第四章 微弱信号检测技术要点

合集下载

《微弱信号检测》课件

《微弱信号检测》课件

实验结果的评估与验证
评估指标
根据实验目的确定评估指标,如信噪比 、检测限等。
VS
验证方法
采用对比实验、重复实验等方法对实验结 果进行验证,确保结果的可靠性和准确性 。
CHAPTER 05
微弱信号检测的未来发展
新技术的应用与探索
人工智能与机器学习
01
利用人工智能和机器学习技术,对微弱信号进行自动识别、分
微弱信号的特点包括幅度小、信噪比 低、不易被察觉等。由于其容易被噪 声淹没,因此需要采用特殊的检测技 术才能提取出有用的信息。
微弱信号检测的重要性
总结词
微弱信号检测在科学研究、工程应用和日常生活中具有重要意义。
详细描述
在科学研究领域,微弱信号检测是研究物质性质、揭示自然规律的重要手段。在工程应用中,微弱信号检测可用 于故障诊断、产品质量控制等方面。在日常生活中,微弱信号检测的应用也非常广泛,如医疗诊断、环境保护等 。
智能制造
将微弱信号检测技术应用于智能 制造领域,实现设备故障预警、 产品质量控制等。
THANKS
[ 感谢观看 ]
研究新的信号处理算法,提高微弱信号的提取、处理 和辨识能力。
集成化与微型化
实现微弱信号检测设备的集成化和微型化,便于携带 和应用。
微弱信号检测与其他领域的交叉融合
生物医学工程
将微弱信号检测技术应用于生物 医学工程领域,如生理信号监测 、医学影像处理等。
环境监测
将微弱信号检测技术应用于环境 监测领域,实现对噪声、振动、 磁场等的微弱变化进行检测和分 析。
小波变换法
总结词
多尺度分析、自适应能力强
详细描述
小波变换法是一种时频分析方法,能够将信号在不同尺度上进行分解,从而在不同尺度 上检测微弱信号的存在和特性。这种方法自适应能力强,能够适应不同特性的微弱信号

微弱信号检测技术的研究要点

微弱信号检测技术的研究要点

编号微弱信号检测技术的研究Research on Weak Signal DetectionTechnology学生姓名专业学号学院年月日摘要在自然现象和规律的科学研究和工程实践中,经常会遇到需要检测毫微伏量级微弱信号的问题,比如测定地震的波形和波速、材料分析时测量荧光光强、卫星信号的接收、红外探测以及物电信号测量等, 这些问题都归结为噪声中微弱信号的检测。

在物理、化学、生物医学、遥感和材料学等领域有广泛应用。

微弱信号检测技术是采用电子学、信息论、计算机和物理学方法,分析噪声产生的原因和规律,研究被测信号的特点和相关性, 检测被噪声淹没的微弱有用信号。

微弱信号检测的宗旨是研究如何从强噪声中提取有用信号,任务是研究微弱信号检测的理论、探索新方法和新技术, 从而将其应用于各个学科领域当中。

本文对弱信号的定义和弱信号的应用范围进行了概述,综述了微弱信号检测理论研究和实际应用领域的发展情况,重点比较了目前在微弱信号检测技术中应用的方法:相关检测、锁相放大器微弱信号检测、取样积分法、基于小波分析的微弱信号检测、基于混沌振子的微弱信号检测,最后总结了各个方法的特点。

关键字:微弱信号检测噪声锁相放大器ABSTRACTIn the natural phenomenon and law of scientific research and engineering practice, often be expected to test baekho microvolts middleweight weak signal issues, such as determination of earthquake wave and wave velocity, material analysis when measuring fluorescent light intensity, satellite signals, infrared detection and signal measurement of things, these problems boil down to a weak signal in the noise of the test. In the physical, chemical, biological medicine, remote sensing and material science and other fields have a widely used. Weak signal detection technology is the electronics, information theory, computer and physics method, analyzes the reasons of the noise and to study the laws of the measured signal characteristics and correlation, detection was submerged in the faint noise useful signal. The aim of the weak signal detection is studying how strong noise from the extract useful signal, the task is to study the theory of weak signal detection, explore new methods and new technology, and its application in the field of each subject.The definition of the weak signal and the application range of the weak signal were reviewed in this paper, the weak signal detection in theoretical research and practical application of the field development situation, the key is the current weak signal detection technology in the application method: related detection, lock-in amplifier weak signal detection, sampling integral method, based on the wavelet analysis, weak signal detection based on chaotic oscillator weak signal detection, finally summarized the characteristics of each method.Key words :Weak signal, detection, and noise, lock-in amplifier目录摘要 (I)ABSTRACT (II)第1章绪论 (1)1.1 引言 (1)1.2 微弱信号的定义 (1)1.3 微弱信号的应用范围及当前的研究背景 (1)1.4 微弱信号检测的原理 (2)第2章相关检测法 (4)2.1 自相关检测 (4)2.1.1 自相关检测的举例 (5)2.2 互相关检测 (6)2.2.1 互相关检测的特点 (7)第3章锁相放大器微弱信号检测 (8)3.1 锁相放大器介绍及应用 (8)3.2 锁相放大器的原理 (9)3.3 锁相放大器特点 (11)3.4 系统中相关器的分析 (11)3.5 锁相放大器的局限性 (12)第4章取样积分法 (13)4.1 取样积分器的工作原理 (13)4.2 取样积分器的信噪比改善系数 (15)4.3 取样积分器的工作方式 (16)4.3.1 定点式取样积分器 (16)4.3.2 扫描式积分取样器 (16)第5章基于小波分析的微弱信号检测 (18)5.1 小波变换的介绍及发展 (18)5.2 小波变换应用举例 (18)第6章基于混沌振子的微弱信号检测 (21)6.1 基于混沌振子的微弱信号检测的介绍 (21)6.2 基于混沌振子的微弱信号检测的原理 (21)结束语 (23)参考文献 (24)第1章绪论1.1 引言科学技术发展到今天,人类对客观世界的认识越来越细微、越来越深入。

微弱信号检测的基本理论和技术

微弱信号检测的基本理论和技术

微弱信号检测的基本理论和技术微弱信号检测的基本理论和技术微弱信号检测技术是采用电子学、信息论、计算机和物理学的方法,分析噪声产生的原因和规律,研究被测信号的特点和相关性,检测被噪声淹没的微弱有用信号。

微弱信号检测的宗旨是研究如何从强噪声中提取有用信号,任务是研究微弱信号检测的理论、探索新方法和新技术,从而将其应用于各个学科领域当中。

在微弱信号检测中,总是伴随着噪声,噪声属于电路中的随机扰动,它可能来自电路中元器件中的电子热运动,或者是半导体器件中载流子的不规则运动。

噪声是限制信号检测系统性能的决定性因素,因此它是信号检测中的不利因素。

对于微弱信号检测来说,如能有效克服噪声,就可以提高信号检测的灵敏度。

电路中噪声是一种连续型随机变量,即它在某一时刻可能出现各种可能数值。

电路处于稳定状态时,噪声的方差和数学期望一般不再随时间变化,这时噪声电压称为广义平稳随机过程。

若噪声的概率分布密度不随时间变化,则称为狭义平稳随机过程(或严格平稳随机过程)。

显然,一个严格平稳随机过程一定为广义平稳随机过程,反之则不然。

1.滤波器被噪声污染的信号波形恢复称为滤波。

这是信号处理中经常采用的主要方法之一,具有十分重要的应用价值。

现在,在各种信号检测仪器中均离不开各种滤波器,它起到了排除干扰,分出信号的功能。

常用的滤波器是采用电感、电容等分立元件构成(例如,RC低通滤波器、LC谐振回路等),它对于滤去某些干扰谱线(例如,电源50Mz滤波,收音机、电视机中干扰的滤波),有较好的效果。

