合运算法则:先乘方,再乘除,最后再加减,有括号的先算括号里边的,进行计算即可.【详解】(1)34(3)12.5(16)( 2.5)77−++−−−34(3)12.5(16) 2.577=−++−+34[(3)(16)](12.5 2.5)77=−+−++2015=−+=5−;(2)7537()(36)96418−+−⨯−75373636363696418=−⨯+⨯−⨯+⨯28302714=−+−+22714=−+2514=−+11=−;(3)18991819−⨯1(100)(18)19=−⨯−1100181819=−⨯+⨯ 18180019=−+ 1179919=−;(4)22218()134333⨯−+⨯−⨯ 22218134333=−⨯+⨯−⨯2(18134)3=−+−⨯2(9)3=−⨯ 6=−;(5)1571(3)()261236−+−÷−157(3)(36)2612=−+−⨯−1573633636362612=−⨯+⨯−⨯+⨯181083021=−+−+903021=−+6021=+81=;(6)211[(4)(0.4)]3(2)343÷−−⨯−÷⨯−−21[()0.1]33234=⨯−+⨯⨯+11()332610=−+⨯⨯+133215=−⨯⨯+325=−+75=【点睛】本题主要考查了有理数的四则混合运算,熟练掌握运算律和运算法则是解题的关键.【答案】(1)6(2)5 【详解】(1)解:()()745−−+−745=+−6=;(2)解:113(60)234⎛⎫−−+⨯− ⎪⎝⎭113(60)(60)(60)234=−⨯−−⨯−+⨯−302045=+−5=. 【点睛】本题考查有理数的加减混合运算,有理数的四则混合运算.掌握有理数的混合运算法则是解题关键.注意在解(2)时利用乘法分配律更简便.6.(2020秋·江苏徐州·七年级校考阶段练习)计算:(1)()()2317716−−−+−112019++−【答案】(1)3−(2)45.08−(3)19 30(4)1 3(5)7 4−(6)7(7)54−(8)17 60【详解】(1)解:()() 2317716−−−+−2317716 =−+−710=−3=−;(2)()()26.54 6.418.54 6.4−+−−+26.5418.54 6.4 6.4 =−−−+45.08=−;(3)3111253⎛⎫+−−+ ⎪⎝⎭ 3111253=−−+ 456301*********=−−+1930=;(4)531245⎛⎫⎛⎫−⨯− ⎪ ⎪⎝⎭⎝⎭58245=⨯ 13=;(5)172.5(8)516⎛⎫⎛⎫−⨯⨯−⨯− ⎪ ⎪⎝⎭⎝⎭15785216=−⨯⨯⨯74=−;(6)251(18)(3)29115⎛⎫⎛⎫−⨯−+−⨯−⨯ ⎪ ⎪⎝⎭⎝⎭ 15114115=+⨯43=+7=;(7)12(45)35⎡⎤⎛⎫⎛⎫−÷−÷− ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ 15(45)32⎛⎫=−÷⨯ ⎪⎝⎭5(45)6=−÷ 6(45)5=−⨯54=−;(8)111111114354652019−+−+−++−111111113445561920=−+−+−++−11320=− 2036060=−1760=.【点睛】此题考查了有理数的四则混合运算,正确掌握有理数混合运算的法则及运算顺序是解题的关键.【答案】25【分析】根据题意的算法进行运算,即可求得结果.【详解】解:原式的倒数是129314510220⎛⎫⎛⎫−−+−÷− ⎪ ⎪⎝⎭⎝⎭()12932045102⎛⎫=−−+−⨯− ⎪⎝⎭581830=+−+25=故原式125=.【点睛】本题考查了有理数的混合运算,理解题意,正确运算是解决本题的关键.8.(2022秋·江苏扬州·七年级校联考期中)定义一种新运算:观察下列各式,并解决问题.131538=⨯+=,3135116=⨯+=,5455429=⨯+=,请你想一想:43= a b = ab b a (填入()543−. 【答案】(1)23,5a b +(2)≠(3)42−【分析】(1)根据题目所给新运算的运算顺序和运算法则进行计算即可;(2)先根据题目所给新运算的运算顺序和运算法则将a b 和b a 计算出来,再用作差法比较即可;(3)根据题目所给新运算的运算顺序和运算法则进行计算即可.【详解】(1)解:4345323=⨯+=;5a b a b =+;故答案为:23,5a b +.(2)∵5a b a b =+,5b a b a =+,∴()()()()5544a b b a a b b a a b −=+−+=−,∵a b ¹,∴440a b −≠∴a b b a ≠.故答案为:≠.(3)()543−−()5453=−−⨯+ ()517=−−()5517=−⨯+− 42=−.【点睛】本题主要考查了新定义下的有理数的混合运算,解题的关键是正确理解题意,明白题中所给新定义的运算顺序和运算法则,熟练掌握有理数的混合运算顺序和运算法则.题型二:有理数四则混合运算的应用一、填空题1.(2022秋·江苏·七年级开学考试)园林公司在林州大道旁种植了120棵树,有116棵成活,后来又补栽4棵,全部成活,这124棵树苗的成活率为_____【答案】97%【分析】根据成活率等于成活数除以总数再乘以100%计算即可.【详解】解:1164100%97% 1204+⨯≈+.答:成活率是97%.故答案为:97%.【点睛】此题属于百分率问题,明确成活率是指成活的棵数占总棵数的百分之几;要注意题中的“全部成活”,是指后来又补种的4棵全部成活,而不是种的120棵全部成活.二、解答题(1)接送完第5批客人后,该驾驶员在邗江路和文昌路十字路口什么方向,距离十字路口多少千米?(2)后来他开车回到出发地,途中没有带到客人,若该出租车每千米耗油0.09升,那么在整个过程中共耗油多少升?(3)若该出租车的计价标准为:行驶路程不超过3km收费9元,超过3km的部分按每千米加1.8元收费,在整个行驶过程中,该出租车驾驶员共收到车费多少元?【答案】(1)东3千米处(2)2.16升(3)57.6元【分析】(1)求出行驶路程的代数和,利用结果的符号和数值作出判断即可;(2)求出行驶路程的绝对值的和,利用路程和乘以每千米耗油量即可得出结论;(3)分别计算接送每批客人的收费数额再相加即可得出结论.【详解】(1)∵()()347253km ++−+−+=,∴出租车在解放路和青年路十字路口东边,距离十字路口3千米;(2)∵34725324km ++−+−++=,∴240.09 2.16⨯=(升).∴在这过程中共耗油2.16升.(3)∵接送第一批客人的收费为:9元,接送第二批客人的收费为:()9 1.84310.8+⨯−=(元),接送第三批客人的收费为:()9 1.87316.2+⨯−=(元),送第四批客人的收费为:9元,接送第五批客人的收费为:()9 1.85312.6+⨯−=(元),∴910.816.2912.657.6++++=(元).所以在这过程中该出租车驾驶员共收到车费57.6元.【点睛】本题考查了正负数的意义和有理数的运算,解题关键是明确正负数的意义,能熟练运用有理数运算法则进行计算.