初三期中考试数学试卷,浙江省杭州市上城区建兰中学九年级上册数学期中考试试卷及答案解析
浙江省杭州市上城区九年级上学期期中考试数学试题(原卷版)
浙江省杭州市上城区九年级上学期期中考试数学试题一、选择题(共10小题,每小题3分,满分30分).1.把抛物线y=23x 向上平移一个单位,则所得抛物线的解析式为( ).A .y=()231x +B .y=23x +1C .y=()231x -D .y=23x ﹣12.一个不透明的袋子中装有5个黑球和3个白球,这些球的大小、质地完全相同,随机从袋子中摸出4个球,则下列事件是必然事件的是( ).A .摸出的四个球中至少有一个球是白球B .摸出的四个球中至少有一个球是黑球C .摸出的四个球中至少有两个球是黑球D .摸出的四个球中至少有两个球是白球3.若⊙P 的半径为13,圆心P 的坐标为(5,12),则平面直角坐标系的原点O 与⊙P 的位置关系是( ).A .在⊙P 内B .在⊙P 上C .在⊙P 外D .无法确定4.有长度分别为2cm ,3cm ,4cm ,7cm 的四条线段,任取其中三条能组成三角形的概率是( ).A .12B .13C .23D .145.如图是我市环北路改造后一圆柱形输水管的横截面,阴影部分为有水部分,如果水面AB 宽为4m ,水面最深地方的高度为1m ,则该输水管的半径为( ).A .2mB .2.5mC .4mD .5m6.下列说法不正确的是( ).A .圆是轴对称图形,它有无数条对称轴B .圆的半径、弦长的一半、弦上的弦心距能组成一直角三角形,且圆的半径是此直角三角形的斜边C .弦长相等,则弦所对的弦心距也相等D .垂直于弦的直径平分这条弦,并且平分弦所对的弧7.连接一个几何图形上任意两点间的线段中,最长的线段称为这个几何图形的直径,根据此定义,图(扇形、菱形、直角梯形、红十字图标)中“直径”最小的是( ).8.已知二次函数y=212x -﹣3x ﹣52,设自变量的值分别为1x ,2x ,3x ,且﹣3<1x <2x <3x ,则对应的函数值1y ,2y ,3y 的大小关系是( ).A .1y >2y >3yB .1y <2y <3yC .2y >3y >1yD .2y <3y <1y9.已知二次函数y=2x ﹣x+a (a >0),当自变量x 取m 时,其相应的函数值y <0,那么下列结论中正确的是( ).A .m ﹣1的函数值小于0B .m ﹣1的函数值大于0C .m ﹣1的函数值等于0D .m ﹣1的函数值与0的大小关系不确定10.二次函数y=2ax +bx+c (a >0)的顶点为P ,其图象与x 轴有两个交点A (﹣m ,0),B (1,0),交y 轴于点C (0,﹣3am+6a ),以下说法:①m=3;②当∠APB=120°时,;③当∠APB=120°时,抛物线上存在点M (M 与P 不重合),使得△ABM 是顶角为120°的等腰三角形;④抛物线上存在点N ,当△ABN 为直角三角形时,有a ≥12.正确的是( ). A .①② B .③④ C .①②③ D .①②③④二、填空题(共6小题,每小题4分,满分24分).11.将y=22x ﹣12x ﹣12变为y=()2a x m -+n 的形式,则m•n= .12.⊙O 的直径为10,弦AB=6,P 是弦AB 上一动点,则OP 的取值范围是 .13.甲、乙玩猜数字游戏,游戏规则如下:有四个数字0、1、2、3,先由甲心中任选一个数字,记为m ,再由乙猜甲刚才所选的数字,记为n .若m 、n 满足|m ﹣n|≤1,则称甲、乙两人“心有灵犀”,则甲、乙两人“心有灵犀”的概率是 .14.函数y=2x +bx+c 与y=x 的图象如图所示,有以下结论:①2b ﹣4c >0;②3b+c+6=0;③当1<x <3时,2x +(b ﹣1)x+c <0=,其中正确的有 .ax+bx+c的顶点为C,与x轴相交于A、B两点(点A在点B左侧),点C关于x轴15.已知抛物线p:y=2的对称点为C′,我们称以A为顶点且过点C′,对称轴与y轴平行的抛物线为抛物线p的“梦之星”抛物线,直线AC′为抛物线p的“梦之星”直线.若一条抛物线的“梦之星”抛物线和“梦之星”直线分别是y=2x+2x+1和y=2x+2,则这条抛物线的解析式为.16.如图,在等腰Rt△ABC中,AC=BC=,点P在以斜边AB为直径的半圆上,M为PC的中点.当点P 沿半圆从点A运动至点B时,点M运动的路径长是.三、解答题(共7小题,满分66分).17.如图.电路图上有四个开关A、B、C、D和一个小灯泡,闭合开关D或同时闭合开关A,B,C都可使小灯泡发光.(1)任意闭合其中一个开关,则小灯泡发光的概率等于;(2)任意闭合其中两个开关,请用画树状图或列表的方法求出小灯泡发光的概率.18.已知二次函数的顶点坐标为(2,﹣2),且其图象经过点(3,1),求此二次函数的解析式,并求出该函数图象与y轴的交点坐标.19.如图,AB为半圆直径,O为圆心,C为半圆上一点,E是弧AC的中点,OE交弦AC于点D,若AC=8cm,DE=2cm,求OD的长.mx﹣6x+1(m是常数).20.已知函数y=2(1)求证:不论m为何值,该函数的图象都经过y轴上的一个定点;(2)若该函数的图象与x轴只有一个交点,求m的值.21.高致病性禽流感是比SARS传染速度更快的传染病.为防止禽流感蔓延,政府规定:离疫点3km范围内为扑杀区;离疫点3km~5km范围内为免疫区,对扑杀区与免疫区内的村庄、道路实行全封闭管理.现有一条笔直的公路AB通过禽流感病区,如图,在扑杀区内公路CD长为4km.(1)请用直尺和圆规找出疫点O(不写作法,保留作图痕迹);(2)求这条公路在免疫区内有多少千米?22.如图,东湖隧道的截面由抛物线和长方形构成,长方形的长OA为12cm,宽OB为4cm,隧道顶端D到路面的距离为10cm,建立如图所示的直角坐标系(1)求该抛物线的解析式.(2)一辆货运汽车载一长方体集装箱,集装箱最高处与地面距离为6m,宽为4m,隧道内设双向行车道,问这辆货车能否安全通过?(3)在抛物线型拱壁上需要安装两排灯,使它们离地面高度相等,如果灯离地面的高度不超过8.5m,那么两排灯的水平距离最小是多少米?23.如图,抛物线y=2x -+bx+c 与x 轴交于A (1,0),B (﹣4,0)两点,(1)求该抛物线的解析式;(2)设(1)中的抛物线交y 轴于C 点,在该抛物线的对称轴上是否存在点Q ,使得△QAC 的周长最小?若存在,求出Q 点的坐标;若不存在,请说明理由;(3)设此抛物线与直线y=﹣x 在第二象限交于点D ,平行于y 轴的直线x=m ,(10m -)与抛物线交于点M ,与直线y=﹣x 交于点N ,连接BM 、CM 、NC 、NB ,是否存在m 的值,使四边形BNCM 的面积S 最大?若存在,请求出m 的值,若不存在,请说明理由.:。
杭州市九年级上期中数学试卷含答案解析
浙江省杭州市九年级上学期期中数学试卷一、选择题(共10小题,每小题3分,满分30分)1.若,则=()A.B.C.D.2.抛物线y=﹣2x2﹣4x﹣5的顶点坐标是()A.(1,3)B.(﹣1,3) C.(1,﹣3) D.(﹣1,﹣3)3.在盒子里放有三张分别写有整式a+1,a+2,2的卡片,从中随机抽取两张卡片,把两张卡片上的整式分别作为分子和分母,则能组成分式的概率是()A.B.C.D.4.下列命题正确的个数有()①等弧所对的圆周角相等;②相等的圆周角所对的弧相等;③圆中两条平行弦所夹的弧相等;④三点确定一个圆;⑤在同圆或等圆中,同弦或等弦所对的圆周角相等或互补.A.2 B.3 C.4 D.55.一扇形的半径等于已知圆的半径的3倍,且它的面积等于该圆的面积,则这一扇形的圆心角为()A.20° B.120°C.100°D.40°6.函数y=与y=﹣kx2+k(k≠0)在同一直角坐标系中的图象可能是()A.B.C.D.7.如图所示,在△ABC中,DE∥AB∥FG,且FG到DE、AB的距离之比为1:2.若△ABC的面积为32,△CDE的面积为2,则△CFG的面积S等于()A.6 B.8 C.10 D.128.如图,由等边三角形、正方形、圆组成的轴对称图案中,等边三角形与三个正方形的面积和的比值为()A.B.1 C.D.9.已知二次函数y=ax2+bx+c的图象如图所示,令M=|4a﹣2b+c|+|a+b+c|﹣|2a+b|+|2a﹣b|,则()A.M>0 B.M<0C.M=0 D.M的符号不能确定10.已知有一块等腰三角形纸板,在它的两腰上各有一点E和F,把这两点分别与底边中点连结,并沿着这两条线段剪下两个三角形,所得的这两个三角形相似,剩余部分(四边形)的四条边的长度如图所示,那么原等腰三角形的底边长为()A.B.C.或D.或二、填空题(共6小题,每小题4分,满分24分)11.抛物线y=x2﹣4x+3关于x轴对称所得的抛物线的解析式是.12.圆内接四边形相邻三个内角之比是3:4:6,则该四边形内角中最大度数是.13.从长度为2,3,5,7的四条线段中任意选取三条,这三条线段能构成三角形的概率等于.14.已知AB是⊙O的直径,弦CD⊥AB于点E,弦PQ∥AB交弦CD于点M,BE=18,CD=PQ=24,则OM的长为.15.如图,△ABC中,∠ACB=90°,AB=5,D是AB延长线上一点,连接CD,若∠DCB=∠A,BD:DC=1:2,则△ABC的面积为.16.如图,抛物线与交于点A(1,3),过点A作x轴的平行线,分别交两条抛物线于点B、C.则以下结论:①无论x取何值,y2的值总是正数;②;③当x=0时,y2﹣y1=5;④当y2>y1时,0≤x<1;⑤2AB=3AC.其中正确结论的编号是.三、解答题(共7小题,满分66分)17.已知:如图,AE,DB是⊙O的直径,F是⊙O上一点,∠AOB=60°,且F是的中点.求证:AB=BF.18.小明、小亮、小芳和两个陌生人甲、乙同在如图所示的地下车库等电梯,已知两个陌生人到1至4层的任意一层出电梯,并设甲在a层出电梯,乙在b层出电梯.(1)请你用画树状图或列表法求出甲、乙二人在同一层楼出电梯的概率;(2)小亮和小芳打说:“若甲、乙在同一层或相邻楼层出电梯,则小亮胜,否则小芳胜”.该游戏是否公平?说明理由.19.如图:在△ABC中,AD⊥BC,垂足是D.(1)作△ABC的外接圆O(尺规作图);(2)若AB=8,AC=6,AD=5,求△ABC的外接圆O半径的长.20.已知二次函数,当x=1时有最小值,其中a,b,c分别是△ABC中∠A、∠B、∠C的对边,请判断△ABC是什么特殊三角形,说明理由并求出∠A的余弦值.21.如图,在△ABC中,AB=AC,点P、D分别是BC、AC边上的点,且∠APD=∠B.(1)求证:AC•CD=CP•BP;(2)若AB=10,BC=12,当PD∥AB时,求BP的长.22.某超市经销一种销售成本为每件40元的商品.据市场调查分析,如果按每件50元销售,一周能售出500件,若销售单价每涨1元,每周销售量就减少10件.设销售单价为每件x元(x≥50),一周的销售量为y件.(1)写出y与x的函数关系式.(标明x的取值范围)(2)设一周的销售利润为S,写出S与x的函数关系式,并确定当单价在什么范围内变化时,利润随着单价的增大而增大?(3)在超市对该种商品投入不超过10 000元的情况下,使得一周销售利润达到8 000元,销售单价应定为多少?23.如图1,已知抛物线y=ax2+bx(a≠0)经过A(3,0)、B(4,4)两点.(1)求抛物线的解析式;(2)将直线OB向下平移m个单位长度后,得到的直线与抛物线只有一个公共点D,求m的值及点D的坐标;(3)如图2,若点N在抛物线上,且∠NBO=∠ABO,则在(2)的条件下,求出所有满足△POD∽△NOB的点P坐标(点P、O、D分别与点N、O、B对应).浙江省杭州市九年级上学期期中数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.若,则=()A.B.C.D.【考点】比例的性质.【专题】计算题.【分析】设a=2k,进而用k表示出b的值,代入求解即可.【解答】解:设a=2k,则b=9k.==,故选A.【点评】考查比例性质的计算;得到用k表示的a,b的值是解决本题的突破点.2.抛物线y=﹣2x2﹣4x﹣5的顶点坐标是()A.(1,3)B.(﹣1,3) C.(1,﹣3) D.(﹣1,﹣3)【考点】二次函数的性质.【分析】利用顶点的公式首先求得横坐标,然后把横坐标的值代入解析式即可求得纵坐标.【解答】解:x=﹣=﹣1,把x=﹣1代入得:y=﹣2+4﹣5=﹣3.则顶点的坐标是(﹣1,﹣3).故选D.【点评】本题考查了二次函数的顶点坐标的求解方法,可以利用配方法求解,也可以利用公式法求解.3.在盒子里放有三张分别写有整式a+1,a+2,2的卡片,从中随机抽取两张卡片,把两张卡片上的整式分别作为分子和分母,则能组成分式的概率是()A.B.C.D.【考点】概率公式;分式的定义.【专题】应用题;压轴题.【分析】列举出所有情况,看能组成分式的情况占所有情况的多少即为所求的概率.【解答】解:分母含有字母的式子是分式,整式a+1,a+2,2中,抽到a+1,a+2做分母时组成的都是分式,共有3×2=6种情况,其中a+1,a+2为分母的情况有4种,所以能组成分式的概率==.故选B.【点评】用到的知识点为:概率等于所求情况数与总情况数之比.4.下列命题正确的个数有()①等弧所对的圆周角相等;②相等的圆周角所对的弧相等;③圆中两条平行弦所夹的弧相等;④三点确定一个圆;⑤在同圆或等圆中,同弦或等弦所对的圆周角相等或互补.A.2 B.3 C.4 D.5【考点】命题与定理.【分析】根据圆周角,圆周角定理,垂径定理以及确定圆的条件即可求解.【解答】解:①同圆或等圆中,等弧所对的圆周角相等,故错误;②在同圆或等圆中,相等的圆周角所对的弧相等,故错误;③圆中两条平行弦所夹的弧相等,正确;④不在同一直线上的三点确定一个圆,故错;⑤在同圆或等圆中,同弦或等弦所对的圆周角相等或互补,正确,故选A.【点评】本题主要考查了圆周角的性质定理,以及确定圆的条件等圆的基本知识.解题的关键是要注意命题的细节,逐一做出准确的判断.5.一扇形的半径等于已知圆的半径的3倍,且它的面积等于该圆的面积,则这一扇形的圆心角为()A.20° B.120°C.100°D.40°【考点】扇形面积的计算.【分析】先设出半径,再根据圆的面积公式和扇形的面积公式计算.【解答】解:设圆的半径为r,则扇形的半径为3r,根据两者面积相等得:πr2=,解得n=40°.故选D.【点评】本题主要考查了扇形的面积公式.熟记扇形的面积公式是解题的关键.6.函数y=与y=﹣kx2+k(k≠0)在同一直角坐标系中的图象可能是()A.B.C.D.【考点】二次函数的图象;反比例函数的图象.【专题】压轴题;数形结合.【分析】本题可先由反比例函数的图象得到字母系数的正负,再与二次函数的图象相比较看是否一致.【解答】解:由解析式y=﹣kx2+k可得:抛物线对称轴x=0;A、由双曲线的两支分别位于二、四象限,可得k<0,则﹣k>0,抛物线开口方向向上、抛物线与y轴的交点为y轴的负半轴上;本图象与k的取值相矛盾,故A错误;B、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象符合题意,故B正确;C、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象与k的取值相矛盾,故C错误;D、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象与k的取值相矛盾,故D错误.故选:B.【点评】本题主要考查了二次函数及反比例函数和图象,解决此类问题步骤一般为:(1)先根据图象的特点判断k取值是否矛盾;(2)根据二次函数图象判断抛物线与y轴的交点是否符合要求.7.如图所示,在△ABC中,DE∥AB∥FG,且FG到DE、AB的距离之比为1:2.若△ABC的面积为32,△CDE的面积为2,则△CFG的面积S等于()A.6 B.8 C.10 D.12【考点】相似三角形的判定与性质.【专题】计算题.【分析】先由AB∥FG,且FG到DE、AB的距离之比为1:2,根据平行线分线段成比例定理得到DF:FA=1:2,再根据平行于三角形一边的直线截三角形所得的三角形与原三角形相似得到△CDE∽△CAB,根据三角形相似的性质得S△CDE:S△CAB=CD2:CA2=2:32,则CD:CA=1:4,通过代换得到CD:CF=1:2,再次根据三角形相似的性质得到S△CDE:S△CFG=CD2:CF2=1:4,即可计算出△CFG的面积.【解答】解:∵AB∥FG,且FG到DE、AB的距离之比为1:2,∴DF:FA=1:2,∵DE∥AB,∴△CDE∽△CAB,∴S△CDE:S△CAB=CD2:CA2=2:32,∴CD:CA=1:4,设CD=a,则CA=4a,∴DA=3a,∴DF=a,∴CF=2a,∴CD:CF=1:2,而DE∥FG,∴S△CDE:S△CFG=CD2:CF2=1:4,而△CDE的面积为2,∴△CFG的面积S=4×2=8.故选B.【点评】本题考查了三角形相似的判定与性质:平行于三角形一边的直线截三角形所得的三角形与原三角形相似;相似三角形对应边的比等于相似比,相似三角形面积的比等于相似比的平方.8.如图,由等边三角形、正方形、圆组成的轴对称图案中,等边三角形与三个正方形的面积和的比值为()A.B.1 C.D.【考点】正多边形和圆;轴对称图形.【分析】由题意知:三个正方形的共用顶点即为圆的圆心,也是等边三角形的重心;可设等边三角形的边长为2x,作等边三角形的高,再根据三角形重心的性质即可得到正方形的对角线的长;进而可求得等边三角形和正方形的面积,即可得到它们的面积比.【解答】解:如图,设圆的圆心为O,由题意知:三角形的重心以及三个正方形的共用顶点即为点O.过A作AD⊥BC于D,则AD必过点O,且AO=2OD;设△ABC的边长为2x,则BD=x,AD=x,OD=x;∴正方形的边长为:x,面积为x2,三个正方形的面积和为2x2;易求得△ABC的面积为:×2x×x=x2,∴等边三角形与三个正方形的面积和的比值为,故选A.【点评】此题考查的知识点有:轴对称图形、等边三角形及正方形的性质、三角形重心的性质以及图形面积的求法,找到等边三角形和正方形边长的比例关系是解答此题的关键.9.已知二次函数y=ax2+bx+c的图象如图所示,令M=|4a﹣2b+c|+|a+b+c|﹣|2a+b|+|2a﹣b|,则()A.M>0 B.M<0C.M=0 D.M的符号不能确定【考点】二次函数图象与系数的关系.【专题】压轴题.【分析】根据图象特征,首先判断出M中的各代数式的符号,然后去绝对值.【解答】解:因为开口向下,故a<0;当x=﹣2时,y>0,则4a﹣2b+c>0;当x=1时,y<0,则a+b+c<0;因为对称轴为x=<0,又a<0,则b<0,故2a+b<0;又因为对称轴x=﹣>﹣1,则b>2a∴2a﹣b<0;∴M=4a﹣2b+c﹣a﹣b﹣c+2a+b+b﹣2a=3a﹣b,因为2a﹣b<0,a<0,∴3a﹣b<0,即M<0,故选B.【点评】考查二次函数y=ax2+bx+c系数符号的确定.10.已知有一块等腰三角形纸板,在它的两腰上各有一点E和F,把这两点分别与底边中点连结,并沿着这两条线段剪下两个三角形,所得的这两个三角形相似,剩余部分(四边形)的四条边的长度如图所示,那么原等腰三角形的底边长为()A.B.C.或D.或【考点】相似三角形的判定;等腰三角形的性质.【专题】计算题;探究型;数形结合.【分析】分两种情况:点A为等腰三角形的顶点,点D为底边的中点与点D为等腰三角形的顶点,点A为底边的中点,利用等腰三角形的性质与相似三角形对应边的比相等的性质进行分析求解即可.【解答】解:如图1,当A为等腰三角形的顶点,点D为底边的中点时,设BD=DC=a,AB=AC=b,则BE=b﹣2,CF=b﹣4,∵AB=AC,∴∠B=∠C,又∵BD=DC,BE≠CF,DE≠DF,∴点B与点C、点E与点D,点D与点F为对应点,即△BED∽△CDF,∴BE:CD=ED:DF=BD:CF,即(b﹣2):a=3:2=a:(b﹣4),解得a=,∴BC=2a=;如图2,当点D为等腰三角形的顶点,点A为底边的中点时,设BA=AC=a,BD=CD=b,则BE=b ﹣3,CF=b﹣2,∵BD=CD,∴∠B=∠C,∴点B与点C为对应点,若点E与点F、点A与点C为对应点,由△BEA∽△CFA,可得BE:CF=EA:FA=BA:CA,即(b﹣3):(b﹣2)=2:4=a:a,无解;若点E与点A,点A与点F为对应点,由△BEA∽△CAF,可得BE:CA=EA:AF=BA:CF,即(b﹣3):a=2:4=a:b﹣2,解得a=,b=,此时BA=,BE=b﹣3=,BE、BA、EA不能构成三角形,故此种情况不成立;综上所述,这个等腰三角形底边长为.故选B.【点评】本题考查了等腰三角形的性质,相似三角形的判定与性质,难度适中,解答本题的关键是正确画出图形,并熟知相似三角形对应边的比相等的性质,同时注意分类讨论思想与方程思想的运用.二、填空题(共6小题,每小题4分,满分24分)11.抛物线y=x2﹣4x+3关于x轴对称所得的抛物线的解析式是y=﹣x2+4x﹣3.【考点】二次函数图象与几何变换.【分析】利用原抛物线上的关于x轴对称的点的特点:横坐标相同,纵坐标互为相反数就可以解答.【解答】解:∵抛物线y=x2﹣4x+3关于x轴对称所得的抛物线的解析式为﹣y=x2﹣4x+3,∴所求解析式为:y=﹣x2+4x﹣3.故答案为:y=﹣x2+4x﹣3【点评】本题考查了二次函数图象与几何变换,解决本题的关键是抓住关于x轴对称的坐标特点.12.圆内接四边形相邻三个内角之比是3:4:6,则该四边形内角中最大度数是120°.【考点】圆内接四边形的性质.【分析】设三个内角为3x,4x,6x,根据圆内接四边形的对角互补列出方程,解方程求出x,计算出各角的度数,比较得到答案.【解答】解:设三个内角为3x,4x,6x,根据圆内接四边形的对角互补,得3x+6x=180°,∴x=20°则这三个内角为60°、80°、120°,所以第四个内角是180°﹣4x=100°,所以该四边形内角中最大度数是120°,故答案为:120°.【点评】本题考查的是圆内接四边形的性质,掌握圆内接四边形的对角互补是解题的关键.13.从长度为2,3,5,7的四条线段中任意选取三条,这三条线段能构成三角形的概率等于.【考点】概率公式;三角形三边关系.【专题】压轴题.【分析】三角形的任意两边的和大于第三边,任意两边之差小于第三边,本题只要把三边代入,看是否满足即可.把满足的个数除以4即可得出概率.【解答】解:长度为2,3,5,7的四条线段中任意选取三条共有:2,3,5;2,3,7;2,5,7;3,5,7,能构成三角形的为:3、5、7,只有1组,因此概率为.【点评】考查三角形的边时,要注意三角形形成的条件:任意两边之和大于第三边,任意两边之差小于第三边.用到的知识点为:概率=所求情况数与总情况数之比.14.已知AB是⊙O的直径,弦CD⊥AB于点E,弦PQ∥AB交弦CD于点M,BE=18,CD=PQ=24,则OM的长为5.【考点】垂径定理;勾股定理.【分析】作OF⊥PQ于F,连接OP,根据已知和图形证明四边形MEOF为正方形,设半径为x,用x表示出OF,在直角△OPF中,根据勾股定理列出方程求出x的值,得到答案.【解答】解:作OF⊥PQ于F,连接OP,∴PF=PQ=12,∵CD⊥AB,PQ∥AB,∴CD⊥PQ,∴四边形MEOF为矩形,∵CD=PQ,OF⊥PQ,CD⊥AB,∴OE=OF,∴四边形MEOF为正方形,设半径为x,则OF=OE=18﹣x,在直角△OPF中,x2=122+(18﹣x)2,解得x=13,则MF=OF=OE=5,∴OM=5.故答案为:5.【点评】本题考查的是垂径定理和勾股定理的应用,正确作出辅助线构造直角三角形运用勾股定理是解题的关键.15.如图,△ABC中,∠ACB=90°,AB=5,D是AB延长线上一点,连接CD,若∠DCB=∠A,BD:DC=1:2,则△ABC的面积为5.【考点】相似三角形的判定与性质;解一元二次方程-直接开平方法;勾股定理.【分析】由题可知△CBD∽△ACD,则可根据相似比和勾股定理求解.【解答】解:∵∠DCB=∠A,∠D=∠D∴△CBD∽△ACD∴BD:CD=CB:AC∵BD:DC=1:2∴CB:AC=1:2设CB为x,则AC=2x,AB=5根据勾股定理可知:x2+4x2=25,解得x=,即CB=,AC=2∴△ABC的面积为×÷2=5.【点评】本题的关键是先判定三角形相似,然后利用相似比和勾股定理求得BC、AC的值,从而求出三角形的面积.16.如图,抛物线与交于点A(1,3),过点A作x轴的平行线,分别交两条抛物线于点B、C.则以下结论:①无论x取何值,y2的值总是正数;②;③当x=0时,y2﹣y1=5;④当y2>y1时,0≤x<1;⑤2AB=3AC.其中正确结论的编号是①⑤.【考点】二次函数的性质.【专题】计算题.【分析】①根据图象可以判断出图象都在x轴的上方,据此即可得知,无论x取何值,y2的值总是正数;②将点A(1,3)代入得a=即可判断;③将x=0分别代入和,求出y1与y2的值,再相减即可得到y2﹣y1的值;④令y2=y1,求出两个函数的交点坐标,再根据图象判断x的取值范围;⑤令=3,=3,分别解方程,求出A、B、C点的横坐标,再计算出AB、AC的长,即可做出正确判断.【解答】解:①由图可知,y2的图象在x轴的上方,可见,无论x取何值,y2的值总是正数,故本选项正确;②将点A(1,3)代入抛物线,得a(1+2)2﹣3=3,解得a=,故本选项错误;③当x=0时,y1==﹣,=,y2﹣y1=+=,故本选项错误;④令y2=y1,则有=,解得x1=1,x2=﹣35.几何图象可知,y2>y1,﹣35<x<1,故本选项错误;⑤令=3,解得,x1=1或x2=﹣5;AB=5+1=6;=3,解得,x3=5,x4=1;AB=5﹣1=4;则2AB=3AC.故本选项正确.故答案答案为①⑤.【点评】本题考查了二次函数的性质,数形结合是本题的核心,要善于利用图形进行解答.三、解答题(共7小题,满分66分)17.已知:如图,AE,DB是⊙O的直径,F是⊙O上一点,∠AOB=60°,且F是的中点.求证:AB=BF.【考点】圆心角、弧、弦的关系.【专题】证明题.【分析】连接OF,可得出∠BOF=∠EOF,根据同圆中圆心角相等,可得出弦相等,从而得出AB=BF.【解答】解:连接OF,∵AE,DB是⊙O的直径,∠AOB=60°,∴∠BOE=120°,∵F是的中点,∴∠BOF=∠EOF=60°,∴AB=BF.【点评】本题考查了圆心角、弧、弦的关系,在等圆或同圆中圆心角相等,所对的弦相等是解题的关键.18.小明、小亮、小芳和两个陌生人甲、乙同在如图所示的地下车库等电梯,已知两个陌生人到1至4层的任意一层出电梯,并设甲在a层出电梯,乙在b层出电梯.(1)请你用画树状图或列表法求出甲、乙二人在同一层楼出电梯的概率;(2)小亮和小芳打说:“若甲、乙在同一层或相邻楼层出电梯,则小亮胜,否则小芳胜”.该游戏是否公平?说明理由.【考点】游戏公平性;列表法与树状图法.【分析】(1)列表得出所有等可能的情况数,找出甲乙在同一个楼层的情况数,即可求出所求的概率;(2)分别求出两人获胜的概率比较得到公平与否,修改规则即可.【解答】解:(1)列表如下:1 2 3 4甲乙1 (1,1)(2,1)(3,1)(4,1)2 (1,2)(2,2)(3,2)(4,2)3 (1,3)(2,3)(3,3)(4,3)4 (1,4)(2,4)(3,4)(4,4)一共出现16种等可能结果,其中出现在同一层楼梯的有4种结果,则P(甲、乙在同一层楼梯)=;(2)由(1)列知:甲、乙住在同层或相邻楼层的有10种结果故P(小亮胜)=P(同层或相邻楼层)=,P(小芳胜)=1﹣,∵>,∴游戏不公平.【点评】此题考查了游戏公平性,以及列表法与树状图法,判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.19.如图:在△ABC中,AD⊥BC,垂足是D.(1)作△ABC的外接圆O(尺规作图);(2)若AB=8,AC=6,AD=5,求△ABC的外接圆O半径的长.【考点】作图—复杂作图;三角形的外接圆与外心.【专题】作图题.【分析】(1)分别作AB和BC的垂直平分线,它们相交于点O,然后以O点为圆心,OA为半径作圆即可;(2)作直径AE,连结BE,如图,根据圆周角定理得到∠ABE=90°,∠C=∠E,则可证明Rt△ABE∽Rt△ADC,然后利用相似比计算出AE即可得到△ABC的外接圆O半径的长.【解答】解:(1)如图,⊙O为所作;(2)作直径AE,连结BE,如图,∵AE为直径,∴∠ABE=90°,∵AD⊥BC,∴∠ADC=90°,∵∠C=∠E,∴Rt△ABE∽Rt△ADC,∴=,即=,∴AE=,∴OA=AE=,即△ABC的外接圆O半径的长为.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.解决(2)小题的关键是构建Rt△ABE与△ADC相似.20.已知二次函数,当x=1时有最小值,其中a,b,c分别是△ABC中∠A、∠B、∠C的对边,请判断△ABC是什么特殊三角形,说明理由并求出∠A的余弦值.【考点】二次函数的最值;勾股定理的逆定理.【分析】根据顶点横坐标公式,得b+c=2a①,由x=1,y=,得c=b②,①与②联立,得出用含b的代数式分别表示a、c的式子,从而根据三边关系判断△ABC的形状;再根据锐角三角函数的定义求出∠A的余弦值.【解答】解:(1)∵当x=1时有最小值,∴,解得,,∴a2+c2=b2,∴△ABC是直角三角形.(2)∵在△ABC中,∠B=90°,∴cosA==.【点评】本题主要考查了二次函数的顶点坐标公式,勾股定理的逆定理及余弦函数的定义.21.如图,在△ABC中,AB=AC,点P、D分别是BC、AC边上的点,且∠APD=∠B.(1)求证:AC•CD=CP•BP;(2)若AB=10,BC=12,当PD∥AB时,求BP的长.【考点】相似三角形的判定与性质.【分析】(1)易证∠APD=∠B=∠C,从而可证到△ABP∽△PCD,即可得到=,即AB•CD=CP•BP,由AB=AC即可得到AC•CD=CP•BP;(2)由PD∥AB可得∠APD=∠BAP,即可得到∠BAP=∠C,从而可证到△BAP∽△BCA,然后运用相似三角形的性质即可求出BP的长.【解答】解:(1)∵AB=AC,∴∠B=∠C.∵∠APD=∠B,∴∠APD=∠B=∠C.∵∠APC=∠BAP+∠B,∠APC=∠APD+∠DPC,∴∠BAP=∠DPC,∴△ABP∽△PCD,∴=,∴AB•CD=CP•BP.∵AB=AC,∴AC•CD=CP•BP;(2)∵PD∥AB,∴∠APD=∠BAP.∵∠APD=∠C,∴∠BAP=∠C.∵∠B=∠B,∴△BAP∽△BCA,∴=.∵AB=10,BC=12,∴=,∴BP=.【点评】本题主要考查了相似三角形的判定与性质、等腰三角形的性质、平行线的性质、三角形外角的性质等知识,把证明AC•CD=CP•BP转化为证明AB•CD=CP•BP是解决第(1)小题的关键,证到∠BAP=∠C进而得到△BAP∽△BCA是解决第(2)小题的关键.22.某超市经销一种销售成本为每件40元的商品.据市场调查分析,如果按每件50元销售,一周能售出500件,若销售单价每涨1元,每周销售量就减少10件.设销售单价为每件x元(x≥50),一周的销售量为y件.(1)写出y与x的函数关系式.(标明x的取值范围)(2)设一周的销售利润为S,写出S与x的函数关系式,并确定当单价在什么范围内变化时,利润随着单价的增大而增大?(3)在超市对该种商品投入不超过10 000元的情况下,使得一周销售利润达到8 000元,销售单价应定为多少?【考点】二次函数的应用.【专题】压轴题.【分析】(1)根据题意可得y=500﹣10(x﹣50).(2)用配方法化简1的解析式,可得y=﹣10(x﹣70)2+9000.当50≤x≤70时,利润随着单价的增大而增大.(3)令y=8000,求出x的实际取值.【解答】解:(1)由题意得:y=500﹣10(x﹣50)=1000﹣10x(50≤x≤100)(2)S=(x﹣40)(1000﹣10x)=﹣10x2+1400x﹣40000=﹣10(x﹣70)2+9000当50≤x<70时,利润随着单价的增大而增大.(3)由题意得:﹣10x2+1400x﹣40000=800010x2﹣1400x+48000=0x2﹣140x+4800=0即(x﹣60)(x﹣80)=0x1=60,x2=80当x=60时,成本=40×[500﹣10(60﹣50)]=16000>10000不符合要求,舍去.当x=80时,成本=40×[500﹣10(80﹣50)]=8000<10000符合要求.∴销售单价应定为80元,才能使得一周销售利润达到8000元的同时,投入不超过10000元.【点评】本题考查的是二次函数的应用,用配方法求出最大值.23.如图1,已知抛物线y=ax2+bx(a≠0)经过A(3,0)、B(4,4)两点.(1)求抛物线的解析式;(2)将直线OB向下平移m个单位长度后,得到的直线与抛物线只有一个公共点D,求m的值及点D的坐标;(3)如图2,若点N在抛物线上,且∠NBO=∠ABO,则在(2)的条件下,求出所有满足△POD∽△NOB的点P坐标(点P、O、D分别与点N、O、B对应).【考点】二次函数综合题.【专题】压轴题.【分析】(1)利用待定系数法求出二次函数解析式即可;(2)根据已知条件可求出OB的解析式为y=x,则向下平移m个单位长度后的解析式为:y=x﹣m.由于抛物线与直线只有一个公共点,意味着联立解析式后得到的一元二次方程,其根的判别式等于0,由此可求出m的值和D点坐标;(3)综合利用几何变换和相似关系求解.方法一:翻折变换,将△NOB沿x轴翻折;方法二:旋转变换,将△NOB绕原点顺时针旋转90°.特别注意求出P点坐标之后,该点关于直线y=﹣x的对称点也满足题意,即满足题意的P点有两个,避免漏解.【解答】解:(1)∵抛物线y=ax2+bx(a≠0)经过A(3,0)、B(4,4)∴将A与B两点坐标代入得:,解得:,∴抛物线的解析式是y=x2﹣3x.(2)设直线OB的解析式为y=k1x,由点B(4,4),得:4=4k1,解得:k1=1∴直线OB的解析式为y=x,∴直线OB向下平移m个单位长度后的解析式为:y=x﹣m,∵点D在抛物线y=x2﹣3x上,∴可设D(x,x2﹣3x),又∵点D在直线y=x﹣m上,∴x2﹣3x=x﹣m,即x2﹣4x+m=0,∵抛物线与直线只有一个公共点,∴△=16﹣4m=0,解得:m=4,此时x1=x2=2,y=x2﹣3x=﹣2,∴D点的坐标为(2,﹣2).(3)∵直线OB的解析式为y=x,且A(3,0),∴点A关于直线OB的对称点A′的坐标是(0,3),根据轴对称性质和三线合一性质得出∠A′BO=∠ABO,设直线A′B的解析式为y=k2x+3,过点(4,4),∴4k2+3=4,解得:k2=,∴直线A′B的解析式是y=,∵∠NBO=∠ABO,∠A′BO=∠ABO,∴BA′和BN重合,即点N在直线A′B上,∴设点N(n,),又点N在抛物线y=x2﹣3x上,∴=n2﹣3n,解得:n1=﹣,n2=4(不合题意,舍去)∴N点的坐标为(﹣,).方法一:如图1,将△NOB沿x轴翻折,得到△N1OB1,则N1(,),B1(4,﹣4),∴O、D、B1都在直线y=﹣x上.∵△P1OD∽△NOB,△NOB≌△N1OB1,∴△P1OD∽△N1OB1,∴,∴点P1的坐标为(,).将△OP1D沿直线y=﹣x翻折,可得另一个满足条件的点P2(,),综上所述,点P的坐标是(,)或(,).方法二:如图2,将△NOB绕原点顺时针旋转90°,得到△N2OB2,则N2(,),B2(4,﹣4),∴O、D、B1都在直线y=﹣x上.∵△P1OD∽△NOB,△NOB≌△N2OB2,∴△P1OD∽△N2OB2,∴,∴点P1的坐标为(,).将△OP1D沿直线y=﹣x翻折,可得另一个满足条件的点P2(,),综上所述,点P的坐标是(,)或(,).方法三:∵直线OB:y=x是一三象限平分线,∴A(3,0)关于直线OB的对称点为A′(0,3),∴得:x1=4(舍),x2=﹣,∴N(﹣,),∵D(2,﹣2),∴l OD:y=﹣x,∵l OD:y=x,∴OD⊥OB,∵△POD∽△NOB,∴N(﹣,)旋转90°后N1(,)或N关于x轴对称点N2(﹣,﹣),∵OB=4,OD=2,∴,∵P为ON1或ON2中点,∴P1(,),P2(,).【点评】本题是基于二次函数的代数几何综合题,综合考查了待定系数法求抛物线解析式、一次函数(直线)的平移、一元二次方程根的判别式、翻折变换、旋转变换以及相似三角形等重要知识点.本题将初中阶段重点代数、几何知识熔于一炉,难度很大,对学生能力要求极高,具有良好的区分度,是一道非常好的中考压轴题.。
2021-2022学年浙江省杭州市上城区建兰中学九年级(上)期中数学试卷 (解析版)
17.如图,网格中每个小正方形的边长均为1个单位长度,△ABC的三个顶点都在网格的格点上.
