高分子材料研究方法-第三章
13西安交大——高分子物理PPT第三章聚合物的分子运动
3.1.3 分子运动的温度依赖性
温度对高分子运动的两个作用: 1. 使运动单元动能增加,令其活化(使运动 单元活化所需要的能量
称为活化能)。当达到某一运动单元运动所需的能量时,就激发 这一运动单元的运动。 2. 温度升高,体积膨胀,提供了运动单元可以活动的自由空间(自 由体积)。当自由空间增加到某种运动单元所需的大小时,这一 运动单元便可自由运动。
模量-温度曲线
两种转变和三种力学状态
玻璃态转变为高弹态的转变称为玻璃化转变,转变温度,即链 段开始运动或冻结的温度称为玻璃化温度Tg。
高聚物由高弹态向粘流态的转变称为粘流转变,这个转变温度称 为粘流温度,用Tf表示。
为什么非晶态高聚物随温度变化出现三种力学状态和二个转变? 我们来看表,了解一下内部分子处于不同运动状态时的宏观表现
玻璃态 高弹态 粘流态
温度 运动单元
力学性质
Tg
以下
Tgf ~ T f
Tg ~ Tf
链段仍处于冻结状态,侧基、 受力变形很小(0.1~1%),
支链、链节等能够做局部运 去力后立即恢复(可逆),
动及键长、键角发生变化, 弹性(普弹性)模量:
而不能实现构象的。
109~1010Pa。
链段运动,不断改变构象, 但是整个分子链还仍处于被 “冻结”的状态。
●饱和主链
CH3 Si O
n CH3
硅橡胶 Tg = -123℃
CH2 O n
聚甲醛 Tg = -83℃
CH2
CH2 n
PE Tg=-68 ℃
●主链上有芳环、芳杂环:
CH3 O
第三章 (1) 高分子材料的物理化学性质
19
(ii)pH敏感水凝胶 :pH敏感性水凝胶是体积随环境pH值、 离子强度变化的高分子凝胶。这类凝胶大分子网络中具有可解 离成离子的基团,其网络结构和电荷密度随介质pH值的变化而 变化,并对凝胶的渗透压产生影响;同时因为网络中添加了离 子,离子强度的变化也引起体积变化。 一般来说,具有pH值响应性的水凝胶都是含有酸性或碱性侧 基的大分子网络,即聚电解质水凝胶。随着介质pH值、离子强 度的改变,酸、碱基团发生电离,导致网络内大分子链段间氢 键的解离,引起不连续的溶胀体积变化。
18
热可逆性水凝胶 有些聚合物水溶液在室温下呈自由流动的液态 而在体温下呈凝胶态,即形成热可逆性水凝胶(TGR)。这一体系 能够较容易地对特定的组织部位注射给药,在体内环境下很快形 成凝胶。而且这种给药系统的制备较简单,只需将药物与聚合物 水溶液进行简单地混合。 如:聚环氧乙烷(PEO)与聚环氧丙烷(PPO)嵌段共聚物是已被批 准用于药用辅料的高分子,商品名叫普流罗尼(Pluronic)或泊洛沙 姆(Poloxamer),依据其结构和浓度,这类聚合物存在两个临界相 转变温度,即溶液-凝胶转变温度(相当于LCST)和凝胶-溶液转变 温度,在这两个温度之间其水溶液呈现凝胶状态。利用这类共聚 物水溶液低温溶液状态混合药物,尤其是生物类药物,注人体内 形成凝胶,从而实现控制药物释放同时保护药物活性的功能。
第三章粘弹性流体的本构方程
第三章非线性粘弹流体的本构方程1.本构方程概念本构方程(constitutive equation),又称状态方程——描述一大类材料所遵循的与材料结构属性相关的力学响应规律的方程。
不同材料以不同本构方程表现其最基本的物性,对高分子材料流变学来讲,寻求能够正确描述高分子液体非线性粘弹响应规律的本构方程无疑为其最重要的中心任务,这也是建立高分子材料流变学理论的基础。
两种。
唯象性方法,一般不追求材料的微观结构,而是强调实验事实,现象性地推广流体力学、弹性力学、高分子物理学中关于线性粘弹性本构方程的研究结果,直接给出描写非线性粘弹流体应力、应变、应变率间的关系。
以本构方程中的参数,如粘度、模量、松弛时间等,表征材料的特性。
分子论方法,重在建立能够描述高分子材料大分子链流动的正确模型,研究微观结构对材料流动性的影响。
采用热力学和统计力学方法,将宏观流变性质与分子结构参数(如分子量,分子量分布,链段结构参数等)联系起来。
为此首先提出能够描述大分子链运动的正确模型是问题关键。
根据研究对象不同,象性方法和分子论方法虽然出发点不同,逻辑推理的思路不尽相同,而最终的结论却十分接近,表明这是一个正确的科学的研究基础。
目前关于高分子材料,特别浓厚体系本构方程的研究仍十分活跃。
同时,大量的实验积累着越来越多的数据,它们是检验本构方程优劣的最重要标志。
从形式上分,速率型本构方程,方程中包含应力张量或形变速率张量的时间微商,或同时包含这两个微商。
积分型本构方程,利用迭加原理,把应力表示成应变历史上的积分,或者用一系列松弛时间连续分布的模型的迭加来描述材料的非线性粘弹性。
积分又分为单重积分或多重积分。
判断一个本构方程的优劣主要考察:1)方程的立论是否科学合理,论据是否充分,结论是否简单明了。
2)一个好的理论,不仅能正确描写已知的实验事实,还应能预言至今未知,但可能发生的事实。