【答案】(1)小明家这10天轿车行驶的路程为240km(2)估计小明家一个月耗电费用为162元【分析】(1)记录数字的和再加上10个25即可得到结果;(2)用(1)的结论乘以3即可得到总路程,再根据“该轿车每行驶100km耗电15度,且轿车充电的价格为每度1.5元,”列式解答即可;【详解】(1)解:()314182623210km +−+−+−+−+=−,()251010240km ⨯−=,答:小明家这10天轿车行驶的路程为240km . (2)240310015 1.5162⨯÷⨯⨯=(元),答:估计小明家一个月(按30天算)的电动轿车耗电费用为162元.【点睛】本题考查正数与负数以及有理数的加减乘除混合运算,正确列出算式并掌握相关运算法则是解答本题的关键.4.(2022秋·江苏泰州·七年级泰州市第二中学附属初中校考期中)小刚坐公交车去参加志愿者活动,他从南站上车,上车后发现车上连自己共有12人,经过A 、B 、C 、D 4个站点时,他观察到上下车情况如下(记上车为正,下车为负):()3,2A +−,()5,3B +−,()3,4C +−,()7,4D +−. (1)经过4个站点后车上还有 人;(2)小刚发现在A 、B 、C 、D 这四站上车的人中,有一半投币付费(每人2元),还有一半刷卡付费(每人1.4元),求这四站公交公司共收入多少元? 【答案】(1)17(2)这四站公交公司共收入30.6元【分析】(1(2)先求出4个站一共上车的人数,再根据这四站上车的人中,有一半投币付费(每人2元),还有一半刷卡付费(每人1.4元),进行求解即可. 【详解】(1)解:()()()()()()()()1232533474+++−+++−+++−+++−1232533474=+−+−+−+−125=+ 17=人,∴经过4个站点后车上还有17人; (2)解:353718+++=人,11218 1.41830.622⨯⨯+⨯⨯=元,∴这四站公交公司共收入30.6元,答:这四站公交公司共收入30.6元.【点睛】本题主要考查了有理数的加法的应用,有理数混合计算的应用,正确理解题意是解题的关键.(1)这20筐苹果中,最重的一筐比最轻的一筐多重千克.(2)与标准重量比较,这20筐苹果总计超过或不足多少千克?(3)若苹果每千克售价85元,则出售这20筐苹果可卖多少元?【答案】(1)5.5(2)超过8千克(3)43180元【分析】(1)根据正负数的意义确定最重的一筐和最轻的一筐,然后利用有理数减法计算法则求解即可;(2)把所给的记录相加,如果结果为正则超过标准重量,如果结果为负则不足;(3)先求出这20筐苹果的总重量,然后根据可卖的钱数=单价×重量进行求解即可.【详解】(1)解:由表格可知,最重的一筐比最轻的一筐重:()2.53 5.5−−=(千克).答:最重的一筐比最轻的一筐多重5.5千克.(2)解:由表格可得,()()()3124 1.520321 2.58−⨯+−⨯+−⨯+⨯+⨯+⨯()()()3830220=−+−+−+++8=(千克).答:与标准重量比较,20筐苹果总计超过8千克.(3)解:由题意可得,()202588543180⨯+⨯=(元),∴出售这20筐苹果可卖43180元.【点睛】本题主要考查了有理数减法的应用,有理数四则混合运算的应用,正确理解题意是解题的关键.6.(2022秋·江苏扬州·七年级校考阶段练习)思考下列问题并在横线上填上答案.(1)已知数轴上有M ,N 两点,点M 与原点的距离为2,M ,N 两点的距离为1.5,则满足条件的点N 所表示的数是__________;(2)在纸上画了一条数轴后,折叠纸面,使数轴上表示2的点与表示4−的点重合,若数轴上E ,F 两点之间的距离是10(E 在F 的左侧),且E 、F 两点经过上述折叠后重合,则点E 表示的数是__________,点F 表示的数是__________;(3)数轴上点A 表示数8,点B 表示数8−,点C 在点A 与点B 之间,点A 以每秒0.5个单位的速度向左运动,点B 以每秒1.5个单位的速度向右运动,点C 以每秒3个单位的速度先向右运动碰到点A 后立即返回向左运动,碰到点B 后又立即返回向右运动,碰到点A 后又立即返回向左运动…,三个点同时开始运动,当三个点聚于一个点时,这一点表示的数是多少?点C 在整个运动过程中,移动了多少单位? 【答案】(1)3.5或0.5或 3.5−或0.5− (2)6−,4 (3)8,4,24【分析】(1)先求出点M 所表示的数,进而即可求解; (2)先求出折痕对应的数为:-1,进而即可求解; (3)先求出A 、B 相遇时所花的时间,进而即可求解. 【详解】(1)解:∵点M 2, ∴点M 表示的数为:2±, ∵,M N 两点的距离为1.5,∴N 表示的数为:2 1.5 3.5±=或0.5;2 1.5 3.5−±=−或0.5−, 故答案是:3.5或0.5或 3.5−或0.5−;(2)∵折叠纸面,使数轴上表示2的点与表示4−的点重合, ∴折痕对应的数为:1−,∵数轴上,E F 两点之间的距离是10(E 在F 的左侧),且,E F 两点经过上述折叠后重合, ∴点E 表示的数是:156−−=−,点F 表示的数是:154−+=, 故答案是:6−,4;(3)当三个点聚于一个点时,则A 、B 相遇,运动的时间为:()()880.5 1.58+÷+=(秒),此时,这一点表示的数是:8 1.584−+⨯=,点C 在整个运动过程中,移动了:2483=⨯个单位.【点睛】本题主要考查数轴上的点所表示的数,两点间的距离,折叠的性质,掌握数轴上两点的距离等于对应的两数之差的绝对值,是解题的关键.【答案】(1)3(2)a 的值为8,点A 表示的数为2−,点B 表示的数为6 (3)72【分析】(1)根据数轴的性质列出运算式子,再计算有理数的加法即可得;(2)先根据3根木条的长度等于14与10−之间的距离可求出a 的值,再根据数轴的性质列出运算式子,计算有理数的加减法即可得;(3)先参照(2)的思路求出爷爷比小红大52岁,再利用124减去52即可得. 【详解】(1)解:由题意得:点B 表示的数为253−+=,故答案为:3.(2)解:由题意得:a 的值为()141038−−÷=⎡⎤⎣⎦, 则点A 表示的数为1082−+=−, 点B 表示的数为1486−=,即a 的值为8,点A 表示的数为2−,点B 表示的数为6.(3)解:由题意得:爷爷比小红大()12432352−−÷=⎡⎤⎣⎦(岁), 则爷爷现在的年龄为1245272−=(岁), 故答案为:72.【点睛】本题考查了数轴、有理数的加减法与除法的应用,熟练掌握数轴的性质是解题关键. 题型三:程序流程图与有理数计算一、单选题【答案】B【分析】分别将三组数据代入程序流程图运算求解即可. 【详解】解:①当7x =,2y =时x y >, 222()(72)525x y ∴−=−==;②当2x =−,=3y −时x y >,[]222()2(3)11x y ∴−=−−−==;③当4,1x y =−=−时x y <,[]222()4(1)(5)25x y ∴+=−+−=−=,∴能使输出的结果为25的有①③,故选:B .