2014-2015学年度武汉市部分学校九年级四月调研测试数学答案
2015武汉初三四调数学试卷及答案
在△ABC 中 AB=AC BE 和 CD 是中线
1 求证 BE= CD 2 求
OE 的值 OB
19. 本小题满
8 选手的晟 得 9.3 9.8 8.8
在一次青 歌手演唱比赛中 评 办法采用五 评委 场打 去掉最高 9.4 .9.5
(1)求 l
A F
B
D
C
2
第 23 题
E
24
9 1 y = x 2 − 3x + , 2 2 1 联立 ………1 1 y = 2x − 3 2 1 1 ………3 解得 A(8 12 ),D 2 2 2
1 (x 3)2 所以点 P 的横坐标 2 当 x 3 b 2 3k 时 y 2 点 P 的坐标 3 2 ………4 2 y CE 的解析式 3
求证 AB=DF+DE 连接 BE 直接写出△BEF 的面 .
24. 本小题满 如
12 抛物线 y =
1 2 9 x − 3x + 交 y 轴于点 E 2 2
在 面直角坐标系 xOy 中
C
抛物线的顶点 直线
4
AD
y=kx+b k 0
1 2
抛物线相交于 A D 两点 点 D 在点 A 的 方 . 求 A D 两点坐标 交线段 CE 于点 F 求
勾股定理得 AB y元
58 ,⊙O 的直径 58
………8
生产销售
商品的 本
依题意 得
6
150(1 12%) y(1 10%) 解之得 y 120 答 该 生产销售 商品的 本 120 元 ………3 2 题意得(﹣2x 24)[( 150(1 x%))﹣120]=660 ………5 2 整理得﹣3x 24x 720=660 化简得 x+10 (x-2)=0 x1 = −10, x 2 = 2 时 商品定 135 元或 153 元 日销售利润 660 元 ………7 3 1≤a≤6… ……10 23 1 解 过点 E 作 EN⊥DC 于点 N 在△ABC 和△DEC 中 DE DC ∠A ∠EDC ∠ACB ∠DCE △ABC△△DEC ………1 AB AC AB 5 DC 2 AC 5 DE 2 在△DEC 中 ∠EDC 45° ∠DCE 30°
2014武汉四调数学试卷及答案
第1页 / 共11页2013~2014学年度武汉市九年级四月调考数学试卷第Ⅰ卷 (选择题,共30分)一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个是正确的,请在答题卡上将正确答案的代号涂黑. 1.下列数中,最大的是A .﹣1.B .0.C .1.D .2. 2.式子x -5 在实数范围内有意义,则x 的取值范围是A .x ≥ 5.B .x >﹣5.C .x ≥﹣5.D .x >5. 3.下列计算正确的是A .(﹣4)+(﹣6)=10.B . 2 =1.C .6-9=﹣3.D .8 - 3 =8-3 . 4.对20名男生60秒跳绳的成绩进行统计,结果如下表所示:跳绳的成绩(个) 130 135 140 145 150 人数(人)131132则这20个数据的极差和众数分别是:A .10,3.B .20,140.C .5,140.D .1,3. 5.下列计算正确的是A .2x +x =3x 2.B .2x 2·3x 2=6x 4.C .x 6÷x 2=x 3.D .2x -x =2.6.如图,线段AB 的两个端点坐标分别为A (2,2),B (4,2),以原点O 为位似中心,将线段AB 缩小后得到线段DE .若DE =1,则端点D 的坐标为yxED BA OA .(2,1).B .(2,2).C .(1,1).D .(1,2).7.如图是由4个大小相同的正方体组合而成的几何体,其俯视图是A ..B ..C ..D ..第2页 / 共11页8.七年级有2000名学生参加“趣味数学竞赛”活动,从中抽取了若干名学生的得分进行统计,整理出下列不完整的表格,和扇形统计图.成绩x (分) 频数(人) 50≤x <60 10 60≤x <70 70≤x <80 80≤x <90 90≤x <10050若90分以上(含90分)的学生可获得一等奖; 70分以上(含70分),90以下的学生可获得二等奖;其余学生可获得鼓励奖.根据统计图表中的数据,估计本次活动中,七年级学生获得二等奖的人数大约有 A .1200人. B .120人. C .60人. D .600人.9.下列图形都是由同样大小的正方形按一定规律组成的,其中,第1个图形中一共有1个正方形,第2个图形中共有5个正方形,第3个图形中共有14个正方形,…,按照此规律第5个图形中正方形的个数为第1个图 第2个图 第3个图A .30.B .46.C .55.D .60.10.如图,P 为的⊙O 内的一个定点,A 为⊙O 上的一个动点,射线AP 、AO 分别与⊙O 交于B 、C 两点.若⊙O 的半径长为3,OP = 3 ,则弦BC 的最大值为 A .2 3 . B .3. C . 6 . D .3 2 .第Ⅱ卷 (非选择题,共90分)二、填空题(共6小题,每小题3分,共18分) 11.分解因式:x 3-4x = .12.载有239名乘客的MH 370飞机失联后,其行踪一度成为世人关注的焦点.小明在百度中搜索“马航最新消息”,找到相关结果约32 800 000个.其中数32 800 000用科学计数法表示为 .13.口袋中装有10个小球,其中红球3个,黄球7个,从中随机摸出一球,是红球的概率为 . 14.一个有进水管与出水管的容器,从某时刻开始的4分内只进水不出水,在随后的若干分内既进水又出水,之后只出水不进水.每分的进水量和出水量是两个常数,容器内的水量y (单位:升)与时间x (单位:分)之间的关系如图所示.则a = .…50≤x <605%60≤x <7010%70≤x <8080≤x <9030%90≤x <100CBOPA第3页 / 共11页x y /分/升a 1230204O24xyCBA32O1D CAB15.如图所示,某双曲线上三点A 、B 、C 的横坐标分别为1、2、3.若AB =2BC ,则该双曲线的解析式的为y = .16.如图,在等边三角形△ABC 中,射线AD 四等分∠BAC 交BC 于点D ,其中∠BAD >∠CAD ,则CDBD = .三、解答题(共9小题,共72分)17.(本小题满分6分)解方程: 3121x x =−.18.(本小题满分6分)直线y =kx +4经过点A (1,5),求关于x 的不等式kx +4≤0的解集.19.(本小题满分6分)已知:如图,点D 在AB 上,点E 在AC 上,AD =AE ,∠B =∠C . 求证:AB =A C .第19题图ABCDE第4页 / 共11页20.(本小题满分7分)如图,在平面直角坐标系中,△ABC 的顶点的坐标分别为A (﹣1,5)、B (﹣1,1)、C (﹣3,1).将△ABC 向右平移2个单位、再向下平移4个单位得到△A 1B 1C 1;将△ABC 绕原点O 旋转180°得到△A 2B 2C 2. (1)请直接写出点C 1和C 2的坐标; (2)请直接写出线段A 1A 2的长.21.(本小题满分7分)菲尔兹奖(F I elds Medal )是享有崇高声誉的数学大奖,每四年颁奖一次,颁给二至四名成就显著的年轻数学家.获奖者当年不能超过四十岁.对获奖者获奖时的年龄进行统计,整理成下面的表格和统计图.(1)直接写出a 、b 、c 的值,并补全条形统计图; (2)请问这组数据的中位数在哪一个年龄段中?(3)在五位36岁的获奖者中有两位美国人,一位法国人和两位俄罗斯人.请用画树形图或列表的方法求出“从五位36岁的获奖者中随机抽出两人,刚好是不同国籍的人”(记作事件A )的概率.年龄段(岁) 27≤x <29 29≤x <31 31≤x <33 33≤x <35 35≤x <37 37≤x <39 39≤x <41 频数(人) 1 275a bc 频率0.0250.1750.15xyACB O第5页 / 共11页22.(本小题满分8分)已知:P 为⊙O 外一点,P A 、PB 分别切⊙O 于A 、B 两点,点C 为⊙O 上一点. (1) 如图1,若AC 为直径,求证:OP ∥BC ; (2) 如图2,若s I n ∠P =1213,求tan ∠C 的值.BAOPCBAOPC图1 图223.(本小题满分10分)某工厂生产一种矩形材料板,其长宽之比为3∶2.每张材料板的成本c (单位:元)与它的面积(单位:2cm )成正比例,每张材料板的销售价格y (单位:元)与其宽x 之间满足我们学习过的三种函数(即一次函数、反比例函数和二次函数)关系中的一种.下表记录了该工厂生产、销售该材料板一些数据.材料板的宽x (单位:cm ) 24 30 42 54 成本c (单位:元) 96 150 294 486 销售价格y (单位:元)78090011401380(1)求一张材料板的销售价格y 与其宽x 之间的函数关系式,不要求写出自变量的取值范围; (2)若一张材料板的利润w 为销售价格y 与成本c 的差.①请直接写出一张材料板的利润w 与其宽x 之间的函数关系,不要求写出自变量的取值范围; ②当材料板的宽为多少时,一张材料板的利润最大?最大利润是多少.第6页 / 共11页24.(本小题满分10分)在△ABC 中,点D 从A 出发,在AB 边上以每秒一个单位的速度向B 运动,同时点F 从B 出发,在BC 边上以相同的速度向C 运动,过点D 作DE ∥BC 交AC 于点E .