3)有承前启后的功能。
例如我们提出一个描写非线性粘弹流体的本构方程,当条件简化时,它应能还原为描写线性粘弹流体的本构关系。
高分子材料研究方法
一各类有机化合物的基团特征频率(一)烷烃类基团吸收带位置(cm-1)—CH32960287014601380-CH2-292528501460785~720-CH(CH3)211701155-C(CH3)312501210-C(CH3)2-12151195注:对于-(CH2)n-,n=1,~775;n=2,~738;n=3,~727;n=4,~722(二)烯烃C-H键面外弯曲振动特征频率基团吸收带位置(cm-1)R-CH=CH21000~960和940~900R2C=CH2915~870反-RCH=CHR 990~940顺-RCH=CHR 790~650R2C=CHR 850~790(三)烯烃的红外吸收峰振动类别吸收带位置(cm-1)=C-H伸缩3100~3000=C-H弯曲1000~800=CH2弯曲885~855C=C伸缩1700~1600 (四)炔烃的红外吸收峰振动类别吸收带位置(cm-1)C-H伸缩~3300C-H弯曲645~615C C伸缩2250~2100(五)芳基化合物红外吸收峰振动类别吸收带位置(cm-1)芳基C-H伸缩3300~3000芳基C-C(四个峰)1600~1450芳基C-H弯曲900~690(六)苯基C-H键面外弯曲振动频率取代基位置吸收带位置(cm-1)单取代(2个峰)770~730710~690邻-二取代770~735间-二取代(3个峰)900~860810~750725~680对-二取代860~800(七)醇类和酚类基团吸收带位置(cm-1)O-H(游离)3650~3600O-H(形成氢键)3500~3200C-O 1250~1000(八)不同醇类的C-O伸缩振动化合物吸收带位置(cm-1)叔醇(饱和)~1150仲醇(饱和)~1100伯醇(饱和)~1050(九)羰基化合物的特征吸收位置羰基类型吸收峰位置(cm-1) 注释醛1735~1715 C=O伸缩2820,2720 =C-H伸缩酮1720~1710 C=O伸缩1100(脂肪),1300(芳香)C-C伸缩羧酸1770~1750 C=O伸缩(游离酸)1720~1710 C=O伸缩(二聚体)3580~3500 O-H伸缩(游离酸)3200~2500 O-H伸缩(二聚体)1300~1200 O-H弯曲(二聚体)1420 C-O伸缩(二聚体)羧酸盐1610~15501400酯1735 C=O伸缩1260~1160 C-O-C不对称伸缩1160~1050 C-O-C对称伸缩酸酐1820和1760 两峰间距~60cm-1酰卤~1800 C=O伸缩酰胺(游离)3500和3400 N-H伸缩1690 C=O伸缩1600 N-H弯曲酰胺(缔合)3350,3200几个峰N-H伸缩1650 C=O伸缩1640 N-H弯曲(十)腈类基团吸收带位置(cm-1)C N(脂肪族)~2250C N(芳香族)2240~2220(十一)胺的红外吸收峰振动类别吸收峰位置(cm-1)1.伯胺N-H伸缩(纯液体)3400~3250C-N伸缩1250~10202.仲胺N-H伸缩(纯液体)3300C-N伸缩1250~10203.叔胺C-N伸缩1250~1020。
高分子材料
2. 高分子材料的机械性能特点 (1)强度低
100 MPa, 比 金属低得多, 但由于其重量轻、密度小, 许多高聚物的比强度还是很高的, 某些 工程塑料的比强度比钢铁和其他金属 还高。对于粘弹性的高聚物,其强度 主要受温度和变形速度的影响。
另一类高分子化合物的分子中虽然也包含了成千上万个结 构单元,但是所有的结构单元都是相同的,是由很多相同的 单元连接在一起的,不少天然的有机高分子材料都有这样的 结构,例如天然橡胶的主要成分是异戊二烯,棉纤维的主要 成分是纤维素。
构成大分子的最小重复结构单元,简称结构单元,或 称链节。构成结构单元的小分子称单体。
随着温度的升高,高聚物的力学
状态发生变化,在脆化温度Tb以下, 高聚物处于硬玻璃态;在Tb~Tg之间 处于软玻璃态;在略高于Tg时处于皮 革态;在高于Tg较多时处于橡胶态; 在接近于粘流温度Tf时处于半固态。
相应地,高聚物的性能由硬脆逐渐变 为强硬、强韧、柔韧高分子材料
高分子材料又称为高分子聚合物(简称高聚物),是以高分子化合 物为主要组分的有机材料。高分子化合物是指相对分子质量很大 的化合物,其相对分子质量一般在5000以上,有的甚至高达几百 万。高分子化合物由低分子化合物通过聚合反应获得。组成高分 子化合物的低分子化合物称作单体。
高分子材料的发展概况 (1)蒙昧期:19世纪中叶以前人们是无意识地使用高分子 材料。 (2)萌芽期:20世纪初期出现化学改性和人工合成的高分 子。 (3)争鸣期:20世纪初期到30年代高分子 (Macromolecule Polymer)概念形 成。 1920年德国学者H.Staudinger发表了他的划时代的文献 “论聚合”,提出异戊二烯构成橡胶,葡萄糖构成淀粉,纤 维素氨基酸构成蛋白质,都是以共价键彼此连接,提出高分 子长链结构的概念。
