【精品】2021年全国高中数学分章节训练试题含答案:10三角函数的图象和性质

合集下载

三角函数的图象和性质练习题及答案

三角函数的图象和性质练习题及答案

1y三角函数图像与性质练习题(一)一.选择题 〔每题5分,共100分〕1.将函数sin (0)y x ωω=>的图象按向量,06a π⎛⎫=-⎪⎝⎭平移,平移后的图象如下图,那么平移后的图象所对应函数的解析式是( ) A.sin()6y x π=+B.sin()6y x π=-C.sin(2)3y x π=+D.sin(2)3y x π=- 2. 为了得到函数R x x y ∈+=),63sin(2π的图像,只需把函数R x x y ∈=,sin 2的图像上所有的点( )A.向左平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍〔纵坐标不变〕B.向右平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍〔纵坐标不变〕C.向左平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍〔纵坐标不变〕 D.向右平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍〔纵坐标不变〕3. 函数()2sin (0)f x x ωω=>在区间,34ππ⎡⎤-⎢⎥⎣⎦上的最小值是2-,那么ω的最小值等于( )A.23B.32C.2D.3 4.函数y =sin(2x +3π)的图象可由函数y =sin2x 的图象经过平移而得到,这一平移过程可以是( ) A.向左平移6πB.向右平移6πC.向左平移12π D.向右平移12π 5. 要得到函数y =sin (2x -)6π的图像,只需将函数y =cos 2x 的图像( )A.向右平移6π个单位 B.向右平移3π个单位 C. 向左平移6π个单位 D. 向左平移3π个单位 6. 为了得到函数y =sin (2x-4π)+1的图象,只需将函数y =sin 2x 的图象〔〕平移得到A.按向量a=(-8π,1)B. 按向量a=(8π,1)C.按向量a=(-4π,1)D. 按向量a=(4π,1) 7.假设函数()sin ()f x x ωϕ=+的图象如图,那么ωϕ和的取值是( )A.1ω=,3πϕ= B.1ω=,3πϕ=-C.12ω=,6πϕ= D.12ω=,6πϕ=- 8. 函数πsin 23y x ⎛⎫=-⎪⎝⎭在区间ππ2⎡⎤-⎢⎥⎣⎦,的简图是( )9. 函数sin(2)cos(2)63y x x ππ=+++的最小正周期和最大值分别为( ) A.,1π B.,2π C.2,1π D. 2,2π 10. 函数()sin()(0)3f x x πϖϖ=+>的最小正周期为π,那么该函数的图象( )A.关于点(,0)3π对称 B.关于直线4x π=对称 C.关于点(,0)4π对称 D.关于直线3x π=对称11.函数)20,0,)(sin(πϕωϕω<≤>∈+=R x x y 的局部图象如图,那么( ) A.4,2πϕπω==B.6,3πϕπω==C.4,4πϕπω== D.45,4πϕπω==12. 要得到函数sin y x =的图象,只需将函数cos y x π⎛⎫=-⎪3⎝⎭的图象( ) yx11-2π- 3π- O6ππyx11- 2π- 3π- O 6ππ yx1 1-2π-3πO 6π-πy xπ2π- 6π-1O 1-3π A.B. C. D.A.向右平移π6个单位 B.向右平移π3个单位 C.向左平移π3个单位 D.向左平移π6个单位 13. 设函数()x f ()φω+=x sin ⎪⎭⎫ ⎝⎛<<>20,0πφω.假设将()x f 的图象沿x 轴向右平移61个单位长度,得到的图象经过坐标原点;假设将()x f 的图象上所有的点的横坐标缩短到原来的21倍〔纵坐标不变〕, 得到的图象经过点⎪⎭⎫⎝⎛1,61. 那么( ) A.6,πφπω== B.3,2πφπω== C.8,43πφπω== D. 适合条件的φω,不存在 14. 设函数)()0(1)6sin()(x f x x f '>-+=的导数ωπω的最大值为3,那么f (x )的图象的一条对称轴的方程是( ) A.9π=x B.6π=x C.3π=x D.2π=x三角函数图像与性质练习题答案三角函数的图象和性质练习题(二)一、选择题1.