中考数学复习50个知识点专题专练:46 函数型综合问题
九年级数学专题复习函数综合
中考总复习函数综合【考纲要求】1.平面直角坐标系的有关知识平面直角坐标系中各象限和坐标轴上的点的坐标的特征,求点关于坐标轴、坐标原点的对称点的坐标,求线段的长度,几何图形的面积,求某些点的坐标等.2.函数的有关概念求函数自变量的取值范围,求函数值、函数的图象、函数的表示方法.3.函数的图象和性质常见的题目是确定图象的位置,利用函数的图象确定某些字母的取值,利用函数的性质解决某些问题.利用数形结合思想来说明函数值的变化趋势,又能反过来判定函数图象的位置.4.函数的解析式求函数的解析式,求抛物线的顶点坐标、对称轴方程,利用函数的解析式来求某些字母或代数式的值.一次函数、反比例函数和二次函数常与一元一次方程、一元二次方程、三角形的面积、边角关系、圆的切线、圆的有关线段组成综合题.【知识网络】【考点梳理】考点一、平面直角坐标系 1.相关概念(1)平面直角坐标系 (2)象限 (3)点的坐标2.各象限内点的坐标的符号特征3.特殊位置点的坐标 (1)坐标轴上的点(2)一三或二四象限角平分线上的点的坐标 (3)平行于坐标轴的直线上的点的坐标 (4)关于x 轴、y 轴、原点对称的点的坐标 4.距离(1)平面上一点到x 轴、y 轴、原点的距离(2)坐标轴或平行于坐标轴的直线上两点间的距离 (3)平面上任意两点间的距离 5.坐标方法的简单应用(1)利用坐标表示地理位置 (2)利用坐标表示平移 要点进阶:点P(x,y)到坐标轴及原点的距离:(1)点P(x,y)到x 轴的距离等于y ; (2)点P(x,y)到y 轴的距离等于x ; (3)点P(x,y)到原点的距离等于22y x .考点二、函数及其图象 1.变量与常量 2.函数的概念3.函数的自变量的取值范围4.函数值5.函数的表示方法(解析法、列表法、图象法)6.函数图象 要点进阶:由函数解析式画其图像的一般步骤:(1)列表:列表给出自变量与函数的一些对应值;(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点;(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来.考点三、一次函数1.正比例函数的意义2.一次函数的意义3.正比例函数与一次函数的性质4. 一次函数的图象与二元一次方程组的关系5.利用一次函数解决实际问题 要点进阶:确定一个正比例函数,就是要确定正比例函数定义式kx y =(k ≠0)中的常数k ;确定一个一次函数,需要确定一次函数定义式b kx y +=(k ≠0)中的常数k 和b.解这类问题的一般方法是待定系数法.考点四、反比例函数 1.反比例函数的概念2.反比例函数的图象及性质3.利用反比例函数解决实际问题 要点进阶:反比例函数中反比例系数的几何意义,如下图,过反比例函数)0(≠=k xky 图像上任一点),(y x P 作x 轴、y 轴的垂线PM ,PN ,垂足为M 、N ,则所得的矩形PMON 的面积S=PM •PN=xy x y =•.,y xk=∴||k S k xy ==,.考点五、二次函数 1.二次函数的概念2.二次函数的图象及性质3.二次函数与一元二次方程的关系4.利用二次函数解决实际问题 要点进阶:1、两点间距离公式(当遇到没有思路的问题时,可用此方法拓展思路,以寻求解题方法) 如图:点A 坐标为(x 1,y 1),点B 坐标为(x 2,y 2),则AB 间的距离,即线段AB 的长度为()()221221y y x x -+-.2、函数平移规律:左加右减、上加下减.3、二次函数的最值如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值),即当abx 2-=时,ab ac y 442-=最值.如果自变量的取值范围是21x x x ≤≤,那么,首先要看ab2-是否在自变量取值范围21x x x ≤≤内,若在此范围内,则当x=ab2-时,a b ac y 442-=最值;若不在此范围内,则需要考虑函数在21x x x ≤≤范围内的增减性,如果在此范围内,y 随x 的增大而增大,则当2x x =时,c bx ax y ++=222最大,当1x x =时,c bx ax y ++=121最小;如果在此范围内,y 随x 的增大而减小,则当1x x =时,c bx ax y ++=121最大,当2x x =时,c bx ax y ++=222最小.4、抛物线的对称变换 ①关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---.②关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++.③关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-. ④关于顶点对称2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.⑤关于点()m n ,对称 ()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+-.根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a永远不变.求抛物线的对称图象的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.考点六、函数的应用1.一次函数的实际应用2. 反比例函数的实际应用3. 二次函数的实际应用要点进阶:分段函数是指自变量在不同的取值范围内,其关系式(或图象)也不同的函数,分段函数的应用题多设计成两种情况以上,解答时需分段讨论.在现实生活中存在着很多需分段计费的实际问题,因此,分段计算的应用题成了近几年中考应用题的一种重要题型.【典型例题】类型一、用函数的概念与性质解题例1.在平面直角坐标系中,点A的坐标是(4,0),点P是第一象限内的直线y=6-x上的点,O 是坐标原点(如图所示):(1)P点坐标设为(x, y) ,写出ΔOPA的面积S的关系式;(2)S与y具有怎样的函数关系,写出这函数中自变量y的取值范围;(3)S与x具有怎样的函数关系?写出自变量x的取值范围;(4)如果把x看作S的函数时,求这个函数解析式,并写出这函数中自变量取值范围;(5)当S=10时,求P的坐标;(6)在直线y=6-x上,求一点P,使ΔPOA是以OA为底的等腰三角形.举一反三:2x+4x+k-1=0有实数根,k为正整数.【变式】已知关于x的一元二次方程2(1)求k的值;y=2x+4x+k-1的图象向下平移8个单位,(2)当此方程有两个非零的整数根时,将关于x的二次函数2求平移后的图象的解析式;(3)在(2)的条件下,将平移后的二次函数的图象在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象,请你结合这个新的图象回答:当直线1y=x+b(b<k)2与此图象有两公共点时,b的取值范围.2.如图,在矩形ABCD中,AB=3,BC=4,点P在BC边上运动,连结DP,过点A作AE⊥DP,垂足为E,设DP=x,AE=y,则能反映y与x之间函数关系的大致图象是( )(A) (B) (C) (D)举一反三:【变式】小明骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车.车修好后,因怕耽误上课,他比修车前加快骑车速度继续匀速行驶,下面是行驶路程s(m)关于时间t(min)的函数图象,那么符合这个同学行驶情况的图象大致是( ).类型二、函数的综合题例3.如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A、B的坐标分别为(1,0)、(4,0),将△ABC沿x轴向右平移,当点C落在直线y=2x-6上时,线段BC扫过的面积为()A.4 B.8 C.16 D.82举一反三:【变式】在坐标系中,二次函数2(3)3(0)y mx m x m=+-->的图象与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C.(1)求点A的坐标;(2)当45ABC∠=︒时,求m的值;(3)已知一次函数y kx b=+,点P(n,0)是x轴上的一个动点,在(2)的条件下,过点P垂直于x轴的直线交这个一次函数的图象于点M,交二次函数2(3)3(0)y mx m x m=+-->的图象于N. 若只有当22n-<<时,点M位于点N的上方,求这个一次函数的解析式.A BCOyx例4.函数y=和y=在第一象限内的图象如图,点P是y=的图象上一动点,PC⊥x轴于点C ,交y=的图象于点B.给出如下结论:①△ODB与△OCA的面积相等;②PA与PB始终相等;③四边形PAOB的面积大小不会发生变化;④CA=AP.其中所有正确结论的序号是()举一反三:【变式】如图,在直角梯形ABCD中,AD∥BC,∠A=90°,AB=BC=4,DE⊥BC于点E,且E是BC中点;动点P从点E出发沿路径ED→DA→AB以每秒1个单位长度的速度向终点B运动;设点P的运动时间为t)秒,△PBC的面积为S,则下列能反映S与t的函数关系的图象是(类型三、函数与几何综合题例5.如图,将—矩形OABC 放在直角坐际系中,O 为坐标原点.点A 在y 轴正半轴上.点E 是边AB 上的—个动点(不与点A 、B 重合),过点E 的反比例函数(0)ky x x=>的图象与边BC 交于点F. (1)若△OAE、△OCF 的而积分别为S 1、S 2.且S 1+S 2=2,求k 的值;(2)若OA=2.0C=4.问当点E 运动到什么位置时,四边形OAEF 的面积最大.其最大值为多少?例6.如图,在平面直角坐标系中,已知点A (8,1),B (0,﹣3),反比例函数 y=(x >0)的图象经过点A ,动直线x=t (0<t <8)与反比例函数的图象交于点M ,与直线AB 交于 点N .(1)求k 的值;(2)求△BMN 面积的最大值; (3)若MA⊥AB,求t 的值.例7.如图1,已知矩形ABCD的顶点A与点O重合,AD、AB分别在x轴、y轴上,且AD=2,AB=3;抛物线y=﹣x2+bx+c经过坐标原点O和x轴上另一点E(4,0)(1)当x取何值时,该抛物线取最大值?该抛物线的最大值是多少?(2)将矩形ABCD以每秒1个单位长度的速度从图1所示的位置沿x轴的正方向匀速平行移动,同时一动点P也以相同的速度从点A出发向B匀速移动.设它们运动的时间为t秒(0≤t≤3),直线AB与该抛物线的交点为N(如图2所示).①当t=时,判断点P是否在直线ME上,并说明理由;②以P、N、C、D为顶点的多边形面积是否可能为5?若有可能,求出此时N点的坐标;若无可能,请说明理由.【巩固练习】一、选择题1.函数31xyx+=-中自变量x的取值范围是( )A.x≥-3 B.x≥-3且x≠1 C.x≠1 D.x≠-3且x≠12.如图为抛物线y=ax2+bx+c的图象,A、B、C为抛物线与坐标轴的交点,且OA=OC=1,则下列关系中正确的是( )A. a+b=-1 B.a-b=-1 C.b<2a D.ac<03.设一元二次方程(x-1)(x-2)=m(m>0)的两实根分别为α、β,则α、β满足( ) A.1<α<β<2 B.1<α<2 <β C.α<1<β<2 D.α<1且β>24.如图,正方形ABCD的边长为4,P为正方形边上一动点,运动路线是A→D→C→B→A,设P点经过的路线为x,以点A、P、D为顶点的三角形的面积是y.则下列图象能大致反映y与x的函数关系的是( )A B C D5.如图,A、B是双曲线y=上的两点,过A点作AC⊥x轴,交OB于D点,垂足为C.若△ADO的面积为1,D为OB的中点,则k的值为()A .B .C . 3D .46.如图,一次函数y =-12x +2的图象上有两点A 、B ,A 点的横坐标为2,B 点的横坐标为a(0<a <4且a ≠2),过点A 、B 分别作x 的垂线,垂足为C 、D ,△AOC 、△BOD 的面积分别为S 1、S 2,则S 1、S 2的大小关系是( )A .S 1>S 2B .S 1=S 2C .S 1<S 2D .无法确定二、填空题7.抛物线2222y ax ax a =+++的一部分如图所示,那么该抛物线在y 轴右侧与x 轴交点的坐标 是________.8.在直角坐标系中,有如图所示的Rt△ABO,AB⊥x 轴于点B ,斜边AO =10,sin∠AOB=35,反比例函数k y x= (k >0)的图象经过AO 的中点C ,且与AB 交于点D ,则点D 的坐标为_______________.第7题 第8题 第9题9.如图,点A 在双曲线k y x=上,AB⊥x 轴于B ,且△AOB 的面积S △AOB =2,则k =______.10.如图,已知二次函数y1=x2﹣x的图象与正比例函数y2=x的图象交于点A(3,2),与x轴交于点B(2,0),若0<y1<y2,则x的取值范围是 .11.如图所示,直线OP经过点P (4, 4 3),过x轴上的点1、3、5、7、9、11……分别作x轴的垂线,与直线OP相交得到一组梯形,其阴影部分梯形的面积从左至右依次记为S1、S2、S3……S n则S n关于n 的函数关系式是________.第11题第12题12.在直角坐标系中,正方形A1B1C1O1、A2B2C2C1、A3B3C3C2、…、A n B n C n C n-1按如图所示的方式放置,其中点A1、A2、A3、…、A n均在一次函数y=kx+b的图象上,点C1、C2、C3、…、C n均在x轴上.若点B1的坐标为(1,1),点B2的坐标为(3,2),则点A n的坐标为____________.三、解答题13.已知,如图所示,正方形ABCD的边长为4 cm,点P是BC边上不与点B、C重合的任意一点,连结AP,过点P作PQ⊥AP交DC于点Q,设BP的长为x cm,CQ的长为y cm.(1)求点P在BC上运动的过程中y的最大值;(2)当14y cm时,求x的值.14.大学毕业生小王响应国家“自主创业”的号召,利用银行小额无息贷款开办了一家饰品店.该店购进一种今年新上市的饰品进行销售,饰品的进价为每件40元,售价为每件60元,每月可卖出300件.市场调查反映:调整价格时,售价每涨1元每月要少卖10件;售价每下降1元每月要多卖20件.为了获得更大的利润,现将饰品售价调整为60+x(元/件)(x>0即售价上涨,x<0即售价下降),每月饰品销量为y(件),月利润为w(元).(1)直接写出y与x之间的函数关系式;(2)如何确定销售价格才能使月利润最大?求最大月利润;(3)为了使每月利润不少于6000元应如何控制销售价格?15.已知关于x的二次函数2212my x mx+=-+与2222my x mx+=--,这两个二次函数的图象中的一条与x轴交于A、B两个不同的点.(1)试判断哪个二次函数的图象经过A、B两点;(2)若A点坐标为(-l,0),试求B点坐标;(3)在(2)的条件下,对于经过A、B两点的二次函数,当x取何值时,y的值随x值的增大而减小?16. 探究 (1)在下图中,已知线段AB,CD,其中点分别为E,F.①若A(-1,0),B(3,0),则E点坐标为________;②若C(-2,2),D(-2,-1),则F点坐标为________;(2)在下图中,已知线段AB的端点坐标为A(a,b),B(c,d),求出图中AB中点D的坐标(用含a,b,c,d的代数式表示),并给出求解过程.归纳无论线段AB处于直角坐标系中的哪个位置,当其端点坐标为A(a,b),B(c,d),AB中点为D(x,y)时,x=________,y=_______.(不必证明)运用在下图中,一次函数y=x-2与反比例函数3yx的图象交点为A,B.①求出交点A,B的坐标;②若以A,O,B,P为顶点的四边形是平行四边形,请利用上面的结论求出顶点P的坐标.。