第三章 高分子材料的降解
一、高分子材料降解方式
1、降解形式
(2)解聚 解聚反应是先在大分子末端断裂,生产活性较低的自由基,然后按
连锁机理迅速脱除单体。如聚甲基丙烯酸甲酯的解聚反应。
分解特点是分解初期,质量减少非常快,而相对分子质量减少并没有那 么快。人们可以通过对高分子末端的封端,来阻止由于解聚而引起的质
量减少和相对分子质量的降低。
第三章 高分子材料的降解
绿色高分子的定义
相对于常规高分子材料来说,在材料合成、制造、加工和使用过程中不 会对环境产生危害(如污染或破坏环境),也称环境友好高分子材料。
广义的讲,具有耐用、性价比高、易于清洁生产、可回收利用和可环境 消纳等性能的高分子材料, 都属于绿色高分子材料研究开发和推广的范畴。 环境可降解高分子是绿色高分子材料中重要的一部分。
2、降解作用方式
Hale Waihona Puke 4) 生物降解生物降解是材料被细菌、霉菌等作用消化吸收的过程,大致有 三种作用方式: (1)生物的物理作用—由于生物细胞的增长而使物质发生机械性的毁坏; (2)生物的化学作用—微生物对聚合物的作用而产生新的物质; (3)酶的直接作用—微生物侵蚀部分导致塑料分裂或氧化崩裂。
二、降解高分子的分类与原理
可降解高分子材料 可降解高分子高分子材料概念材料是相对通用高分子而言的,广义上认
为,材料在使用废弃后,在一定条件下会自动分解而消失掉。严格地说,降 解材料是在特定的环境条件下,其化学结构发生显著变化并造成某些性能下 降的能被生物体侵蚀或代谢而降解的材料。
二、降解高分子的分类与原理
高分子材料的自然降解包括生物降解和非生物降解两大类。非生物降解 又包括光降解、热降解、氧化降解、水解等。从环保的角度考虑,生物降解 材料及生物降解与非生物降解相结合的材料更受欢迎。国内外已相继开发出 了不少产品。
高分子材料研究方法
n → σ* π→π*
n→π*跃迁
n
π
能 量
σ→σ*
σ
11
主要有四种跃迁类型 跃迁所需能量为: σ→σ* n→σ* π→π* n→π*
分子中电子的能级和跃迁
2
12
(1) σ→σ* 跃迁
成键σ电子跃迁到反键σ*轨道所产生的跃迁 σ→σ*跃迁所需能量很大,相当于远紫外的辐射能, <200nm。
(2) ε值愈大,方法的灵敏度愈高。
ε > 104 ε = 103~104 ε = 102~103 ε < 102
强吸收 较强吸收 中吸收 弱吸收
8
文献报道:紫外可见光谱的两个重要特征 max ε (希腊文,卡帕)
例:λmaxEt = 279 nm ε5012 lgε=3.7
9
二、 紫外可见吸收光谱与分子结构的关系
含-NH2 、-OH、-X λmax=204nm
14
例:CH3OH λmax=184nm
CH3Br
(3)π→π*跃迁
π电子跃迁到反键π* 轨道所产生的跃迁,这类跃迁 所需能量比σ→σ*跃迁小,若无共轭,与n→σ*跃迁 差不多。200nm左右 吸收强度大, ε在104~105范围内,强吸收
29
(三)影响紫外可见吸收光谱的因素
1. 共轭效应 ——π→π共轭
长移
——中间有一个单键隔开的双键或三键,形成大π键。 由于存在共轭双键,使吸收峰长移,吸收强度增加 的这种效应。
——两个生色团处于非共轭状态,各发色团独立的产 生吸收,总吸收是各发色团吸收加和。
λmax
1-己烯 1.5-己二烯 177 178
高分子材料研究方法
高分子材料研究方法
高分子材料那可是现代科技的宝贝啊!研究高分子材料就像在探索一个神秘的魔法世界。
咱先说说研究的步骤吧。
首先得确定研究目标,你想想,要是连目标都不清楚,那不就像无头苍蝇一样乱撞嘛!然后收集各种相关的资料,这就好比打仗前要收集情报一样重要。
接着进行实验设计,可不能马虎,这一步要是错了,后面可就全乱套了。
实验的时候要仔细观察、记录数据,就像侦探在寻找线索一样。
最后分析数据得出结论,这可是最关键的一步呢!
注意事项也不少哦!实验设备一定要检查好,万一出了问题,那可就糟糕了。
实验环境也得控制好,不然结果可能不准确。
还有啊,数据记录一定要准确,这可关系到整个研究的成败呢!
说到安全性,那可不能掉以轻心。
高分子材料有些可能会有毒性,或者在实验过程中会产生危险的物质。
所以一定要做好防护措施,就像战士穿上铠甲一样。
稳定性也很重要啊,要是材料不稳定,实验结果怎么能可靠呢?
高分子材料的应用场景那可多了去了。
在医疗领域,可以用来制作人造器官、药物缓释材料等。
在电子领域,可以制作高性能的绝缘材料、显示屏等。
在环保领域,还能制作可降解的材料呢!优势也很明显啊,比如
重量轻、强度高、耐腐蚀等。
这不是超级厉害嘛!
举个实际案例吧,有一种高分子材料被用来制作防弹衣。
哇塞,这效果简直太棒了!它不仅能保护人们的生命安全,还很轻便,穿着舒服。
这就是高分子材料的实际应用效果啊!
