文科数学学霸笔记16 正、余弦定理及解三角形

合集下载

正弦定理、余弦定理知识点总结及最全证明

正弦定理、余弦定理知识点总结及最全证明

正弦定理、余弦定理知识点总结及证明方法——王彦文青铜峡一中1.掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.2.能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.主要考查有关定理的应用、三角恒等变换的能力、运算能力及转化的数学思想.解三角形常常作为解题工具用于立体几何中的计算或证明,或与三角函数联系在一起求距离、高度以及角度等问题,且多以应用题的形式出现.1.正弦定理(1)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即.其中R是三角形外接圆的半径.(2)正弦定理的其他形式:①a=2R sin A,b=,c=;②sin A=a2R,sin B=,sin C=;③a∶b∶c=______________________.2.余弦定理(1)余弦定理:三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍.即a2=,b2=,c2=.若令C=90°,则c2=,即为勾股定理.(2)余弦定理的变形:cos A =,cos B=,cos C=.若C为锐角,则cos C>0,即a2+b2______c2;若C为钝角,则cos C<0,即a2+b2______c2.故由a2+b2与c2值的大小比较,可以判断C为锐角、钝角或直角.(3)正、余弦定理的一个重要作用是实现边角____________,余弦定理亦可以写成sin2A=sin2B+sin2C-2sin B sin C cos A,类似地,sin2B=____________;sin2C=__________________.注意式中隐含条件A+B+C=π.3.解斜三角形的类型(1)已知三角形的任意两个角与一边,用____________定理.只有一解.(2)已知三角形的任意两边与其中一边的对角,用____________定理,可能有___________________.如在△ABC中,已知a,b和A时,解的情况如表:A为锐角A为钝角或直角图形关系式a=b sin Ab sin A<a<ba≥b a>b解的个①②③④数(3)已知三边,用____________定理.有解时,只有一解.(4)已知两边及夹角,用____________定理,必有一解.4.三角形中的常用公式或变式 (1)三角形面积公式S △= ==____________=____________=____________.其中R ,r 分别为三角形外接圆、内切圆半径.(2)A +B +C =π,则A =__________,A2=__________,从而sin A =____________,cos A=____________,tan A=____________;sin A 2=__________,cos A2=__________, tan A2=+tan B +tan C =__________.(3)若三角形三边a ,b ,c 成等差数列,则2b =____________⇔2sin B =____________⇔2sin B 2=cos A -C 2⇔2cos A +C 2=cos A -C 2⇔tan A2tan C 2=13.【自查自纠】1.(1)a sin A =b sin B =csin C =2R(2)①2R sin B 2R sin C ②b 2R c2R ③sin A ∶sin B ∶sin C2.(1)b 2+c 2-2bc cos A c 2+a 2-2ca cos B a 2+b 2-2ab cos C a 2+b 2(2)b 2+c 2-a 22bc c 2+a 2-b 22ca a 2+b 2-c 22ab > <(3)互化 sin 2C +sin 2A -2sin C sin A cos B sin 2A +sin 2B -2sin A sin B cos C3.(1)正弦 (2)正弦 一解、两解或无解 ①一解②二解 ③一解 ④一解(3)余弦 (4)余弦4.(1)12ab sin C 12bc sin A 12ac sin B abc 4R 12(a +b +c )r(2)π-(B +C ) π2-B +C2 sin(B +C ) -cos(B +C ) -tan(B +C ) cos B +C 2 sin B +C21tan B +C 2tan A tan B tan C (3)a +c sin A +sin C在△ABC 中,A >B 是sin A >sin B 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解:因为在同一三角形中,角大则边大,边大则正弦大,反之也成立,故是充要条件.故选C .在△ABC 中,已知b =6,c =10,B =30°,则解此三角形的结果有( )A .无解B .一解C .两解D .一解或两解解:由正弦定理知sin C =c ·sin B b =56,又由c >b >c sin B 知,C 有两解.也可依已知条件,画出△ABC ,由图知有两解.故选C .(2013·陕西)设△ABC 的内角A, B, C 所对的边分别为a, b, c, 若b cos C +c cos B =a sin A, 则△ABC 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定解:由已知和正弦定理可得sin B cos C +sin C cos B =sin A ·sin A ,即sin(B +C )=sin A sin A ,亦即sin A =sin A sin A .因为0<A <π,所以sin A =1,所以A =π2.所以三角形为直角三角形.故选B .(2012·陕西)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a =2,B =π6,c =23,则b =________.解:由余弦定理知b 2=a 2+c 2-2ac cos B =22+()232-2×2×23×cos π6=4,b =2.故填2.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a =2,b =2,sin B +cos B =2,则角A 的大小为________. 解:∵sin B +cos B =2,∴2sin ⎝ ⎛⎭⎪⎫B +π4=2,即sin ⎝ ⎛⎭⎪⎫B +π4=1.又∵B ∈(0,π),∴B +π4=π2,B =π4.根据正弦定理a sin A =b sin B ,可得sin A =a sin Bb =12.∵a <b ,∴A <B .∴A =π6.故填π6.类型一 正弦定理的应用△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知A -C =90°,a +c =2b ,求C .解:由a +c =2b 及正弦定理可得sin A +sin C =2sin B .又由于A -C =90°,B =180°-(A +C ),故cos C +sin C =sin A +sin C =2sin(A +C )=2sin(90°+2C )=2sin2(45°+C ).∴2sin(45°+C )=22sin(45°+C )cos(45°+C ),即cos(45°+C )=12.又∵0°<C <90°,∴45°+C =60°,C =15°. 【评析】利用正弦定理将边边关系转化为角角关系,这是解此题的关键.(2012·江西)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .已知A =π4,b sin ⎝ ⎛⎭⎪⎫π4+C -c sin ⎝ ⎛⎭⎪⎫π4+B =a .(1)求证:B -C =π2;(2)若a =2,求△ABC 的面积. 解:(1)证明:对b sin ⎝ ⎛⎭⎪⎫π4+C -c sin ⎝ ⎛⎭⎪⎫π4+B =a 应用正弦定理得sin B sin ⎝ ⎛⎭⎪⎫π4+C -sin C sin ⎝ ⎛⎭⎪⎫π4+B =sin A ,即sin B⎝ ⎛⎭⎪⎫22sin C +22cos C -sin C ⎝ ⎛⎭⎪⎫22sin B +22cos B =22,整理得sin B cos C -sin C cos B =1,即sin ()B -C =1.由于B ,C ∈⎝ ⎛⎭⎪⎫0,3π4,∴B -C =π2.(2)∵B +C =π-A =3π4,又由(1)知B -C =π2,∴B =5π8,C =π8.∵a =2,A =π4,∴由正弦定理知b =a sin Bsin A =2sin 5π8,c =a sin C sin A =2sin π8.∴S △ABC =12bc sin A =12×2sin 5π8×2sin π8×22 =2sin 5π8sin π8=2cos π8sin π8=22sin π4=12.类型二 余弦定理的应用在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且cos B cos C =-b2a +c.(1)求B 的大小;(2)若b =13,a +c =4,求△ABC 的面积. 解:(1)由余弦定理知,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab,将上式代入cos B cos C =-b2a +c得a 2+c 2-b 22ac ·2ab a 2+b 2-c 2=-b2a +c , 整理得a 2+c 2-b 2=-ac . ∴cos B =a 2+c 2-b 22ac =-ac 2ac =-12. ∵B 为三角形的内角,∴B =23π.(2)将b =13,a +c =4,B =23π代入b 2=a 2+c 2-2ac cos B ,得13=42-2ac -2ac cos23π,解得ac =3.∴S △ABC =12ac sin B =334.【评析】①根据所给等式的结构特点利用余弦定理将角化边进行变形是迅速解答本题的关键.②熟练运用余弦定理及其推论,同时还要注意整体思想、方程思想在解题过程中的运用.若△ABC 的内角A ,B ,C 所对的边a ,b ,c 满足(a +b )2-c 2=4,且C =60°,则ab 的值为( )B .8-4 3C .1解:由余弦定理得c 2=a 2+b 2-2ab cos C =a 2+b 2-ab ,代入(a +b )2-c 2=4中得(a +b )2-(a 2+b 2-ab )=4,即3ab =4,∴ab =43.故选A .类型三 正、余弦定理的综合应用(2013·全国新课标Ⅱ)△ABC 的内角A 、B 、C 的对边分别为a ,b ,c ,已知a =b cos C+c sin B .(1)求B ;(2)若b =2,求△ABC 面积的最大值. 解:(1)由已知及正弦定理得sin A =sin B cos C +sin C sin B .①又A =π-(B +C ),故sin A =sin(B +C )=sin B cos C +cos B sin C .② 由①,②和C ∈(0,π)得sin B =cos B .又B ∈(0,π),所以B =π4.(2)△ABC 的面积S =12ac sin B =24ac .由已知及余弦定理得4=a 2+c 2-2ac cosπ4.又a 2+c 2≥2ac ,故ac ≤42-2,当且仅当a =c 时,等号成立. 因此△ABC 面积的最大值为2+1. 【评析】(1)化边为角与和角或差角公式的正向或反向多次联用是常用的技巧;(2)已知边及其对角求三角形面积最值是高考中考过多次的问题,既可用三角函数求最值,也可以用余弦定理化边后用不等式求最值.(2013·山东)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且a +c =6,b =2,cos B =79.(1)求a ,c 的值; (2)求sin(A -B )的值.解:(1)由余弦定理b 2=a 2+c 2-2ac cos B , 得b 2=(a +c )2-2ac (1+cos B ),又a +c =6,b =2,cos B =79,所以ac =9,解得a =3,c =3. (2)在△ABC 中,sin B =1-cos 2B =429, 由正弦定理得sin A =a sin B b =223. 因为a =c ,所以A 为锐角,所以cos A =1-sin 2A =13.因此sin(A -B )=sin A cos B -cos A sin B =10227.类型四 判断三角形的形状 在三角形ABC 中,若tan A ∶tan B =a 2∶b 2,试判断三角形ABC 的形状.解法一:由正弦定理,得a 2b 2=sin 2Asin 2B ,所以tan A tan B =sin 2A sin 2B ,所以sin A cos B cos A sin B =sin 2Asin 2B ,即sin2A =sin2B . 所以2A =2B ,或2A +2B =π,因此A =B或A +B =π2,从而△ABC 是等腰三角形或直角三角形.解法二:由正弦定理,得a 2b 2=sin 2Asin 2B ,所以tan A tan B =sin 2A sin 2B ,所以cos B cos A =sin Asin B ,再由正、余弦定理,得a 2+c 2-b 22ac b 2+c 2-a 22bc =a b ,化简得(a 2-b 2)(c 2-a 2-b 2)=0,即a 2=b 2或c 2=a 2+b 2.从而△ABC 是等腰三角形或直角三角形. 【评析】由已知条件,可先将切化弦,再结合正弦定理,将该恒等式的边都化为角,然后进行三角函数式的恒等变形,找出角之间的关系;或将角都化成边,然后进行代数恒等变形,可一题多解,多角度思考问题,从而达到对知识的熟练掌握.(2012·上海)在△ABC 中,若sin 2A +sin 2B <sin 2C ,则△ABC 的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .不能确定解:在△ABC 中,∵sin 2A +sin 2B <sin 2C ,∴由正弦定理知a 2+b 2<c 2.∴cos C =a2+b 2-c 22ab<0,即∠C 为钝角,△ABC 为钝角三角形.故选C .类型五 解三角形应用举例某港口O 要将一件重要物品用小艇送到一艘正在航行的轮船上.在小艇出发时,轮船位于港口O 北偏西30°且与该港口相距20 n mile 的A 处,并以30 n mile/h 的航行速度沿正东方向匀速行驶.假设该小艇沿直线方向以v n mile/h 的航行速度匀速行驶,经过t h 与轮船相遇.(1)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少(2)假设小艇的最高航行速度只能达到30 n mile/h ,试设计航行方案(即确定航行方向和航行速度的大小),使得小艇能以最短时间与轮船相遇,并说明理由.解法一:(1)设相遇时小艇航行的距离为S n mile ,则S=900t 2+400-2·30t ·20·cos (90°-30°) =900t 2-600t +400=900⎝ ⎛⎭⎪⎫t -132+300,故当t =13时,S min =103,此时v =10313=30 3.即小艇以30 3 n mile/h 的速度航行,相遇时小艇的航行距离最小.(2)设小艇与轮船在B 处相遇,则 v 2t 2=400+900t 2-2·20·30t ·cos(90°-30°),故v 2=900-600t +400t 2.∵0<v ≤30,∴900-600t +400t 2≤900,即2t 2-3t ≤0,解得t ≥23.又t =23时,v =30.故v =30时,t 取得最小值,且最小值等于23.此时,在△OAB 中,有OA =OB =AB =20,故可设计航行方案如下:航行方向为北偏东30°,航行速度为30 n mile/h ,小艇能以最短时间与轮船相遇.解法二:(1)若相遇时小艇的航行距离最小,又轮船沿正东方向匀速行驶,则小艇航行方向为正北方向.设小艇与轮船在C 处相遇.在Rt △OAC 中,OC =20cos30°=103,AC =20sin30°=10.又AC =30t ,OC =vt ,此时,轮船航行时间t =1030=13,v =10313=30 3.即小艇以30 3 n mile/h 的速度航行,相遇时小艇的航行距离最小.(2)假设v =30时,小艇能以最短时间与轮船在D 处相遇,此时AD =DO =30t .又∠OAD =60°,所以AD =DO =OA =20,解得t =23.据此可设计航行方案如下:航行方向为北偏东30°,航行速度的大小为30 n mile/h.这样,小艇能以最短时间与轮船相遇.证明如下:如图,由(1)得OC =103,AC =10,故OC >AC ,且对于线段AC 上任意点P ,有OP ≥OC >AC .而小艇的最高航行速度只能达到30 n mile/h ,故小艇与轮船不可能在A ,C 之间(包含C )的任意位置相遇.设∠COD =θ(0°<θ<90°),则在Rt △COD 中, CD =103tan θ,OD =103cos θ.由于从出发到相遇,轮船与小艇所需要的时间分别为t =10+103tan θ30和t =103v cos θ,所以10+103tan θ30=103v cos θ. 由此可得,v =153sin (θ+30°).又v ≤30,故sin(θ+30°)≥32,从而,30°≤θ<90°.由于θ=30°时,tan θ取得最小值,且最小值为33.于是,当θ=30°时,t =10+103tan θ30取得最小值,且最小值为23.【评析】①这是一道有关解三角形的实际应用题,解题的关键是把实际问题抽象成纯数学问题,根据题目提供的信息,找出三角形中的数量关系,然后利用正、余弦定理求解.②解三角形的方法在实际问题中,有广泛的应用.在物理学中,有关向量的计算也要用到解三角形的方法.近年的高考中我们发现以解三角形为背景的应用题开始成为热点问题之一.③不管是什么类型的三角应用问题,解决的关键都是充分理解题意,将问题中的语言叙述弄明白,画出帮助分析问题的草图,再将其归结为属于哪类可解的三角形.④本题用几何方法求解也较简便.(2012·武汉5月模拟)如图,渔船甲位于岛屿A 的南偏西60°方向的B 处,且与岛屿A 相距12海里,渔船乙以10海里/小时的速度从岛屿A 出发沿正北方向航行,若渔船甲同时从B 处出发沿北偏东α的方向追赶渔船乙,刚好用2小时追上.(1)求渔船甲的速度; (2)求sin α的值.解:(1)依题意,∠BAC =120°,AB =12,AC =10×2=20,在△ABC 中,由余弦定理知BC 2=AB 2+AC 2-2AB ·AC ·cos ∠BAC =122+202-2×12×20×cos120°=784,BC =28.所以渔船甲的速度为v =282=14(海里/小时).(2)在△ABC中,AB=12,∠BAC=120°,BC=28,∠BCA=α,由正弦定理得ABsinα=BCsin∠BAC,即12sinα=28sin120°,从而sinα=12sin120°28=3314. 1.已知两边及其中一边的对角解三角形时,要注意解的情况,谨防漏解.2.在判断三角形的形状时,一般将已知条件中的边角关系利用正弦定理或余弦定理转化为角角关系(注意应用A+B+C=π这个结论)或边边关系,再用三角变换或代数式的恒等变形(如因式分解、配方等)求解,注意等式两边的公因式不要约掉,要移项提取公因式,否则有可能漏掉一种形状.3.要熟记一些常见结论,如三内角成等差数列,则必有一角为60°;若三内角的正弦值成等差数列,则三边也成等差数列;内角和定理与诱导公式结合产生的结论:sin A=sin(B+C),cos A=-cos(B+C),sin A2=cosB+C2,sin2A=-sin2(B+C),cos2A=cos2(B+C)等.4.应用正、余弦定理解斜三角形应用题的一般步骤:(1)分析:理解题意,分清已知与未知,画出示意图;(2)建模:根据已知条件与求解目标,把已知量与求解量尽量集中到一个三角形中,建立一个解斜三角形的模型;(3)求解:利用正、余弦定理有序地解出三角形,求得数学模型的解;(4)检验:检验上述所求得的解是否符合实际意义,从而得出实际问题的解.5.正、余弦定理是应用极为广泛的两个定理,它将三角形的边和角有机地联系起来,从而使三角与几何产生联系,为求与三角形有关的量(如面积、外接圆、内切圆半径和面积等)提供了理论依据,也是判断三角形形状、证明三角形中有关等式的重要依据.主要方法有:化角法,化边法,面积法,运用初等几何法.注意体会其中蕴涵的函数与方程思想、等价转化思想及分类讨论思想."。

正、余弦定理及应用举例

正、余弦定理及应用举例

02
余弦定理
定义与性质
定义
余弦定理是三角形中的重要定理,它 描述了三角形三边与其对应角的余弦 值之间的关系。
性质
余弦定理具有对称性,即交换任意两 边及其对应的角,定理仍然成立。此 外,余弦定理还可以用来判断三角形 的形状。
证明方法
证明方法一
利用向量的数量积和向量模长的性质来 证明余弦定理。
VS
定理应用举例
总结词
正弦定理在解决三角形问题中具有广泛的应用,例如求三角形边长、角度等。
详细描述
利用正弦定理,我们可以解决许多三角形问题,例如求三角形的边长、角度等。例如,已知三角形的 两边及其夹角,我们可以利用正弦定理求出第三边的长度。此外,正弦定理还可以用于判断三角形的 解的个数和类型,以及解决一些几何作图问题。
正、余弦定理及应用 举例
目录
• 正弦定理 • 余弦定理 • 正、余弦定理的综合应用 • 正、余弦定理的扩展与推广 • 正、余弦定理在数学竞赛中的应用
01
正弦定理
定义与性质
总结词
正弦定理是三角形中一个基本的定理 ,它描述了三角形边长和对应角的正 弦值之间的关系。
详细描述
正弦定理是指在一个三角形中,任意 一边与其对应的角的正弦值的比等于 三角形外接圆的直径,也等于其他两 边与它们的对应角的正弦值的比。
证明方法二
通过作高线,将三角形转化为直角三角形 ,再利用勾股定理来证明余弦定理。
定理应用举例
应用一
已知三角形的两边及其夹角,求第三边。
应用二
判断三角形的形状。例如,如果一个三角形中存在两个角相等,则 这个三角形是等腰三角形。
应用三
解决一些实际问题,如测量、工程设计等。例如,在测量中,可以 利用余弦定理来计算两点之间的距离。

(经典)正弦定理、余弦定理知识点总结及最全证明(最新整理)

(经典)正弦定理、余弦定理知识点总结及最全证明(最新整理)

3.(1)正弦 (2)正弦 一解、两解或无解
π
①一解 ②二解 ③一解 ④一解
所对的边分别为 a,b,c.若 a=2,B= ,c=2 6
(3)余弦 (4)余弦
3,则 b=________.
1
1
1
abc
4. (1) absinC bcsinA acsinB
解:由余弦定理知 b2=a2+c2-2accosB=22
2
2
2
2
22
1 . 3
则解此三角形的结果有( )
A.无解
B.一解
C.两解
D.一解或两解
c·sinB 5
解:由正弦定理知 sinC=
= ,又由
b6
c>b>csinB 知,C 有两解.也可依已知条件,画
【自查自纠】
出△ABC,由图知有两解.故选 C.
abc 1.(1) = = =2R
sinA sinB sinC
时,只有一解.
(4)已知两边及夹角,用____________定理,
必有一解.
4.三角形中的常用公式或变式
(1)三 角 形 面 积 公 式 S△=