(1)将△ABC绕点B顺时针旋转90°得到△A'BC',请在网格中画出△A'BC';
(2)在(1)的条件下,求出点A经过的路程(结果保留π).
1.若⊙O的半径为3cm,点A到圆心O的距离为2cm,则点A与⊙O的位置关系为( )
A.点A在圆外B.点A在圆上C.点A在圆内D.不能确定
2.抛物线y=﹣(x﹣1)2+3的顶点坐标是( )
A.(1,3)B.(﹣1,3)C.(﹣1,﹣3)D.(1,﹣3)
3.下列事件是必然事件的是( )
A.任意两个正方形都相似
A.7 +7B.21﹣7 C.7 ﹣7D.7 ﹣21
6.如表是一位同学在罚球线上投篮的试验结果,根据表中数据回答下列问题:
投篮次数(n)
50
100
150
200
250
300
500
投中次数(m)
28
60
78
104
124
153
252
估计这位同学投篮一次,投中的概率约是( )(精确到0.1)
A.0.55B.0.4C.0.6D.0.5
解:方程方程(x+1)(x﹣3)=m(m>0)的两实数根α、β可看作抛物线y=(x+1)(x﹣3)与直线y=m的两交点的横坐标,
而抛物线y=(x+1)(x﹣3)与x轴的交点坐标为(﹣1,0)和(3,0),
如图,
所以α<﹣1且β>直角三角形ABC和等腰直角三角形ADE(∠ABC和∠AED是直角),连接BE,CD交于点P,CD与AE边交于点M,对于下列结论:①△BAE∽△CAD;②∠BPC=45°;③MP•MD=MA•ME;④2CB2=CP•CM,其中正确的个数为( )
浙教版九年级上册数学期中考试试题含答案
浙教版九年级上册数学期中考试试卷一、单选题1.二次函数y=﹣2(x﹣3)2+1的顶点坐标为()A.(﹣3,1)B.(3,﹣1)C.(﹣3,﹣1)D.(3,1)2.一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O 到水面的距离OC是()A.4B.5C.6D.83.任意掷一枚骰子,下列情况出现的可能性比较大的是()A.面朝上的点数是3B.面朝上的点数是奇数C.面朝上的点数小于2D.面朝上的点数不小于34.(2011?黑河)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,现有下列结论:①b2﹣4ac>0②a>0③b>0④c>0⑤9a+3b+c<0,则其中结论正确的个数是()A.2个B.3个C.4个D.5个5.如图,在Rt△ACB中,∠ACB=90°,∠A=35°,将△ABC绕点C逆时针旋转α角到△A1B1C 的位置,A1B1恰好经过点B,则旋转角α的度数等()A.70°B.65°C.55°D.35°6.如图,在正方形ABCD中,E是BC的中点,△DEF的面积等于2,则此正方形ABCD 的面积等于()A.6B.12C.16D.207.如图,扇形AOB的圆心角为90°,四边形OCDE是边长为1的正方形,点C、E、D分别在OA、OB、AB上,过A作AF⊥ED交ED的延长线于点F,那么图中阴影部分的面积为.AB-1C.D8.如图,C是以AB为直径的半圆O上一点,连结AC,BC,分别以AC,BC为斜边向外作等腰直角三角形△ACD,△BCE,弧AC和弧BC的中点分别是M,N.连接DM,EN,若C在半圆上由点A向B移动的过程中,DM:EN的值的变化情况是()A.变大B.变小C.先变大再变小D.保持不变9.如图,已知⊙O中,半径OA⊥OB,则圆周角∠ACB是()A.45ºB.90ºC.60ºD.30º10.如图所示,在抛物线y=-x2上有A,B两点,其横坐标分别为1,2;在y轴上有一动点C ,则AC +BC 最短距离为()A .5B .C .D .二、填空题11.将抛物线y =4x 2先向右平移一个单位,再向上平移3个单位,得到的抛物线是_____.12.风华中学七年级(2)班的“精英小组”有男生4人,女生3人,若选出一人担任班长,则组长是男生的概率为___.13.一个正多边形的每个内角等于144°,则它的边数是_________.14.如图,矩形ABCD 中,AD=2,AB=5,P 为CD 边上的动点,当△ADP 与△BCP 相似时,DP=__.15.如图,点A 是抛物线24y x x =-对称轴上的一点,连接OA ,以A 为旋转中心将AO 逆时针旋转90°得到AO′,当O′恰好落在抛物线上时,点A 的坐标为______________.16.如图,△ABC 中,AB =4,∠ACB =75°,∠ABC =45°,D 是线段BC 上的一个动点,以AD为直径画⊙O分别交AB,AC于E,F,连接EF,则EF的最小值为_____.三、解答题17.已知a:b=3:2,求:(1)a bb+;(2)274a bb-的值.18.如图,方格纸中的每个小正方形的边长都是1,△ABC是格点三角形(顶点在方格顶点处).(1)求△ABC的面积;(2)在格点图中画出一个格点△A1B1C1,使得△A1B1C1与△ABC相似,面积比为2:1.19.现有4张正面分别写有数字1、2、3、4的卡片,将4张卡片的背面朝上,洗匀.(1)若从中任意抽取1张,抽的卡片上的数字恰好为3的概率是________;(2)若先从中任意抽取1张(不放回),再从余下的3张中任意抽取1张,求抽得的2张卡片上的数字之和为3的倍数的概率.(请用“画树状图”或“列表”等方法写出分析过程)20.小明同学在用描点法画二次函数y1=ax2+bx+c的图象时,由于粗心,他算错了一个y 值,列出了下面表格:x…﹣10123…y=ax2+bx+c…1252514…(1)请求出这个二次函数解析式;(2)请指出这个错误的y 值,并说明理由;(3)若直线y 2=mx+n 经过(0,5)和(3,14)两点,则当y 1<y 2时,请直接写出x 的取值范围.21.如图,在△ABC 中,AB =AC .以BC 为直径画圆O 分别交AB ,AC 于点D ,E .(1)求证:BD =CE ;(2)当△ABC 中,∠B =70°且BC =12时,求 DE 的长.22.某游乐场的圆形喷水池中心O 有一雕塑OA ,从A 点向四周喷水,喷出的水柱为抛物线,且形状相同.如图,以水平方向为x 轴,点O 为原点建立直角坐标系,点A 在y 轴上,x 轴上的点C ,D 为水柱的落水点,水柱所在抛物线第一象限部分的函数表达式为()21566y x =--+.(1)求雕塑高OA .(2)求落水点C ,D 之间的距离.(3)若需要在OD 上的点E 处竖立雕塑EF ,10m OE =, 1.8m,EF EF OD =⊥.问:顶部F 是否会碰到水柱?请通过计算说明.23.已知函数y =x 2+bx+c (b ,c 为常数)的图象经过(﹣2,4).(1)求b ,c 满足的关系式;(2)设该图象的顶点坐标是(m ,n),当b 的值变化时,①求n 关于m 的函数关系式;②若函数y =x 2+bx+c (b ,c 为常数)的图象与x 轴无交点,求n 的取值范围.24.AB 为O 的直径,CD 为弦,且CD AB ⊥,垂足为H .(1)如果O 的半径为4,CD =,求BAC ∠的度数;(2)若点E 为 ADB 的中点,连结OE ,CE .求证:CE 平分OCD ∠;(3)在(1)的条件下,圆周上到直线AC 距离为3的点有多少个?并说明理由.参考答案1.D【解析】【分析】根据二次函数的解析式可直接得到顶点坐标.【详解】解:∵二次函数y =﹣2(x ﹣3)2+1是顶点式,∴顶点坐标为(3,1).故选:D .【点睛】本题考查了二次函数的性质,属于基础题,解题的关键是掌握()2y a x h k =-+的顶点坐标为(),h k .2.C【解析】【分析】根据垂径定理得出BC=12AB,再根据勾股定理求出OC的长:【详解】∵OC⊥AB,AB=16,∴BC=12AB=8.在Rt△BOC中,OB=10,BC=8,∴OC6===.故选C.3.D【解析】【分析】分别求出各选项的事件的概率,再比较各个概率的大小,就可得出可能性较大的事件的概率.【详解】A.掷一枚骰子面朝上的点数是3的概率为1 6;B.掷一枚骰子面朝上的点数是奇数有1,3,5三个数,此事件的概率为:31 62 =;C.掷一枚骰子面朝上的点数小于2的只有1,此事件的概率为:1 6;D.掷一枚骰子面朝上的点数不小于3数有3、4、5、6,此事件的概率为:42 63 =;∴1112 6623 =<<.故选:D.【点睛】本题考查了概率公式,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=m n.4.B【解析】【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据抛物线与x轴交点及x=1时二次函数的值的情况进行推理,进而对所得结论进行判断.【详解】解:①根据图示知,二次函数与x轴有两个交点,所以△=b2-4ac>0;故①正确;②根据图示知,该函数图象的开口向上,∴a>0;故②正确;③又对称轴x=-b2a=1,∴b2a<0,∴b<0;故本选项错误;④该函数图象交于y轴的负半轴,∴c<0;故本选项错误;⑤根据抛物线的对称轴方程可知:(-1,0)关于对称轴的对称点是(3,0);当x=-1时,y<0,所以当x=3时,也有y<0,即9a+3b+c<0;故⑤正确.所以①②⑤三项正确.故选B.5.A【解析】【分析】根据旋转的性质和等腰三角形的性质即可得到结论.【详解】解:∵在Rt△ACB中,∠ACB=90°,∠A=35°,∴∠ABC=55°,∵将△ABC绕点C逆时针旋转α角到△A′B′C的位置,∴∠B′=∠ABC=55°,∠B′CA′=∠ACB=90°,CB=CB′,∴∠CBB′=∠B′=55°,∴∠α=70°,故选A.【点睛】本题考查旋转的性质以及等腰三角形的性质.注意掌握旋转前后图形的对应关系是解此题的关键.6.B【解析】【分析】首先根据正方形的性质推出△AFD∽△EFB,即可得到ADBE=DFBF,再结合题意推出DF:BF=2:1,则进一步推出S△BEF和S△DEC,最终求出正方形面积即可.【详解】解:∵四边形ABCD是正方形,∴AD∥BC,AD=BC,∴△AFD∽△EFB,∴ADBE=DFBF,∵E是BC的中点,∴AD:BE=2:1,∴DF:BF=2:1,∵S△DEF=2,∴S△BEF=1,∴S△DEC=S△DBE=S△DEF+S△BEF=3,∴S正方形ABCD=4S△DEC=12,故选:B.【点睛】本题考查正方形的性质,相似三角形的判定与性质,以及三角形的面积计算等,掌握正方形的性质,相似三角形的判定与性质是解题关键.7.B【解析】【分析】从图中可看出阴影部分的面积=扇形面积-正方形的面积.然后依面积公式计算即可.【详解】连接OD,则2=OA根据题意可知,阴影部分的面积=长方形ACDF的面积.∴S阴影=S ACDF=AC•CD=(OA-OC)2故选B.【点睛】本题考查弧长的计算,解题的突破口是连接OD.8.D【解析】【分析】根据题意连接OD,OE,OC,MN.证明点M在线段OD上,点N在OE上,进而推出△ODE 是等腰直角三角形,可得结论.【详解】解:如图,连接OD,OE,OC.∵△ADC是等腰直角三角形,∴∠ADC=90°,DA=DC,∵OA=OC,∴OD垂直平分线段AC,∴点M在线段OD上,∴∠ODC=45°,同法点N在OE上,∠OED=45°,∴∠DOE=90°,∵∠ODE=∠OED,∴OD=OE,∵OM=ON,∴DM=EN,∴DM:EN的值不变.故选:D.【点睛】本题考查圆的综合应用以及中位线定理,解题的关键是正确的作出辅助线,题目中还考查了垂径定理的知识.9.A【解析】【详解】试题分析:根据图像可知∠ACB和∠AOB为同弧所对的圆周角和圆心角.所以半径OA⊥OB 时∠AOB=90°=2∠ACB.所以∠ACB=45°.选A.考点:圆周角定理.10.B【解析】【详解】因为在抛物线y=-x2上A,B两点,其横坐标分别为1,2;所以纵坐标是-1,-4,所以A(1,-1)B(2,-4),取点A关于y轴的对称点为'A,则点'A的坐标是(-1,-1),则AC+BC最短距离='A B==.故选:B.考点:1.二次函数;2.轴对称;3.勾股定理.11.y=4(x﹣1)2+3【解析】【分析】由题意直接根据“上加下减,左加右减”的原则进行分析解答即可.【详解】解:由“左加右减”的原则可知,将抛物线y=4x2向右平移一个单位所得直线的解析式为:y =4(x﹣1)2;由“上加下减”的原则可知,将抛物线y=4(x﹣1)2向上平移3个单位所得抛物线的解析式为:y=4(x﹣1)2+3.故平移后的抛物线的函数关系式是:y=4(x﹣1)2+3.故答案为:y=4(x﹣1)2+3.【点睛】本题考查了二次函数的图象与几何变换,正确理解平移法则是解题的关键.12.4 7【解析】【详解】447=713.10##十【解析】【分析】设这个正多边形的边数为n,根据n边形的内角和为(n-2)×180°得到(n-2)×180°=144°×n,然后解方程即可.【详解】解:设这个正多边形的边数为n,∴(n-2)×180°=144°×n,∴n=10.故答案为:10.【点睛】本题考查了多边形内角与外角:n边形的内角和为(n-2)×180°;n边形的外角和为360°.14.1或4或2.5【解析】【分析】需要分类讨论:△APD∽△PBC和△PAD∽△PBC,根据该相似三角形的对应边成比例求得DP的长度.【详解】设DP=x,则CP=5-x,分两种情况情况进行讨论,①当△PAD∽△PBC时,ADBC=DPCP∴225xx =-,解得:x=2.5,②当△APD∽△PBC时,ADCP=DPBC,即25x-=2x,解得:x=1或x=4,综上所述:DP=1或4或2.5【点晴】本题主要考查的就是三角形相似的问题和动点问题,首先将各线段用含x的代数式进行表示,然后看是否有相同的角,根据对应角的两边对应成比例将线段写成比例式的形式,然后分别进行计算得出答案.在解答这种问题的时候千万不能出现漏解的现象,每种情况都要考虑到位.15.(2,2)或(2,-1)【解析】【详解】∵抛物线y=x2-4x对称轴为直线x=-42 2-=∴设点A坐标为(2,m)如图所示,作AP⊥y轴于点P,作O′Q⊥直线x=2∴∠APO=∠AQO′=90°∴∠QAO′+∠AO′Q=90°∵∠QAO′+∠OAQ=90°∴∠AO′Q=∠OAQ又∠OAQ=∠AOP∴∠AO′Q=∠AOP在△AOP 和△AO′Q 中APO AQO AOP AO Q AO AO ∠∠'⎧⎪∠∠'⎨⎪'⎩===∴△AOP ≌△AO′Q (AAS )∴AP=AQ=2,PO=QO′=m则点O′坐标为(2+m ,m-2)代入y=x2-4x 得:m-2=(2+m )2-4(2+m )解得:m=-1或m=2∴点A 坐标为(2,-1)或(2,2)故答案是:(2,-1)或(2,2).【点睛】本题考查了坐标与图形的变换-旋转,全等三角形的判定与性质,函数图形上点的特征,根据全等三角形的判定与性质得出点O′的坐标是解题的关键.166【解析】【分析】连接OE 、OF ,过O 点作OM ⊥EF ,如图,利用垂径定理得到EM =FM ,再计算出∠BAC =60°,根据圆周角定理得到∠EOF =120°,易得∠OEF =∠OFE =30°,利用含30度的直角三角形三边的关系得到EF,所以当OE 的值最小时,EF 的值最小,根据垂线段最短,当AD 垂直BC 时,AD 的值最小,过A 点作AH ⊥BC 于H ,则AH =2AB =从而得到AD 的最小值为,于是得到EF 的最小值.【详解】解:连接OE 、OF ,过O 点作OM ⊥EF ,如图,则EM =FM ,∵∠ACB =75°,∠ABC =45°,∴∠BAC =60°,∴∠EOF =2∠EAF =120°,∵OE =OF ,∴∠OEF =∠OFE =30°,∴OM =12OE ,∴EM =,∴2EF EM ==,当OE 的值最小时,EF 的值最小,∵D 是线段BC 上的一个动点,AD 为直径,∴当AD 垂直BC 时,AD 的值最小,即OE 的值最小,过A 点作AH ⊥BC 于H ,∴∠ABH=90°,∵∠ABH =45°,∴∠BAH=∠ABH=45°,∴AH=BH ,∵222AH BH AB +=,∴222=16AH AB =,∴AH AD 的最小值为∴OE ,∴EF ..【点睛】本题主要考查了垂径定理,圆周角定理,含30度角的直角三角形的性质,等腰直角三角形的性质与判定,勾股定理等等,解题的关键在于能够根据题意把求EF的最小值转化成求AD的最小值.17.(1)52;(2)-1【解析】【分析】根据已知条件设a:b=3:2=k(k≠0),得出a=3k,b=2k,(1)代入a bb+进行计算即可得出答案.(2)代入274a bb-进行计算即可得出答案.【详解】解:∵a:b=3:2,∴设a=3k,b=2k,(1)a bb+=322k kk+=52;(2)274a bb-=237242k kk⨯-⨯⨯=614888k k kk k--==﹣1.【点睛】此题考查了比例的性质,熟练掌握比例的基本性质是解题的关键,较简单.18.(1)72;(2)见解析【解析】【分析】(1)用矩形的面积减去四周三个三角形的面积;(2)根据相似三角形的面积比等于相似比的平方得出相似比为2【详解】解:(1)由图形可知,△ABC的面积为1117 331223132222⨯-⨯⨯-⨯⨯-⨯⨯=;(2)根据相似三角形的性质可得,△A1B1C1与△ABC11A B===11B C===11A C===作出相应的线段,如图所示,△A1B1C1即为所求,【点睛】此题考查了相似三角形的性质,勾股定理,解题的关键是掌握相似三角形的性质.19.(1)14;(2)13【解析】【分析】(1)根据概率公式计算即可;(2)画树状图展示所有12种等可能的结果,可得抽得的2张卡片上的数字之和为3的倍数的结果数,根据概率公式计算即可.【详解】解:(1)从中任意抽取1张,抽的卡片上的数字恰好为3的概率为1 4;故答案为:1 4(2)画树状图为:共有12种等可能的结果,其中抽得的2张卡片上的数字之和为3的倍数的结果为4种,所以抽得的2张卡片上的数字之和为3的倍数的概率=41 123=【点睛】本题考查了用列表法与树状图法求概率,解答中注意利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率.20.(1)y1=3x2﹣6x+5;(2)y错误的值是12,理由见解析;(3)0<x<3【解析】【分析】(1)根据表中数据确定函数的对称轴,再用待定系数法求函数解析式;(2)根据关于对称轴对称的自变量对应的函数值相等,可得答案;(3)根据两函数的交点以及图象判断即可.【详解】解:(1)由函数图象关于对称轴对称,得(0,5),(1,2),(2,5)在函数图象上,把(0,5),(1,2),(2,5)代入函数解析式y1=ax2+bx+c中,则52 425ca b ca b c=⎧⎪++=⎨⎪++=⎩,解得:365abc=⎧⎪=-⎨⎪=⎩,∴二次函数解析式y1=3x2﹣6x+5;(2)当x=﹣1时,y1=3+6+5=14,∴表中y错误的值是12;(3)∵直线y2=mx+n经过(0,5)和(3,14)两点,由函数的图象和性质得:当0<x<3时,y1<y2.∴当y1<y2时,0<x<3.【点睛】本题考查了待定系数法求二次函数解析式,二次函数的对称性,求函数值,图像法求不等式的解集,掌握二次函数图象的性质是解题的关键.21.(1)见解析;(2)103π【解析】【分析】(1)由题意连接CD 和BE ,由圆周角定理知∠BDC=∠CEB=90°,由AB=AC 即可得到∠ABC=∠ACB ,进而得到∠BCD=∠CBE ,然后根据圆周角定理得证;(2)根据题意先求得弧所对的圆周角的度数,然后利用弧长公式求解即可.【详解】解:(1)证明:如图1,连接CD 和BE ,∵BC 是⊙O 的直径,∴∠BDC =∠CEB =90°,∵AB =AC ,∴∠ABC =∠ACB ,∴∠BCD =∠CBE ,∴ BDCE =,∴BD =CE .(2)解:如图2,连接OD 、OE ,∵AB =AC ,∠B =70°,∴∠ABC =∠ACB =70°,∴∠DOC =140°,∵OE =OC ,∴∠OEC =∠OCE =70°,∴∠COE =40°,∴∠DOE =100°,∵BC =12,∴⊙O 的半径为6,∴ DE 的长=1006180π⨯=103π.【点睛】本题考查了圆周角定理以及弧长的计算,熟练掌握圆周角定理并求得弧所对的圆心角的度数是解题的关键.22.(1)11m 6;(2)22米;(3)不会【解析】【分析】(1)求雕塑高OA ,直接令0x =,代入()21566y x =--+求解可得;(2)可先求出OD 的距离,再根据对称性求CD 的长;(3)利用()21566y x =--+,计算出10x =的函数值y ,再与EF 的长进行比较可得结论.【详解】解:(1)由题意得,A 点在图象上.当0x =时,21(05 )66y =--+2511666=-+=11(m)6OA ∴=.(2)由题意得,D 点在图象上.令0y =,得21(5)606x --+=.解得:1211,1x x ==-(不合题意,舍去).11OD ∴=222(m)CD OD ∴==(3)当10x =时,21(105)66y =--+,25116 1.866=-+=>,∴不会碰到水柱.【点睛】本题考查了二次函数的图像与性质及图像关于y 轴对称问题,解题的关键是:掌握二次函数的图像与性质.23.(1)c =2b ;(2)①n=﹣m 2﹣4m ;②n >0时,抛物线与x 轴无交点【解析】【分析】(1)将(﹣2,4)代入函数解析式求解.(2)①由顶点坐标公式可得m =﹣2b ,n =244c b -,将c =2b 代入求解.②根据图象开口方向和顶点纵坐标为n 求解.【详解】解:(1)把(﹣2,4)代入y =x 2+bx+c得4=4﹣2b+c ,∴c =2b .(2)①∵y =x 2+bx+c 图象顶点坐标为(m ,n ),∴m =﹣2b ,n =244c b -,∵c =2b ,∴n=244c b-=284b b-,b=﹣2m,∴n=21644m m--=﹣m2﹣4m.②∵抛物线y=x2+bx+c开口向上,顶点坐标为(m,n),∴n>0时,抛物线与x轴无交点.【点睛】本题考查二次函数的性质,解题关键是掌握二次函数顶点公式,掌握二次函数与方程的关系.24.(1)30°;(2)见解析;(3)2个,理由见解析【解析】【详解】解:(1)∵AB为⊙O的直径,CD⊥AB∴CH=CD=2在Rt△COH中,sin∠COH==∴∠COH=60°∴∠BAC=∠COH=30°(2)∵点E是ADB的中点∴OE⊥AB∴OE∥CD∴∠ECD=∠OEC又∵∠OEC=∠OCE∴∠OCE=∠DCE∴CE平分∠OCD(3)圆周上到直线AC的距离为3的点有2个因为劣弧 AC上的点到直线AC的最大距离为2,ADC上的点到直线AC的最大距离为6,236<<,根据圆的轴对称性,ADC到直线AC距离为3的点有2个。
浙江省杭州市九年级(上)期中数学试卷-(含答案)
九年级(上)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.在下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.2.若圆内接四边形ABCD的内角满足:∠A:∠B:∠C=2:4:7,则∠D=()A. B. C. D.3.已知⊙O的弦AB长为8厘米,弦AB的弦心距为3厘米,则⊙O的直径等于()A. 5厘米B. 8厘米C. 10厘米D. 12厘米4.设P是抛物线y=2x2+4x+5的顶点,则点P位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限5.下列各式的变形中,正确的是()A. B.C. D.6.如图是某石圆弧形(劣弧)拱桥,其中跨度AB=24米,拱高CD=8米,则该圆弧的半径r=()A. 8 米B. 12 米C. 13米D. 15 米7.如图,已知△ABC为⊙O的内接三角形,若∠ABC+∠AOC=90°,则∠AOC=()A.B.C.D.8.在长为3cm,4cm,6cm,7cm的四条线段中任意选取三条线段,这三条线段能构成三角形的概率是()A. B. C. D.9.抛物线y=-x2+2x-2经过平移得到抛物线y=-x2,平移方法是()A. 向左平移1个单位,再向下平移1个单位B. 向左平移1个单位,再向上平移1个单位C. 向右平移1个单位,再向上平移1个单位D. 向右平移1个单位,再向下平移1个单位10.设抛物线y=ax2+bx+c(a<0)的顶点在线段AB上运动,抛物线与x轴交于C,D两点(C在D的左侧).若点A,B的坐标分别为(-2,3)和(1,3),给出下列结论:①c<3;②当x<-3时,y随x的增大而增大;③若点D的横坐标最大值为5,则点C的横坐标最小值为-5;④当四边形ACDB为平行四边形时,a=-.其中正确的是()A. ①②④B. ①③④C. ②③D. ②④二、填空题(本大题共6小题,共24.0分)11.已知圆O的半径长为6,若弦AB=6,则弦AB所对的圆心角等于______ .12.已知一次函数的图象经过点A(0,2)和点B(2,-2),则y关于x的函数表达式为______ ;当-2<y≤4时,x的取值范围是______ .13.A,B两同学可坐甲,乙,丙三辆车中的任意一辆,则A,B两同学均坐丙车的概率是______ .14.在平面直角坐标系中,以点(1,1)为圆心为半径作圆O,则圆O与坐标轴的交点坐标是______.15.在直径为20的⊙O中,弦AB,CD相互平行.若AB=16,CD=10,则弦AB,CD之间的距离是______ .16.设直线y=-x+m+n与双曲线y=交于A(m,n)(m≥2)和B(p,q)两点.设该直线与y轴交于点C,O是坐标原点,则△OBC的面积S的取值范围是______ .三、解答题(本大题共7小题,共66.0分)17.计算:×[(-2)-3-23].18.在一个不透明的袋中装有32个黄球,30个黑球,18个红球,它们仅有颜色区别.(1)求从袋中任意摸出一个球是黄球的概率;(2)若从袋中取出若干个黑球(不放回),设再从袋中摸出一个球是黑球的概率是,问取出了多少个黑球?19.在平面直角坐标系中,若抛物线y=x2-5x-6与x轴分别交于A,B两点,且点A在点B的左边,与y轴交于C点.(1)求抛物线的顶点坐标和对称轴,以及抛物线与坐标轴的交点坐标,并画出这条抛物线;(2)设O为坐标原点,△BOC的BC边上的高为h,求h的值.20.设点A、B、C在⊙O上,过点O作OF⊥AB,交⊙O于点F.若四边形ABCO是平行四边形,求∠BAF的度数.21.某商店购进一批玩具,购进的单价是20元.调查发现,售价是30元时,月销售量是320件,而售价每上涨1元,月销售量就减少10件,但每件玩具售价不能高于40元.设每件玩具的销售单价上涨了x元时(x为正整数),月销售利润为y元.(1)求y与x的函数关系式,并直接写出自变量x的取值范围;(2)每件玩具的售价定为多少元时,可使月销售利润最大?最大的月销售利润是多少?22.如图,已知△ACB和△DCE为等边三角形,点A,D,E在同一直线上,连结BE.(1)求证:AD=BE;(2)求∠AEB的度数;(3)若△ACB和△DCE为等腰三角形,且∠ACB=∠DCE=90°,点A,D,E在同一直线上,CM⊥DE于点M,连结BE.①计算∠AEB的度数;②写出线段CM,AE,BE之间的数量关系,并说明理由.23.设二次函数y=-x2+bx+c的图象与坐标轴交于A(0,10),B(-4,0),C三点.(1)求二次函数的表达式及点C的坐标;(2)设点F为二次函数位于第一象限内图象上的动点,点D的坐标为(0,4),连结CD,CF,DF,记三角形CDF的面积为S.求出S的函数表达式,并求出S的最大值.答案和解析1.【答案】D【解析】解:A、该图形是轴对称图形,但不是中心对称图形,故本选项错误;B、该图形既不是轴对称图形也不是中心对称图形,故本选项错误;C、该图形既不是轴对称图形也不是中心对称图形,故本选项错误;D、该图形既是轴对称图形也是中心对称图形,故本选项正确.故选:D.根据轴对称图形与中心对称图形的概念求解.本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.【答案】B【解析】解:∵四边形ABCD是圆内接四边形,∴∠A+∠C=180°,∴∠A=2×=40°,∠B=7×=140°,则∠C=4×=80°,∠D=180°-80°=100°,故选:B.根据圆内接四边形的性质列出方程,解方程即可.本题考查的是圆内接四边形的性质,掌握圆内接四边形的对角互补是解题的关键.3.【答案】C【解析】解:连接OC,∵OC⊥AB,∴AC=AB=4cm,在直角△AOC中,OA===5cm.则直径是10cm.故选C.根据垂径定理即可求得AC的长,连接OC,在直角△AOC中根据勾股定理即可求得半径OA的长,则直径即可求解.本题考查了垂径定理,以及勾股定理,根据题意画出图形,利用数形结合求解是解答此题的关键.4.【答案】B【解析】解:∵y=2x2+4x+5=2(x+1)2+3,∴抛物线顶点坐标为(-1,3),∴P点坐标为(-1,3),∴点P在第二象限,故选B.把解析式化为顶点式可求得P点坐标,则可求得答案.本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x-h)2+k中,对称轴为x=h,顶点坐标为(h,k).5.【答案】D【解析】解:∵x6÷x=x5,故选项A错误,∵=,故选项B错误,∵x2+x3不能合并成一项,故选项C错误,∵,故选项D正确,故选D.计算出各个选项中式子的正确结果即可判断哪个选项是正确的,本题得以解决.本题考查分式的混合运算、合并同类项、同底数幂的除法、配方法的应用,解答本题的关键是明确它们各自的计算方法.6.【答案】C【解析】解:拱桥的跨度AB=24m,拱高CD=8m,∴AD=12m,利用勾股定理可得:122=AO2-(AO-8)2,解得AO=13m.即圆弧半径为13米.