高分子材料研究真的超有意义,能为我们的生活带来很多好处。
咱可得好好研究,让这些神奇的材料发挥更大的作用。
高分子物理化学 第三章
第 三 章 高 聚 物 的 分 子 量 和 分 子 量 分 布
粘度法(粘均分子量)
该法是目前最常用的方法之一。 溶液的粘度除了与分子量有关,还取决 于聚合物分子的结构、形态和尺寸, 因此,粘度法测分子量只是一种相对 的方法。
根据上述关系由溶液的粘度计算聚合物 的分子量。
第 三 章 高 聚 物 的 分 子 量 和 分 子 量 分 布
例如尼龙6:
H2N(CH2)5CO NH(CH2)5CO n NH(CH2)5COOH
COOH 一头 (中 NH2 ,一头 间已无这两种基团),可用酸碱滴 定来分析端氨基和端羧基,以计算 分子量。
第 三 章 高 聚 物 的 分 子 量 和 分 子 量 分 布
计算公式:
W——试样质量 n——试样摩尔数 ne——试样中被分析的端基摩尔数 Z——每个高分子链中端基的个数
第 三 章 高 聚 物 的 分 子 量 和 分 子 量 分 布
C —— 溶液的浓度
—— 溶剂的沸点升高常数
—— 溶剂的冰点降低常数
—— 溶质分子量
第 三 章 高 聚 物 的 分 子 量 和 分 子 量 分 布
一些溶剂的沸点升高常数
第 三 章 高 聚 物 的 分 子 量 和 分 子 量 分 布
一些溶剂的冰点降低常数
第 三 章 高 聚 物 的 分 子 量 和 分 子 量 分 布
特 点
可证明测出的是 ; 对缩聚物的分子量分析 应用广泛; 分子量不可太大,否则 误差太大。
第 三 章 高 聚 物 的 分 子 量 和 分 子 量 分 布
溶液依数性法
小分子:
稀溶液的依数性:稀溶液的 沸点升高、冰点下降、蒸汽压下 降、渗透压的数值等仅仅与溶液 中的溶质数有关,而与溶质的本 性无关的这些性质被称为稀溶液 的依数性。
高分子材料研究方法课程教学大纲
高分子材料研究方法课程教学大纲课程名称:高分子材料研究方法课程编码:02100450 英文名称:Investigation Methods of Polymer materials学时:32学时学分:2学分开课学期:第六学期适用专业:高分子材料与工程课程类别:必修课程性质:专业课先修课程:高分子化学、有机化学、物理化学教材:《聚合物近代仪器分析(第二版)》汪昆华罗传秋周啸清华大学出版社一、课程性质及目的高分子材料研究方法是高分子材料与工程专业的专业基础理论课。
学生在掌握无机化学、有机化学、分析化学和物理化学课、高分子化学基础上,学习和掌握高分子材料研究方法的理论与实践,为学好高分子专业其他的后续课和将来的工作打下坚实的基础。
同时进一步培养学生分析问题,研究问题和解决问题能力,培养学生的创新精神和自学能力。
本课程的任务是:学习高分子材料研究方法理论与实践,了解和掌握高分子材料研究方法的实施方法,同时对高分子学科的新知识、新技术、新进展做一些了解与掌握。
二、课程内容及学习方法第一章绪论1.1 高聚物近代仪器分析方法的研究对象1.2 高聚物近代仪器分析方法所用仪器简介1.3 高聚物研究和分析1.4 高聚物的表征第二章光谱分析2.1 概述2.2 紫外光谱2.3 荧光光谱2.4 红外光谱2.5 激光拉曼光谱简介第三章核磁共振与电子顺磁共振波谱法3.1 核磁共振波谱3.2 1H-核磁共振波谱3.3 13C-核磁共振波谱3.4 NMR在高聚物研究中的应用3.5 NMR的经验计算关系式3.6 电子顺磁共振谱3.7 电子顺磁共振谱在高分子研究中的应用第四章气相色谱法与反气相色谱法4.1色谱分离原理及其分类4.2 气相色谱仪简介4.3 色谱谱图解析4.4 定性与定量分析4.5 微处理机在色谱数据处理中的应用(自学)4.6 反气相色谱法4.7 气相色谱法与反气相色谱法在高分子研究中的应用第五章高聚物的热解分析5.1 高聚物热解分析的特点5.2 高聚物热裂解的一般模式5.3 有机质谱5.4 有机质谱谱图解析5.5 裂解气相色谱分析5.6 PGC-MS联用技术5.7 热解分析在高分子材料研究中的应用第六章热分析6.1 热分析的定义与分类6.2 差热分析和示差扫描量热分析6.3 热重分析6.4 DTA,DSC,TG在聚合物研究中的应用第七章聚合物的热-力分析7.1 概述7.2 主要测试方法的原理与装置7.3 热-力分析中应注意的问题7.4 热-力分析在聚合物研究中的应用第八章分子量分布的测定8.1 概述8.2 凝胶色谱8.3 凝胶色谱的数据处理8.4 凝胶色谱在高分子研究中的应用8.5 场流分离技术(自学)第九章高分子材料的透射电子显微术9.1 光学和电子光学基础9.2 透射电镜的结构及其成像机制9.3 透射电镜用聚合物试祥的制备技术第十章聚合物的扫描电子显微术10.1 高能电子束与固体样品的相互作用10.2 扫描电镜的结构10.3 扫描电镜的放大倍数和分辨本领10.4 扫描电子显微像的衬度及其调节第十一章X射线衍射及其在聚合物结构研究中的应用课程讲授为主,结合实验。
高分子材料研究方法
高分子材料研究方法三、聚合物结构与性能测定方法概述1、聚合物结构的测定方法(1)链结构:广角X-衍射(WAXD)、电子衍射(ED)、中心散射法、裂解色谱——质谱、紫外吸收光谱、红外吸收光谱、拉曼光谱、微波分光法、核磁共振法、顺磁共振法、荧光光谱、偶极距法、旋光分光法、电子能谱等。
