8高三数学集合的思想及应用

合集下载

高三数学知识点总结(3篇)

高三数学知识点总结(3篇)

高三数学知识点总结第一章:集合与函数概念一、集合有关概念1.集合的含义2.集合的中元素的三个特性:(1)元素的确定性如:世界上的山(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}(3)元素的无序性:如:{a,b,c}和{a,c,b}是表示同一个集合(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集:N-或N+整数集:Z有理数集:Q实数集:R1)列举法:{a,b,c……}3)语言描述法:例:{不是直角三角形的三角形}4)Venn图:4、集合的分类:(1)有限集含有有限个元素的集合(2)无限集含有无限个元素的集合二、集合间的基本关系1.“包含”关系—子集注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。

反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA2.“相等”关系:A=B(5≥5,且5≤5,则5=5)实即:①任何一个集合是它本身的子集。

AíA②真子集:如果AíB,且A1B那就说集合A是集合B的真子集,记作AB(或BA)③如果AíB,BíC,那么AíC④如果AíB同时BíA那么A=B3.不含任何元素的集合叫做空集,记为Φ规定:空集是任何集合的子集,空集是任何非空集合的真子集。

4.子集个数:有n个元素的集合,含有2n个子集,2n-1个真子集,含有2n-1个非空子集,含有2n-1个非空真子集三、集合的运算运算类型交集并集补集第二章:基本初等函数一、指数函数(一)指数与指数幂的运算1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈-.当是奇数时,正数的次方根是一个正数,负数的次方根是一个负数.此时,的次方根用符号表示.式子叫做根式(radical),这里叫做根指数(radicalexponent),叫做被开方数(radicand).当是偶数时,正数的次方根有两个,这两个数互为相反数.此时,正数的正的次方根用符号表示,负的次方根用符号-表示.正的次方根与负的次方根可以合并成±(>0).由此可得:负数没有偶次方根;0的任何次方根都是0,记作。

高三集合复数知识点总结

高三集合复数知识点总结

高三集合复数知识点总结集合与复数是高中数学中的重要内容,它们在解决实际问题和理解数学概念中扮演着关键角色。

本文将对高三阶段所涉及的集合与复数的知识点进行总结,以帮助学生更好地理解和掌握这些概念。

一、集合的概念及运算集合是由具有某种特定性质的事物或对象组成的整体。

在数学中,我们通常用大写字母来表示集合,如集合A、集合B等。

集合中的元素可以是数字、字母、图形等。

1. 集合的表示方法集合通常用大括号表示,元素之间用逗号分隔。

例如,集合A = {1, 2, 3} 表示集合A包含元素1、2和3。

2. 集合的分类集合可以分为有限集和无限集。

有限集是元素数量有限的集合,而无限集是元素数量无限的集合。

此外,还有空集,即不包含任何元素的集合。

3. 集合间的关系集合间的关系主要包括子集、真子集、相等和并集等。

子集是指一个集合的所有元素都是另一个集合的元素;真子集是指一个集合不仅是另一个集合的子集,而且还有自己独有的元素;两个集合相等是指它们包含完全相同的元素;并集是指将两个集合的所有元素合并在一起构成的新集合。

4. 集合的运算集合的运算主要包括并集、交集和补集。

并集运算用符号∪表示,交集运算用符号∩表示,补集运算用符号'或{ }^c表示。

例如,集合A 和集合B的并集是A∪B,交集是A∩B,集合A在全集U中的补集是A'或U^c。

二、复数的概念及运算复数是实数的扩展,它由实部和虚部组成,一般形式为a+bi,其中a 和b是实数,i是虚数单位,满足i^2=-1。

1. 复数的表示复数可以在平面上表示为一个点或一个向量。

实部对应于横坐标,虚部对应于纵坐标。

这种表示方法称为复平面。

2. 复数的分类复数可以根据实部和虚部的符号进行分类,包括实数、纯虚数、正实数、负实数等。

3. 复数的运算复数的运算包括加法、减法、乘法和除法。

复数的加法和减法运算类似于向量的加法和减法,即将对应的实部和虚部分别相加或相减。

复数的乘法运算需要使用分配律和虚数单位i的幂运算规则。

高三数学复习专题讲座(第一讲)集合与集合思想

高三数学复习专题讲座(第一讲)集合与集合思想

第一讲、对集合的理解及集合思想应用的问题一、1、集合语言是一种特殊的符号语言,是现代数学的基本语言,所以要学好高中的数学,首先必须深层次的理解集合的概念及其内涵,跟我们生活是一样的,如果连语言都不通的话,就跟谈不上很好的交流和表达了。

2、《集合》的学习,不仅仅局限与集合里面简单的计算,而需要更深层次的理解集合思想内涵,许多同学在学习集合,在学习高中数学的时候,有种“力不从心”的感觉,总是“一看就会,一听就懂,一做就错”,很大程度上是因为没有真正理解其中的思想内涵,仅仅是停留在表面的理解。

3、集合是个原始概念,只作描述性的解释:若干个确定对象的全体,可以看作一个集合,组成集合的对象称为集合的元素。

从这个概念,至少可以看到三个研究方向:集合中元素的研究;单个集合本身的研究;若干个集合之间关系的研究(函数就是两个集合之间按照一定规则的对应关系)。

二、透过集合的描述法理解集合。

对于用描述法给出的集合{x |x ∈P }1、翻译,高中数学的学习,要注意自然语言,符号语言,图像语言……之间的相互转化。

代表元素x 可以翻译成:是什么?它所具有的性质P 可以翻译成:有多少?2、研究两个集合之间的关系,也就可以通过研究集合里面元素之间的关系来解决。

3、形式:对于性质P ,在数学语言中,代表着一种形式,也就是说,只要满足这样形式的个体x ,则可以看着是集合的元素。

在许多的数学题型中,需要对数学表达式进行变形,变成我们需要或者是熟悉的能够解决问题的形式。

如:+∈R y x ,,yx y x 21,2+=+求的最小值,这里有两种方式:1、用消元法,2、讲当成整体,y x +即:)21)((21yx y x ++=原式,这里显然方法第二种形式要简洁一些。

如:},14/{},,12/{Z k k x x B Z k k x x A ∈±==∈+==,(1)判断集合B A ,的关系 (2)证明B A ,之间的关系解析:(1)这作为一个判断题目,可以通过对集合的翻译研究他们之间的关系对集合A :1、x :数——2、奇数——3、观察,x 可以去到……-3,-2,1,3……——4、A 集合为全体奇数,同理:B 集合也是全体奇数,故:A=B(2)要证明A=B ,即需要证明A ,B 互为彼此的子集,即⎩⎨⎧∈⇒∈∀∈⇒∈∀⇔=Ax B x B x A x B A ,这里也就需要证明A 中的元素能够表示成B 中元素具有的形式P 的形式,反之亦然。

高三数学重点知识归纳

高三数学重点知识归纳

高三数学重点知识归纳高三数学重点知识归纳考点一:集合与简易逻辑集合部分一般以选择题出现,属容易题。

重点考查集合间关系的理解和认识。

近年的试题加强了对集合计算化简能力的考查,并向无限集发展,考查抽象思维能力。

在解决这些问题时,要注意利用几何的直观性,并注重集合表示方法的转换与化简。

简易逻辑考查有两种形式:一是在选择题和填空题中直接考查命题及其关系、逻辑联结词、“充要关系”、命题真伪的判断、全称命题和特称命题的否定等,二是在解答题中深层次考查常用逻辑用语表达数学解题过程和逻辑推理。

考点二:函数与导数函数是高考的重点内容,以选择题和填空题的为载体针对性考查函数的定义域与值域、函数的性质、函数与方程、基本初等函数(一次和二次函数、指数、对数、幂函数)的应用等,分值约为10分,解答题与导数交汇在一起考查函数的性质。

