有机物成环规律与反应类型归纳word版本

合集下载

2025年有机化学反应规律知识点总结

2025年有机化学反应规律知识点总结

2025年有机化学反应规律知识点总结有机化学作为化学领域的重要分支,其反应规律复杂多样且充满魅力。

随着科学技术的不断进步和研究的深入,到 2025 年,我们对有机化学反应规律的认识也更加全面和深入。

以下将对一些重要的有机化学反应规律进行总结。

一、加成反应加成反应是有机化学中常见的反应类型之一,它是指两个或多个分子结合生成一个较大分子的反应。

1、烯烃的加成烯烃是含有碳碳双键的烃类化合物。

在加成反应中,烯烃的双键容易被打开,与其他分子发生加成。

例如,与氢气的加成可以生成烷烃;与卤素单质的加成可以生成卤代烃。

以乙烯与氢气的加成反应为例:CH₂=CH₂+ H₂ → CH₃CH₃,这个反应需要在催化剂的作用下进行,如镍。

2、炔烃的加成炔烃含有碳碳三键,其加成反应与烯烃类似,但相对较为复杂。

例如,与氢气加成可以分步进行,最终生成烷烃。

3、醛和酮的加成醛和酮中的羰基(C=O)可以与氢气、氢氰酸等发生加成反应。

例如,醛与氢气加成生成醇:CH₃CHO + H₂ → CH₃CH₂OH 。

二、取代反应取代反应是指有机物分子中的某些原子或原子团被其他原子或原子团所替代的反应。

1、烷烃的卤代反应烷烃在光照条件下可以与卤素单质发生取代反应,生成卤代烃。

例如,甲烷与氯气的反应:CH₄+ Cl₂ → CH₃Cl + HCl ,反应逐步进行,可以生成一氯甲烷、二氯甲烷、三氯甲烷和四氯化碳等多种产物。

2、苯环上的取代反应苯环具有特殊的稳定性,但在一定条件下也能发生取代反应。

例如,苯与溴在催化剂作用下发生溴代反应生成溴苯。

3、醇的取代反应醇分子中的羟基可以被卤素原子取代,如醇与氢卤酸的反应。

三、消去反应消去反应是指在一定条件下,有机物分子脱去小分子(如 H₂O、HX 等)生成不饱和化合物的反应。

1、醇的消去反应醇在浓硫酸、加热的条件下可以发生消去反应生成烯烃。

例如,乙醇消去生成乙烯:CH₃CH₂OH → CH₂=CH₂+ H₂O 。

有机化学反应中的成环与开环反应

有机化学反应中的成环与开环反应

有机化学反应中的成环与开环反应有机化学反应中的成环与开环反应是指在有机化学反应过程中,物质分子经历一系列变化,从而使其原有的结构发生改变,无论是对于大分子结构的整体变化,还是小分子结构的部分变化,都能够归结为成环和开环反应。

成环反应是指一种有机化学反应,它会让原来很多分子构成的大分子结构“成环”,即将多个分子通过键合反应,形成一种新的有机物质,而这种物质的结构中会包含有一个完整的环状结构。

常见的成环反应有烃类的环化反应、羰基的环化反应、烷基的环化反应、酰氯的环化反应、环氧的环化反应等。

开环反应是指一种有机化学反应,它会让原来已经形成的大分子结构“开环”,即将一个完整的环状结构的物质,通过去除某些结构元素,形成一种新的有机物质,而这种物质的结构中不再包含有一个完整的环状结构。

常见的开环反应有醇的开环反应、酮的开环反应、羧酸的开环反应、烯烃的开环反应等。

成环和开环反应是有机化学反应中的两种重要的反应方式,它们的出现会使得有机物质的结构发生重大的变化,因此也会直接影响到有机物质的性质。

成环反应主要表现为分子量的增加,生成新的分子结构;而开环反应则会使得原来的分子结构发生变化,释放出部分原来含有的分子结构,从而使得分子量减少。

成环反应一般由原料物质和活性物质(如水、醇、醛等)参与,其反应机理可以分为三个步骤:第一步,原料物质和活性物质之间发生活化反应,即活性物质作用于原料物质形成离子对;第二步,离子对再发生缩合反应,形成高分子环状物质;第三步,高分子物质经过稳定性试验,如果稳定性测试合格,则反应结束。

开环反应则主要是由原料物质和氧化剂参与,其反应机理可以分为三个步骤:第一步,氧化剂作用于原料物质,形成一个或多个离子对;第二步,离子对发生分裂反应,使原料物质的环状结构打开;第三步,离子对经过稳定性试验,如果稳定性测试合格,则反应结束。

成环反应和开环反应是有机化学反应中必不可少的两个重要反应方式,它们对于有机物质的结构影响非常的大,因此,在有机化学的实际应用中,成环反应和开环反应都有着非常重要的地位,其反应机理和反应特点也都非常有趣,而且也提供了有机化学反应有效进行的重要保证。