运动时间为t 秒.(1)若AB =5,BC =6,当t 为何值时,四边形DFCE 为平行四边形; (2)连接AF 、C D .若BD =DE ,求证:∠BAF =∠BCD ; (3)AF 交DE 于点M ,在DC 上取点N ,使MN ∥AC ,连接FN .①求证:BF CF =DNCN;②若AB =5,BC =6,AC =4,当MN =FN 时,请直接写出t 的值.EFABCD EF AB C DNMEF AB CD25.(本小题满分12分)在平面直角坐标系xOy 中,抛物线c 1:y =ax 2-4a +4 (a <0)经过第一象限内的定点P . (1)直接点P 的坐标;(2)直线y =2x +b 与抛物线c 1在相交于A 、B 两点,如图1所示,直线P A 、PB 与x 轴分别交于D 、C 两点,当PD =PC 时,求a 的值;(3)若a =﹣1,点M 坐标为(2,0)是x 轴上的点,N 为抛物线c 1上的点,Q 为线段MN 的中点.设点N 在抛物线c 1上运动时,Q 的运动轨迹为抛物线c 2,求抛物线c 2的解析式.xyCDBPOA xyO图1 备用图第7页 / 共11页2013—2014学年度武汉市部分学校九年级调研测试数学试题参考答案题号 1 2 3 4 5 6 7 8 9 10 答案DACBBCDACA11.x (x +2) (x -2). 12.3.28×107. 13.0.3. 14.15. 15.6155x 16.3-12. 17.解:方程两边同乘以2x (x -1),去分母得, ………………1分3(x -1)=2x , ………………2分 即3x -3=2x , ………………3分解得:x =3, ………………4分 经检验x =3是原方程的根. ……………… 5分 ∴原方程的解为x =3. ……………… 6分 18.解:把(1,5)代入直线的函数关系式y =kx +4中,得,k +4=5, ……………… 2分 解得,k =1, ………………3分∴直线的函数关系式为y =x +4. ……………… 4分 ∴x +4≤0, ………………5分 ∴x ≤﹣4. ………………6分 19.证明:在△ABE 和△ACD 中, ………………1分∵⎩⎪⎨⎪⎧∠A =∠A ,∠B =∠C ,AE =AD .………………4分(每写对一对对应关系给1分) ∴△ABE ≌△AC D .(AAS ) ………………5分 ∴AB =A C . ………………6分 20.解:(1)C 1(﹣1,﹣3),C 2(3,﹣1); (每写对一个点的坐标给2分共4分)(2)A 1A 2的长6. ……………… 7分21.(1)a =7,b =12,c =6,补全条形统计图如下:;………………3分第8页 / 共11页(2)这组数据的中位数在35≤x <37的年龄段中. ……………… 4分(3)将两名美国人分别记作M 1、M 2,法国人记作F ,俄罗斯人分别记作E 1、E 2,则随机抽出两人的所有结果列表如下: M 1 M 2 F E 1 E 2 M 1 M 2,M 1F ,M 1 E 1,M 1 E 2,M 1 M 2 M 1,M 2 F ,M 2 E 1,M 2 E 2,M 2 F M 1,F M 2,F E 1,F E 2,F E 1 M 1,E 1 M 2,E 1 F ,E 1 E 2,E 1 E 2M 1,E 2M 2,E 2F ,E 2E 1,E 2由表可知,共有20个等可能的结果, ……………… 5分 其中“刚好是不同国籍的人”的结果有16个. ……………… 6分 ∴(A )=45. ……………… 7分22.(1)证明:连接AB 交PO 于点M .∵P A 、PB 分别切⊙O 于A 、B 两点, ∴P A =PB ,OP 平分∠AP B . ∴AB ⊥PO . 即∠AMO =90°. ∵AC 为直径. ∴∠ABC =90°. ∴∠ABC =∠AMO . ∴BC ∥OP .……………… 4分(2)连接AB ,过点A 作AD ⊥PB 于点D ,作直径BE ,连接AE .∵PB 为⊙O 的切线, ∴BE ⊥P B .∴∠PBA +∠ABE =90°.第9页 / 共11页∵BE 为直径, ∴∠BAE =90°. ∴∠E +∠ABE =90°. ∴∠E =∠ABP . ∵∠E =∠C , ∴∠C =∠ABP .由s I n ∠P =1213 ,可以设AD =12t ,则P A =13t ,PD =5t .∴BD =8t .∴tan ∠ABD =AD BD =12t 8t =32.∴tan ∠C =32. ………………8分DBAOPCE23.解:(1)由表中数据判断,销售价格y 与宽x 之间的函数关系不是反比例函数关系. 方法一:如果是二次函数的关系,可设函数解析式为y =ax 2+bx +C .则 242a +24b +c =780,302a +30b +c =900,422a +42b +c =1140,解之得 a =0,b =20,c =300.因此,它们实际上是一次函数关系.其解析式为y =20x +300.方法二:假设是一次函数关系,可设函数解析式为y =kx +B .则 24k +b =780,30k +b =900,解之得,k =20,b =300.将x =42,y =1140,和x =54,y =1380代入检验,满足条件. 故其解析式为y =20x +300. ………………4分(2)①w =﹣16 x 2+20x +300; ………………8分②w =﹣16(x -60)2+900,所以,当材料板的宽为60cm 时,一张材料板的利润最大,最大利润为900元 ……10分 24.(1)解:∵ED ∥BC ,当DF ∥AC 时,四边形DFCE 为平行四边形.此时,BD AB =BF BC .∵AD =BF =t ,∴BD =5-t .∴5-t 5=t6,第10页 / 共11页∴t =3011. ………………3分(2)证明:∵DE ∥BC ,∴△ADE ∽△ABC , ∴AD AB =DE BC. ∵AD =BF ,DE =DB , ∴BF AB =DB BC. ∵∠ABF =∠CBD , ∴△ABF ∽△CB D .∴∠BAF =∠BC D . ……………… 6分 (3)①证明:∵DE ∥BC ,∴△ADM ∽△ABF , ∴AM AF =DM BF. 同理,AM AF =EM CF ,∴DM BF =EMCF . ∴DM ME =BFCF. ∵MN ∥EC , ∴DM ME =DNCN, ∴BF CF =DNCN. ………………8分 ②t =103. ………………10分25.(1)点P 的坐标为(2,4); ………………2分(2)设点A 、B 的坐标分别为A (x 1,ax 12-4a +4)、B (x 2,ax 22-4a +4). ∵点A 、B 在直线y =2x +b 上,∴2x 1+b =ax 12-4a +4 ①,2x 2+b =ax 22-4a +4 ②. ①-②,得2(x 1-x 2)=a (x 12-x 22), ∴a (x 1+x 2)=2.过点B 作BG ∥y 轴,过点P 作PG ∥x 轴,BG 、PG 相交于点G ,过点A 作AH ∥x 轴,过点P 作PH ∥y 轴,AH 、PH 相交于点H .掌握 2019 中考最新动态,敬请关注武汉初升高微信公众号(微信号:wh-csg )第11页 / 共11页 ∵PD =PC ,∴∠PDC =∠PC D .∵AH ∥x 轴,∴∠P AH =∠PDC ,同理,∠BPG =∠PCD ,∴∠AHP =∠PG B .∴Rt △PGB ∽Rt △AHP .∴BG PG =PH AH . ∴2-x 2ax 22-4a =2-x 1﹣(ax 22-4a ). ∴x 1+x 2=﹣4.∴a =﹣12. ………………8分 xyC DBPO GH A(3)设点Q 的坐标为(x Q ,y Q ),点N 的坐标为(x N ,y N ).∵m =2,∴M (2,0).由点Q 为线段MN 的中点,可以求得,x N =2x Q -2,y N =2y Q .∵a =﹣1,∴抛物线c 1的解析式y =﹣x 2+8.因为点N 在抛物线c 1上,所以,y N =﹣x N 2+8.∴2y Q =﹣(2x Q -2)2+8即,y Q =﹣2x Q 2+4x Q +2.∴抛物线c 2的解析式为:y =﹣2x 2+4x +2. ………………12分1。
2015年武汉市九年级4调数学试卷及答案