函数sin(2)(0)y x ϕϕπ=+≤≤是R 上的偶函数,那么ϕ的值是〔 〕A.0B.4πC.2πD.π2. 将函数x y 4sin =的图象向左平移12π个单位,得到)4sin(ϕ+=x y 的图象,那么ϕ等于A .12π-B .3π-C .3πD .12π 3.假设,24παπ<<那么〔 〕 (45<a<90)A .αααtan cos sin >>B .αααsin tan cos >>C .αααcos tan sin >>D .αααcos sin tan >>1 2 3 4 5 6 7 8 9 10 C C B A B B C A A A 11 12 13 14 CAAA4.函数23cos()56y x π=-的最小正周期是〔 〕A .52πB .25π C .π2 D .π5 5.在函数x y sin =、x y sin =、2sin(2)3y x π=+、2cos(2)3y x π=+中, 最小正周期为π的函数的个数为〔〕. A .1个B .2个 C .3个 D .4个6.x x x f 32cos 32sin)(+=的图象中相邻的两条对称轴间距离为 〔 〕 A .3π B .π34 C .π23 D .π677. 函数)252sin(π+=x y 的一条对称轴方程〔 〕A .2π-=xB .4π-=xC .8π=xD .=x π458. 使x y ωsin =〔ω>0〕在区间[0,1]至少出现2次最大值,那么ω的最小值为〔 〕 A .π25B .π45C .πD .π23二、填空题1.关于x 的函数()cos()f x x α=+有以下命题: ①对任意α,()f x 都是非奇非偶函数; ②不存在α,使()f x 既是奇函数,又是偶函数;③存在α,使()f x 是偶函数;④对任意α,()f x 都不是奇函数.其中一个假命题的序号是,因为当α=时,该命题的结论不成立.2.函数xxy cos 2cos 2-+=的最大值为________.3.假设函数()2sin(2)3f x kx π=+的最小正周期T 满足12T <<,那么自然数k 的值为______. 4.满足23sin =x 的x 的集合为_________________________________. 5.假设)10(sin 2)(<<=ϖϖx x f 在区间[0,]3π上的最大值是2,那么ϖ=________.三、解答题1.比拟大小〔1〕00150sin ,110sin ;〔2〕00200tan ,220tan 2. (1) 求函数1sin 1log 2-=xy 的定义域. 〔2〕设()sin(cos ),(0)f x x x π=≤≤,求()f x 的最大值与最小值. 3.)33sin(32)(πω+=x x f 〔ω>0〕〔1〕假设f (x +θ)是周期为2π的偶函数,求ω及θ值; ω= 1/3 ,θ= . 〔2〕f (x )在〔0,3π〕上是增函数,求ω最大值 "三角函数的图象和性质练习题二"参考答案一、选择题 1.C [解析]:当2πϕ=时,sin(2)cos 22y x x π=+=,而cos 2y x =是偶函数2.C [解析]:函数x y 4sin =的图象向左平移12π个单位,得到)12(4sin π+=x y 的图象,故3πϕ=3.D [解析]:tan 1,cos sin 1,ααα><<αααcos sin tan >>4.D [解析]:2525T ππ== 5.C [解析]:由x y sin =的图象知,它是非周期函数6.C [解析]: ∵x x x f 32cos 32sin)(+==)432sin(2π+x∴图象的对称轴为πππk x +=+2432,即)(2383Z k k x ∈+=ππ故相邻的两条对称轴间距离为π237.A [解析]:当2π-=x 时 )252sin(π+=x y 取得最小值-1,应选A8.A [解析]:要使x y ωsin =〔ω>0〕在区间[0,1]至少出现2次最大值 只需要最小正周期⋅45ωπ2≤1,故πω25≥ 二、填空题1、①0[解析]:此时()cos f x x =为偶函数2、3[解析]:2cos 4cos 2412cos 2cos 2cos x x y x x x++-===----3、2,3或[解析]:,12,,2,32T k k N k kkππππ=<<<<∈⇒=而或4、|2,2,33x x k k k Z ππππ⎧⎫=++∈⎨⎬⎩⎭或 5、34[解析]:[0,],0,0,3333x x x ππωππω∈≤≤≤≤< 三、解答题1.