-初中数学竞赛考题分类汇编(一)数与式

合集下载

2019年浙江省中考数学分类汇编专题01:数与式(1)

2019年浙江省中考数学分类汇编专题01:数与式(1)

2019年浙江省中考数学分类汇编专题01:数与式(1)一、单选题(共14题;共28分)1.计算:(﹣3)×5的结果是()A. ﹣15B. 15C. ﹣2D. 22.太阳距离银河系中心约为250 000 000 000 000 000公里,其中数据250 000 000 000 000 000用科学记数法表示为()A. B. C. D.3.-9的相反数是().A. -9B.C. 9D.4.的相反数是()A. 2019B. -2019C.D. -5.2019年台州市计划安排重点建设项目344个,总投资595200000000元,用科学记数法可将595200000000表示为()A. 5.952×1011B. 59.52×1010C. 5.952×1012D. 5952×1096.据统计,龙之梦动物世界在2019年“五一”小长假期间共接待游客约238000人次用科学记数法可将238000表示为()A. 238×103B. 23.8×104C. 2.38×105D. 0.238×1067.数2的倒数是()A. -2B. 2C.D.8.浙江省陆域面积为101800平方千米,其中数据101800用科学记数法表示为()A. 0.1018×105B. 1.018×105C. 0.1018×105D. 1.018×1069.在,0,1,-9四个数中,负数是()A. B. 0 C. 1 D. -910.计算下列各式,值最小的是()A. 2×0+1-9B. 2+0×1-9C. 2+0-1×9D. 2+0+1-911.-2的绝对值为()A. B. 2 C. D. -212.宁波是世界银行在亚洲地区选择的第一个开展垃圾分类试点项目的城市,项目总投资1526000000元人民币数1526000000用科学记数法表示为()A. B. C. D.13.年月日时分,“嫦娥四号”探测器飞行约千米,实现人类探测器首次在月球背面软着陆.数据用科学记数法表示为()A. B. C. D.14.某市决定为全市中小学教室安装空调,今年预计投入资金126000000元,其中数字126000000用科学记数法可表示为()A. 12.6×107B. 1.26×108C. 1.26×109D. 0.126×1010二、填空题(共4题;共4分)15.若一个数的平方等于5,则这个数等于________。

全国初中数学竞赛试题

全国初中数学竞赛试题

全国初中数学竞赛试题【试题一】:代数基础1. 已知 \( a, b, c \) 是一个三角形的三边长,且满足 \( a^2 + b^2 = c^2 \),求证 \( a + b \geq c \)。

【试题二】:几何问题2. 给定一个圆,圆心为 \( O \),半径为 \( r \)。

在圆上任取两点\( A \) 和 \( B \),连接 \( OA \) 和 \( OB \)。

求证 \( \angle AOB \) 的度数小于 \( 180^\circ \)。

【试题三】:数列与级数3. 一个等差数列的首项是 \( a_1 = 3 \),公差 \( d = 2 \)。

求这个数列的第 \( n \) 项 \( a_n \) 的表达式,并计算前 \( n \) 项的和 \( S_n \)。

【试题四】:函数与方程4. 已知函数 \( f(x) = x^2 - 4x + 4 \),求该函数的最小值。

【试题五】:概率统计5. 一个袋子里有 \( 5 \) 个红球和 \( 3 \) 个蓝球。

随机抽取两个球,求两个球颜色相同的概率。

【试题六】:组合数学6. 有 \( 8 \) 个不同的球,需要将它们放入 \( 3 \) 个不同的盒子中,每个盒子至少有一个球。

求不同的放法有多少种。

【试题七】:逻辑推理7. 在一个逻辑推理题中,有三个人分别说了以下的话:- 甲说:“乙是说谎者。

”- 乙说:“丙是说谎者。

”- 丙说:“甲和乙都是说谎者。

”如果三个人中只有一个人说谎,那么谁说的是真话?【试题八】:创新问题8. 一个正方体的体积是 \( 8 \) 立方厘米,求这个正方体的表面积。

【试题九】:应用题9. 一个水池可以以恒定的速率 \( r \) 进水,同时也以另一个恒定的速率 \( s \) 出水。

如果水池开始时是空的,求水池被填满的时间\( t \)。

【试题十】:综合题10. 一个圆的半径是 \( 5 \) 厘米,圆内接一个等边三角形。

历年中考真题分类汇编(数学)

历年中考真题分类汇编(数学)

