Heparin_sodium_salt_HNMR_20389_MedChemExpress
1-乙基-(3-二甲基 氨基丙基)碳化二 亚胺盐酸盐纯度
1-乙基-(3-二甲基氨基丙基)碳化二亚胺盐酸盐纯度1-乙基-(3-二甲基氨基丙基)碳化二亚胺盐酸盐(简称EPAH)是一种有机化合物,化学式为C9H19N2·4HCl,分子质量为288.99 g/mol。
它是一种常用的生物荧光探针,广泛应用于细胞生物学和生物医学研究领域。
EPAH是一种固体粉末,易溶于水和一些有机溶剂,如甲醇和乙醇。
它的溶解度在室温下大约为10 mg/mL。
纯度高的EPAH通常以白色结晶的形式存在。
在实验操作中,我们通常会按照所需用量,将EPAH溶解在适量的溶剂中,以制备工作液。
EPAH具有较强的荧光特性,其荧光峰位在波长为427 nm左右,发出蓝色荧光。
这使得EPAH被广泛用作细胞标记剂,能够通过其特定的荧光特性在显微镜下追踪和观察细胞的运动和行为。
在细胞实验中,需要将EPAH添加到培养基中,浸泡细胞一段时间,使其进入细胞内并与分子靶标结合。
通过激发特定波长的光源,观察细胞产生的荧光信号,可以获得有关细胞的许多重要信息,如细胞的形态、分裂、运动和死亡等。
这些信息对于细胞研究和生物医学研究具有重要意义。
然而,纯度对于EPAH的应用至关重要。
高纯度的EPAH可以提供更可靠和准确的结果。
低纯度的EPAH可能含有其他杂质,这些杂质可能干扰细胞实验的结果,降低实验的可重复性和准确性。
因此,在使用EPAH进行实验之前,需要选购纯度较高的EPAH。
供应商通常会提供有关EPAH纯度的相关证明和数据。
在实验室中,也可以通过某些分析方法,如质谱分析、红外光谱分析等,对所购买的EPAH样品进行鉴定和检测。
总之,EPAH是一种常用的生物荧光探针,广泛应用于细胞生物学和生物医学研究中。
高纯度的EPAH可以提供更可靠和准确的结果。
在使用EPAH进行实验之前,需要选购纯度较高的EPAH,并通过相关分析方法对EPAH样品进行鉴定和检测,以确保实验结果的准确性和可靠性。
高效液相(HPLC)荧光法同时测定人血浆中4种硫醇物的浓度
高效液相(HPLC)荧光法同时测定人血浆中4种硫醇物的浓度杨涛;沈杰【摘要】目的建立同时测定人血浆中半胱氨酸(cysteine,Cys)、同型半胱氨酸(homocysteine,Hcy)、半胱氨酰甘氨酸(cysteinylglycine,CysGly)和谷胱甘肽(glutathione,GSH)等4种硫醇物的高效液相色谱法(highperformance liquid chromatography,HPLC).方法血浆经磷酸盐缓冲液(phosphate buffered saline,PBS)稀释后,用三(2羧乙基)膦盐酸盐[tris (2 carboxyethyl) phosphine hydrochloride,TCEP]还原,用三氯乙酸(trichloroacetic acid,TCA)溶液进行蛋白沉淀,再用7氟苯呋咱4硫酸铵盐(7 fluorobenzofurazan-4 sulfonic acidammonium salt,SBD F)进行衍生化反应,荧光检测器检测.色谱条件:色谱柱为Kromasil C18 (250 mm×4.6mm,5 μm),柱温29℃;流动相为甲醇:0.1 mol/L醋酸盐缓冲液(pH=4.5,3.5:96.5,V/V),流速为0.8 mL/min,等度洗脱.激发波长385 nm,发射波长515 nm.采用外标法定量.结果 Cys、Hcy、CysGly和GSH的线性范围分别为50~800 μmol/L、4~64 μmol/L、10~160 μmol/L和2.5~40μmol/L.Cys、Hcy、CysGly和GSH的最低检测浓度分别为2.5 μmol/L、1.0 μmol/L、1.0 μmol/L和1.0 μmol/L.各组分日内、日间精密度RSD均<12%.平均回收率为95.01 %~116.17%.结论该方法具有检测时间短、灵敏性高、精密度和准确度好的特点,适用于临床人血浆中硫醇物浓度的常规检测.【期刊名称】《复旦学报(医学版)》【年(卷),期】2014(041)005【总页数】6页(P679-684)【关键词】高效液相色谱法(HPLC);同型半胱氨酸(Hcy);半胱氨酰甘氨酸(CysGly);半胱氨酸(Cys);谷胱甘肽(GSH)【作者】杨涛;沈杰【作者单位】复旦大学附属华东医院药剂科上海200040;上海市老年医学研究所老年临床药理研究室上海200040;复旦大学附属华东医院药剂科上海200040;上海市老年医学研究所老年临床药理研究室上海200040【正文语种】中文【中图分类】O657.7+2生物硫醇,如半胱氨酸(cysteine,Cys)、同型半胱氨酸(homocysteine,Hcy)、半胱氨酰甘氨酸(cysteinylglycine,CysGly)和谷胱甘肽(glutathione,GSH),在生物组织和体液中广泛分布,并且在生物系统中起着非常重要的作用[1-2]。
知母宁分子式
知母宁分子式
知母宁(Momordin)是一种从知母植物(Momordica charantia)中提取的生物活性化合物,具有广泛的药用价值。
它的分子式为C20H24O6,结构中包含一个环氧基和一个双键,使得知母宁具有独特的化学性质。
知母宁的化学性质使其具有良好的抗氧化、抗炎、抗肿瘤、抗菌和抗病毒作用。
在医药领域,知母宁可以用于治疗各种疾病,如高血压、糖尿病、病毒性感冒等。
此外,它还可以作为保健品食用,提高免疫力,预防疾病。
知母宁在医药领域的应用前景十分广阔。
目前,我国科学家正在研究将其开发为新型药物,以治疗癌症、病毒感染等疑难杂症。
此外,知母宁还可以作为农药和兽药,提高农作物的产量和品质,减少病虫害的发生。
知母宁的提取与制备方法是研究的关键环节。
通常采用醇提法、超声波辅助提取法等方法从知母植物中提取知母宁。
提取物经过分离、纯化后,可以得到高纯度的知母宁。
在制备过程中,要注意控制温度、压力等条件,以保证知母宁的生物活性不受破坏。
总之,知母宁作为一种具有广泛药用价值的生物活性化合物,其化学性质、药用价值和制备方法等方面的研究具有重要意义。
随着科学技术的不断发展,知母宁在医药领域的应用前景将更加广泛,为人类健康事业作出更大贡献。
偶氮二异丙基咪唑啉盐酸盐 合成
偶氮二异丙基咪唑啉盐酸盐(Imazalil)是一种广谱杀菌剂,被广泛应用于农业和食品加工领域。
其合成方法有多种途径,以下将介绍一种常用的合成方法。
一、醇胺反应法1. 原料准备需要准备2-甲基丙烯醛和丙二醇醚两种原料。
2-甲基丙烯醛是通过乙酸乙酯和甲醛的缩合反应得到;丙二醇醚则是通过水合甲醛和乙烯烷基醚的反应制备。
2. 反应步骤将2-甲基丙烯醛和丙二醇醚放入反应釜中,回流反应12-24小时。
反应结束后,用稀盐酸溶液对反应产物进行中和,过滤得到白色沉淀,即为偶氮二异丙基咪唑啉盐酸盐。
二、氧化还原法1. 原料准备需要准备对甲苯磺酸、氯化苄和亚硝酸钠三种原料。
对甲苯磺酸是通过对甲苯磺酰胺和盐酸的中和反应制备;氯化苄则是通过对氯苯和氢氧化钠的反应得到;亚硝酸钠是由亚硝酸和氢氧化钠中和反应得到。
2. 反应步骤将对甲苯磺酸和氯化苄加入反应釜中,加入适量的水,搅拌均匀后,加入亚硝酸钠溶液,反应至温度升高并维持一段时间。
反应结束后,将产物沉淀出来,经过洗涤、干燥,即得到偶氮二异丙基咪唑啉盐酸盐。
总结:偶氮二异丙基咪唑啉盐酸盐是一种重要的杀菌剂,在农业和食品加工领域有着广泛的应用。
其合成方法有多种途径,上述介绍的两种方法均比较常见,选择合适的合成路线可以降低生产成本,提高合成效率,促进产品的生产和应用。
需要注意安全生产,合成过程中需注意加强安全防护,避免有害物质对人员和环境造成伤害。
希望上述信息对相关从业人员有所帮助,促进偶氮二异丙基咪唑啉盐酸盐的合成和应用。
偶氮二异丙基咪唑啉盐酸盐(Imazalil)作为一种广谱杀菌剂,具有广泛的杀菌特性,可以有效地控制多种真菌的生长和繁殖。
在农业领域,它被广泛用于水果、蔬菜和谷物的保护,能够有效地延长产品的货架期和保持产品的质量。
在食品加工领域,偶氮二异丙基咪唑啉盐酸盐可以用于防霉、防腐等处理,确保食品的安全和品质。
由于其出色的杀菌效果和广泛的应用领域,偶氮二异丙基咪唑啉盐酸盐的生产需求量也在逐渐增加。
棉酚希夫碱衍生物及制备和在抗植物烟草花叶病毒病方面的应用[发明专利]
专利名称:棉酚希夫碱衍生物及制备和在抗植物烟草花叶病毒病方面的应用
专利类型:发明专利
发明人:汪清民,张斌,刘玉秀,王兹稳,宋红健,李永强
申请号:CN201710017079.2
申请日:20170110
公开号:CN108285424A
公开日:
20180717
专利内容由知识产权出版社提供
摘要:本发明涉及通式所示化合物及其制备和在农药中的应用,本发明提供了一种新颖的抗烟草花叶病毒的结构,具有利于工业化,合成简单等特点。
消旋棉酚D‑氨基酸希夫碱和左旋或右旋棉酚的希夫碱衍生物具有非常好的抗烟草花叶病毒活性(保护,治疗,钝化)。
(其中R的意义见说明书)申请人:南开大学
地址:300071 天津市卫津路94号南开大学元素有机化学国家重点实验室
国籍:CN
更多信息请下载全文后查看。
乙酰肝素酶研究
乙酰肝素酶研究进展乙酰肝素酶( heparanase, Hpa) 是近年发现的肿瘤重要功能酶, 是体内唯一能够降解糖氨聚糖中的硫酸乙酰肝素( heparan sulfat , HS) 链的内切糖苷酶,特异识别HS 侧链上的特异性位点, 可以在特定部位裂解硫酸乙酰肝素蛋白聚糖硫酸乙酰肝素蛋白聚糖在各种蛋白聚糖中最具生物活性,它参与多级联细胞粘附反应过程,并与粘附分子、细胞因子、细胞间信号分子等相互作用,在影响细胞增殖、分化、迁移及形态等方面具有重要作用,在各种炎症损伤、缺血再灌注损伤、血栓形成及肿瘤转移等过程中具有重要功能。
( heparan sulfate protoglycan,HSPG) , 将HS 裂解为10~ 20 个糖单位大小的短糖链, 并释放结合在HS 上的生长因子。
乙酰肝素酶可促进细胞的浸润和转移, 还可以促进肿瘤细胞分裂、趋化、微血管形成。
是目前在哺乳动物中发现的唯一一个可以剪切HSPGs 上HS 侧链的水解酶, 是抗肿瘤的理想靶点。
细胞发生侵袭转移首先要穿越由细胞外基质和基底膜组成的屏障。
该屏障主要有两种成分构成:一是结构蛋白, 包括胶原、层黏素、纤维结合素和玻璃体结合素等, 二是糖氨聚糖, 主要成分是HSPG,是广泛存在于脊椎动物组织细胞外基质( extracellular matrix, ECM) 和细胞表面的复杂的生物大分子,是构成基底膜的主要成分。
