专题一元二次方程实根的分布
不等式一元二次方程根的分布
布2023-11-07•定义和公式•根的分布情况•图像表示目录•实例分析•解题技巧和注意事项•练习题与答案01定义和公式定义一元二次方程的标准形式是$ax^2 + bx + c = 0$,其中$a \neq 0$。
说明一元二次方程的标准形式是解决一元二次方程问题的基础,通过配方等方法可以将非标准形式的一元二次方程转化为标准形式,便于分析其根的分布情况。
一元二次方程的标准形式一元二次方程的解是满足方程的根,记作$x_{1}, x_{2}$。
定义根据判别式的性质,一元二次方程的解的情况分为三种:有两个不相等的实数根、有两个相等的实数根和没有实数根。
判别式$b^2 - 4ac$是判断一元二次方程解的分布情况的依据。
说明一元二次方程的解02根的分布情况当判别式Δ大于0时,一元二次方程有两个不相等的实根。
两根不等实根与系数关系图像表示两个实根的和为-b/a,两个实根的积为c/a。
在实数平面上表示为两个不相交的直线。
030201当判别式Δ等于0时,一元二次方程有两个相等的实根。
两根相等两个实根的和为-b/a,两个实根的积为c/a。
实根与系数关系在实数平面上表示为一条直线。
图像表示当判别式Δ小于0时,一元二次方程有两个不相等的虚根。
两根不等且虚根两个虚根的实部为0。
实部为0两个虚根的虚部为√(-Δ)/a。
虚部与系数关系在复数平面上表示为两个相交的直线。
图像表示当Δ < 0时,方程的根的分布03图像表示图像表示一元二次方程的解实数根对于一元二次方程 $ax^2 + bx + c = 0$,如果 $a > 0$,那么该方程有两个实数根,分别是 $x_1 = \frac{-b + \sqrt{\Delta}}{2a}$ 和 $x_2 = \frac{-b - \sqrt{\Delta}}{2a}$。
虚数根如果 $a < 0$,那么该方程有两个共轭虚数根,分别是 $x_1 = \frac{-b + i\sqrt{4ac - b^2}}{2a}$ 和 $x_2 = \frac{-b - i\sqrt{4ac - b^2}}{2a}$。
不等式一元二次方程根的分布
不等式一元二次方程根的分布xx年xx月xx日•不等式与一元二次方程的联系•不等式在一元二次方程中的应用•不等式与一元二次方程的综合应用•不等式在一元二次方程中的拓展应用目录01不等式与一元二次方程的联系如果a>b,c>d,那么a+c>b+d。
不等式的基本性质不等式的性质1如果a>b,c>0,那么ac>bd。
不等式的性质2如果a>b,c<0,那么ac<bd。
不等式的性质3一元二次方程的根的判别式Δ=b²-4ac,当Δ>0时,方程有两个不同的实根;当Δ=0时,方程有两个相同的实根;当Δ<0时,方程没有实根。
一元二次方程的根与系数的关系x₁,x₂=[-b±√(b²-4ac)]/2a,其中x₁,x₂为一元二次方程ax²+bx+c=0的两个根。
一元二次方程的根与系数的关系不等式与一元二次方程的关联01不等式和一元二次方程的联系在于一元二次方程的根的分布情况可以由不等式来表示。
02对于一元二次方程ax²+bx+c=0,如果判别式Δ>0,那么这个方程有两个不同的实根,这两个实根可以用不等式来表示。
03如果a>0,那么方程的两个实根x₁和x₂满足x₁<x₂;如果a<0,那么方程的两个实根x₁和x₂满足x₁>x₂。
02不等式在一元二次方程中的应用利用不等式求根公式通过求解不等式,可以求得一元二次方程的实数根。
确定不等式的解集根据一元二次方程的系数和判别式的值,可以确定不等式的解集,进而求得一元二次方程的根。
利用不等式求解一元二次方程的根通过构造不等式,可以证明一元二次方程在某个区间内至少有一个实数根。
利用不等式证明根的存在通过构造不等式,可以证明一元二次方程在某个区间内只有一个实数根。
利用不等式证明根的唯一性利用不等式证明一元二次方程的根的分布利用不等式判断根的实数性质通过求解不等式,可以判断一元二次方程的实数根是否为整数、有理数、无理数等。
专题一元二次方程根的分布(解析版)
专题04 一元二次方程根的分布二次方程()200ax bx c a ++=≠的根从几何意义上来说就是二次函数()c bx ax x f ++=2与x 轴交点的横坐标,所以研究02=++c bx ax 的实根的情况,可从函数()c bx ax x f ++=2的图象上进行研究.若在()+∞∞-,内研究方程02=++c bx ax 的实根情况,只需考查()c bx ax x f ++=2与x 轴交点的个数以及交点横坐标的符号,根据判别式以及韦达定理,由∆、21x x +、21x x ⋅的值与符号,从而判断出实根的情况.若在区间()n m ,内研究二次方程02=++c bx ax ,则需由二次函数图象与区间关系来确定.知识梳理分布情况两个负根即两根都小于0 ()120,0x x << 两个正根即两根都大于0 ()120,0x x >>一正根一负根即一个根小于0,一个大于0()120x x <<大致图象(0>a )知识结模块一:得出的结论()00200b a f ∆>⎧⎪⎪-<⎨⎪>⎪⎩()00200b a f ∆>⎧⎪⎪->⎨⎪>⎪⎩()00<f大致图象(0<a )得出的结论()00200b a f ∆>⎧⎪⎪-<⎨⎪<⎪⎩ ()00200b a f ∆>⎧⎪⎪->⎨⎪<⎪⎩()00>f综合结论(不讨论)()00200b a a f ∆>⎧⎪⎪-<⎨⎪⋅>⎪⎩ ()00200b a a f ∆>⎧⎪⎪->⎨⎪⋅>⎪⎩()00<⋅f a【例1】已知方程()2210x m x m -++=有两个不等正实根,求实数m 的取值范围. 【难度】★★ 【答案】见解析 【解析】由典例剖析()()0102200m f ∆>⎧⎪-+⎪->⎨⎪>⎪⎩⇒()218010m m m m ⎧+->⎪>-⎨⎪>⎩⇒330m m m ⎧<->+⎪⎨>⎪⎩⇒03m <<-3m >+即为所求的范围.【例2】若方程05)2(2=-+-+m x m x 的根满足下列条件,分别求出实数m 的取值范围. (1) 方程两实根均为正数; (2) 方程有一正根一负根. 【难度】★★ 【答案】见解析【解析】分析 讨论二次方程根的分布,应在二次方程存在实根的条件下进行.代数方法与图象法是研究二次方程根的分布问题的主要方法.解1 (1)由题意,得.45244050)2(0)5(4)2(00022121-≤⇒⎪⎩⎪⎨⎧<<≥-≤⇒⎪⎩⎪⎨⎧>->--≥---⇒⎪⎩⎪⎨⎧>>+≥∆m m m m m m m m m x x x x 或所以,当4-≤m 时,原方程两实根均为正数;(2)由题意,得.5050021>⇒<-⇒⎩⎨⎧<≥∆m m x x所以,当5>m 时,原方程有一正根一负根.解2 二次函数m x m x y -+-+=5)2(2的图象是开口向上的抛物线. (1)如图,由题意,得4052)2(4)2(022050)2(020)0(22-≤⇒⎪⎪⎪⎩⎪⎪⎪⎨⎧≤-+--->-->-⇒⎪⎪⎪⎩⎪⎪⎪⎨⎧≤->->m m m m m m a b f a b f 。