故选C.将拱形图进行补充,构造直角三角形,利用勾股定理和垂径定理解答.本题考查了垂径定理的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.7.【答案】C【解析】解:∵∠ABC+∠AOC=90°,∠ABC=,∴∠AOC=60°,故选:C.根据圆周角定理可得∠ABC=,再由∠ABC+∠AOC=90°可得∠AOC的度数.此题主要考查了圆周角定理,关键是掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.8.【答案】A【解析】解:由题意知,本题是一个古典概率.∵试验发生包含的基本事件为3,4,6;3,4,7;4,6,7;3,6,7共4种;而满足条件的事件是可以构成三角形的事件为:3,4,6;4,6,7;3,6,7共3种;∴以这三条线段为边可以构成三角形的概率,故选:A.根据古典概率试验发生包含的基本事件可以列举出共4种;而满足条件的事件是可以构成三角形的事件可以列举出共3种;根据古典概型概率公式得到结果.本题考查了概率公式以及三角形成立的条件,解题的关键是正确数出组成三角形的个数,要做到不重不漏,要遵循三角形三边之间的关系.9.【答案】B【解析】解:∵y=-x2+2x-2=-(x-1)2-1得到顶点坐标为(1,-1),平移后抛物线y=-x2的顶点坐标为(0,0),∴平移方法为:向左平移1个单位,再向上平移1个单位.故选B.由抛物线y=-x2+2x-2=-(x-1)2-1得到顶点坐标为(1,-1),而平移后抛物线y=-x2的顶点坐标为(0,0),根据顶点坐标的变化寻找平移方法.本题考查了抛物线的平移规律.关键是确定平移前后抛物线的顶点坐标,寻找平移规律.10.【答案】D【解析】解:∵点A,B的坐标分别为(-2,3)和(1,3),∴线段AB与y轴的交点坐标为(0,3),又∵抛物线的顶点在线段AB上运动,抛物线与y轴的交点坐标为(0,c),∴c≤3,(顶点在y轴上时取“=”),故①错误;∵抛物线的顶点在线段AB上运动,∴当x<-2时,y随x的增大而增大,因此,当x<-3时,y随x的增大而增大,故②正确;若点D的横坐标最大值为5,则此时对称轴为直线x=1,根据二次函数的对称性,点C的横坐标最小值为-2-4=-6,故③错误;根据顶点坐标公式,=3,令y=0,则ax2+bx+c=0,设方程的两根为x1,x2,则CD2=(x1+x2)2-4x1x2=(-)2-4×=,根据顶点坐标公式,=3,∴=-12,∴CD2=×(-12)=-,∵四边形ACDB为平行四边形,∴CD=AB=1-(-2)=3,∴-=32=9,解得a=-,故④正确;综上所述,正确的结论有②④.故选D.根据顶点在线段AB上抛物线与y轴的交点坐标为(0,c)可以判断出c的取值范围,得到①错误;根据二次函数的增减性判断出②正确;先确定x=1时,点D的横坐标取得最大值,然后根据二次函数的对称性求出此时点C的横坐标,即可判断③错误;令y=0,利用根与系数的关系与顶点的纵坐标求出CD的长度的表达式,然后根据平行四边形的对边平行且相等可得AB=CD,然后列出方程求出a的值,判断出④正确.本题考查了二次函数的综合题型,主要利用了二次函数的顶点坐标,二次函数的对称性,根与系数的关系,平行四边形的对边平行且相等的性质,解题的关键是灵活运用所学知识,题目比较难,属于选择题中的压轴题.11.【答案】120°【解析】解:如图,作OC⊥AB于C,连接OA、OB,则AC=BC=AB=3,在Rt△AOC中,OC==3,∴OC=OA,∴∠A=30°,∴∠AOB=180°-30°-30°=120°.∴弦AB所对的圆心角的度数为120°.故答案为120°.如图,作OC⊥AB于C,连接OA、OB,利用垂径定理得到AC=BC=AB=3,再利用勾股定理计算出OC==3,则OC=OA,所以∠A=30°,则可计算出∠AOB,从而得弦AB所对的圆心角的度数.本题考查了圆心角、弧、弦的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.说明:同一条弦对应两条弧,其中一条是优弧,一条是劣弧,而在本定理和推论中的“弧”是指同为优弧或劣弧.12.【答案】y=-2x+2;-1≤x<2【解析】解:设一次函数解析式为y=kx+b,把A(0,2)、B(2,-2)代入得:,解得:.则一次函数解析式为y=-2x+2;∵y=-2x+2,∴函数y随x的增大而减小.∵当y=-2时,x=2;当y=4时,x=-1,∴当-2<y≤4时,-1≤x<2.故答案为:y=-2x+2,-1≤x<2.设一次函数解析式为y=kx+b,把A与B坐标代入求出k与b的值,即可确定出一次函数表达式;再分别令y=-2与y=4求出x的对应值即可.此题考查了待定系数法求一次函数解析式,一次函数的图象与性质,熟练掌握待定系数法是解本题的关键.13.【答案】【解析】解:画树状图得:∵共有9种等可能的结果,A,B两同学均坐丙车的有1种情况,∴A,B两同学均坐丙车的概率是:.故答案为:.首先根据题意画出树状图,然后由树状图求得所有等可能的结果与A,B两同学均坐丙车的情况,再利用概率公式即可求得答案.此题考查了列表法或树状图法求概率.注意用到的知识点为:概率=所求情况数与总情况数之比.14.【答案】(0,3)、(0,-1)、(3,0)、(-1,0)【解析】解:如图,设⊙P与坐标轴分别交于A、B、C、D.作PE⊥OA于E,PF⊥OD于F.易知四边形PEOF是正方形,边长为1,由勾股定理可得AE=DF=BF=CE=2,∴A(0,3),B(-1,0),C(0,-1),D(3,0),故答案为(0,3)、(0,-1)、(3,0)、(-1,0);如图,设⊙P与坐标轴分别交于A、B、C、D.作PE⊥OA于E,PF⊥OD于F.易知四边形PEOF是正方形,边长为1,由勾股定理可得AE=DF=BF=CE=2,由此即可解决问题.本题考查勾股定理、直线与圆的位置关系、正方形的判定、坐标与图象的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.15.【答案】±6【解析】解:过点O作OE⊥AB于E,交CD于F,连接OA、OC,如图,∵AB∥CD,∴OF⊥CD,∴AE=BE=AB=8,CF=DF=CD=5,在Rt△AOE中,OE==6,在Rt△OCF中,OF==5,当点O在AB和CD之间时,EF=OE+OF=5+6,当点O不在AB和CD之间时,EF=OE-OF=5-6,∴AB、CD之间的距离为±6.故答案为±6.过点O作OE⊥AB于E,交CD于F,连接OA、OC,如图,利用平行线的性质得OF⊥CD,则根据垂径定理得到AE=BE=AB=8,CF=DF=CD=5,再利用勾股定理计算出OE,OF,然后分类讨论:当点O在AB和CD之间时,EF=OE+OF,当点O不在AB和CD之间时,EF=OE-OF.本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.注意分类讨论思想的应用.16.【答案】<S≤【解析】解:如图,直线y=-x+m+n与x轴交于点D,C点坐标为(0,m+n),D点坐标为(m+n,0),则△OCD为等腰直角三角形,∴点A与点B关于直线y=x对称,则B点坐标为(n,m),∴S=S△OBC=(m+n)•n=mn+n2,∵点A(m,n)在双曲线y=上,∴mn=1,即n=∴S=+()2∵m≥2,∴0<≤,∴0<()2≤,∴<S≤.故答案为:<S≤.先确定直线y=-x+m+n与坐标轴的交点坐标,即C点坐标为(0,m+n),D点坐标为(m+n,0),则△OCD为等腰直角三角形,根据反比例函数的对称性得到点A与点B关于直线y=x对称,则B点坐标为(n,m),根据三角形面积公式得到S△OBC=(m+n)•n,然后mn=1,m≥2确定S的范围.本题考查了反比例函数图象与一次函数的交点问题,关键是掌握反比例函数与一次函数的图象的交点坐标满足两函数的解析式.17.【答案】解:×[(-2)-3-23]=8×[-8]=-1-64=-65.【解析】根据算术平方根、立方以及负整数指数幂进行计算即可.本题考查了实数的运算,掌握运算法则是解题的关键.18.【答案】解:(1)∵在一个不透明的袋中装有32个黄球,30个黑球,18个红球,它们仅有颜色区别,∴从袋中任意摸出一个球是黄球的概率为:=;(2)设取出了x个黑球,则=,解得x=5,经检验x=5是原方程的解,且符合题意,答:取出了5个黑球.【解析】(1)由在一个不透明的袋中装有32个黄球,30个黑球,18个红球,它们仅有颜色区别,直接利用概率公式求解即可求得答案;(2)首先设取出了x个黑球,由概率公式则可得方程:=,解此方程即可求得答案.此题考查了概率公式的应用.注意根据概率公式得到方程=是关键.19.【答案】解:y=x2-5x-6,y=(x-2.5)2-12.25,抛物线y=x2-5x-6的顶点坐标是(2.5,-12.25),对称轴是直线x=2.5,由x=0得y=-6,抛物线与y轴的交点坐标是(0,-6),由y=0得x2-5x-6=0,解得x1=-1,x2=6,抛物线与x轴的交点坐标是(-1,0),(6,0),画出抛物线为:(2)BC==,则h=6×6÷6=.【解析】(1)把二次函数y=x2-5x-6化为y=(x-2.5)2-12.25即可求出顶点及对称轴,由x=0得y=-6,由y=0得x2-5x-6=0,可求抛物线与坐标轴的交点坐标,再通过列表、描点、连线画出该函数图象即可;(2)先根据勾股定理求出BC,再根据等积法求出h的值.本题主要考查了二次函数的图象,性质及抛物线与坐标轴的交点,解题的关键是熟记二次函数的图象,性质.20.【答案】解:连结OB,∵四边形ABCO是平行四边形,∴OC=AB,又OA=OB=OC,∴OA=OB=AB,∴△AOB为等边三角形,∴∠BOA=60°,∵OF⊥OC,OC∥AB,∴OF⊥AB,∴∠BOF=∠AOF=∠BOA=30°,由圆周角定理得∠BAF=∠BOF=15°.【解析】连结OB,利用平行四边形的性质可得OC=AB,然后证明△AOB为等边三角形,进而可得∠BOA=60°,然后利用等腰三角形的性质可得∠BOF=∠AOF=∠BOA=30°,再根据圆周角定理可得答案.此题主要考查了平行四边形的性质,圆周角定理,以及等腰三角形的性质,求出∠BOA=60°是解决问题的关键.21.【答案】解:(1)依题意得y=(30+x-20)(320-10x)=-10x2+220x+3200,自变量x的取值范围是0<x≤10且x为正整数;(2)y=-10x2+220x+3200=-10(x-11)2+4410,∵0<x≤10且x为正整数,当x=10时,y有最大值,最大值为:-10(10-11)2+4410=4400(元),答:每件玩具的售价定为40元时,可使月销售利润最大,最大的月销售利润是4400元.【解析】(1)根据:总利润=单件利润×销售量即可得函数解析式;(2)利用二次函数的性质结合自变量的取值范围即可得.本题主要考查二次函数的实际应用,理解题意找到题目蕴含的相等关系列出函数解析式是解题的关键.22.【答案】(1)证明:如图1中,∵△ACB和△DCE均为等边三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=60°.∴∠ACD=∠BCE,在△ACD和△BCE中,∵AC=BC,∠ACD=∠BCE,CD=CE,∴△ACD≌△BCE(SAS),∴AD=BE.(2)∵△ACD≌△BCE∴∠ADC=∠BEC.∵△DCE为等边三角形,∴∠CDE=∠CED=60°.∵点A,D,E在同一直线上,∴∠ADC=120°,∴∠BEC=120°,∴∠AEB=∠BEC-∠CED=60°.(3)①如图2∵△ACB和△DCE均为等腰直角三角形,且∠ACB=∠DCE=90°∴CA=CB,CD=CE,∠ACD=∠ACB-∠DCB=∠DCE-∠DCB=∠BCE,在△ACD和△BCE中,∵CA=CB,∠ACD=∠BCE,CD=CE,∴△ACD≌△BCE(SAS),∴AD=BE,∠ADC=∠BEC.∵△DCE为等腰直角三角形,∴∠CDE=∠CED=45°.∵点A,D,E在同一直线上,∴∠ADC=135°,∴∠BEC=135°,∴∠AEB=∠BEC-∠CED=90°,②∵CD=CE,CM⊥DE于M,∴DM=ME,∵∠DCE=90°,∴DM=ME=CM,∴AE=AD+DE=BE+2CM.【解析】(1)根据SAS证明△ACD≌△BCE即可.(2))由△ACD≌△BCE,推出∠ADC=∠BEC,由△DCE为等边三角形,推出∠CDE=∠CED=60°.根据∠AEB=∠BEC-∠CED=60°时间即可.(3)①由△ACD≌△BCE(SAS),推出AD=BE,∠ADC=∠BEC.由△DCE为等腰直角三角形,推出∠CDE=∠CED=45°.由点A,D,E在同一直线上,推出∠ADC=135°,∠BEC=135°,由∠AEB=∠BEC-∠CED=90°即可证明.②由CD=CE,CM⊥DE于M,推出DM=ME,由∠DCE=90°,推出DM=ME=CM,可得AE=AD+DE=BE+2CM.本题考查三角形综合题、等边三角形的判定和性质、等腰直角三角形的性质、全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考压轴题.23.【答案】解:(1)把A(0,10),B(-4,0)代入y=-x2+bx+c得;.解得:,所以抛物线的解析式为y=-0.25x2+1.5x+10;当y=0时,-0.25x2+1.5x+10=0,解得x1=-4,x2=10,所以C点坐标为(10,0);(2)连结OF,如图,设F(t,-0.25t2+1.5t+10),∵S四边形OCFD=S△CDF+S△OCD=S△ODF+S△OCF,∴S=S△CDF=S△ODF+S△OCF-S△OCD=×4×t+×10(-0.25t2+1.5t+10)-×4×10,=-1.25t2+9.5t+30.=-1.25(t-3.8)2+48.05,当t=3.8时,S有最大值,最大值为48.05.【解析】(1)把A(0,10),B(-4,0)代入y=-x2+bx+c求出b和c的值即可求出抛物线解析式,进而可求出点C的坐标;(2)连结OF,如图,设F(t,-0.25t2+1.5t+10),由S四边形=S△CDF+S△OCD=S△ODF+S△OCF计算即可.OCFD本题考查了待定系数法求函数解析式,解题的关键是:(1)利用待定系数法求出函数解析式;(2)根据二次函数图象上点的坐标特征得出关于t的方程.本题属于中档题,难度不大,解决该题型题目时,根据点的坐标利用待定系数法求出函数解析式是关键.。
+浙江省杭州市上城区2023-2024学年九年级上学期期中数学试卷(含解析)
2023-2024学年浙江省杭州市上城区九年级(上)期中数学试卷一、仔细选一选(本题有10个小题,每小题3分,共30分)1.(3分)已知⊙O的半径为5,PO=4,则点P在( )A.圆内B.圆上C.圆外D.不确定2.(3分)已知线段a=1,c=5,线段b是线段a、c的比例中项( )A.2.5B.C.±2.5D.±3.(3分)下列事件中属于必然事件的是( )A.等腰三角形的三条边都相等B.两个偶数的和为偶数C.任意抛一枚均匀的硬币,正面朝上D.立定跳远运动员的成绩是9m4.(3分)已知点A,B,且AB<6,画经过A( )A.0个B.1个C.2个D.无数个5.(3分)对于抛物线y=﹣2(x+1)2﹣3,下列结论:①抛物线的开口向下:②对称轴为直线x=1;③顶点坐标为(﹣1,3),其中正确结论的个数为( )A.1B.2C.3D.46.(3分)如图,△ODC是由△OAB绕点O顺时针旋转32°后得到的图形,若点D恰好落在AB上,则∠DOB的度数是( )A.32°B.36°C.38°D.40°7.(3分)已知三点(2,a),(﹣1,b),(3,c)在抛物线y=x2+x+2上,则a,b,c的大小关系是( )A.c>a>b B.b>a>cC.a>b>c D.无法比较大小8.(3分)正六边形内接于圆,它的边所对的圆周角是( )A.60°B.120°C.60°或120°D.30°或150°9.(3分)如图,⊙O中,半径OC⊥弦AB于点D,∠E=22.5°,AB=4( )A.B.2C.2D.310.(3分)如图,在平面直角坐标系中,抛物线y=ax2+bx+3(a<0)交x轴于A,B两点(B在A左侧),且CO=AO,分别以BC,正方形ACGH,记它们的面积分别为S1,S2,△ABC面积记为S3,当S1+S2=6S3时,b的值为( )A.﹣B.﹣C.﹣D.﹣二、认真填一填(本题有6个小题,每小题4分,共24分)11.(4分)已知,则的值为 .12.(4分)半径为5的圆中,60°的圆周角所对的弧长为 .13.(4分)在一个箱子里放有6个白球和若干个红球,它们除颜色外其余都相同.某数学兴趣小组一共做了4000次摸球试验(每次摸一个球,记录后放回,搅匀),摸到白球的次数为1000次 个.14.(4分)如图,△ABC内接于⊙O,CD是⊙O的直径,则∠B °.15.(4分)已知二次函数y=ax2+bx+c的图象如图所示,它与x轴的两个交点分别为(﹣1,0),(3,0).对于下列命题:①b﹣2a=0;③a﹣2b+4c<0;④8a+c>0.其中正确的有 .16.(4分)如图,在以AB为直径的半圆O上,AB=2,点F是的中点,AD平分∠CAB 交BF于点D,则∠ADB= 度;当DB=DF时,BC的长为 .三、全面答一答(本题有8个小题,共66分)17.(6分)一只不透明的袋子中装有4个球,其中2个白球和2个黑球,它们除颜色外都相同.(1)求摸出一个球是白球的概率.(2)摸出一个球,记下颜色后不放回,再摸出1个球(要求画树状图或列表).18.(6分)如图所示,以长为2的定线段AB为边作正方形ABCD,取AB的中P,在AB 的延长线上取点F,使PF以AF为边作正方形AMEF(1)AM,DM的长分别为 , .(2)M是AD的黄金分割点吗?请说明理由.19.(6分)如图,在10×10正方形网格中(每个小正方形的边长都为1个单位),△ABC 的三个顶点都在格点上(1)请在图中标出△ABC的外接圆的圆心P的位置,并填写圆心P的坐标: .(2)尺规作图:画出⊙P,并作它的一个内接三角形,要求该三角形为等边三角形.20.(8分)如图,在梯形ABCD中,AB∥DC,∠A=45°,AB=30,其中15<x<30.过点D作DE⊥AB于点E,将△ADE沿直线DE折叠,DF交BC于点G.(1)用含x的代数式表示BF的长.(2)设四边形DEBG的面积为S,求S关于x的函数表达式.(3)当x为何值时,S有最大值?并求出这个最大值.21.(8分)如图,四边形ABCD内接于⊙O,AD为直径,OC⊥CE,连接AC.(1)求证:AC平分∠EAD;(2)若∠EAD=60°,,求AD、AC与弧CD围成阴影面积部分的面积.22.(10分)已知二次函数y=ax2+2ax﹣2a(a>0).(1)求二次函数图象的对称轴;(2)当﹣2≤x≤1时,y的最大值与最小值的差为2,求该二次函数的表达式;(3)对于二次函数图象上的两点P(x1,y1),Q(x2,y2),当t﹣1≤x1≤t+1,x2≥3时,均满足y1≤y2,请结合函数图象,求t的取值范围.23.(10分)根据背景素材,探索解决问题.测算石拱桥拱圈的半径素材1某数学兴趣小组测算一座石拱桥拱圈的半径(如图1),石拱桥由矩形的花岗岩叠砌而成,上、下的花岗岩错缝连接(花岗岩的各个顶点落在上、下花岗岩各边的中点,如图2所示).素材2通过观察发现A ,B ,C 三个点都在拱圈上,A 是拱圈的最高点,B ,C两个点都是花岗岩的顶点(如图3).素材3如果没有带测量工具,那么可以用身体的“尺子”来测,比如前臂长(包括手掌、手指)(如图4),利用该方法测得一块花岗岩的长和宽(如图5).问题解决任务1获取数据通过观察、计算B,C两点之间的水平距离及铅垂距离(高度差).任务2分析计算通过观察、计算石拱桥拱圈的半径.注:测量、计算时,都以“肘”为单位.24.(12分)如图1,四边形ABDE内接于⊙O,AB=AE,AC⊥BD于点F.(1)连接BE,求证:∠ABE=∠ACB.(2)设∠CBF为x度,∠BAE为y度,写出y关于x的函数表达式.(3)如图2,作OG⊥AC于点G,连接AO并延长交⊙O于点H.①∠BAE=120°,OG=4,,求BD的长.②若DE=12,求OG的长.2023-2024学年浙江省杭州市上城区九年级(上)期中数学试卷参考答案与试题解析一、仔细选一选(本题有10个小题,每小题3分,共30分)1.(3分)已知⊙O的半径为5,PO=4,则点P在( )A.圆内B.圆上C.圆外D.不确定【分析】已知圆O的半径为r,点P到圆心O的距离是d,①当r>d时,点P在⊙O内,②当r=d时,点P在⊙O上,③当r<d时,点P在⊙O外,根据以上内容判断即可.【解答】解:∵⊙O的半径为5,若PO=4,∴8<5,∴点P与⊙O的位置关系是点P在⊙O内,故选:A.【点评】本题考查了点与圆的位置关系的应用,注意:已知圆O的半径为r,点P到圆心O的距离是d,①当r>d时,点P在⊙O内,②当r=d时,点P在⊙O上,③当r <d时,点P在⊙O外.2.(3分)已知线段a=1,c=5,线段b是线段a、c的比例中项( )A.2.5B.C.±2.5D.±【分析】根据比例中项的定义得到b2=ac,然后把a=1,c=5代入后求算术平方根即可.【解答】解:∵线段b是线段a、c的比例中项,∴b2=ac,即b2=8×5,解得b=﹣,∴线段b的值为.故选:B.【点评】本题考查了比例线段:对于四条线段a、b、c、d,如果其中两条线段的比(即它们的长度比)与另两条线段的比相等,如a:b=c:d(即ad=bc),我们就说这四条线段是成比例线段,简称比例线段.3.(3分)下列事件中属于必然事件的是( )A.等腰三角形的三条边都相等B.两个偶数的和为偶数C.任意抛一枚均匀的硬币,正面朝上D.立定跳远运动员的成绩是9m【分析】根据事件发生的可能性大小判断即可.【解答】解:A、等腰三角形的三条边都相等,不符合题意;B、两个偶数的和为偶数,符合题意;C、任意抛一枚均匀的硬币,是随机事件;D、立定跳远运动员的成绩是9m,不符合题意;故选:B.【点评】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4.(3分)已知点A,B,且AB<6,画经过A( )A.0个B.1个C.2个D.无数个【分析】根据确定圆的条件以及圆的概念解答即可.【解答】解:作线段AB的垂直平分线,以点A为圆心,于AB的垂直平分线交于两点,以这两点为圆心,可以画出经过A所以经过A,B两点且半径为3的圆有有两个,故选:C.【点评】本题考查的是确定圆的条件,正确确定圆心的位置是解题的关键.5.(3分)对于抛物线y=﹣2(x+1)2﹣3,下列结论:①抛物线的开口向下:②对称轴为直线x=1;③顶点坐标为(﹣1,3),其中正确结论的个数为( )A.1B.2C.3D.4【分析】根据二次函数的性质对各小题分析判断即可得解.【解答】解:抛物线y=﹣2(x+1)2﹣3中a=﹣2<2,∴抛物线的开口向下,对称轴为直线x=﹣1,﹣3),∴x=﹣5时,函数的最大值为3,∴①正确,②③④错误,∴正确结论的个数为1个.故选:A.【点评】本题考查了二次函数的性质,主要利用了抛物线的开口方向、对称轴、顶点坐标,以及二次函数的最值.6.(3分)如图,△ODC是由△OAB绕点O顺时针旋转32°后得到的图形,若点D恰好落在AB上,则∠DOB的度数是( )A.32°B.36°C.38°D.40°【分析】根据旋转的性质求出∠AOD和∠BOC的度数,计算出∠DOB的度数.【解答】解:由题意得,∠AOD=32°,又∠AOC=100°,∴∠DOB=100°﹣32°﹣32°=36°.故选:B.【点评】本题考查的是旋转的性质,掌握旋转角、旋转方向和旋转中心的概念是解题的关键.7.(3分)已知三点(2,a),(﹣1,b),(3,c)在抛物线y=x2+x+2上,则a,b,c的大小关系是( )A.c>a>b B.b>a>cC.a>b>c D.无法比较大小【分析】根据抛物线,将点坐标代入计算出各值,进行比较即可.【解答】解:抛物线y=x2+x+2,若点(6,(﹣1,(3,∴a=52+2+3=8,b=(﹣1)2﹣1+2=2,则b=22+4+2=14,∴c>a>b,故选:A.【点评】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.8.(3分)正六边形内接于圆,它的边所对的圆周角是( )A.60°B.120°C.60°或120°D.30°或150°【分析】作出图形,求出一条边所对的圆心角的度数,再根据圆周角和圆心角的关系解答.【解答】解:圆内接正六边形的边所对的圆心角=360°÷6=60°,根据圆周角等于同弧所对圆心角的一半,边所对的圆周角的度数是60×=30°或180°﹣30°=150°.故选:D.【点评】本题考查学生对正多边形的概念掌握和计算的能力,属于基础题,要注意分两种情况讨论.9.(3分)如图,⊙O中,半径OC⊥弦AB于点D,∠E=22.5°,AB=4( )A.B.2C.2D.3【分析】直接利用垂径定理进而结合圆周角定理得出△ODB是等腰直角三角形,进而得出答案.【解答】解:∵半径OC⊥弦AB于点D,∴=,∴∠E=∠BOC=22.4°,∴∠BOD=45°,∴△ODB是等腰直角三角形,∵AB=4,∴DB=OD=2,则半径OB等于:=2.故选:C.【点评】此题主要考查了垂径定理和圆周角定理,正确得出△ODB是等腰直角三角形是解题关键.10.(3分)如图,在平面直角坐标系中,抛物线y=ax2+bx+3(a<0)交x轴于A,B两点(B在A左侧),且CO=AO,分别以BC,正方形ACGH,记它们的面积分别为S1,S2,△ABC面积记为S3,当S1+S2=6S3时,b的值为( )A.﹣B.﹣C.﹣D.﹣【分析】先确定C(0,3)得到OC=OA=3,利用正方形的性质,由S1+S2=6S3得到OC2+OB2+OC2+OA2=6××3×(OB+3),求出OB得到B(﹣9,0),于是可设交点式y=a(x+9)(x﹣3),然后把C(0,3)代入求出a即可得到b的值.【解答】解:当x=0时,y=ax2+bx+7=3,则C(0,∴OC=OA=6,∴A(3,0),∵S6+S2=6S2,∴OC2+OB2+OC8+OA2=6××3×(OB+8),整理得OB2﹣9OB=7,解得OB=9,∴B(﹣9,4),设抛物线解析式为y=a(x+9)(x﹣3),把C(7,3)代入得a×9×(﹣8)=3,∴抛物线解析式为y=﹣(x+5)(x﹣3),即y=﹣x2﹣x+3,∴b=﹣.故选:B.【点评】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a ≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质和正方形的性质.二、认真填一填(本题有6个小题,每小题4分,共24分)11.(4分)已知,则的值为 4 .【分析】根据等式的性质,可得a=b,根据分式的性质,可得答案.【解答】解:两边都乘以b,得,a=b,=﹣=﹣,故答案为:4.【点评】本题考查了比例的性质,利用等式的性质得出a=b是解题关键.12.(4分)半径为5的圆中,60°的圆周角所对的弧长为 π .【分析】首先根据圆周角定理求得弧所对的圆心角的度数,再进一步根据弧长的公式计算即可.【解答】解:根据圆周角定理,得弧所对的圆心角是120°,根据弧长的公式l==π.故答案为:π.【点评】此题综合考查了了圆周角定理和弧长公式,解题的关键是熟记定理和弧长公式.13.(4分)在一个箱子里放有6个白球和若干个红球,它们除颜色外其余都相同.某数学兴趣小组一共做了4000次摸球试验(每次摸一个球,记录后放回,搅匀),摸到白球的次数为1000次 18 个.【分析】由摸到白球的次数为1000次,计算摸到白球的概率,进而求出球的总个数,再用总个数减去白球的个数,得出红球的个数即可.【解答】解:∵数学兴趣小组一共做了4000次摸球试验(每次摸一个球,记录后放回,摸到白球的次数为1000次,∴摸到白球的概率=,∴球的总个数=(个),∴红球的个数=24﹣3=18(个).故答案为:18.【点评】本题主要考查了概率公式,熟记概率公式是解题的关键.14.(4分)如图,△ABC内接于⊙O,CD是⊙O的直径,则∠B =50 °.【分析】根据CD是⊙O的直径,则∠DAC=90°,从而有∠D+∠ACD=90°,从而求得∠D,再根据圆周角定理即可求解.【解答】解:∵CD是⊙O的直径,∴∠DAC=90°,∴∠D+∠ACD=90°,∵∠ACD=40°,∴∠D=50°,∴∠B=∠D=50°.故答案为:=50.【点评】本题考查了圆周角定理,直径所对的圆周角为直角,直角三角形的两锐角互余等知识,熟练掌握直径所对的圆周角为直角是解题的关键.15.(4分)已知二次函数y=ax2+bx+c的图象如图所示,它与x轴的两个交点分别为(﹣1,0),(3,0).对于下列命题:①b﹣2a=0;③a﹣2b+4c<0;④8a+c>0.其中正确的有 ③④ .【分析】首先根据二次函数图象开口方向可得a>0,根据图象与y轴交点可得c<0,再根据二次函数的对称轴x=﹣,结合图象与x轴的交点可得对称轴为直线x=1,结合对称轴公式可判断出①的正误;根据对称轴公式结合a的取值可判定出b<0,根据a、b、c的正负即可判断出②的正误;利用a﹣b+c=0,求出a﹣2b+4c<0,即可判断出③的正误;利用当x=4时,y>0,则16a+4b+c>0,由①知,b=﹣2a,得出8a+c>0,即可判断出④的正误.