HSPG 主要由一个核心蛋白和数个与之共价连接的线性HS 侧链组成[ 1] ,HS 是由己糖醛酸和葡胺聚糖组成的重复单位构成。
HSPG 能与细胞表面及ECM 中的活性分子结合, 粘附于细胞表面, 是细胞外基质聚集和稳定的基础, 拥有限制细胞迁移、粘附和选择性分子筛的重要作用, 还可以与多种生物活性分子结合并相互作用。
事实上HSPG 的降解是细胞侵袭前所必需的, 当HSPG 被乙酰肝素酶降解后, 就会产生一系列生物学现象如妊娠形态发生、炎症反应、血管生成、肿瘤的侵袭和转移[ 2] 。
世界卫生组织儿童标准处方集
WHO Model Formulary for ChildrenBased on the Second Model List of Essential Medicines for Children 2009世界卫生组织儿童标准处方集基于2009年儿童基本用药的第二个标准目录WHO Library Cataloguing-in-Publication Data:WHO model formulary for children 2010.Based on the second model list of essential medicines for children 2009.1.Essential drugs.2.Formularies.3.Pharmaceutical preparations.4.Child.5.Drug utilization. I.World Health Organization.ISBN 978 92 4 159932 0 (NLM classification: QV 55)世界卫生组织实验室出版数据目录:世界卫生组织儿童标准处方集基于2009年儿童基本用药的第二个标准处方集1.基本药物 2.处方一览表 3.药品制备 4儿童 5.药物ISBN 978 92 4 159932 0 (美国国立医学图书馆分类:QV55)World Health Organization 2010All rights reserved. Publications of the World Health Organization can be obtained fromWHO Press, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel.: +41 22 791 3264; fax: +41 22 791 4857; e-mail: ******************). Requests for permission to reproduce or translate WHO publications – whether for sale or for noncommercial distribution – should be addressed to WHO Press, at the aboveaddress(fax:+41227914806;e-mail:*******************).世界卫生组织2010版权所有。
达肝素钠标准(EP 8.0)
Dalteparin sodium EUROPEAN PHARMACOPOEIA8.0Reference solution (a).Dilute 2.5mL of dimethylaminesolution R (impurity D)to 100.0mL with water R (solution A).Firmly attach the septum and cap to a 20mL ing a 10μL syringe,inject 10μL of solution A into the vial.Reference solution (b).Firmly attach the septum and cap to a 20mL ing a 10μL syringe,inject 10μL of solution A and 10μL of a 10g/L solution of triethylamine R into the vial.Column :–material :fused silica;–size :l =30.0m,Ø=0.53mm;–stationary phase :base-deactivated polyethyleneglycol R (film thickness 1.0μm).Carrier gas :helium for chromatography R .Flow rate :13mL/min.Split ratio :1:1.Static head-space conditions that may be used :–equilibration temperature :60°C;–equilibration time :10min;–transfer-line temperature :90°C;–pressurisation time :30s.Temperature :Time (min)Temperature(°C)Column0-3353-1135→165Injection port 180Detector220Detection :flame ionisation.Injection :1mL.System suitability :reference solution (b):–resolution :minimum 2.5between the peaks due to impurity D and triethylamine.Limit :–impurity D :not more than the area of the corresponding peak in the chromatogram obtained with reference solution (a)(0.05per cent).Water (2.5.12):maximum 0.5per cent,determined on 1.00g.Sulfated ash (2.4.14):maximum 0.1per cent,determined on 1.0g.ASSAYDissolve 0.150g in 30mL of anhydrous acetic acid R .Titrate with 0.1M perchloric acid ,determining the end-point potentiometrically (2.2.20).1mL of 0.1M perchloric acid is equivalent to 18.22mg of C 6H 10N 6O.STORAGEAt a temperature of 2°C to 8°C,protected from light.IMPURITIESSpecified impurities :A,B,D .Other detectable impurities (the following substances would,if present at a sufficient level,be detected by one or other of the tests in the monograph.They are limited by the general acceptance criterion for other/unspecified impurities and/or by the general monograph Substances for pharmaceutical use (2034).It is therefore not necessary to identify these impurities for demonstration of compliance.See also 5.10.Control of impurities in substances for pharmaceutical use ):C. A.3,7-dihydro-4H -imidazo[4,5-d ]-1,2,3-triazin-4-one(2-azahypoxanthine),B.5-amino-1H-imidazole-4-carboxamide,C.5-diazenyl-1H-imidazole-4-carboxamide,D.N -methylmethanamine.01/2008:1195DALTEPARIN SODIUM DalteparinumnatricumDEFINITIONDalteparin sodium is the sodium salt of a low-molecular-mass heparin that is obtained by nitrous acid depolymerisation of heparin from porcine intestinal mucosa.The majority of the components have a 2-O -sulfo-α-L -idopyranosuronic acid structure at the non-reducing end and a6-O -sulfo-2,5-anhydro-D -mannitol structure at the reducing end of their chain.Dalteparin sodium complies with the monographLow-molecular-mass heparins (0828)with the modifications and additional requirements below.The mass-average relative molecular mass ranges between 5600and 6400,with a characteristic value of about 6000.The degree of sulfatation is 2.0to 2.5per disaccharide unit.The potency is not less than 110IU and not more than 210IU of anti-factor Xa activity per milligram,calculated with reference to the dried substance.The anti-factor IIa activity is not less