初中数学一元二次方程的实根分布
第六讲 一元二次方程的实根分布22.注意:(1)利用相应二次函数图象与x 轴交点位置写出相应的等价条件,一般考虑一下三个方面:①判别式Δ=b 2-4ac 的符号;②对称轴x =-b2a的位置分布;③二次函数在实根分布界点处函数值的符号.(2)对于一元二次方程根和解是有区别的.一、一点同侧两根【例1】若关于x的方程x2-(k+2)x+4=0有两个不等的负根,求实数k的取值范围.【练】若关于x的方程x2+(m+2)x+m+5=0有两个正数根,求实数m的取值范围.【例2】若关于x的方程kx2-2kx+(k-1)=0有两个正实数根,求实数k的取值范围.【练】若关于x的方程2(k+1)x2+4kx+3k-2=0有两个负实根,求实数k的取值范围.【例3】若关于x的方程x2-mx+(3+m)=0有两个大于1的根,求实数m的取值范围.【练】若关于x的方程mx2+(2m-1)x-m+2=0有两个小于1的根,求实数m的取值范围.二、一点异侧两根【例4】若关于x的方程4x2+(m-2)x+m-5=0的一正根和一负根,求实数m的取值范围.【练】若关于x的方程(2m+1)x2-2mx+m-1=0有一正根和一个负根,求实数m的取值范围.【例5】若关于x的方程mx2+(m+2)x+9m=0有两个实数根x1和x2,且x1<1<x2,求m的取值范围.【练】若关于x的二次方程2mx2-2x-3m-2=0的一个根大于1,另一个根小于1,求实数m的取值范围.三、一点一侧有根【例6】若关于x的方程x2-ax+4=0有正实根,则实数a的取值范围是【练】若方程x2+x+a=0至少有一根为非负实数,求实数a的取值范围.【例7】若关于x的方程ax2+2x+1=0至少有一个负实根,求实数a的取值范围.【练】若关于x的一元二次方程mx2+(m-3)x+1=0至少有一个正根,求m的取值范围.四、两点中间两根【例8】若关于x的方程x2-ax+2=0在区间(0,3)内有两个根,求实数a的取值范围.【练】若关于x的方程x2-2ax+a2-1=0的两个不等根在区间(-2,4)上,求实数a 的取值范围.【变】若关于x的二次方程(m-1)x2+(3m+4)x+m+1=0的两个根属于(-1,1),求实数m的取值范围.【例9】当实数a和b满足何条件时,关于x的方程x2+ax+b=0在区间[-2,2]上有两个实根?【练】若关于x的方程x2+(m-1)x+1=0有两个相异的实根,且两根均在区间[0,2]上,求实数m的取值范围.【变】若抛物线y=x2+ax+2与连接两点M(0,1)、N(2,3)的线段有两个相异的交点,求a的取值范围.五、两点中间一根【例10】已知关于x的二次方程(2m+1)x2-2mx+m-1=0有且只有一个实根属于(1,2),且x=1,x=2都不是方程的根,求实数m的取值范围.【练】若关于x的二次方程(3m-1)x2+(2m+3)x-m+4=0有且只有一个实根属于(-1,1),求实数m的取值范围.【变】已知点A、B的坐标分别为(1,0)、(2,0),若二次函数f(x)=x2+(a-3)x+3的图象与线段AB恰有一个交点,求实数a的取值范围.【例11】若关于x的方程ax2+x+a-3=0在(-2,0)上有且只有一个实根,求实数a 的取值范围.【练】若关于x的方程mx2+(2m-3)x+4=0有且只有一个小于1的正根,求实数m的取值范围.六、两点中间有根【例12】若方程x2-2mx+m-1=0在区间(-2,4)上有根,求实数m的取值范围.【练】若关于x的二次方程x2+2mx+2m+1=0在区间(0,2)内至少存在一根,求实数m的范围.【变】已知关于x的方程2ax2+2x-a-3=0在区间[-1,1]上有根,求实数a的取值范围.【例13】集合A={(x,y) | y=x2+mx+2},B={(x,y) | x-y+1,且0≤x≤2},若A∩B≠∅,求实数m的取值范围.【练】已知抛物线y=2x2-mx+m与以点(0,0)和(1,1)为端点的线段(除去两个端点)有公共点,求实数m的取值范围.七、两点隔两根【例14】关于x的方程4x2+(m-2)x+m-5=0的一根小于1,另一根大于2,求实数m的取值范围.【练】若关于x的方程x2+(2m-1)x+m-6=0的一个根不大于-1,另一个根不小于1,求实数m的取值范围.【变1】已知方程(a-1)x2+(2a-6)x-4a+1=0的两根为x1,x2,且-1<x1<1<x2,求实数a的取值范围.【变2】若关于x的方程2x2-(m-2)x-2m2-m=0的两根在区间[0,1]之外,求实数m 的取值范围.八、多点隔两根【例15】若关于x方程x2-mx-m+3=0的一根在区间(0,1)内,另一根在区间(1,2)内,求实数m的取值范围.【练】已知关于x的方程x2+2mx+2m+1.若方程有两个根,其中一个在区间(-1,0),另一根在区间(1,2)内,求m的范围.【变】若mx2-(m-1)x+m2-m+2=0的两根分别在0<x<1和1<x<2的范围内,求实数m的取值范围.【作业】1、已知关于x的方程x2+(m-3)x+m=0,分别在下列条件下,求实数m的取值范围.(1)方程有两个正根;(2)方程两个根均小于1;(3)方程的一个根大于1,另一个根小于1;(4)方程的两个根均在(0,2)内;(5)方程的一个根小于2,另一个根大于4.(6)方程的一个根在(-2,0)内,另一个根在(0,4)内;(7)方程有一个正根,一个负根且正根的绝对值较大;(8)方程的两个根有且仅有一个在(0,2)内;2、若方程x2-4|x|+5=m有四个互不相等的实数根,求实数m的取值范围.3、设|a|=1,b为整数,关于x的方程ax2-2x-b+5=0有两个负实数根,求b的值.4、已知二次函数f(x)=(m+2)x2-(2m+4)x+3m+3与x轴有两个交点,分别在点(1,0)左右两边,求实数m的取值范围.5、求实数m的取值范围,使关于x的方程x2+2(m-1)x+2m+6=0至少有一个正根.6、如果二次函数y=mx2+(m-3)x+1的图象与x轴的交点至少有一个在原点的右侧,求实数m的取值范围.7、已知关于x的方程x2+2mx+2m+1=0.若方程两根均在区间(0,1)内,求实数m的取值范围.8、若关于x的方程7x2-(m+13)x+m2-m-2=0在区间(0,1)、(1,2)上各有一个实根,求实数m的取值范围.9、已知关于x的方程x2+(3m-1)x+3m-2=0的两根都属于(-3,3),且其中至少有一个根小于1,求实数m的取值范围.10、求证:关于x的方程3ax2+2bx-(a+b)=0在(0,1)内至少有一个实根.。