【解答】解:根据图象可得:抛物线开口向上,则a>0,则c<0,对称轴:x=﹣>0,①∵它与x轴的两个交点分别为(﹣1,4),0),∴对称轴是直线x=1,∴﹣=1,∴b+2a=8,故①错误;②∵a>0,∴b<0,∵c<5,∴abc>0,故②错误;③∵a﹣b+c=0,∴c=b﹣a,∴a﹣7b+4c=a﹣2b+3(b﹣a)=2b﹣3a,又由①得b=﹣6a,∴a﹣2b+4c=﹣5a<0,故③正确;④根据图示知,当x=4时,∴16a+3b+c>0,由①知,b=﹣2a,∴7a+c>0;故④正确;综上所述,正确的结论是:③④,故答案为:③④【点评】此题主要考查了二次函数图象与系数的关系,关键是熟练掌握①二次项系数a 决定抛物线的开口方向,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点,抛物线与y轴交于(0,c).16.(4分)如图,在以AB为直径的半圆O上,AB=2,点F是的中点,AD平分∠CAB 交BF于点D,则∠ADB= 135 度;当DB=DF时,BC的长为 .【分析】根据“直径所对的圆周角是直角”得出∠ACB=90°,从而得到∠ABC+∠CBA=90°,再由“点F是的中点”、“AD平分∠CAB”分别得出∠ABF=∠ABC、∠BAD=∠CAB,从而有∠ABF+∠BAD=45°,再由“三角形内角和定理”得出∠ADB的度数;连接AF、OF,OF交AC于点M,由圆的有关性质得到∠AFB=90°、OF⊥AC,从而得出AF=DF,再由“DB=DF”得BF=2AF,从而由勾股定理求出AF的长、OM的长,然后解直角三角形求解即可.【解答】解:∵AB是半圆O的直径,AB=2,∴∠ACB=90°,OA=OB=,∴∠ABC+∠CBA=90°,∵点F是的中点,∴=,∴∠ABF=∠CBF=ABC,∵AD平分∠CAB,∴∠BAD=∠CAB,∴∠ABF+∠BAD=(∠ABC+∠CAB)=45°,∴∠ADB=180°﹣(∠ABF+∠BAD)=135°,∴∠ADF=180°﹣∠ADB=45°,连接AF、OF,如图,则OF=OA=,∠AFB=90°,∴∠DAF=90°﹣∠ADF=45°=∠ADF,∴AF=DF,当DB=DF时,BF=2DF=2AF,在Rt△ABF中,AF5+BF2=AB2,即AF3+(2AF)2=,∴AF4=4,∵AF>0,∴AF=5,∵点F是的中点,∴OF⊥AC,∴∠AMO=∠AMF=90°,设OM=x,则FM=OF﹣OM=,在Rt△AOM中,AM2=OA2﹣OM2=﹣x2,在Rt△AFM中,AM2=AF8﹣FM2=25﹣,∴﹣x2=72﹣,∴x=,∴OM=,∵sin∠BAC==,∴BC===,故答案为:135;.【点评】此题是圆的综合题,考查了圆周角定理、角平分线定义、三角形外角性质、勾股定理、解直角三角形等知识,熟练掌握圆周角定理、三角形外角性质、勾股定理、解直角三角形等知识并作出合理的辅助线是解题的关键.三、全面答一答(本题有8个小题,共66分)17.(6分)一只不透明的袋子中装有4个球,其中2个白球和2个黑球,它们除颜色外都相同.(1)求摸出一个球是白球的概率.(2)摸出一个球,记下颜色后不放回,再摸出1个球(要求画树状图或列表).【分析】(1)直接利用概率公式计算即可;(2)画出树形图得到所有等可能的结果数,即可求出两次摸出的球恰好颜色相同的概率.【解答】解:(1)∵一个不透明的布袋里装有4个球,其中2个白球和3个黑球,∴摸出1个球是白球的概率是:=;(2)画树状图得:∵共有12种等可能的结果,两次摸出的球恰好颜色相同有4种情况,∴两次摸出的球恰好颜色相同的概率==.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.18.(6分)如图所示,以长为2的定线段AB为边作正方形ABCD,取AB的中P,在AB 的延长线上取点F,使PF以AF为边作正方形AMEF(1)AM,DM的长分别为 ﹣1 , 3﹣ .(2)M是AD的黄金分割点吗?请说明理由.【分析】(1)要求AM的长,只需求得AF的长,又AF=PF﹣AP,PF=PD==,则AM=AF=﹣1,DM=AD﹣AM=3﹣;(2)根据(1)中的数据得:=,根据黄金分割点的概念,则点M是AD的黄金分割点.【解答】解:(1)在Rt△APD中,AP=1,由勾股定理知PD===,∴AM=AF=PF﹣AP=PD﹣AP=﹣1,DM=AD﹣AM=7﹣.故AM的长为﹣3;故答案为:﹣6;(2)结论:点M是AD的黄金分割点.由于=,∴点M是AD的黄金分割点.【点评】此题综合考查了正方形的性质、勾股定理和黄金分割的概念.先求得线段AM,DM的长,然后求得线段AM和AD,DM和AM之间的比,根据黄金分割的概念进行判断.19.(6分)如图,在10×10正方形网格中(每个小正方形的边长都为1个单位),△ABC 的三个顶点都在格点上(1)请在图中标出△ABC的外接圆的圆心P的位置,并填写圆心P的坐标: (5,3) .(2)尺规作图:画出⊙P,并作它的一个内接三角形,要求该三角形为等边三角形.【分析】(1)分别作AB与BC的垂直平分线相交于点P,则点P即为所求,根据图形得出点P的坐标;(2)利用半径把圆6等分即可作出等边三角形AEF.【解答】解:(1)如图所示,点P即为所求,3),故答案为:(5,2);(2)如图,△AEF即为所求.【点评】本题考查作图﹣复杂作图,坐标与图形性质,垂径定理,三角形的外心等知识,解题的关键是理解题意,灵活运用所学知识解决问题.20.(8分)如图,在梯形ABCD中,AB∥DC,∠A=45°,AB=30,其中15<x<30.过点D作DE⊥AB于点E,将△ADE沿直线DE折叠,DF交BC于点G.(1)用含x的代数式表示BF的长.(2)设四边形DEBG的面积为S,求S关于x的函数表达式.(3)当x为何值时,S有最大值?并求出这个最大值.【分析】(1)根据等式BF=AF﹣AB=2AE﹣AB=2DE﹣AB=2BC﹣AB,用含x的代数式表示BF的长;(2)根据等量关系“S=S△DEF﹣S△GBF”列出S与x的函数关系式;(3)根据(2)中的函数关系式和x的取值范围求S的最大值.【解答】解:(1)∵DE⊥AB,∴∠DEF=∠ABC=90°,∵AB∥DC,∴∠DEF=∠ABC=90°=∠EDC,∴四边形DEBC是矩形,∴DE=CB=x,∵∠A=45°,∴△ADE是等腰直角三角形,∴AE=DE,由翻折可知:AE=EF,∴EF=AE=DE=BC=x,∵AB=30,∴BF=AF﹣AB=2AE﹣AB=2x﹣30;(2)∵∠F=∠A=45°,∠CBF=∠ABC=90°,∴∠BGF=∠F=45°.∴BG=BF=8x﹣30,∴S=S△DEF﹣S△GBF=DE3﹣BF5=x7(3x﹣30)2=﹣x2+60x﹣450(15<x<30);(3)S=﹣x2+60x﹣450=﹣(x﹣20)2+150,∵a=﹣<0,∴当x=20时,S有最大值.【点评】本题是四边形的综合题,考查矩形的判定与性质,等腰直角三角形的判定与性质,函数关系式的求法,二次函数的最大值,翻折变换(折叠问题),解决本题的关键是掌握翻折的性质.21.(8分)如图,四边形ABCD内接于⊙O,AD为直径,OC⊥CE,连接AC.(1)求证:AC平分∠EAD;(2)若∠EAD=60°,,求AD、AC与弧CD围成阴影面积部分的面积.【分析】(1)先判断出OC∥AB,,再利用平行线的性质得出∠BAC=∠ACO,,根据等边对等角得出∠CAD=∠OCA,即可得出结论;(2)求出∠COD=60°和AD=4,再利用三角形和扇形面积公式计算即可.【解答】(1)证明:∵CE⊥AB,OC⊥CE∴OC∥AB,∴∠BAC=∠ACO,∵OA=OC,∴∠CAD=∠OCA,∴∠BAC=∠CAD,∴AC平分∠EAD;(2)解:由(1)可知AC平分∠EAD,∵∠EAD=60°,∴∠CAD=30°,∵AD为⊙O的直径,∴∠ACD=90°,∵AC=2,∴AD==2,∴OA=OD=2,∵OC∥AB,∴∠COD=∠EAD=60°,∴AD、AC与弧CD围成阴影面积部分的面积:S△AOC+S扇形COD=+=+.【点评】本题考查的是平行线的判定和性质、圆周角定理、扇形的面积公式,判断出OC ∥AB是解本题的关键.22.(10分)已知二次函数y=ax2+2ax﹣2a(a>0).(1)求二次函数图象的对称轴;(2)当﹣2≤x≤1时,y的最大值与最小值的差为2,求该二次函数的表达式;(3)对于二次函数图象上的两点P(x1,y1),Q(x2,y2),当t﹣1≤x1≤t+1,x2≥3时,均满足y1≤y2,请结合函数图象,求t的取值范围.【分析】(1)利用二次函数的性质解答即可;(2)利用二次函数的性质和待定系数法解答即可;(3)结合二次函数的图象,利用二次函数的性质列出不等式组,解不等式组即可得出结论.【解答】解:(1)∵x=﹣=﹣2,∴二次函数图象的对称轴是直线x=﹣1;(2)y=ax2+2ax﹣2a=a(x+1)2﹣3a,∵a>0,∴当x=﹣5时,二次函数有最小值为﹣3a,当﹣2≤x≤5时,x=1时函数有最大值a,∵当﹣2≤x≤8时,y的最大值与最小值的差为2,∴a﹣(﹣3a)=6,∴a=.∴该二次函数的表达式为y =x 2+x ﹣8;(3)∵二次函数图象的对称轴是直线x =﹣1,∴当x =3与x =﹣7时的函数值相等,∵a >0,∴抛物线的开口方向向上,∵当t ﹣1≤x 6≤t +1,x 2≥2时,均满足y 1≤y 2,∴,解得:﹣4≤t ≤2.【点评】本题主要考查了二次函数的性质,二次函数图象上点的坐标的特征,待定系数法确定二次函数的解析式,二次函数的极值,熟练掌握二次函数的性质是解题的关键.23.(10分)根据背景素材,探索解决问题.测算石拱桥拱圈的半径素材1某数学兴趣小组测算一座石拱桥拱圈的半径(如图1),石拱桥由矩形的花岗岩叠砌而成,上、下的花岗岩错缝连接(花岗岩的各个顶点落在上、下花岗岩各边的中点,如图2所示).素材2通过观察发现A ,B ,C 三个点都在拱圈上,A 是拱圈的最高点,B ,C两个点都是花岗岩的顶点(如图3).素材3如果没有带测量工具,那么可以用身体的“尺子”来测,比如前臂长(包括手掌、手指)(如图4),利用该方法测得一块花岗岩的长和宽(如图5).问题解决任务1获取数据通过观察、计算B ,C 两点之间的水平距离及铅垂距离(高度差).任务2分析计算通过观察、计算石拱桥拱圈的半径.注:测量、计算时,都以“肘”为单位.【分析】任务1:根据素材3,观察图形可知一块花岗岩的长为2肘、宽为1肘,根据素材1、素材2,观察图形,得出B ,C 两点之间的水平距离及铅垂距离(高度差)即可;任务2:作过点C 的水平线,过点A 作该水平线的垂线,垂足为E ,作BD ⊥AE 于D ,记圆心为O ,连接CO 、BO .观察图形,得出观察图形,CE 、DB 、DE 的长,设OE =a ,则DO =DE +OE =5+a ,根据勾股定理OB 2=DB 2+OD 2,OC 2=OE 2+EC 2,半径OB =OC ,得到方程(5+a )2+82=a 2+132,求解方程得出a =8,计算,即可得出石拱桥拱圈的半径.【解答】解:任务1:根据素材3,观察图形可知一块花岗岩的长为6肘,根据素材1、素材2,B ,C 两点之间的水平距离有3.5块花岗岩的长,B ,C 两点之间的铅垂距离(高度差)有5块花岗岩的宽,答:B ,C 两点之间的水平距离为8肘;任务2:如图,作过点C 的水平线,垂足为E ,记圆心为O 、BO ,观察图形,CE=6.4×2=13(肘),DE=5(肘),∴设OE=a,则DO=DE+OE=5+a,∵OB2=DB2+OD3,OC2=OE2+EC6,OB=OC,∴(5+a)2+42=a2+134,解得:a=8,∴,∴石拱桥拱圈的半径为肘.答:石拱桥拱圈的半径为肘.【点评】本题考查了圆的性质、勾股定理的应用,熟练掌握知识点、观察图形、作辅助线计算是解题的关键.24.(12分)如图1,四边形ABDE内接于⊙O,AB=AE,AC⊥BD于点F.(1)连接BE,求证:∠ABE=∠ACB.(2)设∠CBF为x度,∠BAE为y度,写出y关于x的函数表达式.(3)如图2,作OG⊥AC于点G,连接AO并延长交⊙O于点H.①∠BAE=120°,OG=4,,求BD的长.②若DE=12,求OG的长.【分析】(1)根据AB=AE,得出=,∠ABE=∠AEB,根据圆周角定理得出∠ACB =∠AEB,即可证明结论;(2)根据∠CBF为x度,得出∠BCF=90°﹣x,根据解析(1)可知,∠ABE=∠AEB=∠ACB=90°﹣x,根据三角形内角和得出∠BAE=180°﹣∠ABE﹣∠AEB;(3)①连接OB、OE,CD,证明△ABO为等边三角形,得出AB=OA=OB,设FG=x,则,根据勾股定理得出,求出,(舍去),得出,证明△ABF ∽△DCF,得出,求出DF=11,得出BD=BF+DF=3+11=14;②连接AD,CD,CH,根据AG=CG,AO=OH,得出OG∥CH,CH=2OG,证明∠CAH =∠EAD,求出CH=DE=12,即可求出结果.【解答】(1)证明:∵AB=AE,∴=,∠ABE=∠AEB,∴∠ACB=∠AEB,∴∠ABE=∠ACB;(2)解:∵AC⊥BD,∴∠BFC=90°,∵设∠CBF为x度,∴∠BCF=90°﹣x,根据解析(1)可知,∠ABE=∠AEB=∠ACB=90°﹣x,∴∠BAE=180°﹣∠ABE﹣∠AEB=180°﹣2(90°﹣x)=2x,即y=6x;(3)解:①连接OB、OE,如图2.1所示:∵∠BAE=120°,=,AH是直径,∴=,∴,∵AO=BO,∴△ABO为等边三角形,∴AB=OA=OB,根据解析(2)可知,∠BAE=2∠CBF,∴,∵AC⊥BD,∴∠BFC=∠AFB=∠CFD=90°,∴∠BCF=90°﹣∠CBF=30°,∴,设FG=x,则,∵OG⊥AC,∴,根据勾股定理得:,,∵OA6=AB2,∴,解得:,(舍去),∴,∵=,∴∠BAC=∠BDC,∵∠AFB=∠CFD=90°,∴△ABF∽△DCF,∴,即,解得:DF=11,∴BD=BF+DF=3+11=14;②连接AD,CD,如图7.2,∵AG=CG,AO=OH,∴OG∥CH,CH=2OG,∴∠ACH=∠AGO=90°,∴∠ACH=∠AFD=90°,∴BD∥CH,∴∠BDC=∠DCH,∵=,=,∴∠DCH=∠DAH,∠BDC=∠BAC,∴∠BAC=∠DAH,∵=,∴∠BAO=∠EAO,∴∠CAH=∠EAD,∴CH=DE=12,∴.【点评】本题主要考查了圆周角定理,勾股定理,等边三角形的判定和性质,中位线的判定和性质,三角形相似的判定和性质,解题的关键是作出辅助线,熟练相关的判定和性质.。
【初三数学】杭州市九年级数学上期中考试测试题(含答案)
新人教版数学九年级上册期中考试试题及答案一、细心选一选。
(每小题3分,共42分) 1.观察下列图案,既是中心对称图形又是轴对称图形的是( ) A .B .C .D .2.方程3x 2﹣1=0的一次项系数是( ) A .﹣1 B .0C .3D .13.方程x (x ﹣1)=0的根是( ) A .x=0 B .x=1 C .x 1=0,x 2=1D .x 1=0,x 2=﹣14.在平面直角坐标系中,点A (﹣3,1)与点B 关于原点对称,则点B 的坐标为( )A .(﹣3,1) B .(﹣3,﹣1)C .(3,1)D .(3,﹣1)5.一元二次方程x 2﹣2x ﹣7=0用配方法可变形为( ) A .(x+1)2=8 B .(x+2)2=11 C .(x ﹣1)2=8 D .(x ﹣2)2=116.下列方程中,是关于x 的一元二次方程的是( )。
A .0122=+-y xB .1212-=+x xC .01212=+x D .122=+y y7.设x 1,x 2是一元二次方程x 2﹣2x ﹣3=0的两根,则=( )A .﹣2B .2C .3D .﹣38.将抛物线y=﹣2x 2向左平移3个单位,再向下平移4个单位,所得抛物线为( )A .y=﹣2(x ﹣3)2﹣4B .y=﹣2(x+3)2﹣4C .y=﹣2(x ﹣3)2+4D .y=﹣2(x+3)2+49.若抛物线y=x 2+2x+c 与y 轴交点为(0,﹣3),则下列说法不正确的是( ) A .抛物线口向上 B .当x >﹣1时,y 随x 的增大而减小 C .对称轴为x=﹣1 D .c 的值为﹣310.设A (﹣2,y 1),B (1,y 2),C (2,y 3)是抛物线y=﹣(x+1)2+2上的三点,则y 1,y 2,y 3的大小关系为( )A .y 1>y 2>y 3B .y 1>y 3>y 2C .y 3>y 2>y 1D .y 3>y 1>y 211.三角形两边的长是3和4,第三边的长是方程x 2﹣12x+35=0的根,则该三角形的周长为( )A .14B .12C .12或14D .以上都不对12.△ABC 是等边三角形,点P 在△ABC 内,PA=2,将△PAB 绕点A 逆时针旋转得到△P 1AC ,则P 1P 的长等于( )A .2B .C .D .113.在一次会议中,每两人都握了一次手,共握手21次,设有x 人参加会议,则可列方程为( ) A .x (x+1)=21B .x (x ﹣1)=21C .D .14.已知二次函数y=ax 2+bx+c 中,函数y 与自变量x 的部分对应值如下表:则当y <6时,x 的取值范围是( )A .﹣3<x <3B .﹣1<x <3C .x <﹣1或x >3D .x >3 二、用心填一填(每小题4分,共16分)15.把方程2x 2﹣1=5x 化为一般形式是16.关于x 的一元二次方程kx 2﹣x+1=0有实数根,则k 的取值范围是 . 17.如图所示,将一个含30°角的直角三角板ABC 绕点A 旋转,使得点B ,A ,C ′在同一条直线上,则三角板ABC 旋转的角度是 .18.(3分)抛物线y=+5的顶点坐标是三、耐心解一解(本大题满分62分) 19.(每小题5分,共10分)(1)03522=--x x (2)36)1(2=+x20.(9分)如图,△COD是△AOB绕点O顺时针方向旋转40°后所得的图形,点C恰好在AB上,∠AOD=90°,求∠B的度数.21.(9分)如图,在一面靠墙的空地上用长为24米的篱笆,围成中间隔有二道篱笆的长方形花圃,设花圃的宽AB为x米,面积为S平方米.(1)求S与x的函数关系式及自变量的取值范围;(2)当x取何值时所围成的花圃面积最大,最大值是多少?22.(10分)我县某村2015年的人均收入为10000元,2017年人均收入为12100元,若2015年到2017年人均收入的年平均增长率相同.(1)求人均收入的年平均增长率;(2)2016年的人均收入是多少元?23.(12分) 已知二次函数y=x2﹣2mx+m2﹣3(m是常数).(1)求证:不论m为何值,该函数的图象与x轴都有两个交点.(2)当m的值改变时,该函数的图象与x轴两个交点之间的距离是否改变?若不变,请求出距离;若改变,请说明理由24.(12分)如图直线4y与x轴、y轴相交于点A、B,抛物线经过A、B=x-2+两点,点C(-1,0)在抛物线上,抛物线的顶点为点D,直线l垂直于x轴.(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在点P,使△PBD是以B D为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;参考答案及评分标准一、细心选一选(每小题3分,共42分)二、用心填一填(每小题4分,共16分)15.2x 2﹣5x -1=0 16. k ≤且k ≠0. 17. 150°. 18.(1,5). 三、解答题(62分)19.(每小题5分,共10分) (1)解:3,5,2-=-==c b a49242542=+=-ac b 2249)5(242⨯±--=-±-=a acb b x ………2分 =475± ………4分 21475,347521-=-==+=x x ………5分(2)解:61±=+x ………2分 61=+x 或61-=+x ………4分∴7,521-==x x ………5分 20.解:根据旋转性质得△COD ≌△AOB , ∴CO=AO , 由旋转角为40°, 可得∠AOC=∠BOD=40°, ∴∠OAC=140÷2=70°,∠BOC=∠AOD ﹣∠AOC ﹣∠BOD=10°, ∠AOB=∠AOC+∠BOC=50°, 在△AOB 中,由内角和定理得∠B=180°﹣∠OAC ﹣∠AOB=180°﹣70°﹣50°=60°. ………8分 答:∠B 的度数为60°. ………1分 21.解:(1)∵AB=x 米, ∴BC=(24﹣4x )米,∴S=AB •BC=x (24﹣4x )=﹣4x 2+24x (0<x <6); ………5分 (2)S=﹣4x 2+24x=﹣4(x ﹣3)2+36, ∵0<x <6,∴当x=3时,S 有最大值为36平方米; ………4分 22. 解:(1)设人均收入的年平均增长率为x ,依题意,得 10000(1+x )2=12100,解得:x 1=0.1=10%,x 2=﹣2.1(不合题意,舍去), ………5分 答:人均收入的年平均增长率为10%; ………6分(2)2016年的人均收入为:10000(1+x )=10000(1+0.1)=11000(元). 答:该购物网站8月份到10月份销售额的月平均增长率为10%. ………10分 23. (1)证明:y=x 2﹣2mx+m 2﹣3, ∵a=1,b=﹣2m ,c=m新人教版数学九年级上册期中考试试题及答案一、细心选一选。
浙江省杭州市九年级(上)期中数学试卷
九年级(上)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.已知二次函数y=2(x-3)2+1,可知正确的是()A. 其图象的开口向下B. 其图象的对称轴为直线x=−3C. 当x<3时,y随x的增大而增大D. 其最小值为12.下列说法正确的是()A. “明天降雨的概率是75%”表示明天有75%的时间都在降雨B. “抛一枚硬币正面朝上的概率为12”表示每抛2次就有1次正面朝上C. “抛一枚均匀的正方体骰子,朝上的点数是2的概率为16”表示随着抛掷次数的增加,“抛出朝上的点数是2”这一事件发生的频率稳定在16左右D. “彩票中奖的概率为1%”表示买100张彩票肯定会中奖3.如图,点A是圆O上一点,BC是圆O的弦,若∠A=50°,则∠OBC的度数()A. 40∘B. 50∘C. 25∘D. 100∘4.已知(-2,a),(3,b)是函数y=-4x2+8x+m上的点,则()A. b<aB. a<bC. b=cD. a,b的大小关系不确定5.在△ABC中,已知AB=AC=8cm,BC=12cm,P是BC的中点,以P为圆心作一个6cm为半径的圆P,则A,B,C三点在圆P内的有()个.A. 0B. 1C. 2D. 36.已知二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,那么关于x的一元二次方程ax2+bx+c=0的两个解为()A. 1,3B. −2,3C. −1,3D. 3,47.四边形ABCD内接于⊙O,AB:BC:CD=2:3:5,∠BAD=120°,则∠ABC的度数为()A. 100∘B. 105∘C. 120∘D. 125∘8.下列命题中,正确的是()①平面内三个点确定一个圆;②平分弦的直径平分弦所对的弧;③半圆所对的圆周角是直角;④圆的内接菱形是正方形;⑤相等的弧所对的圆周角相等.A. ①②③B. ②④⑤C. ①②⑤D. ③④⑤9.如图,已知圆O的半径为10,AB⊥CD,垂足为P,且AB=CD=16,则OP的长为()A. 6B. 62C. 8D. 8210.已知二次函数y=ax2+bx+c(a>0)的图象的对称轴为直线x=1,且(x1,y1),(x2,y2)为其图象上的两点,()A. 若x1>x2>1,则(y1−y2)+2a(x1−x2)<0B. 若1>x1>x2,则(y1−y2)+2a(x1−x2)<0C. 若x1>x2>1,则(y1−y2)+a(x1−x2)>0D. 若1>x1>x2,则(y1−y2)+a(x1−x2)>0二、填空题(本大题共6小题,共18.0分)11.已知扇形所在圆半径为4,弧长为6π,则扇形面积为______12.从长为1,3,4,5的四条线段中任意选出3条,则能组成三角形的概率为______13.某游乐园要建一个圆形喷水池,在喷水池的中心安装一个大的喷水头,高度为103m,喷出的水柱沿抛物线轨迹运动(如图),在离中心水平距离4m处达到最高,高度为6m,之后落在水池边缘,那么这个喷水池的直径AB为______m.14.如图,点A,B,C,D在⊙O上,CB=CD,∠CAD=30°,∠ACD=50°,则∠ADB=______.15.已知正方形ABCD与正△EFG都内接于圆O,若正方形边长为22,则EF=______.16.已知关于x的二次函数y=ax2+(a2-1)x-a(a≠0)的图象与x轴的一个交点为(m,0),若2<m<4,则a的范围______三、计算题(本大题共1小题,共6.0分)17.如图,一圆弧形钢梁(1)请用直尺和圆规补全钢梁所在圆;(2)若钢梁的拱高为8米,跨径为40米,求这钢梁圆弧的半径.四、解答题(本大题共6小题,共48.0分)18.已知抛物线y=ax2+bx+c(a≠0)的图象经过点(0,1),且当x=2时,函数有最大值为4,(1)求函数表达式(2)直接写出:当x取何值时,函数值大于1(3)写出将函数图象向左平移1个单位,向上平移2个单位后所得到的函数表达式19.在4件同型号的产品中,有1件不合格品和3件合格品.(1)从这4件产品中随机抽取1件进行检测,求抽到的是不合格品的概率;(2)从这4件产品中随机抽取2件进行检测,请用树状图或列表法求出抽到的2件都是合格品的概率;(3)在这4件产品中加入x件合格品后,进行如下试验:随机抽取1件进行检测,然后放回,多次重复这个试验,通过大量重复试验后发现,抽到合格品的概率稳定在0.95,则可以推算出x的值大约是多少?20.已知矩形ABCD的四个顶点在正△EFG的边上,已知正三角形边长为4,记矩形面积为S,边长FA为x,(1)求S的关于x的函数表达式并写出x的取值范围;(2)求S随x增大而增大时自变量x的取值范围,并求出面积的最值.21.平面直角坐标系xOy中,抛物线y=kx2-2k2x-3交y轴于A点,交直线x=-4于B点.(1)抛物线的对称轴为直线x=______(用含k的代数式表示);(2)若AB∥x轴,求抛物线的解析式;(3)当-4<k<0时,记抛物线在A,B之间的部分为图象G(包含A,B两点),若对于图象G上任意一点P(x P,y P),y P≥-3,结合函数图象写出k的取值范围.22.如图,在△ABC中,AB=AC,E在AC上,经过A,B,E三点的圆O交BC于点D,且D点是弧BE的中点,(1)求证AB是圆的直径;(2)若AB=8,∠C=60°,求阴影部分的面积;(3)当∠A为锐角时,试说明∠A与∠CBE的关系.23.在平面直角坐标系中,已知抛物线y1=x2-4x+4的顶点为A,直线y2=kx-2k(k≠0),(1)试说明直线是否经过抛物线顶点A;(2)若直线y2交抛物线于点B,且△OAB面积为1时,求B点坐标;(3)过x轴上的一点M(t,0)(0≤t≤2),作x轴的垂线,分别交y1,y2的图象于点P,Q,判断下列说法是否正确,并说明理由:①当k>0时,存在实数t(0≤t≤2)使得PQ=3.②当-2<k<-0.5时,不存在满足条件的t(0≤t≤2)使得PQ=3.答案和解析1.【答案】D【解析】解:A、∵二次函数y=2(x-3)2+1中,a=2>0,∴其图象的开口向上,故本选项错误;B、∵二次函数的解析式是y=2(x-3)2+1,∴其图象的对称轴是直线x=3,故本选项错误;C、∵二次函数的图象开口向上,对称轴是直线x=3,∴当x<3时,y随x的增大而减小,故本选项错误;D、∵由函数解析式可知其顶点坐标为(3,1),∴其最小值为1,故本选项正确.故选:D.根据二次函数的性质对各选项进行逐一判断即可.本题考查的是二次函数的性质,熟知二次函数的顶点式是解答此题的关键.2.【答案】C【解析】解:A、“明天降雨的概率是75%”表示明天下雨的可能性大,故A不符合题意;B、“抛一枚硬币正面朝上的概率为”表示正面向上与反面向上的可能性一样大,故B不符合题意;C、“抛一枚均匀的正方体骰子,朝上的点数是2的概率为”表示随着抛掷次数的增加,“抛出朝上的点数是2”这一事件发生的频率稳定在左右,故C符合意义;D、“彩票中奖的概率为1%”表示中奖的可能性小,故D不符合题意;故选:C.概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生,机会小也有可能发生.本题考查了概率的意义,概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生,机会小也有可能发生.3.【答案】A【解析】解:∵∠BAC与∠BOC为所对的圆周角和圆心角,∴∠O=2∠BAC=100°,又∵OB=OC,∴∠OBC=(180°-∠O)=40°.故选:A.∠BAC与∠BOC为所对的圆周角和圆心角,根据圆周角定理可求∠O,由OB=OC,可求∠OBC.本题考查了圆周角定理.关键是由圆周角定理求对应的圆心角,利用OB=OC 得等腰三角形,由等腰三角形的性质解题.4.【答案】B【解析】解:∵(-2,a),(3,b)是函数y=-4x2+8x+m上的点,∴a=-4×(-2)2+8×(-2)+m=-32+m,b=-4×32+8×3+m=-12+m.∵-32+m<-12+m,∴a<b.故选:B.利用二次函数图象上点的坐标特征可求出a,b的值,比较后即可得出结论.本题考查了二次函数图象上点的坐标,利用二次函数图象上点的坐标特征求出a,b的值是解题的关键.5.【答案】B【解析】解:∵AB=AC=8cm,BC=12cm,P是BC的中点,∴CP=BP=BC=6,∵⊙D的半径r=6cm,且6=6,∴点B与点C在⊙P上,连接AP,∴AP⊥BC,∴AP==2<6,∴点A在⊙P内,故选:B.由BC=12cm,P是BC的中点,可得CP=BP=BC=6,然后由圆的半径r=6,根据勾股定理得到AP,根据点与圆的位置关系的判定方法可判断点在⊙P内.本题考查了点与圆的位置关系:设⊙O的半径为r,点P到圆心的距离OP=d,则有:点P在圆外⇔d>r;点P在圆上⇔d=r;点P在圆内⇔d<r.6.