导数部分一方面考查导数的运算与导数的几何意义,另一方面考查导数的简单应用,如求函数的单调区间、极值与最值等,通常以客观题的形式出现,属于容易题和中档题,三是导数的综合应用,主要是和函数、不等式、方程等联系在一起以解答题的形式出现,如一些不等式恒成立问题、参数的取值范围问题、方程根的个数问题、不等式的证明等问题。

考点三:三角函数与平面向量一般是2道小题,1道综合解答题。

小题一道考查平面向量有关概念及运算等,另一道对三角知识点的补充。

大题中如果没有涉及正弦定理、余弦定理的应用,可能就是一道和解答题相互补充的三角函数的图像、性质或三角恒等变换的题目,也可能是考查平面向量为主的试题,要注意数形结合思想在解题中的应用。

向量重点考查平面向量数量积的概念及应用,向量与直线、圆锥曲线、数列、不等式、三角函数等结合,解决角度、垂直、共线等问题是“新热点”题型.考点四:数列与不等式不等式主要考查一元二次不等式的解法、一元二次不等式组和简单线性规划问题、基本不等式的应用等,通常会在小题中设置1到2道题。

对不等式的工具性穿插在数列、解析几何、函数导数等解答题中进行考查.在选择、填空题中考查等差或等比数列的概念、性质、通项公式、求和公式等的灵活应用,一道解答题大多凸显以数列知识为工具,综合运用函数、方程、不等式等解决问题的能力,它们都属于中、高档题目.高三怎么学数学最有效树立信心,减少无用重复题量。

高三数学高考集合知识点梳理

高三数学高考集合知识点梳理

高三数学高考集合知识点梳理集合是数学中一个重要的概念,广泛应用于各个数学分支。

在高考数学中,集合也是一个重要的考点。

本文将对高三数学高考集合知识点进行梳理,以帮助同学们更好地掌握和应用这些知识。

一、集合的定义与表示方法集合是由一些特定对象组成的整体,这些对象被称为集合的元素。

常用的表示方法主要有以下几种:1. 列举法:直接列举出集合的所有元素,用大括号{}表示。

2. 描述法:通过给出元素满足的条件来描述集合,用大括号{}表示,并用逗号分隔元素。

二、集合间的关系与运算1. 子集关系:若集合A的所有元素同时也是集合B的元素,则称A是B的子集,记作A⊆B。

特别地,一个集合是其本身的子集。

2. 并集运算:将两个集合中的所有元素放在一起组成一个集合,记作A∪B。

3. 交集运算:两个集合中相同的元素组成的集合,记作A∩B。

4. 差集运算:从一个集合中去掉与另一个集合相同的元素后得到的集合,记作A-B或者A\B。

5. 互斥集:两个集合没有相同的元素,记作A∩B=∅,称为互斥集。

6. 补集运算:对于给定的全集U,集合A的补集是指所有不属于集合A的元素组成的集合,记作A'或者Ā。

三、集合的性质与定理1. 幂集性质:集合A的幂集是指以A的所有子集为元素的集合,记作P(A)。

对于一个有n个元素的集合来说,它的幂集将有2^n个元素。

2. 交换律、结合律、分配律等:并集和交集运算满足交换律、结合律、分配律等基本的运算性质。

3. 德摩根律:对于给定的全集U、集合A和集合B,德摩根律表示为以下两个公式:(A∪B)' = A'∩B'(A∩B)' = A'∪B'四、集合的应用集合在数学中有着广泛的应用,它不仅在高考数学中出现,还涉及到概率、统计、逻辑等许多领域。