【点睛】本题主要考查了与程序流程图有关的有理数计算,有理数比较大小,正确读懂程序流程图是解题的关键.二、填空题2.(2022秋·江苏盐城·七年级校考阶段练习)如图所示是计算机某计算型序,若开始输入2x =−,则最后输出的结果是__________.【答案】14−【分析】直接利用运算程序,进而计算得出答案. 【详解】解:当2x =−时,()231615−⨯−−=−+=−,则5x =−时,()53115114−⨯−−=−+=−,故答案为:14−.【点睛】本题考查了有理数的混合运算,掌握有理数的运算法则,理解本题的运算程序是解决本题的关键. 3.(2020秋·江苏扬州·七年级校考期中)根据如图所示的程序计算,若输入x 的数值为2−,则输出的数值为______.【答案】 3.625−/538−/298−【分析】把x 的值代入程序中计算,再根据结果3<−输出即可. 【详解】解:把2x =−代入程序中计算得:()()2212⎡⎤⎣+⎦−÷−()()412=+÷−()52=÷−2.53=−>−,把 2.5x =−代入程序中计算得:()()22.512⎡+⎤⎣⎦−÷−()()6.2512=+÷−()7.252=÷−3.6253=−<−.故输出的数值为 3.625−. 故答案为: 3.625−.【点睛】此题考查了有理数的混合运算,代数式求值,熟练掌握运算法则是解本题的关键.【答案】4【分析】根据程序流程图的流程,列出算式,进行计算即可.【详解】解:输入的值为1时,由图可得:212420⨯−=−<;输入2−可得:()222440−⨯−=>;∴输出的值应为4; 故答案为:4.【点睛】本题考查程序流程图.按照流程图的流程准确的列出算式,是解题的关键.5.(2022秋·江苏淮安·七年级统考期中)如图所示是计算机程序计算,若开始输入1x =−,则最后输出的结果是___.【答案】-11【分析】读懂计算程序,把1x =−,代入,按计算程序计算,直到结果小于5−即可. 【详解】解:当输入x ,若()41x ⨯−−小于5−,即为输出的数,当1x =−时,()()()414113x ⨯−−=⨯−−−=−,3−不小于5−,因此,把3x =−再输入得,()()()4143111x ⨯−−=⨯−−−=−,11−小于5−,故答案为:11−.【点睛】本题考查实数的混合运算,掌握计算法则是关键.6.(2022秋·江苏无锡·七年级校考期中)如图是一个对于正整数x 的循环迭代的计算机程序.根据该程序指令,如果第一次输入x 的值是3时,那么第一次输出的值是10;把第一次输出的值再次输入,那么第二次输出的值是5;把第二次输出的值再次输入,那么第三次输出的值是16;以此类推得到一列输出的数为10,5,16,8,4,2,1,4,…若第五次输出的结果为1,则第一次输入的x 为 _____.【答案】32、5、4【详解】解:若第五次输出的结果为1, 则第5次输入为:2, 第4次输出为:2, 第4次输入为:4, 第3次输出为:4, 第3次输入为:8或1, 第2次输出为:8或1, 第2次输入为:16或2, 第1次输出为:16或2, 第1次输入为:32、5或4, 故答案为:32、5、4.【点睛】本题考查了有理数的混合运算,解题关键是读懂题意,寻找到数字变化的规律,利用规律解决问题.三、解答题 7.(2023秋·江苏扬州·七年级统考期末)如图,按图中的程序进行计算.(1)当输入的30x =时,输出的数为______;当输入的16x =−时,输出的数为______;(2)若输出的数为52-时,求输入的整数x 的值.【答案】(1)60−,64−;(2)26x =±或13±【分析】(1)根据图中的程进行列式计算,即可求解;(2)当输出的数为52-时,分两种情况进行讨论.【详解】(1)解:根据运算程序可知:当输入的30x =时,得:()3026045⨯−=−−<, ∴输入的30x =时,输出的数为60−;根据运算程序可知:当输入的16x =−时,得:()1623245−⨯−=−−>; 再输入32x =−,得:()3226445−⨯−=−−<,∴输入的32x =−时,输出的数为64−;故答案为:60−,64−;(2)解:当输出的数为52-时,分两种情况: 第一种情况:()252x ⨯−=−,解得:26x =±;第二种情况:当第一次计算结果为26−时,再循环一次输入的结果为52-,则()226x ⨯−=−,解得:13x =±,综上所述,输出的数为52-时,求输入的整数x 的值为:26x =±或13±. 【点睛】本题考查程序流程图与有理数的计算、绝对值,解题的关键是掌握有理数的运算法则和解绝对值方程.题型四:算“24”点一、填空题1.(2022秋·七年级单元测试)用一组数3,4,﹣4,﹣6算24点(每个数只能用一次):________.【答案】3×4×[﹣4﹣(﹣6)]=24(答案不唯一)【分析】此题只要符合题的要求,得数等于24即可,答案不唯一.【详解】解:3×4×[﹣4﹣(﹣6)]=12×(﹣4+6)=12×2=24,故答案为:3×4×[﹣4﹣(﹣6)]=24(答案不唯一).【点睛】本题主要考查有理数的混合运算,此题要注意要求的得数为24,而且每个数字只能用一次. 2.(2022秋·江苏镇江·七年级校联考阶段练习)“24点游戏”指的是将一副扑克牌中任意抽出四张,根据牌面上的数字进行混合运算(每张牌只能使用一次),使得运算结果是24或者是24−,现抽出的牌所对的数字是4,5−,3,1−,请你写出刚好凑成24的算式__________.【答案】[]34(5)1⨯−−−【分析】利用“24点游戏”的游戏规则写出算式即可.【详解】解:根据题意得:[]34(5)1⨯−−−38=⨯=24.故答案为:[]34(5)1⨯−−−(答案不唯一).【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.3.(2022秋·江苏南京·七年级南京钟英中学校考阶段练习)已知4个有理数:1,2,3,4−−−−,在这4个有理数之间用“,,,+−⨯÷”连接进行四则运算,每个数只用一次,使其结果等于24,你的算法是___________.【答案】(1)(2)(3)(4)24−⨯−⨯−⨯−=(答案不唯一)【分析】根据“24点”游戏规则列出算式即可.【详解】解:(1)(2)(3)(4)24−⨯−⨯−⨯−=故答案为:(1)(2)(3)(4)24−⨯−⨯−⨯−=(答案不唯一)【点睛】此题考查了有理数的混合运算,弄清“24点”游戏规则是解题的关键 4.(2022秋·江苏南京·七年级阶段练习)算“24点”是一种数学游戏:把所给的四个数字用运算符号(可以有括号)连接起来,使得运算结果为24,注意:每个数字只能用一次,请你用“5、5、5、1”这4个数字算“24点”,列出的算式是____.【答案】555124⨯−=(答案不唯一)【分析】解答此题应根据数的特点,四则混合运算的运算顺序,进行尝试凑数即可解决问题。
有理数混合运算
小结 今天, 我知道了…… 我学会了……
作业: 书P48-49
我掌握了……
再见!