有机化学基础知识点环状化合物的合成与反应

有机化学基础知识点环状化合物的合成与反应

有机化学基础知识点环状化合物的合成与反应有机化学基础知识点——环状化合物的合成与反应环状化合物是有机化学中一类重要的化合物结构,它们具有独特的性质和广泛的应用。

本文将从环状化合物的合成和反应两个方面来讨论有机化学的基础知识点。

一、环状化合物的合成方法1. 环化反应环化反应是最常用的合成环状化合物的方法之一。

它可以通过将直链化合物中的某些官能团连接在一起,形成环状结构。

环化反应可分为以下几类:(1)烯环化反应:将直链烯烃转变为环状的芳香烃或非芳香烃。

常见的烯环化反应有Diels-Alder反应、[2+2]光化学反应等。

(2)烷环化反应:将直链烷烃转变为环状结构。

常见的烷环化反应有环丙烷、环丁烷等的环化反应。

(3)醛酮环化反应:通过醛酮分子内部的亲核加成和脱水反应形成环状结构。

常见的醛酮环化反应有Aldol反应、Robinson环化反应等。

(4)胺环化反应:通过胺分子内部的亲核加成和脱水反应形成环状结构。

常见的胺环化反应有Hofmann环化反应、Vilsmeier环化反应等。

2. 环状模板法环状模板法是通过环状模板引导有机分子的转化而合成环状化合物的方法。

模板可以是有机分子或无机分子,通过与待反应物分子之间的特定相互作用,使待反应物分子发生特定的转化形成环状结构。

3. 光化学法光化学法是利用光的作用来合成环状化合物的方法。

通过光照作用下的光化学反应,可将直链化合物转化为环状结构。

这种方法的优点是反应条件温和,选择性高。

二、环状化合物的反应特点1. 溶剂效应环状化合物在溶液中的性质和反应往往会受到溶剂的影响。

溶剂对于反应的速率、产率和选择性都会起到重要的作用。

有机化学中常用的溶剂有水、有机溶剂等。

不同的溶剂会对反应活性离子的溶解度、亲合力和解离度产生不同的影响。

2. 环扩张反应环扩张反应是指将环状化合物的环扩大的反应。

这种反应是有机化学中的一类重要反应,其产物通常都是另一种环状化合物。

常见的环扩张反应有环加成反应、环开裂反应等。

有机化学反应类型总结

有机化学反应类型总结

有机化学反应类型总结有机化学反应类型总结1、?取代反应(1)能发生取代反应的官能团有:醇羟基(-OH)、卤原子(-X)、羧基(-COOH)、酯基(-COO-)、肽键(-CONH-)等。

(2)能发生取代反应的有机物种类如下图所示:加成反应1.能发生加成反应的官能团:双键、三键、苯环、羰基(醛、酮)等。

2.加成反应有两个特点:反应发生在不饱和的键上,不饱和键中不稳定的共价键断裂,然后不饱和原子与其它原子或原子团以共价键结合。

加成反应后生成物只有一种(不同于取代反应)。

说明:1.羧基和酯基中的碳氧双键不能发生加成反应。

2.醛、酮的羰基只能与H2发生加成反应。

3.共轭二烯有两种不同的加成形式。

3、消去反应(1)能发生消去反应的物质:醇、卤代烃;能发生消去反应的官能团有:醇羟基、卤素原子。

(2)反应机理:相邻消去发生消去反应,必须是与羟基或卤素原子直接相连的碳原子的邻位碳上必须有氢原子,否则不能发生消去反应。

如CH3OH,没有邻位碳原子,不能发生消去反应。

4、聚合反应(1)加聚反应:烯烃加聚的基本规律:(2)缩聚反应:(1)二元羧酸和二元醇的缩聚,如合成聚酯纤维:(2)醇酸的酯化缩聚:(3)氨基与羧基的缩聚(1)氨基酸的缩聚,如合成聚酰胺6:(2)二元羧酸和二元胺的缩聚:nHOOC-(CH2)4-COOH+nNH2(CH2)6NH2=[CO(CH2)4CONH(CH2)6NH]n+2nH2O5、氧化反应与还原反应1.氧化反应就是有机物分子里“加氧”或“去氢”的反应。

能发生氧化反应的物质和官能团:烯(碳碳双键)、醇、酚、苯的同系物、含醛基的物质等。

烯(碳碳双键)、炔(碳碳叁键)、苯的同系物的氧化反应都主要指的是它们能够使酸性高锰酸钾溶液褪色,被酸性高锰酸钾溶液所氧化。

含醛基的物质(包括醛、甲酸、甲酸盐、甲酸酯、葡萄糖、麦芽糖等)的氧化反应,指银镜反应及这些物质与新制氢氧化铜悬浊液的反应。

要注意把握这类反应中官能团的变化及化学方程式的基本形式2.还原反应是有机物分子里“加氢”或“去氧”的反应,其中加氢反应又属加成反应。

有机成环反应

有机成环反应

有机成环反应
(1)有机成环反应规律
①有机成环方式一种是通过加成反应、聚合反应来实现的,另一种是含有两个相同或不同官能团
的有机物分子(如多元醇、羟基酸、氨基酸)通过分子内或分子间脱去小分子水或氨等而成环。