(2)凝聚态结构:小角X-散射(SAXS)、电子衍射法(ED)、电子显微镜(SEM、TEM)、光学显微镜(POM)、原子力显微镜(AFM)、固体小角激光光散射(SSALS)?•结晶度:X射线衍射法(WAXD)、电子衍射法(ED)、核磁共振吸收(NMR)、红外吸收光谱(IR)、密度法、热分解法•聚合物取向度:双折射法(double refraction)、X射线衍射、圆二向色性法、红外二向色性法(infrared dichroism)•聚合物分子链整体的结构形态:•分子量:溶液光散射、凝胶渗透色谱、沸点升高、黏度法、扩散法、超速离心法、溶液激光小角光散射、渗透压法、气相渗透压法、端基滴定法•支化度:化学反应法、红外光谱法、凝胶渗透色谱法、粘度法•交联度:溶胀法、力学测量法•分子量分布:凝胶渗透色谱、熔体流变行为、分级沉淀法、超速离心法2、聚合物分子运动(转变与松弛)的测定,体积的变化:膨胀计法、折射系数测定法,热力学性质的变化:差热分析法(DTA)、差示扫描量热法(DSC) ,力学性质的变化:热机械法、应力松弛法,动态测量法如动态模量和内耗等,电磁效应:介电松弛、核磁共振(NMR) •3、聚合物性能的测定(略),其它常用的高分子测试仪器•XPS ( X-射线光电子能谱)•Ellipsometry( 椭圆偏振仪)•X-薄膜衍射仪 1(质谱的概巵:有机列合物的分子在高真空中受到电子流轰击或强电场作用(分子会丢??个外层电子,生成带正电荷的倆子离子,同时化学键乛会发生某丛规律性的断裂,生成各种特征质量的碎片离子。
这些碻孀在电场和磁场的作甪下,按照质荷比(m,z)大小的顺序分离开来,收集和记录这些离子就得到质谱图。
高分子材料化学-第三章1
E 2.051000cal m ol CED ~ 32.94cm3 m ol V
62.2 cal cm3
2.6 108 J m
(a) 溶胀法:
溶胀度法是在一定温度下, 将交联度相同的高分子分别 放在一系列溶度参数不同的 溶剂中使其溶胀,测定平衡 溶胀度,聚合物在溶剂中溶 胀度不同,只有当溶剂的溶 度参数与聚合物溶度参数相 等时,溶胀最好,溶胀度最 大。因此,可把溶胀度最大 的溶剂所对应的溶度参数作 为该聚合物的溶度参数。
(三)交联聚合物的溶胀 交联聚合物由于三维交联网的存在而不会发生溶 解,只能发生溶胀。 交联度越大,溶解度越小。 交联度可以用交联点密度表示。交联聚合物中交 联链的结构单元数Nc占总结构单元数N的分数,通常用 q表示。Q=Nc/N。
制备药用高分子溶液的方法
药用高分子材料大多呈粒状、粉末状,如果将其 直接臵于良溶剂中,易于聚结成团,与溶剂接触的团 块表面的聚合物首先溶解,使其表面粘度增加,不利 于溶剂继续扩散进人颗粒内部。 溶解之初,应采取适宜的方法,使颗粒高度分散, 防止粘聚成团,然后再加入良溶剂进行溶胀和溶解, 这样可以较快的制备高分子溶液。 例如聚乙烯醇和羧甲基纤维素钠在热水中易溶, 配制其水溶液时,则应先用冷水润湿、分散,然后加 热使之溶解。而羟丙甲纤维素在冷水中比在热水中更 易溶解,则应先用80~90℃的热水急速搅拌分散.由 于其在热水中不溶,颗粒表面不粘,则有利于充分分 散,然后用冷水(5℃左右)使其溶胀,溶解。
参数相差值在±1.5以内时常常可以溶解。所以可以用 溶度参数 作为选择溶剂的参考数据 。 在溶解聚合物时,有时使用混合溶剂,效果更好。对 于混合溶剂的溶度参数 混可由下式计算:
高分子化学第三章4
“ 嵌段”共聚 r1 > 1,r2 > 1 k11 > k12,k22 > k21 表明两链自由基都倾向于均聚而不易共聚
均聚链段的长短取决于r1 、r2的大小: r1 >> 1,r2 >> 1, 链段较长 r1 、r2 比1大不很多,链段较短
氯乙烯
乙酸乙烯酯
增加塑性和溶解性能,塑料和涂料
四氟乙烯
全氟丙烯
破坏结构规整性,增加柔性,特种橡胶
甲基丙烯酸甲酯
苯乙烯
改善流动性和加工性能,模塑料
丙烯腈
丙烯酸甲酯衣康酸 改善柔软性和染色性能,合成纤维
1、研究共聚合的意义P76
(1)改性
均聚物数量有限。共聚后,可改变大分子的 结构和性能,扩大应用范围。是高分子材料的重 要改性方法。
大分子
R t22 = k t22[M 2]2
(四)竞聚率与共聚物组成的关系P79
1、 竞聚率 ~~M1• M1 k1 1~~M1• ~~M1•M2 k 12~~M•2
r1=K11/K12
竞聚率的涵义 :竞争增长反应时两种 单体反应活性之比
2. 共聚物组成曲线
为了简便而又清晰反映出共聚物组成和原料单 体组成的关系,常根据摩尔分率微分方程画成 F1~ f1曲线图,称为共聚物组成曲线
2) 链增长反应
M1* M2*
M1
四种 链增长反应
M2
2) 链增长反应(M1* ,M2* ,M1, M2)
M*1 + M1 k11
M*1 , R11= k11[ M*1][ M1]
M*1 + M2 k12 M*2 + M1 k 21 M*2 + M2 k22
第三章 高分子溶液及相对分子质量
2 NiMi
10 (10 ) 5 (10 ) Mv 4 5 10 10 5 10
4 0.61
5 0.61
1
0.6
80000
讨论:
Mw > Mv > Mn,Mv 略低于 Mw
Mn 靠近聚合物中低分子量的部分,即低分 子量部分对 Mn 影响较大
第三章 高分子溶液及分子量
3.1 高分子溶液基本知识介绍
3.2 高聚物分子量知识介绍 3.3 高聚物分子量测定方法简介
教学时数:2 教学要求: (1)了解高分子溶液几个基本概念 (2)掌握聚合物分子量及分布的概念 (3)理解聚合物分子量测定的意义
3.1 高分子溶液基本知识介绍 工业上高分子溶液应用的一些例子:
每种方法都有相应适用范围和测定相应的分子量。
测定高分子材料平均相对分子质量的方法及适用范围
方法
端基 分析
膜渗透 压法
蒸气压法 (VPO)
沸点 上升 法
冰点下 光散射 降法 法
黏度 法
GPC法
测得平 均分子 量的类 型
Mn
Mn
Mn
Mn