解:〔1〕0sin110sin 70,sin150sin 30,sin 70sin 30,sin110sin150==>∴>而 〔2〕0tan 220tan 40,tan 200tan 20,tan 40tan 20,tan 220tan 200==>∴>而 2.解:〔1〕221111log 10,log 1,2,0sin sin sin sin 2x x x x -≥≥≥<≤ 22,6k x k πππ<≤+或522,6k x k k Z ππππ+≤<+∈5(2,2][2,2),()66k k k k k Z ππππππ++∈为所求.〔2〕0,1cos 1x x π≤≤-≤≤当时,而[11]-,是()sin f t t =的递增区间 当cos 1x =-时,min ()sin(1)sin1f x =-=-; 当cos 1x =时,max ()sin1f x =. 4.解:(1) 因为f (x +θ)=)333sin(32πθω++x又f (x +θ)是周期为2π的偶函数, 故∈+==k k 6,31ππθω Z(2) 因为f (x )在〔0,3π〕上是增函数,故ω最大值为61三角函数的图象专项练习一.选择题1.为了得到函数)62sin(π-=x y 的图象,可以将函数y=cos2x 的图象 ( )A .向右平移6π个单位长度B. 向右平移3π个单位长度 C. 向左平移6π个单位长度 D. 向左平移3π个单位长度2.以下函数中振幅为2,周期为π,初相为6π的函数为 ()A .y=2sin(2x+3π) B. y=2sin(2x+6π) C .y=2sin(21x+3π) D. y=2sin(21x+6π) 3.三角方程2sin(2π-x)=1的解集为 ( ) A .{x│x=2kπ+3π,k∈Z}B .{x│x=2kπ+35π,k∈Z}.C .{x│x=2kπ±3π,k∈Z}D .{x│x=kπ+(-1)K ,k∈Z}.4.假设函数f(x)=sin(ωx+ϕ)的图象〔局部〕如下图,那么ω,ϕ的取值是 ( )A .3,1πϕω==B.3,1πϕω-==C .6,21πϕω==D.6,21πϕω-==5.函数y=tan(2x+φ)的图象过点(0,12π),那么φ的值可以是 ( ) A. -6π B. 6π C.12π- D.12π6.设函数y=2sin(2x+Φ)的图象为C ,那么以下判断不正确的选项是〔 〕A .过点(,2)3π的C 唯一 B.过点(,0)6π-的C 不唯一C .C 在长度为2π的闭区间上至多有2个最高点D .C 在长度为π的闭区间上一定有一个最高点,一个最低点 7.方程)4cos(lg π-=x x 的解的个数为〔 〕A .0B .无数个C .不超过3D .大于38.假设函数y=f(x)的图像上每点的纵坐标保持不变,横坐标伸长到原2倍,然后再将整个图像沿x 轴向左平移2π个单位,沿y 轴向下平移1个单位,得到函数1sin 2y x =的图像,那么y=f(x)是 ( )A .1sin(2)122y x π=++B.1sin(2)122y x π=-+ C .1sin(2)124y x π=-+ D.11sin()1224y x π=++9.()sin()2f x x π=+,()cos()2g x x π=-,那么f(x)的图像 ( )A .与g(x)的图像一样 B.与g(x)的图像关于y 轴对称C .向左平移2π个单位,得g(x)的图像 D.向右平移2π个单位,得g(x)的图像 10.函数f(x)=sin(2x+2π)图像中一条对称轴方程不可能为( )A.x=4πB. x=2πC. x=πD. x=23π11.函数y=2与y=2sinx ,x ∈3[,]22ππ-所围成的图形的面积为 ( ) A .πB.2πC.3πD.4π12.设y=f(t)是某港口水的深度y 〔米〕关于时间t 〔时〕的函数,其中240≤≤t .下表是该港口某一天从0时至24时记录的时间t 与水深y 的关系:经长期观察,函数y=f(t)的图象可以近似地看成函数y=k+Asina(ωt+ϕ)的图象.下面的函数中,最能近似表示表中数据间对应关系的函数是( )A.]24,0[,6sin312∈+=t t y πB.]24,0[),6sin(312∈++=t t y ππC.]24,0[,12sin 312∈+=t t y πD.]24,0[),212sin(312t t y ππ++=二.填空题 13.函数y=5sin(3x −2π)的频率是______________。