中考总复习函数综合--知识讲解
中考总复习函数综合--知识讲解函数是数学中的基本概念之一,也是数学建模中常用的工具。
在中考中,函数综合是一个重点复习内容,掌握了函数的性质和应用,能够帮助我们解决各种与函数相关的问题。
下面,我将给大家介绍一些函数的基本知识和应用。
一、函数的定义与性质函数是将一个集合的每个元素映射到另一个集合的元素上的规则。
在数学中,常常用一个公式或者图像来表示函数。
1.定义域和值域:函数中输入的元素称为自变量,输出的元素称为因变量。
自变量取值的范围称为定义域,而因变量取值的范围称为值域。
2.奇偶性:如果对于定义域内的任意x,函数满足f(x)=f(-x),则称函数为偶函数;如果对于所有定义域内的x,函数满足f(x)=-f(-x),则称函数为奇函数。
3.单调性:如果对于定义域内的任意x1和x2,若x1<x2,则有f(x1)<f(x2),则称函数为增函数;如果对于定义域内的任意x1和x2,若x1<x2,则有f(x1)>f(x2),则称函数为减函数。
二、函数的表示方法1.函数关系式:函数可以用关系式表示,如y=f(x)。
2.函数图像:函数的图像是将自变量和因变量的对应关系用平面直角坐标系上的点表示出来的。
3.函数表:函数的输入和输出可以用表的形式表示出来。
三、函数的运算与性质1.四则运算:对于两个函数f(x)和g(x),我们可以进行加、减、乘、除的运算。
即:f(x)+g(x):将两个函数对应位置上的值相加;f(x)-g(x):将两个函数对应位置上的值相减;f(x)*g(x):将两个函数对应位置上的值相乘;f(x)/g(x):将两个函数对应位置上的值相除。
2.复合函数:复合函数是指将一个函数作为另一个函数的自变量。
如:f(g(x))表示先对x进行函数g(x)的运算,然后再对得到的结果进行函数f(x)的运算。
3.反函数:如果一个函数f(x)的值域与定义域相反,即对于f(x)的每一个值y,存在唯一的x使得f(x)=y,则称f(x)的反函数为f(x)的逆。
初中数学中考专题复习《函数型问题》共3页文档
新人教版初中数学中考专题复习《函数型问题》中考复习指导思想:❖1、函数是中学数学最重要的组成部分,函数思想是数学思想的灵魂.❖2、函数方法是分析数学问题、解决问题的有效方法.❖3、重点揭示规律,总结方法,形成策略,提高学生灵活应运用函数知识解决问题的能力技能大比拼1.如图,已知A(-4,n),B(2,-4)是直线y = kx+b和双曲线y =mx的两个交点.试求(1)一次函数解析式(2)△OAB的面积(3)当x取何值时kx+b<mx【反思归纳】组内交流,主要交流总结解决以上问题时所运用的主要知识点,方法及规律。
中考题型探秘探究一:分段函数型问题(09衡阳)为了鼓励市民节约用水,自来水公司特制定了新的用水收费标准,每月用水量x(吨)与应付水费y(元)的函数关系如图.(1)求出当月用水量不超过5吨时,y与x之间的函数关系式;(2)某居民某月用水量为8吨,求应付的水费是多少?探究二:最大利润问题❖“健益”超市购进一批20元/千克的绿色食品,如果以30元/千克的价格销售,那么每天可以售出400千克,由销售经验知,每天销售量y(千克)与销售价格x(元)(x≥20)存在着如图的一次函数关系。
(1)求出y与x的函数关系式:(2)设超市销售绿色食品每天可获利润P元,当销售单价为何值时,每天可获得利润最大?最大利润是多少?【反思归纳】你对用函数解决实际问题有什么心得?在组内交流与大家共享 探究三: 抛物线形运动路线问题❖ 学校要修建一个圆形喷水池,在池中心竖直安装一根水管.在水管的顶端安装一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为1m 处达到最高,高度为3m,水柱落地处离池中心3m,水管应多长?点击中考(2009年临沂)如图抛物线经过A (4,0)B (1,0)C (0,-2)三点。
(1).求此抛物线解析式(2).在直线AC 上方的抛物线上有一点D ,使得△DAC 的面积最大,求出点D 的坐标。
(3).P 是抛物线上的一动点,过P 作PM ⊥X 轴,垂足为M 。
中考数学函数型综合问题1
1 a 1 ( 2) x1 x2 2 , x1 x2 2 4 a 3a 2 a 3a 2 1 1 x1 x2 2 4(a 1) a 3 x1 x2 x1 x2 a 4a 1 0 a 2 3 a 1, 而 2 3 1舍去 a 2 3
当k<0时,y随x的增大而减小。
2.b 0时, 一次 函数为y kx b,
性质: 1、一次函数图象必经过点(0,b)。
2、当k>0时,y随x的增大而增大。 当k<0时,y随x的增大而减小。
二.二次函数y ax bx c( a 0)
性质:1.开口方向 a>0,开口向上
(3)图象如图示
2
[例2](十堰市,2001)已知:关于x的函数 1 2 2 y ( a 3a 2) x ( a 1) x 4 的图象与x轴总有交点 (1)求a的取值范围 (2)设函数的图象与x轴有两个不同的交点 A、B,其坐标为 A( x1 ,0 ), B ( x 2 ,0 ), 当
( 2)抛物线的顶点为 ( 2,1), 代入解析式中得 y ax 2 4ax 4a 1 又由(1)知MPC为等腰直角三角形, 如图示, MN 2 PQ 2 又MN x1 x2 ( x1 x2 )2 4 x1 x2 ( x1 x2 )2 4 x1 x2 MN 2 4 4a 1 而x1 x2 4, x1 x2 a 4a 1 2 4 4 4 a 解得 : a 1 抛物线的解析式为y x 2 4 x 3
2m 4
2( m 2)
1 2 2 对于方程 x ( m 1) x m 5 0 4 1 2 2 ( m 1) 4 ( m 5) 4
中考数学函数知识点+典型例题+练习题+中考真题学生版(精心整理,史上最全).docx
中考数学函数知识点+典型例题+练习题+中考真题+答案知识点复习一、一次函数和正比例函数的定义一般地,如果伙,b是常数,妙0),那么丁叫做兀的一次函数.特别地,当E0时,一次函数尸尬+b就成为y=kx(k是常数,妙0),这时y叫做x的正比例函数.二、一次函数的图象与性质1.一次函数的图象(1)一次函数皿+昭0)的图象是经过点(0, b)和]-£,oj的一条直线.(2)正比例函数尸尬(舜0)的图象是经过点(0, 0)和(1, Q的一条直线.(3),因为一次函数的图象是一条直线,由两点确定一条直线可知画一次函数图象时,只要取两个点即可.一次函数y=kx+b的图象可由正比例函数尸总的图象平移得至U,b>0,上移b个单位; b< 0,下移⑹个单位.三、利用待定系数法求一次函数的解析式因为在一次函数(舜0)中有两个未知数k和b,所以,要确定其关系式,一般需要两个条件,.常见的是已知两点坐标Pi(xi,力),巴(也,旳)代入得?1=M + Z,-求出仏b- x2^ + b 的值即可,这种方法叫做待定系数法.四、一次函数与方程、方程组及不等式的关系1.y=kx+b与kx+b=O直线与x轴交点的横坐标是方程kv+b=0的解,方程kv+b=0的解是直线y=kx +b与x轴交点的横坐标.2.一次函数与方程组两个一次函数图象的交点坐标就是它们的解析式所组成的二元一次方程组的解,以二元一次方程组的解为坐标的点是两个二元一次方程所对应的一次函数图象的交点.3.y=kx+b与不等式kx+b>0从函数值的角度看,不等式尬+b>0的解集为使函数值大于零(即尬+b>0)的x的取值范围;从图象的角度看,由于一次函数的图象在x轴上方时,y>0,因此尬+0>0的解集为一次函数在x轴上方的图象所对应的x的取值范围.五、反比例函数的概念一般地,形如y=—(k是常数,妙0)的函数叫做反比例函数.1.反比例函数尸$中的是一个分式,所以自变量好0,函数与x轴、y轴无交点.x2.反比例函数解析式可以写成可丸如0),它表明在反比例函数中自变量x与其对应函数值y之积,总等于已知常数匕六、反比例函数的图象与性质1.图象反比例函数的图象是双曲线.2.性质(1)当k>0时,双曲线的两支分别在第一,三象限,在每一个象限内,y随尢的增大而减小;当点<0时,双曲线的两支分别在第二,四象限,在每一个象限内,y随兀的增大而增大.【注意】双曲线的两支和坐标轴无限靠近,但永远不能相交.(2)双曲线是轴对称图形,直线或x是它的对称轴;双曲线也是中心对称图形, 对称中心是坐标原点.七、二次函数概念1.二次函数的概念一般地,形如y = ax2+bx + c (a, b, c是常数,"0)的函数,叫做二次函数.这里需要强调:和一元二次方程类似,二次项系数«^0,而b,c可以为零.2.二次函数y = ax2 +bx + c的结构特征(1)等号左边是函数,右边是关于自变量乂的二次式,x的最高次数是2.(2)a, b, c是常数,a是二次项系数,b是一次项系数,c是常数项.八、二次函数的基本形式1.二次函数y = ax2的图象和性质丁 =仮2的性质:a的绝对值越大,抛物线的开口越小.222的增大而减小;X#时,y 有最小值k. a<0 向下 (h, k) x=h尢>/?时,y 随x 的增大而减小;x</?时,y 随X 的增大而增大;x = h 时,y 有最大值k.九、二次函数图象的平移1. 平移步骤方法一:①将抛物线解析式转化成顶点式y = a(x-h$+k,确定其顶点坐标(h, k);②保持抛物线 方法二:CD y = ax 2 +bx + c 沿y 轴平移:向上(下)平移个单位,y = ax 2 +bx + c 变成y = ax 2 +bx + c + m(或y = ax 2 +bx + c — m');②y = ax 2 +bx + c 沿轴平移:向左(右)平移"2个单位,y = ax 2 +bx + c变成 y = a(x + 7”)2+Z?(x + wt) + c (或 y = a(x —加尸+b(x —wt) + c ). 2. 平移规律在原有函数的基础上“值正右移,负左移.;值正上移,负下移” •概括成八个字“左加右 减,上加下减” •十、二次函数y-a^x-ltj +k 与y = av2+0x + c 的比较从解析式上看,y = a(x-/译+公与丁 =血2+加+(是两种不同的表达形式,后者通过配方可( b 丫 4ac - b 1 y = Cl\X H ---------- H ----------- I 2° 丿 4a甘 r+i ” b , 4ac 一b 2其中力=——,k =----- 2a 4aH ^一、二次函数 y = ax 2 +bx + c 图象的画法五点绘图法:利用配方法将二次函数y = ax 1+bx+c 化为顶点式y = a{x-Jiy +k ,确定其以得到前者,即 y = 的形状不变,将其顶点平移到⑺,◎处,具体平移方法如下:开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y轴的交点(0, c)、以及(0, c)关于对称轴对称的点⑵2, C)、与x轴的交点(丙,0), (x2 , 0)(若与尢轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x轴的交点,与y轴的交点. 十二、二次函数y = ax2 +bx + c的性质1.当。
中考函数综合知识点归纳
中考函数综合知识点归纳
函数是数学中的一个重要概念,它描述了两个集合之间的一种对应关系,其中一个集合中的每一个元素都与另一个集合中的一个元素相对应。
在中考中,函数的综合知识点主要包括函数的概念、性质、图像以及函数的应用等方面。
以下是对中考函数综合知识点的归纳:
首先,我们需要了解函数的基本概念。
函数是一个规则,它将一个集合A中的元素(自变量)映射到另一个集合B中的元素(因变量)。
这种映射关系通常用f(x)表示,其中x是自变量,f(x)是因变量。
接下来,我们学习函数的性质,包括单调性、奇偶性、周期性等。
单调性指的是函数值随自变量的增减而增减的特性;奇偶性描述了函数图像关于坐标轴的对称性;周期性则是指函数值在一定间隔后重复出现的特性。
函数的图像是理解函数特性的重要工具。
一次函数、二次函数、反比例函数等都有其特定的图像和性质。
例如,一次函数的图像是直线,二次函数的图像是抛物线,反比例函数的图像是双曲线。
在中考中,函数的应用也非常广泛。
函数可以用于解决实际问题,如速度与时间的关系、成本与产量的关系等。
此外,函数还可以与几何图形结合,解决面积、体积等问题。