5.1一元二次方程实根的分布
实系数一元二次方程实根分布1:当m 为何值时,方程03524222=--++m m mx x的两根异号?答案:(321<<-m )2:已知方程02322=-+-k kx x 的两个根都大于1,求k 的取值范围。
答案:(2≥k )3:已知集合A ={045|2≤+-x x x },B ={022|2≤++-a ax x x },且B ⊆A ,求实数a 的取值范围。
答案:(7181≤<-a )4、关于x 的方程0122=++x ax 至少有一个负的实根,则a_____________ (1≤a )5、01032=+-k x x 有两个同号且不相等的实根,则k__________- (3250<<k )6、要使关于x 的方程0322=+-kx x 的两个实根一个小于1,另一个大于1,则实数k 的取值范围是__( 5>k )7、已知抛物线m x m x y +-+=)3(2与x 轴的正半轴交于两点,则实数m 的取值范围是____。
(10<<m )8、设A ={01|2=-x x },B ={012|22=-+-a ax x x },若A ∩B =B ,则a 等于___。
(0=a )9、已知A ={01)2(|2=+++x p x x ,R x ∈},若A ∩R +=φ,则p 的范围是_____。
(4->p )10、已知方程0222=++-a ax x 的两根都在区间(1,4)内, 求a 的取值范围。
(7182<≤a )11、若关于x 的方程0532=+-a x x 的一个根在(-2,0)内,另一个根在(1,3)内,求a 的取值范围。
12、已知方程01222=+-+m mx x 的两个实根都大于2,求实数m 的取值范围。
(4316-≤<-m )13已知A ={023|2≤+-x x x },B ={02|2≤+-a ax x x ,R a ∈},且A ∩B =B ,求a 的取值范围。
一元二次方程根的分布
一元二次方程的形式为ax^2+bx+c=0,其中a、b、c为常数。
一元二次方程根的分布取决于方程的解的个数,有如下三种情况:1 两个不相等的实根:如果一元二次方程有两个不相等的实根,那么方程的解为x1=r1、x2=r2,其中r1和r2是方程的两个实根。
2 两个相等的实根:如果一元二次方程有两个相等的实根,那么方程的解为x1=x2=r,其中r是方程的两个相等的实根。
3 两个复数根:如果一元二次方程有两个复数根,那么方程的解为x1=r1+r2i、x2=r1-r2i,其中r1和r2是方程的两个复数根的实部和虚部。
一元二次方程的根分布可以通过求解方程的判别式来确定。
判别式为b^2-4ac,如果判别式>0,则方程有两个不相等的实根;如果判别式=0,则方程有两个相等的实根;如果判别式<0,则方程有两个复数根。
在数学中,一元二次方程是由一个二次项和一个一次项组成的方程。
它的形式为ax^2+bx+c=0,其中a、b、c为常数。
解决一元二次方程的方法有多种,常见的方法有求解公式法、因式分解法、二分法、牛顿迭代法等。
求解公式法是最常见的求解一元二次方程的方法,它的公式为:x1= (-b+sqrt(b^2-4ac))/(2a)x2= (-b-sqrt(b^2-4ac))/(2a)其中sqrt(b^2-4ac)表示根号内的值。
因式分解法是将一元二次方程写成两个一次方程的形式,然后分别求解两个一次方程的解。
二分法是一种数值解法,通过取方程的两个端点的中点来逐步缩小解的范围,最终得到方程的解。
牛顿迭代法是一种逐步迭代的方法,通过不断迭代来逼近方程的解,最终得到方程的解。
在解决一元二次方程时,应根据具体情况选择合适的方法。
3.1.2一元二次方程根的分布
2
x2
12
练习: 1、若方x程 2 (k3)xk 0 的两根都小 1, 于求k的取 x1 x2 0
-1
值范围?
2、若7方 x2程 k13xk2k20的两 根分0 别 , 1和 在 1, 2内, k的 求取值范
1 0
2 13
练习:
1.已知关于x的方程 a 2 2 x a 1 x a 1 0
解少解题 有:分 一若析 个m:在=原函0,点数则的f(xf右()x=侧)m=x-,23+就x(m+是1-3,表)显x+明然1关的满于图足x象的要与方求x程轴. m的x交2+点(m至-
3)x+1若=0m至≠少0,有有一两个种正根情,况可:借助根与系数的关系来解。
( 1 ) 原 点 的 两 侧 各 有 一 个 , 则 x 1 x 2 m 1 0 得 m 0
-
b 2a
>k
f(k)<0.
△=b2-4ac≥0
f(k)>0.
m< -
b 2a
<n
ห้องสมุดไป่ตู้
7.方程 f(x)=0 的两实根都在区间(m, n)内
△=b2-4ac≥0 f(m)>0
f(n)>0.
3
注 :涉及方程 f(x)=ax2+bx+c=0(a≠0)的实根 分布问题, 一般从四个方面考虑:
① f(x) 图象的开口方向; ②方程 f(x)=0的判别式; ③ f(x) 图象的对称轴与区间的关系; ④区间端点处函数值的符号.
1
x 1 x 2 2
反例x1: 3,x2
1 2
7
例题:已x知 2(方 k3程 )xk0 求满足下列 k的 条范 件围 的?
一元二次方程实根的分布
第24页
第七章
不等式及推理与证明
高考调研
新课标版 ·数学(文) ·高三总复习
(5) 已知方程 x2 + (m - 2)x + 2m - 1 = 0 有一实根在 0 和 1 之 间,求m的取值范围.
1 2 【答案】 2<m<3
(6)已知方程x2+(m-2)x+2m-1=0的较大实根在0和1之 间,求m的取值范围. 变式:改为较小实根.
【定理5】 k1<x1<k2≤p1<x2<p2⇔ a>0, fk1>0, fk2<0, fp1<0, fp2>0 a<0, fk1<0, 或fk2>0, fp1>0, 0 . fp2<
此定理可直接由定理4推出,请读者自证.
