【精品】2017学年福建省漳州市龙海市程溪中学高二上学期期中数学试卷和解析(理科)
福建省龙海市程溪中学高二期中文理科数学试卷
福建省龙海市程溪中学高二期中文理科数学试卷一、选择题:本大题共12小题,每小题5分,共60分.1.如果它是一个虚单位和复数单位,那么||=a.1b.c.d.2以下三段可以构成“三段论”,那么“小前提”就是因为函数是增函数;所以是增函数;而是函数.a、不列颠哥伦比亚省。
3.用反证法证明命题“三角形中至多一个内角是钝角”时,结论的否定是a、没有内角是钝角。
B.两个内角为钝角c.有三个内角是钝角d.至少有两个内角是钝角如果AB+C.B+>A+D<5.下列结论正确的是.a、当x>0和x≠ 1,lgx+≥ 2.b.当x>0时,+≥2c、当x≥ 2,X+的最小值为2d.当0压力曲线+=1φ:转换曲线的参数方程为a.θ为参数b.θ为参数c、θ是参数Dθ作为参数.将参数方程θ为参数化为普通方程为a、 y=x-2b、 y=x+2c.y=x-22≤x≤3d.y=x+20≤y≤1已知直线L1的极坐标方程为ρSin=2022,直线L2的参数方程为t,则L1和L2之间的位置关系为a.垂直b.平行c、相交但不垂直D.重合9函数y=+xx>3的最小值是.a、 5b。
4c。
3d。
二.已知椭圆的参数方程为φ为参数,点m在椭圆上,其对应的参数φ=,点o为原点,则直线om的斜率为a、 1b。
2c d.2.在极坐标系中,点a的极坐标是1,π,点p是曲线c:ρ=2sinθ上的动点,则|pa|的最小值是a、 0b。
c.+1d.-1假设a、B和C是非零实数,A2+B2+C2++的最小值为a.7b.9c、 12天。
十八13.若复数是纯虚数,则实数的值为14.在平面直角坐标系xoy中,若直线l:t为参数过椭圆c:φ为参数的右顶点,则常数a的值为__________.15.找到函数FX=x5-2x2的最大值,如下所示:16.观察下列不等式,根据这条定律,第二个不等式是$一家工厂建造了一个容积为4800m3、深度为3M的无盖长方体储罐。
福建省龙海市程溪中学2018-2019学年高二上学期期中考数学(文)试题(含精品解析)
5
4
2
1
A. 6
B. 5
C. 3
D. 2
������2
12. 过点 M(-2,0)的直线 m 与椭圆 2 +y2=1 交于 P1、P2 两点,线段 P1P2 的中点为
P,设直线 m 的斜率为 k1(k≠0),直线 OP 的斜率为 k2,则 k1k2 的值为( )
1
A. 2
B. ‒ 2
C. 2
D.
Hale Waihona Puke ‒1三、解答题(本大题共 6 小题,共 70.0 分) 17. 设 p:实数 x 满足 x2-4ax+3a2<0,q:实数 x 满足|x-3|<1.
(1)若 a=1,且 p∧q 为真,求实数 x 的取值范围; (2)若 a>0 且¬p 是¬q 的充分不必要条件,求实数 a 的取值范围.
18. 农科院的专家为了了解新培育的甲、乙两种麦苗的长势情况,从甲、乙两种麦苗 的试验田中各抽取 6 株麦苗测量麦苗的株高,数据如下:(单位:cm) 甲:9,10,11,12,10,20 乙:8,14,13,10,12,21. (1)在给出的方框内绘出所抽取的甲、乙两种麦苗株高的茎叶图; (2)分别计算所抽取的甲、乙两种麦苗株高的平均数与方差,并由此判断甲、乙 两种麦苗的长势情况.
1.【答案】A
【解析】
答案和解析
解:根据系统抽样方法知,抽样间隔为 抽取的第一个样本编号为 0003,
=40,
则抽样编号为 0003+40(n-1);
令 n=3,则最后一个样本编号是 0003+40×2=0083.
故选:A.
根据系统抽样方法求出抽样间隔,再写出样本的抽样编号,求出对应的样本
编号.
福建省龙海市程溪中学高二上学期期中考试数学试题
程溪中学2014—2015学年高二上学期期中考数学试卷一、选择题:(本大题共12小题,每小题5分,满分60分。
)1.已知命题P:若a是奇数,则a是质数,则命题P的逆命题是()A.若a是奇数,则a是质数 B. 若a是质数,则a是奇数C. 若a不是奇数,则a不是质数D. 若a不是质数,则a不是奇数2. 有两个红球和两个黑球的口袋里任取两个球,那么互斥而不对立的两个事件是()A.“恰好有一个黑球”与“恰好有两个黑球” B.“至少有一个黑球”与“都是红球”C.“至少有一个黑球”与“都是黑球” D.“至少有一个黑球”与“至少有一个红球”3. 设命题甲:,命题乙:,则甲是乙的().A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件4某城市有学校700所,其中大学20所,中学200所,小学480所,现用分层抽样的方法从中抽取一个容量为70的样本进行某项调查,则应抽取的中学数为()A.70 B.20 C.48 D.25. 命题“任意能被2整除的整数都是偶数”的否定是()A. 存在一个能被2整除的数不是偶数B. 所有能被2整除的整数都不是偶数C. 存在一个不能被2整除的数是偶数D. 所有不能被2整除的数都是偶数6.用秦九韶算法计算多项式f(x)=12+35x-8+79+6+5+3在x=-4的值时,的值为( ) A. B. C. D.7. 如果椭圆的两个顶点为(3,0),(0,-4),则其标准方程为()(A) (B) (C) (D)8、. 下图给出的是计算的值的一个程序框图,其中判断框内应填入的条件是()A. B. C. D.9.右上图是2011年我校举办“激扬青春,勇担责任”演讲比赛大赛上,七位评委为某位选手打出的分数的茎叶图,去掉一个最高分和一个最低分后,所剩数据的中位数和平均数分别为 ( )A.85;87B.84; 86C.84;85D.85;8610.已知,则方程表示焦点在轴上的椭圆的概率为( )A . B. C. D.11.若点P在椭圆上,、分别是该椭圆的两焦点,且,则的面积是()A. 1B. 2C.D.12. 某产品的广告费用x与销售额y的统计数据如下表6万元时销售额为()(A) 63.6万元 (B) 65.5万元 (C) 67.7万元 (D) 72.0万元二、填空题(本大题共4个小题,每小题4分,共16分. 将答案填写在题中横线上)13.(1)求的最大公约数是_________;(2)把化成十进制数是_____________.14. 已知焦点在y轴的椭圆的离心率为,则m=15. 命题:“若,则”的逆否命题是16. 已知实数x、y可以在,的条件下随机取数,那么取出的数对满足的概率是三、解答题(本题共6小题,共74分。
福建省漳州市高二上学期数学期中考试试卷
福建省漳州市高二上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2016高一下·南市期末) 某中学对高一新生进行体质状况抽测,新生中男生有800人,女生有600人,现用分层抽样的方法在这1400名学生中抽取一个样本,已知男生抽取了40人,则女生应抽取人数为()A . 24B . 28C . 30D . 322. (2分)如果方程表示焦点在y轴上的椭圆,则m的取值范围是()A .B .C .D .3. (2分)若是等差数列,公差, a2,a3,a5成等比数列,则公比为()A . 1B . 2C . 3D . 44. (2分)是数列的前n项和,则“数列为常数列”是“数列为等差数列”的()A . 充分不必要条件B . 必要不充分条件C . 充分必要条件D . 既不充分也不必要条件5. (2分)直线l将圆x2+y2﹣2x﹣4y=0平分,且与直线﹣=1平行,则直线l的方程是()A . 2x﹣y﹣4=0B . x+2y﹣3=0C . 2x﹣y=0D . x﹣2y+3=06. (2分)“”是“函数在区间上单调递增”的()A . 充分必要条件B . 必要不充分条件C . 充分不必要条件D . 既不充分也不必要条件7. (2分)在区间上随机取两个数,记为事件“”的概率,为事件“”的概率,为事件“”的概率,则()A .B .C .D .8. (2分)有五条线段长度分别为1,3,5,7,9,从这5条线段中任取3条,则所取3条线段能构成一三角形的概率A .B .C .D .9. (2分)若直线与曲线有公共点,则b的取值范围是()A .B .C .D .10. (2分) (2019高二上·集宁期中) 已知锐角三角形的边长分别为2、3、,则的取值范围是()A .B .C .D .11. (2分)(2017·晋中模拟) 若圆C1(x﹣m)2+(y﹣2n)2=m2+4n2+10(mn>0)始终平分圆C2:(x+1)2+(y+1)2=2的周长,则 + 的最小值为()A .B . 9C . 6D . 312. (2分)如图,椭圆的左、右顶点分别是A,B,左、右焦点分别是F1 , F2 ,若|AF1|,|F1F2|,|F1B|成等比数列,则此椭圆的离心率为()A .B .C .D .二、填空题 (共4题;共4分)13. (1分) (2019高二上·武威期末) 命题的否定为________14. (1分) (2017高一下·和平期末) 设一组数据51,54,m,57,53的平均数是54,则这组数据的标准差等于________.15. (1分)期中考试后,某校高三(9)班对全班名学生的成绩进行分析,得到数学成绩对总成绩的回归直线方程为 .由此可以估计:若两个同学的总成绩相差分,则他们的数学成绩大约相差________分.16. (1分) (2016高二上·宁波期中) 在平面直角坐标系xOy中,椭圆C的中心为原点,焦点F1 , F2在x 轴上,离心率为,过F1的直线l交C于A、B两点,且△ABF2的周长是16,椭圆C的方程为________.三、解答题 (共6题;共65分)17. (10分) (2018高一下·汕头期末) 已知某山区小学有100名四年级学生,将全体四年级学生随机按00~99编号,并且按编号顺序平均分成10组.现要从中抽取10名学生,各组内抽取的编号按依次增加10进行系统抽样.(1)若抽出的一个号码为22,则此号码所在的组数是多少?据此写出所有被抽出学生的号码;(2)分别统计这10名学生的数学成绩,获得成绩数据的茎叶图如图4所示,求该样本的方差;(3)在(2)的条件下,从这10名学生中随机抽取两名成绩不低于73分的学生,求被抽取到的两名学生的成绩之和不小于154分的概率.18. (15分) (2016高二上·徐水期中) 某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100].(1)求图中a的值;(2)根据频率分布直方图,估计这100名学生语文成绩的平均分;(3)若这100名学生语文成绩某些分数段的人数(x)与数学成绩相应分数段的人数(y)之比如表所示,求数学成绩在[50,90)之外的人数.分数段[50,60)[60,70)[70,80)[80,90)x:y1:12:13:44:519. (10分) (2016高二上·吉林期中) 若a、b、c∈R,写出命题“若ac<0,则ax2+bx+c=0有两个不相等的实数根”的逆命题、否命题、逆否命题,并判断这三个命题的真假.20. (10分) (2017高二上·汕头月考) 2015年12月,华中地区数城市空气污染指数“爆表”,此轮污染为2015年以来最严重的污染过程,为了探究车流量与的浓度是否相关,现采集到华中某城市2015年12月份某星期星期一到星期日某一时间段车流量与的数据如表:参考公式:回归直线的方程是,其中, .(1)由散点图知与具有线性相关关系,求关于的线性回归方程;(提示数据:)(2)利用(1)所求的回归方程,预测该市车流量为12万辆时的浓度.21. (10分)(2017·枣庄模拟) 已知椭圆C: + =1(0<b<3)的左右焦点分别为E,F,过点F作直线交椭圆C于A,B两点,若且(1)求椭圆C的方程;(2)已知点O为原点,圆D:(x﹣3)2+y2=r2(r>0)与椭圆C交于M,N两点,点P为椭圆C上一动点,若直线PM,PN与x轴分别交于点R,S,求证:|OR|•|OS|为常数.22. (10分) (2019高二上·怀仁期中) 已知圆过点,且圆心在直线上.(1)求圆的方程;(2)点为圆上任意一点,求的最值.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共6题;共65分) 17-1、17-2、17-3、18-1、18-2、18-3、19-1、20-1、20-2、21-1、21-2、22-1、22-2、第11 页共11 页。
福建省龙海市程溪中学高二数学上学期期中试题文(最新整理)
2018-2019学年程溪中学高二(上)期中考数学试卷(文科)一、选择题(每小题5分,12小题共60分)1.为了解某高校高中学生的数学运算能力,从编号为0001,0002,…,2000的2000名学生中采用系统抽样的方法抽取一个容量为50的样本,并把样本编号从小到大排列,已知抽取的第一个样本编号为0003,则第三个样本编号是()A. 0083 B. 0043 C. 0123 D. 01632.双曲线的渐近线方程为( )A. B. C. D.3.某大学教学系共有本科生5 000人,其中一、二、三、四年级的人数比为4∶3∶2∶1,要用分层抽样的方法从所有本科生中抽取一个容量为200的样本,则应抽取三年级的学生人数为() A.80 B.40 C.60 D.204.已知下表所示数据的回归直线方程为y=4x—4,则实数a的值为( )A. 16 B. 18 C. 20 D. 225.用秦九韶算法求多项式f(x)=12+35x-8x2+79x3+6x4+5x5+3x6的值,当x=-4时,v4的值为( )A.-57 B.124 C.-845 D.2206.运行如图所示程序框图,若输出的S值为,则判断框中应填()A. B.C. D.7.下列命题:①对立事件一定是互斥事件;②若A,B为两个随机事件,则P(A∪B)=P(A)+P(B);③若事件A,B,C彼此互斥,则P(A)+P(B)+P(C)=1;④若事件A,B满足P(A)+P(B)=1,则A与B是对立事件.其中正确命题的个数是( )A.1 B.2 C.3 D.48.有下列四个命题:(1)“若,则,互为倒数”的逆命题;(2)“面积相等的三角形全等"的否命题;(3)“若,则有实数解”的逆否命题;(4)“若,则”的逆否命题.x 2 3 4 5 6y 3 711 a 211其中真命题为( )A.(1)(2) B.(2)(3) C.(4) D.(1)(2)(3)9.如图所示,在矩形中,,,图中阴影部分是以为直径的半圆,现在向矩形内随机撒4000粒豆子(豆子的大小忽略不计),根据你所学的概率统计知识,下列四个选项中最有可能落在阴影部分内的豆子数目是()A. 1000 B. 2000 C. 3000 D. 400010.已知a、b都是实数,那么“"是“”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件11.在所有的两位数(10~99)中,任取一个数,则这个数能被2或3整除的概率是( )A。
福建省龙海市程溪中学2017-2018学年高二上学期期末考