t i me an dAl l t h i ng si nt h2014-2015年武汉市部分学校九年级四月调考数学试题一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个是正确的,请在答题卡上将正确答案的代号涂黑.1.在实数-5,0,4,-1中,最小的实数是A. -5.B.0.C. -1.D.4.2.式子在实数范围内有意义,则x 的取值范围是A .x >-1.B .x ≥1.C .x ≥﹣1.D .x >1.3.把分解因式正确的是a a 43-A.a(a 2-4). B.a(a-2)2.C.a(a+2)(a-2).D. a(a+4) (a-4).4.菲尔兹奖(Fields Medal)是享有崇高声誉的数学大奖,每四年颁奖一次,颁给二至四名成就显著的年轻数学家对截至2014年获奖者获奖耐的年龄进行统计,整理成下面的表格这56个数据的中位数落在A .第一组.B .第二组.C .第三组.D .第四组.5.下列计算正确的是A ..B ..C ..D ..222x x x =∙13222-=-x x 326326x x x =÷222x x x =+6.如图,△ABC 的顶点坐标分别为A(-4,2),B (-2,4),C (-4,4),原点O 为位似中心,将△ABC 缩小后得到△A’B’C’ , 若点C 的对应点C’的坐标为(2,一2),则点A 的对应点A’坐标为 A .(2,-3 ).B .(2,-1).C .(3,-2).D .(1,-2).7. 4个大小相同的正方体积术摆放成如图所示的几何体,其俯视图是i me an dAl l t h i ng si nt he i rb ei n ga re go od fo r8.小敏为了解本市的空气质量情况,从环境监测网随机抽取了若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).根据以上信息,如下结论错误的是A .被抽取的天数50天.B .空气轻微污染的所占比例为10%.C .扇形统计图中表示优的扇形的圆心角度数57.6°.D.估计该市这一年(365天)达到优和良的总天数不多于290天.9.计算机中常用的十六进制是逢16进l 的计数制,采用数字0~9和字母A~F 共十进制的数的对应关系如下表:例如,用十六进制表示C+F=1B .19-F=A ,18÷4=6,则A×B=A .72.B .6E .C ..5F .D .B0.10.如图,直径AB ,CD 的夹角为60°.P 为的⊙O 上的一个动点(不与点A ,B ,C ,D 重合)Al l t h i ng si nt he i rb ei n ga re go od fo rs 000户,其中25 000 000用科学记数法表示为.掷一枚骰子,观察向上的一面的点数,则点数为奇数的概率为.城,在整个行程中,汽车离开A 城的距离y 与时刻t 的对应关系如图所..如图所示,经过B (2,0)、C (6,0)两点的⊙H 与y 轴的负半轴相切于点A ,双曲线y k= ..如图,在等腰△ABC 中,AB= CB ,M 为△ABC 内一点,∠MAC+∠MCB=∠MCA=30°,则∠.三、解答题【共8小题,共72分)(本小题满分8分)号选手随机请ni(3)x重合,直接写出点F的坐标. 21.的直径.dnaemitt at i me an dAl l t h i ng 10DEC 24.(本小题满分12分)如图,在平面直角坐标系xOy 中,抛物线交y 轴于点E ,293212+-=x x y AD :y=kx+b (k >0)与抛物线相交于A ,D 两点(点D 在点A 的下方).me an dAl l t h i ng si nt he i rb ei n ga re go od fo2AB,∴=AEe b ei n ga re go )画图如图;…………2…………5)分别作弦)知F第21题图1G(E )x1xHAB∥MGMHk+3km=﹣3k.∵顶点C的坐标为(3,0),∴PC=MC.………12分11。
2014年武汉市九年级4月调考数学答案答案
2013—2014学年度武汉市部分学校九年级调研测试数学试题参考答案及评分细则2014.4.2411.x (x +2) (x -2). 12.3.28×107. 13.0.3. .15. 15.5156 16.3-12.17.解:方程两边同乘以2x (x -1),去分母得, ………………1分3(x -1)=2x , ………………2分 即3x -3=2x , ………………3分解得:x =3, ………………4分 经检验x =3是原方程的根. ……………… 5分 ∴原方程的解为x =3. ……………… 6分 18.解:把(1,5)代入直线的函数关系式y =kx +4中,得,k +4=5, ……………… 2分 解得,k =1, ………………3分∴直线的函数关系式为y =x +4. ……………… 4分 ∴x +4≤0, ………………5分 ∴x ≤﹣4. ………………6分 19.证明:在△ABE 和△ACD 中, ………………1分∵⎩⎪⎨⎪⎧∠A =∠A ,∠B =∠C ,AE =AD . ………………4分(每写对一对对应关系给1分) ∴△ABE ≌△ACD .(AAS ) ………………5分 ∴AB =AC . ………………6分20.解:(1)C 1(﹣1,﹣3),C 2(3,﹣1); (每写对一个点的坐标给2分,共4分)(2)A 1A 2的长6. ……………… 7分21.(1)a =7,b =12,c =6,补全条形统计图如下:;………………3分(2)这组数据的中位数在35≤x <37的年龄段中. ……………… 4分(3)将两名美国人分别记作M 1、M 2,法国人记作F ,俄罗斯人分别记作E 1、E 2,则随机抽出两人的所有结果列表如下:由……………… 5分其中“刚好是不同国籍的人”的结果有16个. ……………… 6分 ∴P (A )=45. ……………… 7分22.(1)证明:连接AB 交PO 于点M .∵P A 、PB 分别切⊙O 于A 、B 两点, ∴P A =PB ,OP 平分∠APB . ∴AB ⊥PO .即∠AMO =90°. ∵AC 为直径. ∴∠ABC =90°. ∴∠ABC =∠AMO . ∴BC ∥OP .……………… 4分(2)连接AB ,过点A 作AD ⊥PB 于点D ,作直径BE ,连接AE .∵PB 为⊙O 的切线, ∴BE ⊥PB .∴∠PBA +∠ABE =90°. ∵BE 为直径, ∴∠BAE =90°.∴∠E +∠ABE =90°. ∴∠E =∠ABP . ∵∠E =∠C , ∴∠C =∠ABP .由sin ∠P =1213 ,可以设AD =12t ,则P A =13t ,PD =5t .∴BD =8t .∴tan ∠ABD =AD BD =12t 8t =32.∴tan ∠C =32. ………………8分C23. 解:(1)由表中数据判断,销售价格y 与宽x 之间的函数关系不是反比例函数关系. 方法一:如果是二次函数的关系,可设函数解析式为y =ax 2+bx +c .则 242a +24b +c =780,302a +30b +c =900,422a +42b +c =1140,解之得 a =0,b =20,c =300.因此,它们实际上是一次函数关系.其解析式为y =20x +300. 方法二:假设是一次函数关系,可设函数解析式为y =kx +b .则 24k +b =780,30k +b =900,解之得,k =20,b =300.将x =42,y =1140,和x =54,y =1380代入检验,满足条件. 故其解析式为y =20x +300. ………………4分(2)①w =﹣16 x 2+20x +300; ………………8分②w =﹣16(x -60)2+900,所以,当材料板的宽为60cm 时,一张材料板的利润最大,最大利润为900元 ……10分 24.(1)解:∵ED ∥BC ,当DF ∥AC 时,四边形DFCE 为平行四边形.此时,BD AB =BFBC .∵AD =BF =t ,∴BD =5-t .∴5-t 5=t6, ∴t =3011. ………………3分(2)证明:∵DE ∥BC ,∴△ADE ∽△ABC ,∴AD AB =DE BC. ∵AD =BF ,DE =DB , ∴BF AB =DB BC. ∵∠ABF =∠CBD , ∴△ABF ∽△CBD .∴∠BAF =∠BCD . ……………… 6分 (3)①证明:∵DE ∥BC ,∴△ADM ∽△ABF ,∴AM AF =DM BF . 同理,AM AF =EM CF ,∴DM BF =EMCF . ∴DM ME =BFCF . ∵MN ∥EC , ∴DM ME =DNCN, ∴BF CF =DNCN. ………………8分 ②t =103. ………………10分25.(1)点P 的坐标为(2,4); ………………2分 (2)设点A 、B 的坐标分别为A (x 1,ax 12-4a +4)、B (x 2,ax 22-4a +4). ∵点A 、B 在直线y =2x +b 上,∴2x 1+b =ax 12-4a +4 ①,2x 2+b =ax 22-4a +4 ②. ①-②,得2(x 1-x 2)=a (x 12-x 22),∴a (x 1+x 2)=2.过点B 作BG ∥y 轴,过点P 作PG ∥x 轴,BG 、PG 相交于点G ,过点A 作AH ∥x 轴,过点P 作PH ∥y 轴,AH 、PH 相交于点H .∵PD =PC ,∴∠PDC =∠PCD . ∵AH ∥x 轴,∴∠P AH =∠PDC ,同理,∠BPG =∠PCD , ∴∠AHP =∠PGB . ∴Rt △PGB ∽Rt △AHP .∴BG PG =PH AH. ∴2-x 2ax 22-4a =2-x 1﹣(24a ). ∴x 1+x 2=﹣4.∴a =﹣12. ………………8分y N ). ∴抛物线c 2的解析式为:y =﹣2x +4x +2. ………………12分。
2015武汉四调数学试卷及答案.pdf
19.(本小题满分 8 分) 在一次青年歌手演唱比赛中,评分办法采用五位评委现场打分,每位选手的晟后得分为去掉最高分、最
低分后的平均数.评委给 1 号选手的打分是:9.5 分,9.3 分,9.8 分,8.8 分,9.4 分. (1)求 1 号选手的最后得分; (2)节目组为了增加的节目观赏性,设置了一个亮分环节:主持人在公布评委打分之前,
出点 F 的坐标.