【答案】C【解析】解:由图象可知:二次函数y=ax2+bx+c(a≠0)的对称轴是直线x=1,函数与x轴的一个交点为(3,0),则:该函数与x轴的另一个交点时(-1,0),故:方程的解应为:x=-1或x=3.故选:C.根据二次函数的性质,从函数的图象可知函数的对称轴及与x轴一个交点坐标,即可求解.本题考查抛物线与x轴的交点坐标,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.7.【答案】B【解析】解:如图所示:连接OA、OB、OC、OD,∵四边形ABCD为⊙O的内接四边形,::=2:3:5,∠BAD=120°,∴∠COD=150°,∠BOC=90°,∠AOB=60°,∴∠AOD=60°,∴∠ABC=(150°+60°)=105°;故选:B.根据圆内接四边形的性质和圆周角定理求∠ABC的度数即可.本题主要考查了圆内接四边形的性质、圆周角定理.熟练掌握圆周角定理是解决问题的关键.8.【答案】D【解析】解:①平面内,不在同一条直线上的三个点确定一个圆;故错误;②平分弦(弦不是直径)的直径平分弦所对的弧;故错误;③半圆所对的圆周角是直角;故正确;④圆的内接菱形是正方形;故正确;⑤相等的弧所对的圆周角相等;故正确;故选:D.根据垂径定理、圆内接四边形的性质、圆周角定理、过不在同一直线上的三个点定理即可对每一种说法的正确性作出判断.本题考查了垂径定理、圆内接四边形的性质、圆周角定理和过不在同一直线上的三个点定理,准确掌握各种定理是解题的关键.9.【答案】B【解析】解:作OE⊥AB交AB与点E,作OF⊥CD交CD于点F,如右图所示,则AE=BE,CF=DF,∠OFP=∠OEP=90°,又∵圆O的半径为10,AB⊥CD,垂足为P,且AB=CD=16,∴∠FPE=90°,OB=10,BE=8,∴四边形OEPF是矩形,OE=6,同理可得,OF=6,∴EP=6,∴OP=,故选:B.根据题意作出合适的辅助线,然后根据垂径定理、勾股定理即可求得OP的长,本题得以解决.本题考查垂径定理、勾股定理,解答本题的关键是明确题意,利用数形结合的思想解答.10.【答案】C【解析】解:∵二次函数y=ax2+bx+c(a>0)的图象的对称轴为直线x=1,且(x1,y1),(x2,y2)为其图象上的两点,∴若x1>x2>1,则y1>y2,故(y1-y2)+2a(x1-x2)>0,故选项A错误,选项C正确,若1>x1>x2,则y1<y2,故y1-y2<0,x1-x2>0,无法判断(y1-y2)+2a(x1-x2)是否大于0,也无法判断(y1-y2)+a(x1-x2)是否大于0,故选项B、D错误,故选:C.根据二次函数的性质和题目中的条件,可以判断各个选项中的式子是否正确,从而可以解答本题.本题考查二次函数的性质、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.11.【答案】12π【解析】解:根据扇形的面积公式,得=lR=×6π×4=12π.S扇形故答案为:12π.=lR进行计算即可.直接根据扇形的面积公式S扇形本题考查了扇形面积的计算.熟记公式是解题的关键.12.【答案】14【解析】解:从长度分别为1,3,4,5的四条线段中任取三条,共有(1 3 4)、(3 4 5)、(1 3 5)、(1 4 5 )四中可能,其中能组成三角形有(3 4 5),所以能组成三角形的概率=.故答案为:.利用列举法得到所有四种结果,然后根据三角形三边的关系得到能组成三角形有几种,然后根据概率公式求解.本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求解.也考查了三角形三边的关系.13.【答案】20【解析】解:∵喷出的水柱中心4m处达到最高,高度为6m,∴抛物线的顶点坐标为(4,6)或(-4,6),∵在喷水池的中心安装一个大的喷水头,高度为m,∴抛物线与y轴的交点坐标为(0,),设抛物线解析式为y=a1(x-4)2+6或y=a2(x+4)2+6,由x=0,y=得,16a1+6=,解得a1=-,由x=0,y=得,16a2+6=,解得a2=-,所以,函数解析式为y=-(x-4)2+6或y=-(x+4)2+6,当y=0时,0=-(x-4)2+6,解得:x=10,即这个喷水池的直径AB为20m,故答案为:20.直接利用顶点式求出二次函数解析式进而得出答案,利用y=0时,进而得出x 的值即可得出答案.此题主要考查了二次函数的应用,正确得出抛物线解析式是解题关键.14.【答案】70°【解析】解:∵=,∠CAD=30°,∴∠CAD=∠CAB=30°,∴∠DBC=∠DAC=30°,∵∠ACD=50°,∴∠ABD=50°,∴∠ACB=∠ADB=180°-∠CAB-∠ABC=180°-50°-30°-30°=70°.故答案为:70°.直接利用圆周角定理以及结合三角形内角和定理得出∠ACB=∠ADB=180°-∠CAB-∠ABC,进而得出答案.此题主要考查了圆周角定理以及三角形内角和定理,正确得出∠ABD度数是解题关键.15.【答案】23【解析】解:如图,连接AC、BD、OF,OE,∵四边形ABCD是正方形,∴∠ABC=∠BCD=90°,AC⊥BD,∴AC和BD是⊙O的直径,∴AO=BO=OC=OD,∵正方形边长为2,∴OA=2,∴OE=OF=2,过O作OH⊥EF于H,∴EH=FH,∵△EFG是等边三角形,∴∠OEF=30°,∴EH=OE=,∴EF=2.故答案为:2.如图,连接AC、BD、OF,OE,根据四边形ABCD是正方形,得到∠ABC=∠BCD=90°,AC⊥BD,根据圆周角定理得到AC和BD是⊙O的直径,根据正方形的性质得到OA=2,过O作OH⊥EF于H,根据等边三角形的性质得到∠OEF=30°,于是得到结论.此题主要考查了正多边形与圆的关系,等边三角形的性质,正方形的性质,要熟练掌握,解答此题的关键是要明确正多边形的有关概念.16.【答案】14<a<12或-4<a<2【解析】解:∵y=ax2+(a2-1)x-a=(ax-1)(x+a),∴当y=0时,x1=,x2=-a,∵二次函数y=ax2+(a2-1)x-a(a≠0)的图象与x轴的一个交点为(m,0),2<m<4,∴2<<4或2<-a<4,解得,或-4<a<2,故答案为:或-4<a<2.根据题意和二次函数的解析式可以求得该函数与x轴的交点,然后根据m的取值范围即可求得a的取值范围.本题考查抛物线与x轴的交点,解答本题的关键是明确题意,利用二次函数的性质解答.17.【答案】解:(1)如图所示,⊙O即为所求.(2)如图,连接OB,由题意知CD=8,AB=40,∵OD⊥AB,∴BC=AC=12AB=20,设圆的半径为r,则OC=r-8,在Rt△BOC中,由BO2=BC2+OC2可得r2=(r-8)2+202,解得:r=29,答:这钢梁圆弧的半径为29米.【解析】(1)先作AB的中垂线,交弧于点D,连接BD,再作BD的中垂线,交直线OD 于点O,以O为圆心,OD为半径画圆即可得;(2)连接OB,设圆的半径为r,由垂径定理定理知BC=20,在Rt△BOC中,由BO2=BC2+OC2可得答案.本题考查作图-复杂作图、圆的有关知识、线段的垂直平分线的性质等知识,解题的关键是灵活应用线段的垂直平分线性质解决问题,属于中考常考题型.18.【答案】解:(1)函数表达式可表示为:y=a(x-2)2+4,把(0,1)代入上式,解得:a=-34,则:函数的表达式为:y=-34(x-2)2+4;(2)当y=1时,x=0或4,则:y>1时,0<x<4;(3)y=-34(x-1)2+6.【解析】(1)把函数用顶点式表达式表示,把(0,1)代入即可求解;(2)计算y=1时,x的值,即可求解;(3)根据平移的性质即可求解.主要考查了函数图象的平移,抛物线与坐标轴的交点坐标的求法,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.会利用方程求抛物线与坐标轴的交点.19.【答案】解:(1)∵4件同型号的产品中,有1件不合格品,∴P(不合格品)=14;(2)令不合格产品为甲,合格产品为乙、丙、丁,则随机抽2件的情况只有甲乙,甲丙,甲丁,乙丙,乙丁,丙丁,6种情况.合格的有3种情形P(抽到的都是合格品)=36=12;(3)∵大量重复试验后发现,抽到合格品的频率稳定在0.95,∴抽到合格品的概率等于0.95,∴x+3x+4=0.95,解得:x=16.【解析】(1)用不合格品的数量除以总量即可求得抽到不合格品的概率;(2)令不合格产品为甲,合格产品为乙、丙、丁,则随机抽2件的情况只有甲乙,甲丙,甲丁,乙丙,乙丁,丙丁,6种情况,合格的有3种情形,再根据概率公式计算即可;(3)根据频率估计出概率,利用概率公式列式计算即可求得x的值;本题考查了概率的公式、列表法与树状图法及用频率估计概率的知识,解题的关键是了解大量重复试验中事件发生的频率可以估计概率.20.【答案】解:(1)∵四边形ABCD是矩形,∴AD=BG,CD=AB,∠DAF=∠CBG=90°,∵△EFG是等边三角形,∴FG=4,∠F=∠G=60°,在△ADF与△BCG中,∠F=∠G=60°∠DAF=∠CBG=90°AD=BC,∴△ADF≌△BCG,(AAS),∴BG=AF=x,∴AB=4-2x,∴AD=3x,∴S=AB•AD=-23x2+43x,(1<x<2);(2)∵S=-23x2+43x=-23(x-1)2+23,∴当0<x≤1时,S随x增大而增大,最大面积是23.【解析】(1)根据矩形的性质得到AD=BG,CD=AB,CD∥AB,∠DAF=∠CBG=90°,根据等边三角形的性质得到FG=4,∠F=∠G=60°,根据全等三角形的性质得到BG=AF=x,根据矩形的面积公式即可得到结论;(2)根据二次函数的性质即可得到结论.本题考查了矩形的性质,等边三角形的性质,全等三角形的判定和性质,二次函数的性质,正确的理解题意是解题的关键.21.【答案】k【解析】解:(1)抛物线的对称轴为x==k.故答案为:k.(2)当x=0时,y=kx2-2k2x-3=-3,∴点A(0,-3).∵AB∥x轴,且点B在直线x=-4上,∴点B(-4,-3),抛物线的对称轴为直线x=-2,∴m=-2,∴抛物线的表达式为y=-2x2-8x-3;(3)当-4<k<0时,∵A(0,-3),∴要使-4≤x p≤0时,始终满足y p≥-3,只需使抛物线y=kx2-2k2x-3的对称轴与直线x=-2重合或在直线x=-2的左侧.∴k≤-2;∴k的取值范围是-4<k≤-2.(1)根据抛物线的对称轴为直线x=-,代入数据即可得出结论;(2)由AB∥x轴,可得出点B的坐标,进而可得出抛物线的对称轴为x=-2,结合(1)可得出k=-2,将其代入抛物线表达式中即可;(3)依照题意画出函数图象,利用数形结合即可得出k的取值范围.本题考查了二次函数的性质、二次函数的图象以及待定系数法求二次函数解析式,正确的求出二次函数的解析式是解题的关键.22.【答案】解:(1)连结AD,∵D是BE中点,∴∠BAD=∠CAD,又∵AB=AC,∴AD⊥BD,∴∠ADB=90°,∴AB是⊙O直径;(2)连结OE,∵∠C=60°,AB=AB,∴∠BAC=60°,∴∠AOE=60°,∴∠BOC=120°,∴∠OBE=30°,∵AB=8,∴S阴影=S扇形AOE+S△BOE=60⋅π×42360+12×2×43=83π+43.(3)由(1)知AB是⊙O的直径,∴∠BEA=90°,∴∠EBC+∠C=∠CAD+∠C=90°,∴∠EBC=∠CAD,∴∠CAB=2∠EBC.【解析】(1)连接AD,根据等腰三角形的三线合一得到AD⊥BC,根据圆周角定理的推论证明;(2)连接OE,根据扇形面积公式计算即可;(3)由(1)知AB是直径,得到∠BEA=90°,根据余角的性质得到∠EBC=∠CAD,等量代换即可得到结论.本题考查了扇形面积的计算,等腰三角形的性质,圆周角定理,正确的作出辅助线是解题的关键.23.【答案】解:(1)∵y1=x2-4x+4=(x-2)2,∴顶点A的坐标为(2,0).当x=2时,y2=2k-2k=0,∴直线经过抛物线顶点A.(2)依照题意画出图形,如图1所示.设点B的坐标为(m,n)(n>0),∵S△OAB=12•AB•n=1,∴n=1,∴m2-4m+4=1,解得:m1=1,m2=3,∴点B的坐标为(1,1)或(3,1).(3)∵点M(t,0),∴点P的坐标为(t,t2-4t+4),点Q的坐标为(t,kt-2k).①当k>0时:∵0≤t≤2时,点P在点Q上方,如图2所示.∵PQ=3,∴t2-4t+4-(kt-2k)=3,整理得:t2-(4+k)t+(1+2k)=0.∵△=b2-4ac=[-(4+k)]2-4(1+2k)=k2+12>0,∴此方程有解.又∵t1+t2=4+k>0,t1•t2=1+2k>0,∴有两个正根.又∵(t1-2)•(t2-2)=-3<0,∴有一个正根<2,∴在[0,2]上存在满足条件的t.②当k<0时:(i)若点P在点Q下方,如图3所示.∵PQ=3,∴t2-(4+k)t+(4+2k)=-3,∴t2-(4+k)t+7+2k=0.∵△=b2-4ac=[-(4+k)]2-4(7+2k)=k2-12,∴当存在PQ=3时,k2-12≥0,∴k≤-23或k≥23(舍去).∴当-2<k<-0.5时,不存在满足条件的t;(ii)若点P在点Q上方,如图4所示.∵PQ=3,∴t2-(4+k)t+(4+2k)=3,∴t2-(4+k)t+(1+2k)=0.∵△=k2+12>0,∴此方程有解.又∵t1+t2=4+k>0,t1•t2=1+2k<0,∴有一正一负两根.又∵(t1-2)•(t2-2)=-3<0,∴正根>2,∴在[0,2]上不存在满足条件的t.综上所述:②正确.【解析】(1)利用配方法可求出抛物线的顶点坐标A,再利用一次函数图象上点的坐标特征可得出直线经过抛物线顶点A;(2)设点B的坐标为(m,n)(n>0),由三角形的面积公式结合△OAB面积为1,可得出关于n的一元一次方程,解之可得出n值,再利用二次函数图象上点的坐标特征可求出m的值,此题得解;(3)由点M的坐标可得出点P,Q的坐标.①当k>0时:由图可知点P在点Q 的上方,利用点P,Q的坐标结合PQ=3可得出关于t的一元二次方程,由△=k2+12>0可得出该方程有解,利用根与系数的关系可得出方程的两根均为正根,结合(t1-2)•(t2-2)=-3<0,可得出方程有一个正根<2,即在[0,2]上存在满足条件的t,①正确;②当k<0时,分点Q在点P的上方及点P在点Q 的上方两种情况考虑:(i)若点P在点Q下方,由点P,Q的坐标可得出关于t 的一元二次方程,若方程有解需根的判别式△=k2-12≥0,解之可得出k的取值范围,结合-2<k<-0.5可得出不存在满足条件的t;(ii)若点P在点Q上方,利用点P,Q的坐标结合PQ=3可得出关于t的一元二次方程,由△=k2+12>0可得出该方程有解,利用根与系数的关系可得出方程有一正一负两根,结合(t1-2)•(t2-2)=-3<0,可得出方程正根>2,进而可得出在[0,2]上不存在满足条件的t.综上即可得出②正确.本题考查了二次函数的三种形式、一次函数图象上点的坐标特征、三角形的面积、二次函数图象上点的坐标特征、根的判别式以及根与系数的关系,解题的关键是:(1)利用配方程求出抛物线的顶点A的坐标;(2)利用三角形的面积求出点B的纵坐标;(3)①利用根与系数的关系结合(t1-2)•(t2-2)=-3<0,找出方程有一个正根<2;②分点Q在点P的上方及点P在点Q的上方两种情况,找出在[0,2]上不存在满足条件的t.。
浙江省杭州市上城区建兰中学2019-2020学年九年级上学期期中数学试卷 (含答案解析)
浙江省杭州市上城区建兰中学2019-2020学年九年级上学期期中数学试卷一、选择题(本大题共10小题,共30.0分)1.已知3a=4b(ab≠0),则下列比例式成立的是()A. ab =34B. a3=4bC. a3=b4D. a4=b32.掷一枚均匀的骰子,前5次朝上的点数恰好是1~5,则第6次朝上的点数是6的可能性()A. 等于朝上点数为5的可能性B. 大于朝上点数为5的可能性C. 小于朝上点数为5的可能性D. 无法确定3.将y=2x2−8x−1化成y=a(x+m)2+n的形式为()A. y=2(x−2)2+7B. y=2(x−4)2−1C. y=2(x−2)2−9D. y=2(x−4)2−74.下列语句中正确的有()①相等的圆心角所对的弧相等;②垂直于弦的直径平分弦;③三点确定一个圆.④经过半径的端点并且垂直于这条半径的直线是这个圆的切线;⑤如果两个圆心角相等,那么它们所对的弦相等A. 1个B. 2个C. 3个D. 4个5.将抛物线y=3x2平移得到抛物线y=3(x−4)2−1的步骤是()A. 向左平移4个单位,再向上平移1个单位B. 向左平移4个单位,再向下平移1个单位C. 向右平移4个单位,再向上平移1个单位D. 向右平移4个单位,再向下平移1个单位6.在平面直角坐标系中,若⊙O的半径是10,圆心O的坐标是(0,0),点M的坐标是(6,8),则点M与⊙O的位置关系是()A. 点M在⊙O内B. 点M在⊙O上C. 点M在⊙O外D. 无法确定7.一个运动员打高尔夫球,若球的飞行高度y(单位:m)与水平距离x(单位:m)之间的函数表达式为y=−190(x−30)2+10,则高尔夫球在飞行过程中的最大高度为()A. 10mB. 20mC. 30mD. 60m8.如图,点A、B、C是⊙O上的三点,若∠OBC=50°,则∠A的度数是().A. 40°B. 50°C. 80°D. 100°m的图象与x轴有且只有一个交点,则m的值为()9.若函数y=(m−1)x2−6x+32A. −2或3B. −2或−3C. 1或−2或3D. 1或−2或−310.如图,D是AB边上的中点,将△ABC沿过D的直线折叠,使点A落在BC上F处,若∠B=50°,则∠EDF的度数为()A. 50°B. 40°C. 80°D. 60°二、填空题(本大题共6小题,共24.0分)11.已知扇形的圆心角为240°,所对的弧长为16π,则此扇形的面积是______.312.小军旅行箱的密码是一个六位数,由于他忘记了密码的末位数字,则小军能一次打开该旅行箱的概率是______ .13.如图,直径为1000mm的圆柱形水管有积水(阴影部分),水面的宽度AB为800mm,则水的最大深度CD是______mm.14.若抛物线y=ax2+bx+c的顶点是A(2,1),且经过点B(1,0),则抛物线的函数关系式为.15.如图,矩形ABCD中,AB=4,M、N分别是AD、BC的中点,MN//AB,若矩形DMNC与矩形ABCD相似,则AD的长为________.16.如图,点B、C都在x轴上,AB⊥BC,垂足为B,M是AC的中点.若点A的坐标为(3,4),点M的坐标为(1,2),则点C的坐标为______.三、解答题(本大题共7小题,共66.0分)17.如图,在正方形网格图中建立一直角坐标系,一条圆弧经过网格点A(0,2),B(4,2),C(6,0),解答下列问题:(1)请在图中确定该圆弧所在圆心D点的位置,并写出D点坐标为____;(2)连结AD,CD,求⊙D的半径(结果保留根号).18.学校开展校外宣传活动,有社区板报(A)、集会演讲(B)、喇叭广播(C)、发宣传画(D)四种方式.围绕“你最喜欢的宣传方式”,校团委在全校学生中进行了抽样调查(四个选项中必选且只选一项),根据调查统计结果,绘制了如下不完整的统计图表。
杭州市数兰中学九年级上册期中试卷检测题
杭州市数兰中学九年级上册期中试卷检测题一、初三数学一元二次方程易错题压轴题(难)1.(1)课本情境:如图,已知矩形AOBC,AB=6cm,BC=16cm,动点P从点A出发,以3cm/s的速度向点O运动,直到点O为止;动点Q同时从点C出发,以2cm/s的速度向点B运动,与点P同时结束运动,出发时,点P和点Q之间的距离是10cm;(2)逆向发散:当运动时间为2s时,P,Q两点的距离为多少?当运动时间为4s时,P,Q 两点的距离为多少?(3)拓展应用:若点P沿着AO→OC→CB移动,点P,Q分别从A,C同时出发,点Q从点C移动到点B停止时,点P随点Q的停止而停止移动,求经过多长时间△POQ的面积为12cm2?【答案】(1)85s或245s(2)62cm;213cm(3)4s或6s【解析】【分析】(1)过点P作PE⊥BC于E,得到AP=3t,CQ=2t,PE=6,EQ=16﹣3t﹣2t=16﹣5t,利用勾股定理得到方程,故可求解;(2)根据运动时间求出EQ、PE,利用勾股定理即可求解;(3) 分当点P在AO上时,当点P在OC上时和当点P在CB上时,根据三角形的面积公式列出方程即可求解.【详解】解:(1)设运动时间为t秒时,如图,过点P作PE⊥BC于E,由运动知,AP=3t,CQ=2t,PE=6,EQ=16﹣3t﹣2t=16﹣5t,∵点P和点Q之间的距离是10 cm,∴62+(16﹣5t)2=100,解得t1=85,t2=245,∴t=85s或245s.故答案为85s或245s(2)t=2时,由运动知AP =3×2=6 cm ,CQ =2×2=4 cm ,∴四边形APEB 是矩形,∴PE =AB =6,BE =6,∴EQ =BC ﹣BE ﹣CQ =16﹣6﹣4=6,根据勾股定理得PQ=2262PE EQ +=,∴当t =2 s 时,P ,Q 两点的距离为62 cm ;当t =4 s 时,由运动知AP =3×4=12 cm ,CQ =2×4=8cm ,∴四边形APEB 是矩形,∴PE =AB =6,BQ =8,CE=OP=4∴EQ =BC ﹣CE ﹣BQ =16﹣4﹣8=4,根据勾股定理得PQ=22213PE EQ +=,P ,Q 两点的距离为213cm .(3)点Q 从C 点移动到B 点所花的时间为16÷2=8s ,当点P 在AO 上时,S △POQ =2PO CO ⋅=(163)62t -⋅=12, 解得t =4.当点P 在OC 上时,S △POQ =2PO CQ ⋅=(316)22t t -⋅=12, 解得t =6或﹣23(舍弃). 当点P 在CB 上时,S △POQ =2PQ CO ⋅=(2223)62t t +-⨯=12, 解得t =18>8(不符合题意舍弃),综上所述,经过4 s 或6 s 时,△POQ 的面积为12 cm 2.【点睛】此题主要考查勾股定理的应用、一元二次方程与动点问题,解题的关键是熟知勾股定理的应用,根据三角形的面积公式找到等量关系列出方程求解.2.随着经济收入的不断提高以及汽车业的快速发展,家用汽车已越来越多地进入普通家庭,汽车消费成为新亮点.抽样调查显示,截止2008年底全市汽车拥有量为14.4万辆.已知2006年底全市汽车拥有量为10万辆.(1)求2006年底至2008年底我市汽车拥有量的年平均增长率;(2)为保护城市环境,要求我市到2010年底汽车拥有量不超过15.464万辆,据估计从2008年底起,此后每年报废的汽车数量是上年底汽车拥有量的10%,那么每年新增汽车数量最多不超过多少辆?(假定每年新增汽车数量相同)【答案】详见解析【解析】试题分析:(1)主要考查增长率问题,一般用增长后的量=增长前的量×(1+增长率)解决问题;(2)参照增长率问题的一般规律,表示出2010年的汽车拥有量,然后根据关键语列出不等式来判断正确的解.试题解析:(1)设年平均增长率为x,根据题意得:10(1+x)2=14.4,解得x=﹣2.2(不合题意舍去)x=0.2,答:年平均增长率为20%;(2)设每年新增汽车数量最多不超过y万辆,根据题意得:2009年底汽车数量为14.4×90%+y,2010年底汽车数量为(14.4×90%+y)×90%+y,∴(14.4×90%+y)×90%+y≤15.464,∴y≤2.答:每年新增汽车数量最多不超过2万辆.考点:一元二次方程—增长率的问题3.如图直线y=kx+k交x轴负半轴于点A,交y轴正半轴于点B,且AB=2(1)求k的值;(2)点P从A出发,以每秒1个单位的速度沿射线AB运动,过点P作直线AB的垂线交x轴于点Q,连接OP,设△PQO的面积为S,点P运动时间为t,求S与t的函数关系式,并直接写出t的取值范围;(3)在(2)的条件下,当P在AB的延长线上,若OQ+AB(BQ﹣OP),求此时直线PQ的解析式.【答案】(1)k=3.(2)当0<t<12时,S=12•OQ•P y=12(1﹣2t)•3t=﹣3 2t2+34t.当t>12时,S=12OQ•P y=12(2t﹣1)•3t=3t2﹣3t.(3)直线PQ的解析式为y=﹣3x+53.【解析】【分析】(1)求出点B的坐标即可解决问题;(2)分两种情形①当0<t<12时,②当t>12时,根据S=12OQ•P y,分别求解即可;(3)根据已知条件构建方程求出t,推出点P,Q的坐标即可解决问题.【详解】解:(1)对于直线y=kx+k,令y=0,可得x=﹣1,∴A(﹣1,0),∴OA=1,∵AB=2,∴OB=223AB OA-=∴k=3.(2)如图,∵tan ∠BAO=OB OA= ∴∠BAO =60°,∵PQ ⊥AB ,∴∠APQ =90°,∴∠AQP =30°,∴AQ =2AP =2t , 当0<t <12时,S =12•OQ •P y =12(1﹣2t)•2t=﹣2t 2+4t . 当t >12时,S =12OQ •P y =12(2t ﹣1=2. (3)∵OQ +AB(BQ ﹣OP ),∴2t ﹣1+2∴2t +121t t -+∴4t 2+4t +1=7t 2﹣7t +7,∴3t 2﹣11t +6=0,解得t =3或23(舍弃), ∴P (12,2),Q (5,0), 设直线PQ 的解析式为y =kx+b ,则有12250k b k b ⎧+=⎪⎨⎪+=⎩,解得3k b ⎧=-⎪⎪⎨⎪=⎪⎩,∴直线PQ的解析式为33y x =-+. 【点睛】本题属于一次函数综合题,考查了一次函数的性质,三角形的面积,无理方程等知识,解题的关键是学会利用参数构建方程解决问题.4.如图,A 、B 、C 、D 为矩形的4个顶点,AB =16cm ,BC =6cm ,动点P 、Q 分别以3cm /s 、2cm /s 的速度从点A 、C 同时出发,点Q 从点C 向点D 移动.(1)若点P 从点A 移动到点B 停止,点P 、Q 分别从点A 、C 同时出发,问经过2s 时P 、Q两点之间的距离是多少cm?(2)若点P从点A移动到点B停止,点Q随点P的停止而停止移动,点P、Q分别从点A、C 同时出发,问经过多长时间P、Q两点之间的距离是10cm?(3)若点P沿着AB→BC→CD移动,点P、Q分别从点A、C同时出发,点Q从点C移动到点D停止时,点P随点Q的停止而停止移动,试探求经过多长时间△PBQ的面积为12cm2?【答案】(1)PQ=62cm;(2)85s或245s;(3)经过4秒或6秒△PBQ的面积为12cm2.【解析】试题分析:(1)作PE⊥CD于E,表示出PQ的长度,利用PE2+EQ2=PQ2列出方程求解即可;(2)设x秒后,点P和点Q的距离是10cm.在Rt△PEQ中,根据勾股定理列出关于x的方程(16-5x)2=64,通过解方程即可求得x的值;(3)分类讨论:①当点P在AB上时;②当点P在BC边上;③当点P在CD边上时.试题解析:(1)过点P作PE⊥CD于E.则根据题意,得EQ=16-2×3-2×2=6(cm),PE=AD=6cm;在Rt△PEQ中,根据勾股定理,得PE2+EQ2=PQ2,即36+36=PQ2,∴2cm;∴经过2s时P、Q两点之间的距离是2;(2)设x秒后,点P和点Q的距离是10cm.(16-2x-3x)2+62=102,即(16-5x)2=64,∴16-5x=±8,∴x1=85,x2=245;∴经过85s或245sP、Q两点之间的距离是10cm;(3)连接BQ.设经过ys后△PBQ的面积为12cm2.①当0≤y≤163时,则PB=16-3y,∴12PB•BC=12,即12×(16-3y)×6=12,解得y=4;②当163<x≤223时,BP=3y-AB=3y-16,QC=2y,则1 2BP•CQ=12(3y-16)×2y=12,解得y1=6,y2=-23(舍去);③223<x≤8时,QP=CQ-PQ=22-y,则1 2QP•CB=12(22-y)×6=12,解得y=18(舍去).综上所述,经过4秒或6秒△PBQ的面积为 12cm2.考点:一元二次方程的应用.5.如图,某农家拟用已有的长为8m的墙或墙的一部分为一边,其它三边用篱笆围成一个面积为12m2的矩形园子.设园子中平行于墙面的篱笆长为ym(其中y≥4),另两边的篱笆长分别为xm.(1)求y关于x的函数表达式,并求x的取值范围.(2)若仅用现有的11m长的篱笆,且恰好用完,请你帮助设计围制方案.【答案】(1)y=;1.5≤x≤3;(2)长为8m,宽为1.5m.【解析】【分析】(1)由矩形的面积公式可得出y关于x的函数表达式,结合4≤y≤8可求出x的取值范围;(2)由篱笆的长可得出y =(11﹣2x )m ,利用矩形的面积公式结合矩形园子的面积,即可得出关于x 的一元二次方程,解之取其较小值即可得出结论.【详解】(1)∵矩形的面积为12m 2,∴y =.∵4≤y ≤8,∴1.5≤x ≤3.(2)∵篱笆长11m ,∴y =(11﹣2x )m .依题意,得:xy =12,即x (11﹣2x )=12,解得:x 1=1.5,x 2=4(舍去),∴y =11﹣2x =8.答:矩形园子的长为8m ,宽为1.5m .【点睛】本题考查了一元二次方程的应用以及反比例函数的应用,解题的关键是:(1)利用矩形的面积公式,找出y 关于x 的函数表达式;(2)找准等量关系,正确列出一元二次方程.二、初三数学 二次函数易错题压轴题(难)6.在平面直角坐标系中,O 为坐标原点,抛物线L :y =ax 2﹣4ax (a >0)与x 轴正半轴交于点A .抛物线L 的顶点为M ,对称轴与x 轴交于点D .(1)求抛物线L 的对称轴.