对于混在随机信号中的噪声滤波,这种简单的滤波器就不是最佳的滤波电路。

这是因为信号与噪声均可能具有连续的功率谱。

因此需要寻找一种使误差最小的最佳滤波方法,有称为最小最佳滤波准则。

维纳线性滤波理论就是一种在最小均方误差准则下的最佳线性滤波方法。

出于维纳滤波器电路实现上的困难,在维纳滤波基础上发展了一种基于状态空间方法的最佳线性递推滤波方法,称为卡尔曼滤波。

微弱信号检测技术概述

微弱信号检测技术概述

1213225王聪微弱信号检测技术概述在自然现象和规律的科学研究和工程实践中, 经常会遇到需要检测毫微伏量级信号的问题, 比如测定地震的波形和波速、比如测定地震的波形和波速、材料分析时测量荧光光强、材料分析时测量荧光光强、材料分析时测量荧光光强、卫星信号的接收、卫星信号的接收、红外探测以及电信号测量等, 这些问题都归结为噪声中微弱信号的检测。

在物理、化学、生物医学、遥感和材料学等领域有广泛应用。

材料学等领域有广泛应用。

微弱信号检测技术是采用电子学、微弱信号检测技术是采用电子学、微弱信号检测技术是采用电子学、信息论、信息论、计算机和物理学的方法, 分析噪声产生的原因和规律, 研究被测信号的特点和相关性, 检测被噪声淹没的微弱有用信号。

微弱信号检测的宗旨是研究如何从强噪声中提取有用信号, 任务是研究微弱信号检测的理论、探索新方法和新技术, 从而将其应用于各个学科领域当中。

微弱信号检测的不同方法( 1) 生物芯片扫描微弱信号检测方法微弱信号检测是生物芯片扫描仪的重要组成部分, 也是生物芯片技术前进过程中面临的主要困难之一, 特别是在高精度快速扫描中, 其检测灵敏度及响应速度对整个扫描仪的性能将产生重大影响。

随着生物芯片制造技术的蓬勃发展, 与之相应的信号检测方法也迅速发展起来。

根据生物芯片相对激光器及探测器是否移动来对生物芯片进行扫读, 有扫描检测和固定检测之分。

扫描检测法是将激光器及共聚焦显微镜固定, 生物芯片置于承片台上并随着承片台在X 方向正反线扫描和r 方向步进向前运动, 通过光电倍增管检测激发荧光并收集数据对芯片进行分析。

激光共聚焦生物芯片扫描仪就是这种检测方法的典型应用, 这种检测方法灵敏度高, 缺点是扫描时间较长。

固定检测法是将激光器及探测器固定, 激光束从生物芯片侧向照射, 以此解决固定检测系统的荧光激发问题, 激发所有电泳荧光染料通道, 由CCD 捕获荧光信号并成像, 从而完成对生物芯片的扫读。

微弱信号检测技术

微弱信号检测技术

微弱信号检测技术科学技术发展到现阶段,极端条件下的物理实验已成为深化认识自然的重要手段.这些实验中要测量的物理量往往都是一些非常弱的量,如弱光、弱磁、弱声、微小位移、徽温差、微电导及微弱振动等等。

由于这些微弱的物理量一般都是通过各种传感器进行电量转换.使检测的弱物理量变换成电学量。

但由于弱物理量本身的涨落、传感器的本底和测量仪器的噪声的影响,被测的有用的电信号往往是淹没在数千倍甚至数十万倍的噪声中的微弱信号.为了要得到这一有用的微弱电信号,就产生了微弱信号检测技术。

因此.微弱信号检测技术是一种与噪声作斗争的技术.它利用了物理学、电子学和信息论的方法.分析噪声的原因和规律.研究信号的特征及相关性.采用必要的手段和方法将淹没在噪声中有用的微弱信号检测出来.目前.微弱信号检测主要有以下几种方法:‘1、相干检测相干检测是频域信号的窄带化处理方法.是一种积分过程的相关测量.它利用信号和外加参考信号的相干特性,而这种特性是随机噪声所不具备的,典型的仪器是以相敏检波器(PSD)为核心的锁相放大器。

2、重复信号的时域平均这种方法适用于信号波形的恢复测量。

利用取样技术.在重复信号出现的期间取样.并重复n次,则测量结果的信噪比可改善n倍。

代表性的仪器有Boccar 平均器或称同步(取样)积分器,这类仪器取样效率低,不利低重复率的信号的恢复.随着微型计算机的应用发展.出现了信号多点数字平均技术,可最大限度地抑制噪声和节约时间,并能完成多种模式的平均功能.3、离散信号的统计处理在微弱光检测中,由于微弱光的量子化,光子流具有离散信号的特征.使得利用离散信息处理方法检测微弱光信号成为可能。

微弱光检测又分为单道(Single-Channel)和多道(MuIti.-Channel)两类。

前者是以具有单电子峰的光电倍增管作传感器,采用脉冲甄别和计数技术的光子计数器;后者是用光导摄象管或光电二极管列阵等多路转换器件作传感嚣.采用多道技术的光学多道分析器(OMA)。

微弱信号检测第四章 相关检测 NEW

微弱信号检测第四章 相关检测 NEW
0
1 T
T
0 R xy ()dt R xy ()
由式知,尽管T有限,Rxy(τ)是Rxy(τ)的无偏估计。
微 弱信号检测
估计值的均方误差为:
varR~
xy
()
E(R~
xy
()
R
xy
())
2
对于高斯分布零均值限带白噪声x(t)和y(t),若其带宽为B,
则可以证明:
varR~ xy()
1 2BT
1 2
若ρxy(τ)=0.5,B=100HZ,要求ε<5%,则应使T>10S。
当信号带宽较窄时,需要较长的积分时间,这是相关 测量系统的主要缺点。
2.Rxy(τ)估计值的归一化均方根误差
varR~ xy () 1
1 2xy ()
R xy ()
2BT xy ()
微 弱信号检测
1
一般情况下ρxy(τ)<1/3,故
~ Rxy (k)
~
R xy (1)
R~ xy (M 1)
1 N
x(0)
x(1)
x(1 M)
x(1) x(0)
x(2 M)
x(N 1) y(0)
x(N
2)
y(1)
x(N M)y(N 1)
微 弱信号检测
两种计算方法:①所有数据采集完毕后计算;
②边采集边计算;
~
R
xy
⑦通用和专用相关仪的研发方面,1972年,用PMOS技术实 现溢出式极性峰点检测技术;此后专业仪表公司研制了多种 通用相关仪; ⑧1987年,Beck教授开发出实用的相关流速仪;
⑨1984年,VLSI相关仪问世;同年代英国的Kent公司开发 出相关检漏仪;