程溪中学2017-2018上学期高二年文科数学期末考试卷考试内容:必修三,选修1-1与1-2部分内容一、选择题(每小题各5分, 共60分)1.曲线y=e x在点A(0,1)处的切线的斜率为( )..x 23+y 22=1 B.x 23+y 2=1C.x 212+y 28=1 D.x 212+y 24=1 3.下列说法正确的是( ).命题“若a b ≥,则22a b ≥”的逆否命题为“若22a b ≤,则a b ≤” .“1x =”是“2320x x -+=”的必要不充分条件 .若p q ∧为假命题,则,p q 均为假命题.对于命题2:,10p x R x x ∀∈++>,则2000:,10p x R x x ⌝∃∈++≤4、若A 、B 是相互独立事件,且P (A )=12,P (B )=23,(B 表示B 的对立事件),则P (A ∩B )=( ).16 B.13 C.12 D.235.运行如图程序框图,输出的结果为( )6.函数)(x f y =在一点的导数值为0是函数)(x f y =在这点取极值的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .必要不充分条件7.已知函数y =f (x )的图象在点M (1,f (1))处的切线方程是y =12x +2,f (1)+f ′(1)的值等于( )A .1 B.52C .3D .08.设e 是椭圆2214x y k +=的离心率,且1,12e ⎛⎫∈ ⎪⎝⎭,则实数k 的取值范围是( )A.()0,3B.163,3⎛⎫⎪⎝⎭C.()0,2D.()160,3,3⎛⎫⋃+∞ ⎪⎝⎭9.函数f (x )在其定义域内可导,其图象如图所示,则导函数y =f ′(x )的图象可能为 ( )10.已知函数()3223f x x x a =-+的极大值为6,那么a 的值是( ) A.0 B.1 C.5 D.611.已知直线()()20y k x k =+>与抛物线2:8C y x =相交于,A B 两点,F 为C 的焦点,若2FA FB =,则k = ( )12.已知()f x 是定义在()0,+∞上的函数,()()f x f x '是的导函数,且总有()()f x xf x '>,则不等式()()1f x xf >的解集为( )A. (),0-∞B. ()0,1C. ()0,+∞D.(1,+∞) 二.填空题: (本大题4小题,每小题5分,共20分)13.若曲线y =kx +ln x 在点(1,k )处的切线平行于x 轴,则k =_______.14.若函数()()32'123f x f x x =-+,则()'1f 的值为 .15.已知点A 的坐标为(5,2),F 为抛物线2y x =的焦点,若点P 在抛物线上移动,当PA PF +取得最小值时,则点P 的坐标是_______.16. 已知函数f (x )=-12x 2+4x -3ln x 在[t ,t +1]上不单调,则t 的取值范围是________.三.解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17. 已知p :方程20x m ++=有两个不相等的实数根;q :不等式01)2(442>+-+x m x 的解集为R .若“q p ∨”为真,“q p ∧”为假,求实数m 的取值范围.18.设椭圆中心在坐标原点,焦点在x 轴上,一个顶点坐标为()2,0. (1)求这个椭圆的方程;(2)若这个椭圆左焦点为1F ,右焦点为2F ,过1F 且斜率为1的直线交椭圆于A B 、两点,求2ABF ∆的面积.19.国家实行二孩生育政策后,为研究家庭经济状况对生二胎的影响,某机构在本地区符合二孩生育政策的家庭中,随机抽样进行了调查,得到如下的列联表:(1(2)若采用分层抽样的方法从愿意生二胎的家庭中随机抽取4个家庭,则经济状况好和经济状况一般的家庭分别应抽取多少个?(3)在(2)的条件下,从中随机抽取2个家庭,求2个家庭都是经济状况好的概率.附:22()()()()()n ad bc K a b c d a c b d -=++++20.已知函数d x bx x x f +++=c )(23的图象过点P (0,2),且在点M (-1,f (-1))处的切线方程为076=+-y x .(Ⅰ)求函数)(x f y =的解析式; (Ⅱ)求函数)(x f y =的单调区间.21.已知椭圆)0(12222>>=+b a by a x 的离心率为22,椭圆上任意一点到右焦点F 的距离的最大值为12+.(1)求椭圆的方程;(2)已知点)0,(m C 是线段OF 上异于F O 、的一个定点(O 为坐标原点),是否存在过点F 且与x 轴不垂直的直线l 与椭圆交于B A 、两点,使得||||BC AC =,并说明理由.22.已知函数).21(ln )(21)(22≤---=a x x a a x x f (1)若函数)(x f 在2=x 处取得极值,求a 的值. (2)讨论函数)(x f 的单调性;(3)设,ln )(22x x a x g -= 若)()(x g x f >对1>∀x 恒成立,求实数a 的取值范围.参考答案:一. BADACB,CDCDDB二. 13.-1 14.215.()4,216. (0,1)∪(2,3)三.解答题17.解:若p 为真:2m <, 若q 为真:31m m ><或 当p 真q 假:12m ≤<当p 假q 真:3m > 综上:12m ≤<或3m >18.解:(1)设椭圆的方程为()222210x y a b a b +=>>,由题意,2,1c a c b a ====∴,∴椭圆的方程为2214x y +=. (2)左焦点()1F,右焦点)2F ,设()()1122,,,A x y B x y ,则直线AB的方程为y x =+.由2214y x x y ⎧=⎪⎨+=⎪⎩,消x 212121510,5y y y y y --=+==-∴,125y y -==∴.212121211221122ABF AF F BF F S S SF F y F Fy ∆∆∆=+=+∴ 121211225F F y y =-=⨯=19. 【答案】(1)列联表见解析,能在犯错误的概率不超过1%的前提下认为家庭经济状况与生育二胎有关;(2)2;(3)1 6 .【解析】试题分析:(1)借助题设条件运用22⨯列联表的卡方系数进行比较判断;(2)依据题设运用分层抽样的方法求解;(3)依据题设运用列举法和古典概型的计算公式进行探求.试题解析:(1因为22210(50902050)23.8641001070140K⨯-⨯=≈⨯⨯⨯,因为23.864 6.635>,所以能在犯错误的概率不超过1%的前提下认为家庭经济状况与生育二胎有关.(2)经济状况好和经济状况一般的家庭都抽取5042100⨯=个.(3)由(2),设经济状况好的2个家庭为A,B,经济状况一般的2个家庭为c,d,则所有基本事件有AB,Ac,Ad,Bc,Bd,cd共6种,符合条件的只有AB这一种,所以2个家庭都是经济状况好的概率为16.20.解:(Ⅰ)由的图象经过P(0,2),知d=2,所以由在处的切线方程是,知故所求的解析式是 --------8分(Ⅱ)解得当当故的增区间是和,减区间是. 21.解:(1) ∵⎪⎩⎪⎨⎧=+=c a a c e 1=b , ∴椭圆的方程为1222=+y x . (2) 由(1)得)0,1(F ,∴10<<m ,假设存在满足题意的直线l ,设l 为)1(-=x k y ,代入1222=+y x ,得0224)12(2222=-+-+k x k x k . 设),(),,(2211y x B y x A ,则1222,12422212221+-=+=+k k x x k k x x , ∴122)2(22121+-=-+=+k k x x k y y . 设AB 的中点为M ,则)12,122(222+-+k k k k M . ∵||||BC AC =,∴AB CM ⊥,即1-=AB CM k k ,∴m k m k k k m k k =-⇔=+-+-+2222)21(01222124, ∴当210<<m 时,m m k 21-±=,即存在这样的直线l ; 当121<≤m 时,k 不存在,即不存在这样的直线l .22解:(1)由,0)2(',1)1()('=---=f xa a x x f 得1-=a 或2=a (舍去) 经检验,1-=a 时,函数)(x f 在2=x 处取得极值(2))(x f 的定义域为).,0(+∞,)1)(()(1)('222xa x a x x a a x x x a a x x f -+-=---=---= 令,0)('=x f 得.1a x a x -==或 当21≤a 时,.01,1>--≤a a a 且①当21=a 时,.0)(',0211>>=-=x f a a )(x f ∴在定义域),0(+∞上单调递增; .7分②当0≤a 时,)(x f 在)1,0(a -上单调递减,在),1(+∞-a 上单调递增; ③当210<<a 时,)(x f 在),0(a 和),1(+∞-a 上单调递增,在)1,(a a -上单调递减. (3)由题意知,x x a x x a a x ->---2222ln ln )(21,即xx a a ln 2322<-对1>∀x 恒成立. . 令x x x h ln 2)(2=,则.)(ln 2)1ln 2()('2x x x x h -= 令0)('=x h ,得.e x = 当),1(e x ∈时,)(x h 单调递减; ),(+∞∈e x 时,)(x h 单调递增. 所以当.e x =时,)(x h 取得最小值.)(e e h =.612116121132e a e e a a ++<<+-⇒<-∴ 又.2161211,21≤<+-∴≤a e a 考点:用导数研究函数的性质.。
福建省龙海市程溪中学高二数学上学期期中试题 文
高二文科数学期中考试试题第一部分 选择题 (共60分)一、选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的.(1) 已知某厂的产品合格率为%90,现抽出10件产品检查,则下列说法正确的是(A )合格产品少于9件 (B )合格产品多于9件(C )合格产品正好是9件 (D )合格产品可能是9件(2) 某公司在甲、乙、丙、丁四个地区分别有150个、120个、180个、150个销售点。
公司为了调查产品销售的情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为○1;在丙地区中有20个特大型销售点,要从中抽取7个调查其销售收入和售后服务等情况,记这项调查为○2。
则完成○1、○2这两项调查宜采用的抽样方法依次是 (A )分层抽样法,系统抽样法 (B )分层抽样法,简单随机抽样法(C )系统抽样法,分层抽样法 (D )简单随机抽样法,分层抽样法(3) 从4名男生和2名女生中任选3人参加演讲比赛,则所选3人中至少有1名女生的概率(A )51 (B )53 (C )54 (D )31 (4) 平面内有两定点A 、B 及动点P ,设命题甲是:“|PA|+|PB|是定值”,命题乙是:“点P的轨迹是以A .B 为焦点的椭圆”,那么( )A .甲是乙成立的充分不必要条件B .甲是乙成立的必要不充分条件C .甲是乙成立的充要条件D .甲是乙成立的非充分非必要条件(5) 在抽查产品的尺寸过程中,将其尺寸分成若干组。
[),a b 是其中的一组, 抽查出的个体在该组上的频率为m,该组上的直方图的高为h,则a b -= (A )hm (B )m h (C )h m(D )h+m (6) 右图给出的是计算201614121++++Λ的值的一个流程图,其中判断 框内应填入的条件是(A ) 10>i (B ) 10<i (C ) 20>i (D ) 20<i(7). 命题“若p 不正确,则q 不正确”的否命题是 ( )A. 若q 不正确,则p 不正确B. 若q 不正确,则p 正确C. 若p 不正确,则q 正确D. 若p 正确,则q 正确(8) 以下程序运行后的输出结果是i : = 1 ;repeati : = i +2 ;S : = 2 i +3 ;i : = i -1 ;until i ≥8;输出 S .是 否 开始s : = 0i : = 1 i s s 21:+= i : = i+1 输出s 结束(A )17 (B )19 (C ) 21 (D )23(9)为考察两个变量x 和y 之间的线性相关,;甲、乙两同学各自独立地做了10次和15次试验,并且利用线性回归方法求得回归直线分别为12l l 和。
福建省漳州市高二上学期期中数学试卷
福建省漳州市高二上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2017高一下·黄冈期末) 下列结论正确的是()A . 若a>b,则ac2>bc2B . 若a2>b2 ,则a>bC . 若a>b,c<0,则a+c<b+cD . 若<,则a<b2. (2分)不等式x2+2x<对任意a,b∈(0,+∞)恒成立,则实数x的取值范围是()A . (﹣2,0)B . (﹣∞,﹣2)∪(0,+∞)C . (﹣4,2)D . (﹣∞,﹣4)∪(2,+∞)3. (2分) (2016高一下·滁州期中) 在△ABC中,a=3 ,b=3,A= ,则C=()A .B .C .D .4. (2分) (2019高一下·湖州月考) 已知的三个内角所对边长分别是,若,则角的大小为()A .B .C .D .5. (2分)等比数列中,已知对任意正整数n,,则等于()A .B .C .D .6. (2分)(2019·吉林模拟) 等差数列的前n项的和为,公差,和是函数的极值点,则()A .B . 38C .D . 177. (2分)(2020·龙岩模拟) 已知中的内角A,B,C所对的边分别是a,b,c,,,,则()A .B .C .D .8. (2分)(2019·龙岩模拟) 已知数列各项均为整数,共有7项,且满足 , ,其中, ( 为常数且 ).若满足上述条件的不同数列个数共有15个,则的值为()A . 1B . 3C . 5D . 79. (2分) (2019高二下·深圳期中) 已知在极坐标系中,点A ,B ,O(0,0),则△ABO 为()A . 正三角形B . 直角三角形C . 等腰锐角三角形D . 等腰直角三角形10. (2分) x、y满足约束条件,若目标函数z=ax+by(a>0,b>0)的最大值为7,则的最小值为()A . 14B . 7C . 18D . 1311. (2分)在△ABC中,(a2+b2)sin(A﹣B)=(a2﹣b2)sin(A+B),其中a、b、c是内角A、B、C的对边,则△ABC的性状为()A . 等腰三角形B . 直角三角形C . 正三角形D . 等腰或直角三角形12. (2分)原始社会时期,人们通过在绳子上打结来计算数量,即“结绳计数”,当时有位父亲,为了准确记录孩子的成长天数,在粗细不同的绳子上打结,由细到粗,满七进一,那么孩子已经出生多少天?()A . 1326B . 510C . 429D . 336二、填空题 (共4题;共5分)13. (1分)若不等式x2﹣kx+k﹣1>0对x∈(1,2)恒成立,则实数k的取值范围是________ .14. (1分) (2015高二上·太和期末) 设x、y∈R+且 =1,则x+y的最小值为________.15. (1分)给出下列不等式:1+ + >1,1+ + +…+ >,1+ + +…+ >2…,则按此规律可猜想第n个不等式为________.16. (2分) (2019高一下·杭州期末) 设数列为等差数列,数列为等比数列.若,则 ________;若,且,则 ________.三、解答题 (共6题;共50分)17. (10分) (2020高一下·宜宾月考) 某医药研究所开发的一种新药,如果成年人按规定的剂量服用,据监测:服药后每毫升血液中的含药量(单位:微克)与时间(单位:小时)之间近似满足如图所示的曲线.(1)写出第一次服药后与之间的函数关系式;(2)据进一步测定:每毫升血液中含药量不少于微克时,治疗有效.问:服药多少小时开始有治疗效果?治疗效果能持续多少小时?(精确到 ,参考数据:)18. (10分)(2020·徐州模拟) △ABC中,角 A , B , C所对的边分别为 a , b , c .若.(1)求cosC的值;(2)若A=C ,求sinB的值.19. (5分)集合A={x|3≤x≤9},集合B={x|m+1<x<2m+4},m∈R(I)若m=1,求∁R(A∩B)20. (10分) (2018高三上·东区期末) 在中, 角、、所对的边分别为、、 , 已知 ,, 且 .(1)求(2)若 , 且 , 求的值.21. (10分) (2016高一下·海南期中) 在数列{an}中,.(1)设,证明:数列{bn}是等差数列;(2)求数列的前n项和Sn .22. (5分)已知等比数列是递增数列,其公比为,前项和为,并且满足 , 是和的等差中项.(Ⅰ)求数列的通项公式;(Ⅱ)若,,求使成立的正整数的值.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共5分)13-1、14-1、15-1、16-1、三、解答题 (共6题;共50分)17-1、17-2、18-1、18-2、19-1、20-1、20-2、21-1、21-2、22-1、。
福建省高二上学期期中考试数学试题(解析版)