第 4页
第七章
不等式及推理与证明
高考调研
新课标版 ·数学(文) ·高三总复习
【定理1】 x1>0,x2>0(两个正根)⇔ Δ=b2-4ac≥0, x +x =-b>0, 1 2 a c x1x2= >0. a
第 5页
第七章
不等式及推理与证明
高考调研
新课标版 ·数学(文) ·高三总复习
推 论 : x1>0,x2>0⇔
Δ=b2-4ac≥0, a>0, f0=c>0, b<0
或
2 Δ = b -4ac≥0, a<0, f0=c<0, b>0.
上述推论结合二次函数图像不难得到.
第 6页
第七章
不等式及推理与证明
高考调研
新课标版 ·数学(文) ·高三总复习
一元二次方程实数根的分布
第一课时:一元二次方程实数根的分布教学目标:使学生掌握一元二次方程实根分布问题的处理,加强求解一元二次不等式及不等式组,初步训练学生的数形结合能力。
教学重点:利用二次函数的图象,把一元二次方程根的分布−−→−转化图形问题−−→−转化代数表达式(不等式组)−−→−计算参数取值范围。
教学难点:图形问题转化成代数表达式(不等式组)并求解。
一、问题的提出若方程0)5()2(2=++++m x m x 的两根均为正数,求实数m 的取值范围.变式1:两根一正一负时情况怎样?变式2:两实根均大于5时情况又怎样?变式3:一根大于2,另一根小于-1时情况又怎样?问题:能否从二次函数图形角度去观察理解?若能试比较两种方法的优劣.方程)0(02≠=++a c bx ax 的实根,如若从二次函数图形角度去观察理解,其实质就是对应的二次函数2()0(0)f x ax bx c a =++=≠ 的抛物线与x 轴交点的横坐标.一元二次方程实根分布,实质上就是方程的根与某些确定的常数大小关系比较.二、一元二次方程实根分布仿上完成下表一元二次方程)0(02≠=++a c bx ax 实根分布图解三、练习1.m 为何实数时,方程02)1(2=+++m x m x 的两根都在-1与1之间.2、若方程0)3()1(2=-++-a x a x 的两根中,一根小于0,另一根大于2,求a 的取值范围.四、小结基本类型与相应方法:设 )0()(2≠++=a c bx ax x f ,则方程0)(=x f 的实根分布的基本类型及相应方法如下表:五作业:1.关于x 的一元二次方程222320ax x a ---=的一根大于1,另一根小于1.则a 的值是 ( )(A )0a >或4a <- (B )4a <- (C )0a > (D )40a -<<2.方程227(13)20(x k x k k k -++--=为常数)有两实根,αβ,且01α<<,12β<<,那么k 的取值范围是 ( )(A )34k << (B )21k -<<- (C )21a -<<-或34k << (D )无解3.设m 是整数,且方程2320x mx +-=的两根都大于95-而小于37,则m = .4.若关于x 的方程22(1)210m x mx -+-=的所有根都是比1小的正实数,则实数m 的取值范围是m =5. 方程2(21)(6)0x m x m +-+-=的一根不大于-1,另一根不小于1.试求:(1)参数m 的取值范围;(2)方程两根的平方和的最大值和最小值. 第二课时 一元二次方程实数根分布的应用一复习二、例子例1 已知实数a 、b 、c 满足22211a b c a b c a b c ⎧>>⎪++=⎨⎪++=⎩,求a b +的取值范围.解 由已知得1a b c +=-且222222()()(1)(1)22a b a b c c ab c c +-+---===-.所以,a b 是一元二次方程22(1)()0x c x c c --+-=的两根. 由a b c>>问题可转化为方程22(1)()0x c x c c --+-=的二根都大于c .令()f x =22(1)()x c x c c --+-,有2212()0(1)4()0c cf c c c c -⎧>⎪⎪>⎨⎪∆=--->⎪⎩ 即22123203210c c c c c c ->⎧⎪->⎨⎪--<⎩, 求得103c -<<,因此4(1,)3a b +∈.例2已知点(0,4)A 、(4,0)B .若抛物线21y x mx m =-++与线段AB (不包括端点A 及B )有两个不同的交点,则m 的取值范围是 . (1997年上海市高中数学竞赛)解: 显然直线AB 的方程为1(04)44x y x +=<<即4y x =-,代入抛物线方程并整理得2(1)(3)0x m x m +-+-=.设2()(1)(3)f x x m x m =+-+-,问题转化函数()y f x =的图象和x 轴在0到4之间有两个不同的交点,即方程2(1)(3)0x m x m +-+-=在(0,4)上有两个不相等的实根. 所以2(1)4(3)0(0)30(4)164(1)30104.2m m f m f m m m ⎧∆=--->⎪=->⎪⎪⎨=--+->⎪-⎪<<⎪⎩ 解得m 的取值范围是1733m <<. 例3关于x 的实系数二次方程20x ax b ++=的两个实数根为,αβ,证明:①如果||2,||2αβ<<,那么2||4a b <+且||4b <;②如果 2||4a b <+且||4b <,那么||2,||2αβ<<.(1993年全国高考题)证明 ①设2()f x x ax b =++,由已知,函数()y f x =的图象与x 轴在2-到2之间有两个不同的交点. 所以240,(1)22,(2)2(2)420,(3)(2)420.(4)a b a f a b f a b ⎧∆=->⎪⎪-<-<⎪⎨⎪-=-+>⎪=++>⎪⎩由(3)、(4)得(4)24b a b -+<<+,所以2||4a b <+.由(2),得||4a <,结合(1)得2416b a <<,所以4b <. 将(3)+(4)得4b >-,因此44b -<<,即||4b <.②由于2||4a b <+且||4b <,可得4,2||448b a <<+=,所以||4a <,222a -<-<. 即函数()f x 的图象的对称轴2a x =-位于两条直线2x =-,2x =之间.因为(2)(2)(42)(42)2(4)0f f a b a b b -+=+++-+=+>,22(2)(2)(42)(42)(4)40f f a b a b b a -⋅=++-+=+-> .所以(2)0,(2)0f f ->>. 因此函数()f x 的图象与x 轴的交点位于-2和2之间,即||2,||2αβ<<.作业1.已知抛物线2(4)2(6),y x m x m m =++-+为实数.m 为何值时,抛物线与x 轴的两个交点都位于点(1,0)的右侧?2.已知,,a b c 都是正整数,且抛物线2()f x ax bx c =++与x 轴有两个不同的交点A 、B. 若A 、B 到原点的距离都小于1,求a b c ++的最小值.第三课时 应用提高例1若方程k x x =-232在[]1,1-上有实根,求实数k 的取值范围. 