最后,中考中还可能涉及到函数的变换,包括平移、伸缩等。
掌握函数图像的变换规律,可以帮助我们更好地理解函数的性质和应用。
结束语:通过以上对中考函数综合知识点的归纳,我们可以看到函数
在数学中的重要性和广泛应用。
掌握这些知识点,不仅有助于我们在中考中取得好成绩,更能为今后的数学学习打下坚实的基础。
中考数学《函数基础知识》专项练习题(带答案)
中考数学《函数基础知识》专项练习题(带答案)一、单选题1.弹簧挂上物体后会伸长,测得一弹簧的长度y (cm)与所挂的物体的质量x(kg)之间有下面的关系:x/kg 0 1 2 3 4 5 y/cm1010.51111.51212.5A .x 与y 都是变量,且x 是自变量,y 是因变量B .弹簧不挂重物时的长度为0 cmC .物体质量每增加1 kg ,弹簧长度y 增加0.5 cmD .所挂物体质量为7 kg 时,弹簧长度为13.5 cm2.若矩形的面积为125,则矩形的长y 关于宽x(x >0)的函数关系式为( )A .y =125xB .y =512xC .y =12x 5D .y =5x 123.如图是某蓄水池的横断面示意图,分为深水池和浅水池,如果向这个蓄水池以固定的流量注水,下面能大致表示水的最大深度 ℎ 与时间 t 之间的关系的图象是( )A .B .C .D .4.小刚从家去学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车匀速行驶一段时间后到达学校,小刚从家到学校行驶路程s(m)与时间t(min)之间函数关系的图象大致是( )A .B .C.D.5.若代数式√x−1x−2有意义,则x的取值范围是()A.x>1且x≠2B.x≥1C.x≠2D.x≥1且x≠26.等腰三角形ABC中,AB=CB=5,AC=8,P为AC边上一动点,PQ⊥AC,PQ与△ABC的腰交于点Q,连结CQ,设AP为x,△CPQ的面积为y,则y关于x的函数关系的图象大致是()A.B.C.D.7.若直线y=kx上每一点都能在直线y=−6x上找到关于x轴对称的点,则它的解析式是()A.y=6x B.y=16x C.y=−6x D.y=−1 6x8.如图,在正方形ABCD中,AB=3cm,动点M自A点出发沿AB方向以每秒1cm的速度运动,同时动点N自A点出发沿折线AD﹣DC﹣CB以每秒3cm的速度运动,到达B点时运动同时停止.设△AMN的面积为y(cm2).运动时间为x(秒),则下列图象中能大致反映y与x之间函数关系的是()A.B.C.D.9.函数y=√2−x+1x+1中,自变量x的取值范围是()A.x⩽2B.x⩽2且x≠−1 C.x⩾2D.x⩾2且x≠−110.在下列四个图形中,能作为y是x的函数的图象的是()A.B.C.D.11.如图,小磊老师从甲地去往10千米的乙地,开始以一定的速度行驶,之后由于道路维修,速度变为原来的四分之一,过了维修道路后又变为原来的速度到达乙地.设小磊老师行驶的时间为x(分钟),行驶的路程为y(千米),图中的折线表示y与x之间的函数关系,则小磊老师从甲地到达乙地所用的时间是()A.15分钟B.20分钟C.25分钟D.30分钟12.下列图象中,y是x的函数的是()A.B.C.D.二、填空题13.如图1,在平面直角坐标系中,将▱ABCD(AB>AD)放置在第一象限,且AB∥x轴,直线y=−x从原点出发沿x轴正方向平移,在平移过程中直线被平行四边形截得的线段长度l与直线在x轴上平移的距离m的函数图象如图2所示,则平行四边形ABCD的面积为.14.甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发向乙地. 如图,线段OA表示货车离甲地距离y(千米)与时间x(小时)之间的函数关系式;折线B−C−D表示轿车离甲地距离y(千米)与x(小时)之间的函数关系.下几种说法:①货车的速度为60千米/小时;②轿车与货车相遇时,货车恰好从甲地出发了3. 9小时;③若轿车到达乙地后,马上沿原路以CD段速度返回,则轿车从乙地出发317小时再次与货车相遇;其中正确的个数是. (填写序号)15.某商城为促进同一款衣服的销量,当同一个人购买件数达到一定数目的时候,超过的件数,每件打8折,现任意挑选5个顾客的消费情况制定表格,其中x表示购买件数,y表示消费金额,根据表格数据请写出一个y关于x的函数解析式是:.x(件)23456y(元)10015020024028016.函数y=2√x−1的自变量x的取值范围是.17.甲、乙两个车间接到加工一批零件的任务,从开始加工到完成这项任务共用了9天.其间,乙车间在加工2天后停止加工,引入新设备后继续加工,直到与甲车间同时完成这项任务为止,设甲、乙两个车间各自加工零件总数y(单位:件)与加时间x(单位:天)的对应关系如图1所示,由工厂统计数据可知,甲车间与乙车间加工零件总数之差z(单位:件)与加时间x(单位:天)的对应关系如图2所示,请根据图象提供的信息回答:(1)图中m的值是;(2)第天时,甲、乙两个车间加工零件总数相同.18.如图,△O的半径为5,点P在△O上,点A在△O内,且PA=3,过点A作AP的垂线交△O于点B,C.设PB= x ,PC=y,则y与x之间的函数解析式为三、综合题19.某旅客携带xkg的行李乘飞机,登机前,旅客可选择托运或快递行李,托运费y1(元)与行李重量xkg的对应关系由如图所示的一次函数图象确定,下表列出了快递费y2(元)与行李重量xkg的对应关系.行李的重量xkg快递费不超过1kg10元超过1kg但不超过5kg的部分3元/kg超过5kg但不超过15kg的部分5元/kg(1)如果旅客选择单托运,求可携带的免费行李的最大重量为多少kg?(2)如果旅客选择快递,当1<x≤15时,直接写出快递费y2(元)与行李的重量xkg之间的函数关系式;(3)某旅客携带25kg的行李,设托运mkg行李(10≤m<24,m为正整数),剩下的行李选择快递,当m为何值时,总费用y的值最小?并求出其最小值是多少元?20.小明一家利用元旦三天驾车到某景点旅游.小汽车出发前油箱有油36L,行驶,若干小时后,途中在加油站加油若干升,油箱中余油量Q(L)与行驶时间t(h)之间的关系,如图所示,根据图象回答下列问题;(1)小汽车行驶小时后加油,中途加油升;(2)求加油前邮箱余油量Q与行驶时间t的函数关系式;(3)如果小汽车在行驶过程中耗油量速度不变,加油站距景点300km,车速为80km/h,要到达目的地,油箱中的油是否够用请说明理由.21.一农民带了若干千克自产的萝卜进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售.售出萝卜千克数与他手中持有的钱数(含备用零钱)的关系如图所示,结合图象回答下列问题:(1)降价前他每千克萝卜出售的价格是多少?(2)降价后他按每千克0.4元将剩余萝卜售完,这时他手中的钱(含备用零钱)是26元,问他一共带了多少千克萝卜?22.某景区今年对门票价格进行动态管理.节假日期间,10人以下(包括10人)不打折,10人以上超过10人的部分打折;非节假日期间全部打折.设游客为x人,非节假日门票费用y1(元)及节假日门票费用y2(元)与游客x(人)之间的函数关系如图所示.(1)求不打折的门票价格;(2)求y1、y2与x之间的函数关系式;(3)导游小王5月2日(五一假日)带A旅游团,5月8日(非节假日)带B旅游团到该景区旅游,两团共计50人,两次共付门票费用3040元,求A、B两个旅游团各多少人?(温馨提示:节假日的折扣与非节假日的折扣不同)23.在“世界读书日”这周的周末,小张同学上午8时从家里出发,步行到公园锻炼了一段时间后以相同的速度步行到图书馆看书,看完书后直接回到了家里,如图是他离家的距离s(米)与时间t(时)的函数关系,根据图象回答下列问题:(1)小张同学家离公园的距离是多少米?锻炼身体用了多少分钟?在图书馆看了多少分钟的书?从图书馆回到家里用了多少分钟?(2)图书馆离小张同学的家多少米?(3)小张同学从图书馆回到家里的速度是多少千米/时?24.甲、乙两车早上从A城车站出发匀速前往B城车站,在整个行程中,两车离开A城的距离s与时间t的对应关系如图所示.(1)A,B两城之间距离是多少?(2)求甲、乙两车的速度分别是多少?(3)乙车出发多长时间追上甲车?(4)从乙车出发后到甲车到达B城车站这一时间段,在何时间点两车相距40km?参考答案1.【答案】B 2.【答案】A 3.【答案】C 4.【答案】B 5.【答案】D 6.【答案】D 7.【答案】A 8.【答案】B 9.【答案】B 10.【答案】B 11.【答案】B 12.【答案】B 13.【答案】8 14.【答案】①②③15.【答案】{y =50x(0≤x ≤4)y =40x +40(x >4)16.【答案】x >1 17.【答案】(1)770(2)818.【答案】y =30x19.【答案】(1)解:设托运费y 1(元)与行李重量xkg 的函数关系式为y 1=kx+b将(30,300)、(50,900)代入y 1=kx+b , {30k +b =30050k +b =900 ,解得: {k =30b =−600 ∴托运费y 1(元)与行李质量xkg 的函数关系式为y 1=30x ﹣600. 当y 1=30x ﹣600=0时,x =20.答:可携带的免费行李的最大重量为20kg . (2)解:根据题意得:当0<x≤1时,y 2=10; 当1<x≤5时,y 2=10+3(x ﹣1)=3x+7;当5<x≤15时,y 2=10+3×(5﹣1)+5(x ﹣5)=5x ﹣3.综上所述:快递费y 2(元)与行李重量xkg 的函数关系式为y 2= {10(0<x ≤1)3x +7(1<x ≤5)5x −3(5<x ≤15) .(3)解:当10≤m <20时,5<25﹣m≤15∴y =y 1+y 2=0+5×(25﹣m)﹣3=﹣5m+122. ∵10≤m <20 ∴22<y≤72;当20≤m <24时,1<25﹣m≤5∴y =y 1+y 2=30m ﹣600+3×(25﹣m)+7=27m ﹣518. ∵20≤m <24 ∴22≤y <130.综上可知:当m =20时,总费用y 的值最小,最小值为22.答:当托运20kg 、快递5kg 行李时,总费用最少,最少费用为22元.20.【答案】(1)3;24(2)解:设直线解析式为Q=kt+b ,把(0,36)和(3,6)代入得: {3k +b =6b =36解得 {k =−10b =36 ∴Q=-10t+36,(0≤t≤3);(3)解:根据题意,每小时耗油量为10升 ∵加油站到景点用时间为:300÷80=3.75(小时) ∴需要的油量为:3.75×10=37.5升>30升 故不够用.21.【答案】(1)解:设降价前每千克萝卜价格为k 元则农民手中钱y 与所售萝卜千克数x 之间的函数关系式为:y=kx+5 ∵当x=30时,y=20 ∴20=30k+5 解得k=0.5.答:降价前每千克萝卜价格为0.5元. (2)解:(26-20)÷0.4=15 15+30=45kg.所以一共带了45kg 萝卜.22.【答案】(1)解: 800÷10=80 (元 / 人)答:不打折的门票价格是80元 / 人; (2)解:设 y 1=10k 解得: k =48 ∴y 1=48x当0⩽x⩽10时,设y2=80x 当x>10时,设y2=mx+b则{10m+b=80020m+b=1440解得:m=64∴y2=64x+160∴y2={80x(0⩽x⩽10)64x+160(x>10);(3)解:设A旅游团x人,则B旅游团(50−x)人若0⩽x⩽10,则80x+48(50−x)=3040解得:x=20,与x⩽10不相符若x>10,则64x+160+48(50−x)=3040解得:x=30,与x>10相符,50−30=20(人)答:A旅游团30人,B旅游团20人.23.【答案】(1)解:观察图象得:小张同学8时离开家,8:10到达公园,小张同学家离公园的距离是500米∵小张同学8:10到达公园,9:10离开公园∴小张同学锻炼身体用了60分钟∵小张同学9:30到达图书馆,11:40离开图书馆∴小张同学在图书馆看了130分钟的书∵小张同学11:40离开图书馆,12时回到家∴小张同学从图书馆回到家里用了20分钟∴小张同学家离公园的距离是500米,锻炼身体用了60分钟,在图书馆看了130分钟的书,从图书馆回到家里用了20分钟;(2)解:∵小张同学8时离开家,8:10到达公园,距离500米,用时10分钟∴小张同学从家到公园的速度为500÷10=50(米/分)∵步行到公园锻炼了一段时间后以相同的速度步行到图书馆着书∴小张同学从公园到图书馆的速度为50米/分∵小张同学9:10离开公园,9:30到达图书馆∴公园离图书馆的距离为:50×20=1000(米)∴图书馆离小张同学的家的距离为:1000+500=1500(米)∴图书馆离小张同学的家1500米;(3)解:∵小张同学从图书馆到家的距离为1500米,即1.5千米,从图书馆回到家里用了20分钟,即时13小时 ∴小张同学从图书馆回到家里的速度是:1.5÷13=4.5千米/时 ∴小张同学从图书馆回到家里的速度是4.5千米/时.24.【答案】(1)解:由图象可知A 、B 两城之间距离是300千米;(2)解:由图象可知,甲的速度= 3005=60(千米/小时) 乙的速度= 3003=100(千米/小时) ∴甲、乙两车的速度分别是60千米/小时和100千米/小时;(3)解:设乙车出发x 小时追上甲车由题意:60(x+1)=100x解得:x =1.5∴乙车出发1.5小时追上甲车;(4)解:设乙车出发后到甲车到达B 城车站这一段时间内,甲车与乙车相距40千米时甲车行驶了m 小时①当甲车在乙车前时得:60m ﹣100(m ﹣1)=40解得:m =1.5此时是上午6:30;②当甲车在乙车后面时100(m ﹣1)﹣60m =40解得:m =3.5此时是上午8:30;③当乙车到达B 城后300﹣60m =40解得:m = 133此时是上午9:20.∴分别在上午6:30,8:30,9:20这三个时间点两车相距40千米.。
浙江省中考数学一轮复习 第46课 函数型综合问题课件
AB=|x1-x2|= (x1+x2)2-4x1x2= b2-4ac b2-4ac a2 = |a| .