一、单选题1.数列2,-4,6,-8,…的通项公式可能是( ) A .B .C .D .)(12nn a n =-)(112n n a n +=-)(12nn n a =-)(112n n n a +=-【答案】B【分析】根据题意,分析数列各项变化的规律,即可得答案. 【详解】根据题意,数列2,,6,,,4-8-⋯其中,,,, 11212a =⨯⨯=2(1)224a =-⨯⨯=-31236a =⨯⨯=2(1)248a =-⨯⨯=-其通项公式可以为, 1(1)2n n a n +=-⨯故选:.B 2.在等比数列中,,则 {}n a 24681,4a a a a +=+=2a =A .2 B .4C .D .1213【答案】D【分析】设等比数列{an }的公比为q ,由条件得q 4=4,解得q 2.进而得出结果.【详解】因为,解得. ()42468241,4a a a a a a q +=+=+=22q =因为,所以.选D. ()224211a a a q +=+=213a =【点睛】本题考查了等比数列的通项公式及其性质,考查了推理能力与计算能力,属于中档题.3.若直线经过,两点,则该直线的倾斜角为( ) ()1,0A (4,B -A . B .C .D .30︒60︒120︒150︒【答案】C【分析】由斜率公式与斜率的定义求解即可【详解】因为直线经过,两点,()1,0A (4,B -所以直线的斜率为 AB k ==设直线的倾斜角为,则 AB θtan θ=又, 0180θ︒≤<︒所以,120θ=°所以直线的倾斜角为. AB 120︒故选:C4.已知圆的一条直径的端点分别是,,则该圆的方程为( ) ()1,0A -()3,4B -A . B . ()()22128x y ++-=()()22128x y -++=C . D .()()221232x y ++-=()()221232x y -++=【答案】B【分析】利用中点坐标公式求出圆心,由两点间距离公式求出半径,即可得到圆的方程. 【详解】解:由题意可知,,的中点为, ()1,0A -()3,4B -()1,2-又圆的半径为12r AB ===故圆的方程为. ()()22128x y -++=故选:B .5.某直线l 过点,且在x 轴上的截距是在y 轴上截距的2倍,则该直线的斜率是( ) (3,4)B -A .B .C .或D .或43-12-4312-43-12-【答案】D【分析】讨论在x 轴和y 轴上的截距均为0或均不为0,设直线方程并由点在直线上求参数,即可得直线方程,进而写出其斜率.【详解】当直线在x 轴和y 轴上的截距均为0时,设直线的方程为,代入点,则,解得,y kx =(3,4)B -43k =-43k =-当直线在x 轴和y 轴上的截距均不为0时, 设直线的方程为,代入点,则,解得,12x y m m +=(3,4)B -3412m m-+=52m =所以所求直线的方程为,即,1552x y+=250x y +-=综上,该直线的斜率是或.43-12-故选:D6.直线的一个方向向量为( ) 230x y +-=A . B .C .D .()2,1()1,2()2,1-()1,2-【答案】D【分析】先求出直线的一个法向量,再求出它的一个方向向量. 【详解】直线的一个法向量为,230x y +-=()2,1设直线一个方向向量为,则有, (),a b 20a b +=故只有D 满足条件. 故选:D.7.对于任意的实数,直线恒过定点,则点的坐标为( ) k 1y kx k =-+P P A . B .C .D .()1,1--()1,1-()1,1-()1,1【答案】D【分析】令参数的系数等于,即可得的值,即为定点的坐标. k 0,x y P 【详解】由可得, 1y kx k =-+()11y k x -=-令可得,此时, 10x -=1x =1y =所以直线恒过定点, 1y kx k =-+()1,1P 故选:D.8.点为圆上一动点,点到直线的最短距离为( ) P 22(1)2x y -+=P 3y x =+A B .1C D .【答案】C【分析】首先判断直线与圆相离,则点到直线的最短距离为圆心到直线的距离再减去半P 3y x =+径,然后求出最短距离即可.【详解】解:圆的圆心为,半径到直线的距离22(1)2x y -+=(1,0)r =(2,0)30x y -+=为到直线的最短距离为圆心到直线d P 3y x =+的距离再减去半径.所以点到直线的最短距离为. P 20l x y -+=:=故选:C .二、多选题9.下列方程表示的直线中,与直线垂直的是( ) 210x y +-=A . B . 210x y -+=210x y -+=C . D .2410x y -+=4210x y -+=【答案】BC【分析】根据斜率确定正确选项. 【详解】直线的斜率为,210x y +-=2-直线、直线的斜率为,不符合题意. 210x y -+=4210x y -+=2直线、直线的斜率为,符合题意. 210x y -+=2410x y -+=12故选:BC10.下列说法正确的是( )A .直线必过定点 ()2R y ax a a =-∈()2,0B .直线在轴上的截距为1 13y x +=yC .直线的倾斜角为10x +=120 D .过点且垂直于直线的直线方程为 ()2,3-230x y -+=210x y ++=【答案】AD【分析】A 将方程化为点斜式即可知所过定点;B 令求截距;C 由方程确定斜率,根据斜率与0x =倾斜角的关系即可知倾斜角的大小;D 计算两直线斜率的乘积,并将点代入方程验证即可判断正误.【详解】A :由直线方程有,故必过,正确; ()2y a x =-()2,0B :令得,故在轴上的截距为-1,错误;0x =1y =-yC :由直线方程知:斜率为,错误; 150︒D :由,的斜率分别为,则有故相互垂直,将代入210x y ++=230x y -+=12,2-1212-⨯=-()2,3-方程,故正确. 2(2)310⨯-++=故选:AD11.(多选)若直线l :ax +y -2-a =0在x 轴和y 轴上的截距相等,则直线l 的斜率为( ) A .1 B .-1 C .-2 D .2【答案】BD【分析】对进行分类讨论,结合截距相等求得,进而求得直线的斜率. a a l 【详解】时,,不符合题意. 0a =:2l y =时,直线过, 0a ≠l ()20,2,,0a a a +⎛⎫+ ⎪⎝⎭依题意,22aa a++=解得或.2a =-1a =当时,,直线的斜率为. 2a =-:2l y x =2当时,,直线的斜率为.1a =:3l y x =-+1-故选:BD12.设等差数列的前项和是,已知,,正确的选项有( ) {}n a n n S 120S >130S <A ., B .与均为的最大值 C . D .10a >0d <5S 6S n S 670a a +>70a <【答案】ACD【解析】利用等差数列的性质,,可得 ,()()11267121212=22++=a a a a S 670a a +>可得 ,,再根据等差数列的单调性判断。
福建省龙海市程溪中学高二(上)期中数学(文)试卷
2016-2017学年福建省漳州市龙海市程溪中学高二(上)期中数学试卷(文科)一、选择题:本大题共12小题,每小题5分,共60分.1.已知命题p:∀x∈R,sinx≤1,则()A.¬p:∃x∈R,sinx≥1 B.¬p:∀x∈R,sinx≥1C.¬p:∃x∈R,sinx>1 D.¬p:∀x∈R,sinx>12.从装有两个红球和两个黑球的口袋内任取两个球,那么互斥而不对立的两个事件是()A.“至少有一个黑球”与“都是黑球”B.“恰有一个黑球”与“恰有两个黑球”C.“至少有一个黑球”与“至少有一个红球”D.“至少有一个黑球”与“都是红球”3.下列说法错误的是()A.“若x+y=0,则x,y互为相反数”的逆命题是真命题B.“若q≤1,则x2+2x+q=0有实根”的逆否命题是真命题C.如果命题“¬p”与命题“p或q”都是真命题,那么命题q一定是真命题D.“”是“θ=30°”的充分不必要条件4.动点P到点M(1,0)与点N(3,0)的距离之差为2,则点P的轨迹是()A.双曲线B.双曲线的一支C.两条射线D.一条射线5.已知△ABC的顶点B,C在椭圆+y2=1上,顶点A是椭圆的一个焦点,且椭圆的另外一个焦点在BC边上,则△ABC的周长是()A.B.6 C.D.126.设集合M={x|x2<4,且x∈R},N={x|x<2},那么“a∈M”是“a∈N”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件7.若方程x2+ky2=2表示焦点在y轴上的椭圆,那么实数k的取值范围是()A.(0,+∞) B.(0,2)C.(1,+∞) D.(0,1)8.先后抛掷硬币三次,则至少一次正面朝上的概率是()A.B.C.D.9.如图所示,程序框图(算法流程图)的输出结果是()A.3 B.4 C.5 D.810.某年级有12个班,现要从2班到12班中选1个班的学生参加一项活动,有人提议:掷两个骰子,把得到的点数之和是几就选几班,这种选法()A.公平,每个班被选到的概率都为B.公平,每个班被选到的概率都为C.不公平,6班被选到的概率最大D.不公平,7班被选到的概率最大11.已知实数4,m,9构成一个等比数列,则圆锥曲线+y2=1的离心率为()A.B.C.或D.或712.双曲线(a>0,b>0)的左、右焦点分别为F1、F2,过点F1作倾斜角为30°的直线l,l与双曲线的右支交于点P,若线段PF1的中点M落在y轴上,则双曲线的渐近线方程为()A.y=±x B.y=±x C.y=±x D.y=±2x二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卷的相应位置.13.某单位有职工200名,现要从中抽取40名职工作样本,用系统抽样法,将全体职工随机按1﹣200编号,并按编号顺序平均分为40组(1﹣5号,6﹣10号, (196)200号).若第5组抽出的号码为22,则第8组抽出的号码应是.14.如图,一不规则区域内,有一边长为1米的正方形,向区域内随机地撒1000颗黄豆,数得落在正方形区域内(含边界)的黄豆数为375颗,以此实验数据为依据可以估计出该不规则图形的面积为平方米.15.设F1,F2是双曲线的两个焦点,点P在双曲线上,且∠F1PF2=90°,求△F1PF2的面积.16.已知命题p:关于x的不等式x2+(a﹣1)x+a2≤0的解集为Ø;命题q:函数y=(2a2﹣a)x为增函数,若函数“p∨q”为真命题,则实数a的取值范围是.三、解答题(共6题,满分70分)解答应写演算步骤.17.(10分)在物理实验中,为了研究所挂物体的重量x对弹簧长度y的影响.某学生通过实验测量得到物体的重量与弹簧长度的对比表:物体重量(单位g)12345弹簧长度(单位cm) 1.5345 6.5(1)利用最小二乘法求y对x的回归直线方程;(2)预测所挂物体重量为8g时的弹簧长度.(参考公式及数据:,)18.(12分)以下茎叶图记录了某篮球队内两大中锋在六次训练中抢得篮板球数记录,由于教练一时疏忽,忘了记录乙球员其中一次的数据,在图中以X表示.(1)如果乙球员抢得篮板球的平均数为10时,求X的值和乙球员抢得篮板球数的方差;(2)如果您是该球队的教练在正式比赛中您会派谁上场呢?并说明理由(用数据说明).19.(12分)双曲线与椭圆有共同的焦点F1(﹣5,0),F2(5,0),点P(4,3)是双曲线的渐近线与椭圆的一个交点,求双曲线与椭圆的方程.20.(12分)某学校为调查高三年学生的身高情况,按随机抽样的方法抽取80名学生,得到男生身高情况的频率分布直方图(图(1))和女生身高情况的频率分布直方图(图(2)).已知图(1)中身高在170~175cm的男生人数有16人.(Ⅰ)试问在抽取的学生中,男、女生各有多少人?(Ⅱ)在上述80名学生中,从身高在170~175cm之间的学生中按男、女性别分层抽样的方法,抽出5人,从这5人中选派3人当旗手,求3人中恰好有一名女生的概率.21.(12分)如图,已知椭圆的中心在原点,焦点在x轴上,长轴长是短轴长的2倍且经过点M(2,1),平行于OM的直线l在y轴上的截距为m(m≠0),直线l交椭圆于A,B两个不同点.(1)求椭圆的方程;(2)求m的取值范围.22.(12分)已知椭圆的离心率,过点A(0,﹣b)和B(a,0)的直线与原点的距离为.(1)求椭圆的方程;(2)已知定点E(﹣1,0),若直线y=kx+2(k≠0)与椭圆交于C、D两点,问:是否存在k的值,使以CD为直径的圆过E点?请说明理由.2016-2017学年福建省漳州市龙海市程溪中学高二(上)期中数学试卷(文科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.1.已知命题p:∀x∈R,sinx≤1,则()A.¬p:∃x∈R,sinx≥1 B.¬p:∀x∈R,sinx≥1C.¬p:∃x∈R,sinx>1 D.¬p:∀x∈R,sinx>1【考点】命题的否定.【分析】根据¬p是对p的否定,故有:∃x∈R,sinx>1.从而得到答案.【解答】解:∵¬p是对p的否定∴¬p:∃x∈R,sinx>1故选C.【点评】本题主要考查全称命题与特称命题的转化问题.2.从装有两个红球和两个黑球的口袋内任取两个球,那么互斥而不对立的两个事件是()A.“至少有一个黑球”与“都是黑球”B.“恰有一个黑球”与“恰有两个黑球”C.“至少有一个黑球”与“至少有一个红球”D.“至少有一个黑球”与“都是红球”【考点】互斥事件与对立事件.【分析】利用互斥事件和对立事件的定义求解.【解答】解:“至少有一个黑球”与“都是黑球”能同时发生,故A中的两个事件不是互斥事件;“恰有一个黑球”与“恰有两个黑球”不能同时发生,但能同时不发生,故B中的两个事件互斥而不对立;“至少有一个黑球”与“至少有一个红球”能同时发生,故C中的两个事件不是互斥事件;“至少有一个黑球”与“都是红球”是对立事件.故选:B.【点评】本题考查互斥而不对立的两个事件的判断,是基础题,解题时要认真审题,注意互斥事件定义的合理运用.3.下列说法错误的是()A.“若x+y=0,则x,y互为相反数”的逆命题是真命题B.“若q≤1,则x2+2x+q=0有实根”的逆否命题是真命题C.如果命题“¬p”与命题“p或q”都是真命题,那么命题q一定是真命题D.“”是“θ=30°”的充分不必要条件【考点】必要条件、充分条件与充要条件的判断;四种命题的真假关系.【分析】x,y互为相反数⇒x+y=0;“若q≤1,则x2+2x+q=0有实根”是真命题,故它的逆否命题一定是真命题;命题“¬p”与命题“p或q”都是真命题,则p是假命题,q是真命题;“”不能推出“θ=30°”.【解答】解:x,y互为相反数⇒x+y=0,故A成立;∵“若q≤1,则x2+2x+q=0有实根”是真命题,故它的逆否命题一定是真命题,故B成立;命题“¬p”与命题“p或q”都是真命题,则p是假命题,q是真命题,故C成立;“”不能推出“θ=30°”,故D不成立.故选D.【点评】本题考查必要条件、充分条件和充要条件,解题时要认真审题,仔细解答,注意四种命题的真假关系的应用.4.动点P到点M(1,0)与点N(3,0)的距离之差为2,则点P的轨迹是()A.双曲线B.双曲线的一支C.两条射线D.一条射线【考点】轨迹方程.【分析】根据双曲线的定义:动点到两定点的距离的差的绝对值为小于两定点距离的常数时为双曲线;距离当等于两定点距离时为两条射线;距离当大于两定点的距离时无轨迹.【解答】解:|PM|﹣|PN|=2=|MN|,点P的轨迹为一条射线故选D.【点评】本题考查双曲线的定义中的条件:小于两定点间的距离时为双曲线.5.已知△ABC的顶点B,C在椭圆+y2=1上,顶点A是椭圆的一个焦点,且椭圆的另外一个焦点在BC边上,则△ABC的周长是()A.B.6 C.D.12【考点】椭圆的简单性质.【分析】由椭圆的定义:椭圆上一点到两焦点的距离之和等于长轴长2a,可得△ABC 的周长.【解答】解:由椭圆的定义:椭圆上一点到两焦点的距离之和等于长轴长2a,可得△ABC的周长为4a=,故选C【点评】本题主要考查数形结合的思想和椭圆的基本性质,难度中等6.设集合M={x|x2<4,且x∈R},N={x|x<2},那么“a∈M”是“a∈N”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断;元素与集合关系的判断.