1. 概率:在概率计算中,集合用于描述事件的样本空间以及事件的发生情况,通过集合的交并运算和概率的定义,可以计算出事件发生的概率。

高三集合知识点总结

高三集合知识点总结

高三集合知识点总结在高三的学习过程中,我们学习了许多关于集合的知识点。

这些知识点是我们理解和应用数学的基础,为我们进一步学习和掌握其他数学概念奠定了重要的基础。

下面是对高三集合知识点的总结。

一、集合的定义和表示方法在数学中,我们将同一性质的对象的整体称为集合。

集合的表示方法有两种常用的方式:列举法和描述法。

列举法是通过把集合中的元素一一列举出来表示,描述法则是使用一个条件来表明集合中元素的特性。

二、集合的运算1. 并集:表示两个或多个集合中的所有元素的集合。

用符号“∪”表示。

例如,集合A和集合B的并集为A∪B。

2. 交集:表示两个或多个集合中共有的元素的集合。

用符号“∩”表示。

例如,集合A和集合B的交集为A∩B。

3. 差集:表示某个集合中除去其他集合中已有的元素所剩下的元素的集合。

用符号“-”表示。

例如,集合A减去集合B的差集为A-B。

4. 互斥:表示两个集合没有共同元素。

如果集合A∩B为空集,则集合A和集合B互斥。

5. 包含关系:表示一个集合是否包含另一个集合。

如果集合A中的所有元素都属于集合B,则集合A包含于集合B。

三、集合的性质1. 子集:表示一个集合中的所有元素都属于另一个集合。

如果集合A的所有元素都属于集合B,则集合A是集合B的子集。

用符号“A⊆B”表示。

2. 空集:表示没有任何元素的集合。

用符号“∅”表示。

3. 全集:表示包含所有可能元素的集合。

用符号“U”表示。

4. 幂集:表示一个集合的所有子集的集合。

用符号“P(A)”表示,其中A为给定集合。

四、集合的应用1. 排列组合:集合论在排列组合中有着广泛的应用。

通过对所求解的对象进行合理的划分,使用集合论的基本原理,可以更加简便地解决排列组合问题。

2. 数理逻辑:集合论为数理逻辑提供了基础,数学推理中的假设、条件、结论等都可以用集合的交集、并集来表示。

3. 概率论:集合论在概率论中起着关键作用。

通过集合的运算,可以更好地描述和解决概率问题。

2019-2020年高三数学总复习 集合的概念和表示方法教案 理

2019-2020年高三数学总复习 集合的概念和表示方法教案 理

2019-2020年高三数学总复习集合的概念和表示方法教案理教材分析集合概念的基本理论,称为集合论.它是近、现代数学的一个重要基础.一方面,许多重要的数学分支,如数理逻辑、近世代数、实变函数、泛函分析、概率统计、拓扑等,都建立在集合理论的基础上.另一方面,集合论及其反映的数学思想,在越来越广泛的领域中得到应用.在小学和初中数学中,学生已经接触过集合,对于诸如数集(整数的集合、有理数的集合)、点集(直线、圆)等,有了一定的感性认识.这节内容是初中有关内容的深化和延伸.首先通过实例引出集合与集合元素的概念,然后通过实例加深对集合与集合元素的理解,最后介绍了集合的常用表示方法,包括列举法,描述法,还给出了画图表示集合的例子.本节的重点是集合的基本概念与表示方法,难点是运用集合的两种常用表示方法———列举法与描述法正确表示一些简单的集合.教学目标1. 初步理解集合的概念,了解有限集、无限集、空集的意义,知道常用数集及其记法.2. 初步了解“属于”关系的意义,理解集合中元素的性质.3. 掌握集合的表示法,通过把文字语言转化为符号语言(集合语言),培养学生的理解、化归、表达和处理问题的能力.任务分析这节内容学生已在小学、初中有了一定的了解,这里主要根据实例引出概念.介绍集合的概念采用由具体到抽象,再由抽象到具体的思维方法,学生容易接受.在引出概念时,从实例入手,由具体到抽象,由浅入深,便于学生理解,紧接着再通过实例理解概念.集合的表示方法也是通过实例加以说明,化难为易,便于学生掌握.教学设计一、问题情境1. 在初中,我们学过哪些集合?2. 在初中,我们用集合描述过什么?学生讨论得出:在初中代数里学习数的分类时,学过“正数的集合”,“负数的集合”;在学习一元一次不等式时,说它的所有解为不等式的解集.在初中几何里学习圆时,说圆是到定点的距离等于定长的点的集合.几何图形都可以看成点的集合.3. “集合”一词与我们日常生活中的哪些词语的意义相近?学生讨论得出:“全体”、“一类”、“一群”、“所有”、“整体”,……4. 请写出“小于10”的所有自然数.0,1,2,3,4,5,6,7,8,9.这些可以构成一个集合.5. 什么是集合?二、建立模型1. 集合的概念(先具体举例,然后进行描述性定义)(1)某种指定的对象集在一起就成为一个集合,简称集.(2)集合中的每个对象叫作这个集合的元素.(3)集合中的元素与集合的关系:a是集合A中的元素,称a属于集合A,记作a∈A;a不是集合A中的元素,称a不属于集合A,记作aA.例:设B={1,2,3},则1∈B,4B.2. 集合中的元素具备的性质(1)确定性:集合中的元素是确定的,即给定一个集合,任何一个对象是否属于这个集合的元素也就确定了.如上例,给出集合B,4不是集合的元素是可以确定的.(2)互异性:集合中的元素是互异的,即集合中的元素是没有重复的.例:若集合A={a,b},则a与b是不同的两个元素.(3)无序性:集合中的元素无顺序.例:集合{1,2}与集合{2,1}表示同一集合.3. 常用的数集及其记法全体非负整数的集合简称非负整数集(或自然数集),记作N.非负整数集内排除0的集合简称正整数集,记作N*或N+;全体整数的集合简称整数集,记作Z;全体有理数的集合简称有理数集,记作Q;全体实数的集合简称实数集,记作R.4. 集合的表示方法[问题]如何表示方程x2-3x+2=0的所有解?(1)列举法列举法是把集合中的元素一一列举出来的方法.例:x2-3x+2=0的解集可表示为{1,2}.(2)描述法描述法是用确定的条件表示某些对象是否属于这个集合的方法.例:①x2-3x+2=0的解集可表示为{x|x2-3x+2=0}.②不等式x-3>2的解集可表示为{x|x-3>2}.③Venn图法例:x2-3x+2=0的解集可以表示为(1,2).5. 集合的分类(1)有限集:含有有限个元素的集合.例如,A={1,2}.(2)无限集:含有无限个元素的集合.例如,N.(3)空集:不含任何元素的集合,记作.例如,{x|x2+1=0,x∈R}=.注:对于无限集,不宜采用列举法.三、解释应用[例题]1. 用适当的方法表示下列集合.(1)由1,2,3这三个数字抽出一部分或全部数字(没有重复)所组成的一切自然数.(2)平面内到一个定点O的距离等于定长l(l>0)的所有点P.(3)在平面a内,线段AB的垂直平分线.(4)不等式2x-8<2的解集.2. 用不同的方法表示下列集合.(1){2,4,6,8}.(2){x|x2+x-1=0}.(3){x∈N|3<x<7}.3. 已知A={x∈N|66-x∈N}.试用列举法表示集合A.(A={0,3,5})4. 用描述法表示在平面直角坐标中第一象限内的点的坐标的集合.[练习]1. 用适当的方法表示下列集合.(1)构成英语单词mathematics(数字)的全体字母.(2)在自然集内,小于1000的奇数构成的集合.(3)矩形构成的集合.2. 用描述法表示下列集合.(1){3,9,27,81,…}.(2)四、拓展延伸把下列集合“翻译”成数学文字语言来叙述.(1){(x,y)|y=x2+1,x∈R}.(2){y|y=x2+1,x∈R}.(3){(x,y)|y=x2+1,x∈R}.(4){x|y=x2+1,y∈N*}.点评这篇案例注重新、旧知识的联系与过渡,以旧引新,从学生的原有知识、经验出发,创设问题情境;从实例引出集合的概念,再结合实例让学生进一步理解集合的概念,掌握集合的表示方法.非常注重实例的使用是这篇案例的突出特点.这样做,通俗易懂,使学生便于学习和掌握.例题、练习由浅入深,对培养学生的理解能力、表达能力、思维能力大有裨益.拓展延伸注重数学语言的转化和训练,注重区分形似而质异的数学问题,加强了学生对数学概念的理解和认识.2019-2020年高三数学总复习频率与概率教案理教材分析频率与概率是两个不同的概念,但是二者又有密切的联系.如何从二者的异同点中抽象出概率的定义是本案例的主要内容.本节课蕴涵了具体与抽象之间的辩证关系.讲授过程中对教材处理稍有不当,可能直接影响学生对本节重点(即概念的理解)的掌握程度.因此,如何设计合适的实例,怎样引导学生理解和总结是处理好本节的关键,也是处理好本节教材的难点.教学目标通过本节课教学,使学生能理清频率和概率的关系,并能正确理解概率的意义,增强学生的对立与统一的辩证思想意识.任务分析由于频率在大量重复试验的前提下可以近似地叫作这个事件的概率,因此本节课应从具有大量重复试验的实例入手.为加深学生的理解程度,可采用学生亲自参与到试验中去,从操作中去体会,去总结.概率可看作频率理论上的期望值,从数量上反映了随机事件发生的可能性大小.因此,为巩固学生总结出的知识,最后还要回归到实例中去,让学生去运用,以符合认知过程.教学设计一、问题情境在日常生活中,我们经常遇到某某事件发生的概率是多少,如xx年2月5日《文汇报》登载的两则消息.本报讯记者梁红英报道:2月3日晚6点19分,一彩民购买的“江浙沪大乐透”彩票,同时投中10注一等奖,独揽48571620元巨额奖金,创下中国彩票史上个人一次性奖额之最.……据有关人士介绍,该彩民当时花了200元买下100注“江浙沪大乐透”彩票,分成10组,每组10注,每组的自选号码相同.结果,其中1组所选号码与前晚“江浙沪大乐透”xx015期开奖号码完全一致.本报讯记者江世亮报道:……对这种似乎不可能发生事件的发生,从数学概率论上将作何解释?为此,记者于昨日午夜电话连线采访了本市一位数学建模专家,他说,以他现在不完全掌握的情况来分析,像这名幸运者同时获得10个大奖的概率,可称得上一次万亿分之一的事件,通俗地讲就是接近于零.对文中的“万亿分之一”我们怎样理解呢?再如:天气预报说“明天降雨的概率是80%,我们明天出门要不要带伞?收音机里广播报道xx年冬某地“流行性感冒的发病率为10%”,我们这里要不要采取预防措施?……对这些在传播媒体上出现的数字80%,10%等,我们该作何理解呢?二、建立模型为了解决诸如以上的实际问题,我们不妨先从熟悉的频率的概念入手.首先,将全班同学平均分成三组,第一组做掷硬币试验,次数越多越好,观察掷出正面向上的次数,然后把试验结果和计算结果分别填入下表.表28-1第二组做抓阄试验.写五个阄,即分别标号为1,2,3,4,5,有放回地抓,每次记录下号数,次数越多越好.不妨统计一下各号数所占频率.第三组做摸围棋子试验.预先准备黑、白围棋子若干,然后给该组学生黑子30粒,白子10粒,让该组学生有放回地摸,次数为100次,每次摸出1粒,并记录下每次摸到的棋子的颜色,求出白子出现的频率.试验结束,让各组学生回答试验结果.第一组正面向上的频率必然接近,第二组结果肯定是每个号出现的频率接近,而第三组结果肯定位于附近.各组学生所得结果可能大于预定数,也可能小于预定数,但都比较接近.让学生讨论:出现与上述结果比较接近的数字受何因素影响?(学生思考,讨论,教师投影以下表格)历史上有些学者还做了成千上万次掷硬币的试验,结果如下表所示:表28-2观察上表后,引导学生总结:在多次重复试验中,同一事件发生的频率在某一个数值附近摆动,而且随着试验次数的增加,一般摆动幅度的越小,而且观察到的大偏差也越少,频率呈现一定的稳定性.通过三组试验,我们可以发现:虽然,,三个数值不等,但是三个试验存在共性,即随机事件的频率随试验次数的增加稳定在某一数值附近.同时还可看出,不同的随机事件对应的数值可能不同.我们就用这一数值表示事件发生的可能性大小,即概率.(引出概率定义)定义可采用学生口述、教师补充的方式,然后可以投影此定义:一般地,在n次重复进行的试验中,事件A发生的频率,当n很大时,总是在某个常数附近摆动,随着n的增加,摆度幅度越来越小,这时就把这个常数叫作事件A的概率,记为P(A).学生可考虑如下问题:(1)概率P(A)的取值范围是什么?(2)必然事件、不可能性事件的概率各是多少?(3)频率和概率有何关系?其中重点是问题(3),应启发、引导学生总结出:在大量重复试验的前提下,频率可以近似地称为这个事件的概率,而概率可看作频率在理论上的期望值,它从数量上反映了随机事件发生的可能性大小.为加深对二者关系的理解,可以进行如下类比:给定一根木棒,谁都不怀疑它有“客观”的长度,长度是多少?我们可以用尺或仪器去测量,不论尺或仪器多么精确,测得的数值总是稳定在木棒真实的“长度”值的附近.事实上,人们也是把测量所得的值当作真实的“长度”值.这里测量值就像本节中的频率,“客观”长度就像概率.概率的这种定义叫作概率的统计定义.在实践中,经常采用这种方法求事件的概率.三、解释应用[例题]1. 把第三组试验中的黑棋子减少10粒,即20粒黑子,10粒白子,那么摸到黑子的概率约为多少?学生通过多次试验,可以发现此概率约为.2. 为确定某类种子的发芽率,从一批种子中抽出若干批做发芽试验,其结果如下:表28-3从以上的数据可以看出,这类种子的发芽率约为0.9.[练习]某射击手在同一条件下进行射击,结果如下:表28-4(1)计算表中击中靶心的各个频率.(表中各频率分别为0.8,0.95,0.88,0.92,0.89,0.91)(2)这个射手射击一次,击中靶心的概率约是多少?(由此(1)可知,这个射手射击一次,击中靶心的概率约是0.9)四、拓展延伸“某彩票的中奖概率为”是否意味着买1000张彩票就一定能中奖?从概率的统计定义出发,我们先来考虑此题的简化情形:在投掷一枚均匀硬币的随机试验中,正面出现的概率是,这是否意味着投掷2次硬币就会出现1次正面呢?根据经验,我们投掷2次硬币有可能1次正面也不出现,即出现2次反面的情形,但是在大量重复掷硬币的试验中,如掷10000次硬币,则出现正面的次数约为5000次.买1000张彩票相当于做1000次试验,结果可能是一次奖也没中,或者中一次奖,或者多次中奖.所以“彩票中奖概率为”并不意味着买1000张彩票就一定能中奖.只有当所买彩票的数量n非常大时,才可以将大量重复买彩票这个试验看成中奖的次数约为(比如说买1000000张彩票,则中奖的次数约为1000),并且n越大,中奖次数越接近于.由此我们可以说,对于小概率事件,从理论上来讲,发生的可能性很小,甚至在一定条件下可能不会发生.但是,实际上小概率事件仍有发生的可能,如本节开头提到的万亿分之一的概率事件就发生了.点评针对这节课以概念为主,而又抽象的特点,案例设计了以学生动手试验为主,引导学生体会概念的教学方法,同时对这节中较抽象的内容:频率和概率的关系做了形象的类比,以便学生理解.这篇案例增加了试验内容,其目的是更有力地帮助学生理解定义.另外,例题与练习的配备有利于学生加深对这节内容的理解.因此,这节课的整体设计符合学生对新知识认识的规律,符合新课程标准的精神.。