②成环反应生成的环上含有5个或6个碳原子的比较稳定。

(2)有机成环反应类型
①双烯合成环。

共轭二烯烃与含有C=C的化合物能进行1,4加成反应生成六元环状化合物。

如:
②聚合反应成环。

如:
乙炔的聚合:
醛的聚合:甲醛、乙醛等容易聚合而成环状化合物。

③脱水反应成环
A:多元醇分子内脱水成环。

如:
B:多元醇分子间脱水成环。

如:
C:多元酸脱水成环:如:
④酯化反应成环。

A:多元醇与多元酸酯化反应生成环状酯。


B:羟基羧酸分子间脱水成环。

如C:羟基羧酸分子内酯化成环。

如:
⑤缩合反应成环。

氨基酸可以分子内缩合生成内酰胺,也可分子间缩合生成交酰胺。

分子内缩合。

如:
分子间缩合:如:
⑥烷烃的环化(石油催化重整)
⑦烯烃的氧化成环。


⑧醛的低聚合成环。


⑨卤代烃在钠作用下成环。

有机化学的反应类型

有机化学的反应类型

有机化学的反应类型
1. 加成反应:在反应中,两种或两种以上的分子结合成一个分子。

2. 消除反应:在反应中,一个大分子分解成两个小分子。

3. 取代反应:在反应中,一个原子或官能团被另一个原子或官能团取代。

4. 氧化还原反应:在反应中,一个物质失去电子而被氧化,而另一个物质获得电子而被还原。

5. 酸碱反应:在反应中,酸和碱互相中和形成盐和水的反应。

6. 缩合反应:在反应中,两个分子结合形成一个分子的过程。

7. 开环反应:在反应中,环形化合物断裂成直线化合物的过程。

8. 重排反应:在反应中,原始分子中原子或官能团排列位置的变化。

9. 氢解反应:在反应中,有机化合物和水反应,水分子加入到化合物中使其分解成两个分子。

10. 还原反应:在反应中,有机化合物和还原剂(如氢气、亚
硫酸盐等)反应,使化合物中的官能团发生还原反应。

11. 消除加成反应:在反应中,两个分子结合成一个分子,同
时又失去一些原子或官能团。

12. 氧杂化反应:在反应中,有机化合物中的氮、硫等杂原子
和氧反应,形成新的化合物。

13. 氧杂化加成反应:在反应中,两个分子结合成一个分子,
并且有机化合物中的氮、硫等杂原子和氧反应。

14. 核替换反应:在反应中,有机化合物中的核被另一个原子
或核替换。

15. 氧化反应:在反应中,有机化合物和氧反应,官能团中的双键或多键与氧反应,形成新的化合物。

最新有机物成环规律与反应类型归纳

最新有机物成环规律与反应类型归纳
(2)物品的独一无二
2、你大部分Βιβλιοθήκη 零用钱用于何处?“碧芝”隶属于加拿大的beadworks公司。这家公司原先从事首饰加工业,自助首饰的风行也自西方,随着人工饰品的欣欣向荣,自制饰品越来越受到了人们的认同。1996年'碧芝自制饰品店'在迪美购物中心开张,这里地理位置十分优越,交通四八达,由于是市中心,汇集了来自各地的游客和时尚人群,不用担心客流量问题。迪美有300多家商铺,不包括柜台,现在这个商铺的位置还是比较合适的,位于中心地带,左边出口的自动扶梯直接通向地面,从正对着的旋转式楼拾阶而上就是人民广场中央,周边4、5条地下通道都交汇于此,从自家店铺门口经过的90%的顾客会因为好奇而进看一下。
有机物成环规律与反应类型归纳
在上海,随着轨道交通的发展,地铁商铺应运而生,并且在重要的商业圈已经形成一定的气候,投资经营地铁商铺逐渐成为一大热门。在人民广场地下“的美”购物中心,有一家DIY自制饰品店---“碧芝自制饰品店”。
手工艺品,它运用不同的材料,通过不同的方式,经过自己亲手动手制作。看着自己亲自完成的作品时,感觉很不同哦。不论是01年的丝带编织风铃,02年的管织幸运星,03年的十字绣,04年的星座手链,还是今年风靡一时的针织围巾等这些手工艺品都是陪伴女生长大的象征。为此,这些多样化的作品制作对我们这一创业项目的今后的操作具有很大的启发作用。
喜欢□一般□不喜欢□
因为是连锁店,老板的“野心”是开到便利店那样随处可见。所以办了积分卡,方便女孩子到任何一家“漂亮女生”购物,以求便宜再便宜。
调研提纲:
2、价格“适中化”
上述所示的上海经济发展的数据说明:人们收入水平的增加,生活水平的提高,给上海的饰品业带来前所未有的发展空间,为造就了一个消费额巨大的饰品时尚市场提供了经济基础。使大学生对DIY手工艺品的时尚性消费,新潮性消费,体验性消费成为可能。