【分析】本题考查判断充要条件的方法,我们可以根据充要条件的定义进行判断.【解答】解:M={x|x2<4,且x∈R}={x|﹣2<x<2}.N={x|x<2},若a∈M,能推出a∈N,反过来,a∈N,不一定有a∈M,比如a=﹣3.故选A.【点评】判断充要条件的常用方法是:①若p⇒q为真命题且q⇒p为假命题,则命题p是命题q的充分不必要条件;②若p⇒q为假命题且q⇒p为真命题,则命题p是命题q的必要不充分条件;③若p⇒q为真命题且q⇒p为真命题,则命题p是命题q的充要条件;④若p⇒q为假命题且q⇒p为假命题,则命题p是命题q的即不充分也不必要条件.⑤判断命题p与命题q所表示的范围,结合集合间的基本关系,判断命题p与命题q的关系.7.若方程x2+ky2=2表示焦点在y轴上的椭圆,那么实数k的取值范围是()A.(0,+∞) B.(0,2)C.(1,+∞) D.(0,1)【考点】椭圆的定义.【分析】先把椭圆方程整理成标准方程,进而根据椭圆的定义可建立关于k的不等式,求得k的范围.【解答】解:∵方程x2+ky2=2,即表示焦点在y轴上的椭圆∴故0<k<1故选D.【点评】本题主要考查了椭圆的定义,属基础题.8.先后抛掷硬币三次,则至少一次正面朝上的概率是()A.B.C.D.【考点】互斥事件与对立事件.【分析】至少一次正面朝上的对立事件是没有正面向上的骰子,先做出三次反面都向上的概率,利用对立事件的概率做出结果.【解答】解:由题意知至少一次正面朝上的对立事件是没有正面向上的骰子,至少一次正面朝上的对立事件的概率为,1﹣=.故选D.【点评】本题考查对立事件的概率,正难则反是解题是要时刻注意的,我们尽量用简单的方法来解题,这样可以避免一些繁琐的运算,使得题目看起来更加清楚明了.9.如图所示,程序框图(算法流程图)的输出结果是()A.3 B.4 C.5 D.8【考点】循环结构.【分析】列出循环中x,y的对应关系,不满足判断框结束循环,推出结果.【解答】解:由题意循环中x,y的对应关系如图:x1248y1234当x=8时不满足循环条件,退出循环,输出y=4.故选B.【点评】本题考查循环结构框图的应用,注意判断框的条件的应用,考查计算能力.10.某年级有12个班,现要从2班到12班中选1个班的学生参加一项活动,有人提议:掷两个骰子,把得到的点数之和是几就选几班,这种选法()A.公平,每个班被选到的概率都为B.公平,每个班被选到的概率都为C.不公平,6班被选到的概率最大D.不公平,7班被选到的概率最大【考点】概率的意义.【分析】分别求出每个班被选到的概率,对选项中的说法进行判断,即可得出正确的结论.【解答】解:P(1)=0,P(2)=P(12)=,P(3)=P(11)=,P(4)=P(10)=,P(5)=P(9)=,P(6)=P(8)=,P(7)=,故选:D.【点评】本题考查了概率的应用问题,解题时应对选项中的说法进行分析判断,以便得出正确的答案,是基础题.11.已知实数4,m,9构成一个等比数列,则圆锥曲线+y2=1的离心率为()A.B.C.或D.或7【考点】椭圆的简单性质;双曲线的简单性质.【分析】由实数4,m,9构成一个等比数列,得m=±=±6,由此能求出圆锥曲线的离心率.【解答】解:∵实数4,m,9构成一个等比数列,∴m=±=±6,当m=6时,圆锥曲线为,a=,c=,其离心率e=;当m=﹣6时,圆锥曲线为﹣,a=1,c=,其离心率e==.故选C.【点评】本题考查圆锥曲线的离心率的求法,是基础题.解题时要认真审题,仔细解答,注意等比中项公式的应用.12.(文科)双曲线(a>0,b>0)的左、右焦点分别为F1、F2,过点F1作倾斜角为30°的直线l,l与双曲线的右支交于点P,若线段PF1的中点M落在y轴上,则双曲线的渐近线方程为()A.y=±x B.y=±x C.y=±x D.y=±2x【考点】直线与圆锥曲线的关系;双曲线的简单性质.【分析】由于线段PF1的中点M落在y轴上,连接MF2,则|MF1|=|MF2|=|PM|=|PF1|⇒△PF1F2为直角三角形,△PMF2为等边三角形,于是|PF1|﹣|PF2|=|MF1|=2a,|F1F2|=2c=|MF1|=2a⇒c=a,由c2=a2+b2可求得b=a,于是双曲线的渐近线方程可求.【解答】解:连接MF2,由过点PF1作倾斜角为30°,线段PF1的中点M落在y轴上得:|MF1|=|MF2|═|PM|=|PF1|,∴△PMF2为等边三角形,△PF1F2为直角三角形,∵是|PF1|﹣|PF2|=|MF1|=2a,|F1F2|=2c=|MF1|=2a∴c=a,又c2=a2+b2,∴3a2=a2+b2,∴b=a,∴双曲线(a>0,b>0)的渐近线方程为:y=±=±x.故选C.【点评】本题考查直线与圆锥曲线的位置关系,关键是对双曲线定义的灵活应用及对三角形△PMF2为等边三角形,△PF1F2为直角三角形的分析与应用,属于难题.二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卷的相应位置.13.某单位有职工200名,现要从中抽取40名职工作样本,用系统抽样法,将全体职工随机按1﹣200编号,并按编号顺序平均分为40组(1﹣5号,6﹣10号, (196)200号).若第5组抽出的号码为22,则第8组抽出的号码应是37.【考点】系统抽样方法.【分析】由分组可知,抽号的间隔为5,第5组抽出的号码为22,可以一次加上5得到下一组的编号,第6组抽出的号码为27,第7组抽出的号码为32,第8组抽出的号码为37.【解答】解:由分组可知,抽号的间隔为5,又因为第5组抽出的号码为22,所以第6组抽出的号码为27,第7组抽出的号码为32,第8组抽出的号码为37.故答案为:37.【点评】本题考查系统抽样,在系统抽样过程中得到的样本号码是最规则的一组编号,注意要能从一系列样本中选择出来.本题还考查分层抽样,是一个抽样的综合题目.14.如图,一不规则区域内,有一边长为1米的正方形,向区域内随机地撒1000颗黄豆,数得落在正方形区域内(含边界)的黄豆数为375颗,以此实验数据为依据可以估计出该不规则图形的面积为平方米.【考点】几何概型.【分析】本题考查的知识点是根据几何概型的意义进行模拟试验计算不规则图形的面积,关键是掌握P=【解答】解:∵向区域内随机地撒1000颗黄豆,数得落在正方形区域内(含边界)的黄豆数为375颗,记“黄豆落在正方形区域内”为事件A∴P(A)==∴S平方米不规则图形=故答案为:【点评】几何概型的概率估算公式中的“几何度量”,可以为线段长度、面积、体积等,而且这个“几何度量”只与“大小”有关,而与形状和位置无关.解决的步骤均为:求出满足条件A的基本事件对应的“几何度量”N(A),再求出总的基本事件对应的“几何度量”N,最后根据P=求解.15.设F1,F2是双曲线的两个焦点,点P在双曲线上,且∠F1PF2=90°,求△F1PF2的面积.【考点】双曲线的简单性质;双曲线的定义.【分析】根据根据双曲线性质可知PF1﹣PF2的值,再根据∠F1PF2=90°,求得PF12+PF22的值,进而根据余弦定理求得PF1•PF2,进而可求得△F1PF2的面积.【解答】解:双曲线的a=3,c=5,不妨设PF1>PF2,则PF1﹣PF2=2a=6F1F22=PF12+PF22,而F1F2=2c=10得PF12+PF22=(PF1﹣PF2)2+2PF1•PF2=100∴PF1•PF2=32∴△F1PF2的面积16.【点评】本题主要考查了双曲线的简单性质.要灵活运用双曲线的定义及焦距、实轴、虚轴等之间的关系.16.已知命题p:关于x的不等式x2+(a﹣1)x+a2≤0的解集为Ø;命题q:函数y=(2a2﹣a)x为增函数,若函数“p∨q”为真命题,则实数a的取值范围是a>或a<﹣.【考点】复合命题的真假.【分析】假设p、q是真命题,分别求出a的范围,再由p∨q是真命题,分类讨论即可得解【解答】解:当命题p是真命题时:∵x2+(a﹣1)x+a2≤0的解集为Ø∴(a﹣1)2﹣4a2<0∴当命题q是真命题时:∵函数y=(2a2﹣a)x为增函数∴2a2﹣a>1∴a<或a>1∵“p∨q”为真命题∴可能的情况有:p真q真、p真q假、p假q真①当p真q真时∴a<﹣1或a>1②当p真q假时∴③当p假q真时∴∴故答案为:【点评】本题考查简单命题和符合命题的真假性,注意或命题为真命题时有三种情况,且命题为假命题时有三种情况,要注意分类讨论.属简单题三、解答题(共6题,满分70分)解答应写演算步骤.17.(10分)(2016秋•龙海市校级期中)在物理实验中,为了研究所挂物体的重量x 对弹簧长度y的影响.某学生通过实验测量得到物体的重量与弹簧长度的对比表:物体重量(单位g)12345弹簧长度(单位cm) 1.5345 6.5(1)利用最小二乘法求y对x的回归直线方程;(2)预测所挂物体重量为8g时的弹簧长度.(参考公式及数据:,)【考点】线性回归方程.【分析】(1)由表中数据,计算、,求出回归系数b、a,写出回归方程;(2)利用线性回归方程计算x=8时y的值即可.【解答】解:(1)由表中数据,得=×(1+2+3+4+5)=3,=×(1.5+3+4+5+6.5)=4,又,,∴b===1.2,∴a=﹣b=4﹣1.2×3=0.4;∴y关于x的线性回归方程为y=1.2x+0.4;(2)由线性回归方程为y=1.2x+0.4,把x=8代入回归方程y=1.2x+0.4中,得:y=1.2×8+0.4=10,故预测所挂物体重量为8g时的弹簧长度10cm.【点评】本题考查了线性回归方程的求法与应用问题,是基础题目.18.(12分)(2013春•福州校级期中)以下茎叶图记录了某篮球队内两大中锋在六次训练中抢得篮板球数记录,由于教练一时疏忽,忘了记录乙球员其中一次的数据,在图中以X表示.(1)如果乙球员抢得篮板球的平均数为10时,求X的值和乙球员抢得篮板球数的方差;(2)如果您是该球队的教练在正式比赛中您会派谁上场呢?并说明理由(用数据说明).【考点】极差、方差与标准差.【分析】(1)由茎叶图数据,根据平均数公式,构造关于X方程,解方程可得答案.(2)分别计算两人的均值与方差,作出决定.【解答】解:乙球员抢得篮板球的平均数为10,,解得x=9,乙球员抢得篮板球数的方差==5(2)由(1)得=10,=5,,==6∵∴由数据结果说明,乙球员发挥地更稳定,所以选派乙球员上场.…(12分)【点评】本题考查本题考查平均数、方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.19.(12分)(2016秋•龙海市校级期中)双曲线与椭圆有共同的焦点F1(﹣5,0),F2(5,0),点P(4,3)是双曲线的渐近线与椭圆的一个交点,求双曲线与椭圆的方程.【考点】双曲线的简单性质;椭圆的简单性质.【分析】先利用双曲线与椭圆有共同的焦点F1(﹣5,0),F2(5,0),设出对应的双曲线和椭圆方程,再利用点P(4,3)适合双曲线的渐近线和椭圆方程,就可求出双曲线与椭圆的方程.【解答】解:由共同的焦点F1(﹣5,0),F2(5,0),可设椭圆方程为+=1,双曲线方程为﹣=1,点P(4,3)在椭圆上, +=1,a2=40,双曲线的过点P(4,3)的渐近线为y=x,分析有=,计算可得b2=16.所以椭圆方程为: +=1;双曲线方程为:﹣=1.【点评】本题考查双曲线与椭圆的标准方程的求法.在求双曲线与椭圆的标准方程时,一定要先分析焦点所在位置,再设方程,避免出错.20.(12分)(2016秋•龙海市校级期中)某学校为调查高三年学生的身高情况,按随机抽样的方法抽取80名学生,得到男生身高情况的频率分布直方图(图(1))和女生身高情况的频率分布直方图(图(2)).已知图(1)中身高在170~175cm的男生人数有16人.(Ⅰ)试问在抽取的学生中,男、女生各有多少人?(Ⅱ)在上述80名学生中,从身高在170~175cm之间的学生中按男、女性别分层抽样的方法,抽出5人,从这5人中选派3人当旗手,求3人中恰好有一名女生的概率.【考点】列举法计算基本事件数及事件发生的概率;频率分布直方图.【分析】(Ⅰ)直方图,身高在170~175 cm的男生的频率为0.4,由此能求出男生数和女生数.(Ⅱ)在170~175 cm之间的男生有16人,女生人数有4人.按分层抽样的方法抽出5人,则男生占4人,女生占1人,由此能求出3人中恰好有一名女生的概率.【解答】解:(Ⅰ)直方图中,因为身高在170~175 cm的男生的频率为0.08×5=0.4,设男生数为n,则,解得n=40,由男生的人数为40,得女生的人数为80﹣40=40.(6分)(Ⅱ)在170~175 cm之间的男生有16人,女生人数有4人.按分层抽样的方法抽出5人,则男生占4人,女生占1人.(9分)设男生为A1,A2,A3,A4,女生为B.从5人任先两人,有种选法.3人中恰好有一名女生包含的基本事件个数为=6,∴3人中恰好有一名女生的概率为p=.12分【点评】本题考查频率分布直方图的应用,考查概率的求法,是基础题,解题时要认真审题,注意列举法的合理运用.21.(12分)(2016春•卢龙县期末)如图,已知椭圆的中心在原点,焦点在x轴上,长轴长是短轴长的2倍且经过点M(2,1),平行于OM的直线l在y轴上的截距为m (m≠0),直线l交椭圆于A,B两个不同点.(1)求椭圆的方程;(2)求m的取值范围.【考点】椭圆的简单性质.【分析】(1)设出椭圆的方程,利用长轴长是短轴长的2倍且经过点M(2,1),建立方程,求出a,b,即可求椭圆的方程;(2)由直线方程代入椭圆方程,利用根的判别式,即可求m的取值范围.【解答】解:(1)设椭圆方程为=1(a>b>0)则…(2分)解得a2=8,b2=2…∴椭圆方程为=1;…(6分)(2)∵直线l平行于OM,且在y轴上的截距为m又K OM=,∴l的方程为:y=x+m由直线方程代入椭圆方程x2+2mx+2m2﹣4=0,…(8分)∵直线l与椭圆交于A、B两个不同点,∴△=(2m)2﹣4(2m2﹣4)>0,…(10分)解得﹣2<m<2,且m≠0.…(12分)【点评】本题考查椭圆的方程与性质,考查直线与椭圆的位置关系,考查学生的计算能力,属于中档题.22.(12分)(2016•西宁校级模拟)已知椭圆的离心率,过点A(0,﹣b)和B(a,0)的直线与原点的距离为.(1)求椭圆的方程;(2)已知定点E(﹣1,0),若直线y=kx+2(k≠0)与椭圆交于C、D两点,问:是否存在k的值,使以CD为直径的圆过E点?请说明理由.【考点】圆与圆锥曲线的综合;椭圆的标准方程.【分析】(1)直线AB方程为bx﹣ay﹣ab=0,依题意可得:,由此能求出椭圆的方程.(2)假设存在这样的值.,得(1+3k2)x2+12kx+9=0,再由根的判别式和根与系数的关系进行求解.【解答】解:(1)直线AB方程为bx﹣ay﹣ab=0,依题意可得:,解得:a2=3,b=1,∴椭圆的方程为.(2)假设存在这样的值.,得(1+3k2)x2+12kx+9=0,∴△=(12k)2﹣36(1+3k2)>0…①,设C(x1,y1),D(x2,y2),则而y1•y2=(kx1+2)(kx2+2)=k2x1x2+2k(x1+x2)+4,要使以CD为直径的圆过点E(﹣1,0),当且仅当CE⊥DE时,则y1y2+(x1+1)(x2+1)=0,∴(k2+1)x1x2+(2k+1)(x1+x2)+5=0…③将②代入③整理得k=,经验证k=使得①成立综上可知,存在k=使得以CD为直径的圆过点E.【点评】本题考查圆与圆锥曲线的综合性质和应用,解题时要认真审题,仔细解答,注意合理地进行等价转化.。
2016-2017年福建省漳州市龙海市程溪中学高二上学期数学期中试卷及参考答案(文科)