高三数学集合知识点总结归纳图

高三数学集合知识点总结归纳图

高三数学集合知识点总结归纳图在高三数学学习中,集合是一个非常重要的知识点。

它涉及到众多概念和运算符号,不仅在高考中占有一席之地,而且在以后的数学学习和应用中也会经常遇到。

本文将对高三数学集合知识点进行总结和归纳,并通过图表的形式进行展示,以便更好地理解。

一、集合概念集合是数学中的一个基本概念,它是由一些确定的元素所构成的整体。

通常用大写字母表示集合,元素则用小写字母表示。

集合可以用描述性的方式表示,也可以用刻画性的方式表示。

二、集合的运算集合的运算包括并、交、差、补四种基本运算。

1. 并集:将两个集合中的所有元素合并在一起,不重复地列出。

并集用符号∪表示。

2. 交集:取两个集合中的共同部分元素,列出重复的元素。

交集用符号∩表示。

3. 差集:取一个集合中除去另一个集合中的共同部分元素,列出剩余的元素。

差集用符号-表示。

4. 补集:对于给定的一个全集,减去某个集合中的全部元素,得到剩余的元素构成的集合,即为该集合的补集。

三、集合的表示方法集合可以通过不同的表示方法进行表示,常见的有三种方法:列表法、定语从句法和解析法。

1. 列表法:用大括号括起来,集合中的元素按照逗号分隔列出。

2. 定语从句法:通过定语从句的方式给出集合的元素。

3. 解析法:使用一个变量,通过对变量的取值范围加以限定,来表示集合。

四、集合的关系与性质集合之间的关系有包含关系、相等关系、互斥关系等。

1. 包含关系:若一个集合A的所有元素都属于另一个集合B,则称集合A包含于集合B,记作A⊆B。

若集合A既包含于集合B,又不等于集合B,则称集合A真包含于集合B,记作A⊂B。

2. 相等关系:若两个集合既包含对方的所有元素,则称这两个集合相等,记作A=B。

3. 互斥关系:两个集合没有共同的元素,称为互斥关系。

集合还具有并集交换律、并集结合律、交集交换律、交集结合律、分配律等运算性质。

五、常见集合的表示与性质1. 自然数集N:表示所有的正整数,包括0。

高三数学集合知识点归纳

高三数学集合知识点归纳

高三数学集合知识点归纳数学是一门需要系统性学习和总结的学科,而数学中的集合理论是其中的一门重要和基础的内容。

高三数学中的集合知识点涵盖了集合的基本定义、运算规则、集合的表示方法和集合间的关系等多个方面。

下面将对高三数学集合知识点进行归纳和总结。

一、集合的基本定义在数学中,集合是由一些确定的元素组成的整体。

集合内的元素是无序的,即元素的位置不影响集合的本质。

集合的基本符号是大写字母,例如A、B等,集合中的元素用小写字母表示,例如a、b等。

集合的基本定义包括空集、单集、全集和非空有限集等。

1. 空集:不包含任何元素的集合,用符号∅表示。

2. 单集:只包含一个元素的集合,用符号{a}表示。

3. 全集:包含所有可能元素的集合,用符号U表示。

4. 非空有限集:由有限个元素构成的集合。

二、集合的运算规则在数学中,集合可以进行并、交、差、补等运算。

1. 并运算:将两个或多个集合中的所有元素放在一起构成的新集合,用符号∪表示。

2. 交运算:包含两个或多个集合中共有的元素所构成的新集合,用符号∩表示。

3. 差运算:从一个集合中去除与另一个集合中相同的元素所构成的新集合,用符号/或\表示。

4. 补运算:一个集合相对于全集中的元素而言的补集,用符号'表示。

三、集合的表示方法在数学中,集合可以通过列举法、描述法和解释法来表示。

1. 列举法:直接列举集合中的元素,用大括号括起来。

例如:A = {1, 2, 3, 4, 5}表示集合A包含元素1、2、3、4和5。

2. 描述法:通过描述元素的性质和条件来表示集合。

例如:B = {x | x是正整数,且x < 6}表示集合B包含小于6的正整数。

3. 解释法:通过文字解释来说明集合的含义。

例如:C = {人}表示集合C包含所有人的集合。

四、集合间的关系在数学中,集合之间可以有包含关系、相等关系和互斥关系。

1. 包含关系:一个集合包含另一个集合的所有元素。

例如:A = {1, 2, 3},B = {2, 3},则B是A的子集,记作B⊆A。

高三数学集合的概念及运算知识精讲

高三数学集合的概念及运算知识精讲

高三数学集合的概念及运算【本讲主要内容】集合的概念及运算【知识掌握】 【知识点精析】集合的基本概念及其表示法掌握之后,研究集合的关系,运算是后续基础知识,与第一讲的知识点构成集合的整体;为以后运用集合工具形成集合思想打基础。