____________=
____________=
____________.其中 R,r 分别为三角形外接圆、
内切圆半径.
(2)A+B+C=π,则 A=__________,
A = __________, 从 而 sinA= 2
____________,
cosA=
____________,
tanA=
____________;
A
A
sin =__________,cos =__________,

高中数学必备知识点正弦与余弦定理和公式

高中数学必备知识点正弦与余弦定理和公式

三角函数正弦与余弦的学习,在数学中只要记住相关的公式即可。

日常考试正弦和余弦的相关题目一般不会很难,是很多数学基础不是很牢的同学拿分的好题目。

但对于有些同学来说还是很难拿分,那是为什么呢?首先,我们要了解下正弦定理的应用领域在解三角形中,有以下的应用领域:(1)已知三角形的两角与一边,解三角形(2)已知三角形的两边和其中一边所对的角,解三角形(3)运用a:b:c=sinA:sinB:sinC解决角之间的转换关系直角三角形的一个锐角的对边与斜边的比叫做这个角的正弦正弦定理在△ABC中,角A、B、C所对的边分别为a、b、c,则有a/sinA=b/sinB=c/sinC=2R(其中R为三角形外接圆的半径)其次,余弦的应用领域余弦定理余弦定理是揭示三角形边角关系的重要定理,直接运用它可解决一类已知三角形两边及夹角求x边或者是已知三个边求角的问题,若对余弦定理加以变形并适当移于其它知识,则使用起来更为方便、灵活。

正弦定理的变形公式(1) a=2RsinA, b=2RsinB, c=2RsinC;(2) sinA : sinB : sinC = a : b : c; 在一个三角形中,各边与其所对角的正弦的比相等,且该比值都等于该三角形外接圆的直径已知三角形是确定的,利用正弦定理解三角形时,其解是唯一的;已知三角形的两边和其中一边的对角,由于该三角形具有不稳定性,所以其解不确定,可结合平面几何作图的方法及“大边对大角,大角对大边”定理和三角形内角和定理去考虑解决问题(3)相关结论:a/sinA=b/sinB=c/sinC=(a+b)/(sinA+sinB)=(a+b+c)/(sinA+sinB+sinC)c/sinC=c/sinD=BD=2R(R为外接圆半径)(4)设R为三角外接圆半径,公式可扩展为:a/sinA=b/sinB=c/sinC=2R,即当一内角为90°时,所对的边为外接圆的直径。

灵活运用正弦定理,还需要知道它的几个变形sinA=a/2R,sinB=b/2R,sinC=c/2RasinB=bsinA,bsinC=csinB,asinC=csinA(5)a=bsinA/sinB sinB=bsinA/a正弦、余弦典型例题1.在△ABC中,∠C=90°,a=1,c=4,则sinA 的值为2.已知α为锐角,且,则α的度数是() A.30° B.45° C.60° D.90°3.在△ABC中,若,∠A,∠B为锐角,则∠C的度数是() A.75° B.90° C.105° D.x0°4.若∠A为锐角,且,则A=() A.15° B.30° C.45° D.60°5.在△ABC中,AB=AC=2,AD⊥BC,垂足为D,且AD=,E是AC中点,EF⊥BC,垂足为F,求sin∠EBF的值。

正余弦定理及解三角形整理(有答案)

正余弦定理及解三角形整理(有答案)

正余弦定理考点梳理:1.直角三角形中各元素间的关系:如图,在△ABC 中, C = 90°, AB =c , AC = b , BC = a 。

( 1)三边之间的关系: a 2+ b 2= c 2。

(勾股定理) A ( 2)锐角之间的关系: A + B = 90°; c( 3)边角之间的关系: (锐角三角函数定义)bsin A =cos B = a ,cos A = sin B = b , tan A = a。

CBcc b2.2.斜三角形中各元素间的关系:a如图 6-29 ,在△ ABC 中, A 、 B 、 C 为其内角, a 、 b 、c 分别表示 A 、 B 、C 的对边。

( 1)三角形内角和: A +B + C = _____( 2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等。

ab c2R 。

( R 为外接圆半径)sin A sin Bsin C3.正弦定理:a= b = c =2R 的常见变形:sin A sin B sin C(1)sinA ∶ sinB ∶ sinC = a ∶ b ∶ c ;(2)a= b c= a + b + csin=sin A + sin = 2R ;A sinBC sinB + sin C(3) a =2R sin_ A , b = 2R sin_ B , c = 2R sin_ C ;A = aB = bC = c(4)sin2R ,sin 2R , sin 2R .1114. 三角形面积公式: S = 2ab sin C = 2bc sin A = 2ca sin B .5.余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍。

cos A b2c 2 a 2a 22c 22bccos A2bcba2c 2b 2余弦定理的公式:b 2 a 2 c 22accosB 或cos B .c2b2a22ba cosC2accosCb2a2c22ab6. ( 1)两类正弦定理解三角形的问题:1、已知两角和任意一边,求其他的两边及一角.2、已知两边和其中一边的对角,求其他边角. ( 2)两类余弦定理解三角形的问题:1、已知三边求三角 .2、已知两边和他们的夹角, 求第三边和其他两角 .7. 判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式 .8. 解题中利用ABC 中A B C,以及由此推得的一些基本关系式进行三角变换的运算,如: sin( A B) sin C, cos( A B) cosC, tan(A B)tan C,sin A BcosC,cosAB sinC, tanAB cotC. 2222229.解斜三角形的主要依据是:设△ ABC的三边为 a、 b、c,对应的三个角为A、 B、C。

高中数学知识点总结正弦定理与余弦定理

高中数学知识点总结正弦定理与余弦定理

高中数学知识点总结正弦定理与余弦定理正弦定理与余弦定理是高中数学中的重要知识点,用于求解不规则三角形的边长和角度。

本文将对这两个定理进行详细总结与讲解。

一、正弦定理1.1 定义正弦定理是指在任意三角形中,三条边与其对应的角的正弦值之间的关系。

设三角形的三边分别为a、b、c,对应的角度为A、B、C,则正弦定理的表达式为:a/sinA = b/sinB = c/sinC1.2 推导我们通过利用三角形的面积公式S=1/2 * a * b * sinC,并将其转换为对角线的形式,可以得到正弦定理的推导过程。

1.3 应用正弦定理可以用于求解不规则三角形的边长和角度。

当我们已知三条边或者两条边和夹角时,可以利用正弦定理求解未知的边长或者角度。

二、余弦定理2.1 定义余弦定理是指在任意三角形中,三条边和它们对应的角之间的关系。

设三角形的三边分别为a、b、c,对应的角度为A、B、C,则余弦定理的表达式为:c^2 = a^2 + b^2 - 2ab * cosC2.2 推导我们可以通过利用向量的几何关系,将余弦定理的表达式推导出来。

这个过程较为繁琐,这里就不做详细讲解。

2.3 应用余弦定理可以用于求解不规则三角形的边长和角度。

当我们已知三条边或者两条边和夹角时,可以利用余弦定理求解未知的边长或者角度。

三、正弦定理与余弦定理的比较3.1 适用范围正弦定理适用于任意三角形,而余弦定理只适用于任意三角形,不能用于直角三角形。

3.2 计算难度正弦定理的计算相对简单,只需要记住一个公式,而余弦定理的计算稍复杂,需要使用开方和乘法等运算。

3.3 精度误差由于余弦定理中涉及到平方运算,可能会带来一定的误差,而正弦定理中没有涉及到平方运算,计算结果更加准确。

3.4 应用场景正弦定理在计算不规则三角形的边长和角度时较为常用,尤其适用于已知两边和夹角的情况。

而余弦定理在计算不规则三角形的边长和角度时同样常用,特别适用于已知三边的情况。

正弦定理及余弦定理学习笔记记录.docx

正弦定理及余弦定理学习笔记记录.docx

正弦定理和余弦定理(1.1 正弦定理和余弦定理)一、目标与策略明确学习目标及主要的学习方法是提高学习效率的首要条件,要做到心中有数!学习目标:使学生掌握正弦、余弦定理的推导过程,能初步运用正弦、余弦定理解斜三角形;熟记正弦、余弦定理及其变形形式;通过正弦、余弦定理的推导体现数形结合的思想、分类讨论的思想。

重点难点:重点:正、余弦定理的推导及应用。

难点:正、余弦定理的向量证明,两个定理的综合运用。

学习策略:从特殊到一般:从熟悉的直角三角形的边角关系出发,概括出直角三角形中的正、余弦定理,再推广到一般,探究任意三角形中的边角关系。

二、学习与应用“凡事预则立,不预则废”。

科学地预习才能使我们上课听讲更有目的性和针对(一)三角形ABC 中( 1)一般约定:ABC 中角A、B、C所对的边分别为;( 2)A B C;( 3)大边对,大角对,即B C b c ;等边对,等角对,即 B C b c;( 4)两边之和第三边,两边之差第三边,即a c............b ,a c...........b.(二) Rt ABC中, C 900( 1)B A..................;(2)a2b2..................(3)sin A.................. ,sin B ..................,sin C ..................;cos A ..................,cosB..................,cosC ..................。

知识点一:正弦定理正弦定理:即:(一)直角三角形中的正弦定理的推导证明:(二)斜三角形中正弦定理的推导法一:构造直角三角形( 1)当ABC 为锐角三角形时如图,作 AB 边上的高线CD交AB于D,则在Rt CBD 中,CD sin B,即CD asin B,a在Rt ACD 中,CD sin A,即CD bsin A, b∴a sin Bb sin A ,即a b.sin A sin B同理可证b csin B sin C∴a b csin A sin B sin C( 2)当ABC 为钝角三角形时法二:圆转化法( 1)当ABC 为锐角三角形时如图,圆 O是ABC 的外接圆,直径为 AD 2R,则 C D ,∴ sin C sin D c ,2R∴2Rc( R 为 ABC 的外接圆半径)sin C同理 , 2Ra ,2R bsin A sin B 故abc 2Rsin A sin Bsin C(2)当ABC 为钝角三角形时法三:面积法(详细内容请参考知识导学,ID : #tbjx9#208608 )法四:向量法( 1)当 ABC 为锐角三角形时过 A 作单位向量j 垂直于 AC ,则AC+CB =AB两边同乘以单位向量j ,r r r uuur r uuur r uuur得 j( AC +CB )= j AB ,即 j AC j CB j AB r uuur r uuur C) ∴| j | | AC | cos900 | j | | CB | cos(90or uuurA),| j | | AB | cos(90ouuurr uuurruuurc,∵ j AC 0 ,| j | 1,| CB | a ,| AB |cos(90o C) sinC ,cos(90oA) sin A∴ a sin C c sin A ,∴ ac ,sin A sin C同理:若过 C 作 j 垂直于 CB 得:b csin B sin C∴ab c , sin Asin Bsin C( 2)当 ABC 为钝角三角形时说明:( 1)正弦定理适合于三角形;( 2)设 R 为ABC 的外接圆半径,可以证明:a b c sin A sin B _____sin C(3)每个等式可视为一个方程:知三求一。

正弦定理和余弦定理笔记

正弦定理和余弦定理笔记

正弦定理和余弦定理笔记一、正弦定理。

(一)定理内容。

在一个三角形中,各边和它所对角的正弦值的比相等,即(a)/(sin A)=(b)/(sinB)=(c)/(sin C) = 2R(R为三角形外接圆半径)。

(二)证明方法。

1. 外接圆法。

- 设ABC的外接圆半径为R。

- 连接圆心O与三角形的三个顶点A、B、C。

- 对于∠ A,根据同弧所对的圆周角是圆心角的一半,可知∠ A=(1)/(2)∠BOC。

- 由正弦定义,在BOC中,a = 2Rsin A,同理可得b = 2Rsin B,c = 2Rsin C,所以(a)/(sin A)=(b)/(sin B)=(c)/(sin C)=2R。

2. 向量法(略提)- 利用向量的数量积公式→AB·→AC=|→AB||→AC|cos A,通过一系列向量运算也可证明正弦定理,但相对外接圆法较复杂。

(三)应用。

1. 已知两角和一边,求其他边和角。

- 例如,已知A = 30^∘,B = 45^∘,a = 10。

- 根据三角形内角和C=180^∘-A - B = 105^∘。

- 由正弦定理(a)/(sin A)=(b)/(sin B),可得b=(asin B)/(sin A)。

- 先求出sin 45^∘=(√(2))/(2),sin 30^∘=(1)/(2),则b=(10×frac{√(2))/(2)}{(1)/(2)} = 10√(2)。

- 再根据(a)/(sin A)=(c)/(sin C)求出c的值,sin105^∘=sin(60^∘+45^∘)=sin60^∘cos45^∘+cos60^∘sin45^∘=(√(6)+√(2))/(4),c=(asin C)/(sin A)=(10×frac{√(6)+√(2))/(4)}{(1)/(2)} = 5(√(6)+√(2))。

2. 已知两边和其中一边的对角,求其他边和角(可能有一解、两解或无解情况)- 例如,已知a = 10,b = 20,A = 30^∘。

高二数学 考点16 正弦定理和余弦定理

高二数学 考点16  正弦定理和余弦定理

温馨提示:此题库为Word 版,请按住Ctrl,滑动鼠标滚轴,调节合适的观 看比例,关闭Word 文档返回原板块。

高二数学 考点16 正弦定理和余弦定理一、选择题1.(2011·浙江高考文科·T5)在ABC ∆中,角,,A B C 所对的边分别为,,a b c .若cos sin a A b B =,则2sin cos cos A A B +=( )(A)-12 (B)12(C)-1 (D)1 【思路点拨】用正弦定理统一到角的关系上,再用同角三角函数的平方关系即可解决. 【精讲精析】选D.由cos sin a A b B =可得2sin cos sin A A B =所以222sin cos cos sin cos 1A A B B B +=+=.二、填空题2.(2011·安徽高考理科·T14)已知ABC ∆ 的一个内角为120o,并且三边长构成公差为4的等差数列,则ABC ∆的面积为_______________.【思路点拨】设三角形一边的长为x ,可以用x 表示其他两边,再利用余弦定理建立方程求出x ,最后利用三角形面积公式求出ABC ∆的面积.【精讲精析】设三角形中间边长为x ,则另两边的长为x-4,x+4,那么所以解得)(,10,120cos )4(2)4(4222=---+=+x x x x x x .315120sin 61021=⨯⨯⨯=∆ ABC S【答案】3.(2011·福建卷理科·T14)如图,△ABC 中,AB=AC=2,BC= D 在BC 边上,∠ADC=45°,则AD 的长度等于______. 【思路点拨】结合图形,∆∠∠ABC 先在中,由余弦定理解出C 与B ,ABD ∆然后在中,由正弦定理解得AD.【精讲精析】在ABC ∆中,由余弦定理易得222cos22AC BC ABCAC BC+-===⋅⋅30,30.C B ABD∴∠=︒∴∠=︒∆在中,,1sin sin2AD AB ADADB ADB=∴=∴=∠由正弦定理得:4.(2011·福建卷文科·T14)若△ABC的面积为3,BC=2,C=︒60,则边AB的长度等于_____________. 【思路点拨】求得AC,然后再用余弦定理求得AB.【精讲精析】在ABC∆中,由面积公式得11sin2sin6022S BC CA C AC=⋅⋅=⨯⋅⋅︒2,AC AC=再由余弦定理,得:222221+2cos2222242AB BC AC AC BC C-⋅⋅=+-⨯⨯⨯==,2AB∴=.【答案】25.(2011·新课标全国高考理科·T16)在ABCV中,60,B AC==2AB BC+的最大值为 .【思路点拨】利用三角函数知识,化简2AB BC+,统一角变量,然后求最大值.【精讲精析】令AB c=,BC a=,则由正弦定理得2,sin sin sina c ACA C B====2sin,2sin,c C a A∴==且120A C+=︒,222sin4sinAB BC c a C A∴+=+=+2sin4sin(120)C C=+︒-=2sin C+14(cos sin)4sin22C C C C+=++)Cϕ=(其中tan)2ϕ=∴当90Cϕ+=︒时,2AB BC+取最大值为【答案】6.(2011·新课标全国文科·T15)△ABC中,B=120°,AC=7,AB=5,则△ABC的面积为________.【思路点拨】用余弦定理求得边BC的值,由1sin2ABCS AB BC B∆⨯⨯=求得三角形的面积.【精讲精析】设,,AB c BC a AC b===,由余弦定理2222cos b a c ac B =+-,得21492525()2a a =+-⨯⨯-,解得3a =,11sin 35sin12022ABC S ac B ∆∴==⨯⨯⨯︒4=【答案】47.(2011·北京高考理科·T9)在ABC ∆中,若5,,tan 24b B A π=∠==,则s i n A = ;a = .【思路点拨】先利用切化弦与平方关系联立解出sinA ,再由正弦定理求出a. 【精讲精析】22sin sin tan 2,cos ,sin ()1,22A A A A A =∴=∴+=(0,),sin A A π∈∴=又52=,所以a =8.(2011·北京高考文科·T9)在ABC ∆中,若15,,sin 43b B A π=∠==,则a = . 【思路点拨】利用正弦定理求出a . 【精讲精析】由正弦定理得,13a =,所以a =.【答案】3三、解答题9.(2011·安徽高考文科·T16)在ABC ∆中,a ,b ,c 分别为内角A ,B ,C 所对的边长,,12cos()0B C ++=,求边BC 上的高.【思路点拨】化简12cos()0B C ++=,求出sinA,cosA,再由正弦定理算出sinB,cosC,从而得到sinC,则h=bsinC.【精讲精析】由12cos()0B C ++=和B+C=π-A,得,23sin ,21cos ,0cos 21===-A A A再由正弦定理得,.22sin sin ==a Ab B 由b<a ,知B<A,所以B 不是最大角,2π<B ,从而22sin 1cos 2=-=B B . 由上述结果知).2123(22)sin(sin +=+=B A C 设边BC 上的高为h,则有.213sin +==C b h 10.(2011·辽宁高考文科·T17)已知△ABC 的三个内角A ,B ,C 所对的边分别为a 、b 、c ,a Ab B A a 2cos sin sin 2=+.(1)求b a.(2)若c 2=b 2a 2,求B . 【思路点拨】(1)依据正弦定理,先边化角,然后再角化边,即得.(2)先结合余弦定理和已知条件求出B cos 的表达式,再利用第(1)题的结论进行化简即得.【精讲精析】(1)由正弦定理得,A A B B A sin 2cos sin sin sin 22=+,即A A AB sin 2)cos (sin sin 22=+.故A B sin 2sin =,所以2=ab(2)由余弦定理和2223a b c +=,得caB 2)31(cos +=. 由(1)知222a b =,故22)32(a c +=.可得=B 2cos 21,又0cos >B ,故=B cos 22,所以B 45=︒.11.(2011·山东高考理科·T17)在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c.已知cos A-2cosC 2c-a=cos B b. (Ⅰ)求sin sin CA的值; (Ⅱ)若cosB=14,b=2, 求△ABC 的面积S.【思路点拨】(Ⅰ)本题可由正弦定理直接转化已知式子,然后再由和角公式及诱导公式易知sin sin CA=2. (Ⅱ)应用余弦定理及第一问结论易知a 和c 的值,然后利用面积公式求解. 【精讲精析】 (Ⅰ)在ABC ∆中,由cos 2cos 2cos A C c aB b--=及正弦定理可得 cos 2cos 2sin sin cos sin A C C AB B--=, 即cos sin 2cos sin 2sin cos sin cos -=-A B C B C B A B 则cos sin sin cos 2sin cos 2cos sin +=+A B A B C B C Bsin()2sin()A B C B +=+,而A B C π++=,则sin 2sin C A =,即sin 2sin CA=. 另解:在ABC ∆中,由cos 2cos 2cos A C c aB b--=可得 cos 2cos 2cos cos b A b C c B a B -=-由余弦定理可得22222222222222b c a a b c a c b a c b c a a c+-+-+-+--=-,整理可得2c a =,由正弦定理可得sin 2sin C cA a==. (Ⅱ)由2c a =及1cos ,24B b ==可得 22222242cos 44,c a ac B a a a a =+-=+-=则1a =,2c =,S 11sin 12224ac B ==⨯⨯=,即4S =. 12.(2011·山东高考文科·T17)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知cos A-2cosC 2c-a=cos B b. (1)求sin sin CA的值. (2)若cos B =14,5b ABC 的周长为,求的长.【思路点拨】(1)本题可由正弦定理直接转化已知式子,然后再由和角公式及诱导公式易知sin sin CA=2. (2)由周长得出,a 和b 之间的关系b=5-3a ,再将b=5-3a 代入余弦定理求得a 和b. 【精讲精析】(1)由正弦定理得2sin ,a R A =2sin ,b R B =2sin ,c R C =所以cos A-2cosC 2c-a =cos B b=2sin sin sin C AB -, 即sin cos 2sin cos 2sin cos sin cos B A BC C B A B -=-, 即有sin()2sin()A B B C +=+,即sin 2sin C A =,所以sin sin CA=2. (2)由(1)知sin sin CA=2,所以有2c a =,即c=2a,又因为ABC ∆的周长为5,所以b=5-3a, 由余弦定理得:2222cos b c a ac B =+-, 即22221(53)(2)44a a a a -=+-⨯,解得a=1,a=5(舍去) 所以b=2.13.(2011·湖南高考理科·T17)与(2011·湖南高考文科·T17)相同 在中,ABC ∆角A ,B ,C 所对的边分别为a,b,c ,且满足csin A=acos C. (1)求角C 的大小. (2)求)4cos(sin 3π+-B A 的最大值,并求取得最大值时角A ,B 的大小.【思路点拨】本题主要考查利用正弦定理消边,再考查三角恒等变形.突出考查边角的转化思想的应用.边角共存的关系中常考虑消去边或消去角,如果考虑消边,如果是边的一次函数常用正弦定理,如果是边的二次函数常用余弦定理,在考查余弦定理时兼顾考查凑配.如果考虑消角,那么是余弦就用余弦定理,而如果是正弦定理必须等次才能使用.【精讲精析】(1)由正弦定理得sin sin sin cos .C A A C =因为0,A π<<所以sin 0.sin cos .cos 0,tan 1,4A C C C C C π>=≠==从而又所以则(2)由(1)知3.4B A π=-于是cos()cos()4cos 2sin().63110,,,,46612623A B A A A A A A A A A ππππππππππ-+=--=+=+<<∴<+<+==从而当即时2sin()6A π+取得最大值2.cos()4A B π-+的最大值为2,此时5,.312A B ππ==14.(2011·陕西高考理科·T18) 叙述并证明余弦定理.【思路点拨】本题是课本公式、定理、性质的推导,这是高考考查的常规方向和考点,引导考生回归课本,重视基础知识的学习和巩固.【精讲精析】余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦之积的两倍.即在△ABC 中,,,a b c 分别为角A ,B ,C 的对边,则有2222cos a b c bc A =+-,2222cos b c a ca B =+-, 2222cos c a b ab C =+-.证法一 如图,22a BC =()()=--AC AB AC AB222AC AC AB AB =-∙+222cos AC AC AB A AB =-∙+222cos b bc A c =-+即2222cos a b c bc A =+- 同理可证2222cos b c a ca B =+-, 2222cos c a b ab C =+-证法二 已知ABC ∆中,角,,A B C 所对边 分别为,,,a b c ,以A 为原点,AB 所在 直线为x 轴建立如图所示的直角坐标系,则(cos ,sin ),(,0)C b A b A B c ,∴222222222||(cos )(sin )cos 2cos sin a BC b A c b A b A bc A c b A ==-+=-++222cos b c bc A =+-,即2222cos a b c bc A =+-同理可证2222cos b c a ca B =+-,2222cos c a b ab C =+-.15.(2011·天津高考文科·T16)在△ABC 中,内角,,A B C 的对边分别为,,a b c ,已知,2.B C b == (Ⅰ)求cos A 的值. (Ⅱ)cos(2)4+A π的值.【思路点拨】(Ⅰ)根据余弦定理求解.(Ⅱ)利用三角函数的两角和、倍角公式化简计算. 【精讲精析】(Ⅰ)由,2,B C b c b a ====可得所以222222331cos .2322+-+-===a a a b c a A bc (Ⅱ)因为1cos ,(0,)3=∈A A π,所以sin 3A ==27cos 22cos 1.sin 22sin cos 99A A A A A 故=-=-==所以78cos 2cos 2cos sin 2sin 444929218+⎛⎫⎛⎫+=-=-⨯-=- ⎪ ⎪⎝⎭⎝⎭A A A πππ16.(2011·浙江高考理科·T18)在ABC ∆中,角A B C ,,所对的边分别为a,b,c. 已知()sin sin sin ,A C p B p R +=∈且214ac b =. (1)当5,14p b ==时,求,a c 的值. (2)若角B 为锐角,求p 的取值范围.【思路点拨】(1)把题目中的条件用正弦定理化为边的关系,可联立方程组解出a,c 的值.(2)角B 为锐角的充要条件为0cos 1B <<,从而得出p 的取值范围.本题主要考查三角变换、正弦定理、余弦定理等基础知识,同时考查运算求解能力. 【精讲精析】由题意得a c pb +=,214ac b =(1) 当5,14p b ==时,54a c +=,14ac =解得114114=⎧⎧=⎪⎪⎨⎨=⎪⎪=⎩⎩a c a c 或; (2)()2222222222222cos 23(0,1)222b p b b ac ac b a c b B p b ac ac--+--+-====-∈ ∴2322p <<,又由a c pb +=可得0,p ><<p 关闭Word 文档返回原板块。