Mn Mn MW
M
MW
M
适用分 <3× 子量范 104 围
2×104 ~106
3.3 高聚物分子量测定方法简介
测定聚合物平均分子量的方法很多。 化学法:端基分析法。
热力学法:利用稀溶液的依数性—溶液的某些性质的变 化与溶质的分子数目成正比关系。
膜渗透压法、蒸气压法、沸点升高法和冰点下降法等。 动力学法:粘度法、超速离心沉降法。 光学法:光散射法。 凝胶渗透色谱法(GPC法),该方法通过测定聚合物分 子量分布求得平均分子量。
高分子材料的稳定与降解第三章聚合物降解各论
(i)链终止抗氧剂的稳定化 选用抗氧剂时要根据具体条件下的[R.]和 [ROO.]之比。 光氧化中, [R.]和[ROO.]的比值比在液态烃 中大两个数量级以上。
抗氧剂多是光敏剂。但受阻酚类可以与紫外 吸收剂起协同作用。
只能捕捉[R.]和[ROO.]二者之一的稳定剂通 常抑制系数为1~2。 能同时捕捉[R.]和[ROO.]二者的链终止抗氧 剂的抑制系数远大于1。 具有氧化和还原状态之间交替的能力的抗氧 剂可显示出催化再生机理,对稳定聚合物有 较大潜力。
有氧存在时,自由基的反应必然导致生成氢 过氧化物,将促进聚合物的降解。
聚丙烯热氧化后,分子量上会出现:醛、酮、 羧酸、酯、内酯等结构。
热氧化降解时的挥发产物:水、甲醛、乙醛、 丙酮、甲醇、氢、过氧化氢、一氧化碳和二 氧化碳。
物理性能的变化:
聚丙烯热氧化过程中,大分子烷基自由基是 一个关键的中间体:
聚乙烯的热氧化产物:酮、羧酸、挥发分, 少量的酯和内酯;高温氧化时有醛生成。
聚乙烯热氧化时的主要反应是交联反应, 或生成长链支化产物。
一般认为:交联由于自由基相互结合而形成。 现在有证据表明:自由基在双键上的加成非 常重要。
(3)聚乙烯降解的应用研究 Pages研究了HDPE在冬季气候老化条件下结 构和力学性能的变化。
例:亚硝基自由基的稳定化作用机理:
(ii)预防型稳定剂的稳定化 预防型稳定剂降低链引发速率。包括三类: ① 紫外线屏蔽剂和紫外线吸收剂 对光不透明或在300~400nm区间有强烈光 谱吸收的化合物,通过某种途径能将能量无 害地消散掉。 例:反射性或不透明的颜料。 紫外吸收剂对屏蔽作用贡献小。
② 激发态猝灭剂 ③ 分解氢过氧化物的光稳定剂。
PP/PE合金的溶液可能是均匀的单相体系, 其降解和交联反应都受到抑制。
Chapt3高分子材料的断裂力学基础
主要内容
• 线弹性断裂及表征 • 非线性断裂及表征 • 断裂表面的形貌表征
断裂力学认为材料的破坏行为是由微观-细 观-宏观多层次下,多种破坏机制相耦合而发生 和发展的。 灾难性断裂行为是由微细观损伤发展为裂纹 并扩展至完全破坏的过程。 其基本研究内容是裂纹的引发和裂纹扩展的 条件和规律性。
1、J积分及应用
J积分是塑性断裂理论的核心,可解析裂纹端 部处于较大范围屈服状态时材料的断裂特征。 利用J积分表征增韧高分子材料的破坏行为比 较普遍。
J积分的概念及物理意义
如果把弹塑性变看作为理想化的非线弹性,其应变能 密度w可表述为:
w = ∫ 0 σ ij dε ij
w仅为应变ε的函数,与在应变空间中如何达到ε的路 径无关,且不发生卸载。
假定试样尺寸如下: 宽度为D 厚度为B 裂纹长度为a 产生的塑性区长度为l
屈服类型可分为: L<<a,l<<D, L<<B:塑性区可忽略,线弹性断裂
L<D-a:裂纹端部产生小范围屈服。对于硬质塑料来说, 多数属于该情况,线弹性断裂理论仍适用,但有时需要对 塑性区进行修整
L<D-a:裂纹端部产生较大范围屈服,属于非线性断裂理 论范畴。
⎢σ xx ⎥ ⎢ ⎥ KI τ xy ⎥ = ⎢ (2πr )1/ 2 ⎢σ ⎥ ⎣ yy ⎦
θ 3θ ⎤ ⎡ ⎢1 − sin 2 sin 2 ⎥ ⎢ ⎥ θ θ 3θ ⎥ cos ⎢sin sin ⎥ 2⎢ 2 2 ⎢ θ 3θ ⎥ ⎢1 + sin sin ⎥ ⎢ 2 2⎥ ⎣ ⎦
对于裂纹端部任一点P,其坐标r、θ是已知道 的,则该点应力的大小完全有KI决定,其值大裂纹端 部各点应力就大,因此称之为应力强度因子,下标 表示张开型裂纹,量纲为MPa*m1/2。 r 0 ,全部应力趋于无穷大,即裂纹尖端应力 场具有奇异性。
高分子材料研究方法复习提纲
高分子材料研究方法复习提纲题型:选择题(10分)填空题(20分)名词解释(20分)简答题(30分)谱图解析(20分)《聚合物结构分析》基础习题第一章绪论1、名词:一次结构,二次结构,三次结构,松弛时间2、当温度由低变高时,高聚物经历、、三种状态。
第二章红外光谱1、红外光谱试验中有哪几种制样方法?对于那些易于溶解的聚合物可以采用哪一种制样方法?对于那些不容易溶解的热塑性聚合物可以采用哪一种制样方法?对于那些仅仅能在溶剂中溶胀的橡胶样品,可以采用哪一种制样方法?2、红外光波长在范围,其分为三个区,即区、区、区。
3、产生红外吸收光谱的原理4、分子的振动模式包括振动和振动。
5、红外光谱图的表示方法,即纵、横坐标分别表示什么?6、记住书中p10表2-2中红外光谱中各种键的特征频率范围。
7、名词:红外光谱中基团的特征吸收峰和特征吸收频率,官能团区,指纹区,透过率,吸光度,红外二向色性,衰减全反射8、红外光谱图中,基团的特征频率和键力常数成______,与折合质量成______。
9、官能团区和指纹区的波数范围分别是和。
10、论述影响吸收谱带位移的因素。
11、在红外谱图中C=O的伸缩振动谱带一般在范围。
对于聚丙烯酸、聚丙烯酰胺、聚丙烯酸甲酯来说,按C=O的伸缩振动谱带波数高低,依次是。
12、如何根据红外光谱监测环氧树脂的固化反应。
13、共轭效应会造成基团的吸收频率降低。