1. 集合间的关系是包含与不包含,相等与不相等的关系,集合A 与集合B 之间的关系很直观地用文代图示于:A 是B 的子集⇔A 包含于B (B 包含A )A 不是B 的子集⇔A 不包含于B (B 不包含A )A 是B 的子集且B 是A 的子集⇔A 、B 相等客观存在很多如上关系,如数集之间的关系2. 集合的运算,由已知集合中的元素构造出与之相关的新集合,可以写作是已知集合的运算结果,定义运算是人为的,常用的集合运算有:(以两个集合为例)① 交集——由两个集合中的公共元素构成的集合。

② 并集——由两个集合中的所有元素构成的集合。

③ 补集——存在于全集中的某个集合的补集是由非本集合中的全集中其它元素构成的集合。

三. 要认识到以下几点:第一,从运算的角度认识“交集”、“并集”、“补集”运算的对象与结果都是集合。

第二,从相互间的联系认识运算的结果,结果又是集合家族的繁衍。

第三,运用变化的联系的观点认识不同关系下各种运算的结果,有怎样的联系。

第四,定义从两个集合的运算为基础,可扩展到多个集合间的运算。

四. 知识讲解程序: (一)集合间的关系1. 子集:设A 、B 是两个集合,如果集合A 中的任意一个元素都是集合B 中的元素,则称这两个集合有包含关系,且称A 是B 的子集,记作B A ⊆(或A B ⊇)(读作A 包含于B 或B 包含A )说明:① 两个集合具有包含关系亦即一个集合是另一个集合的子集。

② 符号语言:A 是B 的子集⇔B A ⊆(读作A 包含于B )⇔A B ⊇(B 包含A )⇔A x ∈∀,都有B x ∈。

③ 图形语言(Venn 图示)思考:两图是否符合子集定义?2. 相等:如果A 是B 的子集,且B 是A 的子集,则称两个集合相等,记作A=B 。

高中数学集合模块总结教案

高中数学集合模块总结教案

高中数学集合模块总结教案
教学内容:高中数学集合模块
教学目标:掌握集合的基本概念、运算规律以及应用;能够熟练解决与集合相关的问题;
培养学生的逻辑思维和数学推理能力。

教学重点:集合的基本概念、运算规律和应用。

教学难点:集合的运算规律和应用。

教学准备:教材、多媒体课件、作业册、练习题等。

教学过程:
一、导入(5分钟)
教师可以通过提出一个问题引入集合的概念,让学生思考并讨论,激发学生的兴趣。

二、概念讲解(15分钟)
1. 集合的概念:集合是具有某种共同属性的事物的总体,用符号表示为一个大括号,其中
列出所有满足共同属性的元素。

2. 集合的表示方法:列举法、描述法、集合公式等。

3. 集合的基本运算:并集、交集、补集、差集等。

三、示例分析(20分钟)
通过举例分析集合的运算规律和应用,让学生掌握集合的相关计算方法。

四、练习训练(20分钟)
进行练习和训练,让学生熟练掌握集合的运算规律和应用。

五、总结归纳(10分钟)
对集合模块的重点内容进行总结归纳,强化学生的记忆和理解。

教学反思:通过本节课的教学,学生应该掌握集合的基本概念、运算规律和应用,同时培
养学生的逻辑思维和数学推理能力。

在教学过程中,要注意引导学生积极思考和解决问题,帮助他们建立正确的学习方法和思维模式。

集合数学知识点高三

集合数学知识点高三

集合数学知识点高三集合是数学中的一个基本概念,它是由一些确定的元素所组成的。

在高三的数学学习中,我们将会接触到一些与集合相关的重要知识点。

本文将对高三数学中涉及的集合知识进行详细介绍,包括集合的表示、运算、关系、特殊集合等。

一、集合的基本表示方法在数学中,我们用大写字母A、B、C等表示集合,集合中的元素用小写字母a、b、c等表示。

集合可以通过列举法、描述法和区间法进行表示。

(1)列举法:直接将集合中的元素列举出来,用大括号{}括起来。

例如集合A={1,2,3,4,5}。

(2)描述法:通过给出满足特定条件的元素的描述来表示集合。

例如集合B={x|x是偶数},表示B中的元素是所有偶数。

(3)区间法:当集合的元素是连续的数字时,可以使用区间法进行表示。

例如集合C=[1,5],表示C中的元素是1到5之间的所有数字。

二、集合的运算在集合中,我们可以进行交集、并集、差集和补集等运算,用以描述集合之间的关系。

(1)交集:两个集合A和B的交集,表示为A∩B,表示A和B共有的元素构成的集合。

例如集合A={1,2,3},集合B={2,3,4},则A∩B={2,3}。

(2)并集:两个集合A和B的并集,表示为A∪B,表示A和B的所有元素组成的集合。

例如集合A={1,2,3},集合B={2,3,4},则A∪B={1,2,3,4}。

(3)差集:集合A减去集合B,表示为A-B,表示属于A但不属于B的元素组成的集合。

例如集合A={1,2,3},集合B={2,3,4},则A-B={1}。

(4)补集:集合A对于全集Ω而言的补集,表示为A',表示所有不属于A的元素组成的集合。

例如集合A={1,2,3},全集Ω={1,2,3,4,5},则A'={4,5}。

三、集合的关系在集合中,我们还可以了解到集合的包含关系、相等关系以及互不相交等关系。

(1)包含关系:如果一个集合A的所有元素都属于集合B,则称集合A是集合B的子集,表示为A⊆B。

集合思想和方法

集合思想和方法

集合思想和方法高中数学新教材很重视“集合”概念,把它作为高中数学的基础,放在第一章,这是符合近代数学发展规律的。

实际上,集合是整个数学的基础,它不但为数学的不同分支提供了工具,还提供了重要的思想方法。

因此,如何在高中数学教学中教好“集合”的概念和思想方法就显得非常重要了。

但是,在数学教学中,我们很少自觉地运用集合的思想和方法去分析问题、解决问题,至于认真地发掘、研究它的应用就更少了。

我们认为,关键在于运用,就是在其它内容的教学和学习中贯彻和运用集合的思想方法,而这是一个薄弱环节。

下面谈一谈本人在这方面的一些思考和做法。

一、什么是集合思想简而言之,集合思想就是从集合的观点出发,把所研究的对象看成某个集合的元素。

但我们认为集合的本质是“分类”,是“求同辨异”。

“分类思想”是重要的数学思想,用于处理复杂的数学问题,可以化繁为简,化难为易。

分类时要求标准明确,这与集合的基本性质——确定性完全一致。

所以,集合是分类思想方法的极好的载体,其本质就是分类。

基于这样的认识,我们才能在数学教学和学习中自觉地运用集合思想和方法。

二、集合思想和方法的运用根据上面的叙述,我们可以在高中数学的任何一块内容中找到应用集合概念及其思想方法的天地。

函数、数列等自不待言,逻辑、不等式、排列组合概率、三角、解析几何乃至立体几何中都可以充分地运用集合的工具和思想方法。

1、从一个典型问题谈起例1 函数)12lg(2+-=ax x y 的值域为R ,求常数a 的取值范围。

分析:学生解该题时往往分不清值域为R 与定义域为R 的不同,错误率非常高。

错解如:2()210g x x ax =-+> ⇒ 0<∆ ⇒ a 取值范围是:(-1,1)。

正确的思考方法应是,欲使lg ()y g x =的值域为R ,必使()g x 的值域包含),0(+∞,而12)(2+-=ax x x g 的值域是),)([min +∞x g ,故应有min ()04g x -∆=≤,即0≥∆。