21.(本小题满分 8 分) 已知: ⊙O 为△ABC 的外接圆,点 D 在 AC 边上,AD=AO. (1)如图 1,若弦 BE∥OD,求证 OD=BE; (2)如图 2,点 F 在边 BC 上,BF=BO,若 OD= 2 2 ,OF=3,求⊙O 的直径.
22.(本小题满分 10 分) 某公司生产的商品的市场指导价为每件 150 元,公司的实际销售价格可以浮动 x 个百分点(即销售价格
∴ OE DE 1 ……………8 分 OB BC 2
19.(1)1 号选手的最后得=1 (9.5+9.3+9.4)=9.4 分.………3 分 3
(2)将最高分、最低分分别记作 G、D,其它分数分别记作 F1,F2、F3,则随机抽出两人的所有结果列表如
下:
G
D
F1
F2
F3
G
D,G F1,G F2,G F3,G
络线的交点)上,且点 A 的坐标为(0,4). (1)将线段 OA 沿 x 轴的正方向平移 4 个单位,作出对应线段 CB; (2)取(1)中线段 BC 的中点 D,先作△ABD.再将△ABD 绕点 A 顺时针
旋转 90°,作出对应△AEG; (3)x 轴上有点 F,若将△AFD 沿 AF 折叠刚好与△AFG 重合,直接写
2014-2015第一学期武汉市九年级元月调考数学试卷及参考答案(word版)
2014~2015学年度武汉市部分学校九年级调研测试数学试卷武汉市教育科学研究院命制2015.1.28亲爱的同学,在你答题前,请认真阅读下面以及“答题卡”上的注意事项:1.本试卷由第1卷(选择题)和第Ⅱ卷(非选择题)两部分组成。
全卷共6页,三大题,满分120分。
考试用时120分钟。
2.答题前,请将你的姓名、准考证号填写在“答题卡”相应位置,并在“答题卡”背面左上角填写姓名和座位号。
3.答第1卷(选择题)时,选出每小题答案后,用2B铅笔把“答题卡”上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案。
不得答在..”.上.。
....“.试卷4.答第Ⅱ卷(非选择题)时,用0.5毫米黑色笔迹签字笔书写在“答题卡”上。
答在第.........I.、.Ⅱ.卷的试卷上无效。
..预祝你取得优异成绩!第Ⅰ卷(选择题共30分)一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个正确,请在答卷上将正确答案的代号涂黑:1.方程5x2-4x -1 =0的二次项系数和一次项系数分别为()A.5和4 B.5和-4 C.5和-1 D.5和12.桌上倒扣着背面相同的5张扑克牌,其中3张黑桃、2张红桃.从中随机抽取一张,则A.能够事先确定抽取的扑克牌的花色B.抽到黑桃的可能性更大C.抽到黑桃和抽到红桃的可能性一样大D.抽到红桃的可能性更大3.抛物线y=x2向下平移一个单位得到抛物线()A.y=(x+1)2B.y=(x-1)2C.y=x2+1 D.y=x2-14.用频率估计概率,可以发现,抛掷硬币,“正面朝上”的概率为0.5,是指()A.连续掷2次,结果一定是“正面朝上”和“反面朝上”各1次.B.连续抛掷100次,结果一定是“正面朝上”和“反面朝上”各50次.C.抛掷2n次硬币,恰好有n次“正面朝上”.D.抛掷n次,当n越来越大时,正面朝上的频率会越来越稳定于0.5.5.如图,在⊙O中,弦AB,AC互相垂直,D,E分别为AB,AC的中点,则四边形OEAD为()A.正方形B.菱形C.矩形D.直角梯形6.在平面直角坐标系中,点A( -4,1)关于原点的对称点的坐标为()A.(4,1) B.(4,-1) C.( -4, -1) D.(-1, 4)7.圆的直径为13 cm,,如果圆心与直线的距离是d,则()A.当d =8 cm,时,直线与圆相交.B.当d=4.5 cm时,直线与圆相离.C.当d =6.5 fm时,直线与圆相切.D.当d=13 cm时,直线与圆相切.8.用配方法解方程x2 +10x +9 =0,下列变形正确的是()A.(x+5)2=16. B.(x+10)2=91. C.(x-5)2=34. D.(x+10)2=1099.如图,在平面直角坐标系中,抛物线y=ax2 +bx +5经过A(2,5),B( -1,2)两点,若点C 在该抛物线上,则C点的坐标可能是()A.(-2,0).B.(0.5,6.5).C.(3,2).D.(2,2).10.如图,在⊙O中,弦AD等于半径,B为优弧AD上的一动点,等腰△ABC的底边BC所在直线经过点D,若⊙O的半径等于1,则OC的长不可能为()A.2- 3 B.3-1 C. 2 D.3+1第9题图第10题图第Ⅱ卷(非选择题共90分)二、填空题(共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填写在答卷指定的位置.11.经过某丁字路口的汽车,可能左拐,也可能右拐,如果这两种可能性一样大,则三辆汽车经过此路口时,全部右拐的概率为________________.12.方程x2-x-1=0的判别式的值等于________________.13.抛物线y=-x2 +4x -1的顶点坐标为_________________.14.某村的人均收入前年为12 000元,今年的人均收入为14 520元.设这两年该村人均收入的年平均增长率为x,根据题意,所列方程为________________________________.15.半径为3的圆内接正方形的边心距等于________________.16.圆锥的底面直径是8cm,母线长9cm,则它的侧面展开图的圆心角的度数为________.三、解答题(共8小题,共72分)下列各题需要在答卷指定位置写出文字说明、证明过程、演算步骤或画出图形.17.(本题8分)解方程:x2+2x-3=018.(本题8分)不透明的袋子中装有红色小球1个、绿色小球2个,除颜色外无其他差别.(1)随机摸出一个小球后,放回并摇匀,再随机摸出一个,用列表或画村状图的方法求出“两球都是绿色”的概率;(2)随机摸出两个小球,直接写出两次都是绿球的概率.19.(本题8分)如图,在⊙O中,半径OA⊥弦BC,点E为垂足,点D在优弧⌒BC错误!未找到引用源。
2014—2015学年度第一学期期末学业质量评估九年级数学试题(含答案)
九年级数学试题注意事项:1. 本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷2页,为选择题,共36分.第Ⅱ卷2页,为非选择题,共84分.全卷满分120分,考试时间120分钟.2.答卷前,务必将答题卡上面的项目填涂清楚.所有答案都必须涂、写在答题卡相应的位置,答在本试卷上一律无效.第Ⅰ卷一、选择题(本题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,多选、不选、错选均记零分.)1. 下列说法中正确的是()A. 平分弦的直径垂直于弦,并且平分弦所对的两条弧;B. 圆是轴对称图形,每一条直径都是它的对称轴;C. 弦的垂直平分线过圆心;D. 相等的圆心角所对的弧也相等.2. 如图,A、B、P是⊙O上的三点,∠APB=40°,则弧AB的度数为()A.50°B.80°C.280°D.80°或280°3. 如图,在直径为AB的半圆O上有一动点P从O点出发,以相同的速度沿O-A-B-O的路线运动,线段OP的长度d与运动时间t之间的函数关系用图象描述大致是()4. 下列命题中的假命题是()A. 正方形的半径等于正方形的边心距的2倍;B. 三角形任意两边的垂直平分线的交点是三角形的外心;C. 用反证法证明命题“三角形中至少有一个内角不小于60°”时,第一步应该“假设每一个内角都小于60°”;D. 过三点能且只能作一个圆.5. 如图,⊙O的半径是4,点P是弦AB延长线上的一点,连接OP,若OP=6,∠APO=30°,则弦AB的长为()A .27B .7C .5D .526. 如图所示,在△ABC 中D 为AC 边上一点,若∠DBC =∠A ,BC =3,AC =6,则CD 的长为( ) A .1 B .2 C .23 D .25 7. 下列方程中:①x 2-2x -1=0, ②2x 2-7x +2=0, ③x 2-x +1=0 两根互为倒数有( ) A. 0个 B. 1个 C. 2个 D. 3个 8. 一次函数y 1=3x +3与y 2=-2x +8在同一直角坐标系内的交点坐标 为(1,6).则当y 1>y 2时,x 的取值范围是( )A. x ≥1B. x =1C. x <1D. x >1 9. 在△ABC 中,若()21cosA 1tanB 02-+-=,则∠C 的度数是( ) A. 45° B. 60° C. 75° D. 105°10. 如图,热气球的探测器显示,从热气球A 看一栋高楼顶部B 的仰角为30°,看这栋高楼底部C 的俯角为60°,热气球A 与高楼的水平距离为120m ,这栋高楼BC 的高度为( ) A .1603m B .803 m C .()12031- m D .()12031+m11. 已知反比例函数y =xk的图像经过点P (-1,2),则这个函数图像位于( ) A .第二、三象限 B .