第一篇基础知识梳理第一章数与式§1.1 实数A组2015年全国中考题组一、选择题1.(2015·,1,3分)-5的绝对值是( )A.-5 B.5 C.-15D.15解析∵|-5|=5,∴-5的绝对值是5,故选B.答案 B2.(2015·,1,4分)计算2-3的结果为( ) A.-1 B.-2 C.1 D.2解析2-3=-1,故选A.答案 A3.(2015·,1,4分)计算(-1)×3的结果是( ) A.-3 B.-2 C.2 D.3解析(-1)×3=-3,故选A.答案 A4.(2015·,3,3分)4的算术平方根是( ) A.±2 B.2 C.-2 D. 2解析∵4的算术平方根是2,故选B.答案 B5.(2015·,3,4分)2015年中国高端装备制造业收入将超过6万亿元,其中6万亿元用科学记数法可表示为( )A.0.6×1013元B.60×1011元C.6×1012元D.6×1013元解析6万亿=60 000×100 000 000=6×104×108=6×1012,故选C.答案 C6.(2015·,5,2分)估计5-12介于( )A.0.4与0.5之间B.0.5与0.6之间C.0.6与0.7之间D.0.7与0.8之间解析∵5≈2.236,∴5-1≈1.236,∴5-12≈0.618,∴5-12介于0.6与0.7之间.答案 C7.(2015·,2,3分)下列计算正确的是( ) A.23+26=29B.23-26=2-3C.26×23=29D.26÷23=22解析只有“同底数的幂相乘,底数不变,指数相加”,“同底数幂相除,底数不变,指数相减”,故选C.答案 C8.★(2015·,6,3分)若k<90<k+1(k是整数),则k=( ) A.6 B.7 C.8 D.9解析∵81<90<100,∴9<90<100.∴k=9.答案 D9.(2015·,6,3分)如图,数轴上的A,B,C,D四点中,与表示数-3的点最接近的是( )A.点A B.点B C.点C D.点D解析∵-3=-1.732,∴表示-3的点与表示-2的点最接近.答案 B二、填空题10.(2015·,13,4分)实数8的立方根是________.解析 ∵23=8,∴8的立方根是2. 答案 211.(2015·,11,4分)计算:23×⎝ ⎛⎭⎪⎫122=________.答案 212.(2015·,20,3分)定义:a 是不为1的有理数,我们把11-a 称为a 的差倒数,如:2的差倒数是11-2=-1,-1的差倒数是11-(-1)=12.已知a 1=-12,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差倒数,……,以此类推,则a 2 015=________.解析 根据“差倒数”的规定进行计算得:a 1=-12,a 2=23,a 3=3,a 4=-12,……,三个数一循环,又2 015÷3=671……2,∴a 2 015=23. 答案23三、解答题13.(2015·,17(1),4分)计算:|-5|+4×2-1. 解 原式=5+2×12=5+1=6.14.(2015·,17,6分)计算:|-4|+(-2)0-⎝ ⎛⎭⎪⎫12-1.解 原式=4+1-2=3.15.(2015·,17(1),5分)计算:2 0150+12+2×⎝ ⎛⎭⎪⎫-12.解 原式=1+23-1=2 3.16.(2015·,17,6分)计算:12-|-2|+(1-2)0-4sin 60° 解 原式=23-2+1-23=-1.B 组 2014~2011年全国中考题组一、选择题1.(2013·,1,3分)-2的相反数是 ( )A .2B .-2C.12D .-12解析 -2的相反数是2,故选A. 答案 A2.(2014·,1,3分)⎪⎪⎪⎪⎪⎪-17=( )A .-17B.17C .-7D .7解析 由绝对值的意义可知:⎪⎪⎪⎪⎪⎪-17=-⎝ ⎛⎭⎪⎫-17=17.故选B.答案 B3.★(2013·,1,4分)-2的倒数是 ( )A .-12B.12C .2D .-2解析 ∵-2×(-12)=1,∴-2的倒数是-12.答案 A4.(2013·,1,4分)计算:(-2)×3的结果是 ( )A .-6B .1C .1D .6解析 根据有理数的乘法运算法则进行计算,(-2)×3=-2×3=-6.故选A. 答案 A5.(2014·,1,4分)比较-3,1,-2的大小,正确的是( )A .-3<-2<1B .-2<-3<1C .1<-2<-3D .1<-3<-2解析 ∵||-3>||-2,∴-3<-2.∴-3<-2<1.故选A. 答案 A6.(2013·,1,3分)在数0,2,-3,-1.2中,属于负整数的是( ) A .0B .2C .-3D .-1.2解析 根据负整数的定义,属于负整数的是-3. 答案 C7.(2014·,2,4分)轨道交通1号线、2号线建设总投资253.7亿元.其中253.7亿用科学记数法表示为( )A .253.7×108B .25.37×109C .2.537 ×1010D .2.537 ×1011解析 253.7亿=253.7×108=2.537 ×1010,故选C. 答案 C8.(2014·,1,3分)在数23,1,-3,0中,最大的数是( )A.23B .1C .-3D .0解析 在数23,1,-3,0中,按从大到小的顺序排列为1>23>0>-3,故选B.答案 B9.★(2013·,1,3分)下列计算正确的是 ( )A.⎝ ⎛⎭⎪⎫13-2=9B.(-2)2=-2 C .(-2)0=-1D .|-5-3|=2解析 A 中,⎝ ⎛⎭⎪⎫13-2=1⎝ ⎛⎭⎪⎫132=119=9;B 中,(-2)2=4=2;C 中,(-2)0=1;D 中,|-5-3|=|-8|=8.故选A. 答案 A10.(2014·,4,3分)下列整数中,与30最接近的是 ( )A .4B .5C .6D .7解析 由25<30<36,可知25<30<36,即5<30<6.又∵30.25=5.5,30<30.25,可知30更接近5.故选B. 答案 B 二、填空题11.(2013·,13,3分)实数-8的立方根是________. 解析 ∵(-2)3=-8,∴-8的立方根是-2. 答案 -212.(2013·永州,9,3分)钓鱼岛列岛是我国固有领土,共由8个岛屿组成,其中最大的岛是钓鱼岛,面积约为4.3平方公里,最小的岛是飞濑岛,面积约为0.000 8平方公里,请用科学记数法表示飞濑岛的面积约为________平方公里.解析 在0.000 8中,8前面有4个0,则0.000 8=8×10-4. 答案 8×10-413.(2014·,18,3分)若实数m,n满足||m-2+(n-2 014)2=0,则m-1+n0=________.解析∵||m-2+(n-2 014)2=0,∴m-2=0,n-2 014=0,即m=2,n=2 014.∴m-1+n0=2-1+2 0140=12+1=32.故答案为32.答案3 2三、解答题14.(2014·,17,6分)计算:8-4cos 45°+(12)-1+||-2.解8-4cos 45°+(12)-1+||-2=22-4×22+2+2=22-22+4=4.15.(2014·,17,6分)计算:(-3)2+||-4×2-1-(2-1)0.解原式=3+4×12-1=3+2-1=4.16.★(2013·滨州,20,7分)(计算时不能使用计算器)计算:33-(3)2+(π+3)0-27+|3-2|.解原式=3-3+1-33+2-3=-3 3.§1.2 整式及其运算A组2015年全国中考题组一、选择题1.(2015·,3,3分)下列运算正确的是( )A.a3+a3=2a6B.(x2)3=x5C.2a4÷a3=2a2D.x3·x2=x5解析A.a3+a3=2a3;B.(x2)3=x6;C.2a4÷a3=2a,故选D.答案 D2.(2015·,2,3分)化简-16(x-0.5)的结果是( ) A.-16x-0.5 B.16x+0.5C.16x-8 D.-16x+8解析计算-16(x-0.5)=-16x+8.所以D项正确.答案 D3.(2015·,4,3分)若单项式2x2y a+b与-13x a-b y4是同类项,则a,b的值分别为( )A.a=3,b=1 B.a=-3,b=1C .a =3,b =-1D .a =-3,b =-1解析 由同类项的定义可得⎩⎨⎧a -b =2,a +b =4,解得⎩⎨⎧a =3,b =1,故选A.答案 A4.(2015·,2,3分)计算(a 2)3结果正确的是 ( )A .3a 2B .a 6C .a 5D .6a解析 本题属于积的乘方,底数不变指数相乘,故B 正确. 答案 B5.(2015·,5,3分)计算3x 3·2x 2的结果为 ( ) A .5x 5B .6x 5C .6x 6D .6x 9解析 属于单项式乘单项式,结果为:6x 5,故B 项正确. 答案 B6.(2015·,6,3分)计算a ·a -1的结果为 ( ) A .-1B .0C .0D .-a解析 a ·a -1=1,故A 正确. 答案 A 二、填空题7.(2015·,12,4分)计算(x -1)(x +2)的结果是________. 解析 由多项式乘以多项式的法则可知:(x -1)(x +2)=x 2+x -2. 答案 x 2+x -28.(2015·,9,3分)计算:3a 3·a 2-2a 7÷a 2=________.解析 本题属于同底数幂的乘除,和合并同类项,3a 3·a 2-2a 7÷a 2=3a 5-2a 5=a5. 答案a59.(2015·,10,3分)一组按规律排列的式子:a2,a34,a56,a78,…,则第n个式子是________(n为正整数).解析a,a3,a5,a7,…,分子可表示为:a2n-1,2,4,6,8,…,分母可表示为2n,则第n个式子为:a2n-1 2n.答案a2n-1 2n三、解答题10.(2015·,17(2),5分)化简:(2a+1)(2a-1)-4a(a-1).解原式=4a2-1-4a2+4a=4a-1.11.(2015·随州,19,5分)先化简,再求值:(2+a)(2-a)+a(a-5b)+3a5b3÷(-a2b)2,其中ab=-1 2 .解原式=4-a2+a2-5ab+3ab=4-2ab,当ab=-12时,原式=4+1=5.B组2014~2011年全国中考题组一、选择题1.(2014·,13,3分)若-2a m b4与5a n+2b2m+n可以合并成一项,则m n的值是( )A.2 B.0C .-1D .1解析 由同类项的定义可得⎩⎨⎧m =n +2,4=2m +n ,解得⎩⎨⎧m =2,n =0.∴m n =20=1.故选D.答案 D2.(2014·,3,3分)下列式子运算正确的是 ( )A .a 8÷a 2=a 6B .a 2+a 3=a 5C .(a +1)2=a 2+1D .3a 2-2a 2=1解析 选项A 是同底数幂的除法,根据同底数幂除法运算的性质可知a 8÷a 2=a 6,所以选项A 是正确的;选项B 是整式的加法,因为a 2,a 3不是同类项,所以无法合并,所以选项B 是错误的;选项C 是整式的乘法,根据完全平方公式可知(a +1)2=a 2+2a +1,所以选项C 是错误的;选项D 是整式的加法,根据合并同类项法则可知3a 2-2a 2=a 2,所以选项D 是错误的.故选A. 答案 A3.(2014·,8,3分)若a +b =22,ab =2,则a 2+b 2的值为 ( )A .6B .4C .3 2D .2 3解析 ∵a +b =22,∴(a +b )2=(22)2,即a 2+b 2+2ab =8.又∵ab =2,∴a 2+b 2=8-2ab =8-4=4.故选B. 答案 B4.(2013·,2,3分)下列计算正确的是 ( ) A .a 2+a 2=a 4 B .2a -a =2 C .(ab )2=a 2b 2D .(a 2)3=a 5解析 A .a 2+a 2=2a 2,故本选项错误;B.2a -a =a ,故本选项错误;C.(ab )2=a2b2,故本选项正确;D.(a2)3=a6,故本选项错误.故选C.答案 C5.★(2013·湘西,7,3分)下列运算正确的是( ) A.a2·a4=a8B.(x-2)(x+3)=x2-6C.(x-2)2=x2-4 D.2a+3a=5a解析A中,a2·a4=a6,∴A错误;B中,(x-2)(x+3)=x2+x-6,∴B错误;C中,(x-2)2=x2-4x+4,∴C错误;D中,2a+3a=(2+3)a=5a,∴D正确.故选D.答案 D二、填空题6.(2013·,11,5分)计算:x5÷x3=________.解析根据同底数幂除法法则,∴x5÷x3=x5-3=x2.答案x27.(2013·义乌,12,4分)计算:3a·a2+a3=________.解析3a·a2+a3=3a3+a3=4a3.答案4a38.(2013·,14,4分)已知实数a、b满足:a+b=2,a-b=5,则(a+b)3·(a -b)3的值是________.解析法一∵a+b=2,a-b=5,∴原式=23×53=103=1 000.法二原式=[(a+b)(a-b)]3=103=1 000.答案 1 000三、解答题9.(2013·,18,6分)如图,在长和宽分别是a ,b 的矩形纸片的四个角都剪去一个边长为x 的正方形.(1)用含a ,b ,x 的代数式表示纸片剩余部分的面积;(2)当a =6,b =4,且剪去部分的面积等于剩余部分的面积时,求正方形的边长.解 (1)面积=ab -4x 2.(2)根据题意可得:ab -4x 2=4x 2(或4x 2=12ab =12).整理得:8x 2=24, 解得x =± 3.∵x >0,∴正方形边长为 3.10.(2014·,17,6分)计算:(3+a )(3-a )+a 2. 解 原式=9-a 2+a 2=9.11.(2014·,17,4分)先化简,再求值:a (a -3b )+(a +b )2-a (a -b ),其中a =1,b =-12.解 a (a -3b )+(a +b )2-a (a -b )=a 2-3ab +a 2+2ab +b 2-a 2+ab =a 2+b 2. 当a =1,b =-12时,原式=12+⎝ ⎛⎭⎪⎫-122=54.12.(2014·,18,6分)先化简,再求值:(x +5)(x -1)+(x -2)2,其中x =-2.解(x+5)(x-1)+(x-2)2=x2+4x-5+x2-4x+4=2x2-1.当x=-2时,原式=2×(-2)2-1=8-1=7.§1.3 因式分解A组2015年全国中考题组一、选择题1.(2015·,5,3分)把代数式3x3-12x2+12x分解因式,结果正确的是( )A.3x(x2-4x+4) B.3x(x-4)2C.3x(x+2)(x-2) D.3x(x-2)2解析先提公因式3x再用公式法分解:3x3-12x2+12x=3x(x2-4x+4)=3x(x-2)2,故D正确.答案 D2.(2015·,5,3分)多项式mx2-m与多项式x2-2x+1的公因式是( ) A.x-1 B.x+1C.x2-1 D.(x-1)2解析mx2-m=m(x-1)(x+1),x2-2x+1=(x-1)2,多项式mx2-m与多项式x2-2x+1的公因式是(x-1).答案 A3.(2015·华师一附中自主招生,7,3分)已知a,b,c分别是△ABC的三边长,且满足2a4+2b4+c4=2a2c2+2b2c2,则△ABC是( ) A.等腰三角形B.等腰直角三角形C.直角三角形D.等腰三角形或直角三角形解析∵2a4+2b4+c4=2a2c2+2b2c2,∴4a4-4a2c2+c4+4b4-4b2c2+c4=0,∴(2a2-c2)2+(2b2-c2)2=0,∴2a2-c2=0,2b2-c2=0,∴c=2a,c=2b,∴a=b,且a2+b2=c2.∴△ABC为等腰直角三角形.答案 B二、填空题4.(2015·,11,5分)分解因式:a2-2a+1=________.解析利用完全平方公式进行分解.答案(a-1)25.(2015·,12,4分)分解因式:m3n-4mn=________.解析m3n-4mn=mn(m2-4)=mn(m+2)(m-2).答案mn(m+2)(m-2)6.(2015·,12,3分)分解因式:12x2-3y2=________.解析12x2-3y2=3(2x+y)(2x-y).答案3(2x+y)(2x-y)7.(2015·,12,3分)分解因式:(a-b)2-4b2=________.解析(a-b)2-4b2=(a-b+2b)(a-b-2b)=(a+b)(a-3b).答案(a+b)(a-3b)8.(2015·,13,3分)分解因式:2m2-2=________.解析2m2-2=2(m2-1)=2(m+1)(m-1).答案2(m+1)(m-1)三、解答题9.(2015·宿豫区,19,6分)因式分解:(1)x4-81;(2)6a(1-b)2-2(b-1)2.解(1)x4-81=(x2+9)(x2-9)=(x2+9)(x+3)(x-3);(2)6a(1-b)2-2(b-1)2=2(1-b)2(3a-1).B组2014~2011年全国中考题组一、选择题1.(2014·,7,3分)下列因式分解正确的是( ) A.x2-y2=(x-y)2B.a2+a+1=(a+1)2C.xy-x=x(y-1) D.2x+y=2(x+y)解析A中,由平方差公式可得x2-y2=(x+y)(x-y),故A错误;B中,左边不符合完全平方公式,不能分解;C中,由提公因式法可知C正确;D中,左边两项没有公因式,分解错误.故选C.答案 C2.(2014·,4,3分)下列因式分解正确的是( ) A.2x2-2=2(x+1)(x-1)B.x2+2x-1=(x-1)2C.x2+1=(x+1)2D.x2-x+2=x(x-1)+2解析A中,2x2-2=2(x2-1)=2(x+1)(x-1),故A正确;B中,左边多项式不符合完全平方公式,不能分解;C中,左边多项式为两项,不能用完全平方公式分解,故C错误;D中,右边不是乘积的形式,不是因式分解,故D 错误.故选A.答案 A3.(2014·威海,3,3分)将下列多项式分解因式,结果中不含因式x-1的是( )A.x2-1 B.x(x-2)+(2-x)C.x2-2x+1 D.x2+2x+1解析A中,x2-1=(x+1)(x-1),不符合题意;B中,x(x-2)+(2-x)=x(x-2)-(x-2)=(x-2)(x-1),不符合题意;C中,x2-2x+1=(x-1)2,不符合题意;D中,x2+2x+1=(x+1)2,符合题意,故选D.答案 D4.(2012·,5,4分)把a2-4a多项式分解因式,结果正确的是( )A.a(a-4) B.(a+2)(a-2)C.a(a+2)(a-2) D.(a-2)2-4解析a2-4a=a(a-4).答案 A5.(2011·,3,3分)下列各式能用完全平方公式进行分解因式的是( ) A.x2+1 B.x2+2x-1C.x2+x+1 D.x2+4x+4解析根据完全平方公式:a2±2ab+b2=(a±b)2可得,选项A,B,C都不能用完全平方公式进行分解因式,D.x2+4x+4=(x+2)2.答案 D二、填空题6.(2014·,13,3分)因式分解a3-4a的结果是________.解析a3-4a=a(a2-4)=a(a+2)(a-2).故答案为a(a+2)(a-2).答案a(a+2)(a-2)7.(2013·,11,5分)分解因式:x2-y2=________.解析直接利用平方差公式进行因式分解.答案(x+y)(x-y)8.(2012·,11,5分)分解因式:a3-a=________.解析a3-a=a(a2-1)=a(a+1)(a-1).答案a(a+1)(a-1)9.(2013·,12,3分)分解因式:x2-4(x-1)=________.解析原式=x2-4x+4=(x-2)2.答案(x-2)210.★(2013·,11,4分)多项式ax2-a与多项式x2-2x+1的公因式是________.解析∵ax2-a=a(x2-1)=a(x+1)(x-1),x2-2x+1=(x-1)2,∴它们的公因式是(x-1).答案x-111.(2013·,11,3分)若m=2n+1,则m2-4mn+4n2的值是________.解析法一∵m=2n+1,∴m-2n=1.∴m2-4mn+4n2=(m-2n)2=12=1.法二把m=2n+1代入m2-4mn+4n2,得m2-4mn+4n2=(2n+1)2-4n(2n+1)+4n2=4n2+4n+1-8n2-4n+4n2=1.答案 112.(2013·黔西南州,18,3分)因式分解:2x4-2=________.解析2x4-2=2(x4-1)=2(x2+1)(x2-1)=2(x2+1)(x+1)(x-1).答案2(x2+1)(x+1)(x-1)§1.4 分式A 组 2015年全国中考题组一、选择题1.(2015·,4,3分)分式-11-x可变形为 ( ) A .-1x -1B.11+xC .-11+xD.1x -1解析 由分式的性质可得:-11-x =1x -1. 答案 D2.(2015·,3,3分)化简m 2m -3-9m -3的结果是( )A .m +3B .m -3C.m -3m +3D.m +3m -3解析 原式=m 2-9m -3=(m +3)(m -3)m -3=m +3.答案 A3.(2015·,3,3分)化简a 2+2ab +b 2a 2-b 2-ba -b的结果是 ( )A.a a -bB.b a -bC.a a +bD.b a +b解析 原式= (a +b )2(a +b )(a -b )-b a -b =a +b a -b -b a -b =a +b -b a -b =aa -b .答案 A4.(2015·,5,3分)化简 x 2x -1+11-x 的结果是( )A .x +1B.1x +1C .x -1D.x x -1解析 原式=x 2x -1-1x -1=x 2-1x -1=(x +1)(x -1)x -1=x +1. 答案 A 二、填空题5.(2015·,13,4分)计算:1a -1+a1-a的结果是________. 解析1a -1+a 1-a =1-a a -1=-1. 答案 -16.(2015·,19,6分)化简:m 2m 2+2m +1÷⎝ ⎛⎭⎪⎫1-1m +1=________.解析 原式=m 2(m +1)2÷m +1-1m +1=m 2(m +1)2·m +1m =mm +1.答案 m m +17.(2015·,16,4分)化简:⎝ ⎛⎭⎪⎫2n +1n +n ÷n 2-1n=________.解析 ⎝ ⎛⎭⎪⎫2n +1n +n ÷n 2-1n =⎝ ⎛⎭⎪⎫2n +1n +n 2n ·n n 2-1=n 2+2n +1n ·n n 2-1=(n +1)2n ·n(n +1)(n -1)=n +1n -1.答案n +1n -18.(2015·,18,7分)化简:(a +b )2a 2+b 2-2aba 2+b 2=________.解析 (a +b )2a 2+b 2-2ab a 2+b 2=a 2+2ab +b 2-2ab a 2+b 2=a 2+b 2a 2+b 2=1.答案 1 三、解答题9.(2015·,19,5分)先化简:x 2+x x 2-2x +1÷⎝⎛⎭⎪⎫2x -1-1x ,再从-2<x <3的围选取一个你最喜欢的值代入求值.解 原式=x (x +1)(x -1)2÷2x -x +1x (x -1)=x (x +1)(x -1)2·x (x -1)x +1=x 2x -1.当x =2时,原式=4.B 组 2014~2011年全国中考题组一、选择题1.(2014·,4,4分)要使分式x +1x -2有意义,则x 的取值应满足 ( )A .x ≠2B .x ≠-1C .x =2D .x =-1解析 由x -2≠0得x ≠2,故选A. 答案 A2.(2014·,7,3分)若(4a 2-4+12-a)·w =1,则w = ( )A .a +2(a ≠-2)B .-a +2(a ≠2)C .a -2(a ≠2)D .-a -2(a ≠±2)解析 原式可以化简如下:4-(a +2)(a +2)(a -2)·w =1,-(a -2)(a +2)(a -2)·w =1,-1a +2·w =1,所以w =-(a +2)=-a -2.故选D. 答案 D3.(2013·,2,2分)计算a 3·⎝ ⎛⎭⎪⎫1a 2的结果是( ) A .aB .a 5C .a 6D .a 9解析 a 3·⎝ ⎛⎭⎪⎫1a 2=a 3·1a 2=a ,故选A.答案 A4.(2013·,6,3分)化简a +1a 2-2a +1÷(1+2a -1)的结果是 ( )A.1a -1B.1a +1 C.1a 2-1D.1a 2+1解析 原式=a +1(a -1)2÷a +1a -1=a +1(a -1)2×a -1a +1 =1a -1,故选A.答案 A5.(2013·,6,3分)如图,设k =甲图中阴影部分面积乙图中阴影部分面积(a >b >0),则有( )A.k>2 B.1<k<2C.12<k<1 D.0<k<12解析甲图中阴影部分面积是:a2-b2,乙图中阴影部分的面积是a2-ab,∴k=a2-b2a2-ab=(a+b)(a-b)a(a-b)=a+ba=1+ba.∵a>b>0,∴0<ba<1.∴1<1+ba<2.答案 B 二、填空题6.(2011·,11,4分)当x________时,分式13-x有意义.解析要使分式13-x有意义,必须3-x≠0,即x≠3.答案≠37.(2012·,12,4分)化简m2-163m-12得________;当m=-1时,原式的值为________.解析m2-163m-12,=(m +4)(m -4)3(m -4)=m +43,当m =-1时,原式=-1+43=1. 答案m +4318.(2014·,13,4分)计算:1a -1+a 1-a的结果是________. 解析 1a -1+a 1-a =1a -1-a a -1=1-a a -1=-(a -1)a -1=-1.答案 -19.(2014·东营,15,4分)如果实数x ,y 满足方程组⎩⎨⎧x +3y =0,2x +3y =3,那么代数式⎝ ⎛⎭⎪⎫xy x +y +2÷1x +y的值为______. 解析 解方程组可得⎩⎨⎧x =3,y =-1.∴⎝ ⎛⎭⎪⎫xy x +y +2÷1x +y =⎝⎛⎭⎪⎫xy x +y +2·(x +y )=xy +2x +2y =3×(-1)+2×3+2×(-1)=1. 答案 110.(2014·,16,3分)有一个计算程序,每次运算都是把一个数先乘2,再除以它与1的和,多次重复进行这种运算的过程如下:输入x ――→第1次y 1=2x x +1――→第2次y 2=2y 1y 1+1――→第3次y 3=2y 2y 2+1――→… 则第n 次的运算结果=____________(含字母x 和n 的代数式表示). 解析 将第2、3、4次化简后列表如下:故答案为2n x(2n -1)x +1.答案 2n x(2n -1)x +1三、解答题11.(2012·,19,6分)计算:a 2-4a +2+a +2.解 法一:原式=(a +2)(a -2)a +2+a +2=a -2+a +2=2a .法二:原式=a 2-4a +2+(a +2)2a +2=a 2-4a +2+a 2+4a +4a +2=2a 2+4a a +2=2a (a +2)a +2=2a .12.(2013·,17,5分)化简:ba 2-b 2÷⎝ ⎛⎭⎪⎫1-a a +b .解 原式=b(a +b )(a -b )÷⎝ ⎛⎭⎪⎫a +b a +b -a a +b=b(a +b )(a -b )·a +b b =1a -b. 13.(2013·,17,6分)先化简,再求值:x 2-4x +42x ÷x 2-2x x 2+1,在0,1,2,三个数中选一个合适的,代入求值. 解 原式=(x -2)22x ·x 2x (x -2)+1=x -22+1=x2.当x=1时,原式=1 2 .14.(2014·,21,8分)先化简x-4x2-9÷⎝⎛⎭⎪⎫1-1x-3,再从不等式2x-3<7的正整数解中选一个使原式有意义的数代入求值.解原式=x-4(x+3)(x-3)÷x-3-1x-3=x-4(x+3)(x-3)·x-3x-4=1x+3.解不等式2x-3<7,得x<5.取x=0时,原式=1 3 .(本题最后答案不唯一,x≠±3,x≠4即可)§1.5 二次根式A组2015年全国中考题组一、选择题1.(2015·,3,3分)化简12的结果是( ) A.4 3 B.2 3 C.3 2 D.2 6解析化简得:23,故B正确.答案 B2.(2015·,3,3分)要使二次根式x-2有意义,x必须满足( ) A.x≤2 B.x≥2 C.x<2 D.x>2解析由x-2≥0得:x≥2.故B正确.答案 B3.(2015·,4,3分)下列式子为最简二次根式的是( )A. 3B. 4C.8D.1 2解析4=2,8=22,12=22,4,8,12都不是最简二次根式,故选A.答案 A4.(2015·,9,3分)已知x=2-3,则代数式(7+43)x2+(2+3)x+3的值是( ) A.0 B. 3 C.2+ 3 D.2- 3解析原式=(7+43)(2-3)2+(2+3)(2-3)+3=49-48+4-3+3=2+ 3.故选C.答案 C二、填空题5.(2015·,11,4分)27+3=________.解析原式=33+3=4 3.答案4 36.(2015·,12,3分)计算5×153的结果是________.解析5×153=5×5=5.答案 57.(2015·,12,3分)计算:18-212等于________.解析原式=32-2=2 2.答案2 2三、解答题8.(2015·凉山州,19,5分)计算:-32+3×1tan 60°+|2-3|.解-32+3×1tan 60°+|2-3|=-9+3×13+3-2=-5- 2.9. (2015·,21,6分)阅读与计算:请阅读以下材料,并完成相应的任务.斐波那契(约1170~1250)是意大利数学家,他研究了一列数,这列数非常奇妙,被称为斐波那契数列(按照一定顺序排列着的一列数称为数列).后来人们在研究它的过程中,发现了许多意想不到的结果,在实际生活中,很多花朵(如梅花、飞燕草、万寿菊等)的瓣数恰是斐波那契数列中的数.斐波那契数列还有很多有趣的性质,在实际生活中也有广泛的应用.斐波那契数列中的第n个数可以用1 5⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1+52n -⎝ ⎛⎭⎪⎫1-52n 表示(其中,n ≥1).这是用无理数表示有理数的一个例.任务:请根据以上材料,通过计算求出斐波那契数列中的第1个数和第2个数.解 第1个数,当n =1时, 15⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1+52n -⎝ ⎛⎭⎪⎫1-52n=15⎝ ⎛⎭⎪⎫1+52-1-52 =15×5=1. 第2个数,当n =2时, 15⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1+52n -⎝ ⎛⎭⎪⎫1-52n =15⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1+522-⎝ ⎛⎭⎪⎫1-522=15⎝ ⎛⎭⎪⎫1+52+1-52⎝ ⎛⎭⎪⎫1+52-1-52 =15×1×5=1. B 组 2014~2011年全国中考题组一、选择题1.(2013·,1,4分)下列式子中,属于最简二次根式的是 ( ) A.9B.7C.20D.13解析 ∵9=32=3,20=22×5=25,13=13=33,∴9,20,13都不是最简二次根式,7是最简二次根式,故选B. 答案 B2.(2013·,5,3分)化简2+(2-1)的结果是( )A .22-1B .2- 2C .1- 2D .2+ 2解析2+(2-1)=2+2-1=22-1,故选A.答案 A3.★(2013·,2,3分)下列计算正确的是( )A .43-33=1 B.2+3= 5 C .212= 2D .3+22=5 2解析 43-33=3,∴A 错误;∵2与3被开方数不同,不能合并,∴B 错误;212=2×22=2,∴C 正确;3和22一个是有理数,一个是无理数,不能合并,∴D 错误.综上所述,选C. 答案 C4.(2013·,5,3分)计算48-913的结果是 ( )A .- 3 B. 3 C .-1133D.1133 解析 48-913=43-33= 3. 答案 B5.(2014·,7,3分)如果ab>0,a+b<0,那么下面各式:①ab=ab,②a b·ba=1,③ab÷ab=-b,其中正确的是( )A.①②B.②③C.①③D.①②③解析∵ab>0,a+b<0,∴a,b同号,且a<0,b<0,∴ab>0,ba>0.ab=ab.等号右边被开方数小于零,无意义,∴①不正确;ab·ba=ab·ba=1,②正确;ab÷ab=ab·ba=b2=-b,∴③正确.故选B.答案 B二、填空题6.(2013·,11,4分)二次根式x-3中,x的取值围为________.解析由二次根式有意义,得出x-3≥0,解得x≥3.答案x≥37.(2014·,13,4分)计算:(2+1)(2-1)=________.解析由平方差公式可得(2+1)(2-1)=(2)2-12=2-1=1.答案 18.(2013·,22,3分)化简:3(2-3)-24-︱6-3︱=________.解析原式=3×2-(3)2-26-3+6=6-3-26-3+6=-6.答案-69.(2012·,14,4分)已知a (a -3)<0,若b =2-a ,则b 的取值围是________. 解析 由题意知,a >0,∴a >0,∴a -3<0,解得:0<a <3,∴2-3<2-a <2,即:2-3<b <2. 答案 2-3<b <2 三、解答题10.(2013·,17,5分)计算:8+(2-1)+⎝ ⎛⎭⎪⎫120.解8+(2-1)+⎝ ⎛⎭⎪⎫120=22+2-1+1=3 2.11.(2013·,19,6分)先化简,再求值:1x -y ÷⎝ ⎛⎭⎪⎫1y -1x ,其中x =3+2,y =3- 2.解 1x -y ÷⎝ ⎛⎭⎪⎫1y -1x =1x -y ·xy x -y =xy (x -y )2,当x =3+2,y =3-2时, 原式=(3+2)(3-2)(3+2-3+2)2=18.第二章 方程(组)与不等式(组)§2.1 一元一次方程与可化为一元一次方程的分式方程A组2015年全国中考题组一、选择题1.(2015·,8,3分)解分式方程2x-1+x+21-x=3时,去分母后变形正确的为( )A.2+(x+2)=3(x-1) B.2-x+2=3(x-1)C.2-(x+2)=3 D.2-(x+2)=3(x-1)解析公分母为x-1,结果为: 2-(x+2)=3(x-1),故D正确.答案 D2.(2015·,7,3分)某村原有林地108公顷,旱地54公顷,为保护环境,需把一部分旱地改造为林地,使旱地面积占林地面积的20%,设把x公顷旱地改为林地,则可列方程( ) A.54-x=20%×108 B.54-x=20%(108+x)C.54+x=20%×162 D.108-x=20%(54+x)解析∵改造完后的林地为(108+x)公顷,改造完后的旱地是(54-x)公顷,∴54-x=20%(108+x).故选B.答案 B3.(2015·,5,3分)若代数式4x-5与2x-12的值相等,则x的值是( )A.1 B.32C.23D.2解析根据题意得:4x-5=2x-12,去分母得:8x-10=2x-1,解得:x=32,故选B. 答案 B4.(2015·,5,3分)方程x2-1x+1=0的解是( )A.1或-1 B.-1 C.0 D.1解析去分母得:x2-1=0,即x2=1,解得:x=1或x=-1,经检验x=-1是增根,分式方程的解为x=1.答案 D5.(2015·,6,3分)分式方程2x-2+3x2-x=1的解为( )A.1 B.2 C.13D.0解析去分母得:2-3x=x-2,解得:x=1,经检验x=1是分式方程的解.答案 A二、填空题6.(2015·,14,3分)分式方程3x+2=2x的解x=________.解析去分母得:3x=2x+4,解得:x=4.经检验x=4是原分式方程的解.答案 47. (2015·,16,5分)实验室里,水平桌面上有甲、乙、丙三个圆柱形容器(容器足够高),底面半径之比为1∶2∶1,用两个相同的管子在容器的5 cm高度处连通(即管子底离容器底5 cm),现三个容器中,只有甲中有水,水位高1 cm,如图所示,若每分钟同时向乙和丙注入相同量的水,开始注水1分钟,乙的水位上升56cm,则开始注入________分钟的水量后,甲与乙的水位高度之差是0.5 cm.解析第一种情况,甲比乙高0.5 cm,0.5÷56=35分钟;第二种情况,乙比甲高0.5 cm且甲的水位不变,时间为3320分钟;第三种情况,乙达到5 cm后,乙比甲高0.5 cm,时间为17140分钟.答案35或3320或171408.(2015·,13,3分)分式方程1x-5-10x2-10x+25=0的解是________.解析去分母得:x-5-10=0,解得:x=15,经检验x=15是分式方程的解.答案159.(2015·威海,12,3分)分式方程1-xx-3=13-x-2的解为________.解析去分母得:1-x=-1-2x+6,解得:x=4,经检验x=4是分式方程的解.答案x=4三、解答题10.(2015·,22,7分)下表为市居民每月用水收费标准(单位:元/m3).(1)某用户用水10立方米,共交水费23元,求a的值;(2)在(1)的前提下,该用户5月份交水费71元,请问该用户用水多少立方米?解(1)由题意可得:10a=23,解得:a=2.3,答:a的值为2.3;(2)设用户用水量为x立方米,∵用水22立方米时,水费为:22×2.3=50.6<71,∴x>22,∴22×2.3+(x-22)×(2.3+1.1)=71,解得:x=28.答:该用户用水28立方米.11.(2015·,19,4分)解方程:1-xx-2=x2x-4-1.解化为整式方程得:2-2x=x-2x+4,解得:x=-2.经检验x=-2是分式方程的解.12.(2015·,18,8分)解方程:x2x-3+53x-2=4.解 去分母得:3x 2-2x +10x -15=4(2x -3)(3x -2),整理得:3x 2-2x +10x -15=24x 2-52x +24,即7x 2-20x +13=0,分解因式得:(x -1)(7x -13)=0,解得:x 1=1,x 2=137,经检验x 1=1与x 2=137都为分式方程的解.13.(2015·,22,8分)某工厂计划在规定时间生产24 000 个零件,若每天比原计划多生产30个零件,则在规定时间可以多生产300个零件. (1)求原计划每天生产的零件个数和规定的天数;(2)为了提前完成生产任务,工厂在安排原有工人按原计划正常生产的同时,引进5组机器人生产流水线共同参与零件生产,已知每组机器人生产流水线每天生产零件的个数比20个工人原计划每天生产的零件总数还多20%,按此测算,恰好提前两天完成24 000个零件的生产任务,求原计划安排的工人人数.解 (1)设原计划每天生产零件x 个,由题意得24 000x=24 000+300x +30,解得x =2 400.经检验,x =2 400是原方程的根,且符合题意, ∴规定的天数为24 000÷2 400=10(天).答:原计划每天生产零件2 400 个,规定的天数是10天.(2)设原计划安排工人人数为y 人,由题意得,⎣⎢⎡⎦⎥⎤5×20×(1+20%)×2 400y +2 400×(10-2)=24 000.解得y =480.经检验y =480是原方程的根,且符合题意.答:原计划安排工人人数为480人.B 组 2014~2011年全国中考题组一、选择题1.(2014·,2,3分)方程x +2=1的解是 ( ) A .3B .-3C .1D .-1解析 x +2=1,移项得:x =1-2,x =-1.故选D. 答案 D2.(2014·,7,3分)将分式方程1-2x x -1=3x -1去分母,得到正确的整式方程是( )A .1-2x =3B .x -1-2x =3C .1+2x =3D .x -1+2x =3解析 两边同时乘以(x -1),得x -1-2x =3,故选B. 答案 B3.(2014·枣庄,6,3分)某商场购进一批服装,每件进价为200元,由于换季滞销,商场决定将这种服装按标价的六折销售,若打折后每件服装仍能获利20%,则该服装标价是( )A .350元B .400元C .450元D .500元解析 设这批服装的标价为x 元,得0.6x -200200=20%,解得x =400,故选B.答案 B4.(2013·宿迁,6,3分)方程2x x -1=1+1x -1的解是( )A.x=-1 B.x=0 C.x=1 D.x=2解析方程两边都乘以x-1,得2x=x-1+1.移项,合并,得x=0.经检验,x=0是原方程的解.故选B.答案 B二、填空题5.(2014·,14,4分)方程xx-2=12-x的根x=________.解析去分母,两边同乘以x-2,得x=-1,经检验x=-1是原方程的根,故答案为-1.答案-16.(2013·,12,4分)分式方程1x-2=0的解是________.解析去分母得1-2x=0,解得x=12.经检验,x=12是原方程的解.答案x=1 27.★(2013·,16,3分)若关于x的分式方程xx-1=3a2x-2-2有非负数解,则a的取值围是________.解析去分母,得2x=3a-2(2x-2),解得x=3a+4 6.∵有非负数解,∴3a+4≥0,即a≥-4 3 .又∵x-1≠0,即x≠1,∴3a +4≠6,解得a ≠23.∴a ≥-43且a ≠23.答案 a ≥-43且a ≠238.(2013·,15,4分)到的铁路长1 487千米,动车的原平均速度为x 千米/时,提速后平均速度增加了70千米/时,由到的行驶时间缩短了3小时,则可列方程为________.解析 动车从到以平均速度为x 千米/时行完全程所需时间为1 487x小时,提速后行完全程所需时间为1 487x +70小时,又行驶时间缩短了3小时,即少用3小时,故所列方程应为1 487x-1 487x +70=3. 答案1 487x-1 487x +70=3 三、解答题9.(2014·,18,8分)解方程:1x -1-3x 2-1=0.解 方程两边同乘x 2-1,得:x +1-3=0. ∴x =2.经检验,x =2是原方程的根.10.(2014·,24,10分)用正方形硬纸板做三棱柱盒子,每个盒子由3个矩形侧面和2个正三角形底面组成.硬纸板以如图两种方法裁剪(裁剪后边角料不再利用).A 方法:剪6个侧面;B 方法:剪4个侧面和5个底面.现有19硬纸板,裁剪时x 用A 方法,其余用B 方法. (1)用x 的代数式分别表示裁剪出的侧面和底面的个数; (2)若裁剪出的侧面和底面恰好全部用完,问能做多少个盒子? 解 (1)裁剪出的侧面个数为6x +4(19-x )=(2x +76)个, 裁剪出的底面个数为5(19-x )=(-5x +95)个. (2)由题意,得2x +763=-5x +952,∴x =7.当x =7时,2x +763=30. ∴能做30个盒子.§2.2 一元二次方程A组2015年全国中考题组一、选择题1.(2015·,5,3分)一元二次方程x2+4x-3=0的两根为x1,x2,则x1·x2的值是( ) A.4 B.-4 C.3 D.-3解析根据两根之积x1·x2=ca=-3.所以D正确.答案 D2.(2015·,6,3分)某种品牌运动服经过两次降价,每件零售价由560元降为315元,已知两次降价的百分率相同,求每次降价的百分率.设每次降价的百分率为x,下面所列的方程中正确的是( ) A.560(1+x)2=315 B.560(1-x)2=315C.560(1-2x)2=315 D.560(1+x2)=315解析由题意可列方程为:560(1-x)2=315.故B正确.答案 B3.(2015·,5,3分)三角形两边长分别为3和6,第三边的长是方程x2-13x+36=0的两根,则该三角形的周长为 ( ) A .13B .15C .18D .13或18解析 解方程x 2-13x +36=0得,x =9或4,即第三边长为9或4.边长为9,3,6不能构成三角形;而4,3,6能构成三角形,所以三角形的周长为3+4+6=13. 答案 A4.(2015·,5,3分)关于x 的一元二次方程(m -2)x 2+(2m +1)x +m -2=0有两个不相等的正实数根,则m 的取值围是( )A .m >34B .m >34且m ≠2C .-12<m <2D.34<m <2 解析 根据题意得m -2≠0且Δ=(2m +1)2-4(m -2)·(m -2)>0,解得m >34且m ≠2,设方程的两根为a 、b ,则a +b =-2m +1m -2>0,ab =m -2m -2=1>0,而2m +1>0,∴m -2<0,即m <2,∴m 的取值围为34<m <2.答案 D 二、填空题5.(2015·,22,4分)方程:(2x +1)(x -1)=8(9-x )-1的根为________. 解析 化简为:2x 2+7x -72=0,解得:x 1=-8,x 2=4.5. 答案 x 1=-8,x 2=4.56.(2015·,14,4分)关于x 的一元二次方程x 2-3x +b =0有两个不相等的实数根,则b 的取值围是________.解析有题意得:Δ=9-4b>0,解得b<9 4 .答案b<9 47.(2015·,15,3分)设x1,x2是一元二次方程x2-5x-1=0的两实数根,则x21+x22的值为________.解析∵x1,x2是一元二次方程x2-5x-1=0的两实数根,∴x1+x2=5,x1x2=-1,∴x21+x22=(x1+x2)2-2x1x2=25+2=27.答案278.(2015·,11,3分)关于x的一元二次方程x2-x+m=0没有实数根,则m的取值围是________.解析由题意得(-1)2-4×1×m<0解之即可.答案m>1 49.(2015·,13,3分)某楼盘2013年房价为每平方米8 100元,经过两年连续降价后,2015年房价为7 600元.设该楼盘这两年房价平均降低率为x,根据题意可列方程为________.解析先根据题意将每个量用代数式表示,然后利用等量关系建立等式即可.答案8 100(1-x)2=7 600三、解答题10.(2015·,16,8分)关于x的一元二次方程2x2+3x-m=0有两个不相等的实数根,求m的取值围.解∵关于x的一元二次方程2x2+3x-m=0有两个不相等的实数根,∴Δ=32-4×2×(-m)>0,∴m>-98,即m的取值围是m>-98.11.(2015·,28,8分)如图,某农场有一块长40 m,宽32 m的矩形种植地,为方便管理,准备沿平行于两边的方向纵、横各修建一条等宽的小路.要使种植面积为1 140 m2,求小路的宽.解设小路的宽为x m.图中的小路平移到矩形边上时,种植面积是不改变的.∴(40-x)(32-x)=1 140.解得x1=2,x2=70(不合题意,舍去).∴小路的宽为2 m.答:小路的宽为2 m.12.(2015·,21,8分)(1)解下列方程:①x+2x=3根为________;②x+6x=5根为________;③x+12x=7根为________;(2)根据这类方程特征,写出第n个方程为________,其根为________;(3)请利用(2)的结论,求关于x的方程x+n2+nx-3=2n+4(n为正整数)的根.解(1)①去分母,得:x2+2=3x,即x2-3x+2=0,(x-1)(x-2)=0,则x-1=0,x-2=0,解得:x1=1,x2=2.经检验:x1=1,x2=2都是方程的解;②去分母,得:x2+6=5x,即x2-5x+6=0,(x-2)(x-3)=0,则x-2=0,x-3=0,解得:x1=2,x2=3,经检验:x1=2,x2=3是方程的解;③去分母,得:x2+12=7x,即x2-7x+12=0,(x-3)(x-4)=0,则x1=3,x2=4,经检验x1=3,x2=4是方程的解;(2)列出第n个方程为x+n(n+1)x=2n+1,解得:x1=n,x2=n+1;(3)x+n2+nx-3=2n+4,即x-3+n(n+1)x-3=2n+1,则x-3=n或x-3=n+1,解得:x1=n+3,x2=n+4.B组2014~2011年全国中考题组一、选择题1.(2013·,7,3分)一元二次方程(x+6)2=16可转化为两个一元一次方程,其中一个一元一次方程是x+6=4,则另一个一元一次方程是( )A.x-6=-4 B.x-6=4C.x+6=4 D.x+6=-4解析开方得x+6=±4,∴另一个一元一次方程是x+6=-4,故选D.答案 D2.(2014·,8,3分)若x=-2是关于x的一元二次方程x2-52ax+a2=0的一个根,则a的值为( ) A.1或4 B.-1或-4C.-1或4 D.1或-4解析把x=-2代入x2-52ax+a2=0得(-2)2-52a×(-2)+a2=0,解得a1=-1,a2=-4.故选B.答案 B3.(2011·,2,3分)方程x(x-1)=0的解是( ) A.x=0 B.x=1C.x=0或x=1 D.x=0或x=-1解析x(x-1)=0,x=0或x-1=0,x1=0或x2=1.答案 C4.(2013·滨州,10,3分)对于任意实数k,关于x的方程x2-2(k+1)x-k2+2k-1=0的根的情况为( ) A.有两个相等的实数根B.没有实数根C.有两个不相等的实数根D.无法确定解析∵b2-4ac=4(k+1)2-4×(-k2+2k-1)=8k2+8>0,∴这个方程有两个不相等的实数根,故选C.答案 C5.(2013·,10,4分)由于受H7N9禽流感的影响,今年4月份鸡的价格两次大幅下降,由原来每斤12元,连续两次降价a%后售价下调到每斤5元,下列所列的方程中正确的是( ) A.12(1+a%)2=5 B.12(1-a%)2=5C.12(1-2a%)=5 D.12(1-a2%)=5解析第一次降价后的价格为12(1-a%)元,第二次降价后的价格为12(1-a %)2元,∴所列方程为12(1-a %)2=5,故选B. 答案 B6.(2013·黄冈,6,3分)已知一元二次方程x 2-6x +c =0有一个根为2,则另一根为( )A .2B .3C .4D .8解析 把x =2代入方程,得22-6×2+c =0,解得c =8,把c =8代入原方程得x 2-6x +8=0,解得x 1=2,x 2=4.故选C. 答案 C7.(2013·日照,8,3分)已知一元二次方程x 2-x -3=0的较小根为x 1,则下面对x 1的估计正确的是 ( )A .-32<x 1<-1B .-3<x 1<-2C .2<x 1<3D .-1<x 1<0解析 在x 2-x -3=0中,b 2-4ac =(-1)2-4×1×(-3)=13>0,∴x =1±132×1=1±132,∴x 1=1-132.∵3<13<4,∴-32<1-132<-1.故选A. 答案 A 二、填空题8.(2013·,17,4分)若|b -1|+a -4=0,且一元二次方程kx 2+ax +b =0有实数根,则k 的取值围是________.解析 ∵|b -1|≥0,a -4≥0,|b -1|+a -4=0,∴b -1=0,a -4=0,即b =1,a =4.∴原方程为kx 2+4x +1=0.∵一元二次方程kx 2+4x +1=0有实数根,∴42-4k ≥0且k ≠0,即k ≤4且k ≠0.。