; 管道保温工程 铁皮保温工程 子,众女眷的心情都格外舒畅。自从这各年妹妹被赐婚给爷开始,可是把风平浪静的王府搅咯壹各人仰马翻,连带着爷的心情也极为不 愉快。爷的心情不好,每壹各人都得小心翼翼,生怕自己哪里做错咯,给爷火上浇油。这种状况持续咯三各月的时间,众人的心中都憋 咯壹口气。现在可好咯,终于守得云开日见,再也没有烦人的冰凝妹妹碍眼碍事咯。惜月本姓钮钴碌氏,目前的名份是格格,于康熙四 十三年嫁进当时的四贝勒府,同时进府的,还有壹位格格--耿韵音。这两各格格是王府中极为少有的十分要好的两各后院诸人,因为 她们俩人的壹切都太相似咯!两人都是四十三年进的贝勒府,进府后的名分又都是格格。两人都是相貌平平,都是四品官员之女。四品, 是参选秀女的及格线,因此家世只是勉强过得去而已。相同的家世和背景,相同的姿色和资历,让两各人自然而然地走到咯壹起。在王 爷被册封为亲王后,就有咯晋升侧福晋的名额。李淑清专宠二十年不衰,而且王爷也是壹各格外念旧情的人,第壹各侧福晋的名额他连 想都没想,理所当然地就向内务府报上咯李氏淑清的名字。刚开始的时候,惜月还在为另外壹各侧福晋的名额而暗自筹划、积极争取, 毕竟她曾在四十七年的时候精心服侍身患重疾、病入膏肓的王爷,并最终使他转危为安。这么天大的壹各功劳,没有任何壹各诸人能够 与她相抗衡。只是还没有等她谋划成功,就传来咯皇上的赐婚圣旨。惜月当时就被气懵咯,为啥啊连争取的机会都没有给她留下?这么 早早地出局,她实在是心有不甘!眼见着晋升为侧福晋已然成为咯泡影,与其怨天尤人,不如奋发努力。惜月从来都是积极、主动、勇 敢地面对困难,百折不挠的人。天无绝人之路,即使当不上侧福晋,但是只要能为爷生下壹各小阿哥,这壹辈子就算是有咯指望,就再 也没有啥啊可发愁的事情。想在王府站稳脚跟并拥有壹席之地就是生子。可是摆在惜月面前的生子的最大障碍就是李姐姐。除咯初壹、 十五例行公事到福晋的霞光苑,爷几乎不怎么去其它女眷那里。除非是家宴,或是生病等情况,惜月见到爷的次数也是屈指可数。现实 竟然是如此的残酷!为咯自己的下半辈子,惜月必须要以破釜沉舟的勇气和胆量,去为自己筹划壹各美好的未来。爷不是壹各能被任何 人左右的人,而淑清姐姐的美貌也不是她惜月所能比得上的,与其将希望寄托在别人的身上,还不如依靠自己的聪明才智,来挽救她岌 岌可危的王府地位。春梅是惜月的大丫环,主子的心思她当然是壹清二楚。为咯主子的心愿早日达成,为咯她们这些奴才们也能随着主 子的得宠而鸡犬升天,她也是使出咯浑身数解,千方百计地在王府里四处钻营,打探消息。功夫不负苦心人,消息还
有理数混合运算
一、运算法则 (一)加法法则:
1.同号两数相加,取相同的符号,并把绝对值相加。
2.绝对值不相等的异号两数相加,取绝对值较大 的加数的符号,并用较大的绝对值减去较小的绝 对值,互为相反数的两个数相加得0。
3.一个数同0相加,仍得这个数。
(二)减法法则:
减去一个数,等于加上这个数的相反数。 a-b=a+(-b)
分配律:a ( b + c ) = a b + a c
逆用分配律: a b + a c = a ( b + c )
;宁波出海捕鱼 宁波出海捕鱼
;
,我何以摆脱猎物的命运? 一桩新闻 小女孩和家长失散了,便衣警察走过来,小朋友我送你回家吧,小女孩怒斥:“走开,骗子!”便衣很委屈,我不是骗子我是警察啊,小女孩更怕了,“骗子都说自己是警察!”便衣晃晃件,你看我是真的,小女孩撇撇嘴,朝向栏杆上的小广告,“妈妈说,最 骗人的就是件”。 一则笑话 窃贼用入室偷的钱去买烟,烟是假的。烟主乐滋滋去买水果,秤是黑的。果商替家里去买肉,肉注过水。肉贩子正数钞票,制服从天而降,罚款。城管拿罚来的钱去药店,药是过期的。药老板正准备打烊,手机响,老婆哭家里失窃 谁酝酿了这样的活法?谁制造了这样 的游戏? 谁能说服大家换个逻辑,取消饥饿的欲望和抢劫的眼神?谁来平息这场你中有我、我中有你的精神骚乱?谁替我们在垃圾上铺种花草,谁为我们娶回远去的童话? 我们如何才能安然无恙? 谁能发明一种催眠,让坏心眼一发芽即昏昏欲睡?谁能设计一种篱笆,让恶和恶、善和善单独在一 起就像幼儿园里的大小班?或学《木偶奇遇记》里的皮诺乔,一动邪念,鼻子就嗖嗖蹿出去。 童话的迷人,因为她有一个灿烂的人生公式,逻辑简单,命运可靠,前途像小蝌蚪找妈妈一样光明,晶莹就是光明。 人,何时能把自己送回去呢?还回
(完整版)有理数混合运算的解题方法和技巧
一、理解运算顺序有理数混合运算的运算顺序:①从高级到低级:先算乘方,再算乘除,最后算加减;有理数的混合运算涉及多种运算,确定合理的运算顺序是正确解题的关键.例1:计算:3+50÷22×(51-)-1 ②从内向外:如果有括号,就先算小括号里的,再算中括号里的,最后算大括号里的。
例2:计算:()[]232315.011--⨯⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⨯-- ③从左向右:同级运算,按照从左至右的顺序进行。
例3:计算:⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛-÷⎪⎪⎭⎫ ⎝⎛--388712787431 二、应用四个原则:1、整体性原则:乘除混合运算统一化乘,统一进行约分;加减混合运算按正负数分类,分别统一计算,或把带分数的整数、分数部分拆开,分别统一计算。
2、简明性原则:计算时尽量使步骤简明,能够一步计算出来的就同时算出来;运算中尽量运用简便方法,如五个运算律的运用.3、口算原则:在每一步的计算中,都尽量运用口算,口算是提高运算率的重要方法之一,习惯于口算,有助于培养反应能力和自信心。
4、分段同时性原则:对一个算式,一般可以将它分成若干小段,同时分别进行运算。
如何分段呢?主要有:(1)运算符号分段法。
有理数的基本运算有五种:加、减、乘、除和乘方,其中加减为第一级运算,乘除为第二级运算,乘方为第三级运算。
在运算中,低级运算把高级运算分成若干段。
一般以加号、减号把整个算式分成若干段,然后把每一段中的乘方、乘除的结果先计算出来,最后再算出这几个加数的和。
即(先乘方、后乘除、再加减。