(2)抛物线L :y =ax 2﹣4ax 关于x 轴对称的抛物线记为L ',抛物线L '的顶点为M ',若以O 、M 、A 、M '为顶点的四边形是正方形,求L '的表达式. (3)在(2)的条件下,点P 在抛物线L 上,且位于第四象限,点Q 在抛物线L '上,是否存在点P 、点Q 使得以O 、D 、P 、Q 为顶点的四边形是平行四边形,若存在,求出点P 坐标,若不存在,请说明理由.【答案】(1)2x =;(2)2122y x x =-+ ;(3)存在,P 点的坐标为(33,3或(33,3-或(13,3或(13,3+-或31,2⎛⎫- ⎪⎝⎭【解析】【分析】(1)根据抛物线的对称轴公式计算即可.(2)利用正方形的性质求出点M,M′的坐标即可解决问题.(3)分OD是平行四边形的边或对角线两种情形求解即可.【详解】解:(1)∵抛物线L:y=ax2﹣4ax(a>0),∴抛物线的对称轴x=﹣42aa=2.(2)如图1中,对于抛物线y=ax2﹣4ax,令y=0,得到ax2﹣4ax=0,解得x=0或4,∴A(4,0),∵四边形OMAM′是正方形,∴OD=DA=DM=DM′=2,∴M((2,﹣2),M′(2,2)把M(2,﹣2)代入y=ax2﹣4ax,可得﹣2=4a﹣8a,∴a=12,∴抛物线L′的解析式为y=﹣12(x﹣2)2+2=﹣12x2+2x.(3)如图3中,由题意OD=2.当OD为平行四边形的边时,PQ=OD=2,设P(m,12m2﹣2m),则Q[m﹣2,﹣12(m﹣2)2+2(m﹣2)]或[m+2,﹣12(m+2)2+2(m+2)],∵PQ∥OD,∴12m2﹣2m=﹣12(m﹣2)2+2(m﹣2)或12m2﹣2m=﹣12(m+2)2+2(m+2),解得m=33,∴P33或(333或(133和33,当OD是平行四边形的对角线时,点P的横坐标为1,此时P(1,﹣32 ),综上所述,满足条件的点P的坐标为33或(333或(133)和33)或(1,﹣32 ).【点睛】本题属于二次函数综合题,考查了二次函数的性质,正方形的性质,平行四边形的判定和性质等知识,解题的关键是理解题意,学会利用参数构建方程解决问题,学会用分类讨论的思想思考问题,属于中考压轴题学会利用参数构建方程解决问题,学会用分类讨论的思想思考问题,属于中考压轴题7.如图①是一张矩形纸片,按以下步骤进行操作:(Ⅰ)将矩形纸片沿DF折叠,使点A落在CD边上点E处,如图②;(Ⅱ)在第一次折叠的基础上,过点C再次折叠,使得点B落在边CD上点B′处,如图③,两次折痕交于点O;(Ⅲ)展开纸片,分别连接OB、OE、OC、FD,如图④.(探究)(1)证明:OBC≌OED;(2)若AB=8,设BC为x,OB2为y,是否存在x使得y有最小值,若存在求出x的值并求出y的最小值,若不存在,请说明理由.【答案】(1)见解析;(2)x=4,16 【解析】 【分析】(1)连接EF ,根据矩形和正方形的判定与性质以及折叠的性质,运用SAS 证明OBC ≌OED 即可;(2)连接EF 、BE ,再证明△OBE 是直角三角形,然后再根据勾股定理得到y 与x 的函数关系式,最后根据二次函数的性质求最值即可. 【详解】(1)证明:连接EF . ∵四边形ABCD 是矩形,∴AD =BC ,∠ABC =∠BCD =∠ADE =∠DAF =90° 由折叠得∠DEF =∠DAF ,AD =DE ∴∠DEF =90°又∵∠ADE =∠DAF =90°, ∴四边形ADEF 是矩形 又∵AD =DE , ∴四边形ADEF 是正方形 ∴AD =EF =DE ,∠FDE =45° ∵AD =BC , ∴BC =DE由折叠得∠BCO =∠DCO =45° ∴∠BCO =∠DCO =∠FDE . ∴OC =OD . 在△OBC 与△OED 中,BC DE BCO FDE OC OD =⎧⎪∠=∠⎨⎪=⎩,,, ∴△OBC ≌△OED (SAS );(2)连接EF、BE.∵四边形ABCD是矩形,∴CD=AB=8.由(1)知,BC=DE∵BC=x,∴DE=x∴CE=8-x由(1)知△OBC≌△OED∴OB=OE,∠OED=∠OBC.∵∠OED+∠OEC=180°,∴∠OBC+∠OEC=180°.在四边形OBCE中,∠BCE=90°,∠BCE+∠OBC+∠OEC+∠BOE=360°,∴∠BOE=90°.在Rt△OBE中,OB2+OE2=BE2.在Rt△BCE中,BC2+EC2=BE2.∴OB2+OE2=BC2+CE2.∵OB2=y,∴y+y=x2+(8-x)2.∴y=x2-8x+32∴当x=4时,y有最小值是16.【点睛】本题是四边形综合题,主要考查了矩形和正方形的判定与性质、折叠的性质、全等三角形的判定、勾股定理以及运用二次函数求最值等知识点,灵活应用所学知识是解答本题的关键.P t是x轴上一点,将函数l'的图象位于8.定义:函数l与l'的图象关于y轴对称,点(),0=左侧的部分,以x轴为对称轴翻折,得到新的函数w的图象,我们称函数w是直线x t函数l的对称折函数,函数w的图象记作1F,函数l的图象位于直线x t=上以及右侧的部分记作2F,图象1F和2F合起来记作图象F.例如:如图,函数l的解析式为1y x=+,当1t=时,它的对称折函数w的解析式为()11y x x=-<.(1)函数l的解析式为21y x=-,当2t=-时,它的对称折函数w的解析式为_______;(2)函数l的解析式为1²12y x x=--,当42x-≤≤且0t=时,求图象F上点的纵坐标的最大值和最小值;(3)函数l的解析式为()2230y ax ax a a=--≠.若1a=,直线1y t=-与图象F有两个公共点,求t的取值范围.【答案】(1)()212y x x=+<-;(2)F的解析式为2211(0)211(0)2y x x xy x x x⎧=--≥⎪⎪⎨⎪=--+<⎪⎩;图象F上的点的纵坐标的最大值为32y=,最小值为3y=-;(3)当3t=-,3171t-<≤,3175t+<<时,直线1y t=-与图象F有两个公共点.【解析】【分析】(1)根据对折函数的定义直接写出函数解析式即可;(2)先根据题意确定F的解析式,然后根据二次函数的性质确定函数的最大值和最小值即可;(3)先求出当a=1时图像F的解析式,然后分14t-=-、点(),1t t-落在223()y x x x t=--≥上和点(),1t t-落在()223y x x x t=--+<上三种情况解答,最后根据图像即可解答.【详解】解:(1)()212y x x=+<-(2)F 的解析式为2211(0)211(0)2y x x x y x x x ⎧=--≥⎪⎪⎨⎪=--+<⎪⎩当4x =-时,3y =-,当1x =-时,32y =, 当1x =时,32y =-,当2x =时,1y =, ∴图象F 上的点的纵坐标的最大值为32y =,最小值为3y =-. (3)当1a =时,图象F 的解析式为2223()23()y x x x t y x x x t ⎧=--≥⎨=--+<⎩∴该函数的最大值和最小值分别为4和-4; a :当14t -=-时,3t =-,∴当3t =-时直线1y t =-与图象F 有两个公共点; b :当点(),1t t -落在223()y x x x t =--≥上时,2123t t t -=--,解得1t =2t =c :当点(),1t t -落在()223y x x x t =--+<上时,2123t t t -=--+,解得34t =-(舍),41t =14t -=,∴55t =1t <≤5t <<时,直线1y t =-与图象F 有两个公共点; 综上所述:当3t =-1t <≤5t <<时,直线1y t =-与图象F 有两个公共点. 【点睛】本题属于二次函数综合题,考查了“称折函数”的定义、二次函数的性质、解二元一次方程等知识,弄清题意、灵活运用所学知识是解答本题的关键.9.如图,在平面直角坐标系中,抛物线y =﹣12x 2+bx +c 与x 轴交于B ,C 两点,与y 轴交于点A ,直线y =﹣12x +2经过A ,C 两点,抛物线的对称轴与x 轴交于点D ,直线MN 与对称轴交于点G ,与抛物线交于M ,N 两点(点N 在对称轴右侧),且MN ∥x 轴,MN =7.(1)求此抛物线的解析式.(2)求点N的坐标.(3)过点A的直线与抛物线交于点F,当tan∠FAC=12时,求点F的坐标.(4)过点D作直线AC的垂线,交AC于点H,交y轴于点K,连接CN,△AHK沿射线AC 以每秒1个单位长度的速度移动,移动过程中△AHK与四边形DGNC产生重叠,设重叠面积为S,移动时间为t(0≤t5S与t的函数关系式.【答案】(1)y=﹣12x2+32x+2;(2)点N的坐标为(5,-3);(3)点F的坐标为:(3,2)或(173,﹣509);(4)2535,0453593535,(4359355)4t tS tt⎧⎛⎫≤≤⎪ ⎪⎪⎪⎝⎭=-<≤+<≤.【解析】【分析】(1)点A、C的坐标分别为(0,2)、(4,0),将点A、C坐标代入抛物线表达式即可求解;(2)抛物线的对称轴为:x=32,点N的横坐标为:37522+=,即可求解;(3)分点F在直线AC下方、点F在直线AC的上方两种情况,分别求解即可;(4)分0≤t 3535<t3535<t5【详解】解:(1)直线y=﹣12x+2经过A,C两点,则点A、C的坐标分别为(0,2)、(4,0),则c=2,抛物线表达式为:y=﹣12x2+bx+2,将点C坐标代入上式并解得:b=32,故抛物线的表达式为:y=﹣12x2+32x+2…①;(2)抛物线的对称轴为:x=32,点N的横坐标为:37522+=,故点N的坐标为(5,-3);(3)∵tan∠ACO=2142AOCO===tan∠FAC=12,即∠ACO=∠FAC,①当点F在直线AC下方时,设直线AF交x轴于点R,∵∠ACO=∠FAC,则AR=CR,设点R(r,0),则r2+4=(r﹣4)2,解得:r=32,即点R的坐标为:(32,0),将点R、A的坐标代入一次函数表达式:y=mx+n得:232nm n=⎧⎪⎨+=⎪⎩,解得:432mn⎧=-⎪⎨⎪=⎩,故直线AR的表达式为:y=﹣43x+2…②,联立①②并解得:x=173,故点F(173,﹣509);②当点F在直线AC的上方时,∵∠ACO=∠F′AC,∴AF′∥x轴,则点F′(3,2);综上,点F 的坐标为:(3,2)或(173,﹣509); (4)如图2,设∠ACO =α,则tanα=12AO CO =,则sinα=5,cosα=5;①当0≤t ≤35时(左侧图), 设△AHK 移动到△A ′H ′K ′的位置时,直线H ′K ′分别交x 轴于点T 、交抛物线对称轴于点S ,则∠DST =∠ACO =α,过点T 作TL ⊥KH , 则LT =HH ′=t ,∠LTD =∠ACO =α,则DT ='52co 5c s 2os L HH T t αα===,DS =tan DT α, S =S △DST =12⨯DT ×DS =254t ; ②当355<t 35时(右侧图),同理可得:S =''DGS T S 梯形=12⨯DG ×(GS ′+DT ′)=12⨯3+55﹣323594-; 35<t 53594+; 综上,S =2535,023593535,(435935(5)4t t t t ⎧⎛≤≤⎪ ⎪⎝⎭⎪⎪⎨-<≤⎪⎪+<≤⎩.【点睛】本题考查的是二次函数综合运用,涉及到一次函数、图形平移、图形的面积计算等,其中(3)、(4),要注意分类求解,避免遗漏.10.如图,直线3yx与x 轴、y 轴分别交于点A ,C ,经过A ,C 两点的抛物线2y ax bx c =++与x 轴的负半轴的另一交点为B ,且tan 3CBO ∠=(1)求该抛物线的解析式及抛物线顶点D 的坐标;(2)点P 是射线BD 上一点,问是否存在以点P ,A ,B 为顶点的三角形,与ABC 相似,若存在,请求出点P 的坐标;若不存在,请说明理由【答案】(1)243y x x =++,顶点(2,1)D --;(2)存在,52,33P ⎛⎫--⎪⎝⎭或(4,3)-- 【解析】 【分析】(1)利用直线解析式求出点A 、C 的坐标,从而得到OA 、OC ,再根据tan ∠CBO=3求出OB ,从而得到点B 的坐标,然后利用待定系数法求出二次函数解析式,整理成顶点式形式,然后写出点D 的坐标;(2)根据点A 、B 的坐标求出AB ,判断出△AOC 是等腰直角三角形,根据等腰直角三角形的性质求出AC ,∠BAC=45°,再根据点B 、D 的坐标求出∠ABD=45°,然后分①AB 和BP 是对应边时,△ABC 和△BPA 相似,利用相似三角形对应边成比例列式求出BP ,过点P 作PE ⊥x 轴于E ,求出BE 、PE ,再求出OE 的长度,然后写出点P 的坐标即可;②AB 和BA 是对应边时,△ABC 和△BAP 相似,利用相似三角形对应边成比例列式求出BP ,过点P 作PE ⊥x 轴于E ,求出BE 、PE ,再求出OE 的长度,然后写出点P 的坐标即可. 【详解】解:(1)令y=0,则x+3=0, 解得x=-3, 令x=0,则y=3,∴点A (-3,0),C (0,3), ∴OA=OC=3, ∵tan ∠CBO=3OCOB=, ∴OB=1, ∴点B (-1,0),把点A 、B 、C 的坐标代入抛物线解析式得,93003ab c a b c c -+=⎧⎪-+=⎨⎪=⎩,解得:143a b c =⎧⎪=⎨⎪=⎩,∴该抛物线的解析式为:243y x x =++, ∵y=x 2+4x+3=(x+2)2-1, ∴顶点(2,1)D --;(2)∵A (-3,0),B (-1,0), ∴AB=-1-(-3)=2, ∵OA=OC ,∠AOC=90°, ∴△AOC 是等腰直角三角形, ∴AC=2OA=32,∠BAC=45°, ∵B (-1,0),D (-2,-1), ∴∠ABD=45°,①AB 和BP 是对应边时,△ABC ∽△BPA , ∴AB ACBP BA =, 即232BP =, 解得BP=223, 过点P 作PE ⊥x 轴于E ,则BE=PE=23×22=23, ∴OE=1+23=53, ∴点P 的坐标为(-53,-23); ②AB 和BA 是对应边时,△ABC ∽△BAP ,∴AB ACBA BP=,即2322BP =,解得BP=32,过点P作PE⊥x轴于E,则BE=PE=32×2=3,∴OE=1+3=4,∴点P的坐标为(-4,-3);综合上述,当52,33P⎛⎫--⎪⎝⎭或(4,3)--时,以点P,A,B为顶点的三角形与ABC∆相似;【点睛】本题是二次函数综合题型,主要利用了直线与坐标轴交点的求解,待定系数法求二次函数解析式,等腰直角三角形的判定与性质,相似三角形的判定与性质,难点在于(2)要分情况讨论.三、初三数学旋转易错题压轴题(难)11.如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.(1)观察猜想:图1中,线段PM与PN的数量关系是,位置关系是;(2)探究证明:把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;(3)拓展延伸:把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.【答案】(1)PM=PN,PM⊥PN;(2)△PMN是等腰直角三角形.理由见解析;(3)S△PMN最大=492.【解析】【分析】(1)由已知易得BD CE =,利用三角形的中位线得出12PM CE =,12PN BD =,即可得出数量关系,再利用三角形的中位线得出//PM CE 得出DPM DCA ∠=∠,最后用互余即可得出位置关系;(2)先判断出ABD ACE ∆≅∆,得出BD CE =,同(1)的方法得出12PM BD =,12PN BD =,即可得出PM PN =,同(1)的方法由MPN DCE DCB DBC ACB ABC ∠=∠+∠+∠=∠+∠,即可得出结论;(3)方法1:先判断出MN 最大时,PMN ∆的面积最大,进而求出AN ,AM ,即可得出MN 最大AM AN =+,最后用面积公式即可得出结论.方法2:先判断出BD 最大时,PMN ∆的面积最大,而BD 最大是14AB AD +=,即可得出结论.【详解】解:(1)点P ,N 是BC ,CD 的中点,//PN BD ∴,12PN BD =, 点P ,M 是CD ,DE 的中点, //PM CE ∴,12PM CE =, AB AC =,AD AE =,BD CE ∴=,PM PN ∴=,//PN BD ,DPN ADC ∴∠=∠,//PM CE ,DPM DCA ∴∠=∠,90BAC ∠=︒,90ADC ACD ∴∠+∠=︒,90MPN DPM DPN DCA ADC ∴∠=∠+∠=∠+∠=︒,PM PN ∴⊥,故答案为:PM PN =,PM PN ⊥;(2)PMN ∆是等腰直角三角形.由旋转知,BAD CAE ∠=∠,AB AC =,AD AE =,()ABD ACE SAS ∴∆≅∆,ABD ACE ∴∠=∠,BD CE =, 利用三角形的中位线得,12PN BD =,12PM CE =,PMN ∴∆是等腰三角形,同(1)的方法得,//PM CE ,DPM DCE ∴∠=∠,同(1)的方法得,//PN BD ,PNC DBC ∴∠=∠,DPN DCB PNC DCB DBC ∠=∠+∠=∠+∠,MPN DPM DPN DCE DCB DBC ∴∠=∠+∠=∠+∠+∠BCE DBC ACB ACE DBC =∠+∠=∠+∠+∠ACB ABD DBC ACB ABC =∠+∠+∠=∠+∠,90BAC ∠=︒,90ACB ABC ∴∠+∠=︒, 90MPN ∴∠=︒,PMN ∴∆是等腰直角三角形;(3)方法1:如图2,同(2)的方法得,PMN ∆是等腰直角三角形,MN ∴最大时,PMN ∆的面积最大,//DE BC ∴且DE 在顶点A 上面,MN ∴最大AM AN =+,连接AM ,AN ,在ADE ∆中,4AD AE ==,90DAE ∠=︒,22AM ∴=在Rt ABC ∆中,10AB AC ==,52AN =22522MN ∴=最大,222111149(72)22242PMN S PM MN ∆∴==⨯=⨯=最大. 方法2:由(2)知,PMN ∆是等腰直角三角形,12PM PN BD ==, PM ∴最大时,PMN ∆面积最大,∴点D 在BA 的延长线上,14BD AB AD ∴=+=,2211497222PMN S PM ∆∴==⨯=最大. 【点睛】此题属于几何变换综合题,主要考查了三角形的中位线定理,等腰直角三角形的判定和性质,全等三角形的判断和性质,直角三角形的性质的综合运用;解(1)的关键是判断出12PM CE =,12PN BD =,解(2)的关键是判断出ABD ACE ∆≅∆,解(3)的关键是判断出MN 最大时,PMN ∆的面积最大.12.已知:如图①,在矩形ABCD 中,3,4,AB AD AE BD ==⊥,垂足是E .点F 是点E 关于AB 的对称点,连接AF 、BF .(1)求AF 和BE 的长;(2)若将ABF 沿着射线BD 方向平移,设平移的距离为m (平移距离指点B 沿BD 方向所经过的线段长度).当点F 分别平移到线段AB AD 、上时,直接写出相应的m 的值. (3)如图②,将ABF 绕点B 顺时针旋转一个角1(080)a a ︒<<︒,记旋转中ABF 为''A BF ,在旋转过程中,设''A F 所在的直线与直线AD 交于点P ,与直线BD 交于点Q .是否存在这样的P Q 、两点,使DPQ 为等腰三角形?若存在,求出此时DQ 的长;若不存在,请说明理由.【答案】(1)129,55AF BF ==;(2)95m =或165m =;(3)存在4组符合条件的点P 、点Q ,使DPQ 为等腰三角形; DQ 的长度分别为2或25891055或35105【解析】【分析】 (1)利用矩形性质、勾股定理及三角形面积公式求解;(2)依题意画出图形,如图①-1所示.利用平移性质,确定图形中的等腰三角形,分别求出m 的值;(3)在旋转过程中,等腰△DPQ 有4种情形,分别画出图形,对于各种情形分别进行计算即可.【详解】(1)∵四边形ABCD是矩形,∴∠BAD=90°,在Rt△ABD中,AB=3,AD=4,由勾股定理得:BD=2222345AB AD+=+=,∵S△ABD12=BD•AE=12AB•AD,∴AE=AB AD3412 BD55⋅⨯==,∵点F是点E关于AB的对称点,∴AF=AE125=,BF=BE,∵AE⊥BD,∴∠AEB=90°,在Rt△ABE中,AB=3,AE125 =,由勾股定理得:BE2222129355 AB AE⎛⎫=-=-=⎪⎝⎭;(2)设平移中的三角形为△A′B′F′,如图①-1所示:由对称点性质可知,∠1=∠2.BF=BE95 =,由平移性质可知,AB∥A′B′,∠4=∠1,BF=B′F′95 =,①当点F′落在AB上时,∵AB∥A′B′,∴∠3=∠4,根据平移的性质知:∠1=∠4,∴∠3=∠2,∴BB′=B′F′95=,即95m=;②当点F′落在AD上时,∵AB∥A′B′,AB⊥AD,∴∠6=∠2,A′B′⊥AD,∵∠1=∠2,∠5=∠1,∴∠5=∠6,又知A′B′⊥AD,∴△B′F′D为等腰三角形,∴B′D=B′F′95 =,∴BB′=BD-B′D=5-91655=,即m165=;(3)存在.理由如下:∵四边形ABCD是矩形,∴∠BAD=90°,∵AE⊥BD,∴∠AEB=90°,∠2+∠ABD=90°,∠BAE+∠ABD=90°,∴∠2=∠BAE,∵点F是点E关于AB的对称点,∴∠1=∠BAE,∴∠1=∠2,在旋转过程中,等腰△DPQ依次有以下4种情形:①如图③-1所示,点Q落在BD延长线上,且PD=DQ,则∠Q=∠DPQ,∴∠2=∠Q+∠DPQ=2∠Q,∵∠1=∠3+∠Q,∠1=∠2,∴∠3=∠Q,∴A′Q=A′B=3,∴F′Q=F′A′+A′Q=1227355+=,在Rt△BF′Q中,由勾股定理得:BQ=2222927910 BF F Q55⎛⎫⎛⎫+=+=⎪ ⎪⎝⎭⎝⎭'',∴DQ=BQ-BD=9105-;②如图③-2所示,点Q落在BD上,且PQ=DQ,则∠2=∠P,∵∠1=∠2,∴∠1=∠P,∴BA′∥PD,则此时点A′落在BC边上.∵∠3=∠2,∴∠3=∠1,∴BQ=A′Q,∴F′Q=F′A′-A′Q=125-BQ,在Rt△BQF′中,由勾股定理得:BF′2+F′Q2=BQ2,即:222 91255BQ BQ⎛⎫⎛⎫+-=⎪ ⎪⎝⎭⎝⎭,解得:158 BQ=,∴DQ= BD-BQ=5-1525 88=;③如图③-3所示,点Q落在BD上,且PD=DQ,则∠3=∠4.∵∠2+∠3+∠4=180°,∠3=∠4,∴∠4=90°-12∠2.∵∠1=∠2,∴∠4=90°-12∠1,∴∠A′QB=∠4=90°-12∠1,∴∠A′QB=∠A′BQ,∴A′Q=A′B=3,∴F′Q=A′Q-A′F′=3-123 55=,在Rt△BF′Q中,由勾股定理得:BQ=222293310 BF F Q55⎛⎫⎛⎫+=+=⎪ ⎪⎝⎭⎝⎭'',∴DQ=BQ-BD=3105-;④如图④-4所示,点Q落在BD上,且PQ=PD,则∠2=∠3.∵∠1=∠2,∠3=∠4,∠2=∠3,∴∠1=∠4,∴BQ=BA′=3,∴DQ=BD-BQ=5-3=2.综上所述,存在4组符合条件的点P、点Q,使△DPQ为等腰三角形,DQ的长度分别为:2或258或91055-或35105-.【点睛】本题是四边形综合题目,主要考查了矩形的性质、轴对称的性质、平移的性质、旋转的性质、勾股定理、等腰三角形的性质等知识点;第(3)问难度很大,解题关键是画出各种旋转图形,依题意进行分类讨论.13.(1)观察猜想如图(1),在△ABC中,∠BAC=90°,AB=AC,点D是BC的中点.以点D为顶点作正方形DEFG,使点A,C分别在DG和DE上,连接AE,BG,则线段BG和AE的数量关系是_____;(2)拓展探究将正方形DEFG绕点D逆时针方向旋转一定角度后(旋转角度大于0°,小于或等于360°),如图2,则(1)中的结论是否仍然成立?如果成立,请予以证明;如果不成立,请说明理由.(3)解决问题若BC=DE=2,在(2)的旋转过程中,当AE为最大值时,直接写出AF的值.【答案】(1)BG=AE.(2)成立.如图②,连接AD.∵△ABC是等腰三直角角形,∠BAC=90°,点D是BC的中点.∴∠ADB=90°,且BD=AD.∵∠BDG=∠ADB-∠ADG=90°-∠ADG=∠ADE,DG=DE.∴△BDG≌△ADE,∴BG=AE.…………………………………………7分(3)由(2)知,BG=AE,故当BG最大时,AE也最大.正方形DEFG绕点D逆时针方向旋转270°时,BG最大,如图③.若BC=DE=2,则AD=1,EF=2.在Rt△AEF中,AF2=AE2+EF2=(AD+DE)2+EF2=(1+2)2+22=13.∴AF=【解析】解:(1)BG=AE.(2)成立.如图②,连接AD.∵△ABC是等腰三直角角形,∠BAC=90°,点D是BC的中点.∴∠ADB=90°,且BD=AD.∵∠BDG=∠ADB-∠ADG=90°-∠ADG=∠ADE,DG=DE.∴△BDG≌△ADE,∴BG=AE.(3)由(2)知,BG=AE,故当BG最大时,AE也最大.Z+X+X+K]因为正方形DEFG在绕点D旋转的过程中,G点运动的图形是以点D为圆心,DG为半径的圆,故当正方形DEFG旋转到G点位于BC的延长线上(即正方形DEFG绕点D逆时针方向旋转270°)时,BG最大,如图③.若BC=DE=2,则AD=1,EF=2.在Rt△AEF中,AF2=AE2+EF2=(AD+DE)2+EF2=(1+2)2+22=13.∴AF=.即在正方形DEFG旋转过程中,当AE为最大值时,AF=.14.如图1,矩形ABCD中,E是AD的中点,以点E直角顶点的直角三角形EFG的两边EF,EG分别过点B,C,∠F=30°.(1)求证:BE=CE(2)将△EFG绕点E按顺时针方向旋转,当旋转到EF与AD重合时停止转动.若EF,EG分别与AB,BC相交于点M,N.(如图2)①求证:△BEM≌△CEN;②若AB=2,求△BMN面积的最大值;③当旋转停止时,点B恰好在FG上(如图3),求sin∠EBG的值.【答案】(1)详见解析;(2)①详见解析;②2;③62 4.【解析】【分析】(1)只要证明△BAE≌△CDE即可;(2)①利用(1)可知△EBC是等腰直角三角形,根据ASA即可证明;②构建二次函数,利用二次函数的性质即可解决问题;③如图3中,作EH⊥BG于H.设NG=m,则BG=2m,BN=EN=3m,EB=6m.利用面积法求出EH,根据三角函数的定义即可解决问题.【详解】(1)证明:如图1中,∵四边形ABCD是矩形,∴AB=DC,∠A=∠D=90°,∵E是AD中点,∴AE=DE,∴△BAE≌△CDE,∴BE=CE.(2)①解:如图2中,由(1)可知,△EBC是等腰直角三角形,∴∠EBC=∠ECB=45°,∵∠ABC=∠BCD=90°,∴∠EBM=∠ECN=45°,∵∠MEN=∠BEC=90°,∴∠BEM=∠CEN,∵EB=EC,∴△BEM≌△CEN;②∵△BEM≌△CEN,∴BM=CN,设BM=CN=x,则BN=4-x,∴S△BMN=12•x(4-x)=-12(x-2)2+2,∵-12<0,∴x=2时,△BMN的面积最大,最大值为2.③解:如图3中,作EH⊥BG于H.设NG=m,则BG=2m,3,6m.∴EG=m+3m=(1+3)m,∵S△BEG=12•EG•BN=12•BG•EH,∴EH=3?(13)m m+=3+3m,在Rt△EBH中,sin∠EBH=3+362246mEHEB m+==.【点睛】本题考查四边形综合题、矩形的性质、等腰直角三角形的判定和性质、全等三角形的判定和性质、旋转变换、锐角三角函数等知识,解题的关键是准确寻找全等三角形解决问题,学会添加常用辅助线,学会利用参数解决问题,15.如图,已知△ABC和△ADE都是等腰直角三角形,∠ACB=∠ADE=90°,点F为BE的中点,连接CF,DF.(1)如图1,当点D在AB上,点E在AC上时①证明:△BFC是等腰三角形;②请判断线段CF,DF的关系?并说明理由;(2)如图2,将图1中的△ADE绕点A旋转到图2位置时,请判断(1)中②的结论是否仍然成立?并证明你的判断.【答案】(1)①证明见解析;②结论:CF=DF且CF⊥DF.理由见解析;(2)(1)中的结论仍然成立.理由见解析.【解析】【详解】分析:(1)、根据“直角三角形斜边上的中线等于斜边的一半”可知CF=BF=EF,根据∠CFD=2∠ABC,∠ACB=90°,∠ABC=45°得出∠CFD=90°,从而得出答案;(2)、延长DF至G使FG=DF,连接BG,CG,DC,首先证明△BFG和△EFD全等,然后再证明△BCG和△ACD全等,从而得出GC=DC,∠BCG=∠ACD,∠DCG=∠ACB=90°,最后根据直角三角形斜中线的性质得出答案.详解:(1)①证明:∵∠BCE=90°.EF=FB,∴CF=BF=EF,∴△BFC是等腰三角形.②解:结论:CF=DF且CF⊥DF.理由如下:∵∠ADE=90°,∴∠BDE=90°,又∵∠BCE=90°,点F是BE的中点,∴CF=DF=12BE=BF,∴∠1=∠3,∠2=∠4,∴∠5=∠1+∠3=2∠1,∠6=∠2+∠4=2∠2,∴∠CFD=∠5+∠6=2(∠1+∠2)=2∠ABC,又∵△ABC是等腰直角三角形,且∠ACB=90°,∴∠ABC=45°,∴∠CFD=90°,∴CF=DF且CF⊥DF.(2)(1)中的结论仍然成立.理由如下:如图,延长DF至G使FG=DF,连接BG,CG,DC,∵F是BE的中点,∴BF=EF,又∵∠BFG=∠EFD,GF=DF,∴△BFG≌△EFD(SAS),∴∠FBG=∠FED,BG=ED,∴BG∥DE,∵△ADE和△ACB都是等腰直角三角形,∴DE=DA,∠DAE=∠DEA=45°,AC=BC,∠CAB=∠CBA=45°,又∵∠CBG=∠EBG﹣∠EBA﹣∠ABC=∠DEF﹣(180°﹣∠AEB﹣∠EAB)﹣45°=∠DEF﹣180°+∠AEB+∠EAB﹣45°=(∠DEF+∠AEB)+∠EAB﹣225°=360°﹣∠DEA+∠EAB﹣225°=360°﹣45°+∠EAB﹣225°=90°+∠EAB,而∠DAC=∠DAE+∠EAB+∠CAB=45°+∠EAB+45°=90°+∠EAB,∴∠CBG=∠DAC,又∵BG=ED,DE=DA,∴BG=AD,又∵BC=AC,∴△BCG≌△ACD(SAS),∴GC=DC,∠BCG=∠ACD,∴∠DCG=∠DCB+∠BCG=∠DCB+∠ACD=∠ACB=90°,∴△DCG是等腰直角三角形,又∵F是DG的中点,∴CF⊥DF且CF=DF.点睛:主要考查了旋转的性质,等腰三角形和全等三角形的判定,及勾股定理的运用.要掌握等腰三角形和全等三角形的性质及其判定定理并会灵活应用是解题的关键.四、初三数学圆易错题压轴题(难)16.在直角坐标系中,A(0,4),B(4,0).点C从点B出发沿BA方向以每秒2个单位的速度向点A匀速运动,同时点D从点A出发沿AO方向以每秒1个单位的速度向点O匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点C、D运动的时间是t秒(t>0).过点C作CE⊥BO于点E,连结CD、DE.⑴当t为何值时,线段CD的长为4;⑵当线段DE与以点O为圆心,半径为的⊙O有两个公共交点时,求t的取值范围;⑶当t为何值时,以C为圆心、CB为半径的⊙C与⑵中的⊙O相切?【答案】(1); (2) 4-<t≤; (3)或.【解析】试题分析:(1)过点C作CF⊥AD于点F,则CF,DF即可利用t表示出来,在Rt△CFD中利用勾股定理即可得到一个关于t的方程,从而求得t的值;(2)易证四边形ADEC是平行四边形,过点O作OG⊥DE于点G,当线段DE与⊙O相切时,则OG=,在直角△OEG中,OE可以利用t表示,则OG也可以利用t表示出来,当OG<时,直线与圆相交,据此即可求得t的范围;(3)分两圆外切与内切两种情况进行讨论,当外切时,圆心距等于两半径的和,当内切时,圆心距等于圆C的半径减去圆O的半径,列出方程即可求得t的值.(1)过点C作CF⊥AD于点F,在Rt△AOB中,OA=4,OB=4,∴∠ABO=30°,由题意得:BC=2t,AD=t,∵CE⊥BO,∴在Rt△CEB中,CE=t,EB=t,∵CF⊥AD,AO⊥BO,。