数学竞赛试题及答案初中

数学竞赛试题及答案初中

数学竞赛试题及答案初中试题一:代数问题题目:如果\( a \)和\( b \)是两个连续的自然数,且\( a^2 + b^2= 45 \),求\( a \)和\( b \)的值。

解答:设\( a \)为较小的自然数,那么\( b = a + 1 \)。

根据题意,我们有:\[ a^2 + (a + 1)^2 = 45 \]\[ a^2 + a^2 + 2a + 1 = 45 \]\[ 2a^2 + 2a - 44 = 0 \]\[ a^2 + a - 22 = 0 \]分解因式得:\[ (a + 11)(a - 2) = 0 \]因此,\( a = -11 \)或\( a = 2 \)。

由于\( a \)是自然数,所以\( a = 2 \),\( b = 3 \)。

试题二:几何问题题目:在一个直角三角形中,直角边的长度分别为3厘米和4厘米,求斜边的长度。

解答:根据勾股定理,直角三角形的斜边\( c \)可以通过以下公式计算:\[ c = \sqrt{a^2 + b^2} \]其中\( a \)和\( b \)是直角边的长度。

代入数值:\[ c = \sqrt{3^2 + 4^2} \]\[ c = \sqrt{9 + 16} \]\[ c = \sqrt{25} \]\[ c = 5 \]所以斜边的长度是5厘米。

试题三:数列问题题目:一个等差数列的前三项分别是2,5,8,求这个数列的第10项。

解答:等差数列的通项公式是:\[ a_n = a_1 + (n - 1)d \]其中\( a_n \)是第\( n \)项,\( a_1 \)是首项,\( d \)是公差。

已知首项\( a_1 = 2 \),公差\( d = 5 - 2 = 3 \)。

代入公式求第10项:\[ a_{10} = 2 + (10 - 1) \times 3 \]\[ a_{10} = 2 + 9 \times 3 \]\[ a_{10} = 2 + 27 \]\[ a_{10} = 29 \]所以这个数列的第10项是29。

数学初中竞赛 数与式 专题训练(含答案)

数学初中竞赛 数与式 专题训练(含答案)