正弦定理余弦定理知识点总结及最全证明

正弦定理余弦定理知识点总结及最全证明

正弦定理余弦定理知识点总结及最全证明正弦定理概述:正弦定理是三角形的一个重要定理,它描述了三角形中各边与其相对的正弦值之间的关系。

正弦定理可以用于求解任意三角形的边长或角度。

正弦定理表达式:在一个三角形ABC中,有以下正弦定理的表达式:a/sin(A) = b/sin(B) = c/sin(C)其中,a、b、c分别表示三角形的边长,A、B、C表示三角形的角度。

正弦定理表明,三角形的任意一边的长度与这条边相对的角的正弦值成正比。

正弦定理的证明:可以使用数学推导来证明正弦定理。

这里给出一种较为详细的证明方法。

证明:1. 通过三角形的边长关系:a = b * sin(A) / sin(B)和c = b *sin(C) / sin(B),可得到以下关系式:a * sin(B) = b * sin(A)和c * sin(B) = b * sin(C)2.利用向量叉积原理知识,假设D为线段BC上的一点,则由向量的垂直性知:向量BD与向量AD是垂直的,向量CD与向量AD是垂直的。

3. 记向量AD为向量a,向量BD为向量b,向量CD为向量c,由向量b与向量a的垂直性可得:向量b·向量a = ,b, * ,a, *sin(∠BA) = b * AD * sin(∠BA)。

4. 同理,由向量c与向量a的垂直性可得:向量c·向量a = ,c,* ,a,* sin(∠CA) = c * AD * sin(∠CA)。

5. 因为∠C + ∠A = ∠BA,即∠CA + ∠BA = 180°,所以sin(∠BA) = sin(∠CA)。

所以有b * AD * sin(∠BA) = c * AD *sin(∠CA)。

6. 即有b * AD * sin(∠BA) = c * AD * sin(∠BA),那么b = c,所以定理得证。

余弦定理概述:余弦定理是三角形的另一个重要定理,它描述了三角形中各边与其相对的角之间的关系。

正弦定理余弦定理知识点

正弦定理余弦定理知识点

正弦定理余弦定理知识点正弦定理和余弦定理是三角形中常用的公式。

1.三角形中常用的公式包括:角度和公式A+B+C=π;海伦公式S=√(p(p-a)(p-b)(p-c)),其中 p=(a+b+c)/2;正弦定理a/sinA=b/sinB=c/sinC=2R,其中 R 为外接圆半径;余弦定理a²=b²+c²-2bccosA,b²=a²+c²-2accosB,c²=a²+b²-2abcosC。

2.三角形中的边角不等关系:A>B⟺a>b,a+b>c,a-b<c。

3.正弦定理可用于以下情况:①已知两角和任一边,求其他两边及一角;②已知两边和其中一边对角,求另一边的对角;③几何作图时,存在多种情况。

4.已知两边和其中一边的对角解三角形的情况:(1)A为锐角,有一解;(2)A为锐角或钝角,当a>b时有一解。

5.余弦定理可用于以下情况:(1)已知三角形的三条边长,可求出三个内角;(2)已知三角形的两边及夹角,可求出第三边。

6.三角形面积公式为 S=1/2absinC=1/2bcsinA=1/2casinB。

在解题时,可以利用正弦定理或余弦定理判断三角形的形状,从中找到三角形中的边角关系,判断出三角形的形状。

例如,在△ABC 中已知 acosB=bcosA,利用扩充的正弦定理可以得到 sin(A-B)=0,因此 A=B,即△ABC 为等腰三角形。

练题:1.在△ABC 中,若 XXX2bcosBcosC,可判断三角形的形状。

2.在△ABC 中,已知 atanB=btanA,可判断三角形的形状。

3.已知△ABC 中,有 cosA+2cosCsinB=2,可判断三角形的形状。

解:由题意可得tanA=1,tanB=2,tanC=3则tan(A+B)=tan(180°-C)=tanC=-3tan(A+B)+tanC=-3+3=0又因为A、B、C为锐角,所以A+B+C=180°而tan(A+B+C)=\frac{tan(A+B)+tanC}{1-tan(A+B)tanC}=0所以A+B+C=180°综上所述,A+B+C=180°.3.在三角形ABC中,a、b、c分别为角A、B、C的对边。

高中数学 考点16 正弦定理和余弦定理(含2017高考试题)

高中数学 考点16 正弦定理和余弦定理(含2017高考试题)

考点16 正弦定理和余弦定理一、选择题1。

(2017·全国乙卷文科·T11)△ABC 的内角A,B ,C 的对边分别为a,b ,c 。

已知sinB+sinA (sinC-cosC)=0,a=2,,则C= ( ) A.12π B 。

6π C 。

4π D.3π 【命题意图】本题主要考查三角公式的应用,重点考查正弦定理在解决三角形问题中的应用.【解析】选B 。

由题意得sin (A+C)+sinA(sinC —cosC )=0,sinAcosC+cosAsinC+sinAsinC —sinAcosC=0,即sinC(sinA+cosA )sinCsin 4A π⎛⎫+ ⎪⎝⎭=0,所以A=34π. 由正弦定理sinA a =sinC c 得23sin 4π=sinC ,即sinC=12,得C=6π,故选B 。

【反思总结】在解有关三角形的题目时,要有意识地考虑用哪个定理更合适,或是两个定理都要用,要抓住能够利用某个定理的信息。

一般地,如果式子中含有角的余弦或边的二次式时,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到。

2.(2017·山东高考理科·T9)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c,若△ABC 为锐角三角形,且满足sinB (1+2cosC)=2sinAcosC+cosAsinC ,则下列等式成立的是 ( )A.a=2b B 。

b=2a C 。

A=2B D.B=2A【命题意图】本题考查三角恒等变换及正弦定理的应用,意在考查考生对数学式子的变形能力与运算推理能力.【解析】选A 。

2sinAcosC+cosAsinC=sinAcosC+(sinAcosC+cosAsinC)=sinAcosC+sinB=sinB+2sinBcosC ,即sinAcosC=2sinBcosC ,由于△ABC 为锐角三角形,所以cosC ≠0,sinA=2sinB ,由正弦定理可得a=2b 。

高中数学正余弦定理和解三角形

高中数学正余弦定理和解三角形

正余弦定理和解三角形的实际应用要求层次重难点正余弦定理 C 使学生掌握正、余弦定理及其变形;能够灵活运用正、余弦定理解题解三角形C(一) 知识内容1.直角三角形中各元素间的关系:在△ABC 中,C =90°,AB =c ,AC =b ,BC =a . (1)三边之间的关系:a 2+b 2=c 2.(勾股定理) (2)锐角之间的关系:A +B =90°; (3)边角之间的关系:(锐角三角函数定义) sin A =cos B =a c,cos A =sin B =b c,tan A =a b. 2.斜三角形中各元素间的关系:在△ABC 中,A 、B 、C 为其内角,a 、b 、c 分别表示A 、B 、C 的对边. (1)三角形内角和:A +B +C =π.(2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等.2sin sin sin a b cR A B C===.(R 为外接圆半径) (3)余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍.222222222222222222cos ,22cos ,2cos ,cos ,22cos .cos .2b c a A bc a b c bc A a c b b a c ac B B ac c a b ab C a b c C ab ⎧+-=⎪⎧=+-⎪+-⎪⎪=+-⇒=⎨⎨⎪⎪=+-⎩+-⎪=⎪⎩3.三角形的面积公式:(1)S △=12ah a =12bh b =12ch c (h a 、h b 、h c 分别表示a 、b 、c 上的高); 例题精讲高考要求板块一:正弦定理和余弦定理正余弦定理和解三角形(2) S △=12ab sin C =12bc sin A =12ac sin B ;(3) S △=2sin sin 2sin()a B C B C +=2sin sin 2sin()b C A C A +=2sin sin 2sin()c A BA B +;(4) S △=2R 2sin A sin B sin C .(R 为外接圆半径) (5) S △=4abcR; (6) S △=()()()s s a s b s c ---;1()2s a b c ⎛⎫=++ ⎪⎝⎭;(海伦公式)(7) S △=r ·s . 4.解三角形:由三角形的六个元素(即三条边和三个内角)中的三个元素(其中至少有一个是边)求其他未知元素的问题叫做解三角形.广义地,这里所说的元素还可以包括三角形的高、中线、角平分线以及内切圆半径、外接圆半径、面积等等.解三角形的问题一般可分为下面两种情形:若给出的三角形是直角三角形,则称为解直角三角形;若给出的三角形是斜三角形,则称为解斜三角形解斜三角形的主要依据是:设△ABC 的三边为a 、b 、c ,对应的三个角为A 、B 、C . (1)角与角关系:A +B +C = π;(2)边与边关系:a + b > c ,b + c > a ,c + a > b ,a -b < c ,b -c < a ,c -a > b ; (3)边与角关系:正余弦定理. 5.三角形中的三角变换三角形中的三角变换,除了应用上述公式和上述变换方法外,还要注意三角形自身的特点. 6.推论:正余弦定理的边角互换功能①2sin a R A =,2sin b R B =,2sin c R C = ②sin 2a A R =,sin 2b B R =,sin 2cC R= ③sin sin sin a b c A B C ===sin sin sin a b cA B C++++=2R ④::sin :sin :sin a b c A B C =⑤222sin sin sin 2sin sin cos A B C B C A =+- 222sin sin sin 2sin sin cos B C A C A B =+-222sin sin sin 2sin sin cos C A B A B C =+-7.三角形中的基本关系式:sin()sin ,cos()cos B C A B C A +=+=-, sincos ,cos sin 2222B C A B C A++== (二)主要方法:1.通过对题目的分析找到相应的边角互换功能的式子进行转换.2.利用正余弦定理可以把边的关系转化为角的关系,也可以把角的关系转化为边的关系 .(三)典例分析:【例1】 已知△ABC 中,AB a =,AC b =,0a b ⋅<,154ABC S ∆=, 3,5a b ==,则BAC ∠=( )A .30B .150-C .150°D . 30或150°【变式】 在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,且满足cos2A =,3AB AC ⋅=. (1)求ABC ∆的面积;(2)若6b c +=,求a 的值.【变式】 ABC ∆的三个内角为A B C 、、,求当A 为何值时,cos 2cos2B CA ++取得最大值,并求出 这个最大值.【变式】 在△ABC 中,a 、b 、c 分别是∠A 、∠B 、∠C 的对边长,已知a 、b 、c 成等比数列,且a 2-c 2=ac -bc , 求∠A 的大小及sin b Bc的值.【变式】 已知在ABC ∆中,a =45o B =,c =.【变式】 已知:,3,5,7ABC a b c ∆===中求:ABC ∆中的最大角.【变式】 已知△ABC 中,AB =1,BC =2,则求角C 的取值范围.【例2】 在△ABC 中,若2cos B sin A =sin C ,则△ABC 的形状一定是( )A.等腰直角三角形B.直角三角形C.等腰三角形D.等边三角形【变式】 在△ABC 中,若cos cos a A b B =,试判断此三角形的形状.【变式】 在△ABC 中,若)sin()()sin()(2222B A b a B A b a +-=-+,则判断△ABC 的形状.【例3】 若△ABC 的三条长分别是3,4,6,求它的较大的锐角的平分线分三角形所成的两个三角形的面积比.【例4】 已知三角形的三边长为三个连续自然数, 且最大角是钝角.求这个三角形三边的长.【例5】 在△ABC 中,BC =a ,AC =b ,a,b 是方程02322=+-x x 的两个根,且2cos(A +B )=1求:(1)角C 的度数;(2)AB 的长度; (3)△ABC 的面积.【变式】 在C A a c B b ABC ,,1,60,30和求中,===∆【变式】C B b a A c ABC ,,2,45,60和求中,===∆【教师选做】证明海伦公式<教师备案>1.海伦公式的变形形式:①②③④⑤2.海伦公式的其他证明方法证一 勾股定理分析:先从三角形最基本的计算公式S △ABC =12aha 入手,运用勾股定理推导出海伦公式.证明:如图ha ⊥BC ,根据勾股定理,得: 222222a a x a y hb y hc x =-⎧⎪=-⎨⎪=-⎩x =2222a c b a +-, y =2222a c b a-+∴ S △ABC =12aha=12a此时S △ABC 为变形④,故得证.证二:斯氏定理分析:在证一的基础上运用斯氏定理直接求出ha. 斯氏定理:△ABC 边BC 上任取一点D , 若BD=u ,DC=v,AD=t.则t 2 = 22b u cv uv a+-证明:由证一可知, u =2222a b c a -+,v =2222a b c a+-∴2ah = t 2 =224222222422b a b b c c a c b c a -+++--42222()4a b c a --∴ S △ABC =12aha =12a= 此时为S △ABC 的变形⑤,故得证.证三:余弦定理 即本题所采用证法. 证四:恒等式分析:考虑运用S △ABC =r p ,因为有三角形内接圆半径出现,可考虑应用三角函数的恒等式.恒等式:若∠A+∠B+∠C =180○那么tan 2A · tan 2B + tan 2A · tan 2C + tan 2B · tan 2C = 1证明:如图,tan 2A = r y ① tan 2B = rz ②tan 2C = rx ③根据恒等式,得:1111tan tan tan tan tan .tan222222A B C A B C ++=⋅ ①②③代入,得: 3x y z xyzr r++=∴r2(x+y+z) = xyz ④如图可知:a +b-c = (x+z)+(x+y)-(z+y) = 2x∴x =2a b c +-,同理:y =2b c a +- z =2a cb +-zy BC代入④,得: r 2 ·2a b c ++=()()()8a b c b c a a c b +-+-+-两边同乘以2a b c++,得:r 2·2()4a b c ++=()()()()16a b c a b c b c a a c b +++-+-+-两边开方,得: r ·2a b c ++左边r ·2a b c++= r ·p= S △ABC 右边为海伦公式变形①,故得证.证五:半角定理半角定理:tan2Atan 2Btan 2C证明:根据tan 2A=r y ,∴y ①同理z ②× x ③①×②×③,得:xyz∵由证一,x =2b a c +-=2b a c++-c = p-c y =2b a c -+=2b a c ++-a = p-az =2a b c -+=2b ac ++-b = p-b∴∴∴S △ABC = r ·故得证. 3.海伦公式的推广由于在实际应用中,往往需计算四边形的面积,所以需要对海伦公式进行推广.由于三角形内接于圆,所以猜想海伦公式的推广为:在任意内接与圆的四边形ABCD 中,设p=2a b c d+++,则S 四边形=现根据猜想进行证明.证明:如图,延长DA ,CB 交于点E. 设EA = e EB = f∵∠1+∠2 =180○ ∠2+∠3 =180○ ∴∠1 =∠3,∴△EAB ~△ECDCzy B∴f a e +=e f c +=bdEAB ABCD S S ∆四边形=222b d b -解得: e =22()b ab cd d b +- ①f =22()b ad bcd b+- ②由于S 四边形ABCD =222d b b -S △EAB将①,②跟b =2222()b d b d b +-代入公式变形④,得:∴S 四边形ABCD =2224d b b -2222224()e b e b f -+-=2224d b b -42222222222222224222222222()()()()()4[()]()()()()b ab cd d b b ab cd b d b b ad bc d b d b d b d b +-+-+-+-----=2224d b b -{}422222222222244()()[()()()]()b ab cd d b ab cd d b ad bcd b +--++--+- =2214()d b -22222222224()()[{}{}{}]ab cd d b ab cd d b ad bc +--++--+=2214()d b -22222222442222224()()(2)ab cd d b a b c d d b d b a d b c +--+++--- =2214()d b -222222222222224()()[()()ab cd d b b a b d c d d b a c +--+--+--+ =2214()d b -222222222()[4()()]d b ab cd c d b a -+-+--=1422222222(22)(22)ab cd c d b a ab cd d b a c +++--+-++- =22221[()()][()()]4a c b d b d a c +--+-- =1()()()()4a b c d a b d c a d c b b d c a ++-++-++-++- =()()()()p a p b p c p d ----所以,海伦公式的推广得证.4.海伦公式的推广的应用海伦公式的推广在实际解题中有着广泛的应用,特别是在有关圆内接四边形的各种综合题中,直接运用海伦公式的推广往往事半功倍.【例6】 如图,四边形ABCD 内接于圆O 中,S ABCD =433,AD = 1,AB = 1, CD = 2. 求:四边形可能为等腰梯形.(一) 知识内容解斜三角形和证明三角形全等或相似类似,已知条件必须能确定这个三角形,才能求出唯一的其他未知条件的解.如果板块二:正余弦定理的实际应用dcbaOCA已知条件不能确定一个三角形,则可能无解或有两解,如两边和一个非两边夹角.大致可以把解斜三角形用下面的表格来概括:(二)典例分析【例7】 如图所示,已知在梯形ABCD 中(//AB CD ),CD =2,AC 60o BAD ∠=,求梯形的高DE .【变式】 在△ABC 中,已知4=AB ,7=AC ,BC 边上的中线27=AD ,那么求BC 为多少.【变式】 在△ABC 中,已知AC B AB ,66cos ,364==边上的中线BD =5,求sin A 的值.【变式】 已知△ABC 中,a 、b 、c 为角A 、B 、C 的对边,且a +c =2b ,A –B =60o ,求sin B 的值.【例8】 如图,A ,B ,C ,D 都在同一个与水平面垂直的平面内,B ,D 为两岛上的两座灯塔的塔顶.测量船于水面A 处测得B 点和D 点的仰角分别为075,030,于水面C 处测得B 点和D 点的仰角均为060,AC =0.1km.试探究图中B ,D 间距离与另外哪两点间距离相等,然后求B ,D 的距离(计算结果精确到0.01km≈1.414≈2.449)【变式】 已知圆内接四边形ABCD 的边长分别为AB =2,BC =6,CD =DA =4,求四边形ABCD 的面积.D【变式】 某观测站C 在A 城的南偏西20°方向,由A 城出发有一条公路定向是南偏东40°,由C 处测得距C 为31km 的公路上B 处有1人沿公路向A 城以v =5km/h 的速度走了4h 后到达D 处,此时测得C 、D 间距离为21km.问这人以v 的速度至少还要走多少h 才能到达A 城.【教师选做】利用正余弦定理证明三角恒等式【例9】 在△ABC 中, 求证:22cos cos a b A B -+ +22cos cos b c B C -+ +22cos cos c a C A-+=0.【例10】 在△ABC 中,角A ,B ,C 的对边分别为a , b , c , 证明:222sin()sin a b A B C c --=.【例11】 在△ABC 中,记BC =a , CA =b , AB =c , 若22299190a b c +-=,则cot cot cot C A B +为多少.<教师备案>规律方法总结:1.要正确区分两个定理的不同作用,围绕三角形面积公式及三角形外接圆直径展开三角形问题的求解.2.两个定理可以实现将“边、角混合”的等式转化成“边或角的单一”等式.3.记住一些结论:π,,,A B C A B C ++=均为正角,1sin 2S ab C =等.4.余弦定理的数量积表示式:cos ||||BA CA A BA CA ⋅=.5.余弦定理中,涉及到四个量,利用方程思想,知道其中的任意三个量可求出第四个量.。