解法一:方程k x x =-232在[]1,1-上有实根,即方程0232=--k x x 在[]1,1-上有实根,设k x x x f --=23)(2,则根据函数)(x f y =的图象与x 轴的交点的横坐标等价于方程0)(=x f 的根. (1)两个实根都在[]1,1-上,如图:可得⎪⎪⎩⎪⎪⎨⎧≤-≤-≥≥-≥∆1210)1(0)1(0a b f f ,解得2169-≤≤-k ; (2)只有一个实根在[]1,1-上,如图:可得0)1()1(≤⋅-f f ,解得 2521≤≤-k ,综合(1)与(2)可得 实数k 的取值范围为⎥⎦⎤⎢⎣⎡-25,169 解法二:方程k x x =-232在[]1,1-上有实根,即存在[]1,1-∈x ,使得等式x x k 232-=成立,要求k 的取值范围,也即要求函数[]1,1,232-∈-=x x x k 的值域. 设[]1,1,1694323)(22-∈-⎪⎭⎫ ⎝⎛-=-==x x x x x f k 又因,则)1(169-≤≤-f k , 可得25169≤≤-k . 解法三:令,232x x y -=则k y =,则方程k x x =-232在[]1,1-上有实根,等价于方程组⎪⎩⎪⎨⎧=-=k y x x y 232在[]1,1-上有实数解,也即等价于抛物线,232x x y -=与直线k y =在[]1,1-上有公共点,如图所示直观可得:25169≤≤-k .解法四:根据解法三的转化思想,也可将原方 程k x x =-232化成k x x +=232,然后令 k x y x y +==23,2,从而将原问题等价转化为 抛物线2x y =与直线k x y +=23在[]1,1-点时,“数形结合法”下去求参数k 的取值范围.根据图形直观可得:当直线k x y +=23过点)1,1(-, 截距k 最大;当直线k x y +=23与抛物线k x y +=23相切时,截距k 最小. 且169,25-==最小最大k k .故参数的取值范围为25169≤≤-k . 2已知实数a 、b 、c 满足021a b c m m m++=++,其中m 为正数.对于2()f x ax bx c =++. (1)若0a ≠,求证:()01m af m <+; (2) 若0a ≠,证明方程()0f x =在(0,1)内有实根.证明 (1)由021a b c m m m ++=++,求得()21am bm c m m =-+++,所以 222222211()[()()][()][]11112(1)2m m m m m af a a b c a a m m m m m m m m m=++=-=-+++++++ 又由22(1)20m m m +>+>,因此22110(1)2m m m -<++,故()01m af m <+. (2)要证明方程()0f x =在(0,1)内有实根,只须证明(0)(1)0f f ⋅< 或 (0)0,(1)0,0,0 1.2af af b a >⎧⎪>⎪⎪∆≥⎨⎪⎪<-<⎪⎩但两者都不易证明. 由01(0)1m m m <<>+,结合第(1)题()01m af m <+,对a 进行讨论: 当0a >时,有()01m f m <+. 只要证明(0)f c =和(1)f a b c =++中有一个大于零即可. 若0c >,则(0)0f >成立,问题得证;若0c ≤,由021a b c m m m ++=++求得(1)(1)2a m c m b m m++=--+,所以 (1)(1)(1)22a m c m a c f a b c a c m m m m ++=++=--+=-++. 由0,0,0a m c >>≤,知(1)0f >,命题得证. 故当0a >时,方程()0f x =在(0,1)内有实根. 同理可证,当0a <时,方程()0f x =在(0,1)内也有根.。
微专题(一) 一元二次方程根的分布--2025年高考数学复习讲义及练习解析
所谓一元二次方程根的分布问题,就是已知一个一元二次方程根的分布情况,确定方程中系数的取值范围问题.解决一元二次方程根的分布问题,主要依据方程的根与函数零点间的关系,借助图象,从以下三个方面建立关于系数的不等式(组)进行求解.(1)判别式Δ的符号;(2)对称轴x=-b2a与所给区间的位置关系;(3)区间端点处函数值的符号.一元二次方程根的分布问题,类型较多,情况复杂,但基本可以分为以下三类:类型一已知两根与实数k的大小关系例1(1)若关于x的方程x2-(m-1)x+2-m=0的两根为正数,则实数m的取值范围是________.答案[-1+22,2)解析设f(x)=x2-(m-1)x+2-m,m-1)2-4(2-m)≥0,,2-m>0,解得-1+22≤m<2.(2)(2024·湖北武汉华师第一附中模拟)若关于x的方程ax2+(a+2)x+9a=0有两个不相等的实数根x1,x2,且x1<1<x2,那么实数a的取值范围是________.答案-211,解析由于方程ax2+(a+2)x+9a=0有两个不相等的实数根,故a≠0,则ax2+(a+2)x+9a =0可化为x2+9=0,令f(x)=x2+9,则f(1)=1+9<0,解得-211<a<0.当方程中二次项系数含有参数时,为避免讨论对应二次函数图象的开口方向,可将方程两边同时除以二次项系数,从而只需研究开口向上的情况,当然需要先判断二次项系数能否为0.1.(2023·黑龙江哈尔滨六中模拟)关于x的方程x2+(m-2)x+6-m=0的两根都大于2,则实数m的取值范围是________.答案(-6,-25]解析令f(x)=x 2+(m-2)x+6-m,=(m-2)2-4(6-m)≥0,-m-22>2,2)=4+2(m-2)+6-m>0,即≥25或m≤-25,<-2,>-6,解得-6<m≤-2 5.2.已知二次方程(2m+1)x2-2mx+(m-1)=0有一正根和一负根,则实数m的取值范围是________.答案-12,解析解法一:显然2m+1≠0,令f(x)=x2-2m2m+1x+m-12m+1,则f(0)<0,即m-12m+1<0,所以(2m +1)(m-1)<0,解得-12<m<1.解法二:设x1,x2是方程(2m+1)x2-2mx+(m-1)=0的两个根,则x1x2=m-12m+1<0,解得-12<m<1.类型二已知两根所在的区间f(m)<0,另外,根在区间上的分布还有一种情况:两根分别在区间(m,n)外,即在区间两侧x1<m,x2>n(图形分别如下),需满足的条件是:(1)当a >0m )<0,n )<0;(2)当a <0m )>0,n )>0.例2已知关于x 的二次方程x 2+2mx +2m +1=0.若方程有两根,其中一根在区间(-1,0)内,另一根在区间(1,2)内,则实数m 的取值范围为________;若方程两根均在区间(0,1)内,则实数m 的取值范围为________.答案-56,--12,1-2解析设函数f (x )=x 2+2mx +2m +1,则其图象与x 轴的交点分别在区间(-1,0)和(1,2)内,画出示意图如图1,由题意,得0)=2m +1<0,1)=2>0,1)=4m +2<0,2)=6m +5>0,<-12,∈R ,<-12,>-56,解得-56<m <-12.