数学初中竞赛 数与式 专题训练一.选择题1.已知100个整数a 1,a 2,a 3,…,a 100满足下列条件:a 1=1,a 2=﹣|a 1+1|,a 3=﹣|a 2+1|,……a 100=﹣|a 99+1|,则a 1+a 2+a 3+…+a 100=( )A .0B .﹣50C .100D .﹣1002.a 为绝对值小于2019的所有整数的和,则2a 的值为( ) A .4036B .4038C .2D .03.多项式a 3﹣b 3+c 3+3abc 有因式( ) A .a +b +cB .a ﹣b +cC .a 2+b 2+c 2﹣bc +ca ﹣abD .bc ﹣ca +ab4.由(a +b )(a 2﹣ab +b 2)=a 3﹣a 2b +ab 2+a 2b ﹣ab 2+b =a 3+b 3,即(a +b )(a 2﹣ab +b 2)=a 3+b 3.我们把这个等式叫做立方公式.下列应用这个立方公式进行的变形不正确的是( ) A .(x +4y )(x 2﹣4xy +16y 2)=x 3+64y 3 B .(a +1)(a 2﹣a +1)=a 3+1 C .(2x +y )(4x 2﹣2xy +y 2)=8x 3+y 3D .(x +3)(x 2﹣6x +9)=x 3+27 5.已知x =﹣,则x 3+12x 的算术平方根是( )A .0B .2C .D .26.如果,p ,q 是正整数,则p 的最小值是( )A .15B .17C .72D .1447.式子|x ﹣2|+|x ﹣4|+|x ﹣4|+|x ﹣8|的最小值是( ) A .2B .4C .6D .88.如果对于某一特定范围内x 的任意允许值,s =|2﹣2x |+|2﹣3x |+|2﹣5x |的值恒为一常数,则此常数值为( ) A .0B .2C .4D .69.如果实数a 满足:﹣2014<a <0,则|x ﹣a |+|x +2014|+|x ﹣a +2014|的最小值是( ) A .2014B .a +2014C .4028D .a +402810.在,,0.2012,,这5个数中,有理数的个数为( ) A .2B .3C .4D .511.现有一列数a 1,a 2,a 3,…,a 2008,a 2009,a 2010,其中a 2=﹣1,a 31=﹣7,a 2010=9,且满足任意相邻三个数的和为相等的常数,则a 1+a 2+a 3+…+a 98+a 99+a 100的值为( ) A .0B .40C .32D .2612.以下三个判断中,正确的判断的个数是( ) (1)x 2+3x ﹣1=0,则x 3﹣10x =﹣3 (2)若b +c ﹣a =2+,c +a ﹣b =4﹣,a +b ﹣c =﹣2,则a 4+b 4+c 4﹣2(a 2b 2+b 2c 2+c 2a 2)=﹣11(3)若a 2=a 1q ,a 3=a 2q ,a 4=a 3q ,则a 1+a 2+a 3+a 4=(q ≠1) A .0 B .1C .2D .3二.填空题13.如果(x +3)(x +a )﹣2可以因式分解为(x +m )(x +n )(其中m ,n 均为整数),则a 的值是 .14.已知互不相等的实数a ,b ,c 满足,则t = .15.将1、2、3……、20这20个自然数,任意分为10组,每组两个数,现将每组的两个数中任一数值记作x ,另一个记作y ,代入代数式(|x ﹣y |+x +y )中进行计算,求出其结果,10组数代入后可求得10个值,则这10个值的和的最小值是 .16.若对于某一特定范围内的x 的任一允许值,P =|1﹣2x |+|1﹣3x |+…+|1﹣9x |+|1﹣10x |为定值,则这个定值是 .17.甲、乙两同学进行数字猜谜游戏,甲说一个数a 的相反数是它本身,乙说一个数b 的倒数也是它本身,则a ﹣b = . 18.已知a 2+4a +1=0,且,则m = .19.对于任意实数a 、b 、c 、d ,定义有序实数对(a ,b )与(c ,d )之间的运算“△”为:(a ,b )△(c ,d )=(ac +bd ,ad +bc ).如果对于任意实数u 、v ,都有(u ,v )△(x ,y )=(u ,v ),那么(x ,y )为 .20.设p 是给定的奇质数,正整数k 使得也是一个正整数,则k = .(结果用含p 的代数式表示)三.解答题21.a ,b ,c 是三角形三边长,且a 2﹣16b 2﹣c 2+6ab +10bc =0,求证:a +c =2b .22.阅读材料:把代数式x 2﹣6x ﹣7因式分解,可以如下分解:x 2﹣6x ﹣7=x 2﹣6x +9﹣9﹣7 =(x ﹣3)2﹣16=(x ﹣3+4)(x ﹣3﹣4) =(x +1)(x ﹣7)(1)探究:请你仿照上面的方法,把代数式x 2﹣8x +7因式分解; (2)拓展:把代数式x 2+2xy ﹣3y 2因式分解: 当= 时,代数式x 2+2xy ﹣3y 2=0.23.阅读下列材料:我们知道|x |的几何意义是在数轴上数x 对应的点与原点的距离,即|x |=|x ﹣0|,也就是说,|x |表示在数轴上数x 与数0对应的点之间的距离;这个结论可以推广为|x 1﹣x 2|表示在数轴上数x 1与数x 2对应的点之间的距离;例1.解方程|x |=2.因为在数轴上到原点的距离为2的点对应的数为±2,所以方程|x |=2的解为x =±2.例2.解不等式|x ﹣1|>2.在数轴上找出|x ﹣1|=2的解(如图1),因为在数轴上到1对应的点的距离等于2的点对应的数为﹣1或3,所以方程|x﹣1|=2的解为x=﹣1或x =3,因此不等式|x﹣1|>2的解集为x<﹣1或x>3.例3.解方程|x﹣1|+|x+2|=5.由绝对值的几何意义知,该方程就是求在数轴上到1和﹣2对应的点的距离之和等于5的点对应的x的值.因为在数轴上1和﹣2对应的点的距离为3(如图2),满足方程的x对应的点在1的右边或﹣2的左边.若x对应的点在1的右边,可得x=2;若x对应的点在﹣2的左边,可得x=﹣3,因此方程|x﹣1|+|x+2|=5的解是x=2或x=﹣3.参考阅读材料,解答下列问题:(1)方程|x+3|=4的解为;(2)解不等式:|x﹣3|≥5;(3)解不等式:|x﹣3|+|x+4|≥9.24.有一台单功能计算器,对任意两个整数只能完成求差后再取绝对值的运算,其运算过程是:输入第一个整数x1,只显示不运算,接着再输入整数x2后则显示|x1﹣x2|的结果.比如依次输入1,2,则输出的结果是|1﹣2|=1;此后每输入一个整数都是与前次显示的结果进行求差后再取绝对值的运算.(1)若小明依次输入1,2,3,4,则最后输出的结果是;若将1,2,3,4这4个整数任意的一个一个的输入,全部输入完毕后显示的结果的最大值是,最小值是;(2)若随意地一个一个的输入三个互不相等的正整数2,a,b,全部输入完毕后显示的最后结果设为k,k的最大值为10,求k的最小值.25.(1)一个正整数如果能表示为若干个正整数平方的算术平均值,就称这个正整数为“好整数”,如4=,2007=,2008=,4,2007,2008都是“好整数”,记“好整数”的集合为M,正整数的集合为N+,求证:M=N+.(2)记a=12+22+32+…+20122+20132,求证:a可以写成2012个不同的正整数的平方和.参考答案一.选择题1.解:∵a 1=1,a 2=﹣|a 1+1|,a 3=﹣|a 2+1|,……a 100=﹣|a 99+1|, ∴a 2=﹣2,a 3=﹣1,a 4=0,a 5=﹣1,a 6=0,a 7=﹣1,……,a 100=0, ∴从a 3开始2个一循环,∴a 1+a 2+a 3+…+a 100=(1﹣2)+(﹣1+0)×49=﹣50. 故选:B .2.解:∵绝对值小于2019的所有整数有0,±1,2,±3,…,±2016,±2017,±2018, ∴a =2018+2017+2016+…+1+0+(﹣1)+(﹣2)+…+(﹣2017)+(﹣2018) =[2018+(﹣2018)]+[2017+(﹣2017)]+…+[2+(﹣2)]+[1+(﹣1)]+0 =0 ∴2a =0 故选:D .3.解:原式=(a ﹣b )3+3ab (a ﹣b )+c 3+3abc =[(a ﹣b )3+c 3]+3ab (a ﹣b +c )=(a ﹣b +c )[(a ﹣b )2﹣c (a ﹣b )+c 2]+3ab (a ﹣b +c ) =(a ﹣b +c )(a 2+b 2+c 2+ab +bc ﹣ca ). 故选:B .4.解:∵立方公式(a +b )(a 2﹣ab +b 2)=a 3+b 3∵A .(x +4y )(x 2﹣4xy +16y 2)=.(x +4y )[x 2﹣4y •x +(4y )2]=x 3+64y 3=x 3+(4y )3;∴符合以上公式,故A 正确;∵B .(a +1)(a 2﹣a +1)=(a +1)(a 2﹣1×a +13)=a 3+13;∴符合以上公式,故B 正确; ∵C .(2x +y )(4x 2﹣2xy +y 2)=(2x +y )[(2x )2﹣2x •y +y 2)]=(2x )3+y 3;∴符合以上公式,故C 正确;∵D .(x +3)(x 2﹣6x +9)=(x +3)(x 2﹣2×3×x +9)=x 3+27∴不符合以上公式,故D 正确; 故选:D . 5.解:设=a ,=b ,则a 3=+1,b 3=﹣1.又∵4=(+1)(﹣1)=a3b3,∴x=a2b﹣ab2,x2=a4b2﹣2a3b3+a2b4,故原式=x(x2+12)=(a2b﹣ab2)(a4b2﹣2a3b3+a2b4+12)=(a2b﹣ab2)(a4b2﹣8+a2b4+12)=(a2b﹣ab2)(a4b2+a2b4+4)=ab(a﹣b)a2b2(a2+b2+ab)=a3b3(a3﹣b3)=(+1)(﹣1)(+1﹣+1)=4×2=8.则其算术平方根是:2.故选:D.6.解:由题意得, p<q<p,如果p=15,则此时13.325<q<13.33,q没有正整数值;如果p=17,则此时14.875<q<15.111,q可取15;如果p=72,则此时63<q<64,q没有正整数值;如果p=144,则此时126<q<128,q可取127;综上可得p的最小值为17.故选:B.7.解:当x≤2时,原式=(2﹣x)+(4﹣x)+(4﹣x)+(8﹣x)=18﹣4x,∵﹣4<0,∴此时|x﹣2|+|x﹣4|+|x﹣4|+|x﹣8|≥10;当2<x≤4时,原式=(x﹣2)+(4﹣x)+(4﹣x)+(8﹣x)=14﹣2x,∵﹣2<0,∴此时6≤|x﹣2|+|x﹣4|+|x﹣4|+|x﹣8|<10;当4<x≤8时,原式=(x﹣2)+(x﹣4)+(x﹣4)+(8﹣x)=2x﹣2,∵2>0,∴此时6<|x﹣2|+|x﹣4|+|x﹣4|+|x﹣8|≤14;当x>8时,原式=(x﹣2)+(x﹣4)+(x﹣4)+(x﹣8)=4x﹣18,∵4>0,∴此时|x﹣2|+|x﹣4|+|x﹣4|+|x﹣8|>14.综上可知:|x﹣2|+|x﹣4|+|x﹣4|+|x﹣8|的最小值为6.故选:C.8.解:∵s为定值,∴s的表达式化简后x的系数为0,由于2+3=5,∴x的取值范围是:2﹣3x≥0且2﹣5x≤0,即≤x≤,∴P=2﹣3x+2﹣3x﹣(2﹣5x)=4﹣2=2.故选:B.9.解:∵﹣2014<a<0,∴a﹣2014<﹣2014<a,当x<a﹣2014时,|x﹣a|+|x+2014|+|x﹣a+2014|,=﹣(x﹣a)﹣(x+2014)﹣(﹣a+2014),=2a﹣4028﹣3x>2014﹣a>2014;当a﹣2014≤x<﹣2014时,|x﹣a|+|x+2014|+|x﹣a+2014|,=﹣(x﹣a)﹣(x+2014)+(x﹣a+2014),=﹣x∈(2014,2014﹣a];当﹣2014≤x<a时,|x﹣a|+|x+2014|+|x﹣a+2014|,=﹣(x﹣a)+(x+2014)+(x﹣a+2014),=x+4028∈[2014,4028+a];当a≤x时,|x﹣a|+|x+2014|+|x﹣a+2014|,=(x﹣a)+(x+2014)+(x﹣a+2014),=3x﹣2a+4028≥4028+a>2014.综上|x﹣a|+|x+2014|+|x﹣a+2014|的最小值为2014.故选:A.10.解:是分数,是有理数;是无限不循环小数,是无理数;0.2012是分数,是有理数;=(﹣)=(﹣)=(﹣1﹣)=﹣,是有理数;对于,假设n+4=m2(m为正整数)是完全平方数,则n+2=m2﹣2,不是完全平方数,故是无理数.故选:B.11.解:∵a1+a2+a3=a2+a3+a4,∴a1=a4,同理可得a 1=a4=a7=…=a100=a31=﹣7,a 2=a5=a8=…=a98=﹣1,a 3=a6=a9=…=a99=a2010=9,由各数出现的规律可知,从a1开始到a100的数列中,﹣7出现了34次,﹣1出现了33次,9出现了33次,则a1+a2+a3+…+a98+a99+a100=(﹣7)×34+(﹣1)×33+9×33 =26.故选:D.12.解:(1)x3﹣10x=x(x2﹣10)=x(1﹣3x﹣10)=﹣3(x2+3x)=﹣3,故(1)正确;(2)a4+b4+c4﹣2(a2b2+b2c2+c2a2)=(a2﹣b2﹣c2)2﹣4b2c2=(a2﹣b2﹣c2+2bc)(a2﹣b2﹣c2﹣2bc)=(a+b﹣c)(a﹣b+c)(a+b+c)(a﹣b﹣c)又知b+c﹣a=2+,c+a﹣b=4﹣,a+b﹣c=﹣2,可得a+b+c=4+,故a4+b4+c4﹣2(a2b2+b2c2+c2a2)=﹣11,故(2)正确;(3)当q=1时,a1+a2+a3+a4=4a1,当q≠1时,a1+a2+a3+a4=,故(3)正确,正确的有3个,故选D.二.填空题(共8小题)13.解:∵(x+3)(x+a)﹣2可以因式分解为(x+m)(x+n),∴(x+3)(x+a)﹣2=(x+m)(x+n),展开得:a+3=m+n 3a﹣2=mn,进一步得到:mn=3m+3n﹣11,整理得(m﹣3)(3﹣n)=2,∵其中m,n均为整数,∴m﹣3=±1或±2,∴m=4,n=1 a=2 或m=5 n=2 a=4或m=2 n=5 a=4或m=1 n=4 a=2,∴a的值是2或4,故答案为2或4.14.解:设a+=t,则b=,代入b+=t,得: +=t,整理得:ct2﹣(ac+1)t+(a﹣c)=0 ①又由c+=t,可得ac+1=at②,把②代入①式得ct2﹣at2+(a﹣c)=0,即(c﹣a)(t2﹣1)=0,又∵c≠a,∴t2﹣1=0,∴t=±1.验证可知:b=,c=时,t=1;b=﹣,c=﹣时,t=﹣1.∴t=±1.故答案为:±1.15.解:①若x≥y,则代数式中绝对值符号可直接去掉,∴代数式等于x,②若y>x则绝对值内符号相反,∴代数式等于y,由此一来,只要20个自然数里面最小的十个数字从1到10任意俩个数字不同组,这样最终求得十个数之和最大值就是十个数字从1到10的和,1+2+3+…+10=55.故答案为:55.16.解:∵P为定值,∴P的表达式化简后x的系数为0;由于2+3+4+5+6+7=8+9+10;∴x的取值范围是:1﹣7x≥0且1﹣8x≤0,即≤x≤;所以P=(1﹣2x)+(1﹣3x)+…+(1﹣7x)﹣(1﹣8x)﹣(1﹣9x)﹣(1﹣10x)=6﹣3=3.故答案为:3.17.解:∵一个数a的相反数是它本身,∴a=0,∵一个数b的倒数也是它本身,∴b=±1,∴a﹣b=0﹣1=﹣1,或a﹣b=0﹣(﹣1)=0+1=1,∴a﹣b=±1.故答案为:±1.18.解:∵a2+4a+1=0,∴a2=﹣4a﹣1,=====5,∴(16+m)(﹣4a﹣1)+8a+2=5(m﹣12)(﹣4a﹣1),原式可化为(16+m)(﹣4a﹣1)﹣5(m﹣12)(﹣4a﹣1)=﹣8a﹣2,即[(16+m)﹣5(m﹣12)](﹣4a﹣1)=﹣8a﹣2,∵a≠0,∴(16+m)﹣5(m﹣12)=2,解得m=.故答案为.19.解:∵(a,b)△(c,d)=(ac+bd,ad+bc),∴(u,v)△(x,y)=(ux+vy,uy+vx),∵(u,v)△(x,y)=(u,v),∴,∵对于任意实数u、v,该方程组都成立,∴x=1,y=0,故答案为x=1,y=0.20.解:设=n,k2﹣pk﹣n2=0,k=,从而p2+4n2是平方数,设为m2,p2+4n2=m2,则(m﹣2n)(m+2n)=p2∵p是质数,p≥3,∴,解得:∴,∴k1=,k2=(负值舍去)故答案为:三.解答题(共5小题)21.解:∵a2﹣16b2﹣c2+6ab+10bc=0,∴a2+6ab+9b2﹣(c2﹣10bc+25b2)=0,∴(a+3b)2﹣(c﹣5b)2=0,∴(a+3b+c﹣5b)(a+3b﹣c+5b)=0,即(a+c﹣2b)(a+8b﹣c)=0,∵a,b,c是三角形三边长,∴a+b﹣c>0,∴a+8b﹣c>0,∴a+c﹣2b=0,∴a+c=2b.22.解:(1)x2﹣8x+7=x2﹣8x+16﹣16+7=(x﹣4)2﹣32=(x﹣4+3)(x﹣4﹣3)=(x﹣1)(x﹣7)(2)x2+2xy﹣3y2=x2+2xy+y2﹣y2﹣3y2=(x+y)2﹣4y2=(x+y+2y)(x+y﹣2y)=(x+3y)(x﹣y),当=﹣3或1时,x2+2xy﹣3y2的值为0.23.解:(1)∵在数轴上到﹣3对应的点的距离等于4的点对应的数为1或﹣7,∴方程|x+3|=4的解为x=1或x=﹣7.(2)在数轴上找出|x﹣3|=5的解.∵在数轴上到3对应的点的距离等于5的点对应的数为﹣2或8,∴方程|x﹣3|=5的解为x=﹣2或x=8,∴不等式|x﹣3|≥5的解集为x≤﹣2或x≥8.(3)在数轴上找出|x﹣3|+|x+4|=9的解.由绝对值的几何意义知,该方程就是求在数轴上到3和﹣4对应的点的距离之和等于9的点对应的x的值.∵在数轴上3和﹣4对应的点的距离为7,∴满足方程的x对应的点在3的右边或﹣4的左边.若x对应的点在3的右边,可得x=4;若x对应的点在﹣4的左边,可得x=﹣5,∴方程|x﹣3|+|x+4|=9的解是x=4或x=﹣5,∴不等式|x﹣3|+|x+4|≥9的解集为x≥4或x≤﹣5.24.解:(1)根据题意可以得出:|1﹣2|=|﹣1|=1,|1﹣3|=|﹣2|=2,|2﹣4|=|﹣2|=2,对于1,2,3,4,按如下次序|||1﹣3|﹣4|﹣2|=0,|||1﹣3|﹣2|﹣4|=4,故全部输入完毕后显示的结果的最大值是4,最小值是0;故答案为:2,4,0;(2)∵随意地一个一个的输入三个互不相等的正整数2,a,b,全部输入完毕后显示的最后结果设为k,k的最大值为10,∴设b为较大数字,当a=1时,|b﹣|a﹣2||=|b﹣1|=10,解得:b=11,故此时任意输入后得到的最小数为:|2﹣|11﹣1||=8,设b为较大数字,当b>a>2时,|b﹣|a﹣2||=|b﹣a+2|=10,则b﹣a+2=10,即b﹣a=8,则a﹣b=﹣8,故此时任意输入后得到的最小数为:|a﹣|b﹣2||=|a﹣b+2|=6,综上所述:k的最小值为6.25.(1)证明:因为每个“好整数”都是正整数,所以M⊆N+;另一方面,对每个n∈N+,都有n=,所以n是“好整数”,即n∈M,所以N+⊆M,因此M=N+;(2)证明:只需从12至20132中去掉两个,根据勾股定理,换上一个大于20132的数,∵20002=42×5002,32+42=52,∴32×5002+42×5002=52×5002,即15002+20002=25002,因此从a中去掉15002和20002,添加25002,即将a写成了2012个不同的正整数的平方和.。

数学初中竞赛 数和式 专题训练(含答案)

数学初中竞赛 数和式 专题训练(含答案)