than 35IU/mg and not more than 100IU/mg,calculated with reference to the dried substance.The ratio of anti-factor Xa activity to anti-factor IIa activity is between 1.9and 3.2.PRODUCTIONDalteparin sodium is produced by a validated manufacturing and purification procedure under conditions designed to minimise the presence of N-NO groups.The manufacturing procedure must have been shown toreduce any contamination by N-NO groups to approved limits using an appropriate,validated quantification method.1988See the information section on general monographs (cover pages)EUROPEAN PHARMACOPOEIA 8.0DalteparinsodiumIDENTIFICATIONCarry out identification test A as described in the monograph Low-molecular-mass heparins (0828)using dalteparin sodium CRS .Carry out identification test C as described in the monographLow-molecular-mass heparins (0828).The followingrequirements apply.The mass-average relative molecular mass ranges between 5600and 6400.The mass percentage of chains lower than 3000isnot more than 13.0per cent.The mass percentage of chainshigher than 8000ranges between 15.0per cent and 25.0percent.TESTSAppearance of solution .Dissolve 1g in 10mL of water R .The solution is clear (2.2.1)and not more intensely coloured than intensity 5of the range of reference solutions of the most appropriate colour (2.2.2,Method II ).Nitrite .Not more than 5ppm.Examine by liquid chromatography (2.2.29).Rinse all volumetric flasks at least three times with water R before the preparation of the solutions.Test solution.Dissolve 80.0mg of the substance to be examined in water R and dilute to 10.0mL with the same solvent.Allow to stand for at least 30min.Reference solution (a).Dissolve 60.0mg of sodium nitrite R in water R and dilute to 1000.0mL with the same solvent.For the preparation of reference solution (b),use a pipette previously rinsed with reference solution (a).Reference solution (b).Dilute 1.00mL of reference solution (a)to 50.0mL with water R .Before preparing reference solutions (c),(d)and (e),rinse all pipettes with reference solution (b).Reference solution (c).Dilute 1.00mL of reference solution (b)to 100.0mL with water R (corresponding to 1ppm of nitrite in the test sample).Reference solution (d).Dilute 3.00mL of reference solution (b)to 100.0mL with water R (corresponding to 3ppm of nitritein the test sample).Reference solution (e).Dilute 5.00mL of reference solution (b)to 100.0mL with water R (corresponding to 5ppm of nitritein the test sample).The chromatographic procedure may be carried out using:–a column 0.125m long and 4.3mm in internal diameterpacked with a strong anion-exchange resin;–as mobile phase at a flow rate of 1.0mL/min a solution consisting of 13.61g of sodium acetate R dissolved in water R ,adjusted to pH 4.3with phosphoric acid R and diluted to 1000mL with water R ;–as detector an appropriate electrochemical device with the following characteristics and settings:a suitable working electrode,a detector potential of +1.00V versus Ag/AgCl reference electrode and a detector sensitivity of 0.1μA full scale.Inject 100μL of reference solution (d).When thechromatograms are recorded in the prescribed conditions,the retention time for nitrite is 3.3to 4.0min.The test is not valid unless:–the number of theoretical plates calculated for the nitrite peak is at least 7000per metre per column (dalteparin sodium will block the binding sites of the stationary phase,which will cause shorter retention times and lower separation efficiency for the analyte;the initialperformance of the column may be partially restored using a 58g/L solution of sodium chloride R at a flow rate of 1.0mL/min for 1h;after regeneration the column is rinsed with 200mL to 400mL of water R );–the symmetry factor for the nitrite peak is less than 3;–the relative standard deviation of the peak area for nitriteobtained from 6injections is less than 3.0per cent.Inject 100μL each of reference solutions (c)and (e).The test is not valid unless:–the correlation factor for a linear relationship between concentration and response for reference solutions (c),(d)and (e)is at least 0.995;–the signal-to-noise ratio for reference solution (c)is not less than 5(if the noise level is too high,electrode recalibration is recommended);–a blank injection of water R does not give rise to spurious peaks.Inject 100μL of the test solution.Calculate the content of nitrite from the peak areas in the chromatogram obtained with reference solutions (c),(d)and (e).Boron .Not more than 1ppm,determined by inductively coupled