2020-2021杭州市数兰中学九年级数学上期中试题(及答案)
2020-2021杭州市数兰中学九年级数学上期中试题(及答案)一、选择题1.如图A ,B ,C 是上的三个点,若,则等于( )A .50°B .80°C .100°D .130°2.如图,已知⊙O 的半径为5,锐角△ABC 内接于⊙O ,BD ⊥AC 于点D ,AB=8,则tan ∠CBD 的值等于( )A .43B .45C .35D .343.二次函数y =ax 2+bx+c (a≠0)的图象如图所示,那么下列说法正确的是( )A .a >0,b >0,c >0B .a <0,b >0,c >0C .a <0,b >0,c <0D .a <0,b <0,c >0 4.用配方法解方程2410x x -+=,配方后的方程是 ( ) A .2(2)3x +=B .2(2)3x -=C .2(2)5x -=D .2(2)5x +=5.如图在平面直角坐标系中,将△ABO 绕点A 顺时针旋转到△AB 1C 1的位置,点B 、O 分别落在点B 1、C 1处,点B 1在x 轴上,再将△AB 1C 1绕点B 1顺时针旋转到△A 1B 1C 2的位置,点C 2在x 轴上,将△A 1B 1C 2绕点C 2顺时针旋转到△A 2B 2C 2的位置,点A 2在x 轴上,依次进行下去…若点A (32,0),B (0,2),则点B 2018的坐标为( )A .(6048,0)B .(6054,0)C .(6048,2)D .(6054,2)6.如图是二次函数2y ax bx c =++图象的一部分,图象过点A (﹣3,0),对称轴为直线x=﹣1,给出四个结论: ①c >0;②若点B (32-,1y )、C (52-,2y )为函数图象上的两点,则12y y <; ③2a ﹣b=0;④244ac b a-<0,其中,正确结论的个数是( )A .1B .2C .3D .47.若点()1,5P m -与点()3,2Q n -关于原点成中心对称,则m n +的值是( ) A .1B .3C .5D .78.如图,△ABC 内接于⊙O ,∠C=45°,AB=2,则⊙O 的半径为( )A .1B .22C .2D .29.如图,将三角尺ABC (其中∠ABC=60°,∠C=90°)绕点B 按逆时针方向转动一个角度到△A 1BC 1的位置,使得点A 1、B 、C 在同一条直线上,那么旋转角等于( )A .30°B .60°C .90°D .120°10.如图,是两条互相垂直的街道,且A 到B ,C 的距离都是7 km ,现甲从B 地走向A地,乙从A 地走向C 地,若两人同时出发且速度都是4km /h ,则两人之间的距离为5km 时,是甲出发后( )A .1hB .0.75hC .1.2h 或0.75hD .1h 或0.75h11.如图,在Rt ABC V 中,90ACB ∠=o ,60B ∠=o ,1BC =,''A B C V 由ABC V 绕点C 顺时针旋转得到,其中点'A 与点A 、点'B 与点B 是对应点,连接'AB ,且A 、'B 、'A 在同一条直线上,则'AA 的长为( )A .3B .23C .4D . 4312.如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60︒,90︒,210︒.让转盘自由转动,指针停止后落在黄色区域的概率是( )A .16B .14C .13D .712二、填空题13.已知关于x 的一元二次方程mx 2+5x+m 2﹣2m=0有一个根为0,则m=_____. 14.如图,若以平行四边形一边AB 为直径的圆恰好与对边CD 相切于点D ,则∠C=_______度.15.若圆锥的底面周长为4π,母线长为6,则圆锥的侧面积等于________.(结果保留π)16.小明同学测量一个光盘的直径,他只有一把直尺和一块三角尺,他将直尺、光盘和三角尺按图所示方法放置于桌面上,并量出AB =3 cm ,则此光盘的直径是________ cm .17.在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是.18.Rt△ABC中,∠C=90°,若直角边AC=5,BC=12,则此三角形的内切圆半径为________.19.如图,正五边形ABCDE内接于⊙O,F是CD弧的中点,则∠CBF的度数为_____.20.一元二次方程x2=3x的解是:________.三、解答题21.某商场经销一种成本为每千克40元的水产品,经市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨价1元,月销售量就减少10千克.针对这种水产品的销售情况,请解答以下问题.(1)当销售单价定为每千克55元,计算月销售量和月销售利润;(2)商场计划在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应定为多少?22.在硬地上抛掷一枚图钉,通常会出现两种情况:下面是小明和同学做“抛掷图钉实验”获得的数据:抛掷次数n1002003004005006007008009001000针尖不着地的频数m63120186252310360434488549610针尖不着地的频率mn0.630.600.630.600.620.610.61(1)填写表中的空格;(2)画出该实验中,抛掷图钉钉尖不着地频率的折线统计图;(3)根据“抛掷图钉实验”的结果,估计“钉尖着地”的概率为.23.已知在△ABC中,∠B=90o,以AB上的一点O为圆心,以OA为半径的圆交AC于点D,交AB于点E.(1)求证:AC·AD=AB·AE;(2)如果BD是⊙O的切线,D是切点,E是OB的中点,当BC=2时,求AC的长.24.如图,已知AB是⊙O的直径,点C、D在⊙O上,点E在⊙O外,∠EAC=∠D=60°.(1)求∠ABC的度数;(2)求证:AE是⊙O的切线;(3)当BC=4时,求阴影部分的面积.25.某商店如果将进货价为8元的商品按每件10元售出,每天可销售200件.现在采取提高售价,减少售货量的方法增加利润,已知这种商品每涨价0.5元,其销量减少10件.(1)若涨价x元,则每天的销量为____________件(用含x的代数式表示);(2)要使每天获得700元的利润,请你帮忙确定售价.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】试题分析:根据圆周的度数为360°,可知优弧AC的度数为360°-100°=260°,然后根据同弧所对的圆周角等于它所对的圆心角的一半,可求得∠B=130°.故选D考点:圆周角定理2.D解析:D【解析】过B作⊙O的直径BM,连接AM,则有:∠MAB=∠CDB=90°,∠M=∠C,∴∠MBA=∠CBD,过O作OE⊥AB于E,Rt△OEB中,BE=12AB=4,OB=5,由勾股定理,得:OE=3,∴tan∠MBA=OEBE=34,因此tan∠CBD=tan∠MBA=34,故选D.3.B解析:B【解析】【分析】利用抛物线开口方向确定a的符号,利用对称轴方程可确定b的符号,利用抛物线与y轴的交点位置可确定c的符号.【详解】∵抛物线开口向下,∴a<0,∵抛物线的对称轴在y 轴的右侧,∴x =﹣2ba>0, ∴b >0,∵抛物线与y 轴的交点在x 轴上方, ∴c >0, 故选:B . 【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y =ax 2+bx +c (a ≠0),二次项系数a 决定抛物线的开口方向和大小:当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点位置:抛物线与y 轴交于(0,c );抛物线与x 轴交点个数由△决定:△=b 2﹣4ac >0时,抛物线与x 轴有2个交点;△=b 2﹣4ac =0时,抛物线与x 轴有1个交点;△=b 2﹣4ac <0时,抛物线与x 轴没有交点.4.B解析:B 【解析】 【分析】根据配方法可以解答本题. 【详解】 x 2−4x +1=0, (x−2)2−4+1=0, (x−2)2=3, 故选:B . 【点睛】本题考查解一元二次方程−配方法,解答本题的关键是解一元二次方程的方法.5.D解析:D 【解析】 【分析】首先根据已知求出三角形三边长度,然后通过旋转发现,B 、B 2、B 4…每偶数之间的B 相差6个单位长度,根据这个规律可以求得B 2018的坐标. 【详解】 ∵A (32,0),B (0,2), ∴OA =32,OB =2,∴Rt △AOB 中,AB 52=, ∴OA +AB 1+B 1C 2=32+2+52=6, ∴B 2的横坐标为:6,且B 2C 2=2,即B 2(6,2), ∴B 4的横坐标为:2×6=12, ∴点B 2018的横坐标为:2018÷2×6=6054,点B 2018的纵坐标为:2, 即B 2018的坐标是(6054,2). 故选D . 【点睛】此题考查了点的坐标规律变换以及勾股定理的运用,通过图形旋转,找到所有B 点之间的关系是解决本题的关键.6.B解析:B 【解析】 【分析】 【详解】∵抛物线与y 轴交于正半轴, ∴c >0,①正确; ∵对称轴为直线x=﹣1,∴x <﹣1时,y 随x 的增大而增大, ∴y 1>y 2②错误; ∵对称轴为直线x=﹣1, ∴﹣2ba=﹣1, 则2a ﹣b=0,③正确; ∵抛物线的顶点在x 轴的上方, ∴244ac b a->0,④错误;故选B.7.C解析:C 【解析】 【分析】根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案. 【详解】解:∵点()1,5P m -与点()3,2Q n -关于原点对称, ∴13m -=-,25n -=-, 解得:2m =-,7n =,则275m n +=-+= 故选C . 【点睛】本题考查了关于原点对称的点的坐标,关于原点对称的点的横坐标互为相反数,纵坐标互为相反数.8.D解析:D 【解析】 【分析】 【详解】解:连接AO ,并延长交⊙O 于点D ,连接BD ,∵∠C=45°,∴∠D=45°,∵AD 为⊙O 的直径,∴∠ABD=90°, ∴∠DAB=∠D=45°, ∵AB=2, ∴BD=2, ∴22222222AB BD +=+=∴⊙O 的半径AO=22AD=. 故选D . 【点睛】本题考查圆周角定理;勾股定理.9.D解析:D 【解析】根据题意旋转角为∠ABA 1,由∠ABC=60°,∠C=90°,A 、B 、C 1在同一条直线上,得到∠ABA 1=180°-∠A 1BC 1=180°-60°=120°解:旋转角为∠ABA 1,∵∠ABC=60°,∠C=90°, ∴∠ABA 1=180°-∠A 1BC 1=180°-60°=120°; 故答案为D点评:本题考查了弧长的计算公式:l=n R180π,其中l 表示弧长,n 表示弧所对的圆心角的度数.10.D解析:D 【解析】 【分析】据题画出图形如图,设走了x 小时,则BF =AG =4x ,AF =7-4x ,根据勾股定理列出方程,解方程即得答案. 【详解】解:如图,设走了x 小时,根据题意可知:BF =AG =4x ,则AF =7-4x ,根据勾股定理,得()()2274425x x -+=,即24730x x -+=.解得:11x =,234x =.故选D. 【点睛】本题考查了勾股定理的应用和一元二次方程的解法,弄清题意,根据勾股定理列出方程是解题的关键.11.A解析:A 【解析】 【分析】先利用互余计算出∠BAC=30°,再根据含30度的直角三角形三边的关系得到AB=2BC=2,接着根据旋转的性质得A′B′=AB=2,B′C=BC=1,A′C=AC ,∠A ′=∠BAC=30°,∠A ′B ′C=∠B=60°,于是可判断△CAA ′为等腰三角形,所以∠CAA′=∠A ′=30°,再利用三角形外角性质计算出∠B′CA=30°,可得B′A=B′C=1,然后利用AA′=AB′+A′B ′进行计算. 【详解】∵∠ACB=90°,∠B=60°, ∴∠BAC=30°, ∴AB=2BC=2×1=2, ∵△ABC 绕点C 顺时针旋转得到△A′B′C′,∴A ′B ′=AB=2,B′C=BC=1,A′C=AC ,∠A ′=∠BAC=30°,∠A ′B ′C=∠B=60°, ∴△CAA ′为等腰三角形, ∴∠CAA ′=∠A ′=30°, ∵A 、B′、A ′在同一条直线上, ∴∠A ′B ′C=∠B ′AC+∠B ′CA , ∴∠B ′CA=60°-30°=30°,∴B′A=B′C=1,∴AA′=AB′+A′B′=2+1=3.故选:A.【点睛】考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了含30度的直角三角形三边的关系.12.B解析:B【解析】【分析】求出黄区域圆心角在整个圆中所占的比例,这个比例即为所求的概率.【详解】∵黄扇形区域的圆心角为90°,所以黄区域所占的面积比例为901= 3604,即转动圆盘一次,指针停在黄区域的概率是14,故选B.【点睛】本题将概率的求解设置于转动转盘游戏中,考查学生对简单几何概型的掌握情况,既避免了单纯依靠公式机械计算的做法,又体现了数学知识在现实生活、甚至娱乐中的运用,体现了数学学科的基础性.用到的知识点为:概率=相应的面积与总面积之比.二、填空题13.2【解析】【分析】根据一元二次方程的定义以及一元二次方程的解的定义列出关于m的方程通过解关于m的方程求得m的值即可【详解】∵关于x的一元二次方程mx2+5x+m2﹣2m=0有一个根为0∴m2﹣2m=解析:2【解析】【分析】根据一元二次方程的定义以及一元二次方程的解的定义列出关于m的方程,通过解关于m的方程求得m的值即可.【详解】∵关于x的一元二次方程mx2+5x+m2﹣2m=0有一个根为0,∴m2﹣2m=0且m≠0,解得,m=2,故答案是:2.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的解的定义.解答该题时需注意二次项系数a≠0这一条件.14.【解析】试题分析:解:连接OD∵CD是⊙O切线∴OD⊥CD∵四边形ABCD是平行四边形∴AB∥CD∴AB⊥OD∴∠AOD=90°∵OA=OD∴∠A=∠ADO=45°∴∠C=∠A=45°故答案为45考解析:【解析】试题分析:解:连接OD.∵CD是⊙O切线,∴OD⊥CD,∵四边形ABCD是平行四边形,∴AB∥CD,∴AB⊥OD,∴∠AOD=90°,∵OA=OD,∴∠A=∠ADO=45°,∴∠C=∠A=45°.故答案为45.考点:1.切线的性质;2.平行四边形的性质.15.【解析】【分析】底面周长即为侧面展开图扇形的弧长然后根据圆锥的侧面积列式进行计算即可得解【详解】解:圆锥的侧面积故答案为:【点睛】本题考查了圆锥的计算熟练掌握圆锥的侧面积公式是解题的关键解析:12π【解析】【分析】底面周长即为侧面展开图扇形的弧长,然后根据圆锥的侧面积12lr=列式进行计算即可得解.【详解】解:圆锥的侧面积11641222==⨯⨯=lrππ.故答案为:12π.【点睛】本题考查了圆锥的计算,熟练掌握圆锥的侧面积公式是解题的关键.16.【解析】【分析】先画图根据题意求出∠OAB=60°再根据直角三角形的性质和勾股定理即可求得结果【详解】解:∵∠CAD=60°∴∠CAB=120°∵AB和AC与⊙O相切∴∠OAB=∠OAC=∠CAB=3【解析】【分析】先画图,根据题意求出∠OAB=60°,再根据直角三角形的性质和勾股定理即可求得结果.【详解】解:∵∠CAD=60°,∴∠CAB=120°,∵AB和AC与⊙O相切,∴∠OAB=∠OAC=∠12CAB=60°,∴∠AOB=30°,∵AB=3cm,∴OA=6cm,∴2233cmOB OA AB=-=所以直径为2OB=63cm故答案为:63.【点睛】本题考查了切线长定理,勾股定理,解答本题的关键是熟练掌握切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角.17.45【解析】【分析】【详解】试题分析:根据概率的意义用符合条件的数量除以总数即可即10-210=45考点:概率解析:【解析】【分析】【详解】试题分析:根据概率的意义,用符合条件的数量除以总数即可,即.考点:概率18.2【解析】【分析】设ABBCAC与⊙O的切点分别为DFE;易证得四边形OECF是正方形;那么根据切线长定理可得:CE=CF=12(AC+BC-AB)由此可求出r的长【详解】解:如图;在Rt△ABC∠解析:2【解析】【分析】设AB、BC、AC与⊙O的切点分别为D、F、E;易证得四边形OECF是正方形;那么根据切线长定理可得:CE=CF=(AC+BC-AB),由此可求出r的长.【详解】解:如图;在Rt△ABC,∠C=90°,AC=5,BC=12;根据勾股定理AB=四边形OECF中,OE=OF,∠OEC=∠OFC=∠C=90°;∴四边形OECF是正方形;由切线长定理,得:AD=AE,BD=BF,CE=CF;∴CE=CF=(AC+BC-AB);即:r=(5+12-13)=2.故答案为2.19.18°【解析】【分析】设圆心为O连接OCODBD根据已知条件得到∠COD==72°根据圆周角定理即可得到结论【详解】设圆心为O连接OCODBD∵五边形ABCDE为正五边形∴∠COD==72°∴∠CB解析:18°【解析】【分析】设圆心为O,连接OC,OD,BD,根据已知条件得到∠COD=3605︒=72°,根据圆周角定理即可得到结论.【详解】设圆心为O,连接OC,OD,BD.∵五边形ABCDE为正五边形,∴∠COD=3605︒=72°,∴∠CBD=12∠COD=36°.∵F是CD弧的中点,∴∠CBF=∠DBF=12∠CBD=18°.故答案为:18°.【点睛】本题考查了正多边形和圆、多边形的内角和定理,掌握正多边形和圆的关系是解题的关键.20.x1=0x2=3【解析】【分析】先移项然后利用因式分解法求解【详解】x2=3xx2-3x=0x(x-3)=0x=0或x-3=0∴x1=0x2=3故答案为:x1=0x2=3【点睛】本题考查了解一元二次解析:x1=0,x2=3【解析】【分析】先移项,然后利用因式分解法求解.【详解】x2=3xx2-3x=0,x(x-3)=0,x=0或x-3=0,∴x1=0,x2=3.故答案为:x1=0,x2=3【点睛】本题考查了解一元二次方程-因式分解法:先把方程右边变形为0,再把方程左边分解为两个一次式的乘积,这样原方程转化为两个一元一次方程,然后解一次方程即可得到一元二次方程的解三、解答题21.(1)月销售量450千克,月利润6750元;(2)销售单价应定为80元/千克【解析】【分析】(1)销售单价每涨价1元,月销售量就减少10千克.那么涨价5元,月销售量就减少50千克.根据月销售利润=每件利润×数量,即可求解;(2)等量关系为:销售利润=每件利润×数量,设单价应定为x元,根据这个等量关系列出方程,解方程即可.【详解】(1)月销售量为:500﹣5×10=450(千克),月利润为:(55﹣40)×450=6750(元).(2)设单价应定为x元,得:(x﹣40)[500﹣10(x﹣50)]=8000,解得:x1=60,x2=80.当x=60时,月销售成本为16000元,不合题意舍去.∴x=80.答:销售单价应定为80元/千克.【点睛】本题主要考查一元二次方程的实际应用,找出等量关系,列出方程,是解题的关键.22.(1)见表格解析;(2)见解析;(3)0.39.【解析】【分析】(1)先由频率=频数÷试验次数算出频率;(2)根据表格作出折线统计图即可;(3)根据表格观察抛掷的次数增多时,频率稳定到哪个数值,这就是概率.【详解】解:(1)抛掷次数n1002003004005006007008009001000针尖不着地的频数m63120186252310360434488549610针尖不着地的频率0.630.600.620.630.620.600.620.610.610.61(3)通过大量试验,发现频率围绕0.39上下波动,于是可以估计概率是1﹣0.61=0.39.【点睛】考核知识点:用频率表示概率.求出频率是关键.23.(1)证明见解析;(2)AC=4.【解析】【分析】(1)连接DE,由题意可得∠ADE=90°,∠ABC=90°,又∠A是公共角,从而可得△ADE ∽△ABC,由相似比即可得;(2)连接OB,由BD是切线,得OD⊥BD,有E为OB中点,则可得OE=BE=OD,从而可得∠OBD=∠BAC=30°,所以AC=2BC=4;【详解】(1)连接DE,∵AE是直径,∴∠ADE=90o,∴∠ADE=∠ABC,在Rt△ADE和Rt△ABC 中,∠A是公共角,∴△ADE∽△ABC,∴,即AC·AD=AB·AE(2)连接OD,∵BD是圆O的切线,则OD⊥BD,在Rt△OBD中,OE=BE=OD∴OB=2OD,∴∠OBD=30°,同理∠BAC=30°,在Rt△ABC中,AC=2BC=2×2=4.考点:1.圆周角定理;2.相似三角形的判定与性质;3.切线的性质;4.30°的直角三角形的性质.24.(1)60°;(2)见解析;(3)1643 3π-【解析】【分析】(1)根据∠ABC与∠D都是劣弧AC所对的圆周角,利用圆周角定理可证出∠ABC=∠D =60°;(2)根据AB是⊙O的直径,利用直径所对的圆周角是直角得到∠ACB=90°,结合∠ABC =60°求得∠BAC=30°,从而推出∠BAE=90°,即OA⊥AE,可得AE是⊙O的切线;(3)连接OC,作OF⊥AC,根据三角形中位线性质得出OF=2,根据圆周角定理得出∠AOC=120°,然后根据S阴影=S扇形﹣S△AOC即可求得.【详解】解:(1)∵∠ABC与∠D都是劣弧AC所对的圆周角,∠D=60°,∴∠ABC=∠D=60°;(2)∵AB是⊙O的直径,∴∠ACB=90°.可得∠BAC=90°﹣∠ABC=30°,∴∠BAE=∠BAC+∠EAC=30°+60°=90°,即BA⊥AE,得OA⊥AE,又∵OA是⊙O的半径,∴AE是⊙O的切线;(3)连接OC,作OF⊥AC,∴OF垂直平分AC,∵OA=OB,∴OF=12BC=2,∵∠D=60°,∴∠AOC=120°,∠ABC=60°,∴AC=3AB=43,∴S阴影=S扇形﹣S△AOC=2120411643243 36023ππ⨯-⨯⨯=-.【点睛】本题着重考查了切线的判定、圆周角定理以及扇形面积公式等知识,属于中档题.解题过程中,请注意注意辅助线的作法与数形结合思想的应用.25.(1)200-20x;(2)15元.【解析】试题分析:(1)如果设每件商品提高x元,即可用x表示出每天的销售量;(2)根据总利润=单价利润×销售量列出关于x的方程,进而求出未知数的值.试题解析:解:(1)200-20x;(2)根据题意,得(10-8+x)(200-20x)=700,整理得x2-8x+15=0,解得x1=5,x2=3,因为要采取提高售价,减少售货量的方法增加利润,所以取x=5.所以售价为10+5=15(元),答:售价为15元.点睛:此题考查了一元二次方程在实际生活中的应用.解题的关键是理解题意,找到等量关系,列出方程.。
2020-2021学年浙江省杭州市上城区建兰中学初三数学第一学期期中试卷及解析