数学初中竞赛 数与式 专题训练一.选择题1.已知100个整数a 1,a 2,a 3,…,a 100满足下列条件:a 1=1,a 2=﹣|a 1+1|,a 3=﹣|a 2+1|,……a 100=﹣|a 99+1|,则a 1+a 2+a 3+…+a 100=( )A .0B .﹣50C .100D .﹣1002.a 为绝对值小于2019的所有整数的和,则2a 的值为( )A .4036B .4038C .2D .03.多项式a 3﹣b 3+c 3+3abc 有因式( )A .a +b +cB .a ﹣b +cC .a 2+b 2+c 2﹣bc +ca ﹣abD .bc ﹣ca +ab4.由(a +b )(a 2﹣ab +b 2)=a 3﹣a 2b +ab 2+a 2b ﹣ab 2+b =a 3+b 3,即(a +b )(a 2﹣ab +b 2)=a 3+b 3.我们把这个等式叫做立方公式.下列应用这个立方公式进行的变形不正确的是( )A .(x +4y )(x 2﹣4xy +16y 2)=x 3+64y 3B .(a +1)(a 2﹣a +1)=a 3+1C .(2x +y )(4x 2﹣2xy +y 2)=8x 3+y 3D .(x +3)(x 2﹣6x +9)=x 3+275.已知x =﹣,则x 3+12x 的算术平方根是( ) A .0B .2C .D .2 6.如果,p ,q 是正整数,则p 的最小值是( ) A .15 B .17 C .72 D .1447.式子|x ﹣2|+|x ﹣4|+|x ﹣4|+|x ﹣8|的最小值是( )A .2B .4C .6D .88.如果对于某一特定范围内x 的任意允许值,s =|2﹣2x |+|2﹣3x |+|2﹣5x |的值恒为一常数,则此常数值为( )A .0B .2C .4D .69.如果实数a 满足:﹣2014<a <0,则|x ﹣a |+|x +2014|+|x ﹣a +2014|的最小值是( )A .2014B .a +2014C .4028D .a +402810.在,,0.2012,,这5个数中,有理数的个数为( )A .2B .3C .4D .511.现有一列数a 1,a 2,a 3,…,a 2008,a 2009,a 2010,其中a 2=﹣1,a 31=﹣7,a 2010=9,且满足任意相邻三个数的和为相等的常数,则a 1+a 2+a 3+…+a 98+a 99+a 100的值为( )A .0B .40C .32D .2612.以下三个判断中,正确的判断的个数是( )(1)x 2+3x ﹣1=0,则x 3﹣10x =﹣3(2)若b +c ﹣a =2+,c +a ﹣b =4﹣,a +b ﹣c =﹣2,则a 4+b 4+c 4﹣2(a 2b 2+b 2c 2+c 2a 2)=﹣11(3)若a 2=a 1q ,a 3=a 2q ,a 4=a 3q ,则a 1+a 2+a 3+a 4=(q ≠1) A .0B .1C .2D .3二.填空题13.如果(x +3)(x +a )﹣2可以因式分解为(x +m )(x +n )(其中m ,n 均为整数),则a 的值是 . 14.已知互不相等的实数a ,b ,c 满足,则t = . 15.将1、2、3……、20这20个自然数,任意分为10组,每组两个数,现将每组的两个数中任一数值记作x ,另一个记作y ,代入代数式(|x ﹣y |+x +y )中进行计算,求出其结果,10组数代入后可求得10个值,则这10个值的和的最小值是 .16.若对于某一特定范围内的x 的任一允许值,P =|1﹣2x |+|1﹣3x |+…+|1﹣9x |+|1﹣10x |为定值,则这个定值是 .17.甲、乙两同学进行数字猜谜游戏,甲说一个数a 的相反数是它本身,乙说一个数b 的倒数也是它本身,则a ﹣b = .18.已知a 2+4a +1=0,且,则m = .19.对于任意实数a 、b 、c 、d ,定义有序实数对(a ,b )与(c ,d )之间的运算“△”为:(a ,b )△(c ,d )=(ac +bd ,ad +bc ).如果对于任意实数u 、v ,都有(u ,v )△(x ,y )=(u ,v ),那么(x ,y )为 .20.设p 是给定的奇质数,正整数k 使得也是一个正整数,则k = .(结果用含p 的代数式表示)三.解答题21.a ,b ,c 是三角形三边长,且a 2﹣16b 2﹣c 2+6ab +10bc =0,求证:a +c =2b .22.阅读材料:把代数式x 2﹣6x ﹣7因式分解,可以如下分解: x 2﹣6x ﹣7=x 2﹣6x +9﹣9﹣7=(x ﹣3)2﹣16=(x ﹣3+4)(x ﹣3﹣4)=(x +1)(x ﹣7)(1)探究:请你仿照上面的方法,把代数式x 2﹣8x +7因式分解;(2)拓展:把代数式x 2+2xy ﹣3y 2因式分解:当= 时,代数式x 2+2xy ﹣3y 2=0.23.阅读下列材料:我们知道|x |的几何意义是在数轴上数x 对应的点与原点的距离,即|x |=|x ﹣0|,也就是说,|x |表示在数轴上数x 与数0对应的点之间的距离;这个结论可以推广为|x 1﹣x 2|表示在数轴上数x 1与数x 2对应的点之间的距离;例1.解方程|x |=2.因为在数轴上到原点的距离为2的点对应的数为±2,所以方程|x |=2的解为x =±2.例2.解不等式|x ﹣1|>2.在数轴上找出|x ﹣1|=2的解(如图1),因为在数轴上到1对应的点的距离等于2的点对应的数为﹣1或3,所以方程|x﹣1|=2的解为x=﹣1或x =3,因此不等式|x﹣1|>2的解集为x<﹣1或x>3.例3.解方程|x﹣1|+|x+2|=5.由绝对值的几何意义知,该方程就是求在数轴上到1和﹣2对应的点的距离之和等于5的点对应的x的值.因为在数轴上1和﹣2对应的点的距离为3(如图2),满足方程的x对应的点在1的右边或﹣2的左边.若x对应的点在1的右边,可得x=2;若x对应的点在﹣2的左边,可得x=﹣3,因此方程|x﹣1|+|x+2|=5的解是x=2或x=﹣3.参考阅读材料,解答下列问题:(1)方程|x+3|=4的解为;(2)解不等式:|x﹣3|≥5;(3)解不等式:|x﹣3|+|x+4|≥9.24.有一台单功能计算器,对任意两个整数只能完成求差后再取绝对值的运算,其运算过程是:输入第一个整数x1,只显示不运算,接着再输入整数x2后则显示|x1﹣x2|的结果.比如依次输入1,2,则输出的结果是|1﹣2|=1;此后每输入一个整数都是与前次显示的结果进行求差后再取绝对值的运算.(1)若小明依次输入1,2,3,4,则最后输出的结果是;若将1,2,3,4这4个整数任意的一个一个的输入,全部输入完毕后显示的结果的最大值是,最小值是;(2)若随意地一个一个的输入三个互不相等的正整数2,a,b,全部输入完毕后显示的最后结果设为k,k的最大值为10,求k的最小值.25.(1)一个正整数如果能表示为若干个正整数平方的算术平均值,就称这个正整数为“好整数”,如4=,2007=,2008=,4,2007,2008都是“好整数”,记“好整数”的集合为M,正整数的集合为N+,求证:M=N+.(2)记a=12+22+32+…+20122+20132,求证:a可以写成2012个不同的正整数的平方和.参考答案一.选择题1.解:∵a 1=1,a 2=﹣|a 1+1|,a 3=﹣|a 2+1|,……a 100=﹣|a 99+1|,∴a 2=﹣2,a 3=﹣1,a 4=0,a 5=﹣1,a 6=0,a 7=﹣1,……,a 100=0,∴从a 3开始2个一循环,∴a 1+a 2+a 3+…+a 100=(1﹣2)+(﹣1+0)×49=﹣50.故选:B .2.解:∵绝对值小于2019的所有整数有0,±1,2,±3,…,±2016,±2017,±2018, ∴a =2018+2017+2016+…+1+0+(﹣1)+(﹣2)+…+(﹣2017)+(﹣2018)=[2018+(﹣2018)]+[2017+(﹣2017)]+…+[2+(﹣2)]+[1+(﹣1)]+0=0∴2a =0故选:D .3.解:原式=(a ﹣b )3+3ab (a ﹣b )+c 3+3abc=[(a ﹣b )3+c 3]+3ab (a ﹣b +c )=(a ﹣b +c )[(a ﹣b )2﹣c (a ﹣b )+c 2]+3ab (a ﹣b +c )=(a ﹣b +c )(a 2+b 2+c 2+ab +bc ﹣ca ).故选:B .4.解:∵立方公式(a +b )(a 2﹣ab +b 2)=a 3+b 3∵A .(x +4y )(x 2﹣4xy +16y 2)=.(x +4y )[x 2﹣4y •x +(4y )2]=x 3+64y 3=x 3+(4y )3;∴符合以上公式,故A 正确;∵B .(a +1)(a 2﹣a +1)=(a +1)(a 2﹣1×a +13)=a 3+13;∴符合以上公式,故B 正确; ∵C .(2x +y )(4x 2﹣2xy +y 2)=(2x +y )[(2x )2﹣2x •y +y 2)]=(2x )3+y 3;∴符合以上公式,故C 正确;∵D .(x +3)(x 2﹣6x +9)=(x +3)(x 2﹣2×3×x +9)=x 3+27∴不符合以上公式,故D 正确;故选:D .5.解:设=a ,=b ,则a 3=+1,b 3=﹣1.又∵4=(+1)(﹣1)=a3b3,∴x=a2b﹣ab2,x2=a4b2﹣2a3b3+a2b4,故原式=x(x2+12)=(a2b﹣ab2)(a4b2﹣2a3b3+a2b4+12)=(a2b﹣ab2)(a4b2﹣8+a2b4+12)=(a2b﹣ab2)(a4b2+a2b4+4)=ab(a﹣b)a2b2(a2+b2+ab)=a3b3(a3﹣b3)=(+1)(﹣1)(+1﹣+1)=4×2=8.则其算术平方根是:2.故选:D.6.解:由题意得, p<q<p,如果p=15,则此时13.325<q<13.33,q没有正整数值;如果p=17,则此时14.875<q<15.111,q可取15;如果p=72,则此时63<q<64,q没有正整数值;如果p=144,则此时126<q<128,q可取127;综上可得p的最小值为17.故选:B.7.解:当x≤2时,原式=(2﹣x)+(4﹣x)+(4﹣x)+(8﹣x)=18﹣4x,∵﹣4<0,∴此时|x﹣2|+|x﹣4|+|x﹣4|+|x﹣8|≥10;当2<x≤4时,原式=(x﹣2)+(4﹣x)+(4﹣x)+(8﹣x)=14﹣2x,∵﹣2<0,∴此时6≤|x﹣2|+|x﹣4|+|x﹣4|+|x﹣8|<10;当4<x≤8时,原式=(x﹣2)+(x﹣4)+(x﹣4)+(8﹣x)=2x﹣2,∵2>0,∴此时6<|x﹣2|+|x﹣4|+|x﹣4|+|x﹣8|≤14;当x>8时,原式=(x﹣2)+(x﹣4)+(x﹣4)+(x﹣8)=4x﹣18,∵4>0,∴此时|x﹣2|+|x﹣4|+|x﹣4|+|x﹣8|>14.综上可知:|x﹣2|+|x﹣4|+|x﹣4|+|x﹣8|的最小值为6.故选:C.8.解:∵s为定值,∴s的表达式化简后x的系数为0,由于2+3=5,∴x的取值范围是:2﹣3x≥0且2﹣5x≤0,即≤x≤,∴P=2﹣3x+2﹣3x﹣(2﹣5x)=4﹣2=2.故选:B.9.解:∵﹣2014<a<0,∴a﹣2014<﹣2014<a,当x<a﹣2014时,|x﹣a|+|x+2014|+|x﹣a+2014|,=﹣(x﹣a)﹣(x+2014)﹣(﹣a+2014),=2a﹣4028﹣3x>2014﹣a>2014;当a﹣2014≤x<﹣2014时,|x﹣a|+|x+2014|+|x﹣a+2014|,=﹣(x﹣a)﹣(x+2014)+(x﹣a+2014),=﹣x∈(2014,2014﹣a];当﹣2014≤x<a时,|x﹣a|+|x+2014|+|x﹣a+2014|,=﹣(x﹣a)+(x+2014)+(x﹣a+2014),=x+4028∈[2014,4028+a];当a≤x时,|x﹣a|+|x+2014|+|x﹣a+2014|,=(x﹣a)+(x+2014)+(x﹣a+2014),=3x﹣2a+4028≥4028+a>2014.综上|x﹣a|+|x+2014|+|x﹣a+2014|的最小值为2014.故选:A.10.解:是分数,是有理数;是无限不循环小数,是无理数;0.2012是分数,是有理数;=(﹣)=(﹣)=(﹣1﹣)=﹣,是有理数;对于,假设n+4=m2(m为正整数)是完全平方数,则n+2=m2﹣2,不是完全平方数,故是无理数.故选:B.11.解:∵a1+a2+a3=a2+a3+a4,∴a1=a4,同理可得a 1=a4=a7=…=a100=a31=﹣7,a 2=a5=a8=…=a98=﹣1,a 3=a6=a9=…=a99=a2010=9,由各数出现的规律可知,从a1开始到a100的数列中,﹣7出现了34次,﹣1出现了33次,9出现了33次,则a1+a2+a3+…+a98+a99+a100=(﹣7)×34+(﹣1)×33+9×33 =26.故选:D.12.解:(1)x3﹣10x=x(x2﹣10)=x(1﹣3x﹣10)=﹣3(x2+3x)=﹣3,故(1)正确;(2)a4+b4+c4﹣2(a2b2+b2c2+c2a2)=(a2﹣b2﹣c2)2﹣4b2c2=(a2﹣b2﹣c2+2bc)(a2﹣b2﹣c2﹣2bc)=(a+b﹣c)(a﹣b+c)(a+b+c)(a﹣b﹣c)又知b+c﹣a=2+,c+a﹣b=4﹣,a+b﹣c=﹣2,可得a+b+c=4+,故a4+b4+c4﹣2(a2b2+b2c2+c2a2)=﹣11,故(2)正确;(3)当q=1时,a1+a2+a3+a4=4a1,当q≠1时,a1+a2+a3+a4=,故(3)正确,正确的有3个,故选D.二.填空题(共8小题)13.解:∵(x+3)(x+a)﹣2可以因式分解为(x+m)(x+n),∴(x+3)(x+a)﹣2=(x+m)(x+n),展开得:a+3=m+n 3a﹣2=mn,进一步得到:mn=3m+3n﹣11,整理得(m﹣3)(3﹣n)=2,∵其中m,n均为整数,∴m﹣3=±1或±2,∴m=4,n=1 a=2 或m=5 n=2 a=4或m=2 n=5 a=4或m=1 n=4 a=2,∴a的值是2或4,故答案为2或4.14.解:设a+=t,则b=,代入b+=t,得: +=t,整理得:ct2﹣(ac+1)t+(a﹣c)=0 ①又由c+=t,可得ac+1=at②,把②代入①式得ct2﹣at2+(a﹣c)=0,即(c﹣a)(t2﹣1)=0,又∵c≠a,∴t2﹣1=0,∴t=±1.验证可知:b=,c=时,t=1;b=﹣,c=﹣时,t=﹣1.∴t=±1.故答案为:±1.15.解:①若x≥y,则代数式中绝对值符号可直接去掉,∴代数式等于x,②若y>x则绝对值内符号相反,∴代数式等于y,由此一来,只要20个自然数里面最小的十个数字从1到10任意俩个数字不同组,这样最终求得十个数之和最大值就是十个数字从1到10的和,1+2+3+…+10=55.故答案为:55.16.解:∵P为定值,∴P的表达式化简后x的系数为0;由于2+3+4+5+6+7=8+9+10;∴x的取值范围是:1﹣7x≥0且1﹣8x≤0,即≤x≤;所以P=(1﹣2x)+(1﹣3x)+…+(1﹣7x)﹣(1﹣8x)﹣(1﹣9x)﹣(1﹣10x)=6﹣3=3.故答案为:3.17.解:∵一个数a的相反数是它本身,∴a=0,∵一个数b的倒数也是它本身,∴b=±1,∴a﹣b=0﹣1=﹣1,或a﹣b=0﹣(﹣1)=0+1=1,∴a﹣b=±1.故答案为:±1.18.解:∵a2+4a+1=0,∴a2=﹣4a﹣1,=====5,∴(16+m)(﹣4a﹣1)+8a+2=5(m﹣12)(﹣4a﹣1),原式可化为(16+m)(﹣4a﹣1)﹣5(m﹣12)(﹣4a﹣1)=﹣8a﹣2,即[(16+m)﹣5(m﹣12)](﹣4a﹣1)=﹣8a﹣2,∵a≠0,∴(16+m)﹣5(m﹣12)=2,解得m=.故答案为.19.解:∵(a,b)△(c,d)=(ac+bd,ad+bc),∴(u,v)△(x,y)=(ux+vy,uy+vx),∵(u,v)△(x,y)=(u,v),∴,∵对于任意实数u、v,该方程组都成立,∴x=1,y=0,故答案为x=1,y=0.20.解:设=n,k2﹣pk﹣n2=0,k=,从而p2+4n2是平方数,设为m2,p2+4n2=m2,则(m﹣2n)(m+2n)=p2∵p是质数,p≥3,∴,解得:∴,∴k1=,k2=(负值舍去)故答案为:三.解答题(共5小题)21.解:∵a2﹣16b2﹣c2+6ab+10bc=0,∴a2+6ab+9b2﹣(c2﹣10bc+25b2)=0,∴(a+3b)2﹣(c﹣5b)2=0,∴(a+3b+c﹣5b)(a+3b﹣c+5b)=0,即(a+c﹣2b)(a+8b﹣c)=0,∵a,b,c是三角形三边长,∴a+b﹣c>0,∴a+8b﹣c>0,∴a+c﹣2b=0,∴a+c=2b.22.解:(1)x2﹣8x+7=x2﹣8x+16﹣16+7=(x﹣4)2﹣32=(x﹣4+3)(x﹣4﹣3)=(x﹣1)(x﹣7)(2)x2+2xy﹣3y2=x2+2xy+y2﹣y2﹣3y2=(x+y)2﹣4y2=(x+y+2y)(x+y﹣2y)=(x+3y)(x﹣y),当=﹣3或1时,x2+2xy﹣3y2的值为0.23.解:(1)∵在数轴上到﹣3对应的点的距离等于4的点对应的数为1或﹣7,∴方程|x+3|=4的解为x=1或x=﹣7.(2)在数轴上找出|x﹣3|=5的解.∵在数轴上到3对应的点的距离等于5的点对应的数为﹣2或8,∴方程|x﹣3|=5的解为x=﹣2或x=8,∴不等式|x﹣3|≥5的解集为x≤﹣2或x≥8.(3)在数轴上找出|x﹣3|+|x+4|=9的解.由绝对值的几何意义知,该方程就是求在数轴上到3和﹣4对应的点的距离之和等于9的点对应的x的值.∵在数轴上3和﹣4对应的点的距离为7,∴满足方程的x对应的点在3的右边或﹣4的左边.若x对应的点在3的右边,可得x=4;若x对应的点在﹣4的左边,可得x=﹣5,∴方程|x﹣3|+|x+4|=9的解是x=4或x=﹣5,∴不等式|x﹣3|+|x+4|≥9的解集为x≥4或x≤﹣5.24.解:(1)根据题意可以得出:|1﹣2|=|﹣1|=1,|1﹣3|=|﹣2|=2,|2﹣4|=|﹣2|=2,对于1,2,3,4,按如下次序|||1﹣3|﹣4|﹣2|=0,|||1﹣3|﹣2|﹣4|=4,故全部输入完毕后显示的结果的最大值是4,最小值是0;故答案为:2,4,0;(2)∵随意地一个一个的输入三个互不相等的正整数2,a,b,全部输入完毕后显示的最后结果设为k,k的最大值为10,∴设b为较大数字,当a=1时,|b﹣|a﹣2||=|b﹣1|=10,解得:b=11,故此时任意输入后得到的最小数为:|2﹣|11﹣1||=8,设b为较大数字,当b>a>2时,|b﹣|a﹣2||=|b﹣a+2|=10,则b﹣a+2=10,即b﹣a=8,则a﹣b=﹣8,故此时任意输入后得到的最小数为:|a﹣|b﹣2||=|a﹣b+2|=6,综上所述:k的最小值为6.25.(1)证明:因为每个“好整数”都是正整数,所以M⊆N+;另一方面,对每个n∈N+,都有n=,所以n是“好整数”,即n∈M,所以N+⊆M,因此M=N+;(2)证明:只需从12至20132中去掉两个,根据勾股定理,换上一个大于20132的数,∵20002=42×5002,32+42=52,∴32×5002+42×5002=52×5002,即15002+20002=25002,因此从a中去掉15002和20002,添加25002,即将a写成了2012个不同的正整数的平方和.。

初中数学竞赛题目分类整理

初中数学竞赛题目分类整理

初中数学竞赛题目分类整理数学是一门既重要又有趣的学科,它培养了学生的逻辑思维能力和解决问题的能力。

在初中阶段,参加数学竞赛可以帮助学生提升数学水平和应用数学的能力。

为了帮助学生更好地备战数学竞赛,下面将对初中数学竞赛题目进行分类整理。

一、代数题目代数题目是数学竞赛中经常出现的一类题目。

它要求学生根据已知条件,应用代数运算的方法进行推理和计算,并求解未知数。

常见的代数题目包括方程与不等式的求解、函数的性质分析等。

例如,以下是一个典型的代数题目:已知方程3x + 5 = 2x - 7,求x的值。

二、几何题目几何题目是数学竞赛中较为常见的一类题目。

它要求学生运用几何知识,根据已知条件进行推理和计算,求解图形的性质或者计算图形的面积、体积等。

几何题目需要学生理解几何概念,熟练运用几何定理和公式。

以下是一个典型的几何题目:已知△ABC中,∠A = 60°,∠B = 80°,求∠C的度数。

三、概率与统计题目概率与统计是数学竞赛中的一类题目,它要求学生根据实际情况,运用概率和统计的概念和方法进行计算和分析。

概率与统计题目常涉及随机事件的概率计算、数据的收集和整理以及数据的分析和解读。

以下是一个典型的概率与统计题目:在一次抽奖活动中,有10个红色球和20个蓝色球,从中随机抽取1个球,请计算抽到红色球的概率。

四、数列与数学归纳法题目数列与数学归纳法是数学竞赛中的一类题目,它要求学生根据数列的规律,找出数列的通项公式或者根据已有的数列,利用数学归纳法证明某个结论。

数列与数学归纳法题目需要学生敏锐观察数列的规律,善于归纳并运用数学解决问题。

以下是一个典型的数列与数学归纳法题目:已知数列{An}满足An = An-1 + 2n-1,其中A1 = 1,请找出数列的通项公式。

五、函数与图像题目函数与图像是数学竞赛中的一类题目,它要求学生理解函数与图像之间的关系,画出函数的图像,或者根据图像分析函数的性质。

初一数学竞赛的试题and答案

初一数学竞赛的试题and答案

初一数学竞赛的试题and 答案数字、数位及数谜问题一、一、知识要点1、整数的十进位数码表示一般地,任何一个n 位的自然数都可以表示成:122321*********a a a a a n n n n +⨯+⨯++⨯+⨯---其中,a i (i=1,2,…,n)表示数码,且0≤a i ≤9,a n ≠0.对于确定的自然数N ,它的表示是唯一的,常将这个数记为N=121a a a a n n -2、正整数指数幂的末两位数字(1) (1) 设m 、n 都是正整数,a 是m 的末位数字,则m n 的末位数字就是a n 的末位数字。

(2) (2) 设p 、q 都是正整数,m 是任意正整数,则m 4p+q 的末位数字与m q 的末位数字相同。

3、在与整数有关的数学问题中,有不少问题涉及到求符合一定条件的整数是多少的问题,这类问题称为数迷问题。

这类问题不需要过多的计算,只需要认真细致地分析,有时可以用“凑”、“猜”的方法求解,是一种有趣的数学游戏。

二、二、例题精讲例1、有一个四位数,已知其十位数字减去2等于个位数字,其个位数字加上2等于其百位数字,把这个四位数的四个数字反着次序排列所成的数与原数之和等于9988,求这个四位数。

分析:将这个四位数用十进位数码表示,以便利用它和它的反序数的关系列式来解决问题。

解:设所求的四位数为a ⨯103+b ⨯102+c ⨯10+d ,依题意得:(a ⨯103+b ⨯102+c ⨯10+d)+( d ⨯103+c ⨯102+b ⨯10+a)=9988∴ (a+d) ⨯103+(b+c) ⨯102+(b+c) ⨯10+ (a+d)=9988比较等式两边首、末两位数字,得 a+d=8,于是b+c18又∵c-2=d ,d+2=b ,∴b-c=0从而解得:a=1,b=9,c=9,d=7故所求的四位数为1997评注:将整数用十进位数码表示,有助于将已知条件转化为等式,从而解决问题。

例2 一个正整数N 的各位数字不全相等,如果将N 的各位数字重新排列,必可得到一个最大数和一个最小数,若最大数与最小数的差正好等于原来的数N ,则称N 为“新生数”,试求所有的三位“新生数”。