14、叙述傅立叶变换红外光谱仪工作原理。
15、简述红外光谱定量分析的基础。
16、以乙酸乙烯酯接枝的聚丙烯膜为例,说明如何用红外光谱测定接枝聚合物的接枝率。
17、如何用红外光谱鉴别(1)PMMA和PS;(2)PVC和PP;(3)环氧树脂和不饱和聚酯。
第三章激光拉曼散射光谱法1、与红外光谱相比,拉曼光谱有什么优缺点?2、名词:拉曼散射,瑞利散射,斯托克斯线,反斯托克斯线,拉曼位移,互相排斥定则3、红外吸收的选择定则是;拉曼活性的选择定则是。
5、对多数吸收光谱,只有频率和强度两个基本参数,但对激光拉曼光谱还有一个重要参数,即。
高分子材料的稳定与降解-第三章-聚合物降解各论课件.ppt
原因:PVC拉伸过程中形成了一种构象,有利 于自由基从分子链上夺取氢原子。
Thank yΒιβλιοθήκη u!证据: 过程: 在某个稳定性较差的位置无规的引发C-Cl 键断裂反应,生成大分子自由基,随后脱除 HCl。
缺陷:PVC脱HCl的自由基机理不能解释 HCl的自催化作用,也不能解释乙酸、 Lewis酸对脱HCl反应的催化作用。
(ii) 离子-分子机理:
(iii) 分子机理:
(3) 交联反应 PVC降解脱HCl以后,形成的共轭多烯结构。 可能会发生分子间的Diels-Alder反应。
(1)聚氯乙烯光降解脱HCl的机理: 一般认为是自由基机理: ① 第一步:无规断链生成自由基; ② 第二步:主链上生成一个孤立的不饱和键。
一般认为PVC脱HCl是“开拉链”反应:
要使PVC颜色发黄,至少需要连续7个共轭双 键结构。从大分子上依次除去HCl将不断增 加剩余链的共轭能,使下一步脱氯化氢所需 的活化能降低,容易形成多烯链。
多烯结构的分子内环化反应会导致形成苯或 其它芳环结构。
(4) 氧化断链 有氧存在时,PVC的自由基降解过程必然发生氧化 反应,其断链过程类似于聚烯烃的氧化过程。
烷氧自由基还可生成β位上带有氯原子的羰 基,急剧激活PVC的脱HCl作用,并生成羰 基烯丙基结构。
2. 聚氯乙烯的光降解 PVC在紫外光照射过程中发生降解和交联,生 成共轭多烯和氯化氢。
热失重研究表明,PVC的分解分两阶段进行:
PVC脱HCl时,生成多烯结构,同时由于交 联和环化,其相对分子质量增加。
(2)PVC脱HCl的机理: 聚合物分子链上的非正常结构(支化、氯代 烯丙基团、含氧结构、端基、头-头结构等) 引发了脱HCl反应。 含氯模型化合物的稳定性:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Raman散射 h
E0基态, E1振动激发态; E0 + h0 , E1 + h0 激发虚态; 获得能量后,跃迁到激发虚态. (1928年印度物理学家Raman C V 发现;1960年快速发展)
2
Raman散射
Raman 散射的两种 跃迁能量差: h(0 - ) E=h(0 - ) E1 V=1 产 生 stokes 线 ; 强 ;基态分子多; E0 V=0 E=h(0 + ) 产 生 反 stokes 线 ; STOKES 弱; Raman位移: Raman 散 射 光 与 入 射光频率差; 0 -
4
Raman位移
对不同物质: 不同;
对同一物质: 与入射光频率无关;表征分子
振-转能级的特征物理量;定性与结构分析的依据;
Raman散射的产生:光电场E中,分子产生诱导
偶极距
= aE
a-分子极化率
5
光散射的方法原理
增 大
拉 曼 减 散 小 射
λ
样 品 池
λ
透过光λ不变
瑞 利 散 射 λ 不 变
6
l 变
பைடு நூலகம்
Raman Spectroscopy
Energy Ein Energy Eout = Ein
"Stokes" Energy Ein Energy Eout < Ein
"antiStokes" Energy Ein Energy Eout > Ein
Sir C.V. Raman Nobel Prize 1930
水不能作为溶剂
不能用玻璃容器测定
需要研磨制成 KBR 压片
15
红外活性和拉曼活性振动
①红外活性振动 ⅰ永久偶极矩;极性基团; ⅱ瞬间偶极矩;非对称分子; 红外活性振动—伴有偶极矩变化的振动可以 产生红外吸收谱带. ②拉曼活性振动 诱导偶极矩 = E 非极性基团,对称分子; e
E
r e
拉曼活性振动—伴随有极化率变化的振动。
17
O=C=O
对称伸缩
偶极距不变无红外活性
O=C=O
反对称伸缩
偶极距变有红外活性
极化率变有拉曼活性 极化率不变无拉曼活性
18
结构分析:H4C4N4
拉曼C=C 1623 cm-1 强
CN C NH2 C
CN
红外C=C 1621 cm-1 强
NH2
互排法则:有对称中心的分子其分子振动
对红外和拉曼之一有活性,则另一非活性
37
Gem 5: Orange Gemstone
This gemstone is clear and could be either carnelian or paste (glass). The Raman spectrum does not match that of carnelian but is similar to a spectrum from glass (predominantly SiO2). A number of gemstones on the reliquary head were also found to be paste in a variety of colours including orange, red, pale blue, black, as well as colourless.