微弱信号检测教学

微弱信号检测教学
微弱信号检测教学
目录
• 微弱信号检测概述 • 微弱信号检测的基本原理 • 微弱信号检测的常用方法 • 微弱信号检测的实验操作
目录
• 微弱信号检测的案例分析 • 微弱信号检测的未来发展与挑战
01
微弱信号检测概述
定义与特点
定义
微弱信号检测是指对幅度较低、容易 被噪声淹没的信号进行提取、测量和 分析的过程。
信号放大
信号放大
通过放大器将微弱信号放大,使其更容易被检测和处理。常用的放大器类型包括电压放大器和电流放大器。
放大器选择
选择合适的放大器是关键,需要考虑放大倍数、带宽、输入噪声、线性范围等因素。
噪声抑制
噪声来源
噪声是影响微弱信号检测的重要因素 ,主要来源于环境、电路和器件本身 。
噪声抑制方法
采用滤波器、消噪电路、数字信号处 理等技术抑制噪声,提高信噪比。
ABCD
数据特征提取
从处理后的数据中提取有用的特征,如幅度、频 率等。
结果评估与优化
根据分析结果,评估微弱信号检测的效果,优化 实验参数和方法,提高检测精度和可靠性。
05
微弱信号检测的案例分析
案例一:生物电信号的检测
总结词
生物电信号是生物体内产生的微弱电流信号,检测这些 信号对于了解生物生理状态和疾病诊断具有重要意义。
信号滤波
滤波器类型
根据信号特性和需求选择合适的滤波器,如低通滤波器、高通滤波器、带通滤波器和陷波滤波器等。
滤波器设计
根据信号频谱和噪声频谱设计滤波器,以保留有用信号并抑制噪声。
相关检测
相关检测原理
相关检测是一种利用信号自相关或互相关特性进行检测的方法,可以有效抑制噪声和干 扰。
相关检测应用

微弱信号检测技术

微弱信号检测技术
详细描述
同步检测法通过将输入信号与参考信号进行相关运算,提取 出目标信号。该方法能够有效地抑制噪声干扰,提高信噪比 。在实际应用中,同步检测法常用于雷达、通信等领域。
滤波器法
总结词
一种利用滤波器对信号进行筛选和处理的微弱信号检测方法。
详细描述
滤波器法通过设计合适的滤波器对输入信号进行筛选和处理,提取出目标信号。该方法具有简单易实 现的特点,适用于多种类型的微弱信号检测。在实际应用中,滤波器法常用于音频、图像等领域。
射级跟踪放大器法
总结词
一种通过调整放大器的增益来跟踪输入信号幅度的微弱信号检测方法。
详细描述
射级跟踪放大器法利用射级反馈电路来调整放大器的增益,使得放大器的输出信 号幅度与输入信号幅度保持一致。该方法能够有效地提高信噪比,降低噪声干扰 。
同步检测法
总结词
一种利用相关技术对信号进行同步检测的微弱信号检测方法 。
环境监测领域
噪声污染检测
在噪声污染控制和环境保护方面,微弱的噪声信号往往代表着环境质量的恶化,微弱信号检测技术能够对这些信 号进行准确的监测和分析,为环境治理提供科学依据。
放射性检测
在核能和核工业领域,放射性物质释放的微弱信号对人类健康和环境安全具有重要影响,微弱信号检测技术能够 实时监测和评估放射性水平,保障公共安全。
微弱信号检测技术的发展历程
基础理论建立
早期的研究主要集中在噪声抑制和放大技术上,为微弱信号检测奠 定了基础。
技术突破
随着电子技术和数字化技术的发展,如放大器技术、数字滤波技术、 相关检测技术等,微弱信号检测的灵敏度和分辨率得到显著提高。
应用拓展
随着微弱信号检测技术的不断发展,其应用领域也在不断扩大,涉及 到众多领域和行业。

微弱信号检测基本理论和技术

微弱信号检测基本理论和技术

微弱信号检测的基本理论和技术微弱信号检测技术是采用电子学、信息论、计算机和物理学的方法,分析噪声产生的原因和规律,研究被测信号的特点和相关性,检测被噪声淹没的微弱有用信号。

微弱信号检测的宗旨是研究如何从强噪声中提取有用信号,任务是研究微弱信号检测的理论、探索新方法和新技术,从而将其应用于各个学科领域当中。

在微弱信号检测中,总是伴随着噪声,噪声属于电路中的随机扰动,它可能来自电路中元器件中的电子热运动,或者是半导体器件中载流子的不规则运动。

噪声是限制信号检测系统性能的决定性因素,因此它是信号检测中的不利因素。

对于微弱信号检测来说,如能有效克服噪声,就可以提高信号检测的灵敏度。

电路中噪声是一种连续型随机变量,即它在某一时刻可能出现各种可能数值。

电路处于稳定状态时,噪声的方差和数学期望一般不再随时间变化,这时噪声电压称为广义平稳随机过程。

若噪声的概率分布密度不随时间变化,则称为狭义平稳随机过程(或严格平稳随机过程>。

显然,一个严格平稳随机过程一定为广义平稳随机过程,反之则不然。

1.滤波器被噪声污染的信号波形恢复称为滤波。

这是信号处理中经常采用的主要方法之一,具有十分重要的应用价值。

现在,在各种信号检测仪器中均离不开各种滤波器,它起到了排除干扰,分出信号的功能。

常用的滤波器是采用电感、电容等分立元件构成(例如,RC低通滤波器、LC谐振回路等>,它对于滤去某些干扰谱线(例如,电源50Mz滤波,收音机、电视机中干扰的滤波>,有较好的效果。

对于混在随机信号中的噪声滤波,这种简单的滤波器就不是最佳的滤波电路。

这是因为信号与噪声均可能具有连续的功率谱。

因此需要寻找一种使误差最小的最佳滤波方法,有称为最小最佳滤波准则。

维纳线性滤波理论就是一种在最小均方误差准则下的最佳线性滤波方法。

出于维纳滤波器电路实现上的困难,在维纳滤波基础上发展了一种基于状态空间方法的最佳线性递推滤波方法,称为卡尔曼滤波。

这种滤波器特别适用于对离散时间序列的实时滤波。

微弱信号检测

微弱信号检测
返回 结束
脉象信号扰动消除效果(一)
图 对含扰信号的噪声消除和基线漂移消除结果
返回 结束
脉象信号扰动消除效果(二)
对信号施加50Hz工频干扰的预处理结果
返回 结束
脉象信号扰动消除效果(三)
对信号施加线性下降基线漂移和肌电干扰的预处理结果
返回 结束
脉象信号扰动消除效果(四)
对信号施加余弦基线漂移和白噪声的预处理结果
脉象微弱信号检测
概述
微弱信号是相对背景噪声而言,其信号幅度的 绝对值很小、信噪比很低(远小于1)的一类 信号
微弱信号检测的任务是采用电子学、信息论、 计算机及物理学、数学的方法,分析噪声产生 的原因和规律,研究被测信号的特点与相关性, 对被噪声淹没的微弱有用信号进行提取和测量
微弱信号检测的目的是从噪声中提取出有用信 号,或用一些新技术和新方法来提高检测系统 输入输出信号的信噪比
的脉象信号将会受到多种干扰,具有较强的随机性和
背景噪声,而且属于非线性、非平稳的微弱信号。这
些干扰主要是交流电引起的工频干扰、肌电干扰、人
体的微动与电极接触不良引起的电极接触噪声、运动
伪迹(基线变化)和由于呼吸引起的基线漂移,因此消除
脉象信号中多种干扰是进一步进行脉象信号的识别和
分析处理的前提。
传统的建立在傅立叶变换基础上的滤波方
x
T
j
T (x) x Tj
0
x Tj , jh j jl x T j , jh j jl | x | T j , jh j jl
(3)对于低频信号部分保持不变
T (x) x
j jl
返回 结束
原始输入信号添加基线漂移和白噪声
返回 结束
脉象信号基线漂移去除方法