有机化学反应知识点总结

有机化学反应知识点总结

有机化学反应知识点总结1.烷烃●氧化●自动氧化●燃烧●异构化●热裂●卤化自由基反应●硝化●磺化氯磺化2.环烷烃●与卤素●自由基取代●加成离子型●与HX●催化加氢●不被氧化3.烯烃●催化氢化顺式加成●亲电加成●卤素环鎓离子中间体反式加成●次卤酸环鎓离子中间体马氏规则●氢卤酸碳正离子中间体(顺反加成,重排)马氏规则反马氏规则●硫酸,水,有机酸,醇,酚碳正离子●硼氢化四中心过渡态→顺式加成 B进攻小空阻→反马氏●氧化(H2O2/OH-/H2O)→醇●还原→烷烃●羟汞化-脱汞Hg(OCOCH3)2,NaBH4 马氏规则●自由基加成HBr 过氧化物 hv●氧化●环氧化-开环→反式邻二醇有机过酸酸/碱●高锰酸钾●稀、冷→顺式邻二醇●酸/碱、加热→氧化裂解●四氧化锇→顺式邻二醇●臭氧化-水解●O3●水解●还原水解→醛/酮Zn/H2O;CH3SCH3;H2/Pd;LiAlH4;NaBH4●α-H卤化自由基取代烯丙位自由基稳定●X2 500-600℃/hv●NBS/NCS●与卡宾反应●单线态卡宾●三线态卡宾●类卡宾●加聚反应4.炔烃●末端炔氢酸性●NaNH2/NH3(i)得到亲核试剂: RX C=O●[Ag(NH3)2]+HCl HNO3 CN-/H2O 还原提纯●[Cu(NH3)2]+●亲电加成●卤素反式(环正离子中间体),马氏规则●HX顺/反式(碳正离子中间体),两侧均为R时反式;马氏规则●H2O马氏规则,烯醇式互变酮式●H2SO4 H3PO4催化碳正离子中间体●Hg2+/H+催化汞鎓离子中间体●硼氢化●氧化H2O2/OH-顺式水合,反马氏●还原●自由基加成过氧化物(链引发剂)●亲核加成端炔C,碳负离子中间体●HCN●活泼氢-OH,-SH,-NH2,=NH,-CONH2,-COOH●还原●催化加氢●强还原剂Pd,Pt,Ni●弱还原剂顺式加成●Lindlar催化剂(Pd-CaCO3-PbO)●Pd-BaSO4,吡啶●碱金属与液氨反式加成●氢化锂铝反式加成●氧化→-COOH●KMnO4●O3/H2O2/Hg2+●聚合●链●环三聚成苯 #5.共轭烯烃●亲电加成●1,2-加成动力学●1,4-加成热力学●Diels-Alder反应周环反应,Δ,可逆给电子基双烯体+吸电子基亲双烯体优亲双烯体顺反构型保持内型产物优先产物取代基邻对位优●聚合反应6.苯●亲电取代定位效应:给诱,吸诱,给共,吸共,卤素加成-消除机理●硝化反应HNO3/H2SO4=1:2●卤化反应X2/Lewis酸 F2,I2特殊反应●磺化反应浓硫酸,发烟硫酸弱酸恢复●Friedel-Crafts反应●傅-克烷基化碳正离子重排多烷基化可逆●RX/AlCl3●RCH=CH2/H+●ROH/HF●傅-克酰基化不可逆,无重排,无多元●RCOCL/AlCl3●(RCO)2O/AlCl3●RCOOH/H2SO4●Blanc氯甲基化HCHO/HCl/无水ZnCl2●Gattermann-Koch反应→芳醛Lewis酸,加压CuCl,CO/HCl(1:1)●还原反应●催化氢化H2,Pt Pd Ni Ru Rb●Birch还原Na/NH3(l)/CH3CH2OH●加成反应3Cl3 Δ/P/hv●氧化反应不为高锰酸钾、重铬酸钾所氧化●O2/V2O5/Δ→顺丁烯二酸酐●苯甲位性质●碳负离子反应●碳正离子反应●SN1取代●SN2取代●自由基反应X2/hv NBS/过氧化物●侧链氧化●强氧化(KMnO4,K2Cr2O7,HNO3)→-COOH含α-H的苯环侧链●温和氧化●Etard反应ArCH3 (CrO2Cl2)→ArCHO●Kornblum反应ArCH2X (DMSO,NaHCO3)→ArCHO●卤苯●与金属有机化合物●芳香亲核取代NaNH2/NH3(l) 苯炔中间体机理(消除-加成机理)●邻对位被吸电子基取代卤苯,卤素易亲核取代7.稠环芳烃●萘●亲电取代●硝化●卤代●磺化●低温α-位动力学●高温β-位热力学●酰基化●CS2溶剂→α-位●C6H5NO2溶剂→β-位●氧化●CrO3/HOAc●O2/V2O5/Δ●H2O2●催化氢化●一取代萘亲电取代定位●蒽、菲活泼,9.10位●亲电取代●催化氢化●氧化→醌8.卤代烃●亲核取代机理:Sn1;Sn2 反应活性●水解→醇●碱●水(溶剂解)●醇解→醚●碱●醇(溶剂解)●氨解●NaHS●NaSR●NaCN延长碳链●RC≡CNa●AgNO3鉴别卤代烃●-CH(COOEt)2●NaX'●β-消除区域选择性(Zaitev规则)立体选择性(反式共平面)机理:E1;E2 反应活性●与金属反应●Mg→格氏试剂●格氏试剂亲核取代偶联反应●格氏试剂与活泼氢反应●H2O●HX●HOR'●HC≡CR'●NH3●R'COOH●格氏试剂与醛、酮反应●格氏试剂与酯反应●格氏试剂与环氧乙烷反应●格氏试剂与CO2反应●格氏试剂与O2反应●NaWurtz反应●Li→有机锂→二烷基铜锂●亲核偶联●与活泼氢●与CO2、O2●还原反应●LiAlH4保留双键●NaBH4保留双键●Zn/HCl●HI●催化氢化●Na/NH3保留双键及构型●氧化反应●DMSO(二甲基亚砜)→R-CHO9.醇●醇羟基上的H 酸性●电离●与碱金属→亲核试剂●与氢氧化钠→亲核试剂●醇羟基上的O●碱性●亲核性——酯化反应●与有机酸加成-消除机理碳正离子机理酰基正离子机理●与含氧无机酸●硝酸●亚硝酸●硫酸●与羧酸衍生物●酰卤●酸酐●胺/氨●酯酯交换●亲核取代●HX机理:SN1,SN2 Lucas试剂及应用邻基参与效应●PX3,PX5重排●SOCl2不重拍●→构型保持●+吡啶→构型翻转●分子间脱水(H2SO4/140℃)低温利SN1●β-消除(H2SO4或HPO3/180℃)分子内脱水,高温利E1●氧化有α-H者●KMnO4/MnO2●稀、冷、中性KMnO4→不反应●酸性/Δ KMnO4●1°R-OH→羧酸●2°R-OH→酮●3°R-OH→裂解成酮●新制MnO2→醛(不饱和键保留)●铬酸●强氧化●Na2Cr2O7+H2SO41°R-OH→羧酸 2°R-OH→酮●温和氧化→醛不饱和键保留●Sareett试剂(CrO3+吡啶)●Jones试剂(CrO3+稀H2SO4)●PCC试剂(CrO3+HCl+吡啶)●硝酸●1°ROH→羧酸●2°ROH,3°ROH→浓硝酸,裂解●环醇→二元酸●Oppenauer氧化Al[OC(CH3)3]3→选择性醇/酮H交换●Pfitzner-Moffatt试剂氧化→醛二甲亚砜+二环己基碳二亚胺●脱氢Cu或CuCrO4或Pd/300℃●多元醇特殊性质●邻二醇●络合金属离子(Cu2+)●氧化邻二醇→断裂为二羰基化合物●H5IO6●Pb(OAc)4/CH3COOH或C6H6●NaIO4●频哪醇重排10.