高三集合知识点

高三集合知识点

高三集合知识点在高三的数学学习中,集合是一个重要的基础概念,它贯穿于整个数学体系之中。

理解和掌握集合的相关知识,对于后续的数学学习有着至关重要的作用。

集合,简单来说,就是把一些确定的、不同的对象放在一起组成的一个整体。

这些对象被称为集合的元素。

集合通常用大写字母来表示,比如 A、B、C 等,而元素则用小写字母表示,比如 a、b、c 等。

如果一个元素 a 属于集合 A,我们记作a∈A;如果元素 b 不属于集合 A,就记作 b∉A。

集合有多种表示方法。

列举法就是将集合中的元素一一列举出来,用花括号括起来。

比如,由数字 1、2、3 组成的集合,可以表示为{1, 2, 3}。

描述法呢,则是通过描述元素所具有的共同特征来表示集合。

例如,所有大于 0 小于 5 的整数组成的集合,可以表示为{x | 0 < x< 5, x∈Z},其中 Z 表示整数集。

集合之间有着不同的关系。

如果集合 A 中的所有元素都属于集合 B,那么集合 A 就是集合 B 的子集,记作 A⊆B。

如果集合 A 是集合 B 的子集,并且集合 B 中存在元素不属于集合 A,那么集合 A 就是集合 B的真子集,记作 A⊂B。

当两个集合 A 和 B 的元素完全相同,我们就说集合 A 和集合 B 相等,记作 A = B。

集合的运算也是集合知识中的重要部分。

交集就是两个集合共有的元素组成的集合。

如果集合 A 和集合 B 的交集记作A∩B,那么A∩B ={x | x∈A 且 x∈B}。

并集则是把两个集合的所有元素放在一起组成的新集合,如果集合 A 和集合 B 的并集记作 A∪B,那么 A∪B ={x | x∈A 或 x∈B}。

补集是在一个给定的全集 U 中,集合 A 的补集就是由全集中不属于集合 A 的元素组成的集合,记作∁UA ={x |x∈U 且 x∉A}。

在解决集合相关的问题时,一定要注意集合中元素的性质。

首先,集合中的元素具有确定性,也就是说,对于一个给定的集合,某个元素是否属于这个集合是明确的,不能模棱两可。

高三数学集合知识点归纳总结

高三数学集合知识点归纳总结

高三数学集合知识点归纳总结数学是一门总结归纳的学科,集合论就是数学中重要的一个分支。

在高三数学学习中,集合知识点是必不可少的一部分。

为了帮助同学们更好地掌握集合知识,下面对高三数学集合知识点进行归纳总结。

一、集合的概念与表示方法集合是由确定的、具有某种特定性质的对象组成的整体。

表示方法主要有朴素方法、列举法和描述法。

在表示集合时,需要注意元素的顺序不重要、元素的个数可以是有限个或无限个、元素不重复等特点。

二、集合间的关系与运算1. 集合间的关系包含关系、相等关系、互斥关系等是集合之间的基本关系。

例如,若集合A包含于集合B,则称A为B的子集,记作A⊆B。

2. 集合的运算交集、并集、差集和补集是集合运算的基本操作。

交集表示同时属于两个集合的元素组成的集合,记作$A \cap B$;并集表示两个集合的所有元素组成的集合,记作$A \cup B$;差集表示属于一个集合而不属于另一个集合的元素组成的集合,记作$A - B$;补集表示在全集中不属于某个集合的元素组成的集合,记作$\bar{A}$。

三、集合的性质1. 互补律对于任何集合A,有$A \cup \bar{A} = U$,$A \cap \bar{A} =\emptyset$。

2. 幂集与子集关系集合A的幂集是指A的所有子集组成的集合。

对于元素个数为n的集合A,A的幂集共有$2^n$个元素。

3. 数集与集合数集是由数组成的集合,包括自然数集、整数集、有理数集和实数集等。

数集是集合的一个特殊实例。

四、集合的应用1. Venn图Venn图是以圆或矩形等几何图形来表示集合之间的关系,方便同学们直观地理解和比较集合的运算和关系。

2. 集合的应用问题集合论在实际问题中有着广泛的应用,例如在调查统计中进行数据分析、在概率论中确定事件的集合等等。

五、题目解析与示例1. 题目解析通过解析一些典型题目,帮助同学们更好地理解和掌握集合知识点。

2. 示例(1)已知集合A = {1, 2, 3},集合B = {2, 3, 4},求$A \cup B$和$A \cap B$。

高三数学集合知识点归纳总结

高三数学集合知识点归纳总结

高三数学集合知识点归纳总结在高三数学学习的过程中,集合是一个非常重要的概念。

集合是数学中研究对象的一个基础概念,对于解决问题和理解其他数学知识都扮演着重要的角色。

因此,我们需要对集合的相关知识点进行归纳总结,以便更好地掌握和应用。

1. 集合的基本概念集合是由一些特定对象组成的整体。

其中,组成集合的对象称为元素,记作"a∈A"。

如果元素a属于集合A,我们可以说a是A 的元素,反之亦然。

另外,如果一个集合不包含任何元素,我们称其为空集,记作"∅"。

2. 集合的表示方法集合可以通过列举元素的方式表示,也可以通过描述元素的特性表示。

例如,集合A={1, 2, 3}表示A是由元素1、2、3组成的集合;集合B={x|x是正整数}表示B是由所有正整数组成的集合。

3. 常见集合在数学中,有一些常见的集合,如自然数集合N、整数集合Z、有理数集合Q和实数集合R等。

这些集合在解决数学问题时经常被使用。

4. 集合的运算4.1 并集两个集合A和B的并集,记作A∪B,表示由所有属于A或属于B的元素组成的集合。

例如,若A={1, 2, 3},B={2, 3, 4},则A∪B={1, 2, 3, 4}。

4.2 交集两个集合A和B的交集,记作A∩B,表示由既属于A又属于B的元素组成的集合。

例如,若A={1, 2, 3},B={2, 3, 4},则A∩B={2, 3}。

4.3 差集两个集合A和B的差集,记作A-B,表示由属于A但不属于B 的元素组成的集合。

例如,若A={1, 2, 3},B={2, 3, 4},则A-B={1}。

4.4 互斥集合如果两个集合A和B的交集为空集,即A∩B=∅,则称A和B互斥。

4.5 包含关系若集合A的所有元素都属于集合B,即A的任意元素都是B的元素,则称B包含A,记作A⊆B。

5. 集合的性质5.1 交换律集合的并集和交集操作满足交换律,即A∪B=B∪A,A∩B=B∩A。

高三数学一轮复习集合的常用结论与考点归纳

高三数学一轮复习集合的常用结论与考点归纳

高三数学一轮复习集合的常用结论与考点归纳一、基础知识
1.集合的有关概念
(1)集合元素的三个特性:确定性、无序性、互异性.
元素互异性,即集合中不能出现相同的元素,此性质常用于求解含参数的集合问题中.
(2)集合的三种表示方法:列举法、描述法、图示法.
(3)元素与集合的两种关系:属于,记为;不属于,记为.
(4)五个特定的集合及其关系图:
N*或N+表示正整数集,N表示自然数集,Z表示整数集,Q表示有理数集,R表示实数集.
2.集合间的基本关系
(1)子集:一般地,对于两个集合A,B,如果集合A中任意一个元素都是集合B中的元素,则称A是B的子集,记作A?B(或B?A).
(2)真子集:如果集合A是集合B的子集,但集合B中至少有一个元素不属于A,则称A是B的真子集,记作A B或B A.
二、常用结论
考点一集合的基本概念
考点二集合间的基本关系
考点三集合的基本运算。