2016-2017学年福建省漳州市龙海市程溪中学高二(上)期中数学试卷(文科)一、选择题:本大题共12小题,每小题5分,共60分.1.(5分)已知命题p:∀x∈R,sinx≤1,则()A.¬p:∃x∈R,sinx≥1 B.¬p:∀x∈R,sinx≥1C.¬p:∃x∈R,sinx>1 D.¬p:∀x∈R,sinx>12.(5分)从装有两个红球和两个黑球的口袋内任取两个球,那么互斥而不对立的两个事件是()A.“至少有一个黑球”与“都是黑球”B.“恰有一个黑球”与“恰有两个黑球”C.“至少有一个黑球”与“至少有一个红球”D.“至少有一个黑球”与“都是红球”3.(5分)下列说法错误的是()A.“若x+y=0,则x,y互为相反数”的逆命题是真命题B.“若q≤1,则x2+2x+q=0有实根”的逆否命题是真命题C.如果命题“¬p”与命题“p或q”都是真命题,那么命题q一定是真命题D.“”是“θ=30°”的充分不必要条件4.(5分)动点P到点M(1,0)与点N(3,0)的距离之差为2,则点P的轨迹是()A.双曲线B.双曲线的一支C.两条射线D.一条射线5.(5分)已知△ABC的顶点B,C在椭圆+y2=1上,顶点A是椭圆的一个焦点,且椭圆的另外一个焦点在BC边上,则△ABC的周长是()A.B.6 C.D.126.(5分)设集合M={x|x2<4,且x∈R},N={x|x<2},那么“a∈M”是“a∈N”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件7.(5分)若方程x2+ky2=2表示焦点在y轴上的椭圆,那么实数k的取值范围是()A.(0,+∞)B.(0,2) C.(1,+∞)D.(0,1)8.(5分)先后抛掷硬币三次,则至少一次正面朝上的概率是()A.B.C.D.9.(5分)如图所示,程序框图(算法流程图)的输出结果是()A.3 B.4 C.5 D.810.(5分)某年级有12个班,现要从2班到12班中选1个班的学生参加一项活动,有人提议:掷两个骰子,把得到的点数之和是几就选几班,这种选法()A.公平,每个班被选到的概率都为B.公平,每个班被选到的概率都为C.不公平,6班被选到的概率最大D.不公平,7班被选到的概率最大11.(5分)已知实数4,m,9构成一个等比数列,则圆锥曲线的离心率为()A.B.C.或D.或712.(5分)(文科)双曲线(a>0,b>0)的左、右焦点分别为F1、F2,过点F1作倾斜角为30°的直线l,l与双曲线的右支交于点P,若线段PF1的中点M落在y轴上,则双曲线的渐近线方程为()A.y=±x B.y=±x C.y=±x D.y=±2x二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卷的相应位置.13.(5分)某单位拟采用系统抽样法对200名职工进行年龄调查,现将全体职工随机按1﹣200编号,并按编号顺序平均分为40组(1﹣5号,6﹣10号,…,196﹣200号).若第5组抽出的号码为22,则第8组抽出的号码应是.14.(5分)如图,一不规则区域内,有一边长为1米的正方形,向区域内随机地撒1000颗黄豆,数得落在正方形区域内(含边界)的黄豆数为375颗,以此实验数据为依据可以估计出该不规则图形的面积为平方米.15.(5分)设F1,F2是双曲线的两个焦点,点P在双曲线上,且∠F1PF2=90°,求△F1PF2的面积.16.(5分)已知命题p:关于x的不等式x2+(a﹣1)x+a2≤0的解集为Ø;命题q:函数y=(2a2﹣a)x为增函数,若函数“p∨q”为真命题,则实数a的取值范围是.三、解答题(共6题,满分70分)解答应写演算步骤.17.(10分)在物理实验中,为了研究所挂物体的重量x对弹簧长度y的影响.某学生通过实验测量得到物体的重量与弹簧长度的对比表:(1)利用最小二乘法求y对x的回归直线方程;(2)预测所挂物体重量为8g时的弹簧长度.(参考公式及数据:,)18.(12分)以下茎叶图记录了某篮球队内两大中锋在六次训练中抢得篮板球数记录,由于教练一时疏忽,忘了记录乙球员其中一次的数据,在图中以X表示.(1)如果乙球员抢得篮板球的平均数为10时,求X的值和乙球员抢得篮板球数的方差;(2)如果您是该球队的教练在正式比赛中您会派谁上场呢?并说明理由(用数据说明).19.(12分)双曲线与椭圆有共同的焦点F1(﹣5,0),F2(5,0),点P(4,3)是双曲线的渐近线与椭圆的一个交点,求双曲线与椭圆的方程.20.(12分)某学校为调查高三年学生的身高情况,按随机抽样的方法抽取80名学生,得到男生身高情况的频率分布直方图(图(1))和女生身高情况的频率分布直方图(图(2)).已知图(1)中身高在170~175cm的男生人数有16人.(Ⅰ)试问在抽取的学生中,男、女生各有多少人?(Ⅱ)在上述80名学生中,从身高在170~175cm之间的学生中按男、女性别分层抽样的方法,抽出5人,从这5人中选派3人当旗手,求3人中恰好有一名女生的概率.21.(12分)如图,已知椭圆的中心在原点,焦点在x轴上,长轴长是短轴长的2倍且经过点M(2,1),平行于OM的直线l在y轴上的截距为m(m≠0),直线l交椭圆于A,B两个不同点.(1)求椭圆的方程;(2)求m的取值范围.22.(12分)已知椭圆的离心率,过点A(0,﹣b)和B(a,0)的直线与原点的距离为.(1)求椭圆的方程;(2)已知定点E(﹣1,0),若直线y=kx+2(k≠0)与椭圆交于C、D两点,问:是否存在k的值,使以CD为直径的圆过E点?请说明理由.2016-2017学年福建省漳州市龙海市程溪中学高二(上)期中数学试卷(文科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.1.(5分)已知命题p:∀x∈R,sinx≤1,则()A.¬p:∃x∈R,sinx≥1 B.¬p:∀x∈R,sinx≥1C.¬p:∃x∈R,sinx>1 D.¬p:∀x∈R,sinx>1【解答】解:∵¬p是对p的否定∴¬p:∃x∈R,sinx>1故选:C.2.(5分)从装有两个红球和两个黑球的口袋内任取两个球,那么互斥而不对立的两个事件是()A.“至少有一个黑球”与“都是黑球”B.“恰有一个黑球”与“恰有两个黑球”C.“至少有一个黑球”与“至少有一个红球”D.“至少有一个黑球”与“都是红球”【解答】解:“至少有一个黑球”与“都是黑球”能同时发生,故A中的两个事件不是互斥事件;“恰有一个黑球”与“恰有两个黑球”不能同时发生,但能同时不发生,故B中的两个事件互斥而不对立;“至少有一个黑球”与“至少有一个红球”能同时发生,故C中的两个事件不是互斥事件;“至少有一个黑球”与“都是红球”是对立事件.故选:B.3.(5分)下列说法错误的是()A.“若x+y=0,则x,y互为相反数”的逆命题是真命题B.“若q≤1,则x2+2x+q=0有实根”的逆否命题是真命题C.如果命题“¬p”与命题“p或q”都是真命题,那么命题q一定是真命题D.“”是“θ=30°”的充分不必要条件【解答】解:x,y互为相反数⇒x+y=0,故A成立;∵“若q≤1,则x2+2x+q=0有实根”是真命题,故它的逆否命题一定是真命题,故B成立;命题“¬p”与命题“p或q”都是真命题,则p是假命题,q是真命题,故C成立;“”不能推出“θ=30°”,故D不成立.故选:D.4.(5分)动点P到点M(1,0)与点N(3,0)的距离之差为2,则点P的轨迹是()A.双曲线B.双曲线的一支C.两条射线D.一条射线【解答】解:|PM|﹣|PN|=2=|MN|,点P的轨迹为一条射线故选:D.5.(5分)已知△ABC的顶点B,C在椭圆+y2=1上,顶点A是椭圆的一个焦点,且椭圆的另外一个焦点在BC边上,则△ABC的周长是()A.B.6 C.D.12【解答】解:由椭圆的定义:椭圆上一点到两焦点的距离之和等于长轴长2a,可得△ABC的周长为4a=,故选:C.6.(5分)设集合M={x|x2<4,且x∈R},N={x|x<2},那么“a∈M”是“a∈N”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【解答】解:M={x|x2<4,且x∈R}={x|﹣2<x<2}.N={x|x<2},若a∈M,能推出a∈N,反过来,a∈N,不一定有a∈M,比如a=﹣3.故选:A.7.(5分)若方程x2+ky2=2表示焦点在y轴上的椭圆,那么实数k的取值范围是()A.(0,+∞)B.(0,2) C.(1,+∞)D.(0,1)【解答】解:∵方程x2+ky2=2,即表示焦点在y轴上的椭圆∴故0<k<1故选:D.8.(5分)先后抛掷硬币三次,则至少一次正面朝上的概率是()A.B.C.D.【解答】解:由题意知至少一次正面朝上的对立事件是没有正面向上的骰子,至少一次正面朝上的对立事件的概率为,1﹣=.故选:D.9.(5分)如图所示,程序框图(算法流程图)的输出结果是()A.3 B.4 C.5 D.8【解答】解:由题意循环中x,y的对应关系如图:当x=8时不满足循环条件,退出循环,输出y=4.故选:B.10.(5分)某年级有12个班,现要从2班到12班中选1个班的学生参加一项活动,有人提议:掷两个骰子,把得到的点数之和是几就选几班,这种选法()A.公平,每个班被选到的概率都为B.公平,每个班被选到的概率都为C.不公平,6班被选到的概率最大D.不公平,7班被选到的概率最大【解答】解:P(1)=0,P(2)=P(12)=,P(3)=P(11)=,P(4)=P(10)=,P(5)=P(9)=,P(6)=P(8)=,P(7)=,故选:D.11.(5分)已知实数4,m,9构成一个等比数列,则圆锥曲线的离心率为()A.B.C.或D.或7【解答】解:∵实数4,m,9构成一个等比数列,∴m2=4×9,解得m=±6.①当m=6时,圆锥曲线为表示椭圆,其中a2=6,b2=1,∴离心率e===;②当m=﹣6时,圆锥曲线为表示双曲线,其中a2=1,b2=6,∴离心率e==.故选:C.12.(5分)(文科)双曲线(a>0,b>0)的左、右焦点分别为F1、F2,过点F1作倾斜角为30°的直线l,l与双曲线的右支交于点P,若线段PF1的中点M落在y轴上,则双曲线的渐近线方程为()A.y=±x B.y=±x C.y=±x D.y=±2x【解答】解:连接MF2,由过点PF1作倾斜角为30°,线段PF1的中点M落在y 轴上得:|MF1|=|MF2|═|PM|=|PF1|,∴△PMF2为等边三角形,△PF1F2为直角三角形,∵是|PF1|﹣|PF2|=|MF1|=2a,|F1F2|=2c=|MF1|=2a∴c=a,又c2=a2+b2,∴3a2=a2+b2,∴b=a,∴双曲线(a>0,b>0)的渐近线方程为:y=±=±x.故选:C.二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卷的相应位置.13.(5分)某单位拟采用系统抽样法对200名职工进行年龄调查,现将全体职工随机按1﹣200编号,并按编号顺序平均分为40组(1﹣5号,6﹣10号,…,196﹣200号).若第5组抽出的号码为22,则第8组抽出的号码应是37.【解答】解:由分组可知,抽号的间隔为5,又因为第5组抽出的号码为22,所以第6组抽出的号码为27,第7组抽出的号码为32,第8组抽出的号码为37.故答案为:37.14.(5分)如图,一不规则区域内,有一边长为1米的正方形,向区域内随机地撒1000颗黄豆,数得落在正方形区域内(含边界)的黄豆数为375颗,以此实验数据为依据可以估计出该不规则图形的面积为平方米.【解答】解:∵向区域内随机地撒1000颗黄豆,数得落在正方形区域内(含边界)的黄豆数为375颗,记“黄豆落在正方形区域内”为事件A∴P(A)===平方米∴S不规则图形故答案为:15.(5分)设F1,F2是双曲线的两个焦点,点P在双曲线上,且∠F1PF2=90°,求△F1PF2的面积.【解答】解:双曲线的a=3,c=5,不妨设PF1>PF2,则PF1﹣PF2=2a=6F1F22=PF12+PF22,而F1F2=2c=10得PF12+PF22=(PF1﹣PF2)2+2PF1•PF2=100∴PF1•PF2=32∴△F1PF2的面积16.16.(5分)已知命题p:关于x的不等式x2+(a﹣1)x+a2≤0的解集为Ø;命题q:函数y=(2a2﹣a)x为增函数,若函数“p∨q”为真命题,则实数a的取值范围是a>或a<﹣.【解答】解:当命题p是真命题时:∵x2+(a﹣1)x+a2≤0的解集为Ø∴(a﹣1)2﹣4a2<0∴当命题q是真命题时:∵函数y=(2a2﹣a)x为增函数∴2a2﹣a>1∴a<或a>1∵“p∨q”为真命题∴可能的情况有:p真q真、p真q假、p假q真①当p真q真时∴a<﹣1或a>1②当p真q假时∴③当p假q真时∴∴故答案为:三、解答题(共6题,满分70分)解答应写演算步骤.17.(10分)在物理实验中,为了研究所挂物体的重量x对弹簧长度y的影响.某学生通过实验测量得到物体的重量与弹簧长度的对比表:(1)利用最小二乘法求y对x的回归直线方程;(2)预测所挂物体重量为8g时的弹簧长度.(参考公式及数据:,)【解答】解:(1)由表中数据,得=×(1+2+3+4+5)=3,=×(1.5+3+4+5+6.5)=4,又,,∴b===1.2,∴a=﹣b=4﹣1.2×3=0.4;∴y关于x的线性回归方程为y=1.2x+0.4;(2)由线性回归方程为y=1.2x+0.4,把x=8代入回归方程y=1.2x+0.4中,得:y=1.2×8+0.4=10,故预测所挂物体重量为8g时的弹簧长度10cm.18.(12分)以下茎叶图记录了某篮球队内两大中锋在六次训练中抢得篮板球数记录,由于教练一时疏忽,忘了记录乙球员其中一次的数据,在图中以X表示.(1)如果乙球员抢得篮板球的平均数为10时,求X的值和乙球员抢得篮板球数的方差;(2)如果您是该球队的教练在正式比赛中您会派谁上场呢?并说明理由(用数据说明).【解答】解:乙球员抢得篮板球的平均数为10,,解得x=9,乙球员抢得篮板球数的方差=[(9﹣10)2+(8﹣10)2+(9﹣10)2+(8﹣10)2+(14﹣10)2+(12﹣10)2]=5(2)由(1)得=10,=5,,=[(6﹣10)2+(9﹣10)2+(9﹣10)2+(14﹣10)2+(11﹣10)2+(11﹣10)2]=6∵∴由数据结果说明,乙球员发挥地更稳定,所以选派乙球员上场.…(12分)19.(12分)双曲线与椭圆有共同的焦点F1(﹣5,0),F2(5,0),点P(4,3)是双曲线的渐近线与椭圆的一个交点,求双曲线与椭圆的方程.【解答】解:由共同的焦点F1(﹣5,0),F2(5,0),可设椭圆方程为+=1,双曲线方程为﹣=1,点P(4,3)在椭圆上,+=1,a2=40,双曲线的过点P(4,3)的渐近线为y=x,分析有=,计算可得b2=16.所以椭圆方程为:+=1;双曲线方程为:﹣=1.20.(12分)某学校为调查高三年学生的身高情况,按随机抽样的方法抽取80名学生,得到男生身高情况的频率分布直方图(图(1))和女生身高情况的频率分布直方图(图(2)).已知图(1)中身高在170~175cm的男生人数有16人.(Ⅰ)试问在抽取的学生中,男、女生各有多少人?(Ⅱ)在上述80名学生中,从身高在170~175cm之间的学生中按男、女性别分层抽样的方法,抽出5人,从这5人中选派3人当旗手,求3人中恰好有一名女生的概率.【解答】解:(Ⅰ)直方图中,因为身高在170~175 cm的男生的频率为0.08×5=0.4,设男生数为n,则,解得n=40,(4分)由男生的人数为40,得女生的人数为80﹣40=40.(6分)(Ⅱ)在170~175 cm之间的男生有16人,女生人数有4人.按分层抽样的方法抽出5人,则男生占4人,女生占1人.(9分)设男生为A1,A2,A3,A4,女生为B.从5人任先两人,有种选法.3人中恰好有一名女生包含的基本事件个数为=6,∴3人中恰好有一名女生的概率为p=.12分21.(12分)如图,已知椭圆的中心在原点,焦点在x轴上,长轴长是短轴长的2倍且经过点M(2,1),平行于OM的直线l在y轴上的截距为m(m≠0),直线l交椭圆于A,B两个不同点.(1)求椭圆的方程;(2)求m的取值范围.【解答】解:(1)设椭圆方程为=1(a>b>0)则…(2分)解得a2=8,b2=2…(5分)∴椭圆方程为=1;…(6分)(2)∵直线l平行于OM,且在y轴上的截距为m又K OM=,∴l的方程为:y=x+m由直线方程代入椭圆方程x2+2mx+2m2﹣4=0,…(8分)∵直线l与椭圆交于A、B两个不同点,∴△=(2m)2﹣4(2m2﹣4)>0,…(10分)解得﹣2<m<2,且m≠0.…(12分)22.(12分)已知椭圆的离心率,过点A(0,﹣b)和B(a,0)的直线与原点的距离为.(1)求椭圆的方程;(2)已知定点E(﹣1,0),若直线y=kx+2(k≠0)与椭圆交于C、D两点,问:是否存在k的值,使以CD为直径的圆过E点?请说明理由.【解答】解:(1)直线AB方程为bx﹣ay﹣ab=0,依题意可得:,解得:a2=3,b=1,∴椭圆的方程为.(2)假设存在这样的值.,得(1+3k2)x2+12kx+9=0,∴△=(12k)2﹣36(1+3k2)>0…①,设C(x 1,y1),D(x2,y2),则而y1•y2=(kx1+2)(kx2+2)=k2x1x2+2k(x1+x2)+4,要使以CD为直径的圆过点E(﹣1,0),当且仅当CE⊥DE时,则y1y2+(x1+1)(x2+1)=0,∴(k2+1)x1x2+(2k+1)(x1+x2)+5=0…③将②代入③整理得k=,经验证k=使得①成立综上可知,存在k=使得以CD为直径的圆过点E.。