plasma atomic emission spectroscopy.Boron is determined by measurement of the emission from an inductively coupled plasma (ICP)at a wavelength specific to boron.The emission line at 249.733nm is e anappropriate apparatus,whose settings have been optimised as directed by the manufacturer.Test solution.Dissolve 0.2500g of the substance to beexamined in about 2mL of water for chromatography R ,add 100μL of nitric acid R and dilute to 10.00mL with the samesolvent.Reference solution (a).Prepare a 1per cent V/V solution of nitric acid R in water for chromatography R (blank).Reference solution (b).Prepare a 11.4μg/mL solution of boricacid R in a 1per cent V/V solution of nitric acid R in water for chromatography R (STD cal ).Reference solution (c).Dissolve 0.2500g of a referencedalteparin sodium with no detectable boron in about 2mL ofwater for chromatography R ,add 100μL of nitric acid R and dilute to 10.00mL with the same solvent (STD 0).Reference solution (d).Dissolve 0.2500g of a reference dalteparin sodium with no boron detected in about 2mL of a 1per cent V/V solution of nitric acid R in water forchromatography R ,add 10μL of a 5.7mg/mL solution of boric acid R and dilute to 10.00mL with the same solvent (STD 1).This solution contains 1μg/mL of boron.Calculate the content of boron in the substance to be examined,using the following correction factor:Loss on drying (2.2.32).Not more than 5.0per cent,determined on 1.000g by drying in an oven at 60°C over diphosphorus pentoxide R at a pressure not exceeding 670Pa for 3h.General Notices (1)apply to all monographs and other texts1989。
巴斯夫的清洁剂资料
Nonionic surfactantsLutensol®A 4 N C12C14-Fatty alcohol+ 4 EO ca. 62/ELutensol®A 7 N+7 EO ca. 56/A Lutensol®A 79 N+7 EO90 %,ca. 56/A Lutensol®A 8+8 EO90 %,ca. 52/ALutensol®AT 11C16C18-Fatty alcohol+11 EO ca. 87/ALutensol®AT 18+18 EO ca. 92/B Lutensol®AT 18 Solution+18 EO20 %,ca. 92/B Lutensol®AT 25 Powder+25 EO ca. 95/B Lutensol®AT 25 E+25 EO ca. 95/B Lutensol®AT 25 Flakes+25 EO ca. 95/B Lutensol®AT 50 Powder+50 EO ca. 92/B Lutensol®AT 50 Flakes+50 EO ca. 92/B Lutensol®AT 80 Powder+80 EO ca. 87/B Lutensol®AT 80 E+80 EO ca. 87/B Lutensol®AT 80 Flakes+80 EO ca. 87/BLutensol®AO 3C13C15-Oxo alcohol+ 3 EO ca. 45/ELutensol®AO 4+ 4 EO ca. 57/E Lutensol®AO 5+ 5 EO ca. 62/E Lutensol®AO 7+7 EO ca. 43/A Lutensol®AO 79+7 EO90 %,ca. 43/A Lutensol®AO 8+8 EO ca. 52/A Lutensol®AO 89+8 EO90 %,ca. 52/A Lutensol®AO 109+10 EO90 %,ca. 80/A Lutensol®AO 11+11 EO ca. 86/A Lutensol®AO 30+30 EO ca. 91/B Lutensol®AO 3109+3/+10EO 90 %,ca. 73/ELutensol®TO 2C13-Oxo alcohol+ 2 EO ca. 37/DLutensol®TO 3+ 3 EO ca. 40/E Lutensol®TO 5+ 5 EO ca. 62/E Lutensol®TO 6+ 6 EO ca. 67/E Lutensol®TO 65+6,5 EO ca. 68/D Lutensol®TO 7+7 EO ca. 70/E Lutensol®TO 79+7 EO90 %,ca. 70/E Lutensol®TO 8+8 EO ca. 60/A Lutensol®TO 89+8 EO90 %,ca. 60/A Lutensol®TO 10+10 EO ca. 70/A Lutensol®TO 109+10 EO85 %,ca. 70/A Lutensol®TO 11+11 EO ca. 70/B Lutensol®TO 12+12 EO ca. 75/B Lutensol®TO 129+12 EO85 %,ca. 75/B Lutensol®TO 15+15 EO ca. 80/B Lutensol®TO 20+20 EO ca. 86/B Lutensol®TO 389+3 /+8EO90 %,ca. 70/E Unless otherwise indicated, the product concentration is 100% Cloud point in °C according to EN 1890Method A: 1 g of surfactant + 100 g of dist. WaterMethod B: 1 g of surfactant + 100 g of NaCl solution (c = 50 g/l) Method C: 1 g of surfactant + 100 g of NaCl solution (c = 100 g/l) Method D: 5 g of surfactant + 45 g of butyldiglycol solution(c = 250 g/l)Method E: 5 g of surfactant + 25 g of butyldiglycol solution(c = 250 g/l)Lutensol®XP 30C10-Guerbet alcohol+ 3 EO ca. 31/ELutensol®XP 40+ 4 EO ca. 44/E Lutensol®XP 50+ 5 EO ca. 56/E Lutensol®XP 60+ 6 EO ca. 62/E Lutensol®XP 69+ 6 EO85 %,ca. 62/E Lutensol®XP 70+7 EO ca. 68/E Lutensol®XP 79+7 EO85 %,ca. 68/E Lutensol®XP 80+8 EO ca. 56/A Lutensol®XP 89+8 EO85 %,ca. 56/A Lutensol®XP 90+9 EO ca. 69/A Lutensol®XP 99+9 EO85 %,ca. 69/A Lutensol®XP 100+10 EO ca. 80/A Lutensol®XP 140+14 EO ca. 78/BLutensol®XL 40C10-Guerbet alcohol+ 4 EO ca. 43/ELutensol®XL 50alkoxylate+ 5 EO ca. 58/E Lutensol®XL 60+ 6 EO ca. 65/E Lutensol®XL 70+7 EO ca. 68/E Lutensol®XL 79+7 EO85 %,ca. 68/E Lutensol®XL 80+8 EO ca. 56/A Lutensol®XL 89+8 EO85 %,ca. 56/A Lutensol®XL 90+9 EO ca. 69/A Lutensol®XL 99+9 EO ca. 69/A Lutensol®XL 100+10 EO ca. 80/A Lutensol®XL 140+14 EO ca. 78/BLutensol®ON 30C10-Oxo alcohol+ 3 EO ca. 53/ELutensol®ON 50+ 5 EO ca. 67/E Lutensol®ON 60+ 6 EO ca. 36/A Lutensol®ON 66+6,5 EO ca. 53/A Lutensol®ON 70+7 EO ca. 60/A Lutensol®ON 80+8 EO ca. 80/A Lutensol®ON 110+11 EO ca. 78/B Lutensol®AP 6Alkylphenol+ 