-ba2-4ac=
参考以上定理和结论,解答下列问题: 设二次函数 y=ax2+bx+c(a>0)的图象与 x 轴的两个交点 为 A(x1,0)、B(x2,0),抛物线的顶点为 C,显然△ABC 为 等腰三角形. (1)当△ABC 为直角三角形时,求 b2-4ac 的值; (2)当△ABC 为等边三角形时,求 b2-4ac 的值.
解解 ((11))∵∵PP 与与 PP′′((11,,33))关关于于 xx 轴轴对对称称,,∴∴PP((11,,--33)).. ∵∵抛抛物物线线 yy==aa((xx--11))22++cc 过过点点 AA((11-- 33,,00)),,顶顶点点是是 PP((11,,--33)),,
∴∴aaaa((((1111----11))33--22++11c)c)==22++--cc33==,,00,,解解得得acac= == =1-1-,,33,,
助学微博
一个思想方法
函数思想是指在运动变化中,充分利用函数的概念、图 象及性质去观察问题、分析问题、转化问题、解决问题.用 函数思想解题,主要利用两点:
(1)分析自变量的取值范围,确定有关字母的取值范围; (2)根据函数的图象与性质,直观地发现解题想解题,确立变量之间的函数关系式是一关 键步骤,大致可分为下面两种情况:
探究提高
解答此题最容易犯的错误就是忽略抛物线的顶点 有在 x 轴上方、下方两种情况,而只考虑顶点在 x 轴上 方的情况,顾此失彼,所以应当培养思维的严谨性.
知能迁移 2 (2012·益阳)已知:如图,抛物线 y=a(x-1)2+c 与 x 轴交于点 A(1- 3,0)和点 B,将抛物线沿 x 轴向上翻折,顶 点 P 落在点 P′(1,3)处. (1)求原抛物线的解析式; (2)学校举行班徽设计比赛,九年级 5 班的小明 在解答此题时顿生灵感:过点 P′作 x 轴的平 行线交抛物线于 C、D 两点,将翻折后得到的 新图象在直线 CD 以上的部分去掉,设计成一 个“W”型的班徽,“5”的拼音开头字母为 W, “W”图案似大鹏展翅,寓意深远;而且小明通过计算惊奇的 发现这个“W”图案的高与宽(CD)的比非常接近黄金分割比
中考数学总复习《函数基础知识》练习题附带答案
中考数学总复习《函数基础知识》练习题附带答案一、单选题(共12题;共24分)1.如图,小明使用图形计算器探究函数y=ax(x−b)2的图象,他输入了一组a,b的值,得到了下面的函数图象,由学习函数的经验,可以推断出小明输入的a,b的值满足()A.a>0,b>0B.a>0,b<0C.a<0,b>0D.a<0,b<0 2.已知某二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,下列结论中正确的有()①abc<0;②a﹣b+c<0;③a=−1b;④8a+c>0.A.1个B.2个C.3个D.4个3.函数y=1x−2中,自变量x的取值范围是()A.x>2B.x<2C.x≠2D.x≠﹣2 4.如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是()A.乙前4秒行驶的路程为48米B.在0到8秒内甲的速度每秒增加4米/秒C.两车到第3秒时行驶的路程相等D.在4至8秒内甲的速度都大于乙的速度5.已知函数y=3x﹣1,当x=3时y的值是()A.5B.7C.8D.96.如图1,点P为矩形ABCD边上的一个动点,点P从A出发沿着矩形的四条边运动,最后回到A.设点P 运动的路程长为x,△ABP的面积为y,图2是y随x变化的函数图象,则矩形ABCD的对角线BD的长是()A.√34B.√41C.8D.107.为了节能减排,鼓励居民节约用电,某市出台了新的居民用电收费标准:①若每户居民每月用电量不超过100度,则按0.60元/度计算;②若每户居民每月用电量超过100度,则超过部分按0.8元度计算(未超过部分仍按0.60元/度计算).现假设某户居民某月用电量是x(单位:度),电费为以(单位:元),则y与x的函数关系用图象表示正确的是()A.B.C.D.8.如图1,矩形ABCD中,动点E从点C出发,速度为2cm/s,沿C→D→A→B方向运动至点B处停止.设点E运动的时间为xs,△BCE的面积为y,如果y关于x的函数图象如图2所示,则四边形ABCD的面积为()A.48cm2B.24cm2C.21cm2D.12cm29.函数y=ax(x−b)2的图象如下图所示:其中a、b为常数.由学习函数的经验,可以推断常数a、b的值满足()A.a>0,b>0B.a<0,b>0C.a>0,b<0D.a<010.如图,△ABC是等腰直角三角形,AC=BC,AB=4,D为AB上的动点,DP△AB交折线A﹣C﹣B于点P,设AD=x,△ADP的面积为y,则y与x的函数图象正确的是()A.B.C.D.11.甲、乙两位同学进行长跑训练,甲和乙所跑的路程S(单位:米)与所用时间t(单位:秒)之间的函数图象分别为线段OA和折线OBCD.则下列说法正确的是()A.两人从起跑线同时出发,同时到达终点B.跑步过程中,两人相遇一次C.起跑后160秒时甲、乙两人相距最远D.乙在跑前300米时速度最慢12.已知函数y={(x−1)2−1(x≤3)(x−5)2−1(x>3),则使y=k成立的x值恰好有三个,则k的值为()A.0B.1C.2D.3二、填空题(共6题;共8分)13.放学后,小刚和同学边聊边往家走,突然想起今天是妈妈的生日,赶紧加快速度,跑步回家.小刚离家的距离s(m)和放学后的时间t(min)之间的关系如图所示.给出下列结论:①小刚边走边聊阶段的行走速度是125m/min;②小刚家离学校的距离是1000m;③小刚回到家时已放学10min;④小刚从学校回到家的平均速度是100m/min.其中正确的是.(把你认为正确答案的序号都填上)14.在圆的面积公式S=πR2中,常量是.15.某登山队从大本营出发,在向上攀登的过程中,测得所在位置的气温y(△)与向上攀登的高度x(km)的几组对应值如表所示:向上攀登的高度x/km0.5 1.0 1.5 2.0气温y/△ 2.0-1.0-4.0-7.02.3 km时登山队所在位置的气温约为°C.16.有一个面积为30的梯形,其下底长是上底长的3倍.若设上底长为x,高为y,则y关于x的函数解析式是.17.一慢车和一快车沿相同路线从A地到B地,所行的路程与时间的图象如图,则慢车比快车早出发小时快车追上慢车行驶了千米,快车比慢车早小时到达B地.中,自变量的取值范围是18.在函数√x−2x−3三、综合题(共6题;共79分)19.心理学家研究发现,一般情况下,一节课40分钟,学生的注意力随教师讲课时间的变化而变化.学生的注意力指数y随时间x(分)的变化规律如图所示(其中AB、BC为线段,CD为双曲线的一部分).(1)分别求出线段AB和双曲线CD的函数关系式.(2)上课后的第5分钟与第30分钟相比较,分钟时学生的注意力更集中.(3)一道数学题,需要讲18分钟,为了学生听课效果较好,要求学生的注意力指数不低于40,那么经过适当的时间安排,教师能否在学生注意力达到所需状态下讲完这道题?20.小波同学根据学习函数的经验,对函数y=2x−3+1的图象与性质进行了探究,下面是小波同学的探究过程,请根据题意补充完整:(1)下表是y与x的几组对应值:x…-2-1012n5678…y (3)512m0-132533275…=,=;(2)在平面直角坐标系xOy中,补全此函数图象;(3)小渡同学发现y=2x−3+1的图象关于平面直角坐标系中某一点或中心对称,这一点的坐标是;(4)根据函数图象,直接写出不等式2x−3+1>2x−5的解集.21.经过实验获得两个变量x(x>0),y(>0)的一组对应值如表:x123456y6 2.92 1.5 1.21(1)在如图的直角坐标系中,画出相应函数的图象.(2)求y关于x的函数表达式.(3)当x>1.5时求y的取值范围.22.由于精准扶贫的措施科学得当,贫困户小颖家今年种植的草莓喜获丰收,采摘上市16天全部销售完.小颖对销售情况进行统计后发现,在该草莓上市第x天(x取整数)时日销售量y(单位:千克)与x之间的函数关系式为y={12x(0≤x≤10),−20x+320(10<x≤16),草莓价格m(单位:元/千克)与x之间的函数关系如图所示.(1)求第14天小颖家草莓的日销售量;(2)求当4≤x≤12时草莓价格m与x之间的函数关系式;(3)试比较第8天与第10天的销售金额哪天多?23.中国最大的水果公司“佳沃鑫荣懋”旗下子公司“欢乐果园”购进某种水果的成本为20元/kg,经过市场调研发现,这种水果在未来48天的销售单价p(元/kg)与时间t(天)之间的函数关系式为P={14t+30(1≤t≤24,t为整数)−12t+48(25≤t≤48,t为整数),且其日销售量y(kg)与时间t(天)的关系如表:时间t(天)136102040…日销售量y(kg)1181141081008040…(2)问哪一天的销售利润最大?最大日销售利润为多少?(3)在实际销售前24天中,子公司决定每销售1kg水果就捐赠n元利润(n<9)给“精准扶贫”对象.现发现:在前24天中,每天扣除捐赠后的日销售利润随时间t的增大而增大,求n的取值范围.24.已知图形ABCDEF的相邻两边垂直,AB=8cm.当动点M以2cm/s的速度沿图①的边框按B→C→D→E→F→A的路径运动时△ABM的面积S随时间t的变化如图②所示.回答下列问题:(1)求a的值和EF的长度;(2)当点M运动到DE上时求S与t的关系式.参考答案1.【答案】A 2.【答案】A 3.【答案】C 4.【答案】C 5.【答案】C 6.【答案】B 7.【答案】C 8.【答案】A 9.【答案】B 10.【答案】B 11.【答案】C 12.【答案】D 13.【答案】②③④ 14.【答案】π 15.【答案】-8.8 16.【答案】y =15x17.【答案】2;276;4 18.【答案】x≥2且x≠319.【答案】(1)解: 设线段AB 所在的直线的解析式为y 1=k 1x +30把B (10,50)代入得,k 1=2∴AB 解析式为:y 1=2x +30(0≤x≤10).设C 、D 所在双曲线的解析式为y 2=k 2x把C (20,50)代入得,k 2=1000∴曲线CD 的解析式为:y 2=1000x (x≥20);(2)5(3)解:当y =40时2x +30=40,x =5.1000x =40,x =25. ∴25−5=20>18.∴教师能在学生注意力达到所需要求状态下讲完这道题.20.【答案】(1)13;4(2)在平面直角坐标系xOy中,补全此函数图象如图(3)(3,1)(4)观察函数图象,不等式2x−3+1>2x−5的解集是x<2或3<x<4.21.【答案】(1)解:如图(2)解:由(1)得y是x的反比例函数∵图象经过(1,6)∴k=xy=6∴y关于x的函数表达式为y=6 x .(3)解:当x=1.5时y=61.5=4∵在第一象限内,y 随x 的增大而减小 ∴0<y <4.22.【答案】(1)解:∵当10<x ≤16时y =−20x +320∴当x =14时y =−20×14+320=40(千克). ∴第14天小颖家草莓的日销售量是40千克.(2)解:当4≤x ≤12时设草莓价格m 与x 之间的函数关系式为m =kx +b ∵点(4,24),(12,16)在m =kx +b 的图像上 ∴{4k +b =24,12k +b =16.解得{k =−1,b =28.∴函数关系式为m =−x +28. (3)解:∵当0≤x ≤10时y =12x ∴当x =8时y =12×8=96 当x =10时y =12×10=120. ∵当4≤x ≤12时m =−x +28∴当x =8时m =−8+28=20,当x =10时m =−10+28=18. ∴第8天的销售金额为:96×20=1920(元) 第10天的销售金额为:120×18=2160(元). ∵2160>1920∴第10天的销售金额多.23.【答案】(1)解:依题意,设y=kt+b ,将(10,100),(20,80)代入y=kt+b{100=10k +b 80=20k +b ,解得 {k =−2b =120∴日销售量y (kg )与时间t (天)的关系 y=120﹣2t 当t=30时y=120﹣60=60.答:在第30天的日销售量为60千克;(2)解:设日销售利润为W 元,则W=(p ﹣20)y . 当1≤t≤24时W=(t+30﹣20)(120﹣t ) =﹣t 2+10t+1200=﹣(t ﹣10)2+1250 当t=10时W 最大=1250当25≤t≤48时W=(﹣t+48﹣20)(120﹣2t ) =t 2﹣116t+3360=(t ﹣58)2﹣4 由二次函数的图象及性质知:第 11 页 共 11 当t=25时W 最大=1085∵1250>1085∴在第10天的销售利润最大,最大利润为1250元;(3)解:依题意,得W=﹣t 2+(2n+10)t+1200﹣120n (1≤t≤24) 其对称轴为t=2n+10,要使W 随t 的增大而增大 由二次函数的图象及性质知:2n+10≥24解得n≥7又∵n <9∴7≤n <9.24.【答案】(1)解:由S 随时间t 的变化的函数图象得:a= 12 ×8×2×6=48EF=2×(14-12.5)=3cm ;(2)解:∵AB=8cm ,EF=3cm∴CD=8-3=5cm∴点M 在CD 上运动的时间为:5÷2=2.5s∴b=6+2.5=8.5由函数图象可知:当t=12.5时S= 12×8×[2×6-(12.5-8.5)×2]=16 设当点M 运动到DE 上时S 与t 的关系式为:S=kt+n则 {16=12.5k +n 48=8.5k +n ,解得: {k =−8n =116∴S=-8t+116.。
2022年九年级中考复习数学函数综合 试题
中考试题之函数综合题1. 如图,已知点A (tan α,0),B (tan β,0)在x 轴正半轴上,点A 在点B 的左边,α、β 是以线段AB 为 斜边、顶点C 在x 轴上方的Rt △ABC 的两个锐角.(1)若二次函数y =-x 2-25kx +(2+2k -k 2)的图象经过A 、B 两点,求它的解析式;(2)点C 在(1)中求出的二次函数的图象上吗?请说明理由.2.已知抛物线2y x kx b =++经过点(23)(10)P Q --,,,. (1)求抛物线的解析式.(2)设抛物线顶点为N ,与y 轴交点为A .求sin AON ∠的值. (3)设抛物线与x 轴的另一个交点为M ,求四边形OANM 的面积.yxN3.如图9,抛物线y=ax 2+8ax+12a 与x 轴交于A 、B 两点(点A 在点B 的左侧),抛物线上另有一点C 在第一象限,满足∠ ACB 为直角,且恰使△OCA ∽△OBC. (1) 求线段OC 的长.(2) 求该抛物线的函数关系式.(3) 在x 轴上是否存在点P ,使△BCP 为等腰三角形? 若存在,求出所有符合条件的P 点的坐标;若不存在,请说明理由.4.已知函数y=x2和y=kx+l(k≠O). (1)若这两个函数的图象都经过点(1,a),求a 和k 的值;(2)当k 取何值时,这两个函数的图象总有公共点?5.已知如图,矩形OABC 的长OA=3,宽OC=1,将△AOC 沿AC 翻折得△APC 。
(1)填空:∠PCB=____度,P 点坐标为( , );(2)若P ,A 两点在抛物线y=-34 x 2+bx+c 上,求b ,c 的值,并说明点C 在此抛物线上;(3)在(2)中的抛物线CP 段(不包括C ,P 点)上,是否存在一点M ,使得四边形MCAP 的面积最大?若存在,求出这个最大值及此时M 点的坐标;若不存在,请说明理由.6.如图,二资助函数c bx x y ++=2的图象经过点M (1,—2)、N (—1,6). (1)求二次函数c bx x y ++=2的关系式.(2)把Rt △ABC 放在坐标系内,其中∠CAB = 90°,点A 、B 的坐标分别为(1,0)、(4,0),BC = 5。
初三数学 函数综合-中考必做题(详解版)
1
2
3
随着运算次数的增加,运算结果越
4
5
6
7
8
的面积恰好等于正方形的面积,求点
,一次函数解析式为.