高考数学母题题源系列专题16应用正弦定理、余弦定理解三角形文

高考数学母题题源系列专题16应用正弦定理、余弦定理解三角形文

母题十五 应用正弦定理、余弦定理解三角形【母题原题1】【2018天津,文16】在ABC △中,内角A B C ,,所对的边分别为a b c ,,.已知sin cos 6b A a B π⎛⎫=- ⎪⎝⎭.(I )求角B 的大小;(II )设23a c ==,,求b 和sin(2)A B -的值.【考点分析】本小题主要考查同角三角函数的基本关系,两角差的正弦与余弦公式,二倍角的正弦与余弦公式,以及正弦定理、余弦定理等基础知识,考查运算求解能力.满分13分.【答案】(I )3π;(II )()sin 2b A B =-=.由πsin cos()6b A a B =-,可得sin A =.a c <,故cos A =因此sin 22sin cos A A A ==21cos22cos 17A A =-=.()11sin 2sin 2cos cos 2sin 27A B A B A B ∴-=--【名师点睛】在处理三角形中的边角关系时,一般全部化为角的关系,或全部化为边的关系.题中若出现边的一次式一般采用到正弦定理,出现边的二次式一般采用到余弦定理.应用正、余弦定理时,注意公式变式的应用.解决三角形问题时,注意角的限制范围. 【母题原题2】【2017天津,文15】在ABC △中,内角,,A B C 所对的边分别为,,a b c .已知sin 4sin a A b B =,222)ac a b c =--.(I )求cos A 的值; (II )求sin(2)B A -的值.【答案】(I );(II ).试题解析:(Ⅰ)由B b A a sin 4sin =及BbA a sin sin =得b a 2=, 由)(5222c b a ac --=及余弦定理得55552cos 222-=-=-+=ac acbcac b A .【考点】1.正余弦定理;2.三角恒等变换.【名师点睛】高考中经常将三角变换与解三角形知识综合起来命题,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理实现边角互化;以上特征都不明显时,则要考虑两个定理都有可能用到.而三角变换中主要是“变角、变函数名和变运算形式”,其中的核心是“变角”,即注意角之间的结构差异,弥补这种结构差异的依据就是三角公式. 【母题原题3】【2016天津,文15】在ABC ∆中,内角A B C ,,所对应的边分别为a b c ,,,已知sin 2sin a B A . (I )求B ;(II )若1cos A 3=,求sinC 的值.【答案】(Ⅰ)6π=B ;.【解析】试题分析:(Ⅰ)利用正弦定理,将边化为角:2sin sin cos A B B A =,再根据三角形内角范围化简得23cos =B ,6π=B ;(Ⅱ)问题为“已知两角,求第三角”,先利用三角形内角和为π,将考点:同角三角函数的基本关系、二倍角的正弦公式、两角和的正弦公式以及正弦定理【名师点睛】三角函数是以角为自变量的函数,因此解三角函数题,首先从角进行分析,善于用已知角表示所求角,即注重角的变换.角的变换涉及诱导公式、同角三角函数关系、两角和与差公式、二倍角公式、配角公式等,选用恰当的公式,是解决三角问题的关键,明确角的范围,对开方时正负取舍是解题正确的保证.【母题原题4】【2015天津,文16】△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知△ABC 的面积为12,cos ,4b c A -==-(I )求a 和sin C 的值; (II )求πcos 26A ⎛⎫+⎪⎝⎭的值.【答案】(I )a =8,sin C =(II .(II ))2πππcos 2cos 2cos sin 2sin 2cos 1sin cos 666A A A A A A ⎛⎫+=-=-- ⎪⎝⎭,=【考点定位】本题主要考查三角变换及正弦定理、余弦定理等基础知识,考查基本运算求解能力.【名师点睛】解三角形问题实质是附加条件的三角变换,因此在解三角形问题的处理中,正弦定理、余弦定理就起到了适时、适度转化边角的作用,分析近几年的高考试卷,有关的三角题,大部分以三角形为载体考查三角变换.【命题意图】考查正弦定理、余弦定理及三角形面积公式,考查三角函数中同角三角函数关系、诱导公式、两角和与差三角函数公式、二倍角公式在恒等变形中的应用,考查化简变形能力、数形结合思想、等价转换思想. 【命题规律】解三角形是高考的必考内容,重点是正弦定理、余弦定理和三角形面积公式,考题灵活多样,选择题、填空题和解答题都有考到,难度中低中档题均有.以求边长、求角(三角函数值)或研究三角形的面积为目标,往往是利用正弦定理、余弦定理和三角形面积公式进行有效的边角转换,利用和差倍半的三角函数公式,对等式进行恒等变形,有时会结合角的范围,研究三角函数式的取值范围等. 【答题模板】(1)通过正弦定理实施边角转换; (II )通过余弦定理实施边角转换; (3)通过三角变换找出角之间的关系;(4)通过三角函数值符号的判断以及正、余弦函数的有界性进行讨论;(5)若涉及两个(或两个以上)三角形,这时需作出这些三角形,先解条件多的三角形,再逐步求出其他三角形的边和角,其中往往用到三角形内角和定理,有时需设出未知量,从几个三角形中列出方程(组)求解. 【方法总结】1.三角形中判断边、角关系的具体方法: (1)通过正弦定理实施边角转换;(II )通过余弦定理实施边角转换; (3)通过三角变换找出角之间的关系;(4)通过三角函数值符号的判断以及正、余弦函数的有界性进行讨论;(5)若涉及两个(或两个以上)三角形,这时需作出这些三角形,先解条件多的三角形,再逐步求出其他三角形的边和角,其中往往用到三角形内角和定理,有时需设出未知量,从几个三角形中列出方程(组)求解. 2.三角形的有关性质在解三角形问题中起着重要的作用,如利用“三角形的内角和等于π”和诱导公式可得到sin(A +B )=sin C ,sinA +B2=cos C2等,利用“大边对大角”可以解决解三角形中的增解问题,如:在斜三角形中,用正弦定理求角时,若已知小角求大角,则有两解;若已知大角求小角,则只有一解,注意确定解的个数. 3. 如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.已知两角和一边或两边及夹角,该三角形是确定的,其解是唯一的;已知两边和一边的对角,该三角形具有不唯一性. 4. 在解决三角形的问题中,面积公式B ac A bc C ab S sin 21sin 21sin 21===最常用,因为公式中既有边又有角,容易和正弦定理、余弦定理联系起来.1.【2018(I(II【答案】(I (II )【解析】分析:(I )根据题意,利用余弦定理和正弦定理,即可求得c 和sinA 的值; (II )根据同角的三角函数关系和三角恒等变换,计算即可.详解:(I,所以【名师点睛】解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是:第一步:定条件,即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向.第二步:定工具,即根据条件和所求合理选择转化的工具,实施边角之间的互化.第三步:求结果.【2018天津河东区二模】角A、B、C所对的边分别为,2.角A为锐角.(I(II【答案】(I;(II.【解析】分析:第一问首先利用题中的条件,A的值,在求边长的时候,就利用正弦定理可以求得结果;第二问结合题中所给的条件,利用余弦定理建立边所满足的等量关系式,求得结果,之后应用面积公式求得三角形的面积.详解:(I)由正弦定理,代入,,,解得,.∵角A为锐角,.(II),代入为,解为,.【名师点睛】该题考查的是有关解三角形的问题,在解题的过程中,需要把握正弦定理、余弦定理、倍角公式、3.【2018天津河北区二模】在△ABC中,角A,B,C的对边分别是a,b,c,若B=2C,2b=3c.(I)求cosC的值;(II)求的值.【答案】,.【名师点睛】解三角形的问题和三角变换常常综合在一起考查,解题时要根据所给出的条件利用正弦定理、余弦定理将边角之间进行合理的转化,然后再根据题意进行求解,进行变换时要注意对所用公式的选择.4.【2018【答案】(I【解析】分析:(1)正弦公式以及诱导公式可得,进而可得结果;(2)利用(I),由已知及正弦定理可得,,由余弦定理可得结果,得【名师点睛】本题主要考查正弦定理、余弦定理在解三角形中的应用,属于中档题.正弦定理是解三角形的有力工具,其常见用法有以下三种:(1)知道两边和一边的对角,求另一边的对角(一定要注意讨论钝角与锐角);(2)知道两角与一个角的对边,求另一个角的对边;(3)证明化简过程中边角互化;(4)求三角形外接圆半径.5.【2018中,内角【答案】【解析】分析:(Ⅰ)利用正弦定理和余弦定理代入可得边得解.【名师点睛】解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是:第一步:定条件,即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向. 第二步:定工具,即根据条件和所求合理选择转化的工具,实施边角之间的互化. 第三步:求结果.6.【2018天津滨海新区七校模拟】锐角ABC ∆中, ,,a b c 分别为角,,A B C 的对边, 4sin a B =, (I )若6,8,a b c =+=求ABC ∆的面积;(II )求2sin 23A π⎛⎫+⎪⎝⎭的值.【答案】(I (II【解析】试题分析:(I )由正弦定理化角,可得sin A =,再由角A 的余弦定理,可求得8bc =,进一步求得三角形面积;(II )由正弦和角公式和倍角公式可求值.试题解析:(I )4sin a B = ,4sin sin A B B ∴ .0B π<<, sin A ∴=A 是锐角,3cos 4A ∴=== .【名师点睛】(1)一般是根据正弦定理求边或列等式.余弦定理揭示的是三角形的三条边与其中的一个角之间的关系,若题目中给出的关系式是“平方”关系,此时一般考虑利用余弦定理进行转化.(2)在解有关三角形的题目时,要有意识地考虑用哪个定理更适合,或是两个定理都要用,要抓住能够利用某个定理的信息.一般地,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到. (3)在解三角形的问题中,三角形内角和定理起着重要作用,在解题中要注意根据这个定理确定角的范围及三角函数值的符号,防止出现增解或漏解.7.【2018天津十二校重点模拟一】已知函数()2sin 22cos 26f x x x π⎛⎫=-+- ⎪⎝⎭. (I )求()f x 的单调递增区间;(II )设ABC ∆的内角,,A B C 的对边分别为,,a b c ,且()1c f C ==-,若2sin A sin B =,求ABC ∆的面积.【答案】(I )(),36k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦;(II 【解析】试题分析:(I )利用二倍角的余弦函数公式化简,整理后再利用两角和与差的正弦函数公式化为一个角的正弦函数,由正弦函数的单调增区间即可确定()f x 的单调递增区间;(II )根据()21f C =-,求出C ,利用正弦定理及余弦定理,结合题设条件即可求出a , b ,从而可求出ABC ∆的面积. 试题解析:(I )()sin2coscos2sin66f x x x ππ=- 1cos22sin 216x x π⎛⎫++-=+- ⎪⎝⎭由222,262k x k k Z πππππ-+≤+≤+∈,得(),36k x k k Z ππππ-+≤≤+∈∴由①②解得1,2a b ==,1sin 2ABC S ab C ∆∴==.8.【2018,(I(II【答案】(I (II【解析】试题分析:(I ,的面积为的值;(II )利用(I试题解析:(I )由已知,,,且,在中,, .(II ),又,,,9.【2018天津上学期期末考】在ABC ∆中,角,,A B C 的对边分别为,,a b c ,且满足sin sin sin sin A C A Bb a c--=+.(I )求C ;(II )若1cos 7A =,求()cos 2A C -的值. 【答案】(I )3π;(II )2398-.整理得222a b c ab +-=,由余弦定理得2221cos 22a b c C ab +-==,又0C π<<,所以3C π=.(II )由1cos 7A =知A 为锐角,又22sin cos 1A A +=,所以sin A === ,故247cos22cos 149A A =-=-, 1sin22sin cos 27A A A ===,所以()cos 2cos 2cos2cos sin2sin 333A C A A A πππ⎛⎫-=-=+ ⎪⎝⎭4712349249298=-⨯+=-. 10.【2018天津红桥区学期期末考】在ABC ∆中,内角,,A B C 所对的边分别是,,a b c ,已知sin 3sin b A c B =,3a =, 2cos 3B =. (I )求b 的值; (II )求sin 23B π⎛⎫-⎪⎝⎭的值.【答案】(I )b =(II .【解析】试题分析:(I )由正弦定理可得a=3c ,再由余弦定理可得b ;(II )由已知得cosB 和sinB ,利用二倍角公式求得cos2B , sin2B ,将sin 23B π⎛⎫-⎪⎝⎭展开代入求解即可.11.【a ,b ,c A ,B ,C(I(II )若3【答案】(I (II )见解析.为等腰三角形.【名师点睛】本题主要考查正弦定理、余弦定理及三角形面积公式,判断三角形形状问题,属于中档题.判断三角形状的常见方法是:(1)通过正弦定理和余弦定理,化边为角,利用三角变换得出三角形内角之间的关系进行判断;(II )利用正弦定理、余弦定理,化角为边,通过代数恒等变换,求出边与边之间的关系进行判断;(3)根据余弦定理确定一个内角为钝角进而知其为钝角三角形.12.【2018天津河西模拟】在ABC 中, a , b , c 分别是角A , B , C 的对边,若23b c =, 120C =︒. (I )求cos A 的值.(II )若6c =,求ABC 的面积.【答案】(I ;(II )42- 【解析】试题分析:(I )由正弦定理求得sin B ,进而得cos B ,再由诱导公式和两角和的正弦公式可求得cos A ;(II )由已知计算出b ,再由(I )计算出sin A ,最后由三角形面积公式可得面积.试题解析:(I )∵23b c =,∴2sin sin 3B C ==0πB <<,∴cos B =,()cos cos πA B C ⎡⎤=-+⎣⎦()cos B C =-+cos cos sin sin B C B C =-+12⎛⎫=- ⎪⎝⎭=(II )∵23b c =, 6c =,∴4b =,∵0πA <<, cos A =sin A =,∴1sin 422S bc A ==-13.【2018(I(II )如图,外一点,若在平面四边形中,,【答案】(II【解析】分析:(I )直接利用三角函数关系式的恒等变换和正弦定理求出cosB 的值. (II )利用(I )的结论,进一步利用余弦定理求出结果.(II,∴由余弦定理可得,化简得【名师点睛】本题考查的知识要点:三角函数关系式的恒等变换,正弦定理和余弦定理的应用.对公式灵活运用与结合是解题关键.14.【2018(I(II,求函数(III)在中,【答案】(I(II【解析】试题分析:(I即.(II)由(I)上单调递增,.上值域为(III,得。