6 EO ca. 61/E Lutensol®AP 7+7 EO ca. 62/E Lutensol®AP 8+8 EO ca. 34/A Lutensol®AP 9+9 EO ca. 51/A Lutensol®AP 10+10 EO ca. 60/A Lutensol®AP 14+14 EO ca. 76/B Lutensol®AP 20+20 EO ca. 85/B Lutensol®FA 12Oleyl amine+12 EO ca. 86/B Lutensol®FA 12 K Coco amine+12 EO ca. 92/B Lutensol®FA 15 T Tallow amine+15 EO ca. 97/B Lutensol®FSA 10Oleic acid amine+10 EO ca. 85/E Lutensol®GD 70Alkyl polyglucoside70 %,>100/BLow-foaming nonionic surfactantsPlurafac®LF 120Fatty alcohol alkoxylate ca. 28/A Plurafac®LF 22095 %,ca. 42/A Plurafac®LF 22195 %,ca. 33/A Plurafac®LF 22398 %,ca. 33/E Plurafac®LF 224ca. 27/E Plurafac®LF 226ca. 28/A Plurafac®LF 300ca. 22/A Plurafac®LF 301ca. 32/E Plurafac®LF 303ca. 29/E Plurafac®LF 305ca. 38/E Plurafac®LF 400ca. 33/A Plurafac®LF 401ca. 74/A Plurafac®LF 403ca. 41/E Plurafac®LF 404ca. 45/E Plurafac®LF 40595 %,ca. 55/E Plurafac®LF 500ca. 32/E Plurafac®LF 600ca. 55/A Plurafac®LF 711ca. 45/E Plurafac®LF 1300ca. 21/E Plurafac®LF 1430Amine alkoxylate ca. 35/A Plurafac®SLF-18B4590 % Fatty alcohol alkoxylate 90 %,ca. 21/E Plurafac®LF 131Fatty alcohol alkoxylate, end-capped ca. 35/E Plurafac®LF 132ca. 30/E Plurafac®LF 231ca. 28/E Plurafac®LF 431ca. 39/E Pluronic®PE 3100PO–EO-block polymer10 % EO ca. 41/E Pluronic®PE 350050 % EO ca. 68/A Pluronic®PE 430030 % EO ca. 61/E Pluronic®PE 610010 % EO ca. 23/A Pluronic®PE 612012 % EO ca. 41/E Pluronic®PE 620020 % EO ca. 33/A Pluronic®PE 640040 % EO ca. 60/A Pluronic®PE 680080 % EO ca. 88/B Pluronic®PE 740040 % EO ca. 60/A Pluronic®PE 810010 % EO ca. 36/E Pluronic®PE 920020 % EO ca. 49/E Pluronic®PE 940040 % EO ca. 80/E Pluronic®PE 1010010 % EO ca. 35/E Pluronic®PE 1030030 % EO ca. 71/E Pluronic®PE 1040040 % EO ca. 81/A Pluronic®PE 1050050 % EO ca. 75/B Pluronic®PE 10500 Solution50 % EO,18 %,ca. 75/B Pluronic®RPE 1720EO-PO-block polymer20 % EO ca. 37/E Pluronic®RPE 174040 % EO ca. 51/E Pluronic®RPE 203535 % EO ca. 41/E Pluronic®RPE 252020 % EO ca. 31/E Pluronic®RPE 252525 % EO ca. 38/E Pluronic®RPE 311010 % EO ca. 25/E Tetronic®RED 9040Ethylene diamineEO- PO- block polymer40 % EO ca. 48/A AminopolyolQuadrol®L Ethylene diamine + 4 POPolyalkylene glykolsPluriol®A 010 R Allyl alcohol ethoxylatePluriol®A 11 RE Allyl alcohol alkoxylatePluriol®A 13 RPluriol®A 22 RPluriol®A 23 RPluriol®A 308 R Butyne-1,4-diol ethoxylatePluriol®A 350 E Methylpolyethylene glycol M 350 Pluriol®A 500 E M 500 Pluriol®A 750 E1)M 750 Pluriol®A 760 E M 750 Pluriol®A 1000 E M 1000 Pluriol®A 1020 E1)M 1000 Pluriol®A 2000 E M 2000 Pluriol®A 3010 E1)M 3000 Pluriol®A 5010 E1)M 5000 Pluriol®A 1000 PE Alkyl polyalkylene glykol M 1000 Pluriol®A 1320 PE1)M 1400 Pluriol®A 2000 PE M 2000 Pluriol®A 2020 PE1)M 2000 Pluriol®A 1350 P Alkyl polypropylene glykol M 1350 Pluriol®A 2000 P M 2000 Pluriol®A 3 TE Modified polyglycol ether M 275 Pluriol®A 15 TE M 800 Pluriol®A 15 TERC M 800 Pluriol®A 18 TERC M 900 1)non filtratedPluriol®E 200Polyethylene glycol M 200 Pluriol®E 2052)M 200 Pluriol®E 300M 300 Pluriol®E 3052)M 300 Pluriol®E 400M 400 Pluriol®E 4052)M 400 Pluriol®E 600M 600 Pluriol®E 6052)M 600 Pluriol®E 1000M 1000 Pluriol®E 1500 E M 1500 Pluriol®E 1500 Powder M 1500 Pluriol®E 1500 Flakes M 1500 Pluriol®E 1505 Flakes2)M 1500 Pluriol®E 3400 E M 3400 Pluriol®E 3400 Powder M 3400 Pluriol®E 3400 Flakes M 3400 Pluriol®E 3405 E2)M 3400 Pluriol®E 3405 Flakes2)M 3400 Pluriol®E 4000 E M 4000 Pluriol®E 4000 Powder M 4000 Pluriol®E 4000 Flakes M 4000 Pluriol®E 4005 E2)M 4000 Pluriol®E 4005 Flakes2)M 4000 Pluriol®E 6000 E M 6000 Pluriol®E 6000 Powder M 6000 Pluriol®E 6000 Flakes M 6000 Pluriol®E 6005 E2)M 6000 Pluriol®E 6005 Flakes2)M 6000 Pluriol®E 8000 E M 8000 Pluriol®E 8000 Flakes M 8000Pluriol®E 8005 E2)M 8000 Pluriol®E 8005 Flakes2)M 8000 Pluriol®E 9000 Powder M 9000 Pluriol®E 9000 Fine Powder M 9000 Pluriol®E 9000 Flakes M 9000 Pluriol®P 400Polypropylene glycol M 430 Pluriol®P 600M 600 Pluriol®P 900M 900 Pluriol®P 2000M 2000 Pluriol®P 4000M 4000 2)Care - QualityReactive SolventsPluriol®BP 30 E Bisphenol A+ 3 EOPluriol®BP 40 E+ 4 EOPluriol®BP 60 E+ 6 EOPluriol®BP 100 E+ 10 EOEmulsifiersEmulan®A Oleic acid ethoxylate ca. 52/E Emulan®AF Fatty alcohol ethoxylate ca. 65/E Emulan®AT 9ca. 68/A Emulan®EL Castor oil ethoxylate97 %,ca. 71/B Emulan®EL 40ca. 72/E Emulan®ELH 6090 %,ca. 85/B Emulan®EL 200 Powder> 100/A Emulan®ELP ca. 51/E Emulan®LVA Oxo alcohol ethoxylate85 %,ca. 56/A Emulan®NP 3070Alkylphenol ethoxylate70 %,ca. 90/B Emulan®OC Fatty alcohol ethoxylate ca. 90/B Emulan®OC Solution30 %,ca. 90/B Emulan®OG ca. 92/B Emulan®OK 5ca. 62/E Emulan®OP 25Alkylphenol