2020-2021学年浙江省杭州市上城区建兰中学初三数学第一学期期中试卷一、选择题:每小题4分,共40分1.(4分)如图,在平行四边形ABCD 中,如果50A ∠=︒,则(C ∠= )A .40︒B .50︒C .130︒D .150︒2.(4分)下列说法中,正确的是( ) A .三点确定一个圆B .在同圆或等圆中,相等的弦所对的圆周角相等C .平分弦的直径垂直于弦D .在同圆或等圆中,相等的圆心角所对的弦相等3.(4分)如图是一个游戏转盘,自由转动转盘,当转盘停止转动后,指针落在数字“Ⅱ”所示区域内的概率是( )A .13B .14C .16 D .184.(4分)如图,点A ,B ,C ,D ,E 均在O 上,15BAC ∠=︒,30CED ∠=︒,则BOD ∠的度数为()A .45︒B .60︒C .75︒D .90︒5.(4分)如图,已知在ABC ∆中,D 为BC 上一点,//EG BC ,分别交AB ,AD ,AC 于点E ,F ,G ,则下列比例式正确的是( )A .AE EFBE BD=B .EF AFDC AD=C .AC FGCG DC=D .AE FGAB DC=6.(4分)已知抛物线2:310C y x x =+-,将抛物线C 平移得到抛物线C ',若两条抛物线C 和C '关于直线1x =对称,则下列平移方法中,正确的是( ) A .将抛物线C 向右平移52个单位 B .将抛物线C 向右平移3个单位C .将抛物线C 向右平移5个单位D .将抛物线C 向右平移6个单位7.(4分)如图,在ABC ∆,AB AC a ==,点D 是边BC 上的一点,且BD a =,1AD DC ==,则a 等于( )A .512+ B .512- C .1 D .28.(4分)已知二次函数2()y a x h k =-+(其中a ,h ,k 是实数,0)a ≠,当1x =时,8y =;当8x =时,1y =,( )A .若4h =,则0a >B .若5h =,则0a <C .若6h =,则0a >D .若7h =,则0a <9.(4分)如图,等腰直角三角形ABC 中,90ABC ∠=︒,BA BC =,将BC 绕点B 顺时针旋转(090)θθ︒<<︒,得到BP ,连接CP ,过点A 作AH CP ⊥交CP 的延长线于点H ,连接AP ,则PAH ∠的度数( )A .随着θ的增大而增大B .随着θ的增大而减小C .不变D .随着θ的增大,先增大后减小10.(4分)已知二次函数2y x =,当a x b 时m y n ,则下列说法正确的是( )A .当1n m -=时,b a -有最小值B .当1n m -=时,b a -有最大值C .当1b a -=时,n m -无最小值D .当1b a -=时,n m -有最大值二、填空题:单空题每题4分,多空题每题6分 11.(4分)已知32a b =,则22a ba b-=+ . 12.(4分)已知正n 边形的每个内角为144︒,则n = .13.(4分)已知1(3,)y -,2(2,)y -,3(1,)y 是抛物线2312y x x m =--+上的点,则1y ,2y ,3y 的大小关系是 .14.(4分)一个仅装有球的不透明布袋里共有4个球(只有编号不同),编号分别为1,2,3,5.从中任意摸出一个球,记下编号后放回,搅匀,再任意摸出一个球,则两次摸出的球的编号之和为偶数的概率是 .15.(4分)在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点,顶点都是格点的三角形称为格点三角形.如图,已知Rt ABC ∆是66⨯网格图形中的格点三角形,则该图中所有与Rt ABC ∆相似的格点三角形中.面积最大的三角形的斜边长是 .16.(4分)如图,90A B ∠=∠=︒,AB a =,AD BC <,在边AB 上取点P ,使得PAD ∆,PBC ∆与PDC ∆两两相似,则AP 长为 .(结果用含a 的代数式表示)三、解答题:5小题,共74分17.如图,已知在O 中,两条弦AB 和CD 交于点P ,且AP CP =,求证:AB CD =.18.如图,过菱形AEDF 的顶点D 作直线,分别交AE 的延长线于点B ,交AF 的延长线于点C .(1)求证:BED DFC∆∆∽;(2)若23FC AF=,求BEAF的值.19.已知一个不透明布袋中装有形状、大小、材质完全相同的红球和白球共5个,小明进行多次摸球试验,并将数据记录如下表:摸球次数10204060100150200红球出现次数591826416181红球出现的频率0.50.450.450.4330.410.4070.405(1)从这个布袋中随机摸出一个球,这个球恰好是红球的概率为;(2)从这个布袋中随机摸出两个球,请用树形图或列表法求摸出的两个球恰好“一红一白”的概率.20.如图,ABC∆内接于O,AB为O的直径,10AB=,6AC=,连接OC,弦AD分别交OC,BC 于点E,F,其中点E是AD的中点.(1)求证:CAD CBA∠=∠.(2)求OE的长.21.某商场要经营一种新上市的文具,进价为20元/件,试营业阶段发现:当销售单价是25元时,每天的销售量为250件;销售单价每上涨1元,每天的销售量就减少10件.(1)写出商场销售这种文具,每天所得的销售利润w(元)与销售单价x(元)之间的函数关系式;(2)商场的营销部结合实际情况,决定该文具的销售单价不低于30元,且每天的销售量不得少于160件,那么该文具如何定价每天的最大销售利润最大,最大利润是多少.22.设二次函数(1)()y ax x a=--,其中a是常数,且0a≠.(1)当2a=时,试判断点1(2-,5)-是否在该函数图象上.(2)若函数的图象经过点(1,4)-,求该函数的表达式. (3)当1122a a x -+时,y 随x 的增大而减小,求a 的取值范围. 23.(1)如图1,在ABC ∆中,D 为AB 上一点,ACD B ∠=∠.求证:2AC AD AB =;(2)如图2,在ABCD 中,E 为BC 上一点,F 为CD 延长线上一点,BFE A ∠=∠.若5BF =,4BE =,求AD 的长.(3)如图3,在菱形ABCD 中,E 是AB 上一点,F 是ABC ∆内一点,//EF AC ,2AC EF =,12EDF BAD ∠=∠,2AE =,5AD =,求DF 的长.参考答案与试题解析一、选择题:每小题4分,共40分1.【解答】解:四边形ABCD 是平行四边形, 50A C ∴∠=∠=︒.故选:B .2.【解答】解:A 、任意三点确定一个圆;错误,应该的不在同一直线上的三点可以确定一个圆,不符合题意;B 、在同圆或等圆中,相等的弦所对的圆周角相等或互补,错误,不符合题意;C 、平分弦的直径垂直于弦,错误,此弦不是直径,不符合题意;D 、在同圆或等圆中,相等的圆心角所对的弦相等,正确,符合题意;故选:D .3.【解答】解:由游戏转盘划分区域的圆心角度数可得,指针落在数字“Ⅱ”所示区域内的概率是:12013603=.故选:A .4.【解答】解:连接BE ,15BEC BAC ∠=∠=︒,30CED ∠=︒, 45BED BEC CED ∴∠=∠+∠=︒, 290BOD BED ∴∠=∠=︒.故选:D . 5.【解答】解://EG BC ,AEF ABD ∴∠=∠,AFG ADC ∠=∠.又EAF BAD ∠=∠,FAG DAC ∠=∠,AEF ABD ∴∆∆∽,AFG ADC ∆∆∽,∴AE AF EF AB AD BD ==,AF AG FGAD AC DC ==, ∴AE FGAB DC=.故选:D .6.【解答】解:抛物线22349:310()24C y x x x =+-=+-,∴抛物线对称轴为32x =-. ∴抛物线与y 轴的交点为(0,10)A -.则与A 点以对称轴对称的点是(3,10)B --.若将抛物线C 平移到C ',并且C ,C '关于直线1x =对称,就是要将B 点平移后以对称轴1x =与A 点对称.则B 点平移后坐标应为(2,10)-. 因此将抛物线C 向右平移5个单位. 故选:C . 7.【解答】解:AB AC =,B C ∴∠=∠, DA DC =, DAC C ∴∠=∠, DAC B ∴∠=∠, C C ∠=∠, CDA CAB ∴∆∆∽,∴CD CACA CB=, 2CA CD CB ∴=,CA a =,BD a =,1CD =, 1CB a ∴=+,21(1)a a ∴=+, 210a a ∴--=,a ∴=, 故选:A .8.【解答】解:当1x =时,8y =;当8x =时,1y =;代入函数式得:228(1)1(8)a h ka h k ⎧=-+⎨=-+⎩, 22(8)(1)7a h a h ∴---=-,整理得:(92)1a h -=-, 若4h =,则1a =-,故A 错误; 若5h =,则1a =,故B 错误; 若6h =,则13a =,故C 正确;若7h =,则15a =,故D 错误;故选:C .9.【解答】解:将BC 绕点B 顺时针旋转(090)θθ︒<<︒,得到BP , BC BP BA ∴==,BCP BPC ∴∠=∠,BPA BAP ∠=∠,180CBP BCP BPC ∠+∠+∠=︒,180ABP BAP BPA ∠+∠+∠=︒,90ABP CBP ∠+∠=︒, 135BPC BPA CPA ∴∠+∠=︒=∠, 135CPA AHC PAH ∠=∠+∠=︒, 1359045PAH ∴∠=︒-︒=︒,PAH ∴∠的度数是定值,故选:C .10.【解答】解:方法1、①当1b a -=时,当a ,b 同号时,如图1, 过点B 作BC AD ⊥于C , 90BCD ∴∠=︒, 90ADE BED ∠=∠=︒, 90ADE BCD BED ∴∠=∠=∠=︒,∴四边形BCDE 是矩形,1BC DE b a ∴==-=,CD BE m ==, AC AD CD n m ∴=-=-,在Rt ACB ∆中,tan ACABC n m BC∠==-, 点A ,B 在抛物线2y x =上,且a ,b 同号,4590ABC ∴︒∠<︒, tan 1ABC ∴∠, 1n m ∴-,当a ,b 异号时,0m =,当12a =-,12b =时,14n =,此时,14n m -=,∴114n m -<, 即14n m-, 即n m -无最大值,有最小值,最小值为14,故选项C ,D 都错误; ②当1n m -=时,如图2,当a ,b 同号时,过点N 作NH MQ ⊥于H , 同①的方法得,NH PQ b a ==-,HQ PN m ==, 1MH MQ HQ n m ∴=-=-=,在Rt MHN ∆中,1tan MH MNH NH b a∠==-, 点M ,N 在抛物线2y x =上,0m ∴,当0m =时,1n =,∴点(0,0)N ,(1,1)M ,1NH ∴=,此时,45MNH ∠=︒,4590MNH ∴︒∠<︒, tan 1MNH ∴∠,∴11b a-, 当a ,b 异号时,0m =, 1n ∴=, 1a ∴=-,1b =,即2b a -=,b a ∴-无最小值,有最大值,最大值为2,故选项A 错误;故选:B .方法2、当1n m -=时,当a ,b 在y 轴同侧时,a ,b 都越大时,a b -越接近于0,但不能取0,即b a -没有最小值, 当a ,b 异号时,当1a =-,1b =时,2b a -=最大,当1b a -=时,当a ,b 在y 轴同侧时,a ,b 离y 轴越远,n m -越大,但取不到最大,当a ,b 在y 轴两侧时,当12a =-,12b =时,n m -取到最小,最小值为14,因此,只有选项B 正确, 故选:B .二、填空题:单空题每题4分,多空题每题6分 11.【解答】解:32a b =, 32a b ∴=,∴23432722a b b b a b b b --==++, 故答案为:47. 12.【解答】解:由题意得正n 边形的每一个外角为18014436︒-︒=︒, 3603610n =︒÷︒=,故答案为10.13.【解答】解:抛物线2312y x x m =--+的开口向下,对称轴是直线1222(3)x -=-=-⨯-,当2x <-时,y随x 的增大而增大,1(3,)y -,2(2,)y -,3(1,)y 是抛物线2312y x x m =--+上的点,∴点3(1,)y 关于对称轴2x =-的对称点是3(5,)y -,532-<-<-, 213y y y ∴>>,故答案为213y y y >>.14.【解答】解:根据题意画图如下:共有16种等情况数,其中两次摸出的球的编号之和为偶数的有10种, 则两次摸出的球的编号之和为偶数的概率是105168=. 故答案为:58.15.【解答】解:在Rt ABC ∆中,1AC =,2BC =, 5AB ∴=,:1:2AC BC =,∴与Rt ABC ∆相似的格点三角形的两直角边的比值为1:2,若该三角形最短边长为4,则另一直角边长为8,但在66⨯网格图形中,最长线段为62直角三角形为等腰直角三角形,从而画不出端点都在格点且长为8的线段,故最短直角边长应小于4,在图中尝试,可画出10DE ,210EF =52DF =的三角形,102105210125===, ABC DFE ∴∆∆∽, 90DEF C ∴∠=∠=︒,∴此时DEF ∆的面积为:10210210⨯÷=,DEF ∆为面积最大的三角形,其斜边长为:52.故答案为:52.16.【解答】解:①当90DPC ∠=︒时,如图,过点P 作PT CD ⊥于T .PAD ∆,PBC ∆与PDC ∆两两相似,且AD BC <,ADP PDC ∴∠=∠,BCP PCD ∠=∠,90A PTD ∠=∠=︒,90B PTC ∠=∠=︒,PD PD =,PC PC =,()PDA PDT AAS ∴∆≅∆,()PCB PCT AAS ∆≅∆,PA PT ∴=,PB PT =,1122PA PB AB a ∴===, ②当90PDC ∠=︒时,PAD ∆,PBC ∆与PDC ∆两两相似,60APD DPC CPB ∴∠=∠=∠=︒,设AP x =,则2PD x =.4PC x =,2PB x =, 3x a ∴=,13x a ∴=.13PA a ∴=故答案为12a 或13a .三、解答题:5小题,共74分17.【解答】证明:圆周角A ∠和C ∠都对着BD , A C ∴∠=∠,在ADP ∆和CBP ∆中, A CAP CPAPD CPB ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()ADP CBP ASA ∴∆≅∆,BP DP ∴=,AP CP =,AP BP CP DP ∴+=+,即AB CD =.18.【解答】证明:(1)四边形AEDF 是菱形, //AE DF ∴,//DE AC , B FDC ∴∠=∠,C BDE ∠=∠, BED DFC ∴∆∆∽;(2)四边形AEDF 是菱形,AE AF DE DF ∴===,BED DFC ∆∆∽,∴DE BECF DF =, 23FC AF =, ∴32DF AF CF CF ==, ∴32BE BE AF DF ==.19.【解答】解:(1)从这个布袋中随机摸出一个球,这个球恰好是红球的概率为0.4, 故答案为:0.4;(2)袋子中红球的个数约为50.42⨯=(个),∴袋子中白球有3个,列表如下:由表可知共有20种等可能结果,其中摸出的两个球恰好“一红一白”的有12种结果,∴摸出的两个球恰好“一红一白”的概率为123205=. 20.【解答】(1)证明:AE DE =,OC 是半径,∴AC CD =,CAD CBA ∴∠=∠.(2)解:AB 是直径,90ACB ∴∠=︒,AE DE =,OC AD ∴⊥, 90AEC ∴∠=︒, AEC ACB ∴∠=∠, AEC BCA ∴∆∆∽,∴CE ACAC AB =, ∴6610CE =, 3.6CE ∴=,152OC AB ==, 5 3.6 1.4OE OC EC ∴=-=-=.21.【解答】解:(1)由题意得:2(20)[25010(25)]1070010000w x x x x =---=-+-; (2)由题意得:25010(25)160x --且30x ,解得3034x , 而(20)[25010(25)]10(20)(50)w x x x x =---=---, 100a =-<,而函数的对称轴为1(2050)352x =+=,故当35x <时,w 随x 的增大而增大,故当34x =(元)时,w 有最大值为2240(元). 22.【解答】解:(1)2a =, (1)()(21)(2)y ax x a x x ∴=--=--,当0.5x =-时,55y =≠-,∴点1(2-,5)-不在该函数图象上;(2)函数的图象经过点(1,4)-, (1)(1)4a a ∴--=-,解得,1a =-或3,∴该函数的表达式为:2(31)(3)3103y x x x x =--=-+或2(1)(1)21y x x x x =--+=---;(3)二次函数(1)()y ax x a =--的图象与x 轴交于点1(a,0),(,0)a ,∴函数图象的对称轴为直线212a x a+=,当0a >时,函数图象开口向上, 当1122a a x -+时,y 随x 的增大而减小, ∴21122a a a ++,12a ∴, 102a∴<;当0a <时,函数图象开口向下, 当1122a a x -+时,y 随x 的增大而减小, ∴21122a a a +-,12a ∴-,102a ∴-<; 综上,102a -<或102a<. 23.【解答】(1)证明:ACD B ∠=∠,A A ∠=∠, ADC ACB ∴∆∆∽,∴AD ACAC AB=, 2AC AD AB ∴=.(2)解:四边形ABCD 是平行四边形, AD BC ∴=,A C ∠=∠,又BFE A ∠=∠, BFE C ∴∠=∠,又FBE CBF ∠=∠, BFE BCF ∴∆∆∽,∴BF BEBC BF=, 2BF BE BC ∴=,2252544BF BC BE ∴===, 254AD ∴=. (3)解:如图,分别延长EF ,DC 相交于点G ,四边形ABCD 是菱形,//AB DC ∴,12BAC BAD ∠=∠,//AC EF ,∴四边形AEGC 为平行四边形,AC EG ∴=,2CG AE ==,EAC G ∠=∠,12EDF BAD ∠=∠,EDF BAC ∴∠=∠, EDF G ∴∠=∠,又DEF GED ∠=∠, EDF EGD ∴∆∆∽,∴ED EFEG DE=, 2DE EF EG ∴=,又2EG AC EF ==,222DE EF ∴=,DE ∴,又DG DEDF EF=,DG ∴,5AD CD ==,2CG AE ==, 7DG DC CG ∴=+=,DF ∴=。
浙江省杭州市九年级上学期数学期中考试试卷
浙江省杭州市九年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)方程9x2=16的解是()A .B .C . ±D . ±2. (2分)(2017·平塘模拟) 下列图形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .3. (2分) (2020九上·新昌期末) 二次函数图象的顶点坐标是()A .B .C .D .4. (2分)如图,一个正六边形转盘被分成6个全等的正三角形.任意旋转这个转盘1次,当转盘停止转动时,指针指向阴影区域的概率是()A .B .C .D .5. (2分)正多边形的中心角是36°,那么这个正多边形的边数是()A . 10B . 8C . 6D . 56. (2分)(2019·祥云模拟) 若关于x的方程x2- x+cosα=0有两个相等的实数根,则锐角α为().A . 30°B . 45°C . 60°D . 75°7. (2分)(2020·邵阳) 如图①所示,平整的地面上有一个不规则图案(图中阴影部分),小明想了解该图案的面积是多少,他采取了以下办法:用一个长为,宽为的长方形,将不规则图案围起来,然后在适当位置随机地朝长方形区域扔小球,并记录小球落在不规则图案上的次数(球扔在界线上或长方形区域外不计实验结果),他将若干次有效实验的结果绘制成了②所示的折线统计图,由此他估计不规则图案的面积大约为()A .B .C .D .8. (2分) (2019九上·天台月考) 喜迎国庆佳节,某商品原价400元,连续两次降价a%后售价为225元,下列所列方程中,正确的是()A . 400(1+a%)2=225B . 400(1-2a%)=225C . 400(1-a2%)=225D . 400(1-a%)2=2259. (2分) (2020八上·覃塘期末) 如图,在中,AC=BC,点D在AC边上,点E在CB的延长线上,DE与AB相交于点F,若∠C=50°,∠E=25°,则∠BFD的度数为()A .B .C .D .10. (2分) (2020九上·昌平期末) 已知抛物线y=ax2+bx+c的图象如图所示,则a、b、c的符号为()A . a>0,b>0,c>0B . a>0,b>0,c=0C . a>0,b<0,c=0D . a>0,b<0,c<0二、填空题 (共4题;共4分)11. (1分) (2016九上·武清期中) 已知x=1是方程x2+mx+3=0的一个实数根,则m的值是________.12. (1分)在一个不透明的箱子里装有红色、蓝色、黄色的球共20个,除颜色外,形状、大小、质地等完全相同,小明通过多次摸球实验后发现摸到红色、黄色球的频率分别稳定在10%和15%,则箱子里蓝色球的个数很可能是________个.13. (1分) (2020·北京模拟) 已知在同一坐标系中,抛物线y1=ax2的开口向上,且它的开口比抛物线y2=3x2+2的开口小,请你写出一个满足条件的a值:________.14. (1分) (2019八上·中山期中) 如图,在等边三角形ABC中,AD⊥BC,垂足为D,且AD=6,E是AC边上的中点,M是AD边上的动点,则EM+CM的最小值是________.三、解答题 (共11题;共80分)15. (5分) (2019九上·和平期中)(1);(2) .16. (5分)(2019·福田模拟) 某商场在促销活动中规定,顾客每消费100元就能获得一次抽奖机会.为了活跃气氛,设计了两个抽奖方案:方案一:转动转盘A一次,转出红色可领取一份奖品;方案二:转动转盘B两次,两次都转出红色可领取一份奖品.(两个转盘都被平均分成3份)如果你获得一次抽奖机会,你会选择哪个方案?请用相关的数学知识说明理由.17. (5分)(2020·赤峰) 小琪同学和爸爸妈妈一起回老家给奶奶过生日,他们为奶奶准备了一个如图所示的正方形蛋糕,蛋糕的每条边上均匀镶嵌着4颗巧克力.爸爸要求小琪只切两刀把蛋糕平均分成4份,使每个人分得的蛋糕和巧克力数都相等.(1)请你在图1中画出一种分法(无需尺规作图);(2)如图2,小琪同学过正方形的中心切了一刀,请你用尺规作图帮她作出第2刀所在的直线,(不写作法,保留作图痕迹)18. (5分)(2017·绍兴模拟) 计算.(1)计算:+ --.(2)先化简,再求值:a(a﹣2b)+(a+b)2 ,其中a=﹣1,b= .19. (5分) (2015九上·宁海月考) 如图, △ABC内接于⊙O, AD⊥BC于D, AE是⊙O的直径. 若AB=6, AC=8, AE=11, 求AD的长.20. (5分) (2020八下·无锡期中) 如图,已知△ABC的三个顶点坐标A(-1,0)、B(-2,-2)、C(-4,-1).(1)请画出△ABC关于坐标原点O的中心对称图形△A1B1C1 ,并写出△A1B1C1的面积▲.(2)请直接写出:所有满足以A、B、C为顶点的平行四边形的第四个顶点D的坐标________.21. (5分) (2019九上·丹东期末) 我市某旅行社为吸引我市市民组团去长白山风景区旅游,推出了如下的收费标准:如果人数不超过25人,人均旅游费用为800元;如果人数超过25人,每增加1人,人均旅游费用降低20元,但人均旅游费用不得低于650元,某单位组织员工去长白山风景区旅游,共支付给旅行社旅游费用21000元,请问该单位这次共有多少员工去长白山风景区旅游?22. (10分)(2017·潍坊模拟) 目前中学生带手机进校园现象越来越受到社会关注,针对这种现象,某校数学兴趣小组的同学随机调查了学校若干名家长对“中学生带手机”现象的态度(态度分为:A.无所谓;B.基本赞成;C.赞成;D.反对),并将调查结果绘制成频数折线统计图1和扇形统计图2(不完整).请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了多少名中学生家长;(2)求出图2中扇形C所对的圆心角的度数,并将图1补充完整;(3)根据抽样调查结果,请你估计1万名中学生家长中有多少名家长持反对态度;(4)在此次调查活动中,初三(1)班和初三(2)班各有2位家长对中学生带手机持反对态度,现从这4位家长中选2位家长参加学校组织的家校活动,用列表法或画树状图的方法求选出的2人来自不同班级的概率.23. (10分) (2017九下·沂源开学考) 旅游公司在景区内配置了50辆观光车供游客租赁使用,假定每辆观光车一天内最多只能出租一次,且每辆车的日租金x(元)是5的倍数.发现每天的营运规律如下:当x不超过100元时,观光车能全部租出;当x超过100元时,每辆车的日租金每增加5元,租出去的观光车就会减少1辆.已知所有观光车每天的管理费是1100元.(1)优惠活动期间,为使观光车全部租出且每天的净收入为正,则每辆车的日租金至少应为多少元?(注:净收入=租车收入﹣管理费)(2)当每辆车的日租金为多少元时,每天的净收入最多?24. (10分) (2018八上·钦州期末) 如图,△ABC是等边三角形,BD是中线,延长BC至E,使CE=CD.(1)求证:DB=DE;(2)过点D作DF垂直BE,垂足为F,若CF=3,求△ABC的周长.25. (15分) (2018七下·盘龙期末) 如图,在平面直角坐标系中,点A,B的坐标分别为A(0,a),B(b,a),且a、b满足(a﹣2)2+|b﹣4|=0,现同时将点A,B分别向下平移2个单位,再向左平移1个单位,分别得到点A,B的对应点C,D,连接AC,BD,AB.(1)求点C,D的坐标及四边形ABDC的面积S四边形ABCD;(2)在y轴上是否存在一点M,连接MC,MD,使S△MCD= S四边形ABDC?若存在这样一点,求出点M的坐标,若不存在,试说明理由;(3)点P是直线BD上的一个动点,连接PA,PO,当点P在BD上移动时(不与B,D重合),直接写出∠BAP、∠DOP、∠APO之间满足的数量关系.参考答案一、单选题 (共10题;共20分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:二、填空题 (共4题;共4分)答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:三、解答题 (共11题;共80分)答案:15-1、答案:15-2、考点:解析:答案:16-1、考点:解析:答案:17-1、答案:17-2、考点:解析:答案:18-1、答案:18-2、考点:解析:答案:19-1、考点:解析:答案:20-1、答案:20-2、考点:解析:答案:21-1、考点:解析:答案:22-1、答案:22-2、答案:22-3、答案:22-4、考点:解析:答案:23-1、答案:23-2、考点:解析:答案:24-1、答案:24-2、考点:解析:答案:25-1、答案:25-2、答案:25-3、考点:解析:。
浙江省杭州市城区上建兰中学2018届九年级上学期数学期中考试试卷及参考答案
化为
的形式,得________,它的图象顶点坐标是________.
13. 如图,矩形
,且
,
,则 的长为________.
14. 如图,把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知 ________厘米.
厘米,则球的半径为
15. 如图,圆内接正五边形
中,对角线 和
径为 ,则弧 的长度为________(结果保留 ).
)
22. 如图
(1) 如图 , 是
①求证:
形内的高, 是 .
的外接圆⊙ 的直径.
②若
,
,
,⊙ 的直径 长.
③如图,在边长为 的小正方形组成的网格之中有一个格点三角形 格点三角形的外接圆面积.
,请你从上面两小题中获得经验,直接写出此
(2) 如图 ,
否都要说明理由.
23. 如图,矩形
于点 .设
是
形外的高,若
,
,
,( )题中②的结论是否还成立?成立与
中,
,
,
.
,动点 在边 上,连结 ,过点 作 的垂线 ,交直线
(1) 求 关于 的函数关系式.
(2) 当
时,求 的长.
(3) 若直线 与线段 延长线交于点
,当
参考答案
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
时,求 的长.
11. 12. 13. 14. 15. 16. 17.
20. 如图, 为⊙ 的直径,弦
于点 ,点 是
上一点,连结 , .
(1) 在不添辅助线的前提下直接写出图中与
相等的角,不用证明.
2023-2024学年浙江省杭州市上城区惠兴中学、建兰中学九年级上学期期中数学试题
2023-2024学年浙江省杭州市上城区惠兴中学、建兰中学九年级上学期期中数学试题1.下列函数中,是二次函数的是()A.B.C.D.2.下列事件中,属于不可能事件的是()A.a是实数,则B.一匹马奔跑的速度是每秒100米C.任意一个三角形都有外接圆D.抛掷一枚骰子,朝上面的点数是6 3.关于的图象,下列叙述正确的是()A.顶点坐标为B.对称轴为直线C.当时,随增大而减小D.函数的最大值为4.下列命题中,是真命题的是()A.平分弦的直径垂直于弦B.相等圆周角所对的弧相等C.任意三个点确定一个圆D.圆内接平行四边形必为矩形5.如图,转盘的红色扇形圆心角为120°.让转盘自由转动2次,指针1次落在红色区域,1次落在白色区域的概率是()A.B.C.D.6.如图是一款抛物线型落地灯筒示意图,防滑螺母C为抛物线支架的最高点,灯罩D距离地面1.5米,最高点C距灯柱的水平距离为1.6米,灯柱米,若茶几摆放在灯罩的正下方,则茶几到灯柱的距离()A.3.2B.0.32C.2.5D.1.67.如图,AB为⊙O的直径,C为上一点,AD∥OC,AD交⊙O于点D,连接AC,CD,设∠BOC=x°,∠ACD=y°,则下列结论成立的是()A.x+y=90B.2x+y=90C.2x+y=180D.x=y8.在同一平面直角坐标系中,函数y=ax+a和y=-ax2+2x+2(a是常数,且a≠0)的图象可能是()A.B.C.D.9.如图,是⊙O 的直径,点C为圆上一点,,D 是弧的中点,与交于点E .若E 是的中点,则的长为()A.5B.3C.2D.110.已知二次函数(a、b、c 是常数,且)的最大值为,且该二次函数图象经过点两点,则n的值可能是()A.B.C.2D.311.在同样条件下对某种小麦种子进行发芽试验,统计发芽种子数,获得如下频数表:实验种子数(粒)100200500100020004000发芽频数9418947695119003800估计该麦种的发芽概率是______.12.将抛物线向右平移个单位,再向上平移个单位得到解析式,则_____,_____.13.如图,在中,,.将绕点顺时针旋转角至使得点恰好落在边上,则等于________.14.半径为1的圆中,弦AB=,则弦AB所对的圆周角的度数为______15.已知,,,则有最_____(填“大”或“小”)值,这个值为_______.16.点A、C为半径是3的圆周上两点,点B为弧AC的中点,以线段BA、BC为邻边作菱形ABCD,顶点D恰在该圆直径的三等分点上,则该菱形的边长为_____.17.如图,在平面直角坐标系中,A、B、C是上的三个点,、、.(1)在图上标出圆心M,圆心M的坐标为;(2)判断点与的位置关系,并说明理由.18.已知:如图,AB,AC是⊙O的两条弦,AO平分∠BAC.求证:=.19.为丰富学生课外活动,各校积极开展各类社团活动.某校开设了“健美操”社团项目,某班级名有舞蹈基础的学生准备报名参加“健美操”社团,其中名男生,名女生,由于该社团名额有限,只能从中随机选取部分学生进入“健美操”社团.(1)若只能从这名学生中随机选取人进入“健美操”社团,则选中的学生是男生的概率为______;(2)若从这名学生中随机选取人进入“健美操”社团,请用画树状图或列表格的方法,求选中的名学生中恰好是男女的概率.20.如图,已知是的直径,C点是的一点,于E,点D是的中点,交于点F,交于点G.(1)判断的形状,并证明;(2)若,.①求的长;②求阴影部分的面积.21.古往今来,桥给人们的生活带来便利,解决跨水或者越谷的交通,便于运输工具或行人在桥上畅通无阻,中国桥梁的桥拱线大多采用圆弧形、抛物线形和悬链形,坐落在河北省赵县汶河上的赵州桥建于隋朝,距今已有约1400年的历史,是当今世界上现存最早、保存最完整的古代敞肩石拱桥,赵州桥的主桥拱便是圆弧形.(1)某桥主桥拱是圆弧形(如图①中,已知跨度,拱高,则这条桥主桥拱的半径是;(2)某桥的主桥拱是抛物线形(如图②,若水面宽,拱顶(抛物线顶点)距离水面,求桥拱抛物线的解析式;(3)如图③,在(1)和(2)的条件下,某个时刻桥和桥的桥下水位均上升了,求此时两桥的水面宽度.22.某课外学习小组根据学习函数过程中的经验,对函数y=﹣x2+4|x|的图象与性质进行了探究,请补充完整以下探索过程.(1)列表:x…﹣5﹣4﹣3﹣2﹣101234…y…m03n303430…直读写出m=,n=.(2)根据上表中的数据.在平面直角坐标系中画出该函数的图象.结合图象写出该函数的两条性质:性质1:;性质2:.(3)结合(2)中所画的函数图象.直接写出不等式﹣x2+4|x|<x的解集:.23.在平面直角坐标系中,已知点,,,直线经过点,抛物线恰好经过,,三点中的两点.(1)求直线的解析式;(2)求a,b的值;(3)平移抛物线使其顶点仍在直线上,求平移后所得抛物线与轴交点纵坐标的最大值.24.如图1,直线于点M,以上的点O为圆心画圆,交于点A,B,交于点C,D,,,点E为上的动点,交于点F,于点G,连接,,.(1)若,求的长;(2)如图2,过A作交延长线于点H,连接、,是否存在常数k,使成立?若存在,请求出k的值;若不存在,请说明理由.(3)当点G在的右侧时,请直接写出面积的最大值.。