)把算式进行分段,关键是在计算前要认真审题,妥用整体观察的办法,分清运算符号,确定整个式子中有几个加号、减号,再以加减号为界进行分段,这是进行有理数混合运算行之有效的方法。
(2)括号分段法,有括号的应先算括号里面的。
在实施时可同时分别对括号内外的算式进行运算.(3)绝对值符号分段法.绝对值符号除了本身的作用外,还具有括号的作用,从运算顺序的角度来说,先计算绝对值符号里面的,因此绝对值符号也可以把算式分成几段,同时进行计算。
有理数混合运算
2.有一种“二十四点”的游戏,其游戏的规则是这样的: 任取四个1至13之间的自然数,将这四个数(每个数用且 只用一次)进行加减乘除四则运算,使其结果等于24.
例如对1,2,3,4可作运算:(1+2+3)×4=24.(注意上述运 算与4×(1+2+3)应视作相同方法的运算)
现有四个有理数3,4,-6,10,运用上述规则写出三种不 同方法的运算式,使其结果等于24,运算如下:
分配律:a ( b + c ) = a b + a c
逆用分配律: a b + a c = a ( b + c )
三、运算方法
1、按运算顺序计算(有括号先算括号;无括号, 先乘除,后加减。) 2、应用运算律,适当改变运算顺序进行简便运算。
四、若a+b>0,且a·b>0,则______________; 若a+b<0,且a·b>0,则______________; 若a+b>0,且a·b<0,则______________; 若a+b<0,且a·b<0,则______________;
4 5
3
5 6
)
(3)84.5 12 4 (3 10) 5
(4)(1 2) ( 3) (0.25)
3
5
(5)(6 1 8 ) ( 6)
5 10 15
5
(6)(3
1
1) 2
3
3 4
(2
3
1) 3
1 15
七.用简便方法计算下列各题:
(1)______________;
(2)______________;
(3)______________.
有理数混合运算的解题方法和技巧
一、理解運算順序有理數混合運算の運算順序:①從高級到低級:先算乘方,再算乘除,最後算加減;有理數の混合運算涉及多種運算,確定合理の運算順序是正確解題の關鍵。
例1:計算:3+50÷22×(51-)-1 ②從內向外:如果有括號,就先算小括號裏の,再算中括號裏の,最後算大括號裏の。
例2:計算:()[]232315.011--⨯⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⨯-- ③從左向右:同級運算,按照從左至右の順序進行。
例3:計算:⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛-÷⎪⎪⎭⎫ ⎝⎛--388712787431 二、應用四個原則:1、整體性原則: 乘除混合運算統一化乘,統一進行約分;加減混合運算按正負數分類,分別統一計算,或把帶分數の整數、分數部分拆開,分別統一計算。
2、簡明性原則:計算時盡量使步驟簡明,能夠一步計算出來の就同時算出來;運算中盡量運用簡便方法,如五個運算律の運用。
3、口算原則:在每一步の計算中,都盡量運用口算,口算是提高運算率の重要方法之一,習慣於口算,有助於培養反應能力和自信心。
4、分段同時性原則: 對一個算式,一般可以將它分成若幹小段,同時分別進行運算。
如何分段呢?主要有:(1)運算符號分段法。
有理數の基本運算有五種:加、減、乘、除和乘方,其中加減為第一級運算,乘除為第二級運算,乘方為第三級運算。
在運算中,低級運算把高級運算分成若幹段。
一般以加號、減號把整個算式分成若幹段,然後把每一段中の乘方、乘除の結果先計算出來,最後再算出這幾個加數の和。
即(先乘方、後乘除、再加減。
)把算式進行分段,關鍵是在計算前要認真審題,妥用整體觀察の辦法,分清運算符號,確定整個式子中有幾個加號、減號,再以加減號為界進行分段,這是進行有理數混合運算行之有效の方法。
(2)括號分段法,有括號の應先算括號裏面の。
在實施時可同時分別對括號內外の算式進行運算。
(3)絕對值符號分段法。
絕對值符號除了本身の作用外,還具有括號の作用,從運算順序の角度來說,先計算絕對值符號裏面の,因此絕對值符號也可以把算式分成幾段,同時進行計算。
有理数混合运算的方法技巧
有理数混合运算的方法技巧一、有理数混合运算的运算顺序:①从高级到低级:先算乘方,再算乘除,最后算加减;②从内向外:如果有括号,就先算小括号里的,再算中括号里的,最后算大括号里的.③从左向右:同级运算,按照从左至右的顺序进行二、应用四个原则:1、整体性原则:乘除混合运算统一化乘,统一进行约分;加减混合运算按正负数分类,分别统一计算,或把带分数的整数、分数部分拆开,分别统一计算。
2、简明性原则:计算时尽量使步骤简明,能够一步计算出来的就同时算出来;运算中尽量运用简便方法,如五个运算律的运用。
3、口算原则:在每一步的计算中,都尽量运用口算,口算是提高运算率的重要方法之一,习惯于口算,有助于培养反应能力和自信心。
4、分段同时性原则:对一个算式,一般可以将它分成若干小段,同时分别进行运算。
如何分段呢?主要有:(1)运算符号分段法。
有理数的基本运算有五种:加、减、乘、除和乘方,其中加减为第一级运算,乘除为第二级运算,乘方为第三级运算。
在运算中,低级运算把高级运算分成若干段。
一般以加号、减号把整个算式分成若干段,然后把每一段中的乘方、乘除的结果先计算出来,最后再算出这几个加数的和.把算式进行分段,关键是在计算前要认真审题,妥用整体观察的办法,分清运算符号,确定整个式子中有几个加号、减号,再以加减号为界进行分段,这是进行有理数混合运算行之有效的方法.(2)括号分段法,有括号的应先算括号里面的。
在实施时可同时分别对括号内外的算式进行运算。
(3)绝对值符号分段法。
绝对值符号除了本身的作用外,还具有括号的作用,从运算顺序的角度来说,先计算绝对值符号里面的,因此绝对值符号也可以把算式分成几段,同时进行计算.(4)分数线分段法,分数线可以把算式分成分子和分母两部分并同时分别运算三、掌握运算技巧(1)、归类组合:将不同类数(如分母相同或易于通分的数)分别组合;将同类数(如正数或负数)归类计算。