正余弦定理在解三角形中的应用知识点与题型归纳

正余弦定理在解三角形中的应用知识点与题型归纳

正余弦定理在解三角形中的应用知识点与题型归纳一、知识点(一). 正弦定理和余弦定理 1.公式在△ABC 中,若角A ,B ,C 所对的边分别是a ,b ,c ,R 为△ABC 的外接圆半径,则定理正弦定理余弦定理内容a sin A =b sin B =c sin C =2R.a 2=b 2+c 2-2bccosA ;b 2=c 2+a 2-2cacosB ; c 2=a 2+b 2-2abcosC变形(1)a =2Rsin A ,b =2Rsin B ,c =2Rsin C ;(2)a ∶b ∶c =sin A ∶sin B ∶sin C ; (3)a +b +c sin A +sin B +sin C=a sin A =2R. bc a c b A 2cos 222-+=;ac b c a B 2cos 222-+=;abc b a C 2cos 222-+=.2.三角形常用面积公式:(1)S =12a ·h a (h a 表示边a 上的高); (2)A bc B ac C ab S sin 21sin 21sin 21===. 3.常用结论:(1).在△ABC 中,A >B ⇔a >b ⇔sin A >sin B; (2).三角形中的射影定理在△ABC 中,B c C b a cos cos +=;A c C a b cos cos +=;B a A b c cos cos +=.(3).内角和公式的变形①sin(A +B)=sin C ;②cos(A +B)=-cos C.(4).角平分线定理:在△ABC 中,若AD 是角A 的平分线,如图,则AB AC =BDDC .(二). 利用正、余弦定理解三角形已知两边和一边的对角或已知两角及一边时,通常选择正弦定理解三角形;已知两边及夹角或已知三边时,通常选择余弦定理.特别是求角时尽量用余弦定理来求,尽量避免分类讨论.在△ABC 中,已知,a b 和A 时,解的情况主要有以下几类:①若A 为锐角时:a bsin Aa bsin A()bsin A a b ()a b ()<⎧⎪=⎪⎨<<⎪⎪≥⎩无解一解直角二解一锐,一钝一解锐角A b a sin = b a ≥ b a A b <<sin sin a b A <一解 一解 两解 无解 ② 若A 为直角或钝角时:a b a b ()≤⎧⎨>⎩无解一解锐角(三). 三角形的形状的判定 1.判断三角形形状的(1). 若b a =或()()()0=---a c c b b a ,则△ABC 为等腰三角形; (2). 若222c b a =+,则△ABC 为以C 为直角的直角三角形; (3). 若222c b a <+,则△ABC 为以C 为钝角的钝角三角形; (4). 若()()022222=-+-c b aba ,则△ABC 为等腰三角形或直角三角形;(5). 若b a =且222c b a =+,则△ABC 为等腰直角三角形;(6). 若B A 2sin 2sin =,即B A =或π2=+B A ,则△ABC 为等腰三角形或直角三角形; (7). 用余弦定理判定三角形的形状(最大角A 的余弦值的符号)①.在ABC ∆中,222222090cos 02b c a A A b c a bc+-<<⇔=>⇔+>,则△ABC 为锐角三角形; ②.在ABC ∆中,22222290cos 02b c a A A b c a bc+-=⇔==⇔+=,则△ABC 为直角三角形; ③.在ABC ∆中,22222290cos 02b c a A A b c a bc+-<⇔=<⇔+<,则△ABC 为钝角三角形; 2.判断三角形形状的2种思路(1).化边:通过因式分解、配方等得出边的相应关系,从而判断三角形的形状.(2).化角:通过三角恒等变形,得出内角的关系,从而判断三角形的形状.此时要注意应用π=++C BA这个结论.(四). 解三角形时的常用结论在ABC ∆中,0180A B C ++=,0902A B C++= (1)在ABC ∆中sin sin cos cos ;A B a b A B A B >⇔>⇔>⇔<(2)角的变换--互补关系:0sin(A+B)=sin(180)sinC C -=,0cos(A+B) cos (180)cosC C =-=-,0tan(A+B) tan(180)tan C C =-=-;(3)角的变换--互余关系:0sinsin (90)cos 222A B C C +=-=,0cos cos(90)sin 222A B C C+=-=, (4)B A B A 222sin 2sin =⇒=或π=+B A 22B A =⇒或2π=+B A .二、典型例题类型一:利用正、余弦定理解三角形【例1】.△ABC 中,,6c =A=45°,a=2,求b 和B ,C.【解答】:解法一 :由正弦定理a c 2=sin C=sin A sin C sin 45sin C 2=︒得,所以若C=60°,则B=75°,a 2b sin B sin 751,sin A sin 45==︒=︒若C=120°,则B=15°,a 2b sin B sin15 1.sin A sin 45==︒=︒解法二:余弦定理2222a b c 2bccos A b 641,=+-=+-=,解得若222a c b b 1cos B==B=75C=602ac +-=︒︒,则,若222a c b b 1,cos B==B=15C=120.2ac 4+-=︒︒则, 解法三:正余弦定理2222a b c 2bccos A b 641=+-=+-=,解得若a b c b 1==sin B=C=sin A sin B sinC 42=,则由,得因为b>c>a ,所以B>C>A ,所以B=75°,C=60°;若a b c b 1==sin B=,sin C=,sin A sin B sinC 42=,则由,得 因为c>a>b ,所以C>A>B ,所以B=15°,C=120°.类型二:用正、余弦定理判断三角形的形状【例2】.已知△ABC 中cos cos a A b B =,试判断△ABC 的形状.【解答】:方法一:用余弦定理化角为边的关系由cos cos a A b B =得22222222b c a a c b a b bc ac+-+-⋅=⋅⇒22222222()()a b c a b a c b +-=+-,即22222()()0a b a b c -+-=,当220a b -=时,ABC ∆为等腰三角形;当2220a b c +-=即222a b c +=时,则ABC ∆为直角三角形; 综上:ABC ∆为等腰或直角三角形.方法二:用正弦定理化边为角的关系 由正弦定理得:R Bb A a 2sin sin ==,即A R a sin 2=,B R b sin 2= 因为cos cos a A b B =,所以2sin cos 2sin cos =R A A R B B ,即sin2sin2=A B , 因为()π,0,∈B A , 所以22=A B 或22+=A B π,即=A B 或2+=A B π故ABC ∆为等腰三角形或直角三角形. 【总结升华】(1)要判断三角形的形状特征,必须深入研究边与边的大小关系:是否两边相等?是否三边相等?是否符合勾股定理?还要研究角与角的大小关系:是否两个角相等?是否三个角相等?有无直角或钝角?(2)解题的思想方法是:从条件出发,利用正、余弦定理等进行代换、转化、化简、运算,找出边与边的关系或角与角的关系,从而作出正确判断.(3)一般有两种转化方向:要么转化为边,要么转化为角.(4)判断三角形形状时,用边做、用角做均可.一般地,题目中给的是角,就用角做;题目中给的是边,就用边做,边角之间的转换可用正弦定理或余弦定理.(5)βαβα=⇒=sin sin 或βπα-=,不要丢解.在△ABC 中,已知2222()sin()()sin()a b A B a b A B -+=+-,试判断三角形的形状.【解答】:因为2222()sin()()sin()a b A B a b A B -+=+-,所以222sin cos 2sin cos a B A b A B =, 由正弦定理得:22sin sin cos sin sin cos A B A B A B =,因为ABC ∆中,sin 0A ≠, sin 0B ≠,所以sin cos sin cos A A B B ⋅=⋅,即sin 2sin 2A B =, 所以22A B =或22A B π=-,即:A B =或2π=+B A , 所以ABC ∆是等腰三角形或直角三角形.类型三:与三角形面积有关的问题【例3】.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c.已知sin A +3cos A =0,a =27,b =2.(1)求c ;(2)[一题多解]设D 为BC 边上一点,且AD ⊥AC ,求△ABD 的面积. 【解答】:(1)由已知条件可得tan A =-3,()π,0∈A ,所以32π=A , 在△ABC 中,由余弦定理得32cos 44282πc c -+=,即c 2+2c -24=0, 解得c =-6(舍去),或c =4.(2)法一:如图,由题设可得2π=∠CAD ,所以6π=∠-∠=∠CAD BAC BAD ,故△ABD 面积与△ACD 面积的比值为1216sin21=⋅⋅⋅AD AC AD AB π, 又△ABC 的面积为12×4×2sin ∠BAC =23, 所以△ABD 的面积为 3.法二:由余弦定理得cos C =27, 在Rt △ACD 中,cos C =ACCD ,所以CD =7,所以AD =3,DB =CD =7, 所以S △ABD =S △ACD =12×2×7×sin C =7×37= 3.法三:∠BAD =π6,由余弦定理得cos C =27,所以CD =7,所以AD =3,所以S △ABD =12×4×3×sin ∠DAB = 3. 【总结升华】(1)若已知一个角(角的大小或该角的正弦值、余弦值),一般结合题意求夹这个角的两边或两边之积,再代入公式求解;(2)若已知三边,可先求一个角的余弦值,再求正弦值,最后代入公式得面积;(3)若求面积的最值,一般表示为一个内角的三角函数,利用三角函数的性质求解,也可结合基本不等式求解.(2021·新高考2)在△ABC 中,角A 、B 、C 所对的边长分别为a 、b 、c ,1b a =+,2c a =+. (1)若2sin 3sin C A =,求△ABC 的面积;(2)是否存在正整数a ,使得△ABC 为钝角三角形?若存在,求出a 的值;若不存在,说明理由.【解析】:(1)因为2sin 3sin C A =,则()2223c a a =+=,则4a =,故5b =,6c =,2221cos 28a b c Cab,所以,C 为锐角,则sin 8C ==,因此,11sin 4522ABC S ab C ==⨯⨯=△ (2)显然c b a >>,若ABC 为钝角三角形,则C 为钝角,由余弦定理可得()()()()22222221223cos 022121a a a a b c a a C ab a a a a ++-++---===<++,解得13a -<<,则0<<3a ,由三角形三边关系可得12a a a ++>+,可得1a >,因为Z a ∈,故2a =.类型四:利用正、余弦定理求边角的范围问题【例4】.锐角 △ABC 中,a,b,c 分别是角A,B,C 的对边.(1)若()()(),a c a c b b c +-=-求A 的大小 (2)⎪⎭⎫⎝⎛++=62sin sin 22πB B y 取最大值时,求B 的大小. 【解答】:(1)因为()()(),a c a c b b c +-=-,所以222.b c a bc +-=,故由余弦定理得212cos 222=-+=bc a c b A ,因为A 是锐角三角形的内角,所以20π<<A ,所以3π=A .(2)22sin sin(2)6y B B π=++=1cos2sin 2coscos2sin66B B B ππ-++11cos221sin(2)26B B B π=-=+-,当且仅当3B π=时取等号,所以3π=A .【总结升华】对于三角形中边角的最大值或最小值问题可以运用正弦定理或余弦定理建立所求变量与三角形的角或边之间的函数关系,利用正、余弦函数的有界性或二次函数的知识解决问题. 【变式】已知在锐角ABC ∆中,,,a b c 为角A ,B ,C 所对的边,()22cos 2cos 2Bb c A a a -=- (1)求角A 的值; (2)若a =则求b c +的取值范围.【解答】:(1)在锐角ABC ∆中,根据()21cos 2cos 2cos 2,22B B b c A a a a a +-=-=-⋅ 利用正弦定理可得()sin 2sin cos sin (cos )BC A A B -=- ,即sin cos cos sin 2sin cos B A B A C A += ,即sin()2sin cos A B C A +=,即sin 2sin cos ,C C A = 所以21cos =A ,所以3π=A ,若a = 则由正弦定理可得2sin sin sin b c aB C A===,所以()⎥⎦⎤⎢⎣⎡⎪⎭⎫⎝⎛-+=+=+B B C B c b 32sin sin 2sin sin 2π⎪⎭⎫ ⎝⎛+=+=6sin 32cos 3sin 3πB B B .由于022032B B πππ⎧<<⎪⎪⎨⎪<-<⎪⎩⇒26ππ<<B ⇒3263πππ<+<B , 所以⎥⎦⎤ ⎝⎛∈⎪⎭⎫ ⎝⎛+1,236sin πB ,所以(]32,3∈+c b .【例5】.在△ABC 中,a,b,c 分别是角A,B,C 所对的边,53cos =B ,7=a ,且21-=⋅→→BC AB ,求角C 的大小.【解答】:因为21-=⋅→→BC AB ,所以21=⋅→→BC BA , 所以21cos cos ==⋅=⋅→→→→B ac B BC BA BC BA .又53cos =B ,所以54sin =B ,35=ac . 又7=a ,所以5=c ,所以325357257cos 222222=⨯⨯⨯-+=-+=B ac c a b ,所以24=b . 由正弦定理B bC c sin sin =,得.2254245sin sin =⨯==B b c C因为b c <,所以C 为锐角,所以45=C . 【总结升华】利用正、余弦定理解决三角形中与平面向量有关的问题时,注意数量积定义的应用,其中特别注意向量的夹角与三角形内角之间的关系,例如→AB 与→AC 的夹角等于内角A,但→AB 与→CA 的夹角等于内角A 的补角.在ABC ∆中,a,b,c 分别是角A,B,C 的对边,tan C = (1). 求cos C(2). 若5,2CB CA ⋅= 且9,a b +=求c【解答】:(1)因为tan C =sin cos CC=又因为22sin cos 1C C +=,解得1cos 8C =±.因为tan 0,C >所以C 是锐角,1cos 8C =(2)因为5,2CB CA ⋅=所以5cos 2ab C =,所以20ab =又因为9=+b a ,所以81222=++b ab a ,所以4122=+b a , 所以36cos 2222=-+=C ab b a c ,所以6=c .【例6】.如图所示,已知半圆O 的直径为2,点A 为直径延长线上的一点,OA =2,点B 为半圆上任意一点, 以AB 为一边作等边三角形ABC ,求B 在什么位置时,四边形OACB 面积最大.【解答】:设∠AOB =α,在△ABO 中,由余弦定理),0(,cos 45cos 21221222πααα∈-=⋅⨯⨯-+=AB ,所以243sin 21AB OB OA S S S ABC AOB +⋅⋅⋅=+=∆∆α)cos 45(43sin 1221αα-+⨯⨯⨯=345cos 3sin +-=αα3453sin 2+⎪⎭⎫ ⎝⎛-=πα. 因为πα<<0,所以当23ππα=-,πα65=,即π65=∠AOB 时,四边形OACB 的面积最大. 如图所示,在平面四边形ABCD 中,AB =AD =1,θ=∠BAD ,△BCD 是正三角形.(1)将四边形ABCD 的面积S 表示为θ的函数; (2)求S 的最大值及此时θ角的值. 【解答】:(1)△ABD 的面积θθsin 21sin 11211=⨯⨯⨯=S , 由于△BCD 是正三角形,则△BCD 的面积S 2=34BD 2.在△ABD 中,由余弦定理可知θθcos 22cos 11211222-=⨯⨯⨯-+=BD , 于是四边形ABCD 的面积()θθcos 2243sin 21-+=S , 所以S =32+sin ⎪⎭⎫ ⎝⎛-3πθ,πθ<<0.(2)由S =32+sin ⎪⎭⎫ ⎝⎛-3πθ及πθ<<0,得3233ππθπ<-<-,当23ππθ=-,即65πθ=时,S 取得最大值1+32. 类型八:与正、余弦定理有关的综合题【例8】.(2019·全国卷Ⅰ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .设()C B A C B sin sin sin sin sin 22-=-.①求A ;②若2a +b =2c ,求sin C.【解答】:①由已知得C B A C B sin sin sin sin sin 222=-+,故由正弦定理得bc a c b =-+222.由余弦定理得cos A =b 2+c 2-a 22bc =12. 因为1800<<A ,所以A =60°.②由①知C B -=120,由题设及正弦定理得2sin A +sin(120°-C)=2sin C , 即62+32cos C +12sin C =2sinC ,可得cos(C +60°)=-22. 由于1200<<C ,所以sin(C +60°)=22,故 ()6060sin sin -+=C C =sin(C +60°)cos 60°-cos(C +60°)sin 60°=6+24. (2017四川理)在△ABC 中,角A,B,C 所对的边分别是a,b,c,且cos cos sin A B Ca b c+=. (I )证明:sin sin sin A B C =; (II )若22265b c a bc +-=,求tan B . 【解答】:(I )根据正弦定理,可设 sin ,sinB,c sinC a k B b k k ===,(K>0), 代入cos cos sin A B Ca b c+=中,变形可得)sin(sin cos cos sin sin sin B A B A B A B A +=+=.(*) 在ABC ∆中,由A B C π++= ,有sin()sin()sin A B C C π+=-= 所以sin()sin A B C +=.(II )由已知,22265b c a bc +-=,根据余弦定理,有2223cos 25b c a A bc +-== 由(*)B A B A B A sin cos cos sin sin sin +=,所以443sin cos sin 555B B B =+ 故sin tan 4cos BB B==三、巩固练习1.(2017新课标Ⅲ文)在中,,BC 边上的高等于,则( )A.2. (2019·全国卷Ⅰ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知C c B b A a sin 4sin sin =-, cos A =-14,则bc =( )A .6B .5C .4D .3 3. 在ABC ∆中,60A =, 1b =,ABC S ∆=,则sin sin sin a b cA B C++++等于 ().3A.3B .3C .D 4. 在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,若c 2=(a -b)2+6,3π=C ,则△ABC 的面积是( )A.3B.239 C.233D.335.△ABC 中,三边a 、b 、c 与面积S 的关系式为)(41222c b a S -+=,则C=( ). A 、030 B 、045 C 、060 D 、090 6.边长为5,7,8的三角形的最大角与最小角的和是( )A.090B.0120C.0135D.01507.在△ABC 中,C B C B A sin sin sin sin sin 222-+≤,则A 的取值范围是( ).]6,0.(πA ),6.[ππB ]3,0.(πC ),3.[ππD8. (2019·全国卷Ⅱ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c.若b =6,a =2c ,B =π3,则△ABC 的面积为____________.9. 已知锐角三角形的三边长分别为2,3,x ,则实数x 的取值范围是_______. 10. 已知ABC ∆1,面积为1sin 6C ,且sin sin A B C +=,则角C=_______. 11 .ABC ∆中三边分别为a,b,c,若2,sin cos a b B B ==+=则角A=________. 12.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,已知b -c =41a ,2sinB =3sinC ,则cosA 的值为 . ABC △π4B13BC sin A 31010531013.(2018四川高考文)已知A 、B 、C 为△ABC 的内角,A tan 、B tan 是关于方程()R p p px x ∈=+-+0132x 2+两个实根. (I). 求C 的大小(II). 若AB =1,AC =,求p 的值.14.(2017浙江理)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c. 已知b+c=2a cos B. (I )证明:A=2B ;(II )若△ABC 的面积2=4a S ,求角A 的大小.15.在锐角ABC ∆中,角,,A B C 所对的边分别为,,a b c ,已知7,3,a b == 7sin sin 23B A +=(1)求角A 的大小; (2)求ABC ∆的面积.16.在如图所示的四边形ABCD 中,090,120,BAD BCD ∠=∠= 060,2,BAC AC ∠== 记BAC θ∠=(1)求用含θ 的代数式表示DC ; (2)求BCD ∆面积S 的最小值17. (2019·理1)ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,设22(sin sin )sin sin sin B C A B C -=-.(1)求A ;(2)若22a b c +=,求sin C .四、答案与解析361. 【解析】:设BC 边上的高线为AD ,则AD DC AD BC 2,3==,所以AD DC AD AC 522=+=,由正弦定理,知A BCB AC sin sin =,即A ADAD sin 3225=,解得10103sin =A ,故选D. 2.【解答】:因为C c B b A a sin 4sin sin =-,所以由正弦定理得a 2-b 2=4c 2,即a 2=4c 2+b 2. 由余弦定理得cos A =b 2+c 2-a 22bc =b 2+c 2-(4c 2+b 2)2bc =-3c 22bc =-14,所以b c =6.故选A. 3. 【解析】:因为60=A , b=1,3sin 21==∆A bc S ABC ,所以c=4 由余弦定理有13cos 2222=-+=A bc c b a ,所以13=a ,由正弦定理有3392sin 2==A a R ,且CcB b A a R sin sin sin 2===, 所以33922sin sin sin ==++++R C B A c b a .故选B.4.【解析】:由题意得,c 2=a 2+b 2-2ab +6,又由余弦定理可知,c 2=a 2+b 2-2abcosC =a 2+b 2-ab ,所以-2ab +6=-ab ,即ab =6. 所以S △ABC =233sin 21=C ab .故选C . 5.【解析】:因为S △ABC =()22241sin 21c b a C ab -+= ,所以2222sin ab C a b c =+-, 即C abc b a C cos 2sin 222=-+=,所以1tan =C ,故 45=C ,故选B. 6.【解析】:设中间角为θ,则,60,21852785cos 222 ==⨯⨯-+=θθ 12060180=-为所求.故选B. 7.【解析】:由已知得,bc c b a -+≤222,即212222≥-+bc a c b ,所以21cos ≥A , 因为π<<A 0,所以30π≤<A .故选C.8.【解答】:因为a =2c ,b =6,3π=B ,所以由余弦定理b 2=a 2+c 2-2accos B ,得()3cos2226222π⋅⋅⨯-+=c c c c ,得c =23,所以a =43,所以△ABC 的面积S =12acsin B =12×43×23×3sin π=6 3.或:a 2=b 2+c 2,所以2π=A ,所以△ABC 的面积S =12×23×6=6 3.9.【解析】:由题意,得⎪⎩⎪⎨⎧>+>+>+222222222233232x x x ,解得135<<x .10.【解析】:cb a C B A 2,sin 2sin sin =+∴=+因为12+=++c b a ,所以122+=+c c ,解得1=c ,所以2=+b a因为C C ab S sin 61sin 21==,所以31=ab , 所以()21222cos 22222=--+=-+=ab c ab b a ab c b a C ,所以3π=C . 11.【解析】:由2cos sin =+B B 可得1)4sin(=+πB ,所以4π=B ,由正弦定理得:21sin =A .又因为a<b,所以B A <,所以6π=A . 12.【解析】:在△ABC 中,因为b -c =41a ①,2sinB =3sinC ,所以2b =3c ②, 所以由①②可得a =2c ,b =23c. 再由余弦定理可得4134492cos 222222-=⋅-+=-+=c c c c c bc a c b A ,13.【解析】:(I)因为方程()R p p px x ∈=+-+0132的判别式△=(3p )2-4(-p +1)=3p 2+4p -4≥0所以p ≤-2或p ≥32, 由韦达定理,有tanA +tanB =-3p ,tanAtanB =1-p ,于是1-tanAtanB =1-(1-p )=p ≠0,从而tan(A +B)=33tan tan 1tan tan -=-=-+ppB A B A ,所以tanC =-tan(A +B)=3,所以C =60°.(II)由正弦定理,得sinB =22360sin 6sin == AB C AC .解得B =45°或B =135°(舍去), 于是A =180°-B -C =75°则tanA =tan75°=tan(45°+30°)=3233133130tan 45tan 130tan 45tan +=-+=-+. 所以p =-31(t anA +tanB)=-31(2+3+1)=-1-3. 14.【解析】:(1)由正弦定理可得B A C B cos sin 2sin sin =+, 故B A B A B B A B B A sin cos cos sin sin )sin(sin cos sin 2++=++=, 所以)sin(sin B A B -=,又()π,0,∈B A ,故π<-<B A 0 ,所以()B A B --=π或B=A -B , 因此π=A (舍去) 或A=2B, 所以A=2B.(II )由42a S =得4sin 212a C ab ==,故有B B B C B cos sin 2sin 21sin sin ==,因sin 0B ≠,得sinC cos =B . 又()π,0,∈C B ,所以B C ±=2π.当2π=+C B 时,2π=A ; 当2π=-B C 时,4π=A .综上,2π=A 或4π=A .15.【解析】:(1)在ABC ∆中,由正弦定理,得BA sin 3sin 7= 即A B sin 3sin 7= 又因为32sin sin 7=+A B , 解得23sin =A , 因为ABC ∆为锐角三角形,所以3π=A .(2)在ABC ∆中,由余弦定理bc a c b A 2cos 222-+=, 得cc 679212-+=,即022=+-c c ,解得c=1 或c=2,当c=1时,因为01472cos 222<-=-+=ac b c a B ,所以角B 为钝角,不符合题意,舍去;当c=2时,因为01472cos 222>=-+=ac b c a B ,且b>c,b>a, 所以ABC ∆为锐角三角形,符合题意. 所以ABC ∆的面积233232321sin 21=⨯⨯⨯==A bc S . 16.【解答】:(1)在ADC ∆中,000036090120150ADC θθ∠=---=-,由正弦定理可得sin sin DC AC DAC ADC =∠∠ ,即002sin 30sin(150)DC θ=- , 于是:01.sin(150)DC θ=-(2)在ABC ∆中,由正弦定理得0,sin sin 60AC BCθ=即BC =由(1)知:01sin(150)DC θ=-所以 120sin 21⋅⋅=CD BC S =034sin sin(150)θθ-= 故075θ=,S取得最小值为6-.17.【详解】:(1)()2222sin sin sin 2sin sin sin sin sin sin B C B B C C A B C -=-+=- 即:222sin sin sin sin sin B C A B C +-= 由正弦定理可得:222b c a bc +-=所以2221cos 22b c a A bc +-∴==因为()0,A π∈ ,所以3A π∴=.(2)因为c b a 22=+sin 2sin A B C += 又()sin sin sin cos cos sin B A C A C A C =+=+,3A π=1cos sin 2sin 222C C C ++=⇒3sin C C =因为22sin cos 1C C += ,所以(()223sin 31sin C C ∴=-,解得:sin C =因为sin 2sin 2sin 02B C A C ==->所以sin 4C >,故sin 4C =(2)法二:因为c b a 22=+sin 2sin A B C += 又()sin sin sin cos cos sin B A C A C A C =+=+,3A π=1cos sin 2sin 222C C C ++=,整理可得:3sin C C -=,即3sin 6C C C π⎛⎫-=-= ⎪⎝⎭所以sin 62C π⎛⎫∴-= ⎪⎝⎭,由2(0,),(,)3662C C ππππ∈-∈-,所以,6446C C ππππ-==+sin sin()46C ππ=+=.。