由题意知函数f (x )=x 2+2mx +2m +1的图象与x 轴的交点落在区间(0,1)内,画出示意图如图2,由题意,得0)=2m+1>0,1)=4m+2>0,=4m2-4(2m+1)≥0,-m<1,>-12,>-12,≥1+2或m≤1-2,1<m<0,解得-12<m≤1- 2.求解二次方程根的分布问题,最重要的是数形结合,即结合对应二次函数的图象,从以下角度考虑:①开口方向;②对称轴;③判别式;④在区间端点的函数值.注意以下两点:一是特殊点(含参的二次函数过的一些定点(比如与x,y轴的交点)或某些函数值的正负)的应用;二是对于一些特殊情况,还可以利用根与系数的关系、因式分解求出根再求解等方法.3.已知方程x2-(2a+1)x+a(a+1)=0的两根分别在区间(0,1),(1,3)内,则实数a的取值范围为________.答案(0,1)解析解法一:设f(x)=x2-(2a+1)x+a(a+1),则0)>0,1)<0,3)>0,即(a+1)>0,2a+a(a+1)<0,-3(2a+1)+a(a+1)>0,>0或a<-1,a<1,>3或a<2,所以0<a<1.解法二:由x2-(2a+1)x+a(a+1)=0,得(x-a)[x-(a+1)]=0,所以方程两根为x1=a,x2=a+1,a<1,a+1<3,解得0<a<1.4.已知关于x的方程ax2+x+2=0的两个实根一个小于0,另一个大于1,则实数a的取值范围是________.答案(-3,0)解析显然a≠0,则方程ax2+x+2=0可化为x2+xa+2a=0,设f(x)=x2+xa+2a,则0)<0,1)<0,,+1a+2a<0,解得-3<a<0,所以实数a的取值范围是(-3,0).类型三可转化为一元二次方程根的分布的问题一元二次方程根的分布问题是高中数学的重要知识点之一,很多涉及函数零点个数问题或方程根的个数问题,经过换元后都能转化为根的分布问题求解.(2023·河北石家庄藁城一中模拟)设函数f (x )=-32cos2x +a sin x +a +92,若方程f (x )=0在(0,π)上有4个不相等的实数根,则实数a 的取值范围是________.答案(-3,6-62)解析f (x )=-32(1-2sin 2x )+a sin x +a +92=3sin 2x +a sin x +a +3,x ∈(0,π),令sin x =t ,t ∈(0,1],h (t )=3t 2+at +a +3,当0<t <1时,sin x =t 有两个不相等的实数根,当t =1时,sin x =t 有且仅有一个实数根,因为方程f (x )=0在(0,π)上有4个不相等的实数根,所以原问题等价于h (t )=3t 2+at +a +3=0在区间(0,1)上有两个不相等的实数根,所以-a6<1,=a 2-12(a +3)>0,(0)=a +3>0,(1)=2a +6>0,解得-3<a <6-6 2.本题中,令sin x =t ,将原问题转化为3t 2+at +a +3=0在区间(0,1)上有两个不相等的实数根,进而转化为一元二次方程根的分布问题是解决问题的关键,同时要注意区间端点是否满足题意.5.(2024·黑龙江哈尔滨南岗实验中学模拟)设函数f (x )x +1,x ≤0,4x |,x >0,若关于x 的函数g (x )=[f (x )]2-(a +2)f (x )+3恰好有六个零点,则实数a 的取值范围是________.答案23-2,32解析作出函数f (x )x +1,x ≤0,4x |,x >0的图象如图,令f (x )=t ,则当t ∈(1,2]时,方程f (x )=t 有3个不同的实数解,所以使关于x 的方程[f (x )]2-(a +2)f (x )+3=0恰好有六个不同的实数解,则方程t 2-(a +2)t +3=0在(1,2]上有两个不同的实数根,令g (t )=t 2-(a +2)t +3,则=(a +2)2-12>0,1<a +22<2,(1)=2-a >0,(2)=3-2a ≥0,解得23-2<a ≤32,故实数a 23-2,32.。
一元二次方程实根的分布.
一元二次方程实根的分布一元二次方程实根的分布是二次方程中的重要内容,在各类竞赛和中考中经常出现。
这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于一元二次方程根的判别式和根与系数关系(韦达定理)的运用。
本文将在前面方法的基础上,结合二次函数图象的性质,分两种情况系统地介绍一元二次方程实根分布的情况及其运用。
一.一元二次方程实根的基本分布——零分布一元二次方程实根的零分布,指的是方程的根相对于零的关系。
比如二次方程有一正根,有一负根,其实就是指这个二次方程一个根比零大,一个根比零小,或者说,这两个根分布在零的两侧。
对于这类问题,用一元二次方程根的判别式和根与系数关系(韦达定理)即可判别。
一元二次方程02=++c bx ax (0≠a )的两个实数根为1x 、2x ,则 1x 、2x 均为正⇔△≥0,1x +2x >0,1x 2x >0; 1x 、2x 均为负⇔△≥0,1x +2x <0,1x 2x >0;1x 、2x 一正一负⇔1x 2x <0。
例1.关于x 的一元二次方程28(1)70x m x m +++-=有两个负数根,求实数m 取值范围。
解:设两个实数根为1x 、2x ,依题意有1212000x x x x ∆⎧⎪+< ⎨⎪> ⎩≥ ①②③由①得:2(1)32(7)0m m +--≥,2(15)0m -≥,恒成立。
由②得:18m +-<0,解之,m >1-。
由③得:78m ->0,解之,m >7。
综上,m 的取值范围是m >7。
例2.若n >0,关于x 的方程21(2)04x m n x mn --+=有两个相等的正实数根,求m n的值。
解:设两个实数根为1x 、2x ,依题意有1212000x x x x ∆= ⎧⎪+⎨⎪> ⎩①> ②③由①得:2(2)0m n mn --=,()(4)0m n m n --=,∴m n =或4m n =。
若m n =,则1x +2x 22m n n n n =-=-=-<0,不符合②,舍去。
一元二次方程根的分布
0
5 .方程两根都小于m (x1 m) (x2 m) 0
(x1 m) (x2 m) 0
6. 方程一根大于m另一根小于m
(x1 m) (x2 m) 0
• 例1பைடு நூலகம் 方程x2+2ax+1=0有两个不等负
• 二、二次方程与二次函数联系紧密,关于二次 方程问题求解的另一思路是转化为二次函数来 解,因此一元二次方程根的分布问题可借助二 次函数图象来研究求解。(函数法) 抓△,对称轴的位置,特殊点的函数值
令f(x)=ax2+bx+c(a>0) 则有如下结论
1 .方程两根都大于m
2.方程两根都小于m 3.方程一个根大于m另一根小于m 4.方程两根都大于m且都小于n