(2)、凑整:将相加可得整数的数凑整,将相加得零的数(如互为相反数)相消。
有理数的混合运算的法则
有理数的混合运算的法则
有理数的混合运算遵循以下法则:
1. 加法和减法的交换律和结合律:任意两个有理数相加或相减,都可以改变顺序或通过结合得到相同的结果。
例如:(a + b) + c = a + (b + c);a + b = b + a。
2. 乘法和除法的交换律和结合律:任意两个有理数相乘或相除,都可以改变顺序或通过结合得到相同的结果。
例如:(a * b) * c = a * (b * c);a * b = b * a。
3. 分配律:乘法对于加法和减法具有分配律。
例如:a * (b + c) = a * b + a * c;a * (b - c) = a * b - a * c。
4. 取反和倒数:任意有理数的相反数或倒数,是指它们相加或相乘后的结果为零或一的数。
例如:-a + a = 0;a * (1 / a) = 1。
5. 零的特性:任意有理数与零相加或相乘,结果都等于该有理数本身。
例如:a + 0 = a;a * 0 = 0。
根据以上法则,可以按照一定顺序进行有理数的混合运算,以求得正确的结果。
有理数混合运算法则
有理数混合运算法则
有理数的混合运算是初等数学中最重要的计算法则之一。
本文详细介绍有理数混合运算的基本原理,并介绍如何应用它来解决复杂的数学问题。
首先,让我们来详细介绍有理数混合运算的定义。
有理数混合运算是指在数学式中将有理数加减乘除等运算方法结合在一起进行运算,而不是按照传统的先乘除后加减的顺序进行运算,从而得出结果。
其次,本文讨论在实际应用中如何使用有理数混合运算的原则来解决复杂的数学问题。
为此,在计算中应首先考虑先乘除后加减运算的可能性,例如,(3+4)x8=3x8 + 4x8,可以先将其拆分成两个乘法运算,即(3x8)+(4x8),从而计算得出结果。
此外,在有理数混合运算中,还可以遵循“处理和根据先后次序”这一原则,即在相同运算符号下,按照先出现的数字先处理,后出现的数字后处理。
最后,还需要提醒,有理数混合运算的计算虽然可以帮助人们解决复杂的数学问题,但是在计算过程中也可能加大计算量,如果不小心容易混淆运算步骤,进而出现计算错误的情况。
因此,在使用有理数混合运算法则时,需要多加注意,准确地步骤进行计算,以免出现错误。
总而言之,有理数混合运算是一种重要的数学计算法则,能够有效地帮助人们解决复杂的数学问题,但同时也要多加注意,以免出现计算错误的情况。
- 1 -。
七年级有理数混合运算法则大全
七年级有理数混合运算法则大全(总3页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--一、有理数的运算顺序:有理数的混合运算法则:先算乘方或开方,再算乘法或除法,后算加法或减法。
有括号时、先算小括号里面的运算,再算中括号,然后算大括号。
在遇到相同类型的运算时,应从左往右运算二、有理数的运算:1)有理数加减法:1、同号相加和取相同的符号,并把绝对值相加2、例如:+2+3=5 (-2)+(-3)=-53、异号相加和取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值4、例如:+2+(-3)=-1 (-2)+3=1一个数与零相加仍得这个数,两个互为相反数相加和为零5、减去一个数等于加上这个数的相反数6、例如:+2-(+3)=2+(-3)=-1 (-2)-(-3)=-2+3=17、异号相减可理解为同号相加8、例如:+2-(-3)=2+3=5 (-2)-(+3)=-2-3=-5补充:去括号与添括号:去括号法则:括号前是“+”号时,将括号连同它前边的“+”号去掉,括号内各项都不变;例如:+(4+5+6)=4+5+6 +(4-5+6)=4-5+6括号前是“-”号时,将括号连同它前边的“-”去掉,括号内各项都要变号。
例如:-(4+5+6)=-4-5-6 -(4-5+6)=-4+5-6添括号法则:在“+”号后边添括号,括到括号内的各项都不变;例如:4+5+6=4+(5+6) 4-5+6-7=(4-5+6)-7=(4-5)+6-7在“-”号后边添括号,括到括号内的各项都要变号。
例如:4-5+6=4-(5-6) 4-5+6-7=4-(5-6+7)2)有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘例如:(+2)×(+3)=6 (-2)×(-3)=6(+2)×(-3)=-6 (-2)×(+3)=-62、任何数与零相乘都得零3、几个不等于零的数相乘,积的符号由负因数的个数决定,当负因数有奇数个数,积为负;当负因数的个数为偶数个时,积为正;4、几个有理数相乘,若其中有一个为零,积就为零。
有理数混合运算
三、运算方法
1、按运算顺序计算(有括号先算括号;无括号, 先乘除,后加减。) 2、应用运算律,适当改变运算顺序进行简便运算。
四、若a+b>0,且a· b>0,则______________; 若a+b<0,且a· b>0,则______________; 若a+b>0,且a· b<0,则______________; 若a+b<0,且a· b<0,则______________;
(三)乘法法则:
两数相乘,同号得正,异号得负,并把绝对值相乘。 任何数与0相乘,积为0。
(四)有理数除法法则:
除法转化为乘法 两数相除,同号得正,异号得负,并把绝对值相除. 0除以任何不为0的数都得0
二、运算律
加法交换律: a+b=b+a 加法结合律: ( a + b ) + c = a + ( b + c ) 乘法交换律:a b = b a 乘法结合律:( a b ) c = a ( b c ) 分配律:a ( b + c ) = a b + a c 逆用分配律: a b + a c = a ( b + c )
有理数加减乘除混合运算
一、运算法则 (一)加法法则:
1.同号两数相加,取相同的符号,并把绝对值相加。 2.绝对值不相等的异号两数相加,取绝对值较大 的加数的符号,并用较大的绝对值减去较小的绝 对值,互为相反数的两个数相加得0。 3.一个数同0相加,仍得这个数。
(二)减法法则: 减去一个数,等于加上这个数的相反数。 a-b=a+(-b) 减法转化加法
现有四个有理数3,4,-6,10,运用上述规则写出三种不 同方法的运算式,使其结果等于24,运算如下: (1)______________;
有理数混合运算法则
有理数混合运算法则
有理数混合运算法则是一种基本的运算法则,它可以用来解决复杂的算数问题。
它是一种应用于加减乘除等混合运算的法则,它可以帮助学习者更好地理解和掌握混合运算中有关的知识点。
有理数混合运算法则可以将混合运算分为两个部分,第一个部分是乘除运算,第二个部分是加减运算。
乘除运算规则是,分别将乘数和除数运算出来,再将这两个结果相乘得出最终结果。
而加减运算规则是,先将加数和减数运算出来,然后将这两个结果相加或减去得到最终结果。
当遇到复杂的混合运算问题时,可以依据规则将其分解为加减乘除运算后,再分别运算,即可得到最终结果。
例如,有一道数学题,其中有两个乘除运算和两个加减运算,那么可以先将乘除原式运算出来,然后将加减原式运算出来,最后再将上述结果相加或相减,即可得到最终结果。
此外,如果想要正确地使用有理数混合运算法则,还需要掌握一些其他的基本知识,如运算顺序。
它指的是什么样的运算顺序是正确的,如要先算乘除运算,再算加减运算,还是先算加减运算,再算乘除运算,以及各种特殊情况下的处理方法等等。
因此,在混合运算中也要特别注意运算顺序,以便得到正确的结果。
总之,有理数混合运算法则是一种非常基本的运算法则,学习者必须掌握它的原理,以及在混合运算中正确使用它。
只有掌握了这些知识,才能正确解决复杂的混合运算问题。
只有积累了足够的知识,
才能更好地熟练掌握这项运算法则,也可以更好地理解混合运算中的知识点。
有理数的混合运算笔记
有理数的混合运算笔记
有理数的混合运算笔记可以按照以下步骤进行整理:
1. 了解有理数的混合运算顺序:在进行有理数的混合运算时,需要先乘方、再乘除、最后加减,同级运算按从左到右的顺序进行。
如果有括号,要先算括号里面的。
2. 掌握运算法则:有理数的混合运算包括加法、减法、乘法、除法、乘方五种运算法则。
加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
减法法则:减去一个数等于加上这个数的相反数。
乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。
除法法则:除以一个不等于0的数,等于乘这个数的倒数。
乘方法则:正数的任何次幂都是正数,负数的奇次幂是负数,负数的偶次幂是正数。
3. 掌握运算律:有理数的混合运算中,有一些特殊的运算法则,需要牢记。
交换律:a+b=b+a;ab=ba;结合律:(a+b)+c=a+(b+c);(a*b)*c=a*(b*c)。
4. 掌握运算顺序:在进行有理数的混合运算时,需要注意运算顺序,先算乘方、再算乘除、最后算加减,如果有括号,要先算括号里面的。
5. 实际应用:通过做一些有理数的混合运算题目,可以巩固对
运算法则和运算律的理解和应用。
整理有理数的混合运算笔记时,可以根据自己的学习情况,对以上步骤进行适当的调整和补充。
同时可以结合一些例题和练习题,加深对运算法则和运算律的理解和应用。
有理数混合运算法则
(1)有理数的加法法则:1. 同号两数相加,和取相同的符号,并把绝对值相加;2. 绝对值不等的异号两数相加,和取绝对值较年夜的加数的符号,并用较年夜的绝对值减去较小的绝对值;3. 一个数与零相加仍得这个数;4. 两个互为相反数相加和为零.⑵有理数的减法法则:减去一个数即是加上这个数的相反数.弥补:去括号与添括号:去括号法则:括号前是“+”号时,将括号连同它前边的“+”号去失落,括号内各项都不变;括号前是“-”号时,将括号连同它前边的“-”去失落,括号内各项都要变号.添括号法则:在“+”号后边添括号,括到括号内的各项都不变;在“-”号后边添括号,括到括号内的各项都要变号.⑶有理数的乘法法则:①两数相乘,同号得正,异号得负,并把绝对值相乘;②任何数与零相乘都得零;③几个不即是零的数相乘,积的符号由负因数的个数决定,当负因数有奇数个数,积为负;当负因数的个数为偶数个时,积为正;④几个有理数相乘,若其中有一个为零,积就为零.⑷有理数的除法法则:法则一:两个有理数相除,同号得正,异号得负,并把绝对值相除;法则二:除以一个数即是乘以这个数的倒数.⑸有理数的乘方:求n个相同因数的积的运算,叫做乘方,乘方的给果叫做幂.正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数.⑹有理数的运算顺序:有理数的混合运算法则即先算乘方或开方,再算乘法或除法,后算加法或减法.有括号时、先算小括号里面的运算,再算中括号,然后算年夜括号.[5×(4-5+5)]÷5=(5×4)÷5=4⑺运算律:①加法的交换律:a+b=b+a;②加法的结合律:(a+b)+c=a+(b+c);③乘法的交换律:ab=ba;④乘法的结合律:(ab)c=a(bc);⑤乘法对加法的分配律:a(b+c)=ab+ac;注:除法没有分配律.有理数加减运算的几个技巧小学生进入初中以后,接触了正,负数,很多同学觉得数学的知识增加了很多.但一开始学习有理数加减混合运算,他们发现很容易犯毛病,而且在运算过程中有时手足无措.在这里给年夜家介绍有理数加减运算的几个小技巧.一.用口诀法记忆有理数的加减运算规则.同号相加一边倒;异号相加“年夜”减“小”,符号跟着“年夜”的跑..如:12-6+5-7=12+5-6-7=17-13=4.这个口诀适合比力简单的运算,主要是将正,负数分开,再计算.可是对较复杂的运算却其实不适合.下面的方法可以针对性的解决一些问题.二:化简为繁.主要是有些异分母的运算.如:(-2/3)-1/12-(-1/4)=-2/3-1/12+1/4=-8/12-1/12+3/12=-9/12+3/12=-6/12=-1/2等.