(完整版)(经典)正弦定理、余弦定理知识点总结及最全证明(最新整理)

(完整版)(经典)正弦定理、余弦定理知识点总结及最全证明(最新整理)

正弦定理、余弦定理知识点总结及证明方法——王彦文 青铜峡一中1.掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.2.能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.主要考查有关定理的应用、三角恒等变换的能力、运算能力及转化的数学思想.解三角形常常作为解题工具用于立体几何中的计算或证明,或与三角函数联系在一起求距离、高度以及角度等问题,且多以应用题的形式出现.1.正弦定理(1)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即 .其中R 是三角形外接圆的半径.(2)正弦定理的其他形式:①a =2R sin A ,b = ,c = ;②sin A =,sin B = ,a2Rsin C = ;③a ∶b ∶c =______________________.2.余弦定理(1)余弦定理:三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍.即a 2= ,b 2= ,c 2= .若令C =90°,则c 2= ,即为勾股定理.(2)余弦定理的变形:cos A= ,cos B = ,cos C = .若C 为锐角,则cos C >0,即a 2+b 2______c 2;若C 为钝角,则cos C <0,即a 2+b 2______c 2.故由a 2+b 2与c 2值的大小比较,可以判断C 为锐角、钝角或直角.(3)正、余弦定理的一个重要作用是实现边角____________,余弦定理亦可以写成sin 2A =sin 2B +sin 2C -2sin B sin C cos A ,类似地,sin 2B =____________;sin 2C =__________________.注意式中隐含条件A +B +C =π.3.解斜三角形的类型(1)已知三角形的任意两个角与一边,用____________定理.只有一解.(2)已知三角形的任意两边与其中一边的对角,用____________定理,可能有___________________.如在△ABC 中,已知a ,b和A 时,解的情况如表:A 为锐角A 为钝角或直角图形关系式a =b sin A b sin A <a <b a ≥b a >b解的个数① ② ③ ④ (3)已知三边,用____________定理.有解时,只有一解.(4)已知两边及夹角,用____________定理,必有一解.4.三角形中的常用公式或变式(1)三角形面积公式S △= = =____________=____________=____________.其中R ,r 分别为三角形外接圆、内切圆半径.(2)A +B +C =π,则A =__________,=__________,从而sin A =A 2____________,cos A =____________,tan A =____________;sin =__________,cos =__________,A 2A2tan =________.tan A +tan B +tan C =A 2__________.(3)若三角形三边a ,b ,c 成等差数列,则2b =____________⇔2sin B =____________⇔2sin =cos ⇔2cos =cos ⇔tan tan =B 2A -C 2A +C 2A -C 2A 2C 2.13【自查自纠】1.(1)===2R a sin A b sin B c sin C (2)①2R sin B 2R sin C ② b 2R c 2R ③sin A ∶sin B ∶sin C 2.(1)b 2+c 2-2bc cos A c 2+a 2-2ca cos B a 2+b 2-2ab cos C a 2+b 2(2) > b 2+c 2-a 22bc c 2+a 2-b 22ca a 2+b 2-c 22ab <(3)互化 sin 2C +sin 2A -2sin C sin A cos B sin 2A +sin 2B -2sin A sin B cos C 3.(1)正弦 (2)正弦 一解、两解或无解 ①一解②二解 ③一解 ④一解 (3)余弦 (4)余弦4.(1)ab sin C bc sin A ac sin B 121212abc 4R (a +b +c )r 12(2)π-(B +C ) - π2B +C 2sin(B +C ) -cos(B +C )-tan(B +C ) cos sin B +C 2B +C21tan B +C 2tan A tan B tan C (3)a +c sin A +sin C 在△ABC 中,A >B 是sin A >sin B 的( )A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件解:因为在同一三角形中,角大则边大,边大则正弦大,反之也成立,故是充要条件.故选C . 在△ABC 中,已知b =6,c =10,B =30°,则解此三角形的结果有( )A .无解 B .一解C .两解 D .一解或两解解:由正弦定理知sin C ==,又由c ·sin B b 56c >b >c sin B 知,C 有两解.也可依已知条件,画出△ABC ,由图知有两解.故选C . ()设△ABC 的内角A, B, C 所2013·陕西对的边分别为a, b, c, 若b cos C +c cos B =a sin A, 则△ABC 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定解:由已知和正弦定理可得sin B cos C +sin C cos B =sin A ·sin A ,即sin(B +C )=sin A sin A ,亦即sin A =sin A sin A .因为0<A <π,所以sin A =1,所以A =.所以三角形为直角三π2角形.故选B . ()在△ABC 中,角A ,B ,C 2012·陕西所对的边分别为a ,b ,c .若a =2,B =,c =2π6,则b =________.3解:由余弦定理知b 2=a 2+c 2-2ac cos B =22+2-2×2×2×cos =4,b =2.故填2.(23)3π6 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a =,b =2,sin B +cos B =,22则角A 的大小为________.解:∵sin B +cos B =,2∴sin =,即sin =1.2(B +π4)2(B +π4)又∵B ∈(0,π),∴B +=,B =.π4π2π4根据正弦定理=,可得sin A =a sin A bsin B=.a sin B b 12∵a <b ,∴A <B .∴A =.故填.π6π6类型一 正弦定理的应用 △ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知A -C =90°,a +c =b ,求C .2解:由a +c =b 及正弦定理可得sin A +2sin C =sin B .2又由于A -C =90°,B =180°-(A +C ),故cos C +sin C =sin A +sin C =sin(A +C )=2sin(90°+2C )=sin2(45°+C ).22∴sin(45°+C )=2sin(45°+22C )cos(45°+C ),即cos(45°+C )=.12又∵0°<C <90°,∴45°+C =60°,C =15°.【评析】利用正弦定理将边边关系转化为角角关系,这是解此题的关键. ()在△ABC 中,角A ,B ,2012·江西C 的对边分别为a ,b ,c .已知A =,b sin π4(π4+C)-c sin=a .(π4+B )(1)求证:B -C =;π2(2)若a =,求△ABC 的面积.2解:(1)证明:对b sin-c sin (π4+C )(π4+B )=a 应用正弦定理得sin B sin-sin C sin (π4+C )=sin A ,(π4+B )即sin B -sin C(22sin C +22cos C )=,整理得sin B cos C -(22sin B +22cos B)22sin C cos B =1,即sin =1.(B -C )由于B ,C ∈,∴B -C =.(0,3π4)π2(2)∵B +C =π-A =,又由(1)知B -C =3π4,π2∴B =,C =.5π8π8∵a =,A =,∴由正弦定理知b =2π4a sin Bsin A=2sin ,c ==2sin .5π8a sin C sin A π8∴S △ABC =bc sin A =×2sin ×2sin12125π8π8×22=sin sin =cos sin =sin25π8π82π8π822=.π412类型二 余弦定理的应用 在△ABC 中,a ,b ,c 分别是角A ,B ,C的对边,且=-.cos B cos C b2a +c (1)求B 的大小;(2)若b =,a +c =4,求△ABC 的面积.13解:(1)由余弦定理知,cos B =,a 2+c 2-b 22accos C =,将上式代入=-得a 2+b 2-c 22ab cos B cos C b 2a +c ·=-,a 2+c 2-b 22ac 2ab a 2+b 2-c 2b2a +c整理得a 2+c 2-b 2=-ac .∴cos B ===-.a 2+c 2-b 22ac -ac 2ac 12∵B 为三角形的内角,∴B =π.23(2)将b =,a +c =4,B =π代入b 2=a 21323+c 2-2ac cos B ,得13=42-2ac -2ac cos π,23解得ac =3.∴S △ABC =ac sin B =.12334【评析】①根据所给等式的结构特点利用余弦定理将角化边进行变形是迅速解答本题的关键.②熟练运用余弦定理及其推论,同时还要注意整体思想、方程思想在解题过程中的运用. 若△ABC 的内角A ,B ,C 所对的边a ,b ,c 满足(a +b )2-c 2=4,且C =60°,则ab的值为( )A. B .8-4 C .1 D.43323解:由余弦定理得c 2=a 2+b 2-2ab cos C =a 2+b 2-ab ,代入(a +b )2-c 2=4中得(a +b )2-(a 2+b 2-ab )=4,即3ab =4,∴ab =.故选A .43类型三 正、余弦定理的综合应用 ()△ABC 的内2013·全国新课标Ⅱ角A 、B 、C 的对边分别为a ,b ,c ,已知a =b cos C +c sin B .(1)求B ;(2)若b =2,求△ABC 面积的最大值.解:(1)由已知及正弦定理得sin A =sin B cos C +sin C sin B .①又A =π-(B +C ),故sin A =sin(B +C )=sin B cos C +cos B sin C .②由①,②和C ∈(0,π)得sin B =cos B .又B ∈(0,π),所以B =.π4(2)△ABC 的面积S =ac sin B =ac .1224由已知及余弦定理得4=a 2+c 2-2ac cos .π4又a 2+c 2≥2ac ,故ac ≤,42-2当且仅当a =c 时,等号成立.因此△ABC 面积的最大值为+1.2【评析】(1)化边为角与和角或差角公式的正向或反向多次联用是常用的技巧;(2)已知边及其对角求三角形面积最值是高考中考过多次的问题,既可用三角函数求最值,也可以用余弦定理化边后用不等式求最值. ()设△ABC 的内角A ,B ,2013·山东C 所对的边分别为a ,b ,c ,且a +c =6,b =2,cos B=.79(1)求a ,c 的值;(2)求sin(A -B )的值.解:(1)由余弦定理b 2=a 2+c 2-2ac cos B ,得b 2=(a +c )2-2ac (1+cos B ),又a +c =6,b =2,cos B =,所以ac =9,解得a =3,c =3.79(2)在△ABC 中,sin B ==,1-cos 2B 429由正弦定理得sin A ==.a sin B b 223因为a =c ,所以A 为锐角,所以cos A ==.1-sin 2A 13因此sin(A -B )=sin A cos B -cos A sin B =.10227类型四 判断三角形的形状在三角形ABC 中,若tan A ∶tan B =a 2∶b 2,试判断三角形ABC 的形状.解法一:由正弦定理,得=,a 2b 2sin 2Asin 2B所以=,tan A tan B sin 2Asin 2B所以=,即sin2A =sin2B .sin A cos B cos A sin B sin 2A sin 2B所以2A =2B ,或2A +2B =π,因此A =B或A +B =,从而△ABC 是等腰三角形或直角三π2角形.解法二:由正弦定理,得=,所以a 2b 2sin 2Asin 2B=,所以=,再由正、余弦tan A tan B sin 2A sin 2B cos B cos A sin A sin B定理,得=,化简得(a 2-b 2)(c 2-a 2a 2+c 2-b 22ac b 2+c 2-a 22bca b -b 2)=0,即a 2=b 2或c 2=a 2+b 2.从而△ABC 是等腰三角形或直角三角形.【评析】由已知条件,可先将切化弦,再结合正弦定理,将该恒等式的边都化为角,然后进行三角函数式的恒等变形,找出角之间的关系;或将角都化成边,然后进行代数恒等变形,可一题多解,多角度思考问题,从而达到对知识的熟练掌握. ()在△ABC 中,若sin 2A2012·上海+sin 2B <sin 2C ,则△ABC 的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .不能确定解:在△ABC 中,∵sin 2A +sin 2B <sin 2C ,∴由正弦定理知a 2+b 2<c 2.∴cos C =a 2+b 2-c 22ab<0,即∠C 为钝角,△ABC 为钝角三角形.故选C .类型五 解三角形应用举例 某港口O 要将一件重要物品用小艇送到一艘正在航行的轮船上.在小艇出发时,轮船位于港口O 北偏西30°且与该港口相距20 n mile 的A 处,并以30 n mile/h 的航行速度沿正东方向匀速行驶.假设该小艇沿直线方向以v n mile/h 的航行速度匀速行驶,经过t h 与轮船相遇.(1)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?(2)假设小艇的最高航行速度只能达到30 n mile/h ,试设计航行方案(即确定航行方向和航行速度的大小),使得小艇能以最短时间与轮船相遇,并说明理由.解法一:(1)设相遇时小艇航行的距离为S n mile ,则S =900t 2+400-2·30t ·20·cos (90°-30°)==900t 2-600t +400900(t -13)2+300,故当t =时,S min =10,此时v ==3013310313.3即小艇以30 n mile/h 的速度航行,相遇3时小艇的航行距离最小.(2)设小艇与轮船在B 处相遇,则v 2t 2=400+900t 2-2·20·30t ·cos(90°-30°),故v 2=900-+.600t 400t 2∵0<v ≤30,∴900-+≤900,即-600t 400t 22t 2≤0,3t解得t ≥.又t =时,v =30.故v =30时,t2323取得最小值,且最小值等于.23此时,在△OAB 中,有OA =OB =AB =20,故可设计航行方案如下:航行方向为北偏东30°,航行速度为30 n mile/h ,小艇能以最短时间与轮船相遇.解法二:(1)若相遇时小艇的航行距离最小,又轮船沿正东方向匀速行驶,则小艇航行方向为正北方向.设小艇与轮船在C 处相遇.在Rt△OAC 中,OC =20cos30°=10,AC =320sin30°=10.又AC =30t ,OC =vt ,此时,轮船航行时间t ==,v ==1030131031330.3即小艇以30 n mile/h 的速度航行,相遇3时小艇的航行距离最小.(2)假设v =30时,小艇能以最短时间与轮船在D 处相遇,此时AD =DO =30t .又∠OAD =60°,所以AD =DO =OA =20,解得t =.23据此可设计航行方案如下:航行方向为北偏东30°,航行速度的大小为30 n mile/h.这样,小艇能以最短时间与轮船相遇.证明如下:如图,由(1)得OC =10,AC =10,3故OC >AC ,且对于线段AC 上任意点P ,有OP ≥OC >AC .而小艇的最高航行速度只能达到30 n mile/h ,故小艇与轮船不可能在A ,C 之间(包含C )的任意位置相遇.设∠COD =θ(0°<θ<90°),则在Rt△COD 中,CD =10tan θ,OD =.3103cos θ由于从出发到相遇,轮船与小艇所需要的时间分别为t =和t =,所以10+103tan θ30103v cos θ=.10+103tan θ30103v cos θ由此可得,v =.153sin (θ+30°)又v ≤30,故sin(θ+30°)≥,从而,3230°≤θ<90°.由于θ=30°时,tan θ取得最小值,且最小值为.33于是,当θ=30°时,t =10+103tan θ30取得最小值,且最小值为.23【评析】①这是一道有关解三角形的实际应用题,解题的关键是把实际问题抽象成纯数学问题,根据题目提供的信息,找出三角形中的数量关系,然后利用正、余弦定理求解.②解三角形的方法在实际问题中,有广泛的应用.在物理学中,有关向量的计算也要用到解三角形的方法.近年的高考中我们发现以解三角形为背景的应用题开始成为热点问题之一.③不管是什么类型的三角应用问题,解决的关键都是充分理解题意,将问题中的语言叙述弄明白,画出帮助分析问题的草图,再将其归结为属于哪类可解的三角形.④本题用几何方法求解也较简便. ()如图,渔船2012·武汉5月模拟甲位于岛屿A 的南偏西60°方向的B 处,且与岛屿A 相距12海里,渔船乙以10海里/小时的速度从岛屿A 出发沿正北方向航行,若渔船甲同时从B 处出发沿北偏东α的方向追赶渔船乙,刚好用2小时追上.(1)求渔船甲的速度;(2)求sin α的值.解:(1)依题意,∠BAC =120°,AB =12,AC =10×2=20,在△ABC 中,由余弦定理知BC 2=AB 2+AC 2-2AB ·AC ·cos∠BAC =122+202-2×12×20×cos120°=784,BC =28.所以渔船甲的速度为v ==14(海里/小282时).(2)在△ABC 中,AB =12,∠BAC =120°,BC =28,∠BCA =α,由正弦定理得=AB sin αBCsin ∠BAC,即=,从而sin α=12sin α28sin120°12sin120°28=.33141.已知两边及其中一边的对角解三角形时,要注意解的情况,谨防漏解.2.在判断三角形的形状时,一般将已知条件中的边角关系利用正弦定理或余弦定理转化为角角关系(注意应用A +B +C =π这个结论)或边边关系,再用三角变换或代数式的恒等变形(如因式分解、配方等)求解,注意等式两边的公因式不要约掉,要移项提取公因式,否则有可能漏掉一种形状.3.要熟记一些常见结论,如三内角成等差数列,则必有一角为60°;若三内角的正弦值成等差数列,则三边也成等差数列;内角和定理与诱导公式结合产生的结论:sin A =sin(B +C ),cos A =-cos(B +C ),sin =cos ,sin2A =-A 2B +C2sin2(B +C ),cos2A =cos2(B +C )等.4.应用正、余弦定理解斜三角形应用题的一般步骤:(1)分析:理解题意,分清已知与未知,画出示意图;(2)建模:根据已知条件与求解目标,把已知量与求解量尽量集中到一个三角形中,建立一个解斜三角形的模型;(3)求解:利用正、余弦定理有序地解出三角形,求得数学模型的解;(4)检验:检验上述所求得的解是否符合实际意义,从而得出实际问题的解.5.正、余弦定理是应用极为广泛的两个定理,它将三角形的边和角有机地联系起来,从而使三角与几何产生联系,为求与三角形有关的量(如面积、外接圆、内切圆半径和面积等)提供了理论依据,也是判断三角形形状、证明三角形中有关等式的重要依据.主要方法有:化角法,化边法,面积法,运用初等几何法.注意体会其中蕴涵的函数与方程思想、等价转化思想及分类讨论思想.。