第一、三象限 C .第三、四象限 D .第二、四象限 12. 已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,有下列4个结论:①abc <0;②b >a +c ;③2a -b =0;④b 2-4ac <0.其中正确的结论个数是( ) A.1个 B.2个 C.3个 D.4个第Ⅱ卷二、填空题(本题共6小题,要求将每小题的最后结果填写在横线上. 每小题3分,满分18分) 13. 已知一元二次方程ax 2+bx +c =0的两根为x 1=2,x 2=-3,则二次三项式ax 2+bx +c 可分解因式为 .14. ⊙O 的半径为10cm ,AB ,CD 是⊙O 的两条弦,且AB ∥CD ,AB =16cm ,CD =12cm .则AB 与CD 之间的距离是 cm .15. 如图所示,△ABC 中,E 、F 、D 分别是边AB 、AC 、BC 上的点,且满足12AE AF EB FC ==,则△EFD 与△ABC 的面积比为 .16. 如图,M 是Rt △ABC 的斜边BC 上异于B 、C 的一定点,过M 点作直线MN 截△ABC交AC 于点N ,使截得的△CMN 与△ABC 相似. 已知AB =6,AC =8,CM =4,则CN = .17. 一个足球从地面上被踢出,它距地面高度y (米)可以用二次函数x x y 6.199.42+-=刻画,其中x (秒)表示足球被踢出后经过的时间. 则足球被踢出后到离开地面达到最高点所用的时间是 秒. 18. 在△ABC 中,AB =AC =5,tanB =34.若⊙O 的半径为10,且⊙O 经过点B 、C ,那么线段OA 的长等于 .三、解答题(本题共6小题,解答应写出文字说明、证明过程或推演步骤. 共66分) 19. (本题满分10分)市某楼盘准备以每平方米6 000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4 860元的均价开盘销售.(1)求平均每次下调的百分率.(2)某人准备以开盘价均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,一次性送装修费每平方米80元,试问哪种方案更优惠?如图,晚上小明站在路灯P的底下观察自己的影子时发现,当他站在F点的位置时,在地面上的影子为BF,小明向前走2米到D点时,在地面上的影子为AD,若AB=4米,∠PBF=60°,∠PAB=30°,通过计算,求出小明的身高.(结果保留根号).21. (本题满分11分)如图,四边形ABCD内接于⊙O,BC是直径,∠BAD=120°,AB=AD.(1)求证:四边形ABCD是等腰梯形;(2)已知AC=6,求阴影部分的面积.如图,在平行四边形ABCD 中,过点A 作AE ⊥BC ,垂足为E ,连接DE ,F 为线段DE 上一点,且∠AFE =∠B .(1)求证:△ADF ∽△DEC ;(2)若AB =8,AD =63,AF =43,求sinB 的值.23. (本题满分12分)已知关于x 的一元二次方程()2kx 4k 1x 3k 30-+++=. (1)试说明:无论k 取何值,方程总有两个实数根;(2)若△ABC 的两边AB 、AC 的长是方程的两个实数根,第三边BC 的长为5. 当△ABC 是等腰三角形时,求k 的值.AB是⊙O的直径,AD与⊙O相交,点C是⊙O上一点,经过点C的直线交AD于点E.⑴如图1 ,若AC平分∠BAD,CE⊥AD于点E,求证:CE是⊙O的切线;⑵如图2,若CE是⊙O的切线,CE⊥AD于点E,AC是∠BAD的平分线吗?说明理由;⑶如图3,若CE是⊙O的切线,AC平分∠BAD,AB=8,AC=6,求AE的长度.试题答案及评分标准一、选择题(每小题选对得3分,满分36分. 多选、不选、错选均记零分.)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案CBBDACBDCADB二、填空题(每小题3分,满分18分)13. a (x -2)(x +3) 14. 214或 15. 2:9 16. 1655或17.2 18. 3或5 三、解答题(本题共6小题,解答应写出文字说明、证明过程或推演步骤.共66分) 19. (本题满分10分)解:解:(1)设平均每次下调的百分率为x , 则6000(1-x )2=4860, 解得:x 1=0.1=10%, x 2=1.9(舍).故平均每周下调的百分率为10%.……………………6分 (2)方案1优惠:4860×100×(1-0.98)=9720(元); 方案2可优惠:80×100=8000(元). 故方案1优惠.…………………………10分20. (本题满分10分)解:设小明的身高为x 米,则CD =EF =x 米. 在Rt △ACD 中,∠ADC =90°,tan ∠CAD =ADCD,即tan 30°=x /AD ,AD =3x --2分 在Rt △BEF 中,∠BFE =90°,tan ∠EBF =EF /BF ,即tan 60°=x /BF ,BF =x 33---4分 由题意得DF =2,∴BD =DF -BF =2-x 33,∵AB =AD +BD =4,∴3x +2-x 33=4 --8分即x =3.答:小明的身高为3米.------------------------------------------------------------------------10分 21. (本题满分11分)⑴证明:∵∠BAD =120°,AB =AD ∴∠ABD =∠ADB =30° ∴弧AB 和弧AD 的度数都等于60°又 ∵BC 是直径 ∴弧CD 的度数也是60° ------------------ --------------2分 ∴AB =CD 且∠CAD =∠ACB =30° ∴BC ∥AD∴四边形ABCD 是等腰梯形. --------------------------------------------------5分⑵∵BC 是直径 ∴∠BAC =90°∵∠ACB =30°,AC =6∴0cos 30AC BC ===R =∵弧AB 和弧AD 的度数都等于60° ∴∠BOD =120° ---------------------------6分 连接OA 交BD 于点E ,则OA ⊥BD 在Rt △BOE中:0sin30OE OB =⋅=0cos 330BE OB =⋅=,BD =2BE =6----------------------------------------------------8分∴(21201-63602BOD BODS S S⨯⨯=-=⨯阴影扇形ππ ----------------------------------------------------11分 22. (本题满分11分)⑴证明:∵∠AFE =∠B ,∠AFE 与∠AFD 互补,∠B 与∠C 互补∴∠AFD =∠C --------------------------------------------------2分 ∵AD ∥BC ∴∠ADF =∠DEC -------------------------------------------4分 ∴△ADF ∽△DEC ----------------------------------------------------5分 ⑵解:∵△ADF ∽△DEC ∴AD AFDE CD== 解得:DE =12 ----------------------------------------------------7分 ∵AE ⊥BC , AD ∥BC ∴AE ⊥AD∴6AE ==----9分在Rt △ABE 中,63sin 84AE B AB === -------------------------------------------------11分 23. (本题满分12分)解:⑴△=()()243341k k k -++ =2216181212k k k k ++--=2441k k -+ =()221k -≥0 --------------------------------------------------4分∴无论k 取何值,方程总有两个实数根. -------------------------------------------------5分 ⑵若AB =AC 则方程()2kx 4k 1x 3k 30-+++=有两个相等的实数根此时△=0,即:()221k -=0 解得:12k =当12k =时,AB =AC =3,此时AB 、AC 、BC 满足三边关系. -------------------------8分 若BC =5为△ABC 的一腰,则方程()2kx 4k 1x 3k 30-+++=有一根是5,将5x =代入方程()2kx 4k 1x 3k 30-+++=解得:14k = 当14k =时,解得方程两根为5和3,此时AB 、AC 、BC 满足三边关系. ----------11分 综上:当△ABC 是等腰三角形时,k 的值为1124或. -----------------------------12分24. (本题满分12分) ⑴证明:连接OC∵OA =OC ∴∠OAC =∠OCA ∵AC 平分∠BAD ∴∠OCA =∠CAD ∴OC ∥AD∵CE ⊥AD ∴CE ⊥OC -----------------------------------------------3分 又OC 是半径 ∴CE 是⊙O 的切线。