酚●酚羟基●酸性●NaOH●碱性极弱●亲核性较低●酯化催化剂:碱,质子酸●酰卤●酸酐●醚化●Williamson醚合成●RX●CH3OSO2OCH3●CH2NO2●Clainsen重排芳香,脂肪●Fires重排●芳环上亲电取代●卤化●多卤代●单卤代降低温度小极性或非极性溶剂酸性条件次氯酸叔丁酯●磺化●硝化亚硝化●Friedel-Crafts反应●烷基化●酰基化●Reimer-Tiemann反应→邻对位甲酰化(苯甲醛)CHCl3/NaOH/60℃●Kolbe-Schmitt反应→邻对位羧酸NaOH—CO2(高压)—H+●羟甲基化反应→邻对位羟甲基化HCHO/H+●偶联反应→对位偶氮苯ArN2+X-11.醚●自动氧化自由基反应●碱性→佯盐●亲核取代 HIC-O键断裂顺序●Claisen重排●烯基型醚稀酸→醛/酮●1,2-环氧乙烷开环●酸性 SN2机理,SN1区位选择性Nu-多取代C 构型翻转●碱性 SN2机理Nu-小空阻C 构型翻转●冠醚12.醛&酮●羰基亲核加成●含氧亲核试剂●H2O→偕二醇●ROH→半缩醛(酮)→缩醛(酮) [碱与氧化剂稳定,酸不稳定→恢复羰基]催化剂:对甲苯磺酸,HCl●含硫亲核试剂●NaHSO3(过量、饱和)醛脂肪族甲基酮 C8以下环酮●RSH→缩硫醛(酮)H2/NaneyNi→二甲基●Schiff试剂(品红+SO2)●含碳亲核试剂●HCN→α-羟基腈醛脂肪族甲基酮 C8以下环酮●炔化物→α-炔基醇●金属有机化合物→醇一次加成●Witting试剂(磷Ylide)→烯烃●含氮亲核试剂●胺●一级胺→亚胺●二级胺→烯胺●氨●胺衍生物●α-H反应酸性烯醇化→烯醇盐(区位选择)●α-H卤化●酸催化●碱催化●卤仿反应α-甲基酮,α-甲基醇●烷基化 RX●酮(仲胺参与)●醛(亚胺参与)●羟醛缩合(Aldol反应)酸催化碱催化自身缩合定向缩合●Michael加成(1,4-加成)含α-H的醛/酮+α-不饱和醛/酮●Perkin缩合芳香醛+酸酐(酸酐对应盐/Δ)→反式β-芳基-α-不饱和羧酸●Mannich反应含α-H的酮+甲醛+胺●氧化●一般氧化高锰酸钾、重铬酸钾、铬酸、过酸、过氧化氢、氧化银、溴…●醛→羧酸●酮 Null●特殊●醛●自氧化自由基●Fehling试剂(新制氢氧化铜络合物)→羧酸盐+砖红色氧化亚铜醛、α-羟基酮、α-醛酮芳香醛不反应●Tollens试剂(银氨离子)→羧酸盐+银镜●酮●Baeyer-Villiger氧化重排(过酸)迁移顺序●还原●→-C-OH●催化氢化顺式,小空阻侧●氢化金属化合物●LiAlH4C=C、C≡C保留●NaBH4C=C、C≡C保留●B2H6C=O>C=C●Meerwein-Pronndorf-Verley还原(异丙醇铝/异丙醇)C=C、C≡C保留●活泼金属●单分子还原●双分子还原[Mg/苯,Na/NH3(l)]→频哪醇孤立C=C不还原,共轭时优先还原●→-CH2●Clenmmensen还原 Zn-Hg/浓HCl●Wolff-Kishner还原●Wolff-Kishner-黄鸣龙还原C=C、C≡C保留●歧化 Cannizzaro反应(浓OH-)分子间自身,交叉,定向(甲醛总被氧化)分子内●安息香缩合苯甲醛+CN-●Darzen反应酮+XCH2COOR'→环氧化酯→(OH-/H2O,H3O/Δ)多一个碳的醛●聚合反应●不饱和醛、酮●烯酮●羰基的加成(活泼H)互变●格氏试剂●聚合体反应●β-丙内酯开环●酸性中性●碱性,强酸性●α,β-不饱和醛酮●加成反应●1,4-加成氨及其衍生物HX H2SO4 HCN H2O ROH 二烷基铜锂格氏试剂与酮Michael加成●1,2-加成RNa RLi 格氏试剂与醛●3,4-加成X2 H2O●还原●醌●对苯醌●加成●1,2-加成●氮亲核试剂●格氏试剂●1,4-加成HCN,HX,CH3OH,胺●还原●Diiels-Alder反应●羟基取代醛酮●α-OH取代●互变●氧化●与苯肼反应●与H5IO6反应●β-OH取代●脱水●γ/δ-OH取代●分子内亲核取代→环状半缩醛13.羧酸●酸性NaOH,KOH,Na2CO3,NH3·H2O●酰基碳上的亲核取代——酰化●酯化 ROH RX加成-消除碳正离子中间体酰基正离子中间体●与无机酰卤SOCl2 PCl3 PCl5●与氨或胺亦可酸碱反应●氨→互变成腈●胺→脱水缩合●与金属有机化合物●格氏试剂→羧酸镁盐无意义●有机锂→酮●还原●催化氢化●LiAlH4●BH3●脱羧自由基●Kolbe法电解●Hunsdicker反应→R-BrRCOOAg+Br2 (CCl4/Δ)●Cristal反应→R-BrHgO+Br2●Kochi反应●二元羧酸脱水与脱羧Blanc规则●α-H的反应 Hell-Volhard-Zelinsky反应PBr3 一、二、三卤代●不饱和羧酸●α,β-不饱和●1,4-亲核加成●Diels-Alder反应14.取代羧酸●卤代酸●α-X●亲核取代NaOH/H2O,NH3,NaCN/H+●β-X●卤代烃消除●γ,δ,ε -X●内酯化●醇酸●酸性●脱水●α- →半交酯→交酯●β- →消除成烯(共轭)●γ,δ - →内酯(分子内)●>ε- →聚酯(分子间)●与醛反应(亲核加成)●α-醇酸与金属离子→螯合物●降解脱羧,成酮●α-醇酸●稀H2SO4●浓H2SO4●β-醇酸●酚酸●羰基酸●乙醛酸水合●丙酮酸降解●乙酰乙酸●4-戊酮酸●氨基酸●两性与等电点●脱羧●脱水缩合●显色反应●β-酮酸酯●酸性●酮式与烯醇式互变●分解●酮式分解→酯水解稀碱●酸式分解→亲核加成-消除,脱羧浓碱●作为亲核试剂●烃化●酰化●Knoevenagel反应弱碱催化●Micheal加成●乙酰乙酸乙酯合成法●丙二酸二乙酯合成法15.