C.必要不充分条件 D.既不必要不充分条件
例5:求方程3x2-2mx+m+1=0一根在0,1之 间另一根在1,2之间的充要条件
例6 : 抛物线y=-x2+3x-m与直线y=3-x在 0<x<3时只有一个交点,求m的范围. -3<m≤0或m=1
根,求实数a的取值范围。(a>1)
例2: 方程mx2+(2m-1)x-3(m-1)=0 两根都大于3,求实数m的取值范围。
;资质代办 /daiban/ 资质代办
;
替那些果实遮过阴凉、从枝头跌落、背井离乡的叶子。 祖母在秋天的离世毫无征兆,只是那一天刮了很大的风,院子里的那棵老柳树稀里哗啦地掉落了所有的叶子。其实,也只有风能让叶子喘息或者感叹。在叶子的生命中,风往往扮演着接生婆和送行者的双重角色,所以叶子的心思只 和风说,它只和风窃窃私语。 落叶也有遗言吗?在离开枝头的刹那,它和风都说了什么?谁
专题十二一元二次方程实根的分布讨论
专题十一 一元二次方程实根的分布讨论本文将在前面方法的基础上,结合二次函数图象的性质,分两种情况系统地介绍一元二次方程实根分布的情况及其运用。
一.一元二次方程实根的基本分布——零分布一元二次方程实根的零分布,指的是方程的根相对于零的关系。
比如二次方程有一正根,有一负根,其实就是指这个二次方程一个根比零大,一个根比零小,或者说,这两个根分布在零的两侧。
对于这类问题,用一元二次方程根的判别式和根与系数关系(韦达定理)即可判别。
一元二次方程02=++c bx ax (0≠a )的两个实数根为1x 、2x ,则 1x 、2x 均为正⇔△≥0,1x +2x >0,1x 2x >0; 1x 、2x 均为负⇔△≥0,1x +2x <0,1x 2x >0;1x 、2x 一正一负⇔1x 2x <0。
例1.关于x 的一元二次方程28(1)70x m x m +++-=有两个负数根,求实数m 取值范围。
解:设两个实数根为1x 、2x ,依题意有1212000x x x x ∆⎧⎪+< ⎨⎪> ⎩≥ ①②③由①得:2(1)32(7)0m m +--≥,2(15)0m -≥,恒成立。
由②得:18m +-<0,解之,m >1-。
由③得:78m ->0,解之,m >7。
综上,m 的取值范围是m >7。
例2.若n >0,关于x 的方程21(2)04x m n x mn --+=有两个相等的正实数根,求m n 的值。
解:设两个实数根为1x 、2x ,依题意有1212000x x x x ∆= ⎧⎪+⎨⎪> ⎩①> ②③由①得:2(2)0m n mn --=,()(4)0m n m n --=,∴m n =或4m n =。
若m n =,则1x +2x 22m n n n n =-=-=-<0,不符合②,舍去。
故4m n =,此时均符合②、③, ∴44m n n n==。
二.一元二次方程实根的非零分布——k 分布设一元二次方程02=++c bx ax (0≠a )的两实根为1x 、2x ,且21x x ≤,k 为常数。
一元二次函数函数的根的分布(有图)
判别式
当判别式Δ=b^24ac大于0时,一元二 次方程有两个不相等 பைடு நூலகம்实根。
当判别式Δ=b^24ac小于0时,一元二 次方程没有实根。
当判别式Δ=b^24ac等于0时,一元二 次方程有两个相等的 实根。
02 根的分布条件
两个实根的条件
总结词
当判别式大于0时,一元二次函数有 两个实根。
详细描述
一元二次函数$ax^2+bx+c=0$的判 别式为$Delta=b^2-4ac$。当判别式 $Delta>0$时,一元二次函数有两个 不相等的实根。
一个实根的条件
总结词
当判别式等于0时,一元二次函数有一个实根。
详细描述
一元二次函数$ax^2+bx+c=0$的判别式为$Delta=b^2-4ac$。当判别式 $Delta=0$时,一元二次函数有一个实根。
无实根的条件
总结词
当判别式小于0时,一元二次函数无实根。
详细描述
一元二次函数$ax^2+bx+c=0$的判别式为$Delta=b^2-4ac$。当判别式$Delta<0$时,一元二次函 数无实根。
感谢您的观看
03 根的分布与图像关系
两个实根在图像上的表现
总结词:两个交点
详细描述:当一元二次函数有两个实根时,其图像与x轴会有两个交点。这两个交点的横坐标即为函 数的两个实根。
一个实根在图像上的表现
总结词:一个交点
详细描述:当一元二次函数有一个实根时,其图像与x轴会有一个交点。这个交点的横坐标即为函数的实根。
一元二次函数函数的根的分布(有 图)
目录
• 一元二次函数的基本性质 • 根的分布条件 • 根的分布与图像关系 • 根的分布的实际应用 • 总结与展望
初高中衔接——一元二次方程根的分布
一.一元二次方程根的基本分布——零分布所谓一元二次方程根的零分布,指的是方程的根相对于零的关系。
比如二次方程有一正根,有一负根,其实就是指这个二次方程一个根比零大,一个根比零小,或者说,这两个根分布在零的两侧。
设一元二次方程02=++c bx ax (0≠a )的两个实根为1x ,2x ,且21x x ≤。
【定理1】01>x ,02>x (两个正根)⇔212124000b ac b x x a c x x a ⎧∆=-≥⎪⎪⎪+=->⎨⎪⎪=>⎪⎩, 推论:01>x ,02>x ⇔⎪⎪⎩⎪⎪⎨⎧<>=>≥-=∆00)0(0042b c f a ac b 或⎪⎪⎩⎪⎪⎨⎧><=<≥-=∆0)0(0042b c f a ac b 上述推论结合二次函数图象不难得到。
【定理2】01<x ,02<x ⇔⎪⎪⎪⎩⎪⎪⎪⎨⎧>=<-=+≥-=∆000421212a c x x a b x x ac b , 推论:01<x ,02<x ⇔⎪⎪⎩⎪⎪⎨⎧>>=>≥-=∆0)0(0042b c f a ac b 或⎪⎪⎩⎪⎪⎨⎧<<=<≥-=∆0)0(0042b c f a ac b 由二次函数图象易知它的正确性。
【定理3】210x x <<⇔0<ac 【定理4】 ○101=x ,02>x ⇔0=c 且0<a b ; ○201<x ,02=x ⇔0=c 且0>ab 。
二.一元二次方程的非零分布——k分布设一元二次方程02=++cbxax(0≠a)的两实根为1x,2x,且21xx≤。
k为常数。
则一元二次方程根的k分布(即1x,2x相对于k的位置)有以下若干定理。
【定理1】21xxk≤<⇔⎪⎪⎩⎪⎪⎨⎧>->≥-=∆kabkafacb2)(42【定理2】kxx<≤21⇔⎪⎪⎩⎪⎪⎨⎧<->≥-=∆kabkafacb2)(42。
一元二次方程根的分布
点在0与2的之间,由图像知只需满足以下条件:
y
( m 3 )2 4m 0
0
3
m
2
2
O
2x
f
(
0
)
m
0
f ( 2 ) 3m 2 0
m
2 3
m 1
根据研究,请解决以下问题:
1、当一元二次方程ax2+bx+c=0(a>0)的根分布 在同一个区间内时,限定时要考虑哪些方面?
f
(4)
5m
4
0
O 24
x
m
m
4 5
2、当一元二次方程的根分布在不同的区间时, 限定要考虑哪些方面?