,
9
的图象相交于点,与轴相交于点.
10
11
12
13
14
15 16
17
18
19
20
21
22
23
24
25
,试比较,对应的的范围.
;当时,
.
.
函数
函数基础知识
动点问题的函数图象
分段函数
二次函数
二次函数与方程不等式综合
二次函数与一元二次方程的关系
利用二次函数图象解决不等式问题26
的不等式组,恰有三个整数解,则关于
的图像的公共点的个数为
不等式组的解为:,
∵不等式组恰有个整数解,
.
联立方程组,得
,
这是一个二次函数,开口向上,
27
点关28
29
30。
中考数学专题复习:函数基础知识练习题(含答案)
中考数学专题复习:函数基础知识练习题一.选择题1.在Rt△ABC中,D为斜边AB的中点,∠B=60°,BC=2cm,动点E从点A出发沿AB 向点B运动,动点F从点D出发,沿折线D﹣C﹣B运动,两点的速度均为1cm/s,到达终点均停止运动,设AE的长为x,△AEF的面积为y,则y与x的图象大致为()A.B.C.D.2.如图,正方形ABCD的边长为2,点P和点Q分别从点B和点C出发,沿射线BC向右运动,且速度相同,过点Q作QH⊥BD,垂足为H,连接PH,设点P运动的距离为x (0<x≤2),△BPH的面积为S,则能反映S与x之间的函数关系的图象大致为()A.B.C.D.3.如图,在边长为4的正方形ABCD中剪去一个边长为2的小正方形CEFG,动点P从点A出发,沿多边形的边以A→D→E→F→G→B的路线匀速运动到点B时停止(不含点A 和点B),则△ABP的面积S随着时间t变化的图象大致为()A.B.C.D.4.小亮饭后散步,从家中走20分钟到一个离家900米的报亭看10分钟的报纸后,用15分钟返回家中,下列图形中表示小亮离家的时间与离家的距离之间关系的是()A.B.C.D.5.如图①,动点P从正六边形的A点出发,沿A→F→E→D→C以1cm/s的速度匀速运动到点C,图②是点P运动时,△ACP的面积y(cm2)随着时间x(s)的变化的关系图象,则正六边形的边长为()A.2cm B.cm C.1cm D.3cm6.如图①,在▱ABCD中,∠B=120°,动点P从点B出发,沿B→C→D→A运动至点A 停止,如图②是点P运动时,△P AB的面积y(cm2)随点P运动的路程x(cm)变化的关系图象,则图②中H点的横坐标为()A.12B.14C.16D.7.如图所示的是一辆汽车行驶的速度(千米/时)与时间(分)之间的变化图,下列说法正确的是()A.时间是因变量,速度是自变量B.汽车在1~3分钟时,匀速运动C.汽车最快的速度是30千米/时D.汽车在3~8分钟静止不动8.小苏和小林在如图1所示的跑道上进行4×50米折返跑,在整个过程中跑步者距起跑线的距离y(单位:m)与跑步时间t(单位:s)的对应关系如图2所示.下列叙述正确的是()A.两人从起跑线同时出发,同时到达终点B.小苏跑全程的平均速度大于小林跑全程的平均速度C.小苏前15s跑过的路程大于小林前15s跑过的路程D.在折返跑过程中(不包括起跑和终点),小林与小苏相遇3次9.小聪步行去上学,5分钟走了总路程的,估计步行不能准时到校,于是他改乘出租车赶往学校,他的行程与时间关系如图所示,(假定总路程为1,出租车匀速行驶),则他到校所花的时间比一直步行提前了()分钟.A.16B.18C.20D.2410.如图1,动点K从△ABC的顶点A出发,沿AB﹣BC匀速运动到点C停止.在动点K 运动过程中,线段AK的长度y与运动时间x的函数关系如图2所示,其中点Q为曲线部分的最低点,若△ABC的面积是5,则图2中a的值为()A.B.5C.7D.3二.填空题11.小亮早晨从家骑车到学校先上坡后下坡,所行路程y(m)与时间x(min)的关系如图所示,若返回时上坡、下坡的速度仍与去时上坡,下坡的速度分别相同,则小亮从学校骑车回家用的时间是min.12.如图①,在平行四边形ABCD中,∠B=120°,动点P从点B出发,沿BC、CD、DA 运动至点A停止.设点P运动的路程为xcm,△P AB的面积为ycm2,y关于x的函数的图象如图②所示,则图②中H点的横坐标为.13.如图1,点O为正六边形对角线的交点,机器人置于该正六边形的某顶点处,小宇操作机器人以每秒1个单位长度的速度在图1中给出的线段路径上运行,他将机器人运行的时间设为t秒,机器人到点A的距离设为y,得到的函数图象如图2.通过观察函数图象,可以得到下列推断:①机器人一定经过点D;②机器人一定经过点E;③当t=3时,机器人一定位于点O;④存在符合图2的运行路线,使机器人能够恰好经过六边形的全部6个顶点;其中正确的是(填序号).14.在课本的阅读与思考中,科学家利用放射性物质的半衰期这个函数模型来测算岩石的年,生活中也有很多类似这样半衰的现象.请思考下面的问题:一个皮球从16m高处下落,第一次落地后反弹起8m,第二次落地后反弹起4m,以后每次落地后的反弹高度都减半.试写出表示反弹高度h(单位:m)与落地次数n的对应关系的函数解析式.皮球第次落地后的反弹高度是m?15.重庆实验外国语学校运动会期间,小明和小欢两人打算匀速从教室跑到600米外的操场参加入场式,出发时小明发现鞋带松了,停下来系鞋带,小欢继续跑往操场,小明系好鞋带后立即沿同一路线开始追赶小欢小明在途中追上小欢后继续前行,小明到达操场时入场式还没有开始,于是小明站在操场等待,小欢继续前往操场.设小明和小欢两人相距s(米),小欢行走的时间为t(分钟),s关于t的函数图象如图所示,则在整个运动过程中,小明和小欢第一次相距80米后,再过分钟两人再次相距80米.三.解答题16.王教授和他的孙子小强星期天一起去爬山,来到山脚下,小强让爷爷先上山,然后追赶爷爷,如图所示,两条线段分别表示小强和爷爷离开山脚的距离(米)与爬山所用时间(分)的关系(小强开始爬山时开始计时),请看图回答下列问题:(1)爷爷比小强先上了多少米?山顶离山脚多少米?(2)谁先爬上山顶?小强爬上山顶用了多少分钟?(3)图中两条线段的交点表示什么意思?这时小强爬山用时多少?离山脚多少米?17.小红帮弟弟荡秋千(如图1),秋千离地面的高度h(m)与摆动时间t(s)之间的关系如图2所示.(1)根据函数的定义,请判断变量h是否为关于t的函数?请说明理由;(2)结合图象回答:①当=0.7s时,h的值是多少?并说明它的实际意义;②秋千摆第二个来回需多少时间?18.2018年5月14日川航3U863航班挡风玻璃在高空爆裂,机组临危不乱,果断应对.正确处置,顺利返航,避免了一场灾难的发生,创造了世界航空史上的奇迹!下表给出了距离地面高度与所在位置的温度之间的大致关系.根据下表,请回答以下几个问题:(1)上表反映的两个变量中,是自变量,是因变量?(2)若用h表示距离地面的高度,用y表示表示温度,则y与h的之间的关系式是:;当距离地面高度5千米时,所在位置的温度为:℃.如图是当日飞机下降过程中海拔高度与玻璃爆裂后立即返回地面所用时间关系图.根据图象回答以下问题:(3)返回途中飞机再2千米高空水平大约盘旋了几分钟?(4)飞机发生事故时所在高空的温度是多少?19.如图1,在△ABC中,点D是线段BC上的动点,将线段AD绕点D逆时针旋转90°得到线段DE,连接BE.若已知BC=8cm,设B,D两点间的距离为xcm,A,D两点间的距离为y1cm,B,E两点距离为y2cm.小明根据学习函数的经验,分别对函数y1,y2随x的变化而变化的规律进行了探究,请补充完整.下面是小明的探究过程的几组对应值.(1)按照下表中自变量x的值进行取点画图,测量分别得到了与x的几组对应值如下表:(说明补全表格时相关数值保留一位小数)(2)在同一平面直角坐标系xoy中,描出补全后的表中各组数值所对应的点(x,y1),(x,y2),并画出函数y1,y2的图象;(3)结合函数图象(如图2),解决问题:①当E在线段BC上时,BD的长约为cm;②当△BDE为等腰三角形时,BD的长x约为cm.20.小凡与小光从学校出发到距学校5千米的图书馆看书,途中小凡从路边超市买了一些学习用品,如图反应了他们俩人离开学校的路程s(千米)与时间t(分钟)的关系,请根据图象提供的信息回答问题:(1)l1和l2中,描述小凡的运动过程;(2)谁先出发,先出发了分钟;(3)先到达图书馆,先到了分钟;(4)当t=分钟时,小凡与小光在去学校的路上相遇;(5)小凡与小光从学校到图书馆的平均速度各是多少千米/小时?(不包括中间停留的时间)参考答案一.选择题1.解:在Rt△ABC中,D为斜边AB的中点,∠B=60°,BC=2cm,∴AD=DC=DB=2,∠CDB=60°∵EF两点的速度均为1cm/s∴当0≤x≤2时,y=当2≤x≤4时,y=由图象可知A正确故选:A.2.解:过点H作HE⊥BC,垂足为E.∵BD是正方形的对角线∴∠DBC=45°∵QH⊥BD∴△BHQ是等腰直角三角形.∵BQ•HE=BH•HQ∴HE=∴△BPH的面积S=BP•HE=x=∴S与x之间的函数关系是二次函数,且二次函数图象开口方向向上;因此,选项中只有A选项符合条件.故选:A.3.解:当点P在线段AD上时,面积是逐渐增大的,当点P在线段DE上时,面积是定值不变,当点P在线段EF上时,面积是逐渐减小的,当点P在线段FG上时,面积是定值不变,当点P在线段GB上时,面积是逐渐减小的,综上所述,选项B符合题意.故选:B.4.解:依题意,0﹣20分钟散步,离家路程增加到900米,20﹣30分钟看报,离家路程不变,30﹣45分钟返回家,离家路程减少为0米.故选:D.5.