2020年初中数学竞赛九年级集训《数和式综合问题专题》

2020年初中数学竞赛九年级集训《数和式综合问题专题》

《数与式综合问题》1.已知点A、B在数轴上表示的数分别是a、b,A、B两点之间的距离为d (1)对照数轴填写下表.a 2 ﹣2 ﹣4 ﹣3 3b 1 0 3 ﹣2 ﹣1a﹣b 1 ﹣2 ﹣7A,B两点之间的1 2 7距离d(2)观察上表,发现d与a﹣b之间的数量关系是,(3)点A表示的数为x,式子|x+2|、表示A、B两点之间的距离,则点B表示的数是;若|x+2|=1,则x=.(4)适合式子|x+2|+|x﹣3|=5的整数x的值是;(5)式子|x+7|+|x﹣8|的最小值是多少?2.(1)已知b﹣a=,2a2+a=,求的值.(2)已知:f(x)=x2+bx+c是g(x)=x4+6x2+25的因式,也是q(x)=3x4+4x2+28x+5的因式.求:f(1)的值.3.(1)一个正整数如果能表示为若干个正整数平方的算术平均值,就称这个正整数为“好整数”,如4=,2007=,2008=,4,2007,2008都是“好整数”,记“好整数”的集合为M,正整数的集合为N+,求证:M=N+.(2)记a=12+22+32+…+20122+20132,求证:a可以写成2012个不同的正整数的平方和.4.已知:++=1,求证:三个分式中有两个等于1,一个等于﹣1.5.已知a,b,c都是有理数,也是有理数,求证:,,都是有理数.6.求证:+=1.7.已知m是实数,求|m|+|m﹣1|+|m﹣2|的最小值.8.计算:(1)1×(2﹣)﹣×+;(2)24×(++…+)﹣(+++…+).9.已知x 3﹣8有一个因式x ﹣2,我们可以用待定系数法对x 3﹣8进行因式分解: 设x 3﹣8=(x ﹣2)(x 2+ax +b ),∵(x ﹣2)(x 2+ax +b )=x 3+(a ﹣2)x 2+(b ﹣2a )x ﹣2b , ∴,即a =2,b =4.因此x 3﹣8=(x ﹣2)(x 2+2x +4).已知x 3+27有一个因式x +3,请你仿照上例,用待定系数法,因式分解x 3+27.10.求|x ﹣1|+|x ﹣2|+|x ﹣3|+…+|x ﹣2009|的最小值.11.计算:(1)(12+22)÷(1×2)+(22+32)÷(2×3 )+(32+42)÷(3×4)+…+(20132+20142)÷(2013×2014)(2)1÷(1×2×3)+1÷(2×3×4)+1÷(3×4×5)+…+1÷(98×99×100)12.已知n 个不同的数x 1,x 2,x 3,…,x n 是正整数1,2,…,n 的任意一个排列,试求|x 1﹣1|+|x 2﹣2|+…+|x n ﹣n |的最小值.13.因式分解:a2(b+c﹣2a)+b2(c+a﹣2b)+c2(a+b﹣2c)+2(a2﹣b2)(a﹣c)+2(b2﹣c2)(b﹣a)+2(c2﹣a2)(c﹣b).14.设2009x3=2010y3=2011z3(xyz>0),且=++,求++的值.15.是否存在这样的实数a,b,使得对于每个正整数n≥2,(1)a+b是有理数,而a n+b n是无理数;(2)a+b是无理数,而a n+b n是有理数.16.a,b,c为非零实数,a2+b2+c2=1,,求a+b+c 的值.17.(1)讨论关于x的方程|x+1|+|x+2|+|x+3|=a的根的个数.(2)设a1,a2,…,a n为等差数列,且|a1|+|a2|+…+|a n|=|a1+1|+|a2+1|+…+|a n+1|=|a1﹣2|+|a2﹣2|+…+|a n﹣2|=507,求项数n的最大值.18.的整数部分是多少?19..20.已知,求证:n为奇数时,.参考答案1.解:(1)当a=﹣3,b=﹣2时,a﹣b=﹣1,d=1;当a=3,b=﹣1时,a﹣b=4,d=4;故答案为:﹣1,1;4,4;(2)由题可得,d与a﹣b之间的数量关系是d=|a﹣b|,故答案为:d=|a﹣b|;(3)∵式子|x+2|表示A、B两点之间的距离,而|x+2|=|x﹣(﹣2)|,∴点B表示的数是﹣2,故答案为:﹣2;(4)∵|x+2|+|x﹣3|=5表示数轴上与表示﹣2的点和表示3的点的距离之和为5,∴﹣2≤x≤3,∴整数x=﹣2,﹣1,0,1,2,3,故答案为:﹣2,﹣1,0,1,2,3;(5)式子|x+7|+|x﹣8|的几何意义为数轴上表示数x的点与表示﹣7的点、表示3的点的距离之和,∴当﹣7≤x≤8时,式子|x+7|+|x﹣8|的最小值是8﹣(﹣7)=15.2.解:(1),①×2﹣②得,2b﹣2a2=3a,由题意得a≠0,∴两边同乘以2a得,﹣a=(2)∵g(x),q(x)都能被f(x)整除,∴它们的和、差、倍也能被f(x)整除,为了消去四次项,设3g(x)﹣q(x)=kf(x),(k为正整数),即14x2﹣28x+70=k(x2+bx+c),14(x2﹣2x+5)=k(x2+bx+c),∴k=14,b=﹣2,c=5,即f(x)=x2﹣2x+5.∴f(1)=4.3.(1)证明:因为每个“好整数”都是正整数,所以M⊆N+;另一方面,对每个n∈N+,都有n=,所以n是“好整数”,即n∈M,所以N+⊆M,因此M=N+;(2)证明:只需从12至20132中去掉两个,根据勾股定理,换上一个大于20132的数,∵20002=42×5002,32+42=52,∴32×5002+42×5002=52×5002,即15002+20002=25002,因此从a中去掉15002和20002,添加25002,即将a写成了2012个不同的正整数的平方和.4.证明:﹣1+﹣1++1=0,++=0,++=0,++=0,(b+c﹣a)(+)+=0,(b+c﹣a)•+=0,(b+c﹣a)•+=0,+=0,=0,a﹣b+c=0或b+c﹣a=0或a+b﹣c=0,当a﹣b+c=0,即b=a+c时,==1,==﹣1,==1;当b+c﹣a=0,即a=b+c时,同理可得=﹣1,=1,=1;当a+b﹣c=0,即c=a+b时,=1,=1,=﹣1;综上所述,三个分式中有两个等于1,一个等于﹣1.5.证明:∵a,b,c,是有理数,且也是有理数,∴a≥0,b≥0,c≥0,∴,,可能是有理数也可能是无理数,∵正无理数与正无理数的和是无理数,有理数和无理数的和是无理数,∴必须是三个都是有理数才会是和为有理数,∴,,都是有理数.6.解:设=a,则x=,∴=,∴====;====,∴+=+=1.7.解:当m≥2时,|m|+|m﹣1|+|m﹣2|=m+m﹣1+m﹣2=3m﹣3=3(m﹣1)≥2;当1≤m≤2时,|m|+|m﹣1|+|m﹣2|=m+m﹣1+2﹣m=m+1≥2;当0≤m≤1时,|m|+|m﹣1|+|m﹣2|=m+1﹣m+2﹣m=﹣m+3≥2;当m<0时,|m|+|m﹣1|+|m﹣2|=﹣m+1﹣m+2﹣m=﹣3m+3=﹣3(m﹣1)≥3;综合所述:可得当m=1时可以得到它的最小值,最小值为2.8.解:(1)原式=×﹣×+=﹣2××+(17+)×=﹣2××+21+=﹣2××+21=3.5﹣1+21=23.5.(2)∵12+22+32+…+n2=n(n+1)(2n+1),∴===12[﹣]∴原式=24×(++…+)﹣12×(﹣+﹣+…+﹣)=24×(++…+)﹣12×(++…+)+12×(++…+)=12×(++…+)+12×(++…+)=12×(++++…++)=12×(﹣+﹣+﹣+﹣+…+﹣+﹣)=12×(﹣)=12×=.9.解:设x3+27=(x+3)(x2+ax+b),∵(x+3)(x2+ax+b)=x3+(a+3)x2+(b+3a)x+3b,∴,即a=﹣3,b=9.因此x3+27=(x+3)(x2﹣3x+9).10.解:由绝对值的几何意义可知,当绝对值的个数为奇数时,取得最小值x是其中间项,而当绝对值的个数为偶数时,则x取中间两项结果一样.因此,对于|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣2009|,当x=1005时取得最小值,此时原式=1004+1003+…+0+1+2+…+1004=1004×(1+1004)=1009020.11.解:(1)原式=(2+)+(2+)+(2+)+…+(2+)=2×2013+(+++…+)=4026+(1﹣+﹣+﹣+…+﹣)=4026+1﹣=4026;(2)原式=(++…+)=(+++…+)=(﹣+﹣+﹣+…+﹣)=(﹣+﹣+﹣+…+﹣)=(﹣)=.12.解:当n为偶数时,当x=时,|x1﹣1|+|x2﹣2|+…+|x n﹣n|的值最小为:﹣1+﹣2+…+0+1+…﹣=0,当n为奇数时,x=时,|x1﹣1|+|x2﹣2|+…+|x n﹣n|的值最小为:﹣+﹣+…+0+1+…+﹣,=0.13.解:a2(b+c﹣2a)+b2(c+a﹣2b)+c2(a+b﹣2c)+2(a2﹣b2)(a﹣c)+2(b2﹣c2)(b ﹣a)+2(c2﹣a2)(c﹣b)=a2[(b﹣a)+(c﹣a)]+b2[(c﹣b)+(a﹣b)]+c2[(a﹣c)+(b﹣c)]+2(a2﹣b2)(a﹣c)+2(b2﹣c2)(b﹣a)+2(c2﹣a2)(c﹣b)=a2(b﹣a)+a2(c﹣a)+b2(c﹣b)+b2(a﹣b)+c2(a﹣c)+c2(b﹣c)+2(a2﹣b2)(a﹣c)+2(b2﹣c2)(b﹣a)+2(c2﹣a2)(c﹣b)=(a﹣b)(b2﹣a2)+(a﹣c)(c2﹣a2)+(b﹣c)(c2﹣b2)+2(a2﹣b2)(a﹣c)+2(b2﹣c2)(b﹣a)+2(c2﹣a2)(c﹣b)=(a2﹣b2)[﹣a+b+2(a﹣c)]+(c2﹣a2)[(a﹣c)+2(c﹣b)]+(b2﹣c2)[c﹣b+2(b﹣a)]=(a2﹣b2)[(a﹣c)+(b﹣c)]+(c2﹣a2)[(a﹣b)+(c﹣b)]+(b2﹣c2)[(c﹣a)+(b﹣a)]=(a2﹣b2)(a﹣c)+(a2﹣b2)(b﹣c)+(c2﹣a2)(a﹣b)+(c2﹣a2)(c﹣b)+(b2﹣c2)(c﹣a)+(b2﹣c2)(b﹣a)=(a﹣b)(a+b)(a﹣c)+(a﹣b)(a+b)(b﹣c)+(c﹣a)(c+a)(a﹣b)+(c ﹣a)(c+a)(c﹣b)+(b﹣c)(b+c)(c﹣a)+(b﹣c)(b+c)(b﹣a)=(a﹣b)(a﹣c)[(a+b﹣(a+c)]+(b﹣c)(a﹣b)[(a+b)﹣(b+c)]+(c﹣a)(c﹣b)[a+c﹣(b+c)]=(a﹣b)(a﹣c)(b﹣c)+(a﹣b)(a﹣c)(b﹣c)+(a﹣b)(a﹣c)(b﹣c)=3(a﹣b)(a﹣c)(b﹣c).14.解:设2009x3=2010y3=2011z3=k3,则2009x2=,2010y2=,2011z2=,故==k×,++=++=k(++)则=++,又xyz>0,故++=1.15.解:(1)存在.比如:当a=1﹣,b=时,对于每个正整数n≥2,都有a+b=1是有理数,a n+b n=(1﹣)n+()n都是无理数.事实上,当a=m+x,b=n﹣x(其中x是无理数,m、n是有理数,且m+n≠0)时,对于每个正整数n≥2,都有a+b=m+n是有理数,a n+b n=(m+x)n+(n﹣x)n都是无理数.(2)不存在.理由如下:①实数a、b都是有理数,此时a+b是有理数,与条件“a+b是无理数”矛盾,故舍去.②实数a、b中一个是有理数另一个是无理数,此时a+b是无理数,a n、b n必有一个是有理数另一个是无理数.所以a n+b n必是无理数,而不是有理数.③实数a、b都是无理数,因为a+b是无理数,所以a与b不可能是互为相反数.所以a n与b n也不可能互为相反数,即a n+b n≠0.因为实数a是无理数,所以a n、a n+1(n≥2)中至少有一个是无理数.同理:b n、b n+1(n≥2)中至少有一个是无理数.Ⅰ.若a n、b n都是有理数,则a n+1、b n+1都是无理数.因为a n+1+b n+1≠0,所以a n+1+b n+1是无理数.Ⅱ.若a n、b n只有一个是有理数,则a n+b n必是无理数.Ⅲ.若a n、b n都是无理数,因为a n+b n≠0,所以a n+b n必是无理数.综上所述:不能保证对于每个正整数n≥2,当a+b是无理数时,a n+b n都是有理数.故符合要求的实数a、b不存在.16.解:将变形如下,a(+)+1+b(+)+1+c(+)+1=0,即a(++)+b(++)+c(++)=0,∴(a+b+c)(++)=0,∴(a+b+c)•=0,∴a+b+c=0或bc+ac+ab=0.若bc+ac+ab=0,则(a+b+c)2=a2+b2+c2+2(bc+ac+ab)=a2+b2+c2=1,∴a+b+c=±1.∴a+b+c的值为1,﹣1,0.17.解:(1)根据函数y=|x+1|+|x+2|+|x+3|=a的图象可知:当a<2时,方程无解;当a=2时,方程有一个根;当a>2时,方程有两个根.(2)因为方程|x|=|x+1|=|x﹣2|无解,故n≥2且公差不为0.不妨设数列的各项为a﹣kd(1≤k≤n,d>0).作函数f(x)=|x=kd|,本题条件等价于f(x)=507至少有三个不同的根a,a+1,a﹣2,此条件又等价于函数y=f(x)的图象与水准直线y=507至少有三个不同的公共点.由于y=f(x)的图象是关于直线y=左右对称的n+1段的下凸折线,它与水准直线L有三个公共点当且仅当折线有一水准段在L上,当且仅当n=2m且a,a+1,a﹣2∈[md,(m+1)d],f(md)=507.即d≥3且m2d=507.由此得m2≤,解得:m≤13,显然,m=13时,取d=3,a=4满足本题条件.因此,n的最大值为26.18.解:=(1+1+1+1+1+1+1+1+1+1)﹣(0.1+0.01+0.01+…+0.0000000001),=10﹣0.1111111111,=9.8888888889,答:原式的和的整数部分是9.19.解:原式=(1+)+(1+)+(1+)+…+(1+)=n++++…+=n+1﹣+﹣+﹣+…+﹣=n+1+﹣﹣=n+﹣﹣.20.证明:∵,两边同时乘以abc(abc不等于0)得,bc+ac+ab=,两边同时乘以a+b+c得,a2b+ab2+a2c+ac2+b2c+bc2+3abc=abc,∴a2b+ab2+a2c+ac2+b2c+bc2+2abc=0,∴a2b+ab2+a2c+ac2+b2c+bc2+2abc=(a+b)(b+c)(a+c)=0,∴a+b,b+c,c+a中,至少有一个是0,故当n为奇数时a n+b n,b n+c n,a n+c n至少有一个是0,同理:,=,=0.∴.。

初中数学易错题分类汇编

初中数学易错题分类汇编

初中数学易错题分类汇编一、数与式 4(A )2,(B 2(C )2±,(D )2例题:等式成立的是.(A )1c ab abc =,(B )632x x x =,(C )112112a a a a ++=--,(D )22a x a bx b =. 二、方程与不等式⑴字母系数例题:关于x 的方程2(2)2(1)10k x k x k ---++=,且3k ≤.求证:方程总有实数根.例题:不等式组2,.x x a >-⎧⎨>⎩的解集是x a >,则a 的取值范围是. (A )2a <-,(B )2a =-,(C )2a >-,(D )2a ≥-.⑵判别式例题:已知一元二次方程222310x x m -+-=有两个实数根1x ,2x ,且满足不等式121214x x x x <+-,求实数的范围. ⑶解的定义例题:已知实数a 、b 满足条件2720a a -+=,2720b b -+=,则a b b a+=____________. ⑷增根 例题:m 为何值时,22111x m x x x x --=+--无实数解. ⑸应用背景例题:某人乘船由A 地顺流而下到B 地,然后又逆流而上到C 地,共乘船3小时,已知船在静水中的速度为8千米/时,水流速度为2千米/时,若A 、C 两地间距离为2千米,求A 、B 两地间的距离.⑹失根例题:解方程(1)1x x x-=-.三、函数⑴自变量例题:函数62xyx x-=-+中,自变量x的取值范围是_______________.⑵字母系数例题:若二次函数2232y mx x m m=-+-的图像过原点,则m=______________.⑶函数图像例题:如果一次函数y kx b=+的自变量的取值范围是26x-≤≤,相应的函数值的范围是119y-≤≤,求此函数解析式.⑷应用背景例题:某旅社有100张床位,每床每晚收费10元时,客床可全部租出.若每床每晚收费再提高2元,则再减少10张床位租出.以每次这种提高2元的方法变化下去,为了投资少而获利大,每床每晚应提高_________元.四、直线型⑴指代不明36,则斜边上的高等于________.⑵相似三角形对应性问题例题:在ABC△中,9AB=,12AC=18BC=,D为AC上一点,:2:3DC AC=,在AB 上取点E,得到ADE△,若两个三角形相似,求DE的长.⑶等腰三角形底边问题例题:等腰三角形的一条边为4,周长为10,则它的面积为________.⑷三角形高的问题例题:等腰三角形的一边长为10,面积为25,则该三角形的顶角等于多少度?⑸矩形问题例题:有一块三角形ABC铁片,已知最长边BC=12cm,高AD=8cm,要把它加工成一个矩形铁片,使矩形的一边在BC上,其余两个顶点分别在三角形另外两条边上,且矩形的长是宽的2倍,求加工成的铁片面积?⑹比例问题例题:若b c c a a bka b c+++===,则k=________.五、圆中易错问题⑴点与弦的位置关系例题:已知AB是⊙O的直径,点C在⊙O上,过点C引直径AB的垂线,垂足为点D,点D分这条直径成2:3两部分,如果⊙O的半径等于5,那么BC= ________.⑵点与弧的位置关系例题:PA、PB是⊙O的切线,A、B是切点,78APB∠=︒,点C是上异于A、B的任意一点,那么ACB∠=________.⑶平行弦与圆心的位置关系例题:半径为5cm的圆内有两条平行弦,长度分别为6cm和8cm,则这两条弦的距离等于________.⑷相交弦与圆心的位置关系例题:两相交圆的公共弦长为6,两圆的半径分别为325,则这两圆的圆心距等于________.⑸相切圆的位置关系例题:若两同心圆的半径分别为2和8,第三个圆分别与两圆相切,则这个圆的半径为________.练习题:一、容易漏解的题目1.一个数的绝对值是5,则这个数是_________;__________数的绝对值是它本身.(5±,非负数)2._________的倒数是它本身;_________的立方是它本身.(1±,1±和0)3.关于x 的不等式40x a -≤的正整数解是1和2;则a 的取值范围是_________.(412a ≤<)4.不等式组213,.x x a ->⎧⎨>⎩的解集是2x >,则a 的取值范围是_________.(2a ≤) 5.若()2211a a a +--=,则a =_________.(2-,2,1-,0)6.当m 为何值时,函数21(3)45m y m x x +=++-是一个一次函数.(0m =或3m =-)7.若一个三角形的三边都是方程212320x x -+=的解,则此三角形的周长是_________.(12,24或20)8.若实数a 、b 满足221a a =+,221b b =+,则a b +=________.(2,222±9.在平面上任意画四个点,那么这四个点一共可以确定_______条直线.10.已知线段AB =7cm ,在直线AB 上画线段BC =3cm ,则线段AC =_____.(4cm 或10cm )11.一个角的两边和另一个角的两边互相垂直,且其中一个角是另一个角的两倍少30︒,求这两个角的度数.(30︒,30︒或70︒,110︒)12.三条直线公路相互交叉成一个三角形,现在要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有_______处?(4)13.等腰三角形一腰上的高与腰长之比为1:2,则该三角形的顶角为_____.(30︒或150︒)14.等腰三角形的腰长为a ,一腰上的高与另一腰的夹角为30︒,则此等腰三角形底边上的高为_______.(2a 3) 15.矩形ABCD 的对角线交于点O .一条边长为1,OAB △是正三角形,则这个矩形的周长为______.(223+232 16.梯形ABCD 中,AD BC ∥,90A ∠=︒,AB =7cm ,BC =3cm ,试在AB 边上确定P 的位置,使得以P 、A 、D 为顶点的三角形与以P 、B 、C 为顶点的三角形相似.(AP =1cm ,6cm 或145cm )17.已知线段AB =10cm ,端点A 、B 到直线l 的距离分别为6cm 和4cm ,则符合条件的直线有___条.(3条)18.过直线l 外的两点A 、B ,且圆心在直线l 的上圆共有_____个.(0个、1个或无数个)19.在Rt ABC △中,90C ∠=︒,3AC =,5AB =,以C 为圆心,以r 为半径的圆,与斜边AB 只有一个交点,求r 的取值范围.( 2.4r =或34r <≤)20.直角坐标系中,已知(1,1)P ,在x 轴上找点A ,使AOP △为等腰三角形,这样的点P 共有多少个?(4个)21.在同圆中,一条弦所对的圆周角的关系是______________.(相等或互补)22.圆的半径为5cm ,两条平行弦的长分别为8cm 和6cm ,则两平行弦间的距离为 _______.(1cm 或7cm )23.两同心圆半径分别为9和5,一个圆与这两个圆都相切,则这个圆的半径等于多少?(2或7)24.一个圆和一个半径为5的圆相切,两圆的圆心距为3,则这个圆的半径为多少?(2或8)25.PA 切⊙O 于点A ,AB 是⊙O 的弦,若⊙O 的半径为1,2AB 则PA 的长为____.(15)26.PA 、PB 是⊙O 的切线,A 、B 是切点,80APB ∠=︒,点C 是上异于A 、B 的任意一点,那么ACB ∠= ________.(50︒或130︒)27.在半径为1的⊙O 中,弦2AB 3AC BAC ∠=________.(75︒或15︒)二、容易多解的题28.已知()()22222215x y x y +++=,则22x y +=_______.(3) 29.在函数1x y -=中,自变量的取值范围为_______.(1x ≥) 30.已知445x x -+=,则22x x -+=________7)31.当m 为何值时,关于x 的方程2(2)(21)0m x m x m ---+=有两个实数根.(14m ≥-,且2m ≠).32.当m 为何值时,函数2(1)350m m y m x x -=++-=是二次函数.(2)33.若22022(43)x x x x --=-+,则x =?.(1-)34.方程组22240,3260.x y x xy x y ⎧-=⎪⎨-+++=⎪⎩的实数解的组数是多少?(2) 35.关于x 的方程231210x k x k ++-=有实数解,求k 的取值范围.(113k -≤≤) 36.k 为何值时,关于x 的方程2(2)320x k x k -++-=的两根的平方和为23?(3k =-)37.m 为何值时,关于x 的方程21202x m x m ⎛⎫-++= ⎪⎝⎭的两根恰好是一个直角三角形的两个锐角的余弦值?.(3m = 38.若对于任何实数x ,分式214x x c ++总有意义,则c 的值应满足______.(4c >) 39.在ABC △中,90A ∠=︒,作既是轴对称又是中心对称的四边形ADEF ,使D 、E 、F 分别在AB 、BC 、CA 上,这样的四边形能作出多少个?(1)40.在⊙O 中,弦AB =8cm ,P 为弦AB 上一点,且AP =2cm ,则经过点P 的最短弦长为多少?(4341.两枚硬币总是保持相接触,其中一个固定,另一个沿其周围滚动,当滚动的硬币沿固定的硬币滚动一周,回到原来的位置,滚动的那个硬币自转的圈数为_______.(2)三、容易误判的问题:1.两条边和其中一组对边上的高对应相等的两个三角形全等。