ethoxylate ca. 88/B Emulan®OU Fatty alcohol ethoxylate ca. 90/B Emulan®P ca. 52/E Emulan®PO Alkylphenol ethoxylate ca. 46/EEmulan®TO 2080C13-Oxo alcohol ethoxylate80 %,ca. 93/BEmulan®TO 307070 %,ca. 91/B Emulan®TO 407070 %,ca. 91/B Emulan®XCA 23Polyisobutene derivative70 % Emulphor®OPS 25Alkylphenol ether sulfate, sodium salt34 % Emulphor®NPS 2531 % Emulphor®FAS 30Fatty alcohol ether sulfate, sodium salt30 % SolubilizerEmulan®HE 50Alcohol ethoxylate ca. 72/B Emulan®EL S104Fatty alcohol alkoxylate ca. 56/E Ionic surfactantsLutensit®A-BO Dioctylsulphosuccinate, sodium salt60 % Lutensit®A-EP Acid phosphoric esterLutensit®A-ES Alkylphenol ether sulphate, 40 %sodium saltLutensit®A-FK Fatty acid condensation product,sodium salt55 % Lutensit®A-LBA Dodecylbenzenesulphonate, amine salt55 % Lutensit®A-LBS Dodecylbenzenesulphonic acid98 % Lutensit®A-PS Alkylsulphonate, sodium salt60 %Lutensit®AN 10Anionic/nonionic surfactant combinationbased on an alkylphenol ethoxylateLutensit®AN 30Anionic/nonionic surfactant combinationbased on a fatty alcohol ethoxylateLutensit®AN 40Mixture of nonionic surfactants andalkylcarboxylic acids70 % Lutensit®AN 45Mixture of nonionic surfactants andalkylcarboxylic acids80 % Lutensit®AN 50Anionic/nonionic surfactant combinationbased on a fatty alcohol ethoxylateNekal®BX Dry Alkylnaphthalenesulfonate, sodium salt68 %Nekal®BX Dry Paste60 %Nekal®BX Conc. Paste 40 %34 %Nekal®BX 30%22 %Nekal®BX Conc. Paste60 %Nekal®SBC Alkylnaphthalenesulphonic acid72 %Foam suppressorsDegressal®SD 20Fatty alcohol alkoxylateDegressal®SD 21Degressal®SD 22Degressal®SD 23Alkohol alkoxylateDegressal®SD 30Carbonylic esterDegressal®SD 40Phosphoric esterDispersing agentsPolycarboxylateSokalan®CP 5Maleic acid/Acrylic acid copolymer,sodium salt M 70 00040 % Sokalan®CP 5 Granules M 70 00092 % Sokalan®CP 5 Powder G M 70 00092 % Sokalan®CP 453)M 70 00045 % Sokalan®CP 45 Granules3)M 70 00092 % Sokalan®CP 7M 50 00040 % Sokalan®CP 7 Granules NL M 50 00092 % Sokalan®CP 9Maleic acid/olefin copolymer,sodium salt M 12 00025 % Sokalan®CP 9 Granules87 % Sokalan®CP 10Modified Polyacrylic acid,sodium salt M 4 00045 % Sokalan®CP 10 S Modified Polyacrylic acid M 4 00050 % Sokalan®CP 12 S M 3 00050 % Sokalan®CP 13 S M 20 00025 % Sokalan®PA 15Polyacrylic acid, M 1 20045 %sodium saltSokalan®PA 15 CL M 1 20045 % Sokalan®PA 20M 2 50045 % Sokalan®PA 20 PN3)M 2 50054 % Sokalan®PA 25 CL M 4 00045 % Sokalan®PA 25 CL Granules M 4 00092 % Sokalan®PA 25 CL PN3)M 4 00049 % Sokalan®PA 30M 8 00045 % Sokalan®PA 30 CL M 8 00045 % Sokalan®PA 30 CL Granules M 8 00092 % Sokalan®PA 30 CL PN48 % Sokalan®PA 30 CL PN Granules93 %please turn overSokalan®PA 40M 15 00035 % Sokalan®PA 40 Powder M 15 00092 % Sokalan®PA 70 PN3)M 70 00030 % Sokalan®PA 80 S Polyacrylic acid M 100 00035 % Sokalan®PA 110 S M 250 00035 % Special polymersSokalan®HP 22 G Nonionic copolymer M 24 00020 % Sokalan®HP 25Modified polycarboxylate M 3 00045 % Sokalan®HP 165Polyvinylpyrrolidone M 9 00030 % Sokalan®HP 50M 40 00095 % Sokalan®HP 53M 40 00030 % Sokalan®HP 53 K M 40 00030 % Sokalan®HP 56Vinylpyrrolidon/Vinylimidazolcopolymer M 70 00030 % Sokalan®HP 56 Granules M 70 00095 % Sokalan®HP 59Polyvinylpyrrolidon M 500 00045 % Sokalan®HP 60M 1 000 00020 % Sokalan®HP 66Vinylpyrrolidon/VinylimidazolCopolymer modified41 % Sokalan®AF PolyetherSokalan®DCS Mixture of dicarboxylic acidsSokalan®PM 10 I Maleic acid copolymer, M 4 00044 %sodium saltSokalan®PM 15 I Modified polycarboxylate, 40 %sodium saltSokalan®PM 70M 4 00040 % Sokalan®SR 100Esterified polyether3)= partly neutralizedSulphonic acid condensation product/Sulfonates Tamol®NH 7519Naphthaline sulphonic acid condensation 95 % Tamol®NN 2406product, sodium salt21 % Tamol®NN 290131 % Tamol®NN 450145 % Tamol®NN 771895 % Tamol®NN 890695 % Tamol®NN 910495 % Tamol®NN 940195 % Tamol®PP Phenol sulphonic acid condensation,95 % Tamol®DN product, sodium salt95 % PolyethyleneiminesLupasol®FG Polyethylenimine M 80099 % Lupasol®FC M 80050 % Lupasol®G 20 waterfree M 1 30099 % Lupasol®G 20M 1 30050 % Lupasol®PR 8515M 2 00099 % Lupasol®G 35M 2 00050 % Lupasol®G 100M 5 00050 % Lupasol®WF M 25 00099 % Lupasol®HF M 25 00056 % Lupasol®G 500M 25 00040 % Lupasol®P M 750 00050 % Lupasol®PS M 750 00033 % Lupasol®PO 100M 5 00050 % Lupasol®HEO 1M 13 00080 % Lupasol®PN 50M 1 000 00050 % Lupasol®SK M 2 000 00024 %Chelating agentsTrilon®AS Nitrilotriacetic acid (NTA)99 %Trilon®A 92 R Trisodium salt of NTA92 %Trilon®A liquid40 %Trilon®BS Ethylenediaminetetraacetic acid (EDTA)99 %Trilon®B-A-T liquid Triammonium salt of EDTA50 %Trilon®B Powder Tetrasodium salt of EDTA87 %Trilon®BX Powder83 %Trilon®B liquid40 %Trilon®BX liquid40 %Trilon®BD Disodium salt of EDTA89 %Trilon®BVT Chelating agent with highspecification for iron (III)21 %Trilon®C liquid Pentasodium salt ofDiethylenetriaminepentaacetic acid (DTP)40 %Trilon®C liquid 50%50 %Trilon®D liquid Trisodium salt of Hydroxyethyl-ethylenediaminetriacetic acid (HEDTA)40 %Trilon®M liquid Trisodium salt of Methylglycinediacetic 40 %acid (MGDA)Trilon®M Powder83 %Trilon®M Granules73 %Trilon®P Liquiol Modified anionic Polyamine40 % Biocide% Protectol®BN2-Bromo-2-nitropropane-1,3-diol 99(Bronopol)Protectol®BN 3030 % Protectol®BN 1818 % Protectol®GA 50Glutaraldehyde50 % Protectol®GA 2424 % Protectol®PE Phenoxyethanol99 % Protectol®PE S99 % Protectol®PP Phenoxypropanol99 % Protectol®GL Glyoxal40 % Protectol®HT Hexahydrotriazine derivate76 % Protectol®TD Tetramethylolacetylene diurea47 % Protectol®DF Dimethoxytetrahydrofurane99 % Protectol®DZ Thiadiazin derivate99 % Protectol®DZ P99 % Protectol®DA2,4-Dichlorbenzyl alkohol98 % Protectol®DA S98 % Corrosion inhibitorsKorantin®BH solid2-Butine-1,4-diol> 98 % Korantin®BH 50> 50 % Korantin®LUB Acid phosphoric ester of a polyetherKorantin®MAT Alkanolamine salt of a nitrogenious, organic acidKorantin®PAT80 % Korantin®PM Propargylalcohol alkoxylate99,5 % Korantin®PP67 % Korantin®SMK Phosphoric monoesterWaxesPolyethylene waxesLuwax®A Ethylene homopolymer waxes withLuwax®AH 3different densities and molar massesLuwax®AH 6Luwax®AL 3Luwax®AL 61Luwax®AM 3Luwax®AM 6Luwax®AF 29Micronized polyethylene waxes withLuwax®AF 30different particle size distributionLuwax®AF 31Luwax®AF 32Luwax®PE 10 MLuwax®OA Oxidized polyethylene waxes, emulsifiableLuwax®OA 2Luwax®OA 3Luwax®OA 5Luwax®ES 9696Luwax®ES 9698Luwax®EVA 1Copolymer polyethylene waxesLuwax®EVA 3Luwax®EAS 3Luwax®EAS 4Luwax®EAS 5Polyether waxLuwax®V Polyvinyl ether waxMontanwaxesLuwax®S Montanic acid waxesLuwax®LSLuwax®E Montanic ester waxesLuwax®LGLuwax®LGE Montanic ester waxes, contains emulsifierLuwax®OP Partially saponified montanic ester waxWax emulsionsPoligen®WE 1Polyethylene wax emulsions35 % Poligen®WE 325 % Poligen®WE 421 % Poligen®WE 635 % Poligen®WE 739 % Poligen®WE 8 BW35 % Poligen®ES 9100235 % Poligen®ES 9100540 % Poligen®ES 9100920 %Specialty chemicals for the electroplatingand electronics industriesEspecially for formulators of the electroplating and printed circuit board industry the following products are offered:Golpanol®ALS Allyl sulfonate25 % Golpanol®ALS 3535 % Golpanol®ATPN Carboxyethylisothiuronium betaine> 98 % Golpanol®BEO Butyne diol ethoxylateGolpanol®BMP Butyne diol propoxylateGolpanol®BOZ Crystals Butyne diol> 98 % Golpanol®DEP Diethylaminopropyne97,5 % Golpanol®HD Hexyne diol80 % Golpanol®MPA Dimethylpropinylamine89 % Golpanol®PA Propargyl alcohol99,3 % Golpanol®PAP Propargyl alcohol propoxylate67 % Golpanol®PME Propargyl alcohol ethoxylateGolpanol®PS Propyne sulphonate20 % Golpanol®VS Vinyl sulphonate25,5 % Lugalvan®ANA Anisaldehyde> 98,5 % Lugalvan®BNO 12ß-Naphtol ethoxylate99 % Lugalvan®BNO 2475 % Lugalvan®BPC 48Benzylpyridinium carboxylate48 % Lugalvan®DC Aqueous dispersion of an ethylene copolymer21 % Lugalvan®EH 158Ethylhexanol ethoxylate80 % Lugalvan®G 15000Polyethyleneimine50 % Lugalvan®G 2050 % Lugalvan®G 3550 % Lugalvan®HS 1000Thiodiglykol ethoxylate> 98 % Lugalvan®IMZ Imidazole> 99,5 % Lugalvan®IZE Reaction product of imidazole45 %and epichlorohydrineLugalvan®NES Sodium salt of a sulphonatedalkylphenol ethoxylate40 % Basotronic®PVI Polyvinylimidazole, quarternized44 % Basotronic®PYR Pyrrole (electronic grade)> 99,9 % Lutron®HF 1Modified polyglykol etherLutron®HF 3Lutron®HF 8Mixture of varous alkoxylates, stabilizedLutron®KS 1Modified PolyglykoletherLutron®WF 20 DLutron®WF 21Lutron®WF 21 D Modified Polyglykolether, stabilizedLutropur®FEG 28Formaldehyde (electronic grade)28 % Lutropur®MSA Methanesulfonic acid (electronic grade)70 % Lutropur®Q 75Ethylendiamine + 4 PO75 % Lutropur®Q Ethylendiamine + 4 PO。
常州百代生物肝素钠Heparin sodium salt
产品简介 肝素钠(Heparin sodium)又名肝磷脂,抗凝血素,肝素钠是由猪或牛的肠粘膜中提取的硫 酸氨基葡聚糖的钠盐,属粘多糖类物质,主要应用于心脑血管研究。 产品性质 分子式(chemical formula)…………………………(C12H16NS2Na3)20 分子量(Molecular Weight)…………………………12000 CAS 号(CAS No.)……………………………………9041-08-1 外观(Appearance)…………………………………白色或类白色、灰棕色粉末 水溶性(Water solubility)……………………………溶于水,几乎不溶于乙醇、乙醚。 pH…………………………………………………………6.0-7.5(1%,H2O, 25℃) 干燥失重(Loss on drying)……………………………<5% 活力/效价(Activity)………………………………………≥180U/mg 运输、保存和有效期 本试剂可常温(15-25℃)运输和保存,有效期为 2 年。 质量控制 本产品经严格的质量检验证明,无生物污染。 注意事项 本试剂仅用于科研!