高三集合知识点总结

高三集合知识点总结

高三集合知识点总结集合是数学中一个基础而重要的概念,尤其在高中数学教学中占有举足轻重的地位。

高三学生在复习集合相关知识时,需要系统地整理和总结集合的基本概念、性质以及运算规则。

本文旨在帮助高三学生回顾和巩固集合的知识点,以便在高考中能够熟练运用集合知识解决问题。

首先,我们需要明确集合的基本定义。

集合是由一些明确的、互不相同的元素所构成的整体。

这些元素可以是数字、字母、人、物体等任何事物。

集合中的元素具有无序性和互异性,即元素在集合中的位置无关紧要,且集合中的元素不会有重复。

接下来,我们来了解集合的表示方法。

通常,集合可以用大写字母表示,如A、B、C等,集合中的元素则用小写字母表示。

集合可以用列举法表示,即将所有元素一一列出,如A = {1, 2, 3};也可以用描述法表示,即用数学符号和语言描述元素的性质,如B = {x | x 是质数}。

在集合论中,还有一些特殊的集合符号和概念。

例如,空集用符号∅表示,它是不包含任何元素的集合。

全集用符号U表示,它是包含所有可能元素的集合。

子集用符号⊆表示,如果集合A的所有元素都是集合B的元素,则称A是B的子集。

集合间的运算是集合论的核心内容之一。

最基本的集合运算有并集、交集和补集。

并集用符号∪表示,指的是将两个集合中所有的元素合并在一起组成的新集合。

交集用符号∩表示,指的是两个集合中共有的元素组成的集合。

补集用符号C表示,指的是全集中不属于某个集合的所有元素组成的集合。

除了上述基本运算,还有一些其他的集合运算,如差集、对称差集等。

差集用符号-表示,指的是一个集合中去掉另一个集合的元素后剩下的元素组成的集合。

对称差集用符号Δ表示,指的是两个集合中不相交的部分的并集。

在解决实际问题时,集合的知识往往与其他数学知识点相结合。

例如,在解决函数问题时,我们可能会用到集合的映射概念;在解决概率问题时,我们可能会用到集合的计数原理。

因此,掌握集合知识对于理解其他数学概念和解决综合问题具有重要意义。

数学高三集合知识点总结

数学高三集合知识点总结

数学高三集合知识点总结高三数学集合知识点总结数学是一门抽象而又精确的学科,而集合论作为数学的重要分支之一,研究的是事物的分类和整体。

在高三数学课程中,集合论是一个重要的知识点。

本文将对高三数学集合知识点进行总结,帮助同学们更好地理解和掌握这一部分知识。

一、集合的基本概念集合是由一定规则约束的一组元素组成。

在集合论中,我们用大写字母A、B、C等表示集合,用小写字母a、b、c等表示元素。

集合的基本概念包括空集、全集、子集、真子集等。

空集是不包含任何元素的集合,用符号∅表示;全集是指当前讨论范围内的所有元素构成的集合;子集是指集合A的所有元素都属于集合B时,称A是B的子集;而真子集是指子集A不等于集合B。

二、集合的运算集合的运算包括并、交、差和补等。

并集运算指的是将两个集合的所有元素合并在一起,用符号∪表示;交集运算指的是两个集合中公共的元素集合,用符号∩表示;差集运算指的是从第一个集合中删除与另一个集合中相同的元素,用符号-表示;而补集运算指的是全集中不属于该集合的元素构成的集合,用符号A'表示。

三、集合的性质与关系集合之间有着一系列的性质与关系。

其中,包括相等关系、包含关系、互斥关系等。

相等关系是指两个集合拥有相同的元素,用符号=表示;包含关系是指一个集合的所有元素都属于另一个集合,用符号⊆表示;互斥关系是指两个集合没有共同的元素,用符号表示。

四、集合的应用集合在数学中的应用非常广泛。

在高三数学中,集合论的应用包括概率、逻辑推理和函数等。

概率是指特定事件发生的可能性,而概率的计算是基于样本空间和事件的集合运算;逻辑推理是指根据给定条件和规则进行推理运算,集合论可以为逻辑推理提供有效的工具和方法;函数是一种特殊的关系,而关系可以看作是二元运算的集合。

五、集合的应用举例1. 求事件的概率小明参加一次摸彩活动,参与者从一个带有1至100号码的箱子中摸出一颗彩球。

如果彩球号码是奇数,则小明胜利。

那么小明胜利的概率是多少?解:首先,我们可以将满足条件为小明胜利的号码构成一个集合A,即A={1,3,5,...,99}。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4 a1 a x0 3 2 <0,y0= 1 <0,这样的(x0,y0) A,产生矛盾,故 a1=1,d=1 时 A∩ 2a1 5 2 4
2
B= ,所以 a1≠0 时,一定有 A∩B≠ 是不正确的.
1 2 w 2b zi+b 得 z= , 2 i 2 w 2b ∵z∈A,∴|z-2|≤2,代入得| -2|≤2,化简得|w-(b+i)|≤1. i ∴集合 A、B 在复平面内对应的点的集合是两个圆面,集合 A 表示以点(2,0)为圆心,半径为 2 的圆 面,集合 B 表示以点(b,1)为圆心,半径为 1 的圆面. 又 A∩B=B,即 B A,∴两圆内含.
Sn 1 2 2 )|n∈N*},B={(x,y)| x -y =1,x,y∈R}. n 4 试问下列结论是否正确,如果正确,请给予证明;如果不正确,请举例说明. (1)若以集合 A 中的元素作为点的坐标,则这些点都在同一条直线上; (2)A∩B 至多有一个元素; (3)当 a1≠0 时,一定有 A∩B≠ .
,n∈Z}∪{x|x= 4 3 nπ + ,n∈ Z},对 N 将 k 分成四类,k=4n 或 k=4n+1,k=4n+2,k=4n+3(n∈Z),N={x|x=nπ+ ,n∈Z}∪{x|x=n 4 2 3 5 π+ ,n∈Z}∪{x|x=nπ+π,n∈Z}∪{x|x=nπ+ ,n∈Z}. 4 4
x 2 mx y 2 0 解:由 得 x2+(m-1)x+1=0 x y 1 0(0 x 2)