微弱信号检测

微弱信号检测

光电检测技术——微弱光检测一、相关检测原理 (2)1 相关函数 (2)2、相关检测 (3)二、锁定放大器 (6)1、基本原理 (6)2、锁定放大器的主要参数 (8)三、光子计数技术 (10)1、基本原理 (10)2、光子计数器的组成 (13)3、光电倍增管 (14)4、光子计数系统的测量误差 (15)在许多研究和应用领域中,都涉及到微弱信号的精密测量.然而,由于任何一个系统部必然存在噪声,而所测量的信号本身又相当微弱,因此,如何把淹没于噪声中的有用信号提取出来的问题具有十分重要的意义。

在光电探测系统中,噪声来自信号光、背景光、光电探测器及电子电路。

通常抑制这些光学噪声和干扰的方法是:合理压缩系统视场,在光学系统结构上抑制背景光,加适当光谱滤波器,空间滤波器等以抑制背景光干扰。

合理选择光信号的调制频率,使信号频率远离市电(50Hz)频率和空间高频电磁波频率,偏离l/f噪声为主的区域,以使光电探测系统在工作的波段范围内达到较高的信噪比。

此外,在电子学信号处理系统中采用低噪声放大技术,选取适当的电子滤波器限制系统带宽,以抑制内部噪声及外部干扰。

保证系统的信噪比大大改善,即使信号较微弱时,也能得到S/N>1的结果。

但当信号非常微弱,甚至比噪声小几个数量级或者说信号完全被噪声深深淹没时,再采用上述的办法,就不会有效,必须利用信号和噪声在时间特性方面的差别,也即利用信号和噪声在统计特性上的差别去区分它们,来提取被噪声淹没的极微弱信号,即采用相关检测原理来提取信号。

一、相关检测原理利用信号在时间上相关这一特性,可以把深埋于噪声中的周期信号提取出来,这种摄取方法称为相关检测或相干接收,是微弱信号检测的基础。

信号的相关性用相关函数采描述,它代表线性相关的度量,是随机过程在两个不同时间相关性的一个重要统计参量。

1 相关函数相关函数R xy是度量两个随机过程x(t),y(t)间的相关性函数,定义为(1)式中τ为所考虑时间轴上两点间的时间间隔.如果两个随机过程互相完全没有关系(例如信号与噪声,则其互相关因数将为一个常数,并等于两个变化量平均值的乘积;若其中一个变化量平均值为零(例如噪声),则两个变化量互相关函数R xy将处处为零,即完全独立不相关.如果两个变化量是具有相同基波频率的周期函数,则它们的互相关函数将保存它们基波频率以及两者所共有的谐波。

微弱信号检测

微弱信号检测

微弱信号检测
微弱信号检测
扫描式取样积分器
扫描式取样积分器信号处理波形图
微弱信号检测
数字多点平均器
微弱信号检测
时域信号——平均处理(取样积分与信号平均) 取样积分法 是用取样门及积分器对信号逐次取样 并进行同步积累,以筛除噪音,从而恢复被噪音 淹没的快速时间变化的周期性重复信号的波形。 信号平均器 则是采用适时多点取样,多用期平均 技术提取和复制在噪声中的低频信号波形,输出 特性同样为基波及各谐波处的杭状滤波器。
微弱信号检测
为了从噪音中辨认有用信号,常采用带通滤波器BPF(Band Pass Filter)和选通放大器。BPF中心频率为ω0 ,尽量压缩 带宽使Q值提高,Q =ω0 /∆ω ,使大量通带两侧的噪音得到抑 制。但带宽压窄困难。 噪音电压 当∆f=2.5Hz时,Upp=11.9mV; 当 ∆f=0.25Hz时,Upp=3.5mV; 当 ∆f=0.025Hz时,Upp=1.1mV。 若信号频率 f0 =25KHz,要设计带宽∆f=0.025Hz ,则Q =ω0 /∆ω=106 ,即使Q可达106 ,但BPF中心频率要有10-6 稳定度 也不现实。
微弱信号检测
时域信号——取样积分与信号平均 取样积分法和信号平均也是相关检测,与锁定放 大不同的只是部分相关,即仅在取样门宽T的一段 时间内信号与参考信号相关。 由于取样门脉宽很窄,其函数包含了基波及奇、 偶各次谐波分量,所以其输出也包含了信号中的 基波及各次谐波分量,系统输出亦为信号基波及 各次谐波处的梳状滤波特性。
微弱信号检测
锁相放大器的实现
微弱信号检测
锁相放大器的实现
信号通道的作用是将伴有噪音的信号加以放大,并经滤波 或选频放大对噪音作初步预处理,以滤除信号通道以外的 噪音。 参考通道的作用 是提供一个与输入信号同步的方波或正 弦波。 相敏检波的作用是对输入信号和参考信号完成乘法运算, 得到输入信号与参考信号的和频与差频信号, 后续低通滤波器的作用是滤除和频信号成分,这时等效噪 音带宽很窄,极强的抑制了输入噪音。 信号经相敏和LPF,将交流信号转变为直流信号,经直流 放大器再行放大,以满足系统的增益要求。

微弱信号检测

微弱信号检测
微弱信号检测技术
锁相放大器 取样积分器 光子计数
1
空间物体检测 光谱测量 生物荧光检测
2
1 引言
微弱信号检测是一门新兴的技术学科它利用 电子学、信息论和物理学的方法,分析噪声 产生的原因和规律,研究被测信号的特点和 相关性,检测被噪声淹没的微弱信号。 在检测系统、图象传榆和通信设备中出现 噪声时,仪器的精度、稳定性及重复性就明 显降低,由于噪声电报误码率增高,使通信无 法正常进行,雷达无法跟踪目标,在电视荧 光屏上呈现一片“雪花”,图象模糊不清。
24
低噪声设计中,在选译电路元、器件时应 尽且减少或避免噪声的引入。 (一)电容器的选择 在低噪声设计中常用云母和瓷介电容器。 大容量电容器中,铝壳的电解电容器漏电 较大,钽电解电容器漏电小,所以钽电解 电容器适合在低噪声电路中使用。
25
26
在微弱信号检测技术中,需要处理的主要是基本噪声且绝 大多数是随机噪声。 随机噪声是一种前后独立的平稳随机过程,在任何时刻 它的幅度、波形及相位那是随机的。但每一种噪声还是服 从于一定的统计分布规律,因此又是可统计的。例如,只 要产生噪声过程的条件不变,噪声功率或给定时间区间内 的能量就不变,它在时间域内的幅度平均值是零。大多数 噪声瞬时幅度的概率分布是正态的,即符合高斯分布规律
3
噪声与干扰
通常把由于材料或器件的物理原因产生的 扰动称为噪声。 把来自外部的原因的扰动称为干扰,有一 定的规律性,可以减少或消除。 锁定放大器要解决的就是如何在很强的外 部干扰环境中检测弱信号。
4
噪声与干扰
宽带的或持续的无用信号 瞬时的或窄带的无用信号 市电50Hz或100Hz(整流等);电台;开 关通/断;高能量的脉冲电流或电压;机械 振动;太阳活动;雷电等