余弦定理笔记

余弦定理笔记

余弦定理笔记
余弦定理(Law of Cosines)是一个基本的数学定理,它描述了三角形中任何一边的平方与其他两边平方和之间的关系。

以下是关于余弦定理的笔记:
1. 定义:在一个三角形ABC中,任一边a的平方等于其他两边b和c的平方和减去2倍的b和c的乘积与夹角的余弦的积,即:a^2 = b^2 + c^2 - 2bc cos A。

2. 理解:余弦定理是勾股定理的推广,勾股定理是余弦定理的特例。

勾股定理指出了直角三角形中三边平方之间的关系,而余弦定理则指出了一般三角形中三边平方之间的关系。

3. 应用:余弦定理是解三角形的重要工具之一。

通过已知三角形的三个边长或两个边长及它们的夹角,可以求出三角形的其他元素。

4. 证明:余弦定理可以通过三角形的边和角的关系来证明。

在一个三角形中,可以作一个角的外接圆,利用外接圆的性质和正弦定理来证明余弦定理。

5. 变形:余弦定理有许多变形形式,如a=2RsinA、b=2RsinB、c=2RsinC 等。

这些变形可以帮助我们更容易地理解和应用余弦定理。

以上是关于余弦定理的笔记,希望对你有所帮助。

考点16 正、余弦定理及解三角形——备战2021年高考文科数学考点一遍过

考点16 正、余弦定理及解三角形——备战2021年高考文科数学考点一遍过

考点16 正、余弦定理及解三角形1.正弦定理和余弦定理掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题. 2.应用能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.一、正弦定理 1.正弦定理在ABC △中,若角A ,B ,C 对应的三边分别是a ,b ,c ,则各边和它所对角的正弦的比相等,即sin sin sin a b c==A B C.正弦定理对任意三角形都成立. 2.常见变形 (1)sin sin sin ,,,sin sin ,sin sin ,sin sin ;sin sin sin A a C c B ba Bb A a Cc A b C c B B b A a C c====== (2);sin sin sin sin sin sin sin sin sin sin sin sin a b c a b a c b c a b cA B C A B A C B C A B C+++++======+++++ (3)::sin :sin :sin ;a b c A B C = (4)正弦定理的推广:===2sin sin sin a b c R A B C,其中R 为ABC △的外接圆的半径. 3.解决的问题(1)已知两角和任意一边,求其他的边和角; (2)已知两边和其中一边的对角,求其他的边和角. 4.在ABC △中,已知a ,b 和A 时,三角形解的情况二、余弦定理 1.余弦定理三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍,即2222222222cos ,2cos 2cos .a b c bc A b a c ac B c a b ab C =+-=+-=+-,2.余弦定理的推论从余弦定理,可以得到它的推论:222222222cos ,cos ,cos 222b c a c a b a b c A B C bc ca ab+-+-+-===. 3.解决的问题(1)已知三边,求三个角;(2)已知两边和它们的夹角,求第三边和其他两角. 4.利用余弦定理解三角形的步骤三、解三角形的实际应用1.三角形的面积公式设ABC△的三边为a,b,c,对应的三个角分别为A,B,C,其面积为S.(1)12S ah=(h为BC边上的高);(2)111sin sin sin 222S bc A ac B ab C ===;(3)1()2S r a b c=++(r为三角形的内切圆半径).2.三角形的高的公式h A=b sin C=c sin B,h B=c sin A=a sin C,h C=a sin B=b sin A.3.测量中的术语(1)仰角和俯角在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下方的角叫俯角(如图①).(2)方位角从指北方向顺时针转到目标方向线的水平角,如B点的方位角为α(如图①).(3)方向角相对于某一正方向的水平角.①北偏东α,即由指北方向顺时针旋转α到达目标方向(如图①);②北偏西α,即由指北方向逆时针旋转α到达目标方向;③南偏西等其他方向角类似.(4)坡角与坡度①坡角:坡面与水平面所成的二面角的度数(如图①,角θ为坡角);②坡度:坡面的铅直高度与水平长度之比(如图①,i为坡度).坡度又称为坡比.4.解三角形实际应用题的步骤考向一利用正、余弦定理解三角形利用正、余弦定理求边和角的方法:(1)根据题目给出的条件(即边和角)作出相应的图形,并在图形中标出相关的位置.(2)选择正弦定理或余弦定理或二者结合求出待解问题.一般地,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.(3)在运算求解过程中注意三角恒等变换与三角形内角和定理的应用.常见结论:(1)三角形的内角和定理:在ABC △中,π A B C ++=,其变式有:πA B C +=-,π222A B C+=-等. (2)三角形中的三角函数关系:i in(s n s )A B C =+; ()s os co c A B C =-+;sincos 22A B C +=; cos sin 22A B C+=.典例1 ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,若cos A =45,cos C =513,1a =,则b = . 【答案】2113【解析】因为45cos ,cos 513A C ==,且,A C 为ABC △的内角,所以312sin ,sin 513A C ==,63sin sin[π()]sin()sin cos cos sin 65B AC A C A C A C =-+=+=+=, 又因为sin sin a b A B =,所以sin 21sin 13a Bb A ==.典例2 在ABC △中,已知2AB =,3,60.AC A == (1)求BC 的长; (2)求sin 2C 的值.【解析】(1)由余弦定理知,22212cos 4922372BC AB AC AB AC A =+-⋅⋅=+-⨯⨯⨯=,所以BC =(2)由正弦定理,知,sin sin AB BCC A =所以21sin sin 7AB C A BC =⋅==因为AB BC <,所以C 为锐角,则cos 7C ===因此sin 22sin cos 2C C C =⋅==1.已知A 、B 、C 为ABC △的内角,tan A 、tan B 是关于x 的方程210()x p p +-+=∈R 的两个实根.(1)求C 的大小;(2)若3AB =p 的值.考向二 三角形形状的判断利用正、余弦定理判定三角形形状的两种思路:(1)“角化边”:利用正弦、余弦定理把已知条件转化为只含边的关系,通过因式分解、配方等得出边的相应关系,从而判断三角形的形状.(2)“边化角”:利用正弦、余弦定理把已知条件转化为只含内角的三角函数间的关系,通过三角恒等变换,得出内角间的关系,从而判断出三角形的形状,此时要注意应用πA B C ++=这个结论. 提醒:在两种解法的等式变形中,一般两边不要约去公因式,应移项提取公因式,以免造成漏解.典例3 在ABC △中,a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =(2b +c )sin B +(2c +b )sin C . (1)求角A 的大小;(2)若sin B +sin C =1,试判断ABC △的形状.【解析】(1)根据正弦定理得2()2(22)a b c b c b c +++=, 即a 2=b 2+c 2+bc ①.由余弦定理得a 2=b 2+c 2-2bc cos A , 故cos A =12-,A =120°. (2)由①得sin 2A =sin 2B +sin 2C +sin B sin C . 又sin B +sin C =1,故sin B =sin C =12. 因为090B ︒<<︒,0°<C <90°,故B =C . 所以ABC △是等腰钝角三角形.2.若ABC △的三个内角满足sin A ∶sin B ∶sin C =5∶11∶13,则ABC △ A .一定是锐角三角形 B .一定是直角三角形C .一定是钝角三角形D .可能是锐角三角形,也可能是钝角三角形考向三 与面积、范围有关的问题(1)求三角形面积的方法①若三角形中已知一个角(角的大小,或该角的正、余弦值),结合题意求夹这个角的两边或该两边之积,套公式求解.②若已知三角形的三边,可先求其一个角的余弦值,再求其正弦值,套公式求面积,总之,结合图形恰当选择面积公式是解题的关键.(2)三角形中,已知面积求边、角的方法三角形面积公式中含有两边及其夹角,故根据题目的特点,若求角,就寻求夹这个角的两边的关系,利用面积公式列方程求解;若求边,就寻求与该边(或两边)有关联的角,利用面积公式列方程求解.典例4 ABC △的内角A ,B ,C 的对边分别为a ,b ,c .已知sin 0A A =,a,b =2. (1)求c ;(2)设D 为BC 边上一点,且AD ⊥AC,求△ABD 的面积.【解析】(1)由已知可得tan A =2π3A =. 在ABC △中,由余弦定理得22π2844cos 3c c =+-,即22240c c +-=.解得6c =- (舍去),4c =.(2)由题设可得π2CAD ∠=,所以π6BAD BAC CAD ∠=∠-∠=. 故ABD △面积与ACD △面积的比值为1πsin26112AB AD AC AD ⋅⋅=⋅. 又ABC △的面积为142sin 2BAC ⨯⨯∠=,所以ABD △【名师点睛】在解决三角形问题中,面积公式最常用,因为公式中既有边又有角,容易和正弦定理、余弦定理联系起来.正、余弦定理在应用时,应注意灵活性,已知两角和一边,该三角形是确定的,其解是唯一的;已知两边和一边的对角,该三角形具有不唯一性,通常根据三角函数值的有界性和大边对大角定理进行判断.典例5已知a ,b ,c 分别是ABC △的三个内角A ,B ,C 的三条对边,且c 2=a 2+b 2﹣ab . (1)求角C 的大小; (2)求cos A +cos B 的最大值.【解析】(1)c 2=a 2+b 2﹣ab 即ab =a 2+b 2﹣c 2,由余弦定理得cos C =2221222a b c ab ab ab +-==. ∵0<C <π,∴C =π3. (2)∵A +B +C =π,C =π3,∴B =2π3A -,且A ∈(0,2π3). 则2ππcos cos cos cos()()sin 36A B A A A +=+-=+,∵A ∈(0,2π3),∴ππ5π666A <+<,故当ππ62A +=时,cos A +cosB 取得最大值,为1.3.在ABC △中,内角A ,B ,C 所对边的边长分别是a ,b ,c ,已知2c =(1)若ABC △a ,b ; (2)若sin 2sin B A =,求ABC △的面积.考向四 三角形中的几何计算几何中的长度、角度的计算通常转化为三角形中边长和角的计算,这样就可以利用正、余弦定理解决问题.解决此类问题的关键是构造三角形,把已知和所求的量尽量放在同一个三角形中.典例6 ABC △中,D 是BC 上的点,AD 平分BAC ,BD =2DC . (1)求;∠sin sin BC∠∠(2)若,求. 【解析】(1)由正弦定理得sin sin AD BD B BAD =∠∠,sin sin AD DCC CAD=∠∠, 因为AD 平分BAC ∠,2BD DC =,所以sin 1sin 2B DC C BD ∠==∠.(2)因为180(),60C BAC B BAC ∠=-∠+∠∠=,所以1sin sin()sin(60)sin 2C BAC +B +B B B ∠=∠∠=∠=∠+∠. 由(1)知2sin sin B C ∠=∠,所以tan B =∠,即30B =∠.4.如图,在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,(sin cos )a b C C =+.(1)求角B 的大小; (2D 为ABC △外一点,2DB =,1DC =,求四边形ABCD 面积的最大值. 考向五 解三角形的实际应用解三角形应用题的两种情形:(1)实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解;(2)实际问题经抽象概括后,已知量与未知量涉及到两个或两个以上的三角形,这时需作出这些三角形,先解够条件的三角形,然后逐步求解其他三角形,有时需设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要求的解.研究测量距离问题是高考中的常考内容,既有选择题、填空题,也有解答题,难度一般适中,属中档题.解题时要选取合适的辅助测量点,构造三角形,将问题转化为求某个三角形的边长问题,从而利用正、余弦定理求解.60BAC ∠=B∠典例7宇宙飞船返回舱顺利到达地球后,为了及时将航天员救出,地面指挥中心在返回舱预计到达的区域安排了同一条直线上的三个救援中心(记为,,B C D ).当返回舱距地面1万米的P 点时(假定以后垂直下落,并在A 点着陆),C 救援中心测得返回舱位于其南偏东60°方向,仰角为60°,B 救援中心测得返回舱位于其南偏西30°方向,仰角为30°,D 救援中心测得着陆点A 位于其正东方向.(1)求,B C 两救援中心间的距离; (2)求D 救援中心与着陆点A 间的距离.【解析】(1)由题意知,PA AC PA AB ⊥⊥,则,PAC PAB △△均为直角三角形,在Rt PAC △中,1,60PA PCA =∠=,解得3AC =;在Rt PAB △中,1,30PA PBA =∠=,解得AB =又90CAB ∠=,则BC ==.即,B C .(2cos ACD ∠=, 又30CAD ∠=,所以sin(30ACD +∠在ADC △中,由正弦定理,得sin sin AC ADADC ACD=∠∠故D 救援中心与着陆点A .5.如图,为测量山高MN ,选择A 和另一座山的山顶C 为测量观测点.从A 点测得M 点的仰角∠MAN =60°,C 点的仰角∠CAB =45°以及∠MAC =75°;从C 点测得60MCA ∠=︒.已知山高BC =100 m ,则山高MN =__________ m.考向六 三角形中的综合问题1.解三角形的应用中要注意与基本不等式的结合,以此考查三角形中有关边、角的范围问题.利用正弦定理、余弦定理与三角形的面积公式,建立如“22,,a b ab a b ++”之间的等量关系与不等关系,通过基本不等式考查相关范围问题.2.注意与三角函数的图象与性质的综合考查,将两者结合起来,既考查解三角形问题,也注重对三角函数的化简、计算及考查相关性质等.3.正、余弦定理也可能结合平面向量及不等式考查面积的最值或求面积,此时注意应用平面向量的数量积或基本不等式进行求解.典例8在ABC △,向量(sin ,1)A =m ,(1,cos )B =n ,且⊥m n . (1)求A 的值;(2)若点D 在边BC 上,且3BD BC =ABC △的面积.【解析】(1)由题意知sin cos 0A B +=⋅=m n ,πA B C ++=,所以5πsin cos()06A A +-=,πsin()06A -=.ππ2π(,)663A -∈-,所以π06A -=,即π6A =.(2)设||BD x =,由3BD BC =,得||3BC x =,由(1)知π6A C ==,所以||3BA x =,2π3B =. 在ABD △中,由余弦定理,得2222π(3)213)(33cosx x x x =+-⨯⨯,解得1x =,所以3AB BC ==,所以··sin 33sin 112π932234ABC S BA BC B ==⨯=⨯⨯△. 典例9 ABC △的内角A ,B ,C 所对的边分别为a ,b ,c . (1)若a ,b ,c 成等差数列,证明:sin A +sin C =2sin(A +C ); (2)若a ,b ,c 成等比数列,求cos B 的最小值. 【解析】(1)因为a ,b ,c 成等差数列,所以a +c =2b . 由正弦定理得sin A +sin C =2sin B . 因为sin B =sin[π-(A +C )]=sin(A +C ), 所以sin A +sin C =2sin(A +C ).(2)因为a ,b ,c 成等比数列,所以b 2=ac .由余弦定理得cos B =a 2+c 2-b 22ac =a 2+c 2-ac 2ac ≥2ac -ac 2ac =12,当且仅当a =c 时等号成立. 所以cos B 的最小值为12.6. 在ABC △中,内角A 、B 、C 所对的边分别为a 、b 、c .已知ABC △的面积为315,2=-c b ,1cos 4A =-.(1)求a 和sin C 的值; (2)求πcos(2)6A +的值.1.若ABC △的内角,,A B C 所对的边分别为,,a b c ,已知2sin 23sin b A a B =,且2c b =,则ab等于ABCD2.在△ABC 中,若tan A ·tan B <1,则该三角形一定是 A .锐角三角形 B .钝角三角形C .直角三角形D .以上都有可能3. ABC △中,角A ,B ,C 的对边分别是a ,b ,c .已知22,2(1sin )bc a b A ,则A =A .3π4B .π3C .π4D .π64.ABC △中,2AB =,BC =1cos 4A =,则AB 边上的高等于 AB .34C.2D .3 5.在ABC △中,D 为BC 边上一点,若ABD △是等边三角形,且AC =ADC △的面积的最大值为 .6.在平面四边形ABCD 中, 则AB 的取值范围是 .7.如图,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧一山顶D 在西偏北30的方向上,行驶600m 后到达B 处,测得此山顶在西偏北75的方向上,仰角为30,则此山的高度CD =___________m.8.在ABC △中,内角A ,B ,C 所对的边分别为a ,b ,c ,,(cos ,sin )B A =n ,75,2,A B C BC ===︒=∠∠∠且∥m n .(1)求角B 的大小;(2)若2b =,ABC △的面积为a c +的值.9.在ABC △中,角,,A B C 所对的边分别为,,a b c ()cos 2cos A b C =. (1)求角C ;(2)若π,6A ABC =△D 为AB 的中点,求sin BCD ∠.10.如图所示,在ABC △中, 点D 为BC 边上一点,且1BD =,E 为AC 的中点,(1)求AD 的长; (2)求ADE △的面积.11.在ABC △中,,,A B C 的对边分别为,,a b c ,且cos ,cos ,cos a C b B c A 成等差数列. (1)求B 的值;(2)求()22sin cos A A C +-的范围.12.如图,游客从某旅游景区的景点A 处下山至C 处有两种路径.一种是从A 沿直线步行到C ,另一种是先从A 沿索道乘缆车到B ,然后从B 沿直线步行到C .现有甲、乙两位游客从A 处下山,甲沿AC 匀速步行,速度为50 m/min.在甲出发2 min 后,乙从A 乘缆车到B ,在B 处停留1 min 后,再从B 匀速步行到C .假设缆车匀速直线运行的速度为130 m/min,山路AC长为1260 m,经测量,123 cos,cos135A C==.(1)求索道AB的长;(2)问乙出发多少分钟后,乙在缆车上与甲的距离最短?(3)为使两位游客在C处互相等待的时间不超过3分钟,乙步行的速度应控制在什么范围内?1.(2017新课标全国Ⅰ文科)△ABC的内角A,B,C的对边分别为a,b,c.已知sin sin(sin cos)0B AC C+-=,a=2,c,则C=A.π12B.π6C.π4D.π32.(2017新课标全国Ⅲ文科)△ABC的内角A,B,C的对边分别为a,b,c.已知C=60°,b,c=3,则A=_________.3.(2016上海文科)已知ABC△的三边长分别为3,5,7,则该三角形的外接圆半径等于_________.4.(2016新课标全国Ⅱ文科)△ABC的内角A,B,C的对边分别为a,b,c,若4cos5A=,5cos13C=,a=1,则b=____________.5.(2017浙江)已知△ABC ,AB =AC =4,BC =2. 点D 为AB 延长线上一点,BD =2,连结CD ,则△BDC的面积是______,cos ∠BDC =_______.6.(2017山东文科)在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,已知b =3,6AB AC ⋅=-,3ABC S =△,求A 和a .7. (2017天津文科)在ABC △中,内角,,A B C 所对的边分别为,,a b c .已知sin 4sin a A b B =,222)ac a b c =--.(1)求cos A 的值; (2)求sin(2)B A -的值.1.【解析】(1)由已知,方程210x p -+=的判别式为22)4(1)3440p p p ∆=--+=-≥+,所以2p ≤- tan tan 1A B p =-, 于是1tan tan 1(1)0A B p p -=--=≠,60C =.(2022=45B =或135B =(舍去).于是18075A B C =--=.31tan 45tan 303tan()1tan 45tan 307545+30313++===--2.【答案】C 【解析】由正弦定理sin si sin 2n a b c==A B R C= (R 为ABC △外接圆的半径)及已知条件sin A ∶sin B ∶sin C =5∶11∶13,可设a =5x ,b =11x ,c =13x (x >0).则22222(5)(11)(13)23cos 02511110x x x x C x x x+--==<⋅⋅, 所以C 为钝角,故ABC △为钝角三角形.3.【解析】(1)因为2c =,1cos 2C =,所以由余弦定理2222cos c a b ab C =+-,得224a b ab +-=, 又ABC △sin C =,所以1sin 2ab C =4ab =, 由2244a b ab ab ⎧+-=⎨=⎩解得22a b =⎧⎨=⎩.(2)利用正弦定理,把sin 2sin B A =化为2b a =,由2242a b ab b a⎧+-=⎨=⎩解得a =b =又sin 2C =,则ABC △的面积1sin 2S ab C ==4.【解析】(1)在ABC △中,由(sin cos )a b C C =+,得sin sin (sin cos )A B C C =+,即sin()sin (sin cos )B C B C C +=+,cos sin sin sin B C B C ∴=,又sin 0C >,∴cos sin B B =,即tan 1B =,∵(0,π)B ∈,∴ (2)在BCD △中,2BD =,1DC =,22212212cos 54cos BC D D ∴=+-⨯⨯⨯=-.,∴ABC △为等腰直角三角形,ABCD的面积有最大值,最大值为54+ 5.【答案】150【解析】在Rt ABC △中,由于∠CAB =45°,BC =100 m,所以m AC =. 在MAC △中,∠AMC =180°-75°-60°=45°,由正弦定理可得,于是MA =.sin sin AC MAAMC MCA=∠∠)m 2=在Rt MNA △中,∠MAN =60°,于是MN =MA ·sin ∠MAN =, 即山高MN =150 m.【名师点睛】本题考查了正弦定理的实际运用,考查分析能力,转化能力,空间想象能力,属于中等题. 注意本题所给图形是空间图形. 6.【解析】(1)在ABC △中,由41cos -=A ,得415sin =A ,由1sin 2△ABC S bc A ==得24=bc ,又2=-c b , 所以6=b ,4=c .由余弦定理得A bc c b a cos 2222-+=,可得8=a ,由正弦定理得CcA a sin sin =, 所以81584154sin sin =⨯==aAc C . (2)πππcos(2)cos 2cossin 2sin 666A A A +=-211[2()1]()44=⨯---=.1.【答案】C【解析】由题意知2sin 23sin b A a B =,结合正弦定理得4sin sin cos 3sin sin B A A A B =,即3cos 4A =,又2c b =,结合余弦定理2222cos a b c bc A =+-,得ab=选C. 2.【答案】B【解析】由已知条件,得sin sin cos()cos 1,0,0,cos cos cos cos cos cos A B A B CA B A B A B+⋅<><即即 说明cos A ,cos B ,cos C 中有且只有一个为负.因此△ABC 一定是钝角三角形. 3.【答案】C()150m 2=A A A cos sin )1cos 2(232--=【解析】由余弦定理得:()2222222cos 22cos 21cos a b c bc A b b A b A =+-=-=-,因为()2221sin a b A =-,所以cos sin A A =,因为cos 0A ≠,所以tan 1A =,因为()0,A ∈π,所以4A π=,故选C.【名师点睛】本题主要考查余弦定理的应用、同角三角函数的基本关系,是高考常考知识内容.本题难度较小,解答此类问题,注重边角的相互转换是关键,本题能较好地考查考生分析问题、解决问题的能力及基本计算能力等. 4.【答案】A【解析】设角A ,B ,C 所对的边分别为a ,b ,c ,AB 边上的高为h ,因为2c =,a =21104224b b =+-⨯⨯,化简得260b b --=,解得3b =.又sin A =,所以由1123222h ⨯⨯=⨯,得h =.故选A.5.【答案】【解析】如图.在ACD △中,2222248cos 222AD DC AC AD DC ADC AD DC AD DC +-+-∠===-⋅⋅1,整理得22482AD DC AD DC AD DC +=-⋅≥⋅, ∴16AD DC ⋅≤,当且仅当AD =DC 时取等号,∴ADC △的面积1sin 2S AD DC ADC AD DC =⋅∠=⋅≤∴ADC △的面积的最大值为6.【答案】【解析】如图,连接AC ,设BCA ∠=α,BAC ∠=β.在中,根据正弦定理可得sin sin AB BCαβ=,则 sin 2sin(105)2sin(75)2(sin 75cos cos 75sin )sin sin sin sin BC αββββAB ββββ︒-︒+︒+︒====,又sin 7575︒=︒=22tan AB β=+. 由753075,10575βββ<︒⎧︒<<︒⎨︒-<︒⎩可得则tan 23β<<+AB -<<7.【答案】6100【解析】依题意,30=∠BAC ,105=∠ABC ,在ABC △中,由 180=∠+∠+∠ACB BAC ABC , 得45=∠ACB ,因为600m AB =,所以由正弦定理可得30sin 45sin 600BC=,即2300=BC m. 在Rt BCD △中,因为30=∠CBD,BC =,所以230030tan CDBC CD ==, 所以6100=CD m.8.【解析】(1)∵∥m n,∴sin cos b A B =,由正弦定理,得sin sin cos B A A B =, ∵sin 0A >,∴sin B B =,即tan B =∵0πB <<,∴ (212ac =,解得4ac =,ABC △由余弦定理2222cos b a c ac B =+-,得221422a c ac =+-⨯2()3a c ac =+-2()12a c =+-, 故4a c +=.9.【解析】(1()cos 2cos A b C =,得)2cos cos cos b C c A a C =+,由正弦定理可得)()2sin cos sin cos sin cos B C C A A C A C B =+=+=,因为sin 0B ≠,所以cos C =,因为0πC <<,所以π6C =. (2)因为π6A =,所以ABC △为等腰三角形,且顶角2π3B =,故21sin 2ABCS a B ===△,所以2a =, 在DBC △中,由余弦定理得2222cos 7CD DB BC DB BC B =+-⋅=,所以CD =,在DBC △中,由正弦定理可得sin sin CD DBB BCD =∠1sin BCD=∠,所以sin BCD ∠= 10.【解析】(1)在ABD △中,2cos B =21)7ADB =⨯由正弦定理sin sin AD BDB BAD=∠, (2)由(1)知2AD =,依题意得23AC AE ==.在ACD △中,由余弦定理得222AC AD DC =+-2cos AD DC ADC ⋅∠,即2π9422cos 3DC DC =+-⨯⨯,即2250DC DC --=,解得1DC =(负值舍去).11.【解析】(1)由题意得,由正弦定理得, 即B C A 2sin )sin(=+,所以B B 2sin sin =. 又在ABC △中,则B B 2=或2πB B +=,因为0πB <<,所以π3B =. (2)因为π3B =, 所以2π3AC +=. 22π2sin cos()1cos 2cos(2)3A A C A A +-=-+-π1)3A =-.因为2π03A <<,ππ2π33A -<-<,所以πsin(2)13A <-≤, 所以()22sin cos A A C +-的范围是1,12⎛-+ ⎝. 12.【解析】(1)在ABC △中,因为123cos ,cos 135A C ==,所以54sin ,sin 135A C ==. 从而5312463sin sin[π()]sin()sin cos cos sin 13513565B AC A C A C A C =-+=+=+=⨯+⨯=. 由正弦定理sin sin AB AC C B =,得12604sin 1040(m)63sin 565AC AB C B =⨯=⨯=.所以索道AB 的长为1040 m.(2)假设乙出发t 分钟后,甲、乙两游客的距离为d ,此时,甲行走了(100+50t )m ,乙距离A 处130t m ,所以由余弦定理得222212(10050)(130)2130(10050)200(377050)13d t t t t t t =++-⨯⨯+⨯=-+, 因为10400130t ≤≤,即08t ≤≤,所以当35min 37t =时,甲、乙两游客距离最短. 即乙出发3537分钟后,乙在缆车上与甲的距离最短. cos cos 2cos a C c A b B +=2sin cos 2cos sin 4sin cos R A C R A C R B B +=131cos 2cos 2212cos 22222A A A A A=--+=+-(3)由正弦定理sin sin BC AC A B =,得12605sin 500(m)63sin 1365AC BC A B=⨯=⨯=.乙从B 出发时,甲已走了50×(2+8+1)=550(m),还需走710 m 才能到达C . 设乙步行的速度为v m/min ,由题意得5007103350v -≤-≤,解得12506254314v ≤≤, 所以为使两位游客在C 处互相等待的时间不超过3分钟,乙步行的速度应控制在1250625,4314⎡⎤⎢⎥⎣⎦(单位:m/min)范围内.1.【答案】B【解析】由题意sin()sin (sin cos )0A C A C C ++-=得sin cos cos sin sin sin sin cos 0A C A C A C A C ++-=,即πsin (sin cos )sin()04C A A C A +=+=,所以3π4A =. 由正弦定理sin sin a c A C =得23πsin sin 4C =,即1sin 2C =, 因为c <a ,所以C<A , 所以π6C =,故选B . 【名师点睛】在解有关三角形的题目时,要有意识地考虑用哪个定理更合适,或是两个定理都要用,要抓住能够利用某个定理的信息.一般地,如果式子中含有角的余弦或边的二次式时,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到. 2.【答案】75°【解析】由正弦定理sin sin b cB C=,得sin 2sin 32b C Bc ===,结合b c <可得45B =,则18075A B C =--=.【名师点睛】解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理,结合已知条件灵活转化为边和角之间的关系,从而达到解决问题的目的.其基本步骤是:第一步:定条件,即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向. 第二步:定工具,即根据条件和所求合理选择转化的工具,实施边角之间的互化. 第三步:求结果.3 【解析】由已知可设3,5,7a b c ===,∴2221cos 22a b c C ab +-==-,∴sin C ,∴2sin c R C ==. 【名师点睛】此类题目是解三角形问题中的典型题目.解答本题,往往要利用三角公式化简三角恒等式,利用正弦定理实现边角转化,达到解题目的;三角形中的求角问题,往往要利用余弦定理用边表示角的函数.本题较易,主要考查考生的基本运算求解能力等. 4.【答案】2113【解析】因为45cos ,cos 513A C ==,且,A C 为三角形的内角,所以312sin ,sin 513A C ==,63sin sin[π()]sin()sin cos cos sin 65B AC A C A C A C =-+=+=+=, 又因为sin sin a b A B =,所以sin 21sin 13a Bb A ==.5【解析】取BC 中点E ,由题意:AE BC ⊥,△ABE 中,1cos 4BE ABC AB ∠==,∴1cos ,sin 44DBC DBC ∠=-∠==,∴1sin 2△BCD S BD BC DBC =⨯⨯⨯∠=. ∵2ABC BDC ∠=∠,∴21cos cos 22cos 14ABC BDC BDC ∠=∠=∠-=,解得cos 4BDC ∠=或cos 4BDC ∠=-(舍去).综上可得,△BCDcos BDC ∠=. 6.【解析】因为6AB AC ⋅=-,所以cos 6bc A =-,又3ABC S =△,所以sin 6bc A =, 因此tan 1A =-,又0πA <<, 所以3π4A =, 又3b =,所以c =由余弦定理2222cos a b c bc A =+-,得29823(2a =+-⨯⨯-,所以a =【名师点睛】正、余弦定理是应用极为广泛的两个定理,它将三角形的边和角有机地联系起来,从而使三角与几何产生联系,为求与三角形有关的量(如面积、外接圆、内切圆半径和面积等)提供了理论依据,也是判断三角形形状、证明三角形中有关等式的重要依据.其主要方法有:化角法,化边法,面积法,运用初等几何法.注意体会其中蕴涵的函数与方程思想、等价转化思想及分类讨论思想. 7.【解析】(1)由sin 4sin a A b B =及sin sin a bA B=,得2a b =.由222)ac a b c =--及余弦定理,得2225cos 2acb c aA bcac -+-===(2)由(1)可得sin A =,代入sin 4sin a A b B =,得sin sin 4a A B b ==由(1)知A为钝角,所以cos B ==. 于是4sin 22sin cos 5B B B ==,23cos 212sin 5B B =-=,故43sin(2)sin 2cos cos 2sin (55B A B A B A -=-=⨯-=.【名师点睛】(1)利用正弦定理进行“边转角”可寻求角的关系,利用“角转边”可寻求边的关系,利用余弦定理借助三边关系可求角,利用两角和差的三角公式及二倍角公式可求三角函数值.(2)利用正、余弦定理解三角形是高考的高频考点,常与三角形内角和定理、三角形面积公式等相结合,利用正、余弦定理进行解题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2bc
49+9-25 =
2×7×3
11 =,
14
所以
BD2
= AB2 + AD2 - 2
· AB ·
ADcos ∠
BAC