解:如图,连接BE,AE,CE,BE交AC于点G由正六边形的对称性可得BE⊥AC,易证△ABC≌△CDE≌△AFE(SAS)∴△ACE为等边三角形,GE为AC边上的高线∵动点P从正六边形的A点出发,沿A→F→E→D→C以1cm/s的速度匀速运动∴当点P运动到点E时△ACP的面积y取最大值设AG=CG=a(cm),则AC=AE=CE=2a(cm),GE=a(cm)∴2a×a÷2=(cm)∴a2=3∴a=(cm)或a=﹣(舍)∵正六边形的每个内角均为120°∴∠ABG=×120°=60°∴在Rt△ABG中,=sin60°∴=∴AB=2(cm)∴正六边形的边长为2cm故选:A.6.解:图②显示,当BC=4时,y=6,即y=×AB×BC sin60°=AB×4×=6,解得:AB=6,点H的横坐标为:BC+CD+AD=4+4+6=14,故选:B.7.解:速度是因变量,时间是自变量,故选项A不合题意;汽车在1~3分钟时,速度在增加,故选项B不合题意;汽车最快速度是30千米/时,故选项C符合题意;汽车在3~8分钟,匀速运动,故选项D不合题意;故选:C.8.解:两人从起跑线同时出发,先后到达终点,小林先到达终点,故A选项不符合题意;根据图象两人从起跑线同时出发,小林先到达终点,小苏后到达终点,小苏用的时间多,而路程相同,所以小苏跑全程的平均速度小于小林跑全程的平均速度,故B选项不符合题意;由函数图象可知:小苏前15s跑过的路程小于小林前15s跑过的路程,故C选项不符合题意;在折返跑过程中(不包括起跑和终点),小林与小苏相遇3次,故D选项符合题意;故选:D.9.解:小聪步行的速度为:÷5=,改乘出租车后的速度为:(﹣)÷(7﹣5)=,小聪到校所花的时间比一直步行提前的时间=﹣5﹣=20(分钟),故选:C.10.解:由图象的曲线部分看出直线部分表示K点在AB上,且AB=a,曲线开始AK=a,结束时AK=a,所以AB=AC.当AK⊥BC时,在曲线部分AK最小为5.所以BC×5=5,解得BC=2.所以AB==.故选:A.二.填空题(共5小题)11.解:由图可得,去校时,上坡路的距离为3600米,所用时间为18分,∴上坡速度=3600÷18=200(米/分),下坡路的距离是9600﹣36=6000米,所用时间为30﹣18=12(分),∴下坡速度=6000÷12=500(米/分);∵去学校时的上坡回家时变为下坡、去学校时的下坡回家时变为上坡,∴小亮从学校骑车回家用的时间是:6000÷200+3600÷500=30+7.2=37.2(分钟).故答案为:37.212.解:由图象可知,当x=4时,点P到达C点,此时△P AB的面积为6,∵∠B=120°,BC=4,∴×2×AB=6,解得AB=6,H点表示点P到达A时运动的路程为4+6+4=14,故答案为:14.13.解:由图象可知,机器人距离点A1个单位长度,可能在F或B点,则正六边形边长为1;①所有点中,只有点D到A距离为2个单位,故①正确;②因为机器人可能在F点或B点出发,当从B出发时,不经过点E,故②错误.③观察图象t在3﹣4之间时,图象具有对称性则可知,机器人在OB或OF上,则当t=3时,机器人距离点A距离为1个单位长度,机器人一定位于点O,故③正确;④由②知,机器人不经过点E,故④错误;故答案为:①③.14.解:表示反弹高度h(单位:m)与落地次数n的对应关系的函数解析式h=(n为正整数).=,2n=16×8=27,n=7.故皮球第7次落地后的反弹高度是m.故答案为:h=(n为正整数),7.15.解:由题意小欢的速度为40米/分钟,小明的速度为80米/分钟,设小明在途中追上小欢后需要x分钟两人相距80米,则有:80x﹣40x=80,∴x=2,此时小欢一共走了40×(2+2)=160(米),(600﹣160﹣80)÷40=9(分).即小明和小欢第一次相距80米后,再过9分钟两人再次相距80米.故答案为:9三.解答题(共5小题)16.解:(1)由图可知,爷爷比小强先上了100米,当小强爬了10分钟,爬了300米∴小强的速度300÷10=30米/分,∴山高30×15=450米;(2)小强先到山顶,小强爬了15分钟;(3)图中两条线段的交点表示小强和爷爷相遇的时候,这时小强爬山用时10分钟,离山脚300米.17.解:(1)h是t的函数是两个变量、每一个时间t的确定值,高度h都有唯一的值与其对应,故变量h是否为关于t的函数;(2)①当t=0.7s时,h=0.5m,它的意义是:秋千摆动0.7s时,设地面的高度为0.5m.②从图象看前两个来回用时2.8,后面两个来回用时5.4﹣2.8=2.6,再后面两个来回用时7.8﹣5.4=2.4,为均匀减小,故第一个来回应该是1.5s,第二个来回2.6s.18.解:(1)根据函数的定义:距离地面高度是自变量,所在位置的温度是因变量,故答案为:距离地面高度,所在位置的温度;(2)由题意得:y=20﹣6h,当x=5时,y=﹣10,故答案为:y=20﹣6h,﹣10;(3)从图象上看,h=2时,持续的时间为2分钟,即返回途中飞机在2千米高空水平大约盘旋了2分钟;(4)h=2时,y=20﹣12=8,即飞机发生事故时所在高空的温度是8度.19.解:(1)当x=0时,a=AD=7.03≈7.0,b=3.0;(2)描绘后表格如下图:(3)①当E在线段BC上时,即:x=y1+y2,从图象可以看出,当x=6时,y1+y2=6,故答案为6;②当BE=DE时,即:y1=y2,此时x=7.5或0,故x=7.5;当BE=BD时,即:y2=x,在图上画出直线y=x,此时x≈3;当DE=BE时,即:y1=x,从上图可以看出x≈4.1;故答案为:3或4.1或7.5.20.解:(1)由图可得,l1和l2中,l1描述小凡的运动过程,故答案为:l1;(2)由图可得,小凡先出发,先出发了10分钟,故答案为:小凡,10;(3)由图可得,小光先到达图书馆,先到了60﹣50=10(分钟),故答案为:小光,10;(4)小光的速度为:5÷(50﹣10)=千米/分钟,小光所走的路程为3千米时,用的时间为:3÷=24(分钟),∴当t=10+24=34(分钟)时,小凡与小光在去学校的路上相遇,故答案为:34;(5)小凡的速度为:=10(千米/小时),小光的速度为:=7.5(千米/小时),即小凡与小光从学校到图书馆的平均速度分别为10千米/小时、7.5千米/小时.。
初中数学函数知识点和常见题型总结
函数知识点及常见题型总结函数在初中数学中考中分值大约有20~25分,一次函数、二次函数和反比例函数都会考查,其中一次函数和反比例函数分值共约占其中的50%,二次函数约占另一半。
函数的题型以下归纳总结了11种,当然这并不包括所有可能出现的情况,仅仅只是较为常见的。
函数有时是以下题型组合起来构成的较为复杂的题型,因此,我们必须掌握住以下题型才能寻求突破。
换句话说,我们掌握住以下题型,复杂的题型分解开来,我们也能各个突破,最终解决掉。
一、核心知识点总结1、函数的表达式1)一次函数:y=kx+b(,k b 是常数,0k ≠) 2)反比例函数:函数xky =(k 是常数,0k ≠)叫做反比例函数。
注意:0x ≠ 3)二次函数:)0,,(2≠++=a c b a c bx ax y 是常数,, 2、点的坐标与函数的关系1)点的坐标用(),a b 表示,横坐标在前,纵坐标在后,中间有“,”分开。
平面内点的坐标是有序实数对,当b a ≠时,(),a b 和(),b a 是两个不同点的坐标。
2)点的坐标:从点向x 轴和y 轴引垂线,横纵坐标的绝对值对应相对应线段的长度。
3)若某一点在某一函数图像上,则该点的坐标可代入函数的表达式中,要将函数图像上的点与坐标一一联系起来。
3、函数的图像 1)一次函数一次函数by=的=的图像是经过点(0,b)的直线;正比例函数kxy+kx图像是经过原点(0,0)的直线。
2)反比例函数3)二次函数4、函数图像的平移① 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ② 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:③平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字“左加右减,上加下减”.【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位二、常见题型:1、求函数的表达式常见求函数表达式的方法是待定系数法,假设出函数解析式,将函数上的点的坐标代入函数,求出未知系数。
2014中考数学必考题型专题(专讲专练)-函数型综合问题(2份,以2012、2013真题为例)(权威押题+冲刺复习资料)
2
b2 4c - a - a =
参考以上定理和结论,解答下列问题: 2 设二次函数 y=ax +bx+c(a>0)的图象与 x 轴的两个交点 为 A(x1,0)、B(x2,0),抛物线的顶点为 C,显然△ABC 为 等腰三角形. 2 (1)当△ABC 为直角三角形时,求 b -4ac 的值; 2 (2)当△ABC 为等边三角形时,求 b -4ac 的值.
对应训练 1.(2013·牡丹江)快、慢两车分别从相距360千米路 程的甲、乙两地同时出发,匀速行驶,先相向而行,快 车到达乙地后,停留1小时,然后按原路原速返回,快 车比慢车晚1小时到达甲地,快、慢两车距各自出发地 的路程y(千米)与出发后所用的时间x(小时)的关 系如图所示.
请结合图象信息解答下列问题: (1)快、慢两车的速度各是多少? (2)出发多少小时,快、慢两车距各自出发地的路 程相等? (3)直接写出在慢车到达甲地前,快、慢两车相距 的路程为150千米的次数.
对应训练
(1)求点B的坐标,并说明点D在直线l (2)设交点C的横坐标为m. ①交点C的纵坐标可以表示为: 或 ,由此进一步探究m关于h的函数关系 式; ②如图②,若∠ACD=90°,求m的值.