微弱信号检测

微弱信号检测

微弱信号检测引言微弱信号检测是一种在噪声背景下探测和提取微弱信号的技术,广泛应用于无线通信、地质勘探、生物医学等领域。

由于噪声的存在,使得微弱信号很难被准确地捕获和识别。

本文将介绍常见的微弱信号检测方法以及在实际应用中的一些注意事项。

常见的微弱信号检测方法统计方法统计方法是最常用的微弱信号检测方法之一。

基于统计学的原理,通过对观测数据进行统计分析,计算信号的统计特性,从而达到检测信号的目的。

常用的统计方法包括最小二乘法、方差分析和卡尔曼滤波等。

时频分析方法时频分析方法是一种将信号在时域和频域进行联合分析的方法,可以捕捉信号在不同时间和频率上的变化。

通过时频分析,可以提高对微弱信号的检测能力。

常见的时频分析方法包括小波变换、短时傅里叶变换和Wigner-Ville分析等。

自适应滤波方法自适应滤波方法是一种通过对信号进行滤波来提高微弱信号检测的方法。

该方法通过对滤波器的参数进行自适应调整,以适应不同噪声环境下的信号特性。

常见的自适应滤波方法包括最小均方差滤波和递归自适应滤波等。

特征提取方法特征提取方法是一种通过对信号的特征进行提取来实现微弱信号检测的方法。

该方法通过提取信号的频率、幅值、相位等特征,从而分离出微弱信号。

常见的特征提取方法包括功率谱密度分析、相关分析和熵分析等。

微弱信号检测的注意事项噪声抑制在进行微弱信号检测之前,首先需要进行噪声抑制。

由于噪声的存在,会干扰和掩盖微弱信号,因此必须采取适当的方法对噪声进行抑制。

常见的噪声抑制方法包括滤波、降噪算法和信号增强等。

多样性处理由于微弱信号往往具有多样性,不同的信号可能有不同的统计特性和时频特性。

因此,在进行微弱信号检测时,需要采用多样性处理方法,以适应不同信号的特点。

常见的多样性处理方法包括特征级联、多传感器融合和多分类器组合等。

实时性要求在某些应用场景中,微弱信号的检测需要具备实时性要求。

这就要求微弱信号检测算法具备较高的计算速度和低延迟。

微弱信号检测

微弱信号检测
AV
4.3.2 相关检测原理
为了将被噪声所淹没的信号检测出来,人们研究各种信号及噪声的规律,发现信号与信号的延时相乘后累加的结果可以区别于信号与噪声的延时相乘后累加的结果,从而提出了“相关”的概念。 由于相关的概念涉及信号的能量及功率,因此先给出功率信号和能量信号的相关函数。
一. 引言
f1(t)与f2(t)是能量有限信号 f1(t)与f2(t)为实函数 f1(t)与f2(t)为复函数 f1(t)与f2(t)是功率有限信号 f1(t)与f2(t)为实函数 f1(t)与f2(t)为复函数
1.时域相关与频域的窄带化技术 利用时域中周期信号的相关性而噪声的随机、不相关性(或弱相关性),通过求取信号的自相关函数或互相关函数,在强噪声背景下提取周期信号的“相关检测”。这相当于在频率中窄带化滤除干扰和噪声。特别适用窄带信号。例如锁定放大器。 2.平均积累处理 对于一些宽带周期信号应用上述方法处理效果不佳,一种根据时域特征用取样平均来改善信噪比并能恢复波形的取样积分器可获得良好探测效果。其基本原理是对于任何重复的(周期性)信号波形,每周期如在固定的取样间隔内取样m次积累则信噪比改善。因为“信号电压幅值为线性叠加”(有规律的周期信号)而“噪声功率为矢量相加”(无规律的随机信号)。
4.3.0 概述 4.3.1 信噪比改善(SNIR) 4.3.2 相关检测原理 4.3.3 锁定放大器 4.3.4 取样积分器
4.3 微弱信号检测
4.3.0 概 述
一.微弱信号检测定义
前面我们讨论了噪声的基本概念,以及降低噪声的一些基本方法,如采用低噪声放大器不会对被探测的辐射信号产生噪声“污染”;但如果光辐射信号非常微弱或者背景噪声或干扰的影响很大,造成通过光电检测放大电路后进入信号处理系统输入端的信噪比已很糟糕,甚至信号深埋于噪声之中,这时要想将信号检测出来,必须根据信号和噪声的不同特点,借助一些特殊的微弱信号检测方法将信号与噪声分离,将信号从噪声中提取出来。

第四章 微弱信号检测技术

第四章 微弱信号检测技术

第四章 微弱信号检测技术4.1 被动信号检测被动检测是一种常用的检测系统,它已广泛应用于水下引信信号检测及其它工业领域。

在被动信号检测中,常用的时域检测方法有以下几种:①宽带检测、②相干检测、③频率随机分布正弦信号的检测技术、④时域同步平均检测与波形恢复技术、⑤相关技术等等;而在频域的检测方法主要是基于FFT 算法的谱分析技术。

4.1.1宽带检测在有些应用场合,干扰噪声和输入信号都是一有限长的限带零均值的高斯分布随机过程,在此情况下一般使用宽带检测技术。

4.1.1.1最佳宽带检测器最佳宽带检测器的结构框图如下:图4.1 在高斯噪声中检测高斯信号的最佳系统结构图 4.1中)(ωS 是信号的功率谱密度,()ωN 是干扰噪声的功率谱密度。

而2/12/12/1)]()()[()()(ωωωωωS N N S H +=表示预选滤波的频率响应。

当信号和噪声都是限带高斯分布白噪声时,信号和噪声的差别是信号和噪声的功率级不同,)(ωH 为常值,最佳检测器是一个平均功率检测器。

从理论上说无论噪声多强,信号多弱,只要他们是平稳的,且他们的方差可准确求出来,那么总可通过比较N 和N+S,发现信号。

如果过程)(t r 是各态遍历的,那么方差可通过下式计算出来。

⎰-≈=t T t r dt t r T t r E )(1)]([222σ (4.1.1)不难看出,由于截取的样本时间是滑动的,从而图 4.1可简化为平方积分系统。