∵A∩B≠ ∴方程①在区间[0,2]上至少有一个实数解. 首先,由Δ=(m-1)2-4≥0,得 m≥3 或 m≤-1,当 m≥3 时,由 x1+x2=-(m-1)<0 及 x1x2=1>0 知,方 程①只有负根,不符合要求. 当 m≤-1 时,由 x1+x2=-(m-1)>0 及 x1x2=1>0 知,方程①只有正根,且必有一根在区间(0,1]内, 从而方程①至少有一个根在区间[0,2]内. 故所求 m 的取值范围是 m≤-1. 歼灭难点训练
2a1x+a12=-4(*),当 a1=0 时,方程(*)无解,此时 A∩B= ;当 a1≠0 时,方程(*)只有一个解 x=
2 4 a1 y 2a1 此时,方程组也只有一解 ,故上述方程组至多有一解. 2 y a1 4 4a1
4 a1 , 2a1
1 zi+b,b∈R},当 A∩B=B 时,求 b 的值. 2 8.(★★★★)设 f(x)=x2+px+q,A={x|x=f(x)},B={x|f[f(x)]=x}. (1)求证:A B; (2)如果 A={-1,3},求 B.
7.(★★★★)已知集合 A={z||z-2|≤2,z∈C},集合 B={w|w= 参考答案 难点磁场
依题意(30-x)+(33-x)+x+(
kx k ) ,k∈Z},N={x|x= ,k∈Z},则( 2 4 2 2 A.M=N B.M N C.M N D.M∩N= 2.(★★★★)已知集合 A={x|-2≤x≤7},B={x|m+1<x<2m-1}且 B≠ ,若 A∪B=A,则( ) A.-3≤m≤4 B.-3<m<4 C.2<m<4 D.2<m≤4 二、填空题 3.( ★★★★ ) 已知集合 A={x ∈ R|ax2 - 3x+2=0,a ∈ R}, 若 A 中元素至多有 1 个,则 a 的取值范围是 _________.
2
∴A∩B 至多有一个元素.
Sn >0,这时集合 A 中的元素作为点的 n 坐标,其横、纵坐标均为正,另外,由于 a1=1≠0.如果 A∩B≠ ,那么据(2)的结论,A∩B 中至多有一个
(3)不正确.取 a1=1,d=1,对一切的 x∈N*,有 an=a1+(n-1)d=n>0, 元素(x0,y0),而 x0=
9 8 ab x y 则 1= ,即 ab= a 2 b 2 . =1 相切, 2 2 a b a b
4.解析: 由 A∩B 只有 1 个交点知, 圆 x2+y2=1 与直线
答案:ab= a 2 b 2 三、5.解:log2(x2-5x+8)=1,由此得 x2-5x+8=2,∴B={2,3}.由 x2+2x-8=0,∴C={2,-4},又 A∩C= , ∴2 和-4 都不是关于 x 的方程 x2-ax+a2-19=0 的解,而 A∩B ,即 A∩B≠ , ∴3 是关于 x 的方程 x2-ax+a2-19=0 的解,∴可得 a=5 或 a=-2. 当 a=5 时,得 A={2,3},∴A∩C={2},这与 A∩C= 不符合,所以 a=5(舍去);当 a=-2 时,可以 求得 A={3,-5},符合 A∩C= ,A∩B ,∴a=-2. 6.解:(1)正确.在等差数列{an}中,Sn=
1.(★★★★)集合 M={x|x= 4.(★★★★)x、 y∈ R,A={(x,y)|x2+y2=1},B={(x,y)|
x y =1,a>0,b>0},当 A∩B 只有一个元素时,a,b 的 a b
关系式是_________. 三、解答题 5.(★★★★★)集合 A={x|x2-ax+a2-19=0},B={x|log2(x2-5x+8)=1},C={x|x2+2x-8=0},求当 a 取什么 实数时,A∩B 和 A∩C= 同时成立. 6.(★★★★★)已知{an}是等差数列,d 为公差且不为 0,a1 和 d 均为实数,它的前 n 项和记作 Sn,设集 合 A={(an,
7.解:由 w= 因此 (b 2) 2 (1 0) 2 ≤2-1,即(b-2)2≤0,∴b=2. 8.(1)证明:设 x0 是集合 A 中的任一元素,即有 x0∈A. ∵A={x|x=f(x)},∴x0=f(x0). 即有 f[f(x0)]=f(x0)=x0,∴x0∈B,故 A B. (2)证明:∵A={-1,3}={x|x2+px+q=x}, ∴方程 x2+(p-1)x+q=0 有两根-1 和 3,应用韦达定理,得
n ( a1 a n ) S S 1 ,则 n (a1+an),这表明点(an, n )的坐标适合方程 2 n 2 n
y
S 1 1 1 (x+a1),于是点(an, n )均在直线 y= x+ a1 上. 2 n 2 2 1 1 y 2 x 2 a1 (2) 正确 . 设 (x,y) ∈ A ∩ B, 则 (x,y) 中的坐标 x,y 应是方程组 的解,由方程组消去 y 得: 1 x2 y2 1 4
1 3 ( p 1), p 1 ( 1) 3 q q 3
∴f(x)=x2-x-3. 于是集合 B 的元素是方程 f[f(x)]=x,也即(x2-x-3)2-(x2-x-3)-3=x(*)的根. 将方程(*)变形,得(x2-x-3)2-x2=0 解得 x=1,3, 3 ,- 3 . 故 B={- 3 ,-1, 3 ,3}.
∴k=1,故存在自然数 k=1,b=2,使得(A∪B)∩C= . [例 2]向 50 名学生调查对 A、B 两事件的态度,有如下结果:赞成 A 的人数是全体的五分之三,其 余的不赞成,赞成 B 的比赞成 A 的多 3 人,其余的不赞成;另外,对 A、B 都不赞成的学生数比对 A、B 都赞成的学生数的三分之一多 1 人.问对 A、B 都赞成的学生和都不赞成的学生各有多少人? 命题意图:在集合问题中,有一些常用的方法如数轴法取交并集,韦恩图法等,需要考生切实掌握. 本题主要强化学生的这种能力.属★★★★级题目. 知识依托:解答本题的闪光点是考生能由题目中的条件,想到用韦恩图直观地表示出来. 错解分析:本题难点在于所给的数量关系比较错综复杂,一时理不清头绪,不好找线索.
x +1,赞成 A 而不赞成 B 的人 3
x +1)=50,解得 x=21. 3 所以对 A、B 都赞成的同学有 21 人,都不赞成的有 8 人. ●锦囊妙计 1.解答集合问题,首先要正确理解集合有关概念,特别是集合中元素的三要素;对于用描述法给出的 集合{x|x∈P},要紧紧抓住竖线前面的代表元素 x 以及它所具有的性质 P;要重视发挥图示法的作用,通过 数形结合直观地解决问题. 2.注意空集 的特殊性,在解题中,若未能指明集合非空时,要考虑到空集的可能性,如 A B,则有 A= 或 A≠ 两种可能,此时应分类讨论. ●歼灭难点训练 一、选择题
y2 x 1 ∵ y kx b
∴k2x2+(2bk-1)x+b2-1=0
∵A∩C= ∴Δ1=(2bk-1)2-4k2(b2-1)<0 ∴4k2-4bk+1<0,此不等式有解,其充要条件是 16b2-16>0,即 b2>1

4 x 2 2 x 2 y 5 0 ∵ y kx b
难点 1
集合思想及应用
集合是高中数学的基本知识,为历年必考内容之一,主要考查对集合基本概念的认识和理解,以及作 为工具,考查集合语言和集合思想的运用.本节主要是帮助考生运用集合的观点,不断加深对集合概念、集 合语言、集合思想的理解与应用. ●难点磁场 (★★★★★)已知集合 A={(x,y)|x2+mx-y+2=0},B={(x,y)|x-y+1=0,且 0≤x≤2},如果 A∩B≠ ,求实数 m 的取值范围. ●案例探究 [例 1]设 A={(x,y)|y2-x-1=0},B={(x,y)|4x2+2x-2y+5=0},C={(x,y)|y=kx+b},是否存在 k、b∈N,使得(A ∪B)∩C= ,证明此结论. 命题意图:本题主要考查考生对集合及其符号的分析转化能力,即能从集合符号上分辨出所考查的知 识点,进而解决问题.属★★★★★级题目. 知识依托:解决此题的闪光点是将条件(A∪B)∩C= 转化为 A∩C= 且 B∩C= ,这样难度就降低 了. 错解分析:此题难点在于考生对符号的不理解,对题目所给出的条件不能认清其实质内涵,因而可能 感觉无从下手. 技巧与方法:由集合 A 与集合 B 中的方程联立构成方程组,用判别式对根的情况进行限制,可得到 b、 k 的范围,又因 b、k∈N,进而可得值. 解:∵(A∪B)∩C= ,∴A∩C= 且 B∩C=
相关文档
最新文档