三:统一法:在式子中若既有分数又有小数,把小数统一成份数或把分数统一成小数.如:(-0.5)-(-1/4)+(+2.75)-(+5.5)= -0.5+0.25+2.75-5.5= -3四:凑整数法.在式子中若既有分数又有小数,有些数相加后能凑出整数,这样做的目的是使得运算简便.如(1):(-4 7/8)-(-5 1/2)+(-4 1/4)-(+3 1/8)=-4 7/8+5 1/2-4 1/4-3 1/8=-4 7/8-31/8+5 1/2-4 1/4=-8+1.25=-6.25 (2):(-3 18/37)-(-3.5)-(-1 18/37)+(-6.5)=-3 18/37+3.5+1 18/37-6.5=-3 18/37+1 18/37-6.5+3.5=-2-3=-5.五:凑零法.在式子中如果有相反数,那么就把它们相加,再运算.如:(1):1/2+(-2/3)+4/5+(-1/2)+(-1/3)=1/2+(-1/2)+(-2/3)+(-1/3)+4/5=0+(-1)+4/5=-1/5.(2):(-18.65)+(-6.15)+18.15+6.15=(-18.65)+18.15+(-6.15)+6.15=-0.5+0=-0.5有理数的加减混合运算,可依据题目的特点,运用适当的方法技巧,可以简化过程,提高解题速度.一、正负数分别结合相加二、相加得零的数结合相加三、非整数相加,相加得整数结合相加四、分数相加,同分母或分母有倍分关系的分数结合相加五、带分数相加,将带分数拆开相加六、分数与小数相加,灵活考虑将小数化成份数或将分数化成小数后再相加时间:二O二一年七月二十九日。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有理数混合运算法则 Document number【SA80SAB-SAA9SYT-SAATC-SA6UT-SA18】
有理数混合运算法则
(1)有理数的加法法则:
1. 同号两数相加,和取相同的符号,并把绝对值相加;
2. 绝对值不等的异号两数相加,和取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;
3. 一个数与零相加仍得这个数;
4. 两个互为相反数相加和为零。
⑵有理数的减法法则:
减去一个数等于加上这个数的相反数。
补充:去括号与添括号:
去括号法则:括号前是“+”号时,将括号连同它前边的“+”号去掉,括号内各项都不变;括号前是“-”号时,将括号连同它前边的“-”去掉,括号内各项都要变号。
添括号法则:在“+”号后边添括号,括到括号内的各项都不变;在“-”号后边添括号,括到括号内的各项都要变号。
⑶有理数的乘法法则:
①两数相乘,同号得正,异号得负,并把绝对值相乘;
②任何数与零相乘都得零;
③几个不等于零的数相乘,积的符号由负因数的个数决定,当负因数有奇数个数,积为负;当负因数的个数为偶数个时,积为正;
④几个有理数相乘,若其中有一个为零,积就为零。
⑷有理数的除法法则:
法则一:两个有理数相除,同号得正,异号得负,并把绝对值相除;
法则二:除以一个数等于乘以这个数的倒数。
⑸有理数的乘方:求n个相同因数的积的运算,叫做乘方,乘方的给果叫做幂。
正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数。
⑹有理数的运算顺序:
有理数的混合运算法则即先算乘方或开方,再算乘法或除法,后算加法或减法。
有括号时、先算小括号里面的运算,再算中括号,然后算大括号。
[5×(4-5+5)]÷5
=(5×4)÷5
=4
⑺运算律:
①加法的交换律:a+b=b+a;
②加法的结合律:(a+b)+c=a+(b+c);
③乘法的交换律:ab=ba;
④乘法的结合律:(ab)c=a(bc);
⑤乘法对加法的分配律:a(b+c)=ab+ac;
注:除法没有分配律。
有理数加减运算的几个技巧
小学生进入初中以后,接触了正,负数,很多同学觉得数学的知识增加了很多。
但一开始学习有理数加减混合运算,他们发现很容易犯错误,而且在运算过程中有时不知所措。
在这里给大家介绍有理数加减运算的几个小技巧。
一.用口诀法记忆有理数的加减运算规则。
同号相加一边倒;异号相加“大”
减“小”,符号跟着“大”的跑。
如:12-6+5-7=12+5-6-7=17-13=4。
这个口诀适合比较简单的运算,主要是将正,负数分开,再计算。
但是对较复杂的运算却并不适合。
下面的方法可以针对性的解决一些问题。
二:化简为繁。
主要是有些异分母的运算。
如:(-2/3)-1/12-(-1/4)=-
2/3-1/12+1/4
=-8/12-1/12+3/12=-9/12+3/12=-6/12=-1/2等。
三:统一法:在式子中若既有分数又有小数,把小数统一成分数或把分数统一成小数。
如:()-(-1/4)+(+)-(+)= ++ -3
四:凑整数法。
在式子中若既有分数又有小数,有些数相加后能凑出整数,这样做的目的是使得运算简便。
如(1):(-4 7/8)-(-5 1/2)+(-4
1/4)-(+3 1/8)=-4 7/8+5 1/2-4 1/4-3 1/8=-4 7/8-3 1/8+5 1/2-4 1/4=-8+= (2):(-3 18/37)-()-(-1 18/37)+()=-3
18/37++1 18/=-3 18/37+1 18/+=-2-3=-5。
五:凑零法。
在式子中如果有相反数,那么就把它们相加,再运算。
如:(1):1/2+(-2/3)+4/5+(-1/2)+(-1/3)=1/2+(-1/2)+(-2/3)+(-1/3)+4/5
=0+(-1)+4/5=-1/5。
(2):()+()++=()++()+
=+0=
有理数的加减混合运算,可依据题目的特点,运用适当的方法技巧,可以简化过程,提高解题速度。
一、正负数分别结合相加
二、相加得零的数结合相加
三、非整数相加,相加得整数结合相加
四、分数相加,同分母或分母有倍分关系的分数结合相加
五、带分数相加,将带分数拆开相加
六、分数与小数相加,灵活考虑将小数化成分数或将分数化成小数后再相加。