2017-2018学年福建省漳州市龙海市程溪中学高二上学期数学期中试卷带解析(理科)
2017-2018学年福建省漳州市龙海市程溪中学高二(上)期中数学试卷(理科)一、选择题(共12小题,每小题5分,满分60分)1.(5分)已知椭圆方程为的左、右焦点分别为F1,F2,过左焦点F1的直线交椭圆于A,B两点,则△ABF2的周长为()A.12 B.9 C.6 D.42.(5分)“x>2”是“x2>4”的()A.必要不充分条件 B.充分不必要条件C.充分必要条件D.既不充分也不必要条件3.(5分)98与63的最大公约数为a,二进制数110011(2)化为十进制数为b,则a+b=()A.53 B.54 C.58 D.604.(5分)原命题:“设a,b,c∈R,若a>b,则ac2>bc2”,在原命题以及它的逆命题、否命题、逆否命题中,真命题的个数为()A.0 B.1 C.2 D.45.(5分)一个口袋中装有2个白球和3个黑球,则先摸出一个白球后放回,再摸出一个白球的概率是()A.B.C.D.6.(5分)掷一颗骰子一次,设事件A=“出现奇数点”,事件B=“出现4点”,则事件A,B的关系是()A.互斥且对立事件 B.互斥且不对立事件C.不互斥事件D.以上都不对7.(5分)在区间[﹣1,3]内任取一个实数x满足log2(x﹣1)>0的概率是()A.B.C.D.8.(5分)设不等式组表示的平面区域为D.在区域D内随机取一个点,则此点到坐标原点的距离大于2的概率是()A.B.C.D.9.(5分)阅读如图所示程序框图,为使输出的数据为31,则判断框中应填的是()A.n<4 B.n<5 C.n<6 D.n<710.(5分)已知命题p:∀x>0,总有(x+1)e x>1,则¬p为()A.∃x0≤0,使得(x0+1)e≤1 B.∃x0>0,使得(x0+1)e≤1C.∀x>0,总有(x+1)e x≤1 D.∀x≤0,总有(x+1)e x≤111.(5分)将53化为二进制的数,结果为()A.10101(2)B.101011(2)C.110011(2)D.110101(2)12.(5分)图1是某高三学生进入高中三年来的数学考试成绩茎叶图,第1次到12次的考试成绩依次记为A1,A2,…,A12.图2是统计茎叶图中成绩在一定范围内考试次数的一个算法流程图.那么算法流程图输出的结果是()A.8 B.9 C.10 D.11二、填空题(共4小题,每小题5分,满分20分)13.(5分)已知方程+=1表示椭圆,求k的取值范围..14.(5分)用秦九韶算法求多项式f(x)=x6﹣8x5+60x4+16x3+96x2+240x+64在x=2时,v2的值为.15.(5分)某学员在一次射击测试中射靶9次,命中环数如下:8,7,9,5,4,9,10,7,4;则命中环数的方差为.16.(5分)根据《中华人民共和国道路交通安全法》规定:车辆驾驶员血液酒精浓度在20﹣80mg/100ml(不含80)之间,属于酒后驾车;血液酒精浓度在80mg/100ml(含80)以上时,属醉酒驾车.据《法制晚报》报道,2010年3月15日至3 月28日,全国查处酒后驾车和醉酒驾车共28800人,如图是对这28800人酒后驾车血液中酒精含量进行检测所得结果的频率分布直方图,则属于醉酒驾车的人数约为.三、解答题(共6小题,满分70分)17.(10分)在平面直角坐标系xOy中,椭圆C:+=1的左、右焦点分别是F1,F2,P为椭圆C上的一点,且PF1⊥PF2,求(1)椭圆长轴长,短轴长,离心率各是多少.(2)△PF1F2的面积.18.(12分)命题p:“方程x2+=1表示焦点在y轴上的椭圆”;命题q:对任意实数x都有mx2+mx+1>0恒成立.若p∧q是假命题,p∨q是真命题,求实数m的取值范围.19.(12分)已知p:A={x||2x+1|≤3 },q:B={x|1﹣m≤x≤1+m },若¬p是¬q的充分不必要条件,求实数m的取值范围.20.(12分)某校为了解学生寒假期间的学习情况,从初中及高中各班共抽取了50名学生,对他们每天平均学习时间进行统计.请根据下面的各班人数统计表和学习时间的频率分布直方图解决下列问题:(Ⅰ)抽查的50人中,每天平均学习时间为6~8小时的人数有多少? (Ⅱ)经调查,每天平均学习时间不少于6小时的学生均来自高中.现采用分层抽样的方法,从学习时间不少于6小时的学生中随机抽取6名学生进行问卷调查,求这三个年级各抽取了多少名学生;(Ⅲ)在(Ⅱ)抽取的6名学生中随机选取2人进行访谈,求这2名学生来自不同年级的概率.21.(12分)在“新零售”模式的背景下,某大型零售公司为推广线下分店,计划在S 市的A 区开设分店.为了确定在该区开设分店的个数,该公司对该市已开设分店的其他区的数据作了初步处理后得到下列表格.记x 表示在各区开设分店的个数,y 表示这x 个分店的年收入之和.(Ⅰ)该公司已经过初步判断,可用线性回归模型拟合y 与x 的关系,求y 关于x 的线性回归方程y=;(Ⅱ)假设该公司在A 区获得的总年利润z (单位:百万元)与x ,y 之间的关系为z=y ﹣0.05x 2﹣1.4,请结合(Ⅰ)中的线性回归方程,估算该公司应在A 区开设多少个分店时,才能使A 区平均每个分店的年利润最大?参考公式:=x +a ,==,a=﹣.22.(12分)已知椭圆C的中心在原点,焦点在x轴上,左右焦点分别为F1,F2,且|F1F2|=2,点(1,)在椭圆C上.(Ⅰ)求椭圆C的方程;(Ⅱ)过F1的直线l与椭圆C相交于A,B两点,且△AF2B的面积为,求以F 2为圆心且与直线l相切的圆的方程.2017-2018学年福建省漳州市龙海市程溪中学高二(上)期中数学试卷(理科)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)已知椭圆方程为的左、右焦点分别为F 1,F2,过左焦点F1的直线交椭圆于A,B两点,则△ABF2的周长为()A.12 B.9 C.6 D.4【解答】解:椭圆方程为焦点在x轴上,a=3,b=2,c=,由椭圆的定义可知:|AF1|+|AF2|=2a=6,|BF1|+|BF2|=2a=6,则△ABF2的周长(|AF1|+|AF2|)+(|BF1|+|BF2|)=2a+2a=4a=12,∴△ABF2的周长12,故选:A.2.(5分)“x>2”是“x2>4”的()A.必要不充分条件 B.充分不必要条件C.充分必要条件D.既不充分也不必要条件【解答】解:由x2>4,解得x>2,或x<﹣2.∴“x>2”是“x2>4”的充分不必要条件.故选:B.3.(5分)98与63的最大公约数为a,二进制数110011(2)化为十进制数为b,则a+b=()A.53 B.54 C.58 D.60【解答】解:∵由题意,98÷63=1 (35)63÷35=1…28,35÷28=1 (7)28÷7=4,∴98与63的最大公约数为7,可得:a=7,又∵110011=1+1×2+0×22+0×23+1×24+1×25=51,可得:b=51,(2)∴a+b=51+7=58.故选:C.4.(5分)原命题:“设a,b,c∈R,若a>b,则ac2>bc2”,在原命题以及它的逆命题、否命题、逆否命题中,真命题的个数为()A.0 B.1 C.2 D.4【解答】解:逆命题:设a,b,c∈R,若ac2>bc2,则a>b;∵由ac2>bc2可得c2>0,∴能得到a>b,所以该命题为真命题;否命题:设a,b,c∈R,若a≤b,则ac2≤bc2;∵c2≥0,∴由a≤b可以得到ac2≤bc2,所以该命题为真命题;因为原命题和它的逆否命题具有相同的真假性,所以只需判断原命题的真假即可;∵c2=0时,ac2=bc2,所以由a>b得到ac2≥bc2,所以原命题为假命题,即它的逆否命题为假命题;∴为真命题的有2个.故选:C.5.(5分)一个口袋中装有2个白球和3个黑球,则先摸出一个白球后放回,再摸出一个白球的概率是()A.B.C.D.【解答】解:袋子中共计有5个球,2个白球、3个黑球,有放回的摸球,每次摸到白球的概率都是相等的,都等于=,故选:C.6.(5分)掷一颗骰子一次,设事件A=“出现奇数点”,事件B=“出现4点”,则事件A,B的关系是()A.互斥且对立事件 B.互斥且不对立事件C.不互斥事件D.以上都不对【解答】解:掷一颗骰子一次,设事件A=“出现奇数点”,事件B=“出现4点”,事件A与B不能同时发生,但能同时不发生,∴事件A,B的关系是互斥且不对立事件.故选:B.7.(5分)在区间[﹣1,3]内任取一个实数x满足log2(x﹣1)>0的概率是()A.B.C.D.【解答】解:由log2(x﹣1)>0,解得:x>2,故满足条件的概率是p=,故选:C.8.(5分)设不等式组表示的平面区域为D.在区域D内随机取一个点,则此点到坐标原点的距离大于2的概率是()A.B.C.D.【解答】解:由题意,区域D的面积为:3×3=9,点到坐标原点的距离大于2的面积为9﹣;由几何概型公式可此点到坐标原点的距离大于2的概率是得;故选:B.9.(5分)阅读如图所示程序框图,为使输出的数据为31,则判断框中应填的是()A.n<4 B.n<5 C.n<6 D.n<7【解答】解:程序在运行过程中各变量的值如下表示:S n 是否继续循环循环前 1 1/第一圈 3 2 是第二圈7 3 是第三圈15 4 是第四圈31 5 否故最后当n<5时退出,故选:B.10.(5分)已知命题p:∀x>0,总有(x+1)e x>1,则¬p为()A.∃x0≤0,使得(x0+1)e≤1 B.∃x0>0,使得(x0+1)e≤1C.∀x>0,总有(x+1)e x≤1 D.∀x≤0,总有(x+1)e x≤1【解答】解:根据全称命题的否定为特称命题可知,¬p为∃x0>0,使得(x0+1)e≤1,故选:B.11.(5分)将53化为二进制的数,结果为()A.10101(2)B.101011(2)C.110011(2)D.110101(2)【解答】解:53÷2=26 (1)26÷2=13 013÷2=6 (1)6÷2=3 03÷2=1 (1)1÷2=0 (1)故53(10)=110101(2)故选:D.12.(5分)图1是某高三学生进入高中三年来的数学考试成绩茎叶图,第1次到12次的考试成绩依次记为A1,A2,…,A12.图2是统计茎叶图中成绩在一定范围内考试次数的一个算法流程图.那么算法流程图输出的结果是()A.8 B.9 C.10 D.11【解答】解:根据题意,模拟程序框图的运行过程,得出该程序框图运行输出的是茎叶图所有数据中大于90的数据的个数n,由茎叶图知,n=9.故选:B.二、填空题(共4小题,每小题5分,满分20分)13.(5分)已知方程+=1表示椭圆,求k的取值范围.2<k<4且k ≠3.【解答】解:根据题意,方程+=1表示椭圆,则有,解可得:2<k<4,且k≠3,故k的取值范围为:2<k<4,且k≠3;故答案为:2<k<4,且k≠3.14.(5分)用秦九韶算法求多项式f(x)=x6﹣8x5+60x4+16x3+96x2+240x+64在x=2时,v2的值为48.【解答】解:∵f(x)=x6﹣8x5+60x4+16x3+96x2+240x+64=(((((x﹣8)x+60)x+16)x+96)x+240)x+64,当x=2时,分别算出v0=1,v1=1×2﹣8=﹣6,v2=﹣6×2+60=48,∴v2的值为48.故答案为4815.(5分)某学员在一次射击测试中射靶9次,命中环数如下:8,7,9,5,4,9,10,7,4;则命中环数的方差为.【解答】解:命中环数的平均数为:=(8+7+9+5+4+9+10+7+4)=7,∴命中环数的方差为:S2=[(8﹣7)2+(7﹣7)2+(9﹣7)2+(5﹣7)2+(4﹣7)2+(9﹣7)2+(10﹣7)2+(7﹣7)2+(4﹣7)2]=.故答案为:.16.(5分)根据《中华人民共和国道路交通安全法》规定:车辆驾驶员血液酒精浓度在20﹣80mg/100ml(不含80)之间,属于酒后驾车;血液酒精浓度在80mg/100ml(含80)以上时,属醉酒驾车.据《法制晚报》报道,2010年3月15日至3 月28日,全国查处酒后驾车和醉酒驾车共28800人,如图是对这28800人酒后驾车血液中酒精含量进行检测所得结果的频率分布直方图,则属于醉酒驾车的人数约为4320.【解答】解:由题意及频率分布直方图的定义可知:属于醉酒驾车的频率为:(0.01+0.005)×10=0.15,又总人数为28800,故属于醉酒驾车的人数约为:28800×0.15=4320.故答案为:4320.三、解答题(共6小题,满分70分)17.(10分)在平面直角坐标系xOy中,椭圆C:+=1的左、右焦点分别是F1,F2,P为椭圆C上的一点,且PF1⊥PF2,求(1)椭圆长轴长,短轴长,离心率各是多少.(2)△PF1F2的面积.【解答】解:(1)根据题意,椭圆C:+=1中,a==5,b==3,c==4,则椭圆的长轴长2a=10,短轴长2b=6,离心率e==.(2)根据题意,若PF 1⊥PF2,则有|PF1|2+|PF2|2=|F1F2|2,即|PF1|2+|PF2|2=|F1F2|2=4c2=64,由椭圆的定义可得:|PF1|+|PF2|=2a=10,解得|PF1|•|PF2|=18.∴△PF1F2的面积为S=|PF1|•|PF2|=×18=9.18.(12分)命题p:“方程x2+=1表示焦点在y轴上的椭圆”;命题q:对任意实数x都有mx2+mx+1>0恒成立.若p∧q是假命题,p∨q是真命题,求实数m的取值范围.【解答】解:关于命题p:“方程x2+=1表示焦点在y轴上的椭圆”,则m>1;关于命题q:对任意实数x都有mx2+mx+1>0恒成立,m=0时,成立,m≠0时:,解得:0≤m<4;若p∧q是假命题,p∨q是真命题,则p,q一真一假,p真q假时:m≥4,p假q真时:0≤m≤1,综上,实数m的范围是[0,1]∪[4,+∞).19.(12分)已知p:A={x||2x+1|≤3 },q:B={x|1﹣m≤x≤1+m },若¬p是¬q的充分不必要条件,求实数m的取值范围.【解答】解:由p:|2x+1|≤3⇒﹣2≤x≤1,由q可得:1﹣m≤x≤1+m,因为¬p是¬q的充分不必要条件,所q是p的充分不必要条件,当m<0,此时1﹣m>1+m,m<0.当m≥0时,1﹣m≤x≤1+m,且﹣2≤1﹣m,且1+m≤1,解得m=0.∴m≤0.20.(12分)某校为了解学生寒假期间的学习情况,从初中及高中各班共抽取了50名学生,对他们每天平均学习时间进行统计.请根据下面的各班人数统计表和学习时间的频率分布直方图解决下列问题:(Ⅰ)抽查的50人中,每天平均学习时间为6~8小时的人数有多少?(Ⅱ)经调查,每天平均学习时间不少于6小时的学生均来自高中.现采用分层抽样的方法,从学习时间不少于6小时的学生中随机抽取6名学生进行问卷调查,求这三个年级各抽取了多少名学生;(Ⅲ)在(Ⅱ)抽取的6名学生中随机选取2人进行访谈,求这2名学生来自不同年级的概率.【解答】解:(Ⅰ)由直方图知,学习时间为6~8小时的频率为1﹣(0.02+2×0.12+0.06)×2=0.36,∴学习时间为~小时的人数为50×0.36=18;(Ⅱ)由直方图可得,学习时间不少于6小时的学生有18+12+6=36 人.∵从中抽取6名学生的抽取比例为=,高中三个年级的人数分别为12、6、18,∴从高中三个年级依次抽取2名学生,1名学生,3名学生;(Ⅲ)设高一的2 名学生为A1,A2高二的1名学生为B,高三的3名学生为C1,C2,C3.则从6名学生中选取2人所有可能的情形有(A1,A2),(A1,B),(A1,C1),(A1,C2),(A1,C3),(A2,B),(A2,C1),(A2,C2),(A2,C3),(B,C1),(C1,C2),(C1,C3),(C2,C3),(B,C2),(B,C3),共15种可能.