武汉市近四年九年级四月调考数学试卷(含答案)
武汉市2013年初三四月调考数学试卷(word 版)一、选择题。
(每小题3分,共30分)1、下列数中,最大的是( )A 、-2B 、0C 、-3D 、12、式子3-x 在实数范围内有意义,则x 的取值范围是( )A 、3≥xB 、x>-3C 、3-≥xD 、x>33、下列各数中,为不等式组⎩⎨⎧≤->+0202x x 的解集是( )A 、x>-2B 、2≤xC 、22≤<-xD 、2≥x4、“六次抛一枚均匀的骰子,有一次朝上一面的点数为6”,这一事件是( )A 、必然事件B 、随机事件C 、确定事件D 、不可能事件5、若21,x x 是一元二次方程0342=+-x x 的两个根,则21x x +的值是( )A 、4B 、-4C 、-3D 、36、如图,两条平行线AB 、CD 被直线BC 所截,一组同旁内角的平分线相交于点E ,则∠BEC 的度数是( )A 、60°B 、72°C 、90°D 、100°7、如图是由4个大小相同的正方体组合而成的几何体,其主视图是( )8、下列图殂都是由同样大小的平行四边形按一定规律组成的,其中,第1个图形中一共有1个平行四边形,第2个图形中共有5个平行四边形,第3个图形中共有11个平行四边形,...,按照此规律第6个图形中平行四边形的个数为( )A 、29B 、41C 、42D 、56第1个图 第2个图 第3个图9、某校学生会对学生上网的情况作了调查,随机抽取了若干名学生,按“天天上网、只在周末上网、从不上网、其它”四项标准统计,绘制了如下两幅统计图,根据图中所给信息,下列判断:①本次调查一共抽取了200名学生;②在被抽查的学生中,“从不上网”的学生有10人;③在本次调查中”天天上网”的扇形的圆心角为30°;其中,正确的判断有( )A 、0个B 、1个C 、2个D 、3个10、如图、∠BAC=60°,半径长为1的圆O 与∠BAC 的两边相切,P 为圆O 上一动点,以P 为圆心,PA 长为半径的圆P 交射线AB 、AC 于D 、E 两点,连接DE ,则线段DE 长度的最大值为( )A 、3B 、6C 、233 D 、33 二、填空题。
2014武汉市九年级四月调考数学试题及答案
第Ⅰ卷 (选择题,共30分)一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个是正确的,请在答题卡上将正确答案的代号涂黑. 1.下列数中,最大的是A .﹣1.B .0.C .1.D .2. 2.式子x -5 在实数范围内有意义,则x 的取值范围是A .x ≥5.B .x >﹣5.C .x ≥﹣5.D .x >5. 3.下列计算正确的是A .(﹣4)+(﹣6)=10.B . 2 =1.C .6-9=﹣3.D .8 - 3 =8-3 . 4.对20名男生60秒跳绳的成绩进行统计,结果如下表所示:跳绳的成绩(个) 130 135 140 145 150 人数(人)131132则这20个数据的极差和众数分别是:A .10,3.B .20,140.C .5,140.D .1,3. 5.下列计算正确的是A .2x +x =3x 2.B .2x 2·3x 2=6x 4.C .x 6÷x 2=x 3.D .2x -x =2. 6.如图,线段AB 的两个端点坐标分别为A (2,2),B (4,2),以原点O 为位似中心,将线段AB 缩小后得到线段DE .若DE =1,则端点D 的坐标为yxED BA OA .(2,1). B .(2,2). C .(1,1). D .(1,2). 7.如图是由4个大小相同的正方体组合而成的几何体,其俯视图是A ..B ..C ..D ..8.七年级有2000名学生参加“趣味数学竞赛”活动,从中抽取了若干名学生的得分进行统计,整理出下列不完整的表格,和扇形统计图. 成绩x (分) 频数(人)50≤x <6010 60≤x <7070≤x <8080≤x <9090≤x <10050 若90分以上(含90分)的学生可获得一等奖;70分以上(含70分),90以下的学生可获得二等奖;其余学生可获得鼓励奖.根据统计图表中的数据,估计本次活动中, 七年级学生获得二等奖的人数大约有 A .1200人. B .120人. C .60人. D .600人.9.下列图形都是由同样大小的正方形按一定规律组成的,其中,第1个图形中一共有1个正方形,第2个图形中共有5个正方形,第3个图形中共有14个正方形,…,按照此规律第5个图形中正方形的个数为第1个图 第2个图 第3个图A .30.B .46.C .55.D .60.10.如图,P 为的⊙O 内的一个定点,A 为⊙O 上的一个动点,射线AP 、AO 分别与⊙O 交于B 、C 两点.若⊙O 的半径长为3,OP = 3 ,则弦BC 的最大值为A .2 3 .B .3.C . 6 .D .3 2 .CBOPA第Ⅱ卷 (非选择题,共90分)二、填空题(共6小题,每小题3分,共18分)11.分解因式:x 3-4x = .12.载有239名乘客的MH370飞机失联后,其行踪一度成为世人关注的焦点.小明在百度中搜索“马…50≤x <605%60≤x <7010%70≤x <8080≤x <9030%90≤x <100航最新消息”,找到相关结果约32 800 000个.其中数32 800 000用科学记数法表示为 . 13.口袋中装有10个小球,其中红球3个,黄球7个,从中随机摸出一球,是红球的概率为 . 14.一个有进水管与出水管的容器,从某时刻开始的4分内只进水不出水,在随后的若干分内既进水又出水,之后只出水不进水.每分钟的进水量和出水量是两个常数,容器内的水量y (单位:升)与时间x (单位:分)之间的关系如图所示.则a = .x y /分/升a 1230204O24xyCBA32O1D CAB15.如图所示,某双曲线上三点A 、B 、C 的横坐标分别为1、2、3.若AB =2BC ,则该双曲线的解析式的为y = .16.如图,在等边三角形△ABC 中,射线AD 四等分∠BAC 交BC 于点D ,其中∠BAD >∠CAD ,则CDBD = .三、解答题(共9小题,共72分)17.(本小题满分6分)解方程:3121x x =-.18.(本小题满分6分)直线y =kx +4经过点A (1,5),求关于x 的不等式kx +4≤0的解集. 19.(本小题满分6分)已知:如图,点D 在AB 上,点E 在AC 上,AD =AE ,∠B =∠C . 求证:AB =AC .第19题图A B CD E20.(本小题满分7分)如图,在平面直角坐标系中,△ABC 的顶点的坐标分别为A (﹣1,5)、B (﹣1,1)、C (﹣3,1).将△ABC 向右平移2个单位、再向下平移4个单位得到△A 1B 1C 1;将△ABC 绕原点O 旋转180°得到 △A 2B 2C 2.(1)请直接写出点C 1和C 2的坐标; (2)请直接写出线段A 1A 2的长.xy AC B O21.(本小题满分7分)菲尔兹奖(Fields Medal )是享有崇高声誉的数学大奖,每四年颁奖一次,颁给二至四名成就显著的年轻数学家.获奖者当年不能超过四十岁.对获奖者获奖时的年龄进行统计,整理成下面的表格和统计图.(1)直接写出a 、b 、c 的值,并补全条形统计图;年龄段(岁) 27≤x <29 29≤x <31 31≤x <33 33≤x <35 35≤x <37 37≤x <39 39≤x <41 频数(人) 1 2 7 5a b c 频率 0.025 0.175 0.15(2)请问这组数据的中位数在哪一个年龄段中?(3)在五位36岁的获奖者中有两位美国人,一位法国人和两位俄罗斯人.请用画树形图或列表的方法求出“从五位36岁的获奖者中随机抽出两人,刚好是不同国籍的人”(记作事件A )的概率.22.(本小题满分8分)已知:P 为⊙O 外一点,P A 、PB 分别切⊙O 于A 、B 两点,点C 为⊙O 上一点. (1) 如图1,若AC 为直径,求证:OP ∥BC ;(2) 如图2,若sin ∠P =1213,求tan ∠C 的值.BAOPCBAOPC图1 图223.(本小题满分10分)某工厂生产一种矩形材料板,其长宽之比为3∶2.每张材料板的成本c (单位:元)与它的面积(单位:2cm )成正比例,每张材料板的销售价格y (单位:元)与其宽x 之间满足我们学习过的三种函数(即一次函数、反比例函数和二次函数)关系中的一种.下表记录了该工厂生产、销售该材料板一些数据.材料板的宽x (单位:cm ) 24 30 42 54 成本c (单位:元) 96 150 294 486 销售价格y (单位:元)78090011401380(1)求一张材料板的销售价格y 与其宽x 之间的函数关系式,不要求写出自变量的取值范围; (2)若一张材料板的利润w 为销售价格y 与成本c 的差.