羧酸衍生物●酰基碳上的亲核取代反应性:I>Br>Cl>-OCOOR>-OR>-OH>-NH2>-NHR●水解→羧酸酸性,碱性酰卤>酸酐>酯,易酰胺难●酯水解的机理●亲核加成-消除●碳正离子●酰基正离子●腈→酰胺→羧酸●醇解→酯酰卤>酸酐,易酯>酰胺>腈,难●酯交换反应及应用●氨解→酰胺均易●酸解●与金属有机化合物反应●酰卤●格氏试剂,有机锂→少量得酮,过量得3°ROH●二烷基铜锂→酮●有机镉化物→酮●酯,腈格氏试剂,有机锂→少量得酮,过量得3°ROH●酰胺NH2活泼氢先反应,浪费●酸酐→酮→醇浪费●还原●催化氢化●酰卤●强烈还原——H2/Pd→RCH2OH●温和还原Rosenmund还原——H2/Pd-BaSO4/硫/喹啉→RCHO●酸酐 ..H2/Pd●酯 CuO·CuCrO4,200-300℃,10-30MPa苯环不受影响●酰胺 H2/CuCr氧化物/高温高压●腈 H2/Ni/NH3(l)/高温高压●金属氢化物●酰卤,酸酐,酯→RCH2OH●LiAlH4/乙醚●LiBH4/THF●NaBH4/THF●酰胺 LiAlH4/乙醚●1°→RCH2NH2●2°→RCH2NHR'●3°●氧化剂过量→RCH2CR'R''●氧化剂不过量→RCHO●腈→RCH2NH2LiAlH4●特殊●二元环酐(NaBH4)→内酯●酰卤[ AlLi(t-BuO)3H ]→醛●酯的特殊还原——Bouveault-Blanc还原(Na/ROH)→醛+醇●酰卤专属反应●α-H卤代X2/H+●酯的专属反应●Claisen酯缩合→β-羰基酯C2H5ONa/C2H5OH●混合酯缩合●Dieckmann反应二酸酯(Na/甲苯/C2H5OH)→β-羰基酯环五、六元环稳定●酮酯缩合●酮醇缩合 2酯→β-羟基酮Na/N2,Ph-CH3,Δ●热裂→羧酸+烯400-500℃●Reformatsky反应β-卤代酸酯+醛/酮(Zn)→β-羟基酸酯●酰胺专属性质●酸碱性●脱水→腈P2O5或SOCl2或Δ●Hofmann降级→胺X2/NaOH→NaXO●Gabriel合成法亚酰胺制备伯胺●腈专属反应●水解→酰胺→羧酸●Ritter反应16.有机含氮化合物●胺●脂肪胺●碱性碱性判断分离纯化●酸性LDA制备●亲核性●烷基化(Hofmann烷基化) R-XSN2●酰基化(伯胺,仲胺)●羧酸衍生物——酰卤,酸酐,酯保护氨基,结构鉴定●磺酰氯 Hinsberg反应鉴别结构,分离纯化●亚硝化●叔胺→N-亚硝铵盐●仲胺→N-亚硝胺●伯胺→重氮盐→碳正离子●取代●消除●重排●Tiffeneau-Demjanov重排类似频哪醇●与醛/酮反应●伯胺→亚胺●仲胺→烯胺●还原性●伯胺→亚硝基化合物→硝基化合物●仲胺→羟胺●叔胺→氧化胺●Cope消除β-H的氧化胺Δ→烯烃+羟胺●芳香胺●极弱碱性●芳香亲核取代活化,邻对位改变活性→铵盐改变定位→酰化●卤化→三卤代无cat.●磺化,硝化,酰基化注意N上的H竞争反应●重氮化NaNO2,H+,H2O,0-5℃●伯芳胺→芳香重氮盐●仲芳胺→N-R基-N-亚硝基苯胺●叔芳胺→对亚硝基苯胺●还原性●氨基氧化●1°→硝基化合物●2°→羟胺●3°→氧化胺●苯环氧化复杂醌式结构●MnO2/H2SO4/10℃→醌●季铵盐与季铵碱●制备●Hofmann烷基化●Ag2O/H2O●Hofmann消除Hofmann规则●硝基化合物●脂肪族●还原反应→-NH2●酸性还原系统 Fe/Zn/Sn+HCl●催化氢化●酸性α-H●Henry反应碳负离子与羰基化合物缩合●与亚硝酸反应●1°→硝肟酸+NaOH→红色溶液●2°→假硝醇+NaOH→蓝色溶液●3° null●芳香族●还原→→-NH2●酸性系统→-NH2●中性系统→-NHOHNH4Cl,CH3CH2OH●碱性系统→氧化偶氮苯,偶氮苯,氢化偶氮苯Zn/NaOH●催化氢化●亲电取代钝化,间位定位●亲核取代卤苯亲核取代●重氮化合物●重氮甲烷●碱性●与含活泼氢者反应●亲核性●与醛/酮反应●与酰卤反应 Arndt-Eister合成法●亲电反应●1,3-偶极环加成反应→环丙烷及其衍生物●生成卡宾●芳香族●酸性●亲核取代反应●被OH取代PhN2+SO4H- H2O H+/Δ●被卤素取代●F Schiemann反应●Cl Br●Olah反应●Sandmeger反应CuX●Gattermann反应Cu●IKI/Δ●被CN取代●Sandmeger反应CuCN+KCN●Gattermann反应Cu+KCN●被硝基取代●Gattermann反应NaNO2+H2O+Cu●被H取代●H2PO3+H2O●HCHO+NaOH●还原反应●偶联反应活泼芳环●二烷基芳胺●芳香伯胺、仲胺●酚●偶氮化合物●芳香族●异构化●弱碱性●联苯胺重排●氧化→氧化偶氮苯→对羟基偶氮苯过氧酸 H+●脂肪族●叠氮化合物●还原→-NH3●Curtius重排酰胺叠氮→胺(少一个C)●Schmidt重排●氮烯17.杂环化合物●五元杂环●一个杂原子——吡咯、呋喃、噻吩●芳香性●亲电取代α-位吡咯>呋喃>噻吩●卤代●Br2 Cl2→多卤代●SO2Cl/Et2O/0℃,Br2/环二乙醚/0℃,Br2/AcOH,NBS,NCS→一卤代●噻吩+I2/HgO/苯/0℃→一碘代●磺化吡啶三氧化硫噻吩可直接磺化●硝化乙酰基硝酸酯●偶联芳香重氮盐●傅-克酰基化●傅-克烷基化→混合物●加成●催化加氢●Diels-Alder反应●吡咯特有性质●极弱碱性●酸性与碱反应得N+●N+作为亲核试剂RX, RCOX, CO2/H2O●瑞默尔-悌曼反应→α-醛CHCl3/NaOH●衍生物α-呋喃甲醛●醛●催化加氢●氧化●无α-H的醛●康尼扎罗●安息香缩合●交叉羟醛缩合●Perkin反应●一个杂原子的苯并杂环——吲哚,异吲哚●亲电取代3-位●2个杂原子●咪唑●酸性强于吡咯●碱性强于吡咯●六元杂环●一个杂原子——吡啶●碱性●亲核性N●CH3I●RX●酰卤●SO3●亲电取代β-位●卤代200℃●硝化HNO3/H2SO4/KNO3/300℃●磺化发烟H2SO4/HgSO4/230℃●亲核取代α-位●Chichibabin反应NaNH2/NH3●C6H5Li●3,4-卤代吡啶+氨水/160℃→4-取代●氧化●较苯难氧化●被过氧化物氧化产物取代定位γ-●还原●催化氢化●Na/C2H5OH●侧链α-H缩合反应●芳香醛●CH3I●一个杂原子的苯并杂环——喹啉,异喹啉●亲电取代苯环5,8-位●亲核取代●喹啉 2(主),4-位●异喹啉 1位●氧化还原●侧链α-H18.周环反应●电环化反应●4n●基态Δ→顺旋●激发态hν→对旋●4n+2●基态Δ→对旋●激发态hν→顺旋●环加成反应基态Δ●Diels-Alder反应●1,3-偶极环加成反应●σ迁移反应●[1,j]●H迁移●基态●同面5 9 13(4n+1C)●异面3 7 11 (4n-1C)●激发态●同面 4n-1●异面4n+1●C迁移●基态●构型保持●同面4n+1●异面4n-1●构型翻转●同面4n-1●异面4n+1●激发态●构型保持●同面4n-1●异面4n+1●构型翻转●同面4n+1●异面4n-1 ●[i,j]●[3,3]σ迁移●cope重排●claisen重排。