其中2名学生来自不同年级的有(A1,B),(A1,C1),(A1,C2),(A1,C3),(A2,B),(A2,C1),(A2,C2),(A2,C3),(B,C1),(B,C2),(B,C3),共11种情形,故所求概率为P=.21.(12分)在“新零售”模式的背景下,某大型零售公司为推广线下分店,计划在S市的A区开设分店.为了确定在该区开设分店的个数,该公司对该市已开设分店的其他区的数据作了初步处理后得到下列表格.记x表示在各区开设分店的个数,y表示这x个分店的年收入之和.(Ⅰ)该公司已经过初步判断,可用线性回归模型拟合y 与x 的关系,求y 关于x 的线性回归方程y=;(Ⅱ)假设该公司在A 区获得的总年利润z (单位:百万元)与x ,y 之间的关系为z=y ﹣0.05x 2﹣1.4,请结合(Ⅰ)中的线性回归方程,估算该公司应在A 区开设多少个分店时,才能使A 区平均每个分店的年利润最大?参考公式:=x +a ,==,a=﹣.【解答】解:(Ⅰ)=4,=4,===0.85,a=﹣=4﹣4×0.85=0.6,∴y 关于x 的线性回归方程y=0.85x +0.6. (Ⅱ)z=y ﹣0.05x 2﹣1.4=﹣0.05x 2+0.85x ﹣0.8, A 区平均每个分店的年利润t==﹣0.05x ﹣+0.85=﹣0.01(5x +)+0.85,∴x=4时,t 取得最大值,故该公司应在A 区开设4个分店时,才能使A 区平均每个分店的年利润最大22.(12分)已知椭圆C 的中心在原点,焦点在x 轴上,左右焦点分别为F 1,F 2,且|F 1F 2|=2,点(1,)在椭圆C 上. (Ⅰ)求椭圆C 的方程;(Ⅱ)过F 1的直线l 与椭圆C 相交于A ,B 两点,且△AF 2B 的面积为,求以F 2为圆心且与直线l 相切的圆的方程. 【解答】解:(Ⅰ)设椭圆的方程为,由题意可得:椭圆C两焦点坐标分别为F1(﹣1,0),F2(1,0).∴.∴a=2,又c=1,b2=4﹣1=3,故椭圆的方程为.(Ⅱ)当直线l⊥x轴,计算得到:,,不符合题意.当直线l与x轴不垂直时,设直线l的方程为:y=k(x+1),由,消去y得(3+4k2)x2+8k2x+4k2﹣12=0显然△>0成立,设A(x1,y1),B(x2,y2),则,又即,又圆F2的半径,所以,化简,得17k4+k2﹣18=0,即(k2﹣1)(17k2+18)=0,解得k=±1所以,,故圆F2的方程为:(x﹣1)2+y2=2.。
【精品】2017学年福建省漳州市芗城中学高二上学期期中数学试卷和解析
2017学年福建省漳州市芗城中学高二(上)期中数学试卷一、选择题(共12小题,每小题5分,共60分)1.(5分)某单位老、中、青人数之比依次为2:3:5.现采用分层抽样方法从中抽出一个容量为n的样本,若样本中中年人人数为12,则此样本的容量n为()A.20 B.30 C.40 D.802.(5分)10名工人某天生产同一零件,生产的件数是15,17,14,10,15,17,17,16,14,12,设其平均数为a,中位数为b,众数为c,则有()A.a>b>c B.b>c>a C.c>a>b D.c>b>a3.(5分)某人欲从某车站乘车出差,已知该站发往各站的客车平均每小时一班,则此人等车时间不多于10分钟的概率是()A.B.C.D.4.(5分)一个袋中装有2个红球和2个白球,现从袋中取出1球,然后放回袋中再取出一球,则取出的两个球同色的概率为()A.B.C.D.5.(5分)下面程序运行时,从键盘输入4,则输出结果为()A.4 B.8 C.15 D.26.(5分)如果执行右边的程序框图,那么输出的S=()A.10 B.22 C.46 D.947.(5分)有5件产品,其中3件正品,2件次品,从中任取2件,则互斥而不对立的两个事件是()A.至少有1件次品与至多有1件正品B.至少有1件次品与都是正品C.至少有1件次品与至少有1件正品D.恰有1件次品与恰有2件正品8.(5分)已知椭圆+=1(a>5)的两个焦点为F1、F2,且|F1F2|=8.弦AB过点F1,则△ABF2的周长为()A.10 B.20 C.2D.49.(5分)给出命题:已知a、b为实数,若a+b=1,则ab≤.在它的逆命题、否命题、逆否命三个命题中,真命题的个数是()A.3 B.2 C.1 D.010.(5分)如图,半径为5cm的圆形纸板内有一个相同圆心的半径为1cm的小圆,现将半径为1cm的一枚硬币拋到此纸板上,使整块硬币随机完全落在纸板内,则硬币与小圆无公共点的概率为()A.B.C.D.。
福建龙海市程溪中学2016-2017学年高二数学上学期期末考试试题 理
程溪中学2016-2017学年高二(上)期末数学试题(理科)(考试时间:120分钟 总分:150分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1、命题:“0>∀x ,02≥-x x ”的否定形式是( ) A .0x ∀≤,20x x -> B .0x ∀>,02≤-x x C .0x ∃≤,20x x -> D . 0∃>x ,02<-x x2、有20位同学,编号从1至20,现在从中抽取4人作问卷调查,若用系统抽样方法,则所抽取的编号可能是( )A. 2,4,6,8B. 2,6,10,14C. 2,7,12,17D. 5,8,9,14 3、曲线y =2x与直线y =x -1及x =4所围成的封闭图形的面积为( )A .2ln 2B .2-ln 2C .4-ln 2D .4-2ln 24、抛物线:C 24x y =的焦点坐标为( ) A .)1,0( B .)0,1( C .)161,0( D .)0,161( 5、函数x x x f ln 2)(2-=的单调减区间是( )A .)1,0(B .),1(+∞C .)1,0()1,( --∞D .)1,0()0,1( -6、已知空间四边形OABC 中,OA →=a ,OB →=b ,OC →=c ,点M 在OA 上,且OM =2MA ,N 为BC 中点,则MN →=( )A.12a -23b +12c B .-23a +12b +12cC.12a +12b -12c D.23a +23b -12c 7、如果执行右面的程序框图,那么输出的S =( )A 、22B 、46C 、94D 、1908、“21<<m ”是“方程13122=-+-my m x 表示的曲线是焦点在y 轴上的椭圆”的( )A .充要条件 B. 必要不充分条件 C. 充分不必要条件 D. 既不充分也不必要条件 9、有下列四个命题:①“若a 2+b 2=0,则a ,b 全为0”的逆否命题; ②“全等三角形的面积相等”的否命题;③“若"1"≤q ,则022=++q x x 有实根”的逆否命题; ④“矩形的对角线相等”的逆命题。
福建省龙海市程溪中学2019_2020学年高二数学上学期期中试题
福建省龙海市程溪中学2019-2020学年高二数学上学期期中试题考试时间:120分钟总分: 150分一、选择题(本大题共12小题,共60.0分)1.抛物线的焦点坐标为( )A. B. C. D.2.命题“,”的否定是( )A. ,B. ,C. ,D. ,3.已知向量,,且与互相垂直,则( )A. B. C. D.4.是方程表示双曲线的( )A. 充要条件B. 充分不必要条件C. 必要不充分条件D. 既不充分又不必要条件5.已知抛物线C :的焦点为F,P为抛物线C上任意一点,若,则的最小值是( )A. B. 6 C. D.6.如图,空间四边形OABC中,,,,且,,则等于A.B.C.D.7.已知椭圆C :的左、右焦点为、,离心率为,过的直线l交C于A、B两点,若的周长为,则C的方程为( )A. B. C. D.8.已知条件p :,条件q:,且是的充分不必要条件,则a 的取值范围是A. B. C. D.9.已知双曲线C :的一条渐近线方程为,且与椭圆有公共焦点,则C 的方程为A. B. C. D.10.已知椭圆C :的左、右顶点分别为,,且以线段为直径的圆与直线相切,则C 的离心率为A. B. C. D.11.一动圆P 过定点,且与已知圆N :相切,则动圆圆心P 的轨迹方程是A. B. C.D.12.已知P 是椭圆上的动点,则P点到直线l :的距离的最小值为.A. B. C. D.二、填空题(本大题共4小题,共20.0分)13.若3,,1,,则的值为______ .14.命题“若,则或”的否定为______ .15.直线l 交椭圆于A,B两点,若线段AB 的中点坐标为则直线l的方程为______.16.以下是关于圆锥曲线的四个命题:设A、B为两个定点,k为非零常数,若,则动点P的轨迹是双曲线;方程的两根可分别作为椭圆和双曲线的离心率;双曲线与椭圆有相同的焦点;以过抛物线的焦点的一条弦AB为直径作圆,则该圆与抛物线的准线相切.其中真命题为______写出所以真命题的序号.三、解答题(本大题共6小题,共70.0分)17.已知命题p :方程有两个不相等的实数根;命题q :.若p为真命题,求实数m的取值范围;若为真命题,为假命题,求实数m的取值范围.18.已知抛物线C :上的点到其焦点F的距离为2,Ⅰ求C的方程;并求其焦点坐标;Ⅱ过抛物线焦点的直线a交抛物线与A,B两点,且,求直线a的方程.19.在直三棱柱中,底面是直角三角形,,D 为侧棱的中点.求异面直线,所成角的余弦值;求二面角的平面角的余弦值.20.双曲线的两条渐近线的方程为,且经过点求双曲线的方程;双曲线的左右焦点分别为,,P为双曲线上一点,为,求.21.如图,在四棱锥,底面ABCD是矩形,平面ABCD ,,,于点M.求证:求点D到平面ACM的距离.22.在平面xOy中,已知椭圆过点,且离心率.求椭圆C的方程;直线l 方程为,直线l与椭圆C交于A,B两点,求面积的最大值.2019年程溪中学高二(上)期中考数学试题答案和解析【答案】 1. D 2. B 3. B 4. B 5. D 6. C 7. A8. D 9. B 10. A 11. C 12. A13. 6 14. 若,则且 15. 16.17. 解:若p 为真命题,则应有, 解得.若q 为真命题,则有,即, 因为为真命题,为假命题, 则p ,q 应一真一假. 当p 真q 假时,有,得;当p 假q 真时,有,无解.综上,m 的取值范围是. 18. 解:Ⅰ抛物线的准线方程为 ,由抛物线的定义可知:,解得,因此,抛物线C 的方程为;其焦点坐标;Ⅱ设,直线斜率为, 方程为联立得,则,,,解得或者1,所以直线a 的方程为或者.19. 解:由已知得CA ,CB ,两两垂直, 如图所示,以C 为原点,CA 、CB 、为坐标轴,建立空间直角坐标系,则0,,0,,2,,0,,2,,0,. 所以0,,,所以,即异面直线与所成角的余弦值为因为2,,0,,0,, 所以,, 所以为平面的一个法向量 因为,0,, 设平面的一个法向量为,y ,. 由,得 令,则,,2,.所以,.所以二面角的余弦值为.20. 解:双曲线的两条渐近线的方程为,且经过点,可设双曲线的方程为, 可得,即, 即有双曲线的方程为;双曲线的左右焦点分别为,,设P 为双曲线右支上一点,为,双曲线的,,, 设,,则在中,,:,的面积.21. 证明:在四棱锥,底面ABCD 是矩形,平面ABCD,,, ,平面PAD, 于点M ,, 平面ABM, 平面ABM ,.解:以A 为原点,AB 为x 轴,AD 为y 轴,AP 为z 轴, 建立空间直角坐标系, 则0,,2,,0,,2,,1,,2,,2,,1,,设平面ACM 的法向量y ,, 则,取,得,p 2 p2点D到平面ACM的距离:.22. 解:椭圆C :过点,且离心率, 可得:,解得,,则,椭圆方程为:;直线方程为,、,联立方程组,整理得:,直线与椭圆要有两个交点,所以,解得,,,利用弦长公式得:,P到l 的距离,,当且仅当,即时取到最大值,最大值为2.【解析】1. 【分析】本题主要考查了抛物线的简单性质解题过程中注意抛物线的开口方向,焦点所在的位置等问题保证解题结果的正确性.先根据抛物线的方程判断出抛物线的开口方向,进而利用抛物线标准方程求得p,则焦点方程可得.【解答】解:根据抛物线方程可知抛物线的开口向左,且,.焦点坐标为故选:D.2. 【分析】本题考查全称命题的否定,属于基础题.根据“全称量词”与“存在量词”正好构成了意义相反的表述,“全称命题”的否定一定是“特称命题”,写出结果即可.【解答】解:全称命题的否定是特称命题,命题“,”的否定是“,”故选B.3. 【分析】本题考查了空间向量的坐标运算与数量积的应用问题,以及向量垂直的判定条件,属于一般题.根据与互相垂直,,列出方程求出k的值.【解析】解:向量,,k ,;又与互相垂直,,即,解得.故选B.4. 【分析】本题考查充分不必要条件、必要不充分条件、充要条件、既不充分又不必要条件的判断,是基础题,解题时要认真审题,注意双曲线的性质的合理运用根据双曲线的标准方程判断即可.【解答】解:,,,方程表示双曲线,方程表示双曲线,,解得或,是方程表示双曲线的充分不必要条件.故选B.5. 【分析】本题考查抛物线的定义,考查学生分析解决问题的能力,比较基础.利用抛物线上的点到焦点距离等于到准线的距离,化曲为直,即可得出结论.【解答】解:过点M作准线的垂线,垂足为N,抛物线的准线方程为,抛物线上的点P到焦点F 距离等于点P到准线的距离d,.的最小值是,故选D.6. 【分析】本题考查了向量的平行四边形法则、三角形法则,属于基础题由,可得,由,可得,可得.【解答】解:,,,.. 故选C . 7. 【分析】本题考查椭圆的定义与方程,考查椭圆的几何性质,考查学生的计算能力,属于基础题. 利用的周长为,求出,根据离心率为,可得,求出b ,即可得出椭圆的方程.【解答】 解:的周长为,且的周长,, , 离心率为,,解得, ,椭圆C 的方程为.故选A .8. 【分析】本题主要考查四种命题的等价关系,及解绝对值不等式,属于基础知识、运算能力的考查. 因为“若则”的等价命题是“若q 则p ”,所以q 是p 的充分不必要条件,即q 是p 的真子集,然后解不等式,利用数轴求解即可. 【解答】解:由题意知: p :可化简为或;q :. “若则”的等价命题是“若q 则p ”, 是p 的充分不必要条件, 根据数轴有:,故选D . 9. 【分析】本题考查椭圆与双曲线的简单性质的应用,双曲线方程的求法,属于中档题.求出椭圆的焦点坐标,得到双曲线的焦点坐标,利用双曲线的渐近线方程,求出双曲线实半轴与虚半轴的长,即可得到双曲线方程. 【解答】 解:椭圆的焦点坐标为, 则双曲线的焦点坐标为,可得,双曲线C :的一条渐近线方程为,可得,即,可得,解得,则,故所求的双曲线方程为:.故选B .10. 【分析】本题考查了椭圆的标准方程及其性质、涉及直线与圆相切的性质、点到直线的距离公式,考查了推理能力与计算能力,属于基础题.根据直线与圆相切的条件,利用点到直线的距离公式得到a ,b 的关系,进而求得离心率. 【解答】 解:以线段为直径的圆与直线相切, 原点到直线的距离,化为:.椭圆C 的离心率.故选A .11. 【分析】本题考查圆与圆的位置关系,考查双曲线的定义,属于中档题.动圆圆心为P ,半径为r ,已知圆圆心为N ,半径为4,由题意知,动点P 到两定点的距离之差的绝对值为常数4,P 在以M 、N 为焦点的双曲线上,且,,从而可得动圆圆心P 的轨迹方程. 【解答】解:动圆圆心为P ,半径为r ,已知圆圆心为N ,半径为4, 由题意知:当动圆与圆N 外切时,,, 所以 当动圆与圆N 内切时,,, 所以即动点P 到两定点的距离之差的绝对值为常数4, 故P 在以M 、N 为焦点的双曲线上,且,,, 动圆圆心P 的轨迹方程为.故选C .12. 【分析】本题考查直线与椭圆的位置关系,解题的关键是求出与直线平行,且与椭圆相切的直线方程,属于中档题. 设与直线平行的直线方程是,与椭圆方程联立,消元,令,可得c 的值,求出两条平行线的距离,即可求得椭圆上的动点P 到直线l :的距离的最小值.【解答】 解:设与直线平行的直线方程是,与椭圆方程联立,消元可得,令,可得. 两条平行线间的距离为,椭圆上的动点P 到直线l :的距离的最小值是.故选A . 13. 解:2,,.故答案为:6.求出:,再利用数量积运算性质即可得出.本题考查了向量坐标运算法则、数量积运算性质,考查了推理能力与计算能力,属于基础题.14. 