初中数学易错题集合整理过的)

初中数学易错题集合整理过的)
⑹失根
例题:解方程 .
三、函数
⑴自变量
例题:函数 中,自变量 的取值范围是_______________.
⑵字母系数
例题:若二次函数 的图像过原点,则 =______________.
⑶函数图像
例题:如果一次函数 的自变量的取值范围是 ,相应的函数值的范围是 ,求此函数解析式.
⑷应用背景
例题:某旅社有100张床位,每床每晚收费10元时,客床可全部租出.若每床每晚收费再提高2元,则再减少10张床位租出.以每次这种提高2元的方法变化下去,为了投资少而获利大,每床每晚应提高_________元.
五、圆中易错问题
⑴点与弦的位置关系
例题:已知 是⊙O的直径,点 在⊙O上,过点 引直径 的垂线,垂足为点 ,点 分这条直径成 两部分,如果⊙O的半径等于5,那么 =________.
⑵点与弧的位置关系
例题: 、 是⊙O的切线, 、 是切点, ,点 是圆上异于 、 的任意一点,那么 ________.
练习题:
一、容易漏解的题目
1.一个数的绝对值是5,则这个数是_________;__________数的绝对值是它本身.
2._________的倒数是它本身;_________的立方是它本身.
3.关于 的不等式 的正整数解是1和2;则 的取值范围是_________.
4.不等式组 的解集是 ,则 的取值范围是_________
26. 、 是⊙O的切线, 、 是切点, ,点 是上异于 、 的任意一点,那么 ________.
27.在半径为1的⊙O中,弦 , ,那么 ________.
二、容易多解的题
28.已知 ,则 _______.
29.在函数 中,自变量的取值范围为_______.

2021年全国中考数学真题分类汇编--数与式:分式(含答案)

2021年全国中考数学真题分类汇编--数与式:分式(含答案)

中考真题分类汇编(数与式)----分式一、选择题1.(2021•江苏省苏州市)已知两个不等于0的实数a、b满足a+b=0,则+等于()A.﹣2B.﹣1C.1D.2【分析】先把所求式子通分,然后将分子变形,再根据两个不等于0的实数a、b满足a+b =0,可以得到ab≠0,再将a+b=0代入化简后的式子即可解答本题.【解答】解:+===,∵两个不等于0的实数a、b满足a+b=0,∴ab≠3,当a+b=0时,原式=,故选:A.2.(2021•江西省)计算的结果为()A.1B.﹣1C.D.【分析】根据分式的加减运算法则即可求出答案.【解答】解:原式===1,故选:A.3.(2021•山东省临沂市)计算(a﹣)÷(﹣b)的结果是()A.﹣B.C.﹣D.【分析】根据分式的减法和除法法则可以化简题目中的式子.【解答】解:(a﹣)÷(﹣b)=÷==﹣,故选:A.4.(2021•四川省眉山市)化简(1+)÷的结果是()A.a+1B.C.D.【分析】分式的混合运算,先算小括号里面的,然后算括号外面的.【解答】解:原式==,故选:B.5.(2021•四川省南充市)下列运算正确的是()A.•=B.÷=C.+=D.﹣=【分析】根据分式的乘除法和加减法可以计算出各个选项中式子的正确结果,从而可以解答本题.【解答】解:=,故选项A错误;==,故选项B错误;==,故选项C错误;===,故选项D正确;故选:D .6. (2021•天津市)计算33a ba b a b---的结果是( ) A. 3 B. 33a b +C. 1D.6aa b- 【答案】A 【解析】【分析】先根据分式的减法运算法则计算,再提取公因式3,最后约分化简即可. 【详解】原式33a ba b-=-, 3()a b a b-=-3=.故选A .7.(2021•贵州省铜仁市)下列等式正确的是( ) A. 3tan 452-+︒=- B. ()5510x xy x y ⎛⎫÷= ⎪⎝⎭C. ()2222a b a ab b -=++ D. ()()33x y xy xy x y x y -=+-【答案】D8. (2021•浙江省宁波市)要使分式12x +有意义,x 的取值应满足( ) A. 0x ≠ B. 2x ≠-C. 2x ≥-D. 2x >-【答案】B 【解析】【分析】由分式有意义,分母不为零,再列不等式,解不等式即可得到答案. 【详解】解:分式12x +有意义, 20,x ∴+≠2.x ∴≠-故选:.B9. 2021•黑龙江省大庆市)已知b >a >0,则分式a b 与a +1b +1的大小关系是( )AA . a b <a +1b +1B . a b =a +1b +1C . a b >a +1b +1D . 不能确定二.填空题1. (2021•湖南省衡阳市)计算:= 1 .【分析】根据同分母的分式加减法则进行计算即可. 【解答】解:原式==1.故答案为:1.2. (2021•岳阳市)要使分式51x -有意义,则x 的取值范围为_________. 【答案】x ≠13. (2021•四川省南充市)若=3,则+=.【分析】利用分式化简,得出n =2m ,代入即可求解.【解答】解:∵,∴n =2m , ∴+=+=+4=,故答案为:.4. (2021•四川省自贡市)化简:22824a a -=-- _________. 【答案】22a + 【解析】【分析】利用分式的减法法则,先通分,再进行计算即可求解. 【详解】解:22824a a --- ()()28222a a a =--+- ()()()()()2282222a a a a a +=-+-+-()()()2222a a a -=+-22a =+, 故答案为:22a +. 5. (2021•福建省)已知非零实数x ,y 满足y =,则的值等于 .【答案】4 【解析】【分析】由条件1xy x =+变形得,x -y =xy ,把此式代入所求式子中,化简即可求得其值. 【详解】由1xy x =+得:xy +y =x ,即x -y =xy ∴3344x y xy xy xy xyxy xy xy-++===故答案为:4三、解答题1. (2021•湖南省常德市)化简:2593111aa a a a a ++⎛⎫+÷ ⎪---⎝⎭【答案】31a a ++ 【解析】【分析】直接将括号里面的分式,通分运算进而结合分式的混合运算法则,计算得出答案. 详解】2593111aa a a a a ++⎛⎫+÷⎪---⎝⎭222591=113a a a a a a a ++-⨯--+(+) 2691=(1)(1)3a a a a a a ++-⨯+-+ 2(3)1=(1)(1)3a a a a a +-⨯+-+ 31a a +=+故答案为:31a a ++. 2. (2021•怀化市)先化简,再求值:,其中x =.【分析】直接利用分式的混合运算法则化简,再把已知数据代入得出答案. 【解答】解:原式=+•=+=+= = =,当x =+2时, 原式===.3. (2021•湖南省邵阳市)先化简,再从﹣1,0,1,2,+1中选择一个合适的x 的值代入求值.(1﹣)÷.【分析】先计算分式的混合运算进行化简,先算小括号里面的,然后算括号外面的,最后根据分式成立的条件确定x 的取值,代入求值即可. 【解答】解:原式==,又∵x ≠±1,∴x 可以取0,此时原式=﹣1; x 可以取2,此时原式=1; x 可以取,此时原式=.4. (2021•株洲市)先化简,再求值:2223142x x x x ⎛⎫⋅-- ⎪-+⎝⎭,其中22x =. 【答案】12x -+,25. (2021•江苏省南京市)计算222ab a b b ab a b a ab ab-⎛⎫-+÷ ⎪+++⎝⎭. 【答案】a ba b-+ 【解析】【分析】先对括号里的分式进行通分,将通分后的分式进行合并,将合并后的结果与最后一项分式相除,将除法运算转化为乘法运算,最后约分化简后即可得到计算结果.【详解】解:原式=()()2a bab b a b a b a a b a b ⎛⎫-+⋅ ⎪ ⎪+++-⎝⎭=()()()222a ab b ab ab a b ab a b ab a b a b ⎛⎫-+⋅ ⎪ ⎪+++-⎝⎭=()222a ab b abab a b a b-+⋅+-=()()2a b ab ab a b a b-⋅+- =a ba b-+. 6. (2021•山东省聊城市) 先化简,再求值:22212211111a a a a a a a a +--⎛⎫+÷-- ⎪+--⎝⎭,其中a =﹣32. 【答案】21aa +;6 【解析】【分析】先把分式化简后,再把a 的值代入求出分式的值即可.【详解】解:原式=22212(21)(1)(1)111a a a a a a a a a +---+-+÷+-- 2222122111a a a a aa a a +--+=+÷+-- 21111a a a +=-++ 21a a =+,当32a=-时,原式=6.7.(2021•四川省达州市)化简求值:(1﹣)÷(),其中a与2,3构成三角形的三边【分析】直接将括号里面通分运算,再利用分式的混合运算法则化简,再结合三角形三边关系、分式有意义的条件得出a的值,求出答案即可.【解答】解:原式=•=•=﹣2(a﹣2)=﹣2a+4,∵a与2,6构成三角形的三边,∴3﹣2<a<8+2,∴1<a<4,∵a为整数,∴a=2,3或6,又∵a﹣2≠0,a﹣5≠0,∴a≠2且a≠5,∴a=3,∴原式=﹣2a+5=﹣2×3+2=﹣6+4=﹣3.8.(2021•四川省乐山市)已知2612(1)(2)A B xx x x x--=----,求A、B的值.【答案】A的值为4,B的值为-2【解析】【分析】根据分式、整式加减运算,以及二元一次方程组的性质计算,即可得到答案.【详解】(2)(1)12(1)(2)(1)(2)A B A x B xx x x x x x---=+------,∴(2)(1)26(1)(2)(1)(2)A xB x x x x x x -+--=----,∴(2)(1)26A x B x x -+-=-, 即()(2)26A B x A B x +-+=-.∴226A B A B +=⎧⎨+=⎩,解得:42A B =⎧⎨=-⎩∴A 的值为4,B 的值为2-.。

31-初中数学竞赛考题分类汇编(一)数与式

31-初中数学竞赛考题分类汇编(一)数与式

初中数学竞赛考题分类汇编(一)数与式例题1.化简3-232++=_____例题2、设a,b 是不相等的任意正数,又21b x a +=,21a y b +=,则有x,y 这两个数一定( )A.都不大于2 B .都小于2 C.至少有一个大于2 D.至少有一个小于2例题3、设的平均数为M ,的平均数为N ,N ,的平均数为P ,若,则M 与P 的大小关系是( )。

(A )M =P ;(B )M >P ;(C )M <P ;(D )不确定。

例题4、a 、b 、c 为正整数,且432c b a =+,求c 的最小值。

例题5、已知333124++=a ,那么32133aa a ++=_______例题6、已知a ,b ,c 为整数,且a +b=2006,c -a =2005.若a <b ,则a +b +c 的最大值为 .例题7、设a ,b ,c 为互不相等的实数,且满足关系式14162222++=+a a c b ① 542--=a a bc ② 求a 的取值范围.解:因为14162222++=+a a c b ,542--=a a bc ,所以 222221448454214162)()()(+=++=--+++=+a a a a a a a c b , 所以 )(12+±=+a c b . 又542--=a a bc ,所以b ,c 为一元二次方程 0541222=--++±a a x a x )( ⑤ 的两个不相等实数根,故05441422>---+=∆)()(a a a ,所以a >-1. 当a >-1时, 14162222++=+a a c b =0712>++))((a a . 另外,当b a =时,由⑤式有 0541222=--++±a a a a a )(, 即 05242=--a a 或 056=--a ,解得,4211±=a 或65-=a . 当c a =时,同理可得65-=a 或4211±=a . 所以,a 的取值范围为a >-1且65-≠a ,4211±≠a . 例题8、已知abc ≠0,且a+b+c =0, 则代数式222a b c bc ca ab++的值是( ) (A) 3 (B) 2 (C) 1 (D) 0例题9、设22211148()34441004A =⨯++---L ,则与A 最接近的正整数是( ) A.18 B.20 C.24 D.25练习题1、实数a,b 满足1333=++ab b a ,则a+b= .2、a ,b ,c 为有理数,且等式62532+=++c b a 成立,则2a +999b +1001c 的值是( ) (A ) 1999(B )2000(C )2001(D )不能确定3、已知______0))(()412=+≠--=-a c b a a c b a c b ,则且(4、a ,b ,c 均为正数,且a (b+c )=152,b (c+a )=162,c (a+b )=170,那么abc 的值是( ).(A )672 (B )688 (C )720 (D )7505若实数x ,y ,z 满足41=+y x ,11=+z y ,371=+x z ,则xyz 的值为 .6、已知a 2+b 2=1,b 2+c 2=2,c 2+a 2=2.则ab+bc+ca 的最小值为__________.7、若,,a b c 均为整数且满足1010()()1a b a c -+-=,则||||||a b b c c a -+-+-=__________8、已知xyz=1,x+y+z=2,3222=++z y x ,求111111-++-++-+y xz x yz z xy 的值。

初中数学易错题分类大全

初中数学易错题分类大全

初中数学易错题分类汇编一、数与式例题:A )2,(B,(C )2±,(D)例题:等式成立的是.(A )1c ab abc =,(B )632x x x =,(C )112112a a a a ++=--,(D )22a x a bx b=. 二、方程与不等式⑴字母系数例题:关于x 的方程2(2)2(1)10k x k x k ---++=,且3k ≤.求证:方程总有实数根.例题:不等式组2,.x x a >-⎧⎨>⎩的解集是x a >,则a 的取值范围是. (A )2a <-,(B )2a =-,(C )2a >-,(D )2a ≥-.⑵判别式例题:已知一元二次方程222310x x m -+-=有两个实数根1x ,2x ,且满足不等式121214x x x x <+-,求实数的范围. ⑶解的定义例题:已知实数a 、b 满足条件2720a a -+=,2720b b -+=,则a b b a+=____________. ⑷增根例题:m 为何值时,22111x m x x x x --=+--无实数解. ⑸应用背景例题:某人乘船由A地顺流而下到B地,然后又逆流而上到C地,共乘船3小时,已知船在静水中的速度为8千米/时,水流速度为2千米/时,若A、C 两地间距离为2千米,求A、B两地间的距离.⑹失根例题:解方程(1)1-=-.x x x三、函数⑴自变量例题:函数y=中,自变量x的取值范围是_______________.⑵字母系数例题:若二次函数22y mx x m m=-+-的图像过原点,则m=______________.32⑶函数图像例题:如果一次函数y kx b=+的自变量的取值范围是26-≤≤,相应的函数值x的范围是119y-≤≤,求此函数解析式.⑷应用背景例题:某旅社有100张床位,每床每晚收费10元时,客床可全部租出.若每床每晚收费再提高2元,则再减少10张床位租出.以每次这种提高2元的方法变化下去,为了投资少而获利大,每床每晚应提高_________元.四、直线型⑴指代不明________.⑵相似三角形对应性问题例题:在ABCBC=,D为AC上一点,:2:3DC AC=,AC=18△中,9AB=,12在AB上取点E,得到ADE△,若两个三角形相似,求DE的长.⑶等腰三角形底边问题例题:等腰三角形的一条边为4,周长为10,则它的面积为________. ⑷三角形高的问题例题:等腰三角形的一边长为10,面积为25,则该三角形的顶角等于多少度? ⑸矩形问题例题:有一块三角形ABC 铁片,已知最长边BC =12cm ,高AD =8cm ,要把它加工成一个矩形铁片,使矩形的一边在BC 上,其余两个顶点分别在三角形另外两条边上,且矩形的长是宽的2倍,求加工成的铁片面积?⑹比例问题 例题:若b c c a a b k a b c+++===,则k =________. 五、圆中易错问题⑴点与弦的位置关系例题:已知AB 是⊙O 的直径,点C 在⊙O 上,过点C 引直径AB 的垂线,垂足为点D ,点D 分这条直径成2:3两部分,如果⊙O 的半径等于5,那么BC =________.⑵点与弧的位置关系例题:PA 、PB 是⊙O 的切线,A 、B 是切点,78APB ∠=︒,点C 是上异于A 、B 的任意一点,那么ACB ∠=________.⑶平行弦与圆心的位置关系例题:半径为5cm 的圆内有两条平行弦,长度分别为6cm 和8cm ,则这两条弦的距离等于________.⑷相交弦与圆心的位置关系例题:两相交圆的公共弦长为6,两圆的半径分别为、5,则这两圆的圆心距等于________.⑸相切圆的位置关系例题:若两同心圆的半径分别为2和8,第三个圆分别与两圆相切,则这个圆的半径为________.练习题:一、容易漏解的题目1.一个数的绝对值是5,则这个数是_________;__________数的绝对值是它本身.(5±,非负数)2._________的倒数是它本身;_________的立方是它本身.(1±,1±和0)3.关于x 的不等式40x a -≤的正整数解是1和2;则a 的取值范围是_________.(412a ≤<)4.不等式组213,.x x a ->⎧⎨>⎩的解集是2x >,则a 的取值范围是_________.(2a ≤) 5.若()2211a a a +--=,则a =_________.(2-,2,1-,0)6.当m 为何值时,函数21(3)45m y m x x +=++-是一个一次函数.(0m =或3m =-)7.若一个三角形的三边都是方程212320x x -+=的解,则此三角形的周长是_________.(12,24或20)8.若实数a 、b 满足221a a =+,221b b =+,则a b +=________.(2,2±9.在平面上任意画四个点,那么这四个点一共可以确定_______条直线.10.已知线段AB =7cm ,在直线AB 上画线段BC =3cm ,则线段AC =_____.(4cm 或10cm )11.一个角的两边和另一个角的两边互相垂直,且其中一个角是另一个角的两倍少30︒,求这两个角的度数.(30︒,30︒或70︒,110︒)12.三条直线公路相互交叉成一个三角形,现在要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有_______处?(4)13.等腰三角形一腰上的高与腰长之比为1:2,则该三角形的顶角为_____.(30︒或150︒)14.等腰三角形的腰长为a,一腰上的高与另一腰的夹角为30︒,则此等腰三a)角形底边上的高为_______.(215.矩形ABCD的对角线交于点O.一条边长为1,OAB△是正三角形,则这个矩形的周长为______.(2+216.梯形ABCD中,AD BC∥,90∠=︒,AB=7cm,BC=3cm,试在AB边上确A定P的位置,使得以P、A、D为顶点的三角形与以P、B、C为顶点的三角cm)形相似.(AP=1cm,6cm或14517.已知线段AB=10cm,端点A、B到直线l的距离分别为6cm和4cm,则符合条件的直线有___条.(3条)18.过直线l外的两点A、B,且圆心在直线l的上圆共有_____个.(0个、1个或无数个)19.在Rt ABCAB=,以C为圆心,以r为半径的∠=︒,3AC=,5△中,90C圆,与斜边AB只有一个交点,求r的取值范围.( 2.4<≤)rr=或3420.直角坐标系中,已知(1,1)P,在x轴上找点A,使AOP△为等腰三角形,这样的点P共有多少个?(4个)21.在同圆中,一条弦所对的圆周角的关系是______________.(相等或互补)22.圆的半径为5cm,两条平行弦的长分别为8cm和6cm,则两平行弦间的距离为?_______.(1cm或7cm)23.两同心圆半径分别为9和5,一个圆与这两个圆都相切,则这个圆的半径等于多少?(2或7)24.一个圆和一个半径为5的圆相切,两圆的圆心距为3,则这个圆的半径为多少?(2或8)25.PA 切⊙O 于点A ,AB 是⊙O 的弦,若⊙O 的半径为1,AB =PA 的长为____.(1或)26.PA 、PB 是⊙O 的切线,A 、B 是切点,80APB ∠=︒,点C 是上异于A 、B 的任意一点,那么ACB ∠=________.(50︒或130︒)27.在半径为1的⊙O 中,弦AB AC BAC ∠=________.(75︒或15︒)二、容易多解的题28.已知()()22222215x y x y +++=,则22x y +=_______.(3)29.在函数y =中,自变量的取值范围为_______.(1x ≥)30.已知445x x -+=,则22x x -+=________)31.当m 为何值时,关于x 的方程2(2)(21)0m x m x m ---+=有两个实数根.(14m ≥-,且2m ≠).32.当m 为何值时,函数2(1)350m m y m x x -=++-=是二次函数.(2)33.若22022(43)x x x x --=-+,则x =?.(1-)34.方程组22240,3260.x y x xy x y ⎧-=⎪⎨-+++=⎪⎩的实数解的组数是多少?(2)35.关于x 的方程2210x k +-=有实数解,求k 的取值范围.(113k -≤≤) 36.k 为何值时,关于x 的方程2(2)320x k x k -++-=的两根的平方和为23?(3k =-)37.m 为何值时,关于x 的方程21202x m x m ⎛⎫-++= ⎪⎝⎭的两根恰好是一个直角三角形的两个锐角的余弦值?.(m =38.若对于任何实数x,分式21 4x x c++总有意义,则c的值应满足______.(4c>)39.在ABC△中,90A∠=︒,作既是轴对称又是中心对称的四边形ADEF,使D、E、F分别在AB、BC、CA上,这样的四边形能作出多少个?(1)40.在⊙O中,弦AB=8cm,P为弦AB上一点,且AP=2cm,则经过点P的最短弦长为多少?(41.两枚硬币总是保持相接触,其中一个固定,另一个沿其周围滚动,当滚动的硬币沿固定的硬币滚动一周,回到原来的位置,滚动的那个硬币自转的圈数为_______.(2)三、容易误判的问题:1.两条边和其中一组对边上的高对应相等的两个三角形全等。