有机化学基础知识点整理环状反应与环化反应机制

有机化学基础知识点整理环状反应与环化反应机制

有机化学基础知识点整理环状反应与环化反应机制有机化学基础知识点整理:环状反应与环化反应机制一、环状反应概述在有机化学中,环状反应是一类重要的反应类型,它涉及到有机分子中的环状结构的形成或破坏。

环状反应在合成有机化合物、构建骨架和生成环状化合物等方面具有广泛的应用。

环化反应机制是实现环状反应的基础,通过对机制的理解,可以更好地解释环状反应发生的原理和规律。

二、环化反应机制1. 现场环化反应现场环化反应是指在反应体系中,分子内部的官能团发生重排,形成新的环状结构。

例如,马丁体系,非常著名的烯烃环化反应。

它通过在分子中引入不对称原子团或官能团来使环内生成不对称产物。

这类反应通常在高温或高压条件下进行,以保证反应的进行和产率的提高。

2. 烯烃环加成反应烯烃环加成反应是通过烯烃与其他反应物的加成反应,形成环状结构。

这类反应通常涉及到烯烃的亲核加成、电子转移和质子转移等步骤,最终形成环状产物。

典型的例子是Diels-Alder反应,它是一种高度立体选择性的环加成反应,常用于构建多个环状结构。

3. 缩合环化反应缩合环化反应是指两个或多个分子通过共同反应形成环状结构。

这类反应通常涉及到亲核取代和Elimination 等步骤,最终形成环状产物。

典型的例子是aldol缩合反应,它通过亲核加成和消除步骤形成α,β-不饱和酮。

4. 环挤压反应环挤压反应是指分子内部的功能团通过 generating center 内部的变化,形成新的环状结构。

这类反应通常涉及到分子内部的质子转移、自由基产生和亲核取代等步骤,最终形成环状产物。

典型的例子是质子挤压反应,通过质子转移步骤将分子内的一个碳质子转移到另一个位置,形成新的环状结构。

5. 环的断裂与开放反应环的断裂与开放反应是指环状结构发生断裂,分解成线性或非环状的产物。

这类反应通常涉及到环内的键断裂、质子或氧化剂的作用等步骤,最终形成非环状产物。

典型的例子是环酯的水解反应,通过环内的酯键断裂,形成相应的羧酸和醇。

有机物成环规律与反应类型

有机物成环规律与反应类型

有机物成环规律与反应类型
陈玉仑
【期刊名称】《中学生数理化(高二高三版)》
【年(卷),期】2013(000)011
【总页数】2页(P43-44)
【作者】陈玉仑
【作者单位】
【正文语种】中文
【相关文献】
1.漫谈有机物的基本反应类型 [J], 李小慧
2.东濮凹陷濮卫环洼带油气成藏条件及成藏规律 [J], 李世银;钟建华;孙钰;王勇
3.α-氧代烯酮环二硫代缩醛化学α,α二氧代烯酮环二硫代缩醛与丁酮成环反应 [J], 朱再明;刘群;胡皆汉
4.环湾论--鄂尔多斯盆地延长组深层石油成藏规律 [J], 邵晓岩;康志华;白旭;吴新伟;张雁;王高强;杨国斌;王碧涛
5.地质灾害区域“五度”评价理论体系及地质灾害成生规律研究——评《汶川地震区地质灾害成生规律研究》 [J], 羊家杏
因版权原因,仅展示原文概要,查看原文内容请购买。

常见有机物及其反应要点汇总.doc

常见有机物及其反应要点汇总.doc

常见有机物及其反响【考纲要求】1.了解有机化合物中碳的成键特征;了解有机化合物的同分异构现象。

2.了解甲烷、乙烯、苯等有机化合物的主要性质。

3.了解乙烯、氯乙烯、苯的衍生物等在化工生产中的重要作用。

4.了解乙醇、乙酸的组成和主要性质及重要应用。

5.了解上述有机化合物发生反响的类型。

6.了解糖类、油脂、蛋白质的组成和主要性质及重要应用〔缩聚反响不作要求〕。

7.了解常见高分子材料的合成反响及重要应用。

8.以上各局部知识的综合应用。

考点串讲考点一有机物的构造与同分异构现象知识精讲近几年高考中频频涉及有机物分子的构造,碳原子的成键特征及同分异构体数目的判断,题目难度一般较小。

复习时要注意以下几点:1.教材中典型有机物的分子构造特征,识记典型有机物的球棍模型、比例模型,会“分拆〞比对构造模板,“合成〞确定共线、共面原子数目。

(1)明确三类构造模板构造正四面体形平面形直线形模板甲烷:碳原子形成的化学键全部是单键,5个原子构成正四面体:6个原子共面;:12个原子共面a—C≡C—b四个原子共直线;苯环上处于对角位置的4个原子共直线(2)对照模板定共线、共面原子数目需要结合相关的几何知识进展分析:如不共线的任意三点可确定一个平面,一条直线与某平面有两个交点时,那么这条直线上的所有点都在该相应的平面内,同时要注意问题中的限定性词语(如最多、至少)。