【分析】本题考查了命题的否定,注意一些否定符号和词语的对应,属于基础题.若A则B”型命题,其否定为若A 则非.【解答】解:“若,则或”的否定为:“若,则且”,故答案为若,则且.15. 解:设,,.由,,相减可得:,,解得.直线l 的方程为:,化为:.故答案为:.设,由,,相减可得:,利用中点坐标公式、斜率计算公式代入即可得出.本题考查了椭圆的标准方程及其性质、“点差法”、斜率计算公式、中点坐标公式,考查了推理能力与计算能力,属于中档题.16. 【分析】本题主要考查了圆锥曲线的共同特征,考查椭圆和双曲线的基本性质,解题时要准确理解概念,基本知识的理解与应用,属于中档题.【解答】解:不正确若动点P的轨迹为双曲线,则要小于A、B为两个定点间的距离当大于A、B为两个定点间的距离时动点P的轨迹不是双曲线;正确方程的两根分别为和2,和2可分别作为椭圆和双曲线的离心率;正确,双曲线有相同的焦点,焦点在x轴上,焦点坐标为;正确;不妨设抛物线为标准方程:,即抛物线位于y轴的右侧,以x轴为对称轴,设过焦点的弦为PQ,PQ的中点是M,M到准线的距离是d,而P 到准线的距离,Q 到准线的距离,又M到准线的距离d是梯形的中位线,故有,由抛物线的定义可得:半径,所以圆心M到准线的距离等于半径,所以圆与准线是相切,故答案为.17. 本题以命题的真假判断与应用为载体,考查的知识点是复合命题,指数函数的图象和性质,难度中档.若p为真命题,则应有,解得实数m的取值范围;若为真命题,为假命题,则p,q应一真一假,进而可得实数m的取值范围.18. 本题考查抛物线的简单性质的应用,直线与抛物线的位置关系,考查转化思想以及计算能力.Ⅰ求出抛物线的准线方程,利用抛物线的定义,求出p,即可求C的方程;求其焦点坐标;Ⅱ设出A,B坐标,直线方程,联立直线AB的方程与抛物线方程,利用韦达定理以及弦长公式,求解即可.19. 本题主要考查利用空间向量解决几何体中的夹角问题,包括两条异面直线的夹角和两个平面的夹角,本题解题的关键是建立坐标系.以C为原点,CA、CB 、为坐标轴,建立空间直角坐标系,写出要用的点的坐标,写出两个向量的方向向量,根据两个向量所成的角得到两条异面直线所成的角.先求两个平面的法向量,在第一问的基础上,有一个平面的法向量是已知的,只要写出向量的表示形式就可以,另一个平面的向量需要求出,根据两个法向量所成的角得到结果.20. 可设双曲线的方程为,代入点,解方程可得,即可得到双曲线的方程;求出双曲线的a,b,c,设,,运用双曲线的定义和余弦定理,以及面积公式,计算即可得到所求.本题考查双曲线的方程的求法,注意运用待定系数法,以及渐近线方程和双曲线的方程的关系,考查三角形的面积的求法,注意运用余弦定理和三角形的面积公式,结合双曲线的定义,考查化简整理的运算能力,属于中档题.21. 推导出,,从而平面PAD,由,平面ABM ,.以A为原点,AB为x轴,AD为y轴,AP为z轴,建立空间直角坐标系,利用向量法能求出点D到平面ACM的距离.本题考查线线垂直的证明,考查点到平面的距离的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.22. 本题主要考查椭圆的简单性质以及椭圆方程的求法,直线与椭圆的位置关系的综合应用,考查转化思想以及计算能力属于中档题.利用已知条件列出方程组,然后求解a,b即可得到椭圆方程;联立直线与椭圆方程,利用韦达定理以及弦长公式结合点到直线的距离公式表示三角形的面积,然后通过基本不等式求解最值即可.。
福建省龙海市高二上学期期中考试数学理科试题 有答案
上学期期中考 高二理科数学试题参考公式:b=2121xn x yx n yx n i i ni ii --∑∑==,a=y -b x , b 是回归直线的斜率,a 是截距样本数据1x ,2x ,...,nx 的方差2222121[()()()]n s x x x x x x n=-+-++-其中x 为样本平均数一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1、下列给出的赋值语句正确的是( ) A .6=A B .M =-M C .B =A =2D .x +5y =02、已知命题p :R x ∈∀,1cos ≤x ,则( )(A) 1cos ,:≥∈∃⌝x R x p (B) 1cos ,:≥∈∀⌝x R x p (C) 1cos ,:00>∈∃⌝x R x p (D) 1cos ,:>∈∀⌝x R x p 3、设x R ∈,则“12x >”是“2210x x +->”的( ) (A) 充分而不必要条件 (B) 必要而不充分条件 (C) 充分必要条件 (D) 既不充分也不必要条件4、从装有错误!未找到引用源。
个红球和错误!未找到引用源。
个黑球的口袋内任取错误!未找到引用源。
个球,那么互斥而不对立的两个事件是( )(A) 至少有一个黑球与都是黑球 (B) 至少有一个红球与都是黑球 (C) 至少有一个黑球与至少有错误!未找到引用源。
个红球 (D) 恰有错误!未找到引用源。
个黒球与恰有错误!未找到引用源。
个黑球5、甲,乙两名运动员练习罚球,每人练习10组,每组罚球40个,命中个数的茎叶图如图,则甲,乙两命中个数的中位数分别为( )甲 茎 乙8 0 932113487 6 5 4 2 0 2 0 0 1 1 373A. 23,19B.24,18 C .22,20D.23,206、若椭圆的两焦点为(-2,0)和(2,0),且椭圆过点)23,25(-,则椭圆方程是 ( )A .14822=+x yB .161022=+y xC .18422=+x y D .161022=+x y7、在长为10㎝的线段AB 上任取一点P ,并以线段AP 为边作正方形,这个正方形的面积介于25cm 2与64 cm 2之间的概率为 ( )(A) 103(B) 52(C) 54(D) 518、某程序框图如右图所示,现输入如下四个函数, 则可以输出的函数是( )(A)()2f x x = (B)()1f x x=(C) ()xf x e = (D)()sin f x x=(第8题图)9、21,F F 是椭圆17922=+y x 的两个焦点,A 为椭圆上一点,且∠02145=F AF ,则 Δ12AF F 的面积为( )A .7 B .47 C .27 D .257 10、按如下程序框图,若输出结果为170,则判断框内应补充的条件为( )(A) 5i >? (B) 7i ≥? (C) 9i ≥? ( D) 9i >?11、某产品的广告费用x 与销售额y 的统计数据如下表根据上表可得回归方程ˆˆˆy bx a =+中的ˆb为9.4,据此模型预报广告费用为6万元时销售额为( )(A) 63.6万元(B) 65.5万元 (C) 67.7万元 (D) 72.0万元 12、下列说法错误的是( )(A) “若0x y += , 则,x y 互为相反数”的逆命题是真命题。
龙海市程溪中学2020_2021学年高二数学上学期期中试题
福建省龙海市程溪中学2020—2021学年高二数学上学期期中试题一.选择题(共8小题)1.在△ABC中,角A,B,C所对的边分别为a,b,c,若B=30°,C=45°,b=2,则c=()A.2 B.3 C.4 D.2.已知数列{a n}中,前n项和S n=n2﹣15n,则S n的最小值是()A.﹣14 B.C.﹣56 D.﹣1123.在区间[﹣1,5]上随机取一个实数a,则使log2a∈[0,2]的概率为()A.B.C.D.4.已知等比数列{a n}中,a3=1,a5=2,则首项a1=()A.B.C.D.05.在一组样本数据中,1,4,m,n出现的频率分别为0.1,0.1,0.4,0。
4,且样本平均值为2.5,则m+n=()A.5 B.6 C.7 D.86.如图是一个边长为2的正方形区域,为了测算图中阴影区域的面积,向正方形区域内随机投入质点600次,其中恰有225次落在该区域内,据此估计阴影区域的面积为()A.1。
2 B.1.5 C.1。
6 D.1.87.设回归直线方程为,则变量x增加一个单位时()A.y大约增加3个单位B.y大约增加个单位C.y大约减少3个单位D.y大约减少个单位8.袋中共有完全相同的4只小球,编号为1,2,3,4,现从中任取2只小球,则取出的2只球编号之和是奇数的概率为()A.B.C.D.二.多选题(共4小题)9.设正实数a,b满足a+b=1,则()A.有最小值4 B.有最小值C.最大值1 D.a2+b2有最小值10.在△ABC中,角A,B,C所对各边分别为a,b,c,若a=1,b=,A=30°,则B=()A.30°B.45°C.135°D.150°11.下列命题的否定中,是全称量词且为真命题的有() A.∃x∈R,B.所有的正方形都是矩形C.∃x∈R,x2+2x+2≤0D.至少有一个实数x,使x3+1=012.从装有2个红球和2个黑球的口袋中任取2个小球,则下列结论正确的是()A.“至少一个红球”和“都是红球"是互斥事件B.“恰有一个黑球”和“都是黑球”是互斥事件C.“至少一个黑球”和“都是红球"是对立事件D.“恰有一个红球”和“都是红球”是对立事件三.填空题(共4小题)13.命题“∀x∈[1,2],x2﹣a<0"的否定为.14.已知x与y之间的一组数据如表,已求得关于y与x的线性回归方程=1.2x+a,则a的值为.x0246y235715.已知等差数列{a n}的公差不为零,若a3,a4,a6成等比数列,则a2=.16.已知p:实数x满足x2﹣2x﹣8>0;q:x<m.若p是q的必要不充分条件,则m的最大值为.四.解答题(共6小题)17.已知A={x|5x﹣1>a},B={x|x>1}.(1)若A,B互为充要条件,求实数a的值.(3)已知全集为R,C={x|x≤2m+1},若C⊆(∁R B),求实数m 的取值范围.18.某校为于了解2020年新冠肺炎疫情“停课不停学”期间高三学生平均每天学习的时间(单位:小时),从本校随机抽取了100名学生进行调查,根据收集的数据,得到学生每天学习时间的频率分布直方图,如图所示,若每天学习时间不超过10小时的有45人.(1)求a,b的值:(2)根据频率分布直方图,估计该校学生每天学习时间的中位数和平均数(同组中的数据用该组区间的中点值代表).19.为了加强对国产核动力航母动力系统的研发力量,用分层抽样方法从A,B,C三所动力研究所的相关人员中,抽取若干人组成研究小组、有关数据见表(单位:人):研究所相关人数抽取人数A18xB362C54y(1)求x,y;(2)若从B,C研究所抽取的人中选2人作专题发言,求这二人都来自C研究所的概率.20.已知等差数列{a n}的前n项和为S n,a8=S3,a4=2a2﹣2.(1)求数列{a n}的通项公式;(2)设,其前n项和为T n,证明:.21.在①a=,②(2a﹣b)sin A+(2b﹣a)sin B=2c sin C 这两个条件中任选一个,补充在下列问题中,并解答.已知△ABC的角A,B,C对边分别为a,b,c,c=而且_______.(1)求∠C;(2)求△ABC周长的最大值.22.已知椭圆C:(a>b>0)的离心率为,右焦点为F,以原点O为圆心,椭圆C的短半轴长为半径的圆与直线x﹣y ﹣=0相切.(Ⅰ)求椭圆C的方程.(Ⅱ)如图,过定点P(2,0)的直线l交椭圆C于不同的两点A,B,连接AF并延长交椭圆C于点M,设直线AF,BF的斜率分别为k1,k2,求证:k1+k2为定值.2020—2021学年高二数学上学期期中考试卷参考答案与试题解析一.选择题(共11小题)1.【分析】由已知利用正弦定理即可求解.【解答】解:因为B=30°,C=45°,b=2,所以由正弦定理,可得c===4.故选:C.【点评】本题主要考查了正弦定理在解三角形中的应用,属于基础题.2.【分析】利用二次函数的性质求得结果即可.【解答】解:∵S n=n2﹣15n的对称轴为n=,且开口向上,∴当n=7或8时S n取最小值﹣56,故选:C.【点评】本题主要考查数列前n项和的最小值的求法,属于基础题.3.【分析】解不等式求出a的范围,根据几何概型概率公式计算概率.【解答】解:若0≤log2a≤2,则1≤a≤4,故所求概率为,故选:B.【点评】本题考查几何概型的概率计算,属于基础题.4.【分析】由等比数列的性质求得结果即可.【解答】解:由等比数列的性质可得:a1a5=a32,∵a3=1,a5=2,∴a1==,故选:B.【点评】本题主要考查等比数列的性质,属于基础题.5.【分析】由题意知0。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017学年福建省漳州市龙海市程溪中学高二(上)期中数学试卷(理科)
一、选择题:(本大题共12小题,每小题5分,满分60分.)
1.(5分)抛物线x2=﹣8y的焦点坐标是()
A.(0,2) B.(0,﹣2)C.(0,4) D.(0,﹣4)
2.(5分)若方程+=1表示双曲线,则k的取值范围是()
A.(5,10)B.(﹣∞,5)C.(10,+∞)D.(﹣∞,5)∪(10,+∞)
3.(5分)已知命题p:∀x1,x2∈R,(f(x2)﹣f(x1))(x2﹣x1)≥0,则¬p是()
A.∃x1,x2∈R,(f(x2)﹣f(x1))(x2﹣x1)≤0 B.∀x1,x2∈R,(f(x2)﹣f(x1))(x2﹣x1)≤0
C.∃x1,x2∈R,(f(x2)﹣f(x1))(x2﹣x1)<0 D.∀x1,x2∈R,(f(x2)﹣f(x1))(x2﹣x1)<0
4.(5分)下图是2008年我校举办“激扬青春,勇担责任”演讲比赛大赛上,七位评委为某位选手打出的分数的茎叶图,去掉一个最高分和一个最低分后,所剩数据的中位数和平均数分别为()
A.85;87 B.84;86 C.84;85 D.85;86
5.(5分)某校从高一年级学生中随机抽取部分学生,将他们的模块测试成绩分为6组:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100)加以统计,得到如图所示的频率分布直方图,已知高一年级共有学生600名,据此估计,该模块测试成绩不少于60分的学生人数为()
A.588 B.480 C.450 D.120
6.(5分)已知某运动员每次投篮命中的概率低于40%,现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经
随机模拟产生了如下20组随机数:
907 966 191 925 271 932 812 458 569 683
431 257 393 027 556 488 730 113 537 989
据此估计,该运动员三次投篮恰有两次命中的概率为()
A.0.35 B.0.25 C.0.20 D.0.15
7.(5分)已知P:x2﹣x<0,那么命题P的一个必要非充分条件是()
A.0<x<1 B.﹣1<x<1 C.<x<D.<x<2
8.(5分)某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,…,270;使用系统抽样时,将学生统一随机编号1,2,…,270,并将整个编号依次分为10段.如果抽得号码有下列四种情况:
①7,34,61,88,115,142,169,196,223,250;
②5,9,100,107,111,121,180,195,200,265;
③11,38,65,92,119,146,173,200,227,254;
④30,57,84,111,138,165,192,219,246,270;
关于上述样本的下列结论中,正确的是()
A.②、③都不能为系统抽样B.②、④都不能为分层抽样
C.①、④都可能为系统抽样D.①、③都可能为分层抽样
9.(5分)下列四个命题中:
①“等边三角形的三个内角均为60°”的逆命题;
②“若k>0,则方程x2+2x﹣k=0有实根”的逆否命题;
③“全等三角形的面积相等”的否命题;
④“若ab≠0,则a≠0”的否命题.
其中真命题的序号是()
A.②、③B.③、④C.①、④D.①、②
10.(5分)如表是某厂1﹣4月份用水量(单位:百吨)的一组数据:由散点图可知,用水量与月份之间有较好的线性相关关系,其线性回归方程是=﹣0.7x+,则=()
A.10.5 B.5.15 C.5.25 D.5.2。