由于截断T 不是无限长的,所以输出)(t Z 并不等于2r σ,而是随t 在2r σ的均值附近起伏。

对于限带白谱:起伏的存在将掩盖信号加噪声(H 1)与噪声(H 0)的差别。

所以系统的信噪比计算公式如下:)()]()([)/(202012Z Z E Z E N S σ-= (4.1.2)在各态遍历条件下,T 越长系统的最佳性越好。

当信号和噪声的功率谱不是白谱时,可利用的信息不仅有能量差异,而且还有谱形状的差异。

微弱信号检测设计计算法实现要点

微弱信号检测设计计算法实现要点

微弱信号检测设计计算法实现摘要随着科学技术的发展,在各个领域遇到了越来越多的微弱信号检测问题,对微弱信号进行检测的需要日益迫切。

微弱信号不仅意味着信号的幅度小,还容易被噪声淹没,对它们的检测往往比较困难。

微弱信号检测就是利用近代电子学和信号处理方法从噪声中提取有用信号的一门新兴技术学科,具有重要的研究意义。

本课题主要讨论混有噪音的微弱信号的检测理论及软件算法实现。

所选用的软件LabView是美国NI公司的创新软件产品,也是日前应用最广泛、发展最快、功能最强的图形化软件开发环境。

它具有开发周期短、运行速度快、可重用性、使用方便灵活等优点。

因此LabView在本课题研究的微弱信号检测方面显示了很大的优越性。

课题中简要分析了几种常用的微弱信号检测理论的特点,在此基础上,对相关性检测、锁相放大器实现法、基于混沌振子的检测法、基于小波变换等微弱信号的原理进行了较为深入的探讨,并针对各个算法的优缺点进行了探讨,设计了基于虚拟仪器技术的微弱信号检测系统。

关键词:虚拟仪器;噪音;微弱信号;检测;算法实现ABSTRACTWith the development of science,more and more problems of weak signal detection appear in each field and it is urgent for the detection.Weak signal which means small amplitude and signal that is submersed in noises,is not easy to be detected.Weak signal detection is a new developing science that employing neoteric electronics and signal processing technologies to get useful signal from noises and is significant to study on.This subject mainly discuss the weak signal mixed with a noise detection theory and software algorithm. Selected software company is American NI LabView software products, but also has innovation of the most widely used, the fastest growing, the strongest function of graphical software development environment. It has a short development cycle, fast, reusability, use convenient, etc. So in this topic research LabView weak signal detection show great superiority.Projects are in several common briefly analyzed the characteristics of weak signal detection theory, on this basis, the correlation detection, lock-in amplifier realization method, based on chaos of the vibrator based on wavelet transform method, the principle of such weak signal for a more in-depth discussion, and in the light of the advantages and disadvantages of each algorithm was discussed, and the design of based on virtual instrument technology weak signal detection system.Keywords:Vitualin strument, Noise, Detection, Implement national gorithm目录摘要 (I)ABSTRACT (II)第1章绪论 (1)1.1课题研究的意义 (1)1.2 微弱信号检测算法的研究进展 (2)1.3 虚拟仪器技术 (3)1.4基于虚拟仪器的程序设计 (3)1.4.1虚拟仪器系统构成 (3)1.4.2 LabVIEW软件设计 (4)第2章噪声的特点及常用微弱信号检测理论 (6)2.1 噪音的统计特性 (6)2.1.1 噪音的概率分布 (6)2.1.2 噪声的概率分布均值、方差和均方值 (7)2.2 相关函数 (8)2.2.1 相关原理 (8)2.2.2 相关函数 (8)第3章相干检测法检测微弱信号方法 (10)3.1 相干检测法原理 (10)3.1.1自相关检测 (10)3.1.2 互相关检测 (11)3.2 基于虚拟仪器labview软件的前面板及程序框图 (12)第4章锁相放大器实现微弱信号检测原理 (14)4.1锁相放大器实现微弱信号检测的背景 (14)4.2 锁相放大器的软件应用 (14)4.2.1 锁相放大器的工作原理 (14)4.2.2 用Labview 进行相关器的仿真分析 (16)4.3 结论 (18)第5章滤波器滤波法 (19)5.1 滤波器工作原理 (19)5.2 滤波器分类 (19)5.2.1根据滤波器的选频作用分类 (19)5.2.2 根据“最佳逼近特性”标准分类 (19)5.3 理想滤波器 (20)5.4 实际滤波器的基本参数 (20)5.5 基于labview编程语言的滤波器的实现 (21)第6章小波分析应用于微弱信号检测 (24)6.1 小波分析应用于微弱信号检测的原理 (24)6.1.1 小波变换的基本原理 (24)6.1.2 小波变换的信噪分离分析 (24)6.1.3 信噪分离过程 (24)6.2 基于小波分析的微弱信号自适应滤波算法 (25)6.2.1 算法描述 (25)6.2.2 算法误差分析 (26)6.2.3 小波变换算法的labview仿真 (26)6.3 小波分析的特点 (28)第7章基于混沌振子的微弱信号检测 (29)7.1 混沌振子基本原理 (29)7.2 采用Duffing振子实现检测微弱信号 (29)7.2.1 Duffing振子的实现原理 (29)7.2.2 Duffing算法的特点 (31)第8章自适应随机共振算法的研究 (32)8.1 自适应随机共振算法的理论背景 (32)8.2基于SNR法的自适应随机共振算法 (32)8.2.1 SNR算法的应用原理 (32)8.2.2 SNR法(信噪比法)的研制与实现 (32)8.2.3 SNR法的具体步骤 (34)8.2.4 SNR自适应随机共振算法的特点分析 (34)第9章数据采集卡 (35)9.1模拟信号采集 (35)9.2计数原理 (36)9.3数据采集卡的实现 (36)第10章用软件方法实现微弱信号检测 (39)第11章总结 (43)参考文献 (45)致谢 (47)第1章绪论1.1课题研究的意义微弱信号不仅幅度小,而且往往淹没在噪声之中。

微弱信号检测技术79页PPT

微弱信号检测技术79页PPT


28、知之者不如好之者,好之者不如乐之者。——孔子

29、勇猛、大胆和坚定的决心能够抵得上武器的精良。——达·芬奇

30、意志是一个强壮的盲人,弱信号检测技术
1、纪律是管理关系的形式。——阿法 纳西耶 夫 2、改革如果不讲纪律,就难以成功。
3、道德行为训练,不是通过语言影响 ,而是 让儿童 练习良 好道德 行为, 克服懒 惰、轻 率、不 守纪律 、颓废 等不良 行为。 4、学校没有纪律便如磨房里没有水。 ——夸 美纽斯
5、教导儿童服从真理、服从集体,养 成儿童 自觉的 纪律性 ,这是 儿童道 德教育 最重要 的部分 。—— 陈鹤琴

26、要使整个人生都过得舒适、愉快,这是不可能的,因为人类必须具备一种能应付逆境的态度。——卢梭

27、只有把抱怨环境的心情,化为上进的力量,才是成功的保证。——罗曼·罗兰

4-4微弱信号检测

4-4微弱信号检测

4-4微弱信号检测
4-4微弱信号检测
第四章光电信号处理
4.1光辐射探测过程的噪声4.2光电探测器的偏置电路4.3光电探测器的放大电路
4.4微弱信号检测4.5锁定放大器4.6取样积分器4.7光子计数器
1. 低噪声电子设计的适用范围
•前述降低噪声方法使用的前提是要求在电信号处理的输入端有足够大的信噪比,处
理的结果是使信噪比不至于变坏。