肝素钠分子结构
/wiki/HeparinDESCRIPTIONHeparin is a heterogenous group of straight-chain anionic mucopolysaccharides, called glycosaminoglycans having anticoagulant properties. Although others may be present, the main sugars occurring in heparin are: (1) α-L-iduronic acid 2-sulfate, (2)2-deoxy-2-sulfamino-α-D-glucose 6-sulfate, (3) ß-D-glucuronic acid, (4)2-acetamido-2-deoxy-α-D-glucose, and (5) α-L-iduronic acid. These sugars are present in decreasing amounts, usually in the order (2) > (1) > (4) > (3) > (5), and are joined by glycosidic linkages, forming polymers of varying sizes. Heparin is strongly acidic because of its content of covalently linked sulfate and carboxylic acid groups. In heparin sodium, the acidic protons of the sulfate units are partially replaced by sodium ions.Structure of Heparin Sodium (representative subunits):HeparinsHeparin - StructureHeparin is a mucopolysaccharide with a molecularweight ranging from 6,000 to 40,000 Da. The average molecular of most commercial heparin preparations is in the range of 12,000 - 15,000. The polymeric chain is composed of repeating disaccharide unit of D-glucosamine and uronic acid linked by 1¯¯>4 interglycosidic bond. The uronic acid residue could be either D-glucuronic acid or L-iduronic acid. (Structure below) Few hydroxyl groups on each of these monosaccharide residues may be sulfated giving rise to a polymer with that is highly negatively charged. The average negative charge of individual saccharide residues is about 2.3.Structure - Activity RelationshipThe key structural unit of heparin is a uniquepentasaccharide sequence (below). This sequence consists of three D-glucosamine and two uronic acid residues. The central D-glucosamine residue contains a unique 3-O-sulfate moiety that is rare outside of this sequence. Four sulfate groups on the D-glucosamines, encircled in the figure below, are found to be critical for retaining high anticoagulant activity. Elimination of any one of them results in a dramatic reduction in the anticoagulant activity. Removal of the unique3-O-sulate group results in complete loss of the anticoagulant activity. Removal of sulfate groups other than the critical ones seems to not affect the anticoagulant activity.MetabolismBecause of its highly acidic sulfate groups, heparinexits as the anion at physiologic pH and is usually administered as the sodium salt.Heparin is partially metabolized in the liver by heparinase to uroheparin, which has only slight antithrombin activity. Twenty to fifty percent is excreted unchanged. The heparin polysaccharide chain is degraded in the gastric acid and must therefore be administered intravenously or subcutaneously. Heparin should not be given intramuscularly because of the danger of hematoma formation.PharmacologyHeparin is relatively non-toxic. However, parenteral administration precludes its long-term use. It is generally given to postoperative patients and to those with acute infarctions requiring immediate anticoagulant action.Heparin overdose or hypersensitivity may result inexcessive bleeding. Protamines, highly positively charged low-molecular-weight proteins, are used as anti-dote for excessive bleeding complications.Biochemical MechanismHeparin, containing the unique five-residuesequence (shown above), forms a high-affinity complex with antithrombin. The formation of antithrombin - heparin complex greatly increases the rate of inhibition of two principle procoagulant proteases, factor Xa and thrombin. The normally slow rate of inhibition of both these enzymes (~ 103- 104M-1s-1) by antithrombin alone (see graph below) is increased about a 1,000-fold by heparin. Accelerated inactivation of both the active forms of proteases prevents the subsequent conversion of fibrinogen to fibrin that is crucial for clot formation.Low-Molecular-Weight (LMW) HeparinAs the name implies low-molecular-weight heparinsare preparations that have lower average molecular weight than heparin. The average molecular weight of these LMW heparins typically ranges from 2,000 to 8,000 Da. They are made by enzymatic or chemical controlled hydrolysis of unfractionated heparin. These molecules have very similar chemical structure as unfractionated heparin except for some changes that may have been introduced due to the enzymatic or chemicaltreatment. The mechanism of action of these drugs is the same as full-length heparin.The overall advantage in the use of these LMWheparins appears to be in the decreased need for monitoring patients in comparison to heparin. Differences of opinion exist and further testing will determine whether these will continue to be used. The first LMW heparin, enoxaparin, has been approved for preventing blood clots following hip replacement surgery.A polymer classified as a mucopolysaccharide or a glycosoaminoglycan. It is biosynthesized and stored in mast cells of various mammalian tissues, particularly liver, lung and mucosa. It is typically employed as an anticoagulant. It binds to antithrombin III, a naturally occurring plasma protease inhibitor, accelerating the rate at which antithrombin III inhibits coagulation proteases (factor Xa and thrombin). The activity of heparin as an anticoagulant has been shown to relate to the molecular weight. In the range of 6-12 kDa, heparin apparently binds to AT-III in a 1:1 stoichiometry; however, heparin with a molecular weight of 20 kDa can have two binding regions for AT-III. The probability of a third region is negligible. There is a correlation between molecular weight and anticoagulant activity, but it is linear only over a narrow range (8-12 kDa). Low molecular weight heparins (below approximately 8000; produced by oxidative depolymerization) inhibit AT-III but have a higher ratio of anti-factor Xa to anti-AT-III activity than regular heparin. They have lowered effect on platelet aggregation than normal heparin, and has no significant effect on blood coagulation tests. Dosages of these low molecular weight heparins cannot be equated to those of normal molecular weight heparins. Inhibits the IP3-activated Ca2+ release channel of the endoplasmic reticulum. Reported to activate the ryanodine receptor. Practically insoluble in alcohol, acetone, benzene.。
HPLC法测定注射用替加环素葡萄糖注射液中5-羟甲基糠醛含量
HPLC法测定注射用替加环素葡萄糖注射液中5-羟甲基糠醛
含量
王艳;许立燕;何雷
【期刊名称】《山东化工》
【年(卷),期】2022(51)4
【摘要】目的:建立HPLC法测定注射用替加环素葡萄糖注射液中5-羟甲基糠醛的含量。
方法:采用Phenomenex Luna C_(18)(4.6 mm×150 mm,3μm)色谱柱;以磷酸盐缓冲液(称取磷酸氢二钾4.35 g,乙二胺四乙酸二钠0.93 g,加水1000 mL使溶解,用磷酸调节pH值至6.2)为流动相A,乙腈为流动相B;梯度洗脱,流速为1.0 mL/min;检测波长为248 nm;柱温为30℃。
结果:5-羟甲基糠醛在
0.135~5.392μg/mL范围内线性良好,相关系数r=0.9993,结论:该方法可用于注射用替加环素葡萄糖注射液中5-羟甲基糠醛的含量测定。
【总页数】5页(P127-130)
【作者】王艳;许立燕;何雷
【作者单位】江苏豪森药业集团有限公司研究院
【正文语种】中文
【中图分类】TQ460
【相关文献】
1.HPLC法测定注射用双黄连(冻干)中5-羟甲基糠醛含量
2.HPLC法测定法莫替丁葡萄糖注射液中5-羟甲基糠醛的含量
3.HPLC法测定葡萄糖注射液中5-羟甲
基糠醛的含量4.HPLC法测定盐酸法舒地尔注射液与葡萄糖注射液配伍液中的5-羟甲基糠醛5.高效液相色谱法测定注射用奥沙利铂5%葡萄糖注射液中5-羟甲基糠醛的含量
因版权原因,仅展示原文概要,查看原文内容请购买。