①请直接写出一张材料板的利润w 与其宽x 之间的函数关系,不要求写出自变量的取值范围; ②当材料板的宽为多少时,一张材料板的利润最大?最大利润是多少. 24.(本小题满分10分)在△ABC 中,点D 从A 出发,在AB 边上以每秒一个单位的速度向B 运动,同时点F 从B 出发,在BC 边上以相同的速度向C 运动,过点D 作DE ∥BC 交AC 于点E .运动时间为t 秒.(1)若AB =5,BC =6,当t 为何值时,四边形DFCE 为平行四边形; (2)连接AF 、CD .若BD =DE ,求证:∠BAF =∠BCD ;(3)AF 交DE 于点M ,在DC 上取点N ,使MN ∥AC ,连接FN .①求证:BF CF =DNCN;②若AB =5,BC =6,AC =4,当MN =FN 时,请直接写出t 的值.EFABCD EF AB C DNMEF AB CD25.(本小题满分12分)在平面直角坐标系xOy 中,抛物线c 1:y =ax 2-4a +4 (a <0)经过第一象限内的定点P . (1)直接点P 的坐标;(2)直线y =2x +b 与抛物线c 1在相交于A 、B 两点,如图1所示,直线P A 、PB 与x 轴分别交于D 、C 两点,当PD =PC 时,求a 的值;(3)若a =﹣1,点M 坐标为(2,0)是x 轴上的点,N 为抛物线c 1上的点,Q 为线段MN 的中点.设点N 在抛物线c 1上运动时,Q 的运动轨迹为抛物线c 2,求抛物线c 2的解析式.xyCDBPOA xyO图1 备用图2013—2014学年度武汉市部分学校九年级调研测试数学试题参考答案及评分细则2014.4.24题号 1 2 3 4 5 6 7 8 9 10 答案DACBBCDACA11.x (x +2) (x -2). 12.3.28×107. 13.0.3. 14.15. 15. 50≤x <605%60≤x <7010%70≤x <8080≤x <9030%90≤x <10016.3-12. 17.解:方程两边同乘以2x (x -1),去分母得, ………………1分3(x -1)=2x , ………………2分 即3x -3=2x , ………………3分解得:x =3, ………………4分 经检验x =3是原方程的根. ……………… 5分 ∴原方程的解为x =3. ……………… 6分 18.解:把(1,5)代入直线的函数关系式y =kx +4中,得,k +4=5, ……………… 2分 解得,k =1, ………………3分∴直线的函数关系式为y =x +4. ……………… 4分 ∴x +4≤0, ………………5分 ∴x ≤﹣4. ………………6分 19.证明:在△ABE 和△ACD 中, ………………1分∵⎩⎪⎨⎪⎧∠A =∠A ,∠B =∠C ,AE =AD .………………4分(每写对一对对应关系给1分) ∴△ABE ≌△ACD .(AAS ) ………………5分 ∴AB =AC . ………………6分 20.解:(1)C 1(﹣1,﹣3),C 2(3,﹣1); (每写对一个点的坐标给2分,共4分)(2)A 1A 2的长6. ……………… 7分21.(1)a =7,b =12,c =6,补全条形统计图如下:;………………3分(2)这组数据的中位数在35≤x <37的年龄段中. ……………… 4分(3)将两名美国人分别记作M 1、M 2,法国人记作F ,俄罗斯人分别记作E 1、E 2,则随机抽出两人的所有结果列表如下: M 1 M 2 F E 1 E 2 M 1 M 2,M 1F ,M 1 E 1,M 1 E 2,M 1 M 2 M 1,M 2 F ,M 2 E 1,M 2 E 2,M 2 F M 1,F M 2,F E 1,F E 2,F E 1 M 1,E 1 M 2,E 1 F ,E 1 E 2,E 1 E 2M 1,E 2M 2,E 2F ,E 2E 1,E 2由表可知,共有20个等可能的结果, ……………… 5分其中“刚好是不同国籍的人”的结果有16个. ……………… 6分 ∴P (A )=45. ……………… 7分22.(1)证明:连接AB 交PO 于点M .∵P A 、PB 分别切⊙O 于A 、B 两点, ∴P A =PB ,OP 平分∠APB . ∴AB ⊥PO .即∠AMO =90°. ∵AC 为直径. ∴∠ABC =90°. ∴∠ABC =∠AMO . ∴BC ∥OP .……………… 4分(2)连接AB ,过点A 作AD ⊥PB 于点D ,作直径BE ,连接AE .∵PB 为⊙O 的切线, ∴BE ⊥PB .∴∠PBA +∠ABE =90°. ∵BE 为直径, ∴∠BAE =90°.∴∠E +∠ABE =90°. ∴∠E =∠ABP . ∵∠E =∠C , ∴∠C =∠ABP .由sin ∠P =1213 ,可以设AD =12t ,则PA =13t ,PD =5t .∴BD =8t .∴tan ∠ABD =AD BD =12t 8t =32.∴tan ∠C =32. ………………8分DBAOPCE23. 解:(1)由表中数据判断,销售价格y 与宽x 之间的函数关系不是反比例函数关系. 方法一:如果是二次函数的关系,可设函数解析式为y =ax 2+bx +c .则 242a +24b +c =780,302a +30b +c =900,422a +42b +c =1140,解之得 a =0,b =20,c =300.因此,它们实际上是一次函数关系.其解析式为y =20x +300. 方法二:假设是一次函数关系,可设函数解析式为y =kx +b .则 24k +b =780,30k +b =900,解之得,k =20,b =300.将x =42,y =1140,和x =54,y =1380代入检验,满足条件. 故其解析式为y =20x +300. ………………4分(2)①w =﹣16x 2+20x +300; ………………8分②w =﹣16(x -60)2+900,所以,当材料板的宽为60cm 时,一张材料板的利润最大,最大利润为900元 ……10分 24.(1)解:∵ED ∥BC ,当DF ∥AC 时,四边形DFCE 为平行四边形.此时,BD AB =BFBC .∵AD =BF =t ,∴BD =5-t .∴5-t 5=t 6,∴t =3011. ………………3分(2)证明:∵DE ∥BC ,∴△ADE ∽△ABC ,∴AD AB =DE BC . ∵AD =BF ,DE =DB , ∴BF AB =DB BC. ∵∠ABF =∠CBD , ∴△ABF ∽△CBD .∴∠BAF =∠BCD . ……………… 6分 (3)①证明:∵DE ∥BC ,∴△ADM ∽△ABF ,∴AM AF =DM BF . 同理,AM AF =EM CF ,∴DM BF =EM CF . ∴DM ME =BF CF . ∵MN ∥EC , ∴DM ME =DN CN, ∴BF CF =DNCN. ………………8分 ②t =103. ………………10分25.(1)点P 的坐标为(2,4); ………………2分 (2)设点A 、B 的坐标分别为A (x 1,ax 12-4a +4)、B (x 2,ax 22-4a +4). ∵点A 、B 在直线y =2x +b 上,∴2x 1+b =ax 12-4a +4 ①,2x 2+b =ax 22-4a +4 ②. ①-②,得2(x 1-x 2)=a (x 12-x 22), ∴a (x 1+x 2)=2.过点B 作BG ∥y 轴,过点P 作PG ∥x 轴,BG 、PG 相交于点G ,过点A 作AH ∥x 轴,过点P 作PH ∥y 轴,AH 、PH 相交于点H .第 11 页 共 11 页 ∵PD =PC ,∴∠PDC =∠PCD .∵AH ∥x 轴,∴∠P AH =∠PDC ,同理,∠BPG =∠PCD ,∴∠AHP =∠PGB .∴Rt △PGB ∽Rt △AHP .∴BG PG =PH AH . ∴2-x 2ax 22-4a =2-x 1﹣(ax 22-4a ). ∴x 1+x 2=﹣4.∴a =﹣12. ………………8分 xyC DBPO GH A(3)设点Q 的坐标为(x Q ,y Q ),点N 的坐标为(x N ,y N ). ∵m =2,∴M (2,0).由点Q 为线段MN 的中点,可以求得,x N =2x Q -2,y N =2y Q .∵a =﹣1,∴抛物线c 1的解析式y =﹣x 2+8.因为点N 在抛物线c 1上,所以,y N =﹣x N 2+8.∴2y Q =﹣(2x Q -2)2+8即,y Q =﹣2x Q 2+4x Q +2.∴抛物线c 2的解析式为:y =﹣2x 2+4x +2. ………………12分1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
2014-2015学年度武汉市部分学校九年级调研测试
数学试题参考答案及评分细则
2015.4.16
题号 1 2 3 4 5 6 7 8 9 10 答案
A
B
C
C
A
B
C
D
B
B
11.10. 12.2.5×107. 13.