2021年中考数学真题分类汇编--数与式:实数的运算及比较大小(学生版)

2021年中考数学真题分类汇编--数与式:实数的运算及比较大小(学生版)

中考真题分类汇编(数与式)----实数的运算及大小比较一、选择题1.(2021•湖南省常德市)阅读理解:如果一个正整数m能表示为两个正整数a,b的平方和,即,那么称m为广义勾股数.则下面的四个结论:①7不是广义勾股数;②13是广义勾股数;③两个广义勾股数的和是广义勾股数;④两个广义勾股数的积是广义勾股数.依次正确的是()A. ②④B. ①②④C. ①②D. ①④2.(2021•湖南省邵阳市)如图,若数轴上两点M,N所对应的实数分别为m,n,则m+n的值可能是()A.2B.1C.﹣1D.﹣23.(2021•长沙市)下列四个实数中,最大的数是()A. 3-B. 1-C. πD. 44.(2021•江苏省南京市)北京与莫斯科的时差为5小时,例如,北京时间13:00,同一时刻的莫斯科时间是8:00,小丽和小红分别在北京和莫斯科,她们相约在各自当地时间9:00~17:00之间选择一个时刻开始通话,这个时刻可以是北京时间()A. 10:00B. 12:00C. 15:00D. 18:005.(2021•山东省泰安市)下列各数:﹣4,﹣2.8,0,|﹣4|,其中比﹣3小的数是()A.﹣4B.|﹣4|C.0D.﹣2.86.(2021•陕西省)计算:3×(﹣2)=()A.1B.﹣1C.6D.﹣67.(2021•河北省)若取1.442,计算﹣3﹣98的结果是()A.﹣100B.﹣144.2C.144.2D.﹣0.014428.(2021•四川省南充市)数轴上表示数m和m+2的点到原点的距离相等,则m为()A.﹣2B.2C.1D.﹣19.(2021•天津市)17值在()A. 2和3之间B. 3和4之间C. 4和5之间D. 5和6之间10. (2021•浙江省湖州市)已知a ,b 是两个连续整数,a <3﹣1<b ,则a ,b 分别是 A .﹣2,﹣1 B .﹣1,0 C .0,1 D .1,2 11. (2021•浙江省台州)大小在2和5之间的整数有( ) A. 0个B. 1个C. 2个D. 3个12. (2021•北京市)实数a ,b 在数轴上的对应点的位置如图所示,下列结论中正确的是( )A .a >﹣2B .|a |>bC .a +b >0D .b ﹣a <013. (2021•北京市)已知432=1849,442=1936,452=2025,462=2116.若n 为整数且n <<n +1,则n 的值为( ) A .43B .44C .45D .4614. (2021•内蒙古包头市)下列运算结果中,绝对值最大的是( ) A. 1(4)+-B. 4(1)-C. 1(5)--D.415.(2021•四川省凉山州) 81的平方根是( )A. 3±B. 3C. 9±D. 916.(2021•贵州省贵阳市)如图,已知数轴上A ,B 两点表示的数分别是a ,b ,则计算|b |﹣|a |正确的是( )A .b ﹣aB .a ﹣bC .a +bD .﹣a ﹣b17.(2021•绥化市)定义一种新的运算:如果0a ≠.则有2||a b a ab b -=++-▲,那么1()22-▲的值是( ) 二.填空题1. (2021·安徽省)计算:04(1)+-=______.2. (2021•怀化市)比较大小:(填写“>”或“<”或“=”).3. (2021•湖南省邵阳市)16的算术平方根是 .4. (2021•江苏省扬州)计算:2220212020-=__________.5. (2021•山东省临沂市)比较大小:25(选填“>”、“=”、“<”).6.(2021•湖北省宜昌市)用正负数表示气温的变化量,上升为正,下降为负.登山队攀登一座山峰,每登高1km 气温的变化量为﹣6℃,攀登2km 后,气温下降 ℃.7. (2021•湖北省荆州市)已知:a =()﹣1+(﹣)0,b =(+)(﹣),则= .8. (2021•湖北省荆门市)计算:|1﹣|+()﹣1+2cos45°+(﹣1)0= .9. (2021•重庆市A )计算:031_______.10. (2021•内蒙古包头市)一个正数a 的两个平方根是21b -和4b +,则a b +的立方根为_______. 三、解答题1. (2021•甘肃省定西市)计算:(2021﹣π)0+()﹣1﹣2cos45°.2. (2021•湖北省黄冈市)计算:0.3. (2021•怀化市)计算:.4. (2021•江苏省连云港)计算:23862+--.5. (2021•江苏省扬州)计算:01|33|tan603⎛⎫-+-+︒ ⎪⎝⎭;6. (2021•江西省)计算:(﹣1)2﹣(π﹣2021)0+|﹣|;7. (2021•陕西省)计算:(﹣)0+|1﹣|﹣.8. (2021•山西省中考)计算:()()24311822⎛⎫-⨯-+-⨯ ⎪⎝⎭9. (2021•山东省临沂市)计算|﹣|+(﹣)2﹣(+)2.10. (2021•四川省成都市)计算:+(1+π)0﹣2cos45°+|1﹣|.11. (2021•遂宁市)计算:()101tan 60233122-⎛⎫-+︒--+-- ⎪⎝⎭π12. 2021•浙江省金华市)计算:(﹣1)2021+﹣4sin45°+|﹣2|.13. (2021•浙江省台州)小华输液前发现瓶中药液共250毫升,输液器包装袋上标有“15滴/毫升”.输液开始时,药液流速为75滴/分钟.小华感觉身体不适,输液10分钟时调整了药液流速,输液20分钟时,瓶中的药液余量为160毫升.(1)求输液10分钟时瓶中的药液余量; (2)求小华从输液开始到结束所需的时间.14. (2021•浙江省温州市)计算:4×(﹣3)+|﹣8|﹣.15. (2021•江苏省盐城市)如图,点A 是数轴上表示实数a 的点. (1)用直尺和圆规在数轴上作出表示实数的的点P ;(保留作图痕迹,不写作法)(2)利用数轴比较和a 的大小,并说明理由.16. (2021•湖北省十堰市)11233-⎛⎫︒+-- ⎪⎝⎭.17. (2021•湖南省张家界市)计算:860cos 222)1(2021+--+-︒18. (2021•广西贺州市)()04123π-+-︒.。

中考数学试题分类汇编--数与式

中考数学试题分类汇编--数与式

中考数学试题分类汇编--数与式一、选择题:1. (邵阳市) 15-的相反数为( )A B C D . (15)5515--2. (仙桃市) 8-的绝对值是( )A. 8-B. 8C.8±D.81 3.(宜昌市)如果a 与2互为倒数:则下列结论正确的为( ). (A)a =12 (B)a =-2 (C)a =-21(D)a =2 4.(福州市)-2的相反效是( ) A.2 B.-2 C.12 D.-125.(杭州市)已知a 与212a -互为倒数:则满足条件的实数a 的个数是( )A .0B .1C .2D .36.(北京市)-5的相反数是( )A 、5B 、-5C 、51 D 、51- 7.(贵阳市)2-的绝对值等于 ( ) (A )21-(B ) 2 (C )2- (D )218、(济宁市)5-的相反数是( ) A. 5- B. 5 C. 15-D. 159.(海南省)计算2-3的结果是( )A .5B .-5C .1D .-110. (济宁市)20062005(8)(8)-+-能被下列数整除的是( )A. 3B. 5C.7D.9 11.(杭州市)11(2)()222⨯-+-⨯=( ) A .-2 B .0C .1D .212.(长春市)计算()21-的值是 ( )(A )1. (B )1-. (C )2. (D )2-.13.(绍兴卷)冬季的一天:室内温度是8℃:室外温度是-2℃:则室内外温度相差 ( ) A 、4℃ B 、 6℃ C 、 10℃ D 、 16℃14. (荆门市)点A 在数轴上表示+2;从点A 沿数轴向左平移3个单位到点B ;则点B 所表示的实数是( )(A)3 (B)-1 (C)5 (D)-1或3.15. (仙桃市)吸烟有害健康.5月31日是世界无烟日:今年世界无烟日来临之际:中国国家卫生部公布了我国吸烟的人数约为3.5亿:占世界吸烟人数的31.用科学记数法表示全世界吸烟人数约为( )A.910105⨯ B.8105.10⨯ C.91005.1⨯D.101005.1⨯16.(宜昌市)宜昌市2005年财政总收入达到105.5亿元.用科学记数法(保留三位有效数字)表示105.5亿元约为( )元.(A) 1.055×1010 (B ) 1. 06 ×1010 (C ) 1. 05×1011 (D ) 1. 06×101117.(海南省)今年1至4月份:我省旅游业一直保持良好的发展势头:旅游收入累计达5163000000元:用科学记数法表示是( )A. 5163×106元B. 5.163×108元C. 5.163×109元D. 5.163×1010元 18.(福州市)用科学记数法表示180 000的结果是( ) A. 18×10455 D. 1.8×10619.(武汉市)同位素的半衰期(half -life )表示衰变一半样品所需的时间。

初中数学竞赛试题汇编

初中数学竞赛试题汇编

初中数学竞赛试题汇编标准化管理部编码-[99968T-6889628-J68568-1689N]C(第2题中国教育学会中学数学教学专业委员会2013年全国初中数学竞赛九年级预赛试题(本卷满分120分,考试时间120 分钟)一、选择题(本大题共6个小题,每小题5分,共30分)在下列各小题中,均给出四个答案,其中有且只有一个正确答案,请将正确答案的字母代号填入题后的括号里,不填、多填或错填均为零分.1. 从长度是2cm ,2cm ,4cm ,4cm 的四条线段中任意选三条线段,这三条线段能够组成等腰三角形的概率是( )A .41 B .31 C .21 D .12.如图,M 是△ABC 的边BC 的中点,AN 平分∠BAC ,AN ⊥BN 于N ,且AB =10,BC =15,MN =3,则△ABC 的周长为( )A .38B .39C .40 D. 413.已知1≠xy ,且有09201152=++x x ,05201192=++y y ,则yx的值等于( ) A .95 B .59 C .52011-D .92011-4.已知直角三角形的一直角边长是4,以这个直角三角形的三边为直径作三个半圆(如图所示),已知两个月牙形(带斜线的阴影图形)的面积之和是10,那么以下四个整数中,最接近图中两个弓形(带点的阴影图形)面积之和的是( )A .6B. 7 C .8D .95.设a ,b ,c 是△ABC 的三边长,二次函数2)2(2b a cx x b a y ----=在1=x 时取最小值b 58-,则△ABC 是( )A .等腰三角形B .锐角三角形C .钝角三角形 D6 照“先进后出”的原则,如图,堆栈(1)中的2据b ,a ,取出数据的顺序是a ,b ;堆栈(2)的3数据e ,d ,c ,取出数据的顺序是c ,d ,e 5个数据(每次取出1个数据),则不同顺序的取法的种数有( ) A .5种 B .6种 C .10种 D .12种 二、填空题(本大题共6个小题,每小题5分,共30分)7.若04122=---x x ,则满足该方程的所有根之和为 .8.(人教版考生做,在 ABCD 中,过A ,B ,C 三点的圆交AD 于E ,且与CD 相切,若AB =4,BE =5,则DE 的长为 .(1) (2)(第6题8.(北师大版考生做)如图B ,等边三角形ABC 中,D ,E 分别为AB ,BC 边上的两个动点,且总使AD=BE ,AE 与CD 交于点F ,AG ⊥CD 于点G ,则FGAF= .9.已知012=--a a ,且3222322324-=-++-axa a xa a ,则=x . 10.元旦期间,甲、乙两人到特价商店购买商品,已知两人购买商品的件数相同,且每件商品的单价只有8元和9元两种.若两人购买商品一共花费了172元,则其中单价为9元的商品有 件.11.如图,已知电线杆AB 直立于地面上,它的影子恰好照在土坡的坡面CD 和地面BC 上,如果CD 与地面成o 45,∠A =o 60,CD =4m ,BC =)2264(-m ,则电线杆AB 的长为12.实数x 与y ,使得y x +,y x -,xy ,yx四个数中的三个有相同的数值,则所有具有这样性质的数对),(y x 为 .3个小题,每小题20分,共60分)分) ))(())(()a x c x c x b x ++++++是完全平方式.求证: c b a ==.14.分)如图,将OA = 6,AB = 4的矩形OABC 放置在平面直角坐标系中,动点M ,N 以每秒1个单位的速度分别从点A ,C 同时出发,其中点M 沿AO 向终点O 运动,点N 沿CB 向终点B 运动,当两个动点运动了t 秒时,过点N 作NP ⊥BC ,交OB 于点P ,连接MP .(1)点B 的坐标为 ;用含t 的式子表示点P 的坐标为 ;(2)记△OMP 的面积为S ,求S 与t 的函数关系式(0 < t < 6);并求t 为何值时,S 有最大值(3)试探究:当S 有最大值时,在y 轴上是否存在点T ,使直线MT 把△ONC 分割成三角形和四边形两部分,且三角形的面积是△ONC 面积的31若存在,求出点T 的坐标;若不存在,请说明理由. 15.(本题满分20分)对于给定的抛物线b ax x y ++=2,使实数p ,q 适合于)(2q b ap +=.(1)证明:抛物线q px x y ++=2通过定点;(2)证明:下列两个二次方程,02=++b ax x 与02=++q px x 中至少有一个方程有实数根.2013年全国初中数学竞赛试题考试时间 2013年3月17日 9:30-11:30 满分150分(备用图)(第14题(第11题A B C D (第8题图A ) D GF ECB A(第8题图B )D1.用圆珠笔或钢笔作答;.解答书写时不要超过装订线; 草稿纸不上交。

初中数学竞赛试题集

初中数学竞赛试题集

初中数学竞赛试题集1. 第一章:整数与有理数在本章中,我们将学习整数和有理数的基本概念和性质,并掌握它们在数学竞赛中常见的应用。

• 1.1 整数的基本性质•定义:什么是整数?•整数的比较与排序方法•整数的加减乘除法运算规则• 1.2 有理数的表示与运算•有理数的定义及表示方法•有理数之间的比较与排序方法•加减乘除法运算规则• 1.3 实际问题中的整数和有理数应用•温度计问题•海拔高度问题•债务与资产问题2. 第二章:代数式与方程式在本章中,我们将学习代数式和方程式,掌握它们在初中数学竞赛中常见的解题技巧。

• 2.1 代表字母含义的代数式与表达式计算方法•字母、变量、系数组合词语含义解释•含字母、含变量、含系数组合意义解释• 2.2 方程式的定义及分类–什么是方程式?–一元一次方程–一元二次方程• 2.3 方程式的解与实际问题应用•方程式求解的基本步骤•应用题实例3. 第三章:几何图形与空间几何在本章中,我们将学习几何图形和空间几何的基础知识,并掌握其在数学竞赛中的运用。

• 3.1 几何图形的基本概念•点、线、面、角等基本概念及性质• 3.2 平面图形与立体图形•直线、射线、线段的定义及性质•四边形、三角形和圆等平面图形•长方体、球体等立体图形• 3.3 几何计算与实际问题应用•周长和面积计算方法•相似三角形及比例关系应用•空间几何问题总结:本文档提供了初中数学竞赛试题集相关内容,涵盖了整数与有理数、代数式与方程式以及几何图形与空间几何等主题。

每个主题都包含基本概念和性质的介绍,解题方法的讲解以及实际问题的应用。

通过学习这些内容,读者将能够掌握数学竞赛中常见的题型,提高自己在数学竞赛中的成绩。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学竞赛考题分类汇编(一)数与式
例题1.化简3-232++=_____
例题2、设a,b 是不相等的任意正数,又21b x a +=,
21a y b +=,则有x,y 这两个数一定( )
A.都不大于2 B .都小于2 C.至少有一个大于2 D.至少有一个小于2
例题3、设的平均数为M ,的平均数为N ,N ,的平均数为P ,若,则M 与P 的大小关系是( )。

(A )M =P ;(B )M >P ;(C )M <P ;(D )不确定。

例题4、a 、b 、c 为正整数,且4
32c b a =+,求c 的最小值。

例题5、已知333124++=a ,那么
32133a
a a ++=_______
例题6、已知a ,b ,c 为整数,且a +b=2006,c -a =2005.若a <b ,则a +b +c 的最大值为 .
例题7、设a ,b ,c 为互不相等的实数,且满足关系式
14
162222++=+a a c b ① 5
42--=a a bc ② 求a 的取值范围.
解:因为14162222++=+a a c b ,5
42--=a a bc ,所以 222221448454214162)
()()(+=++=--+++=+a a a a a a a c b , 所以 )
(12+±=+a c b . 又542--=a a bc ,所以b ,c 为一元二次方程 0
541222=--++±a a x a x )( ⑤ 的两个不相等实数根,故0
5441422>---+=∆)()(a a a ,所以a >-1. 当a >-1时, 14162222++=+a a c b =0
712>++))((a a . 另外,当b a =时,由⑤式有 0
541222=--++±a a a a a )(, 即 05242=--a a 或 056=--a ,解得,4
211±=a 或65-=a . 当c a =时,同理可得65-=a 或4
211±=a . 所以,a 的取值范围为a >-1且65-
≠a ,4211±≠a . 例题8、已知abc ≠0,且a+b+c =0, 则代数式222
a b c bc ca ab
++的值是( ) (A) 3 (B) 2 (C) 1 (D) 0
例题9、设22211148(
)34441004
A =⨯++--- ,则与A 最接近的正整数是( ) A.18 B.20 C.24 D.25
练习题
1、实数a,b 满足1333=++ab b a ,则a+b= .
2、a ,b ,c 为有理数,且等式6
2532+=++c b a 成立,则2a +999b +1001c 的值是( ) (A ) 1999(B )2000(C )2001(D )不能确定
3、已知______0))(()412=+≠--=-a c b a a c b a c b ,则
且(
4、a ,b ,c 均为正数,且a (b+c )=152,b (c+a )=162,c (a+b )=170,那么abc 的值是( ).
(A )672 (B )688 (C )720 (D )750
5若实数x ,y ,z 满足41=+y
x ,11=+z y ,371=+x z ,则xyz 的值为 .
6、已知a 2+b 2=1,b 2+c 2=2,c 2+a 2=2.则ab+bc+ca 的最小值为__________.
7、若,,a b c
均为整数且满足1010()()1a b a c -+-=,则|||||a b b c c a -
+-+-=
__________
8、已知xyz=1,x+y+z=2,3222=++z y x ,求1
11111-++-++-+y xz x yz z xy 的值。

9、已知a+b+c=3,,3222=++c b a 求的值200520052005c b a ++
10、知实数a ,b ,c 满足:a +b +c =2,abc =4.
(1)求a ,b ,c 中的最大者的最小值;
(2)求c b a ++的最小值.。

相关文档
最新文档