•如果在信号处理系统的输入端,信噪比已很糟糕,甚至信号深埋于噪声之中,这时
要想将信号检测出来,仅用低噪声电子设计的方法就不行了。

必须根据信号和噪声的不同
特点,采用相应的方法将信号与噪声分离。

2.微弱信号检测的途径
根据噪声的特性和不同信号的特点,微弱信号检测的途径一般有三条:
●一是降低传感器与放大器的固有噪声,尽量提高其信噪比;
●二是研制适合弱检原理并能满足特殊需要的器件;●三是研究并采用各种弱信号检
测技术,通过各种手段提取信号。

这三者缺一不可。

●从数学表达式看,SNIR似乎是噪声系数NF的倒数,但实质上两者是有差别的。

●噪声系数是对窄带噪声而言的,并且得到结论NF≥1。

这个结论的产生是由于假设
了输入噪声的带宽小于或等于放大系统的带宽;
●实际上输入噪声的带宽要大于放大系统的带宽,因而噪声系数NF便有可能要小于1,同时又考虑到实际的情况,因此而给出信噪比改善的概念。

微弱信号检测 总结docx

微弱信号检测 总结docx

1、微弱信号检测特点WSD目的:提取需要检测到的微弱信息。

微弱:一般幅值小,但其实是相对噪声。

检测特点:遏制噪声(内部、外部)、放大信号、提高信噪比。

对象:研究噪声、信号。

研究两者区别,并且利用该区别研发设备和方法相对性:信号噪声可转换2、信号和噪声相关理论研究方法:(1)时域:均值、中值滤波、相关性、高斯分布(2)频率域:FFT、采样定理、低通、带通、带阻(3)其他:小波、分形等,特征分析信号分析方法:信号的性质可以从频域和时域两方面进行分析。

频域分析常采用傅里叶分析法。

时域分析主要包括卷积和相关函数。

3、噪声:通常把由于材料或器件(内部电路器件)的物理原因产生的扰动称为噪声,频谱分布较宽。

4、信噪比:噪声对信号的覆盖程度信噪改善比:改善的效果,评价一个放大器或者一个测试系统遏制噪声的能力当信号通过一个放大器或者一个测试系统后,信噪比可能提高,也可能降低。

引入信噪比改善系数SNIR来描述放大器或测试系统对信噪比的改善作用,定义为产生可观察到变化5、微弱信号蕴含着两层含义:第一层含义是信号本身非常微弱,是一个绝对意义上的微弱;第二层含义是相对意义上的微弱,也就是信号对于强背景噪声而言,是非常微弱的,简而言之就是信噪比极低。

6、常规小信号检测方法:滤波、调制和解调7、电噪声的主要统计特征包括:(1)频域统计特征:功率谱密度(2)时域统计特征:相关函数(3)幅域统计特征:概率密度函数8、对于电压或电流型的随机变量,均值表示的是其直流分量;表示对均值的偏离程度,表明随机噪声的起伏程度;均方值反映的是随机噪声得到归一化功率,它表示的是随机电压或电流在1Ω电阻上消耗的功率9、相关函数:衡量随机过程在任意两个时刻获得的随机变量之间的关联程度。

是其时域特征的平均量度,它反映同一个随机噪声n(t)在不同时刻t1和t2取值的相关程度10、自相关函数在τ=0处取得最大值周期信号的自相关函数仍然是同频率的周期信号,但不具有原信号的相位信息。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章 微弱信号检测技术4.1 被动信号检测被动检测是一种常用的检测系统,它已广泛应用于水下引信信号检测及其它工业领域。

在被动信号检测中,常用的时域检测方法有以下几种:①宽带检测、②相干检测、③频率随机分布正弦信号的检测技术、④时域同步平均检测与波形恢复技术、⑤相关技术等等;而在频域的检测方法主要是基于FFT 算法的谱分析技术。

4.1.1宽带检测在有些应用场合,干扰噪声和输入信号都是一有限长的限带零均值的高斯分布随机过程,在此情况下一般使用宽带检测技术。

4.1.1.1最佳宽带检测器最佳宽带检测器的结构框图如下:图4.1 在高斯噪声中检测高斯信号的最佳系统结构图 4.1中)(ωS 是信号的功率谱密度,()ωN 是干扰噪声的功率谱密度。

而2/12/12/1)]()()[()()(ωωωωωS N N S H +=表示预选滤波的频率响应。

当信号和噪声都是限带高斯分布白噪声时,信号和噪声的差别是信号和噪声的功率级不同,)(ωH 为常值,最佳检测器是一个平均功率检测器。

从理论上说无论噪声多强,信号多弱,只要他们是平稳的,且他们的方差可准确求出来,那么总可通过比较N 和N+S,发现信号。

如果过程)(t r 是各态遍历的,那么方差可通过下式计算出来。

⎰-≈=t T t r dt t r T t r E )(1)]([222σ (4.1.1)不难看出,由于截取的样本时间是滑动的,从而图 4.1可简化为平方积分系统。

由于截断T 不是无限长的,所以输出)(t Z 并不等于2r σ,而是随t 在2r σ的均值附近起伏。

对于限带白谱:起伏的存在将掩盖信号加噪声(H 1)与噪声(H 0)的差别。

所以系统的信噪比计算公式如下:)()]()([)/(202012Z Z E Z E N S σ-= (4.1.2)在各态遍历条件下,T 越长系统的最佳性越好。

当信号和噪声的功率谱不是白谱时,可利用的信息不仅有能量差异,而且还有谱形状的差异。

此时的预选滤波器的传输函数)(ωH 的幅度特性如下:2/12/12/1)]()()[()()(ωωωωωS N N S H += (4.1.3)在小输入信噪比情况下:)()()(1)()()(2/12/12/12/1ωωωωωωN S N N S H =≈ (4.1.4) 式(4.1.4)所描述的滤波器称为厄卡特滤波器。

若假设信号和噪声有相同的谱形状,则:)(1)(2/1ωωN H = (4.1.5) 上式所描述的是一个白化滤波器,信号和噪声通过后一律变成白噪声。

非白谱小信号情况下,其)(ωH 相当于一个白化滤波器和一个匹配滤波器的级联。

当信号与噪声有相同形状功率谱时,匹配网络的频率传输函数等于常数,厄卡特滤波器退化为一个白化滤波器,此时虽然不能提高系统输出端的信噪比,但却通过改善噪声谱的形状(白化)提高了系统的等效噪声谱宽。

4.1.1.2实用宽带检测器在实际应用中,由于信号和噪声的功率谱很难知道,因此预选滤波器一般没有白化和对信号进行匹配的能力,因此它对系统的输出信噪比影响很小。

在实用的宽带检测系统中,主要研究的是宽带能量检测器,对这种接收机一般以系统的输出信噪比的大小或系统处理增益作为衡量系统性能的指标。

宽带能量检测器在判决检测前都相应有一个等效积分器,为使讨论具有一般性,可将积分器理解为一个低通滤波器,积分器的传输函数记为H(w),输入端Y 处与输出端Z 处的信噪比可按如下公式计算:)()]()([)/(20201Y Y E Y E N S Y σ-=(4.1.6) )()]()([)/(20201Z Z E Z E N S Z σ-= (4.1.7) 它们和系统参数的关系如下:y y z N S T W N S )/(2)/(= (4.1.8) 其中W y 为积分器等效谱宽;T 为积分器的等效积分时间,可表示为:ττρd W H y y 0)]([21⎰∞∞-= (4.1.9) ][12)0()(21dw T H w H ⎰∞∞-=π (4.1.10)式(4.1.9)中)(τρy 为Y(t)的归一化自相关函数,有)()()(2τρστy y y R =。