34
Gem 2 : Rectangular Orange Gemstone
This gemstone is a dark orange colour and resembles carnelian, a very fine grained, orange variety of quartz. The Raman spectrum matches that of microcrystalline quartz and so this confirms its identification as a carnelian stone.
IR
Raman
11
红外光谱与Raman光谱比较
红外光谱与拉曼光谱互称为姊妹谱。因此, 可以相互补充。 ① 相似之处:
激光拉曼光谱与红外光谱一样,都能提 供分子振动频率的信息,对于一个给定的化学 键,其红外吸收频率与拉曼位移相等,均代表 第一振动能级的能量。
12
② 不同之处: a 红外光谱的入射光及检测光都是红外光,而拉曼光谱的 入射光和散射光大多是可见光。拉曼效应为散射过程, 拉曼光谱为散射光谱,红外光谱对应的是与某一吸收频 率能量相等的(红外)光子被分子吸收,因而红外光谱 是吸收光谱。 b 机理不同:从分子结构性质变化的角度看,拉曼散射过程 来源于分子的诱导偶极矩,与分子极化率的变化相关。 通常非极性分子及基团的振动导致分子变形,引起极化 率的变化,是拉曼活性的。红外吸收过程与分子永久偶 极矩的变化相关,一般极性分子及基团的振动引起永久 偶极矩的变化,故通常是红外活性的。 c 制样技术不同:红外光谱制样复杂,拉曼光谱勿需制样, 可直接测试水溶液。 13
③ 两者间的联系 可用经验规则来判断分子的红外或拉曼活性: a 相互排斥规则:凡有对称中心的分子,若有拉曼活 性,则红外是非活性的;若红外活性,则拉曼非活 性。 b 相互允许规则:凡无对称中心的分子,大多数的分 子,红外和拉曼都活性。 c 相互禁止规则:少数分子的振动,既非拉曼活性, 又非红外活性。 如:乙烯分子的扭曲振动,在红外和拉曼光谱中均 观察不到该振动的谱带。
对称分子: 对称振动→拉曼活性。
不对称振动→红外活性
16
拉曼光谱与红外光谱的关系
同
同属分子振(转)动光谱
红外: 适用于研究不同原子的极性键振动 异:红外 分子对红外光的吸收
强度由分子偶极距决定 -OH, -C=O,-C-X 异:拉曼 分子对激光的散射 拉曼: 适用于研究同原子的非极性键振动
强度由分子极化率决定 -N- N-, -C-C- 互补
第三章 激光拉曼散射光谱
1
激光拉曼光谱基本原理
Rayleigh散射: 弹性碰撞;无能 量交换,仅改变 方向; Raman散射: 非弹性碰撞;方 向改变且有能量 交换; 激发虚态 h(0 - )
E1 + h0
h0 E1 E0 E0 + h0 h0
h0
V=1 V=0
h0 +
Rayleigh散射
8
I I //
I∥和I⊥——分别代表与激光电矢量平行和垂直的谱线的强度
4 的谱带称为偏振谱带,表示分子有较高的对称 振动模式 。
3
3 的谱带称为退偏振谱带,表示分子对称振动模 4 式较低。
9
中国的第一间拉曼实验室
10
Infrared and Raman Spectra of Benzene
27
傅立叶变换-拉曼光谱仪
FT-Raman spectroscopy 光源:Nd-YAG钇铝石榴石激光器(1.064m); 检测器:高灵敏度的铟镓砷探头; 特点:
(1)避免了荧光干扰;
(2)精度高; (3)消除了瑞利谱线; (4)测量速度快。
28
SPEX 1403 LASER RAMAN IARC, ZHONGSHAN UNIVERSITY
7
多数的吸收光谱中,只具有二个基本参数(频率 和强度) ; 在激光拉曼光谱中还有一个重要的参数即退偏振 比(也可称为去偏振度)。 由于激光是线偏振光,而大多数的有机分子是 各向异性的,在不同方向上的分子被入射光电 场极化程度是不同的。 在激光拉曼光谱中,完全自由取向的分子所散 射的光也可能是偏振的,因此一般在拉曼光谱 中用退偏振比(或称去偏振度)ρ表征分子对称性 振动模式的高低。
Pattern with SEM (i.e. selectively destroy) Illuminate with UV light to polymerise.
Pattern cannot be seen with standard visible microscope
Raman image at 1445cm-1 clearly reveals pattern.
E1 + h0 E2 + h0
h0
h(0 + )
h
ANTI-STOKES
Rayleigh
0
0 +
3
拉曼光谱简介
从图中可见,拉曼光 谱的横坐标为拉曼位 移,以波数表示。纵 坐标为拉曼光强。由 于拉曼位移与激发光 无关,一般仅用 Stokes位移部分。 对发荧光的分子,有 时用反Stokes位移。
32
33
Gem 1: White Lumpy Gemstone
This gemstone shows a range of very pale pastel colours including pink, yellow, green and blue. Analysis using the Raman microprobe gave the spectrum below. Using this it is possible to search a database of reference spectra to look for a match. In this case the Raman spectrum of the gem matches that of pearl, consistent with its visual appearance.
36
Gem 4: Purple Gemstone
This gemstone, at the front left of the crown, has a slightly cloudy appearance which suggests that it again may be a variety of quartz. The Raman spectrum for the gemstone matches that of quartz. As it is a purple colour it can be identified as amethyst.