2.学会等效氢法判断一元取代物的种类有机物分子中,位置等同的氢原子叫等效氢,有多少种等效氢,其一元取代物就有多少种。

等效氢的判断方法:(1)同一个碳原子上的氢原子是等效的。

如分子中—CH3上的3个氢原子。

(2)同一分子中处于轴对称位置或镜面对称位置上的氢原子是等效的。

如分子中,在苯环所在的平面内有两条互相垂直的对称轴,故该分子有两类等效氢。

3.注意简单有机物的二元取代物(1)CH3CH2CH3的二氯代物有、、、四种。

(2) 的二氯代物有、、三种。

题组一有机物构造的判断、题组二突破同分异构体方法技巧1.选准主体通常运用的根本构造类型包括:甲烷(最多只能有3个原子共平面),乙烯(6个原子共平面),乙炔(4个原子在一条直线上),苯(12个原子共平面)。

有机物燃烧规律总结

有机物燃烧规律总结

• 例8.某有机物在氧气中充分燃烧,生成的水蒸气 和二氧化碳的物质的量之比为1:1,由此可以得 出的结论是
• A.该有机物分子中C:H:O原子个数比为1:2:1 • B.分子中C:H原子个数比为1:2 • C.有机物必定含O • D.无法判断有机物是否含O
•答案:B、D
• 例9.某烃完全燃烧后,生成二氧化碳和水的物质 的量之比为n:(n-1),此烃可能是
• 例2.下列各组混合物中,不论二者以什么比例混 合,只要总质量一定,完全燃烧时生成CO2的质 量也一定的,下列不可能的是 D
• A.甲烷、辛醛 B.乙炔、苯乙烯
• C.甲醛、甲酸甲酯 D.苯、甲苯
•解析:混合物总质量一定,不论按什么比例混合, 完全燃烧后生成CO2的质量保持不变,要求混合 物中各组分含碳的质量分数相同。B、C中的两组 物质的最简式相同,碳的质量分数相同,A中碳的 质量分数也相同,所以答案为D。
解析:A中C3H4的耗氧量相当于C2H8,B、C、D中的 C3H8O可改写为C3H6·(H2O),C中的C3H6O2可改为 C3H2·(H2O)2,D中的C4H6O2可改为C3H6·(CO2),显然答案为 B、D。
例5.1molCxHy(烃)完全燃烧需要5molO2,则X与Y 之和可能是 C
• A.X+Y=5 B.X+Y=7 C.X+Y=11 D.X+Y=9
•解析:产生的CO2与耗氧量的体积比为2:3,设该有机 物为1mol,则含2mol的C原子,完全燃烧时只能消耗2mol 的氧气,剩余的1mol氧气必须由氢原子消耗,所以氢原 子为4mol,即该有机物可以是A,从耗氧量相当的原则可 知B也正确。答案为A、B。
四.有机物完全燃烧时生成的CO2和H2O的物 质的量之比一定时:

有机反应-成环反应(精选)54页文档

有机反应-成环反应(精选)54页文档


27、只有把抱怨环境的心情,化为上进的力量,才是成功的保证。——罗曼·罗兰

28、知之者不如好之者,好之者不如乐之者。——孔子

29、勇猛、大胆和坚定的决心能够抵得上武器的精良。——达·芬奇

30、意志是一个强壮的盲人,倚靠在明眼的跛子肩上。—Байду номын сангаас叔本华
谢谢!
54
16、云无心以出岫,鸟倦飞而知还。 17、童孺纵行歌,斑白欢游诣。 18、福不虚至,祸不易来。 19、久在樊笼里,复得返自然。 20、羁鸟恋旧林,池鱼思故渊。
有机反应-成环反应(精选)

26、要使整个人生都过得舒适、愉快,这是不可能的,因为人类必须具备一种能应付逆境的态度。——卢梭

(完整word版)初中化学常见的物质及其反应规律

(完整word版)初中化学常见的物质及其反应规律

常有的物质及其反响规律奇光异彩的化学变化常使我们感觉化学是多么的奇特!化学就是研究物质的变化规律的,而世界上的物质又何止千万,面对这样众多的物质,这样复杂的化学反响,要学好它岂不是“天方夜谭”?不!只需你掌握了常有的物质及其反响规律,应用起来就能够运用自如了。

一、中考透视1. 常有的物质21 种单质、氧化物、酸、碱、盐、简单有机物是初中化学波及的物质,此中,主要学习了物质:(1) 4 种单质( O2、 H 2、C、 Fe)。

(2) 4 种氧化物( CO2、 CO、H2O、 CaO)。

——要点是这 8 种物质的物理性质和化学性质(如H 2、C、 CO 的可燃性、复原性)。

(3) 3 种酸( HCl 、 H2SO4、HNO 3)——要点是盐酸、硫酸的性质(物理性质和 5 种化学性质)及其用途;特别是浓硫酸的特征、稀释及实验中的事故办理。

(4) 2 种碱[ NaOH 、 Ca(OH )2]——要点氢氧化钠和氢氧化钙的性质(物理性质和 4 种化学性质)、用途、腐化性及俗名。

(5) 6 种盐( NaCl 、 Na2CO3、 CaCO3、 CuSO4、 NH 4Cl 、 NH 4HCO 3)——要点是氯化钠、碳酸钠、碳酸钙的性质、存在、用途及俗名。

(6) 2 种有机化合物( CH 4、 C2H5OH)——要点是有机物的特征和可燃性。

2.各种物质间的反响规律(1)各种物质间的互相关系图。

一般来说,能够将常有的物质分为单质、氧化物、酸、碱、盐五大类,但关于书写化学方程式来说,将物质分为七类更好:金属、非金属、碱性氧化物、酸性氧化物、酸、碱、盐。

一般把它叫做“八圈图” (如上图)。

(请自行填上各连线的生成物)物质间的互相关系也是物质间的反响规律,一定紧紧掌握!(2)挖掘“八圈图”的内涵。

①表示物质间的纵横衍变关系,如从金属或非金属怎样衍变为盐;②表示 15 个基本反响规律( 9 条连线和 6 个箭头);③表示物质的性质(除了跟指示剂反响这一性质在图中没法表示外,图中酸没有打箭头的4根线表示的是酸的性质,其他类推!);④表示物质(特别是盐)的制法——15 个反响中起码有10 个与盐相关,俗称“十大成盐”规律!(3)使用“八圈图”的注意事项。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档