可以看出:积分器输出信噪比与积分器的等效积分时间、积分器输入噪声过程的等效谱宽和积分器输入端的输入信噪比有关。

对于理想积分器,等效积分时间就等于积分器的积分时间,也等效于被观察信号的作用时间,而对于RC 积分器的等效积分时间T=2RC 。

噪声过程Y(t)的等效噪声谱宽y W 就是其频带内的功率谱密度)(w G y 与)0(2y G 的比值。

宽带能量检测器(平方律检波器)是很难实现的,所以在实际的接收机中常用易实现的线性检波器代替它,但相应的输出信噪比有所下降。

在小输入信噪比条件下,下降只有1.1416倍(0.57dB),显然是微不足道的,在大输入信噪比条件下,输出信噪比的损失明显增大,但在这种条件下不造成检测的困难。

4.1.2相干检测当信号为一弱周期性信号、且伴随着很强的干扰噪声时,相干检测是一种常用的信号检测方法,相干检测的原理框图如图4.2所示:图4.2 相干检测原理图其中SC 表示输入信号通道;RC 表示参考信号通道;PSD 表示相敏检波器;LPF 表示低通滤波器。

相敏检波器实际上是一个乘法器。

假设信号的角频率为0ω,噪声的角频率为ω,信号与参考信号的相位差为θ,而噪声与参考信号的相位差为α,且θαωω≠≠,0,则PSD e e r s ,,的输出可表示为:]cos[0θω+=t E e s s (4.1.11))cos(0t E e r r ω= (4.1.12)])cos[(21])cos[(21)2cos(21cos 21000αωωαωωθωθ--∙++∙++∙+∙=t E E t E E t E E E E e r n r n r s r s op (4.1.13) 当其通过LPF 时,只要LPF 的截止频率0ωωω-〈〈c (或ωω-0),则噪声分量被滤除。

其信号形式如下:θcos 21∙=r s ol E E e (4.1.14) 当输入信号的频率有ω∆的偏差时,则LPF 的输出为:)cos(21θω+∆∙=t E E e r s ol (4.1.15) 由上式可看出,当ω∆,θ同时为零时,相干检测的输出ol e 取得最大值,因此在相干信号检测过程中,参考信号通道应包括频移或延时环节,可完成从00~0180±的相移变化。

4.1.3频率随机分布正弦信号的检测技术如果信号的频率未知,则可使用扫频检测器确定被检测信号的频率,其原理框图示于图4.3:图4.3 扫频检测器原理图中压控振荡器产生线性调频振荡信号,其在某时刻的输出为:e 0=E 0cosw 0t ,当c s ωωω=-0时,差频窄带滤波器的输出为:)cos(21θω+∙=t E E e c r s ol (4.1.16)如果在噪声背景中存在角频率为s ω的正弦信号,扫频检测器做出存在正弦信号的判决。

4.1.4 时域同步平均检测技术时域同步平均方法是噪声中提取周期性信号的有效方法,是一种积累平均抗干扰检测过程,也称相干检波。

对周期为T 的信号以KT 为间隔截取M 断,然后将各段信号对应的点相加后取算术平均。

设输入X(t)为信号S(t)和噪声N(t)的合,即)()()(t N t S t X +=,则平均后的信号为M t N t S t X )()()(+=,从此式可以看出,平均之后的噪声幅度是平均前信号中噪声幅度的M 1倍,因此信噪比提高M 倍(有效值),这就是时域同步平均的M 法则。

M 次平均后获得的处理增益为:GM=10log 10M 。

显然信号时域同步平均检测把原始输入信号的功率信噪比提高了M 倍,即经过多次平均后噪声逐步被抑制,周期信号被显现出来。

4.1.5 相关技术相关是测量两个信号的相似性。

相关分析分为自相关分析和互相关分析两种,其本质是一种线性滤波,是抑制随机干扰,提高信噪比的一种方法。

相关技术在微弱信号检测技术中的主要应用是寻找隐匿于随机噪声中的规律信号。

设s(t)表示隐匿在噪声中的正弦信号,N(t)表示干扰噪声,且二者不相关,则其自相关函数如下: ⎰⎰+∙++∙=TT dt t N t N T dt t S t S T R 00)()(1)()(1)(τττ 关于相关检测的原理示于图4.4,在实际的检测系统中,)(τR 常被用来检测周期信号的周期。

)(t x 图4.4 相关检测原理 在小型近感探测系统中实现相关器具有实用价值,基本方法包括软件实现技术和硬件实现技术。

Ⅰ相关器的软件实现:对于样本长度为N 的时间序列信号x(n),相关器可用下述公式通过编程实现:∑--=+=M N n xx m n x n x N m R 10)()(1)(ˆ 10-≤≤N mⅡ相关器的硬件实现:相关器的硬件实现如图4.5所示:图4.5 横向滤波器横向滤波器的输出为:∑+-=+=01)()(1)(ˆN n xx m n x n x N m R 。

已出现一些由大规模集成电路构成的相关器,其性能优于横向滤波器。

4.1.6 频域检测综述(增加)谱估计是信号处理的一个重要方面。

它在不同领域都有广泛应用。

当信号的时域特征和干扰背景有明显差异时,谱分析方法是检测微弱信号的有效方法。

随着大规模集成电路的飞速发展,使得小型化的谱分析器实用性越来越好。

传统的谱分析方法是以傅立叶分析为基础的,由于FFT 算法的出现,使得傅立叶分析的性能大大提高,并迅速进入工业应用领域。

传统的谱估计方法主要有自相关法和周期图法,后者是最常用的估计方法。

在用谱估计方法检测微弱信号时又细化为:功率谱估计、倒谱估计、zoomFFT 分析等。

由于短时间信号的FFT 分析的频率分辨力很低,而很多实际信号又只能在短时间内视为平稳过程,70年代后导致出现非傅氏方法的现代谱分析,并成为研究热点。

这些方法可把观测时间间隔内的数据外推到观测间隔之外,增大了有效观测时间,因此分辨率得到了很大提高。

常用的现代谱分析方法主要包括:自回归(AR)谱估计、滑动平均(MA)谱估计、自回归滑动平均(ARMA)谱估计、最大熵谱估计、极小方差谱估计等,但因它们运算量大,在小型检测系统中目前多用基于FFT 算法的谱分析技术。

由于实际检测的信号不满足高斯、平稳信号的特点、相应的分析系统很难满足线性系统、最小相位系统、因果系统,因此针对非高斯、非平稳信号,以及非线性、非因果、非最小相位系统,人们提出了现代信号处理技术的方法,并成为现代研究热点,主要包括:短时傅立叶变换分析、时频分析、小波分析、高阶统计量分析、循环平稳信号分析、Gabor 变换分析、分数阶FT&Radon-Wigner 变换分析等技术。

相关文档
最新文档