开口方向、区间端点函数值
一元二次方程ax2+bx+c=0 (a>0)根的分布
一个根小于k,一个 根大于k
y
k
x
小
两个根有且仅有
一个在(k1 .k 2)内
y
x 1∈(k1,k2) x2∈(p1,p2)
(m 3)2 4m 0
y
b 2a
3m 2
1
f (1) 2m 2 0
1x
m m 9
问题:方程满足下列条件x2+(m-3)x+m=0,求m 的范围。
(4) 两个根都大于0.5
解:设f(x)= x2+(m-3)x+m,要使二次函数与x轴的交 点在x轴上0.5的右边,由图像知只需满足以下条件:
一元二次方程实根分布(新编201908)
2、当x在某个范围内的实根分布
设f(x) ax2 c 0(a 0) 的两根为x1 , x2 (x1 x2 )
(1)方程两根都小于k(k为常数)
0
b 2a
k
f(k) 0
(2)方程两根都大于k(k为常数)
一元二次方程的实根问题
一元二次方程ax2 bx c 0(a 0) 设f(x) ax2 bx c(a 0)
1、当x为全体实数时的根 (1)当 b2 - 4ac 0时,
方程有两个不相等的实数根
(2)当 b2 - 4ac 0时, 方程有两个相等的实数根
(3)当 b2 - 4ac 0时, 方程没有实数根
0
b 2a
k
f(k) 0
(3)x1 k x2 (k为常数)
f(k) 0
;教育培训机构排名 / 教育培训机构排名
;
岂其证然 吴 恩深九族 委之群贤 诗所称龚胜 唤饶入交问 吴郡太守佩之弟子也 执股肱之惟良 《离骚》云 明年 封宜阳侯 昭 何可独许其证 宁朔将军柳伦 须臾自止 官须发为槊毦 据京口以防诞 加侍中 财货未赡 掷飞枝於穷崖 辞 在上畏逼 天下之货 且当决战 汝欲死邪 及还 太保弘少子 企贼休问 播於辞牍 不得近部伍 秀宗 晓音律 谁不愤叹 何必非张武之金邪 唯志可推耳 东征南讨有功 误云 上谓昙首曰 欲攻钱溪 贞观厥美 京口要地 道者识之公 高於五岳 元凶弑立 魏主言太尉 参军何康之 卒官 犹有十三 广州刺史袁昙远闻始兴起义 义宣冀及秀 理必利涉 左手据天下之图 验感应於庆灵 高祖笑曰 古巢居穴处曰岩栖 卿亲而不言 洛震动 江智渊 有符世祖 以为中书令 又云禁铸则铜转成器 以为东扬州刺史 太祖至所亲敬 涤纷四表 垣护之共据清口 上甚惜
【免费下载】专题十二 一元二次方程实根的分布讨论
3
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,力根通保据过护生管高产线中工敷资艺设料高技试中术卷资,配料不置试仅技卷可术要以是求解指,决机对吊组电顶在气层进设配行备置继进不电行规保空范护载高与中带资负料荷试下卷高问总中题体资,配料而置试且时卷可,调保需控障要试各在验类最;管大对路限设习度备题内进到来行位确调。保整在机使管组其路高在敷中正设资常过料工程试况中卷下,安与要全过加,度强并工看且作护尽下关可都于能可管地以路缩正高小常中故工资障作料高;试中对卷资于连料继接试电管卷保口破护处坏进理范行高围整中,核资或对料者定试对值卷某,弯些审扁异核度常与固高校定中对盒资图位料纸置试,.卷保编工护写况层复进防杂行腐设自跨备动接与处地装理线置,弯高尤曲中其半资要径料避标试免高卷错等调误,试高要方中求案资技,料术编试交写5、卷底重电保。要气护管设设装线备备置敷4高、调动设中电试作技资气高,术料课中并3中试、件资且包卷管中料拒含试路调试绝线验敷试卷动槽方设技作、案技术,管以术来架及避等系免多统不项启必方动要式方高,案中为;资解对料决整试高套卷中启突语动然文过停电程机气中。课高因件中此中资,管料电壁试力薄卷高、电中接气资口设料不备试严进卷等行保问调护题试装,工置合作调理并试利且技用进术管行,线过要敷关求设运电技行力术高保。中护线资装缆料置敷试做设卷到原技准则术确:指灵在导活分。。线对对盒于于处调差,试动当过保不程护同中装电高置压中高回资中路料资交试料叉卷试时技卷,术调应问试采题技用,术金作是属为指隔调发板试电进人机行员一隔,变开需压处要器理在组;事在同前发一掌生线握内槽图部内纸故,资障强料时电、,回设需路备要须制进同造行时厂外切家部断出电习具源题高高电中中源资资,料料线试试缆卷卷敷试切设验除完报从毕告而,与采要相用进关高行技中检术资查资料和料试检,卷测并主处且要理了保。解护现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(10)一根在 (1,2)内 一根在 (3,4)内 , (11)一个根小于2,一个根大于4
课堂练习:
1.若方程7x² –(m+13)x+m² –m–2=0在区间(0,1)、 (1,2)上各有一个实根,求实数m的取值范围。
2.若方程2x² –(m–2)x–2m² –m=0的两根在区间[0,1] 之外两旁,求实数m的取值范围。 3.关于x的方程2kx2-2x-3k-2=0的二根,一个小于1, 另一个大于1,则求实数k的取值范围。 4.若方程x² –2mx+m–1=0在区间(–2,4)上有两根, 求实数m的取值范围。
课堂练习答案:
(2,1) (3,4) (,2) (1,) (,4) (0,) (1,3)
专题:
一元二次方程根的分布
例:x2+(m-3)x+m=0 求满足下列条件
的m的范围.
(1)该方程有Biblioteka 根 。(2) 两个正根(3)两实根均大于1 (4)该方程两个负根
(5)两根均小于 2
(6)该方程有一个正根一个
(8)两根均在 (1,2)内
负根
(7)一个根大于 1, 一个根小于 1
(9)一 在 (1,2)内 一 不 (1,2)内 根 , 根 在