9
49 +

4
7 11 19 2×3× × = ,
2 14 4
所 以 BD = 19 . 2
二、解三角形的实际应用
1 . △ ABC 的 面 积 公 式
1
(1)S △
ABC
= 2
sin A sin B sin C
理对任意三角形都成立.
2 .常见变形
( 1 ) a = 2RsinA , b = 2RsinB , c = 2RsinC ;
(2
) sin A
a =

sin B
b =
, sin C
c =

2R
2R

2R
( 3 ) a ∶ b ∶ c = sinA ∶ sinB ∶ sinC ;
两边与它们的夹角的余弦的积的两倍,即
a2 = b2 + c2 - 2bccosA ;
b2 = c2 + a2 - 2cacosB ;
c2 = a2 + b2 - 2abcosC
5 .余弦定理的推论
从余弦定理,可以得到它的推论:
b2+c2-a2
cos A =

2bc
c2+a2-b2
cos B =

2ca
一次式时,则考虑用正弦定理;以上特征都不明显时,则
要考虑两个定理都有可能用到 .
( 3 )在运算求解过程中注意三角恒等变换与三角形内角
和定理的应用.
例 2 : 在 △ ABC 中 , 角 A , B , C 所 对 的 边 分 别 为 a , b ,
c , 已 知 a = 1 , b = 3 , A = 30 °, B 为 锐 角 , 那 么 A ∶
B ∶ C为 (
)
A. 1 ∶ 1 ∶ 3
B. 1 ∶ 2 ∶ 3
C. 1 ∶ 3 ∶ 2
D. 1 ∶ 4 ∶ 1
答案: B
a 解析:法一:由正弦定理
b =
,得
sin
B
bsin A =
sin A sin B
a
=3 . 2
因 为 B 为 锐 角 , 所 以 B = 60 °, 则 C = 90 °, 故 A ∶ B ∶ C = 1 ∶ 2 ∶ 3 , 选 B.
a · h(h 表 示 边 a 上 的 高 ) .
(2)S
1

ABC
= 2
absin C
1 =
2
acsin B
1 =
2
bcsin A.
1
(3)S

ABC
= 2
r(a + b + c)(r 为 内 切 圆 半 径 ).
2 .三角形的高的公式
20 × 25 = 500
第5页共9页
hA=bsinC=csinB,hB=csinA=asinC,hC=asinB=bsinA. 3 .三角形内角和定理
在 △ ABC 中 , A + B + C = π ;
A+B π C
变形:
=- .
2
22
4 .三角形中的三角函数关系
(1)sin(A + B) = sin C.
(2)cos(A + B) = - cos C.
A+B
C
(3)sin
= cos
.
2
2
A+B
C
(4)cos
= sin .
2
2
5 .三角形中的射影定理 在 △ ABC 中 , a = bcos C + ccos B ; b = acos C + ccos A ; c = bcos A + acos B.
第1页共9页
考 点 16 正 、 余 弦 定 理 及 解 三 角 形
一、正弦定理和余弦定理
1 .正弦定理
在 △ ABC 中 , 若 角 A , B , C 对 应 的 三 边 分 别 是 a , b ,
c ,则各边和它所对角的正弦的比相等,
a 即
b
c


= 2R(R 为 △ ABC 外 接 圆 半 径 ). 正 弦 定
2
因为
0

B
<π,所以
B
2π =
.
3
20 × 25 = 500
第4页共9页
② 由 余 弦 定 理 得 b2 = a2 + c2 - 2a · ccos ∠ ABC = 52 + 32 + 5 × 3 = 49 , 所 以 b = 7 , 所 以 AD = 7 .
2
b2+c2-a2 因 为 cos ∠ BAC =
a+b+c
a
(4)

.
sin A+sin B+sin C sin A
3 .解决的问题 ( 1 ) 已知两角和任意一边,求其他的边和角 ; ( 2 ) 已知两边和其中一边的对角,求其他的边和角 .
4 .余弦定理 三角形中任何一边的平方等于其他两边的平方的和减去这
20 × 25 = 500
第2页共9页
cos
C
a2+b2-c2 =
.
2ab
6 .解决的问题 ( 1 )已知三边,求三个角; ( 2 )已知两边和它们的夹角,求第三边和其他两角.
7 .规律方法 (1) 正 、 余 弦 定 理 的 选 用 ①利用正弦定理可解决两类三角形问题:一是已知两角和 一角的对边,求其他边或角;二是已知两边和一边的对角, 求其他边或角;
①求角 B 的大小; ② 若 a = 5 , c = 3 , 边 AC 的 中 点 为 D , 求 BD 的 长 . 解: ① 由 2c + a = 2bcos A 及 正 弦 定 理 , 得 2sin C + sin A = 2sin Bcos A , 又 sin C = sin(A + B) = sin Acos B + cos Asin B , 所 以 2sin Acos B + sin A = 0 , 因 为 sin A ≠ 0 , 所 以 cos B = - 1 ,
20 × 25 = 500
第3页共9页
②利用余弦定理可解决两类三角形问题:一是已知两边和 它们的夹角,求其他边或角;二是已知三边求角.由于这 两种情形下的三角形是唯一确定的,所以其解也是唯一的. (2) 三 角 形 解 的 个 数 的 判 断 已知两角和一边,该三角形是确定的,其解是唯一的;已 知两边和一边的对角,该三角形具有不唯一性,通常根据 三角函数值的有界性和大边对大角定理进行判断. 例 1 : 已 知 △ ABC 的 内 角 A , B , C 的 对 边 分 别 为 a , b , c , 且 2c + a = 2bcos A.
三、利用正、余弦定理解三角形 利用正、余弦定理求边和角的方法: ( 1 )根据题目给出的条件 ( 即边和角 ) 作出相应的图形, 并在图形中标出相关的位置.
20 × 25 = 500
第6页共9页
( 2 )选择正弦定理或余弦定理或二者结合求出待解问
题.一般地,如果式子中含有角的余弦或边的二次式,要
考虑用余弦定理;如果遇到的式子中含有角的正弦或边的
相关文档
最新文档