【例 3】 (2012·兰州) 若 x1、x2 是关于一元二次方程 ax + bx+c(a≠0)的两个根,则方程的两个根 x1、x2 和系数 a、 b c b、c 有如下关系:x1+x2=- ,x1·x2= ,把它称为一元 a a 2 二次方程根与系数关系定理.如果设二次函数 y=ax +bx +c(a≠0)的图象与 x 轴的两个交点为 A(x1, 0), B(x2, 0), 利用根与系数关系定理可以得到 A、B 两点间的距离为: AB=|x1-x2|= (x1+x2) -4x1x2= b -4ac b -4ac = . 2 a |a|
2013年中考数学二轮综合训练47方程与函数相结合型综合问题
中考数学二轮综合训练47 方程与函数相结合型综合问题一、选择题1.在平面直角坐标系中,抛物线y =x 2-1与x 轴的交点的个数是( ) A .3 B .2 C .1 D .0答案 B解析 令y =0,得x 2-1=0,x =1或-1,抛物线交x 轴于点(1,0),(-1,0). 2.(2011·兰州)如图所示的二次函数y =ax 2+bx +c 的图象中,刘星同学观察得出了下面四条信息:(1)b 2-4ac >0;(2)c >1;(3)2a -b <0;(4)a +b +c <0.你认为其中错误..的有( )A .2个B .3个C .4个D .1个 答案 D解析 由抛物线与x 轴交于两点,可知关于x 的二次方程ax 2+bx +c =0有两个不相等的实数根,则b 2-4ac >0;又抛物线的对标轴直线x =-b2a>-1,而a <0,所以b >2a,2a -b <0;当x =1时,函数值y =a +b +c <0,信息(1),(3),(4)正确;抛物线与y 轴交于点(0,c ),在点(0,1)下方,c <1,信息(2)错误.3.(2011·潍坊)已知一元二次方程ax 2+bx +c =0(a >0)的两个实数根x 1、x 2满足x 1+x 2=4和x 1·x 2=3,那么二次函数y =ax 2+bx +c (a >0)的图象有可能是( )答案 C解析 由x 1+x 2=4和x 1x 2=3,可解得两根为1、3,抛物线与x 轴交点为(1,0),(3,0),选C.4.(2011·呼和浩特)已知一元二次方程x 2+bx -3=0的一根为-3, 在二次函数y =x 2+bx -3的图象上有三点⎝⎛⎭⎫-45,y 1、⎝⎛⎭⎫-54,y 2、⎝⎛⎭⎫16,y 3,y 1、y 2、y 3的大小关系是( )A . y 1<y 2<y 3B .y 2<y 1<y 3C . y 3<y 1<y 2D .y 1<y 3<y 2 答案 A解析 当方程的一根为x =-3时,(-3)2-3b -3=0,b =2,所以y =x 2+2x -3=(x +1)2-4,∴对称轴x =-1,∴x =-54与x =-34时y 值相同,∵在x =-1右侧,y 随x 增大而增大,∴y 1<y 2<y 3,选A.5.已知函数y =ax 2+bx +c 的图象如图所示,那么关于x 的方程ax 2+bx +c +2=0的根的情况是( )A .无实数根B .有两个相等实数根C .有两个异号实数根D .有两个同号不等实数根 答案 D解析 画直线y =-2,与抛物线y =ax 2+bx +c 交于两点,且在第四象限, 故方程ax 2+bx +c =-2,有两个不等的正数根. 二、填空题6.(2008·义乌)李老师给出了一个函数,甲、乙、丙三位学生分别指出这个函数的一个特征.甲:它的图象经过第一象限;乙:它的图象也经过第二象限;丙:在第一象限内函数值y 随x 增大而增大.在你学过的函数中,写出一个满足上述特征的函数解析式____________________.答案 形如y =kx +b (k >0,b >0)或y =ax 2+bx +c (a >0,b >0)7.要在街道旁修建一个奶站,向居民区A 、B 提供牛奶,奶站应建在什么地方,才能使从A 、B 到它的距离之和最短?小聪根据实际情况,以街道旁为x 轴,建立了如图所示的平面直角坐标系,测得A 点的坐标为(0,3),B 点的坐标为(6,5),则从A 、B 两点到奶站距离之和的最小值是__________.答案 10解析 如图,画点A 关于x 轴的对称点A 1,其坐标为(0,-3),根据两点之间线段最短,可知AC 、BC 距离之和的最小值为线段A 1B ,画BD ⊥y 轴于D ,在Rt△A 1BD 中,A 1D =3+5=8,BD =6,所以A 1B =62+82=10.8.(2010·绥化)已知关于x 的分式方程 a +2x +1=1的解是非正数,则a 的取值范围是____________.答案 a ≤-1且a ≠-2解析 去分母,a +2=x +1,∵x ≠-1,a ≠-2,x =a +1≤0,∴a ≤-1且a ≠-2.9.(2008·西宁)如图所示的是函数y =kx +b 与y =mx +n 的图象,则方程组⎩⎪⎨⎪⎧y =kx +b ,y =mx +n 的解关于原点对称的点的坐标是___________.答案 (-3,-4)解析 两直线y =kx +b 与y =mx +n 交于点(3,4), 所以关于原点对标的点的坐标为(-3,-4).10.如图,点D 的纵坐标等于______________;点A 的横坐标是方程______________的解;大于点B 的横坐标是不等式______________的解集;点C 的坐标是方程组______________的解;小于点C 的横坐标是不等式______________的解集.答案 b ;k 1x +b 1=0;kx +b <0;⎩⎪⎨⎪⎧y =k 1x +b 1,y =kx +b;kx +b >k 1x +b 1三、解答题11.如果一个二次函数的图象经过点A (6,10),与x 轴交于B 、C 两点,点B 、C 的横坐标为x 1、x 2,且x 1+x 2=6,x 1·x 2=5.求这个二次函数的解析式.解 ∵这个二次函数的图象与x 轴交于B (x 1,0)、C (x 2,0)两点, ∴这个二次函数的解析式是y =a (x -x 1)(x -x 2), 即y =a [x 2-(x 1+x 2)x +x 1x 2]. ∵x 1+x 2=6,x 1·x 2=5, ∴y =a (x 2-6x +5).∵这个二次函数的图象经过点A (6,10), ∴a ×(62-6×6+5)=10,解之,得a =2,∴所求二次函数的解析式为:y =2x 2-12x +10.12.如图,在平面直角坐标系中,将一块腰长为5的等腰直角三角尺ABC 放在第二象限,且斜靠在两坐标轴上,直角顶点C 的坐标为(-1,0),点B 在抛物线y =ax 2+ax -2上.(1)点A 的坐标为________,点B 的坐标为________; (2)抛物线的关系式为________________;(3)设(2)中抛物线的顶点为D ,求△DBC 的面积;(4)将三角尺ABC 绕顶点A 逆时针方向旋转90°,到达△AB ′C ′的位置.请判断点B ′、C ′是否在(2)中的抛物线上,并说明理由.解 (1)A (0,2),B (-3,1). (2)y =12x 2+12x -2.(3)如图①,可求得抛物线的顶点D ⎝⎛⎭⎫-12,-178.设直线BD 的关系式为y =kx +b ,将点B 、D 的坐标代入,求得k =-54,b =-114,∴BD 的关系式为y =-54x -114.设直线BD 和x 轴交点为E , 则点E ⎝⎛⎭⎫-115,0,CE =65.∴△DBC 的面积为12×65×⎝⎛⎭⎫1+178=158.(4)如图②,过点B ′作B ′M ⊥y 轴于点M ,过点B 作BN ⊥y 轴于点N ,过点C ′作C ′P ⊥y轴于点P .在Rt△AB ′M 与Rt△BAN 中,∵AB =AB ′,∠AB ′M =∠BAN =90°-∠B ′AM , ∴Rt△AB ′M ≌Rt△BAN .∴B ′M =AN =1,AM =BN =3,∴B ′(1,-1). 同理:△AC ′P ≌△CAO ,C ′P =OA =2,AP =OC =1, ∴C ′(2,1).将点B ′、C ′的坐标代入y =12x 2+12x -2,可知点B ′、C ′在抛物线上(事实上,点P与点N 重合).13.已知抛物线y =(9-m 2)x 2-2(m -3)x +3m 的顶点D 在双曲线y =-5x上,直线y =kx+c 过点D 和点C (a ,b ),且y 随x 的增大而减小,a 、b 满足方程组⎩⎪⎨⎪⎧a 2-b 2-3=0,2a 2-5ab +2b 2=0.求直线y =kx +c 的解析式.解 ∵y =(9-m 2)x 2-2(m -3)x +3m ,∴抛物线的顶点D 的坐标为⎝⎛⎭⎫-1m +3,3m 2+10m -3m +3.∵点D 在双曲线y =-5x上,∴⎝⎛⎭⎫-1m +3·⎝⎛⎭⎫3m 2+10m -3m +3=-5, 整理得:m 2+10m +24=0, 解之,得m 1=-4,m 2=-6,∴D 点的坐标为D 1(1,-5)或D 2⎝⎛⎭⎫13,-15.解方程组⎩⎪⎨⎪⎧a 2-b 2-3=0,2a 2-5ab +2b 2=0,得⎩⎪⎨⎪⎧a 1=-2,b 1=-1,,⎩⎪⎨⎪⎧a 2=2,b 2=1,∴C 点的坐标为C 1(-2,-1)或C 2(2,1).∵直线y =kx +c 经过D 、C 两点,且y 随x 的增大而减小, ∴点C 2(2,1)不合题意,舍去.∴直线x 1y =kx +c 经过点D 1(1,-5)和点C 1(-2,-1)或点D 2⎝⎛⎭⎫13,-15和C 1(-2,-1).∴⎩⎪⎨⎪⎧k +c =-5,-2k +c =-1,或⎩⎪⎨⎪⎧13k +c =-15,-2k +c =-1,解之,得⎩⎪⎨⎪⎧k =-43,c =-113,或⎩⎪⎨⎪⎧k =-6,c =-13.∴这条直线的解析式为y =-43x -113或y =-6x -13.。
2011年中考数学试题分类46 综合型问题
第46章 综合型问题一、选择题1. (2011 浙江湖州,10,3)如图,已知A 、B 是反比例面数k y x= (k >0,x >0)图象上的两点,BC ∥x 轴,交y 轴于点C .动点P 从坐标原点O 出发,沿O→A→B→C (图中“→”所示路线)匀速运动,终点为C .过P作PM ⊥x 轴,PN ⊥y 轴,垂足分别为M 、N .设四边形0MPN 的面积为S ,P 点运动时间为t ,则S 关于t 的函数图象大致为【答案】A2. (2011台湾全区,19)坐标平面上,二次函数362+-=x x y 的图形与下列哪一个方程式的图形没有交点?A . x =50B . x =-50C . y =50D . y =-50【答案】D3. (2011广东株洲,8,3分)某广场有一喷水池,水从地面喷出,如图,以水平地面为x轴,出水点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线y=-x 2+4(单位:米)的一部分,则水喷出的最大高度是( )A .4米B .3米C .2米D .1米【答案】D4. (2011山东聊城,12,3分)某公园草坪的防护栏是由100段形状相同的抛物线组成的.为了牢固起见,每段护栏需要间距0.4m 加设一根不锈钢的支柱,防护栏的最高点距底部0.5m (如图),则这条防护栏需要不锈钢支柱的总长度至少为( )A .50mB .100mC .160mD .200m【答案】C5. (2011河北,8,3分)一小球被抛出后,距离地面的高度h (米)和飞行时间t (秒)满足下列函数关系式:61t 5h 2+--=)(,则小球距离地面的最大高度是( ) A .1米B .5米C .6米D .7米 【答案】C二、填空题1. (2011湖南怀化,16,3分)出售某种手工艺品,若每个获利x 元,一天可售出(8-x )个,则当x=________元时,一天出售该种手工艺品的总利润y 最大.【答案】42. (2011江苏扬州,17,3分)如图,已知函数xy 3-=与bx ax y +=2(a>0,b>0)的图象交于点P ,点P 的纵坐标为1,则关于x 的方程bx ax +2x3+=0的解为【答案】-3三、解答题1. (2011山东滨州,25,12分)如图,某广场设计的一建筑物造型的纵截面是抛物线的一部分,抛物线的顶点O 落在水平面上,对称轴是水平线OC 。
九年级数学中考专题复习次函数综合类问题四大类含答案
大类一、一次函数与几何综合班级:__________ 姓名:__________【知识点睛】1.一次函数表达式:y=kx+b(k,b为常数,k≠0)①k是斜率,表示倾斜程度,可以用几何中的坡度(或坡比)来解释.坡面的竖直高度与水平宽度的比叫坡度或坡比,如图所示,AM即为竖直高度, uj7BM即为水平宽度,则=AMkBM,②b是截距,表示直线与y 轴交点的纵坐标.2.设直线l1:y1=k1x+b1,直线l2:y2=k2x+b2,其中k1,k2≠0.①若k1=k2,且b1≠b2,则直线l1∥l2;②若k1·k2=-1,则直线l1⊥l2.3.一次函数与几何综合解题思路从关键点出发,关键点是信息汇聚点,通常是函数图象与几何图形的交点.通过点的坐标和横平竖直的线段长的互相转化将函数特征与几何特征结合起来进行研究,最后利用函数特征或几何特征解决问题.【精讲精练】1.如图,点B,C分别在直线y=2x和y=kx上,点A,D是x轴上的两点,已知四边形ABCD是正方形,则k的值为______.第1题图第2题图第3题图2.如图,直线l1交x轴、y轴于A,B两点,OA=m,OB=n,将△AOB绕点O逆时针旋转90°得到△COD.CD所在直线l2与直线l1交于点E,则l1____l2;若直线l1,l2的斜率分别为k1,k2,则k1·k2=_________.3.如图,直线483y x=-+交x轴、y轴于A,B两点,线段AB的垂直平分线MAB交x 轴于点C ,交AB 于点D ,则点C 的坐标为____________.4. 如图,在平面直角坐标系中,函数y =x 的图象l 是第一、三象限的角平分线.探索:若点A 的坐标为(3,1),则它关于直线l 的对称点A'的坐标为____________;猜想:若坐标平面内任一点P 的坐标为(m ,n ),则它关于直线l 的对称点P ′的坐标为____________;应用:已知两点B (-2,-5),C (-1,-3),试在直线l 上确定一点Q ,使点Q 到B ,C 两点的距离之和最小,则此时点Q 的坐标为____________. 5. 如图,已知直线l:3y x =-与x 轴交于点A ,与y 轴交于点B ,将△AOB 沿直线l 折叠,点O 落在点C 处,则直线CA 的表达式为__________________.第5题图 第6题图 第7题图6.如图,四边形ABCD 是一张矩形纸片,E 是AB 上的一点,且BE :EA =5:3,EC =把△BCE 沿折痕EC 向上翻折,点B 恰好落在AD 边上的点F 处.若以点A 为原点,以直线AD 为x 轴,以直线BA 为y 轴建立平面直角坐标系,则直线FC 的表达式为__________________.7. 如图,矩形ABCD 的边AB 在x 轴上,AB 的中点与原点O 重合,AB =2,AD =1,过定点Q (0,2)和动点P (a ,0)的直线与矩形ABCD 的边有公共点. (1)a 的取值范围是________________;(2)若设直线PQ 为y =kx +2(k ≠0),则此时k 的取值范围是____________8. 