2
1
. 14.60. 15.38- 16.150°. 17.解:(1)把(3,5)与(﹣4,﹣9)代入一次函数的解析式y =kx +b 中,得,
⎩⎨⎧3k +b =5,﹣4k +b =﹣9.
…………………………2分 解得,k =2,b =﹣1.…………………………5分 ∴这个一次函数的解析式为y =2x -1. (2)2x -1≤5,
x ≤3. …………………………8分
18.证明:(1)∵BE 是中线,∴AE =1
2
AC ,
同理,AD =1
2
AB .
∵AB =AC ,∴AD =AE .…………1分
在△ABE 和△ACD 中,∵⎩
⎪⎨⎪⎧AB =AC ,
∠A =∠A ,AE =AD .
∴△ABE ≌△ACD . …………………4分
∴BE =CD . …………………………5分
(2)∵DE 是△ABE 的中位线,∴DE ∥BC ……………6分
∴
2
1
==BC DE OB OE ……………8分
19.(1)1号选手的最后得=1
3
(9.5+9.3+9.4)=9.4分.………3分
(2)将最高分、最低分分别记作G 、D ,其它分数分别记作F 1,F 2、F 3,则随机抽出两人的所有结果列表如下: G D F 1 F 2 F 3 G D ,G F 1,G F 2,G F 3,G D G ,D F 1,D F 2,D F 3,D F 1 G ,F 1 D ,F 1 F 2,F 1
F 3,F 1 F 2
G ,F 2 D ,F 2 F 1,F 2 F 3,F 2 F 3
G ,F 3
D ,F 3
F 1,F 3
F 2,F 3
…………………………5分
2
由表可知,共有20个等可能的结果,其中“刚好一个是最高分、一个是最低分”(记作事件
A )的结果有2个.
∴P (A)=1
10
. …………………………8分
20.解:(1)画图如图;…………2分 (2)画图如图;…………5分 (3)F (3
4
,0).…………8分
21.(1)证明:连接AE 交OD 于点F .
∵AB 为直径.∴AE ⊥BE . ∵BE ∥OD .∴AE ⊥OD . ∵AD =AO ,∴AE 平分∠CAB .…………2分 ∴OD=2OF . ∵BE =2OF , ∴BE=OD .…………3分
(2)分别作弦BE ∥OD ,AH ∥OF ,连接AE ,BH ,AE ,BH 相交于点P . 由(1)知E 为BC ⌒ 的中点.同理,H 为AC ⌒
的中点, ∴∠HAE =∠HBE =45°.…………4分 ∵AB 为直径, ∴∠H =∠E =90°. ∴AP = 2 AH ,PE =BE . 因为O 为AB 的中点,BE ∥OD ,
∴EB =OD =2 2 .
∴PE =BE =2 2 . ………5分
同理,AH =OF =3. ∴AP =3 2 .………6分
在Rt △ABE 中,AE =5 2 ,BE =2 2 , 由勾股定理得,AB =58 ,⊙O 的直径58 .………8分 22.解:(1)设该公司生产销售每件商品的成本为y 元,依题意,得
150(1-12%)=y (1+10%). 解之得,y =120.
答:该公司生产销售每件商品的成本为120元.………3分 (2)由题意得(﹣2x +24)[( 150(1+x %))﹣120]=660. ………5分
F 第21题图1
P H
F E
D
O
A
B
C
第21题图2 G
(E )
3
整理得﹣3x 2-24x +720=660. 化简得(x+10)(x-2)=0 2,1021=-=x x
此时,商品定价为每件135元或153元,日销售利润为660元.………7分 (3)1≤a ≤6… ……10分 23.(1)解:过点E 作EN ⊥DC 于点N .
在△ABC 和△DEC 中, ∵∠A =∠EDC ,∠ACB =∠DCE ,
∴△ABC ∽△DEC .∴DE AB =DC
AC
.………1分
∵AB =5,DC AC =2
5
,∴DE =2.
在△DEC 中,∠EDC =45°,∠DCE =30°. ∴CE =2 EN = 2 DE . ∴CE =2 2 .………3分 (2)①证明:过点F 作FM ⊥FD 交AB 于点M ,连接MD .
∵∠F AD =∠FDA =15°, ∴AF =DF ,∠AFD =150°.∴∠AFM =60°. ∵∠MAF =∠BAC +∠DAF =60°,∴△AMF 为等边三角形.………4分
∴FM =AF =FD ,
∴∠FMD =∠FDM =45°. ∴∠AMD =105°=∠ABC .∴MD ∥BC ,…4分 ∴MB DC =AB AC
. 由(1)知:DE DC =AB AC ,∴MB DC =DE
DC ,
∴MB =DE .………6分
∴ AB=DF+DE ………7分
(2)②19
2
.………10分
24.(1)联立⎪⎪⎩
⎪⎪⎨⎧-=+-=213
2,2
93212x y x x y ………1分
解得A (8,1221),D (2,2
1
)………3分
(2)∵y =1
2 (x -3)2,所以点P 的横坐标为3.
当x =3, b =2-3k 时,y =2, ∴点P 的坐标为(3,2);………4分
∵CE 的解析式为2
9
23+-
=x y 过点D 作DN ∥PC 交CE 于点N ,
M
F
E
B
C
A
D
第23题图
第24题图1
4 ∴DF PF =ND PC =ND
2
………5分 设D (t,293212+-t t ),N (t, 2923+-t )
∴ND =89
)23(21232122+--=+-t t t
∴当t =23时,ND 的最大值为8
9,………6分
∴
DF PF 的最小值为9
16.………7分
(3)设点A 、D 的坐标分别为A (x 1,y 1)、D (x 2,y 2),设P ,M 的坐标分别为P (3,n ),M (3,m ).
∵点A 、D 在直线y =kx 与抛物线的交点,
∴kx 1=12 x 12-3 x 1+29,kx 2=1
2 x 22-
3 x 2+2
9.
所以,x 1,x 2是方程1
2 x 2-
3 x -k x +2
9=0的两根,
∴x 1+x 2=6+2 k ,x 1x 2=9.………8分
连接AB 交PC 于点H ,过点D 作DG ∥x 轴交PC 于点G . 则DG ∥AB ∥x 轴, ∴DG BH =MG MH ,DG AH =PG PH
. ∵BH =AH ,∴MG MH =PG
PH
.………9分
即,y 2-m y 1-m =n -y 2
y 1-n
.
∴(y 2-m )(y 1-n )=(y 1-m )(n -y 2). 整理,得
2 y 1y 2+2mn =(y 1+y 2)(m +n ) ①.……10分 ∵x 1+x 2=6+2 k ,x 1x 2=9 ∴y 1y 2=k 2x 1x 2=9 k 2 ②,y 1+y 2=6k +2k 2 ③. ∵点P (3,n )直线y =kx 上,所以n =3k ④. 将②,③,④代入①中,得 m =﹣3k . ∵顶点C 的坐标为(3,0), ∴PC =MC . ………12分
第24题图2。