如图,已知正方形ABCD 的顶点A (1,1),B (3,1),直线y =2x +b 交边AB于点E ,交边CD 于点F ,则直线y =2x +b 在y 轴上的截距b的变化范围是____________.第9题图9.12833x=+与直线l2:y=-2x+16相交于点C,直线l1,l2分别交x轴于A,B两点,矩形DEFG的顶点D,E分别在l1,l2上,顶点F,G都在x轴上,且点G与点B重合,那么S矩形DEFG:S△ABC =_________.10.如图,在平面直角坐标系中,点A,B的坐标分别为A(4,0),B(0,-4),P为y轴上B点下方一点,PB=m(m>0),以点P为直角顶点,AP为腰在第四象限内作等腰Rt△APM.(1)求直线AB的解析式;(2)用含m的代数式表示点M的坐标;(3)若直线MB与x轴交于点Q,求点Q的坐标.大类二、一次函数之存在性问题班级:__________ 姓名:__________【知识点睛】存在性问题:通常是在变化的过程中,根据已知条件,探索某种状态是否存在的题目,主要考查运动的结果.一次函数背景下解决存在性问题的思考方向: 1. 把函数信息(坐标或表达式)转化为几何信息; 2. 分析特殊状态的形成因素,画出符合题意的图形;3. 结合图形(基本图形和特殊状态下的图形相结合)的几何特征建立等式来解决问题.【精讲精练】1. 如图,直线y =x 轴、y 轴分别交于点A ,点B ,已知点P 是第一象限内的点,由点P ,O ,B 组成了一个含60°角的直角三角形,则点P 的坐标为_____________.2. 如图,直线y =kx -4与x 轴、y 轴分别交于B ,C 两点,且43OC OB =. (1)求点B 的坐标和k 的值. (2)若点A 是第一象限内直线y =kx -4上的一个动点,则当点A 运动到什么位置时,△AOB 的面积是6(3)在(2)成立的情况下,x 轴上是否存在一点P ,使△POA 是等腰三角形若存在,求出点P 的坐标;若不存在,请说明理由.3. 如图,在平面直角坐标系中,直角梯形OABC 的边OC ,OA 分别与x 轴、y轴重合,AB∥OC,∠AOC=90°,∠BCO=45°,BC=,点C的坐标为(-9,0).(1)求点B的坐标.(2)若直线BD交y轴于点D,且OD=3,求直线BD 的表达式.(3)若点P是(2)中直线BD上的一个动点,是否存在点P,使以O,D,P为顶点的三角形是等腰三角形若存在,求出点P的坐标;若不存在,请说明理由.4.5.如图,直线122y x=+与x轴、y轴分别交于A,B两点,点C的坐标为(-3,0),P (x ,y )是直线122y x =+上的一个动点 (点P 不与点A 重合).(1)在点P 的运动过程中,试写出△OPC 的面积S 与x 之间的函数关系式.(2)当点P 运动到什么位置时,△OPC 的面积为278求出此时点P 的坐标.(3)过P 作AB 的垂线与x 轴、y 轴分别交于E ,F 两点,是否存在这样的点P ,使△EOF ≌△BOA 若存在,求出点P 的坐标;若不存在,请说明理由.大类三、一次函数之动点问题班级:__________ 姓名:__________【知识点睛】动点问题的特征是速度已知,主要考查运动的过程.1.一次函数背景下研究动点问题的思考方向:①把函数信息(坐标或表达式)转化为基本图形的信息;②分析运动过程,注意状态转折,确定对应的时间范围;③画出符合题意的图形,研究几何特征,设计解决方案.2.解决具体问题时会涉及线段长的表达,需要注意两点:①路程即线段长,可根据s=vt直接表达已走路程或未走路程;②根据研究几何特征需求进行表达,既要利用动点的运动情况,又要结合基本图形信息.【精讲精练】1.如图,在平面直角坐标系中,O为坐标原点,直线334y x=-+与x轴、y轴分别交于A,B两点.点P从点A出发,以每秒1个单位的速度沿射线AO匀速运动,设点P的运动时间为t秒.(1)求OA,OB的长.(2)过点P与直线AB垂直的直线与y轴交于点E,在点P的运动过程中,是否存在这样的点P,使△EOP≌△AOB若存在,请求出t的值;若不存在,请说明理由.3.如图,在直角梯形COAB中,OC∥AB,以O为原点建立平面直角坐标系,A,B,C三点的坐标分别为A(8,0),B(8,11),C(0,5),点D为线段BC的中点.动点P从点O出发,以每秒1个单位的速度,沿折线OA—AB—BD的路线运动,至点D停止,设运动时间为t秒.(1)求直线BC的解析式.(2)若动点P在线段OA上运动,当t为何值时,四边形OPDC的面积是梯形COAB面积的1 4(3)在动点P的运动过程中,设△OPD的面积为S,求S与t之间的函数关系式,并写出自变量t4.如图,直线y=+与x轴交于点A,与直线y x=交于点P.(1)求点P的坐标.(2)求△OPA的面积.(3)动点E从原点O出发,以每秒1个单位的速度沿OA方向向终点A运动,过点E作EF⊥x轴交线段OP或线段PA于点F,FB⊥y轴于点B.设运动时间为t秒,矩形OEFB与△OPA重叠部分的面积为S,求S与t之间的函数关系式.5.如图,直线l的解析式为y=-x+4,它与x轴、y轴分别交于A,B两点,平行于直线l的直线m从原点O出发,沿x轴的正方向以每秒1个单位长度的速度运动,它与x轴、y轴分别交于M,N两点,设运动时间为t秒(0< t <4).(1)求A,B两点的坐标;(2)用含t的代数式表示△MON的面积S1;(3)以MN为对角线作矩形OMPN,记△MPN和△OAB重叠部分的面积为S2,试探究S2与t之间的函数关系式.大类四、一次函数之面积问题班级:_________ 姓名:__________【知识点睛】1. 坐标系中处理面积问题,要寻找并利用横平竖直的线,通常有以下三种思路: ①公式法(规则图形);②割补法(分割求和、补形作差); ③转化法(例:同底等高). 2. 坐标系中面积问题的处理方法举例割补求面积(铅垂法):12△APB S ah = 12△APB S ah= ②转化求面积:l 1l 2如图,满足S △ABP =S △ABC 的点P 都在直线l 1,l 2上.二、 精讲精练1. 如右图,在平面直角坐标系中,已知A (-1,3),B (3,-2),则△AOB 的面积为___________.2. 如图,直线y =-x +4与x 轴、y 轴分别交于点A ,点B ,点P 的坐标为(-2,2),则S △PAB =___________.第2题图第3题图3.如图,直线AB:y=x+1与x轴、y轴分别交于点A,点B,直线CD:y=kx-2与x轴、y轴分别交于点C,点D,直线AB与直线CD交于点P.若S△APD=,则k=__________.4.如图,直线112y x=+经过点A(1,m),B(4,n),点C的坐标为(2,5),求△ABC的面积.5.如图,在平面直角坐标系中,已知A(2,4),B(6,6),C(8,2),求四边形OABC的面积.6.如图,直线112y x=-+与x轴、y轴分别交于A,B两点,C(1,2),坐标轴上是否存在点P,使S△ABP=S△ABC若存在,求出点P的坐标;若不存在,请说明理由.7.如图,已知直线m的解析式为112y x=-+,与x轴、y轴分别交于A,B两点,以线段AB为直角边在第一象限内作等腰Rt△ABC,且∠BAC=90°,点P为直线x=1上的动点,且△ABP的面积与△ABC的面积相等.(1)求△ABC的面积;(2)求点P的坐标.8.如图,直线PA:y=x+2与x轴、y轴分别交于A,Q两点,直线PB:y=-2x+8与x轴交于点B.(1)求四边形PQOB的面积.(2)直线PA上是否存在点M,使得△PBM的面积等于四边形PQOB的面积若存在,求出点M的坐标;若不存在,请说明理由.【分类一参考答案】二、精讲精练1.232.⊥,-1 3.7(0)3-, 4.(1,3);(n,m);1313()55--,5.y=+.4163y x=-+ 7.(1)-2≤a≤2;(2)k≥1或k≤-18.-3≤b≤-1 9.8:9 10.(1)y=x-4;(2)M(m+4,-m-8);(3)Q(-4,0)【分类二参考答案】 二、精讲精练1.333(4444或(或,或(,2.(1)B (3,0),43k =(2)A (6,4)(3)123413(120)03P P P P 或(-)或,或(,) 3.(1)B (-3,6) (2)y =-x +3(3)123433(30)(22P P P P +,或或或(,) 4.1261224()(46)5555--,或(,)或,5.(1)33(4)433(4)4x x S x x ⎧--<-⎪⎪=⎨⎪+>-⎪⎩(2)1217919()2424P P --,或(,) (3)12412124()5555P P ,或(-,) 【分类三参考答案】1.(1)OA =4,OB =3; (2)t =1或t =7 2.(1)y =+(2)22(04)2(48)2t t S t <⎪=⎨⎪-+<<⎪⎩≤(3)123(08)(08)(0M M M -或或,4(0M 或3.(1)354y x =+(2)32t =(3)4(08)248(819)248(1924)tt S t t t t <⎧⎪=-+<⎨⎪-+<<⎩≤≤4.(1)(3P (2) (3)22(03)6(34)2tt S t <⎪=⎨⎪-+-<<⎪⎩≤5.(1)(40)(04)A B ,,, (2)2112S t =.(3)2221(02)2388(24)2t t S t t t ⎧<⎪⎪=⎨⎪-+-<<⎪⎩≤【分类四参考答案】二、精讲精练1.72 2.8 3.52 4.925.24 6.123451(0)(50)(0)(10)22P P P P --,或,或,或, 7.(1)52;(2)12(13)(12)P P -,或, 8.(1)10;(2)12162242()()3333M M -,或,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013中考数学50个知识点专练46 函数型综合问题
一、选择题
1.(2010·绥化)已知函数y =1
x 的图象如图所示,当x ≥-1时,y 的取值范围是( )
A .y <-1
B .y ≤-1
C .y ≤-1或y >0
D .y <-1或y ≥0
2.(2010·贵阳)一次函数y =kx +b 的图象如图所示,当y <0时,x 的取值范围是( )
A .x <0
B .x >0
C .x <2
D .x >2
3.(2010·黔东南州)在直角坐标系中,若解析式为y =2x 2-4x +5 的图象沿着x 轴向左平移两个单位,再沿着y 轴向下平移一个单位,此时图象的解析式为( )
A .y =2(x -3)2+4
B .y =2(x -3)2+2
C .y =2(x +1)2+4
D .y =2(x +1)2+2
4.(2010·孝感)双曲线y =4x 与y =2
x 在第一象限内的图象如图所示,作一条平行于y 轴的
直线分别交双曲线于A 、B 两点,连接OA 、OB ,则△AOB 的面积为( )
A .1
B .2
C .3
D .4
5.(2011·聊城)某公园草坪的防护栏是由100段形状相同的抛物线组成的.为了牢固起见,每段护栏需要间距0.4m 加设一根不锈钢的支柱,防护栏的最高点距底部0.5 m(如图),则这条防护栏需要不锈钢支柱的总长度至少为( )
A .50 m
B .100 m
C .160 m
D .200 m
6.(2010·自贡)如图,点Q 在直线y =-x 上运动,点A 的坐标为(1,0),当线段AQ 最短时,点Q 的坐标为____________.
7.(2011·怀化)出售某种手工艺品,若每个获利x 元,一天可售出(8-x )个,则当x =________元时,一天出售该种手工艺品的总利润y 最大.
8.(2010·武汉)如图,直线y 1=kx +b 过点A (0,2),且与直线y 2=mx 交于点P (1,m ),则不等式组mx >kx +b >mx -2的解集是______________.
9.(2010·莆田)某同学利用描点法画二次函数y =ax 2+bx +c (a ≠0)的图象时,列出的部分数据如下表:
经检查,发现表格中恰好有一组数据计算错误,请你根据上述信息写出该二次函数的解析式:____________.
10.(2010·昆明)如图,点A (x 1,y 1)、B (x 2,y 2)都在双曲线y =k
x (x >0)上,且x 2-x 1=4,
y 1-y 2=2.分别过点A 、B 向x 轴、y 轴作垂线段,垂足分别为C 、D 、E 、F ,AC 与BF 相交于G 点,四边形FOCG 的面积为2,五边形AEODB 的面积为14,那么双曲线的解析式为_______________.
11.(2011·滨州)如图,某广场设计的一建筑物造型的纵截面是抛物线的一部分,抛物线的顶点O 落在水平面上,对称轴是水平线OC .点A 、B 在抛物线造型上,且点A 到水平面的距离AC =4米,点B 到水平面距离为2米,OC =8米.
(1)请建立适当的直角坐标系,求抛物线的函数解析式;
(2)为了安全美观,现需在水平线OC 上找一点P ,用质地、规格已确定的圆形钢管制作两根支柱PA 、PB 对抛物线造型进行支撑加固,那么怎样才能找到两根支柱用料最省(支柱与地面、造型对接方式的用料多少问题暂不考虑)时的点P ?(无需证明)
(3)为了施工方便,现需计算出点O 、P 之间的距离,那么两根支柱用料最省时,点O 、P 之间的距离是多少?(请写出求解过程)
12.(2011·河南)如图,一次函数y 1=k 1x +2与反比例函数y 2=k 2
x 的图象交于点A (4,m )
和B (-8,-2),与y 轴交于点C .
(1)k 1=______,k 2=________;
(2)根据函数图象可知,当y 1>y 2时,x 的取值范围是______________;
(3)过点A 作AD ⊥x 轴于点D ,点P 是反比例函数在第一象限的图象上一点.设直线OP 与线段AD 交于点E ,当S 四边形ODAC ∶S △ODE =3∶1时,求点P 的坐标.
13.(2011·重庆)某企业为重庆计算机产业基地提供电脑配件.受美元走低的影响,从去年1至9月,该配件的原材料价格一路攀升,每件配件的原材料价格y1(元)与月份x(1≤x≤
随着国家调控措施的出台,原材料价格的涨势趋缓,10至12月每件配件的原材料价格y2(元)与月份x(10≤x≤12,且x取整数)之间存在如图所示的变化趋势:
(1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识,直接写出y1与x之间的函数关系式;根据如图所示的变化趋势,直接写出y2与x之间满足的一次函数关系式;
(2)若去年该配件每件的售价为1000元,生产每件配件的人力成本为50元,其它成本30元,该配件在1至9月的销售量p1(万件)与月份x满足关系式p1=0.1x+1.1(1≤x≤9,且x取整数),10至12月的销售量p2(万件)与月份x满足函数关系式p2=-0.1x+2.9(10≤x≤12,且x取整数).求去年哪个月销售该配件的利润最大?并求出这个最大利润;
(3)今年1至5月,每件配件的原材料价格均比去年12月上涨60元,人力成本比去年增加20%,其它成本没有变化,该企业将每件配件的售价在去年的基础上提高a%,与此同时每月销售量均在去年12月的基础上减少0.1 a%.这样,在保证每月上万件配件销量的前提下,完成了1至5月的总利润1700万元的任务,请你参考以下数据,估算出a的整数值.(参考数据:992=9801,982=9604,972=9409,962=9216,952=9025)。