高三数学三角函数的图象与性质试题答案及解析

高三数学三角函数的图象与性质试题答案及解析

高三数学三角函数的图象与性质试题答案及解析1.关于函数f(x)=sinx(sinx-cosx)的叙述正确的是A.f(x)的最小正周期为2πB.f(x)在内单调递增C.f(x)的图像关于对称D.f(x)的图像关于对称【答案】D【解析】f(x)=sin2x-sinxcosx=(1-cos2x-sin2x)=-sin(2x+)于是,f(x)的最小正周期为π,A错误;由2kπ+<2x+<2kπ+(k∈Z)解得kπ+<x<kπ+(k∈Z),可知在上,函数不是单调函数,B错误;当时,函数取得最小值,根据正弦型函数图象的特征,可知C错误,D正确.【考点】三角函数的化简,正弦型函数的图象与性质2.方程在区间上的所有解的和等于.【答案】【解析】原方程可变形为,即,,由于,所以,,所以.【考点】解三角方程.3.已知函数的图像关于直线对称,且图像上相邻两个最高点的距离为.(1)求和的值;(2)若,求的值.【答案】(1);(2)【解析】(1)由函数图像上相邻两个最高点的距离为求出周期,再利用公式求出的值;由函数的图像关于直线对称,可得,然后结合,求出的值.(2)由(1)知,由结合利用同角三角函数的基本关系可求得的值,因为可由两角和与差的三角函数公式求出从而用诱导公式求得的值.解:(1)因的图象上相邻两个最高点的距离为,所以的最小正周期,从而.又因的图象关于直线对称,所以因得所以.(2)由(1)得所以.由得所以因此=【考点】1、诱导公式;2、同角三角函数的基本关系;3、两角和与差的三角函数公式;4、三角函数的图象和性质.4.若函数在区间是减函数,则的取值范围是 .【答案】.【解析】时,是减函数,又,∴由得在上恒成立,.【考点】1.三角函数的单调性;2.导数的应用.5.若,则()A.B.C.D.【答案】A【解析】函数在区间上单调递减,由于,,,即,而,而,由于,,即,因此有,故选A.【考点】1.三角函数单调性;2.比较大小6.在平面直角坐标系中,点,,其中.(1)当时,求向量的坐标;(2)当时,求的最大值.【答案】(1);(2)取到最大值.【解析】(1)求向量的坐标,由向量坐标的定义可知,,即可写出,再把代入求出值即可;(2)求的最大值,先求向量的最大值,由于是三角函数,可利用三角函数进行恒等变化,把它变化为一个角的一个三角函数,利用三角函数的性质,即可求出的最大值,从而可得的最大值.(1)由题意,得, 2分当时,, 4分,所以. 6分(2)因为,所以 7分8分9分. 10分因为,所以. 11分所以当时,取到最大值, 12分即当时,取到最大值. 13分【考点】向量的坐标,向量的模,三角恒等变化.7.将函数的图像向右平移个单位长度后,所得的图像与原图像重合,则的最小值等于.【答案】6【解析】函数的图像向右平移个单位长度后得函数式为,它和相同,则,,最小值为6.【考点】三角函数图象平移,诱导公式.8.已知函数f(x)=3cos(2x-)在[0,]上的最大值为M,最小值为m,则M+m等于()A.0B.3+C.3-D.【答案】C【解析】由x∈[0,]得2x-∈[-,],故M=f()=3cos0=3,m=f()=3cos=-,故M+m=3-.9.若函数f(x)=sin(x+φ)(0<φ<π)是偶函数,则cos =________.【答案】【解析】因为函数f(x)=sin(x+φ)(0<φ<π)是偶函数,所以φ=,故cos =cos =.10.函数的周期是 .【答案】2【解析】函数的周期为.【考点】三角函数的周期.11.已知函数的最小正周期是,则.【答案】1【解析】要把函数式化简为或的形式,本题中,因此其最小正周期为,.【考点】三角函数的周期.12.若函数()的图象关于直线对称,则θ=.【答案】【解析】研究三角函数的对称性,可从图像理解.因为三角函数的对称轴经过最值点,所以当时,取最值,即,又所以【考点】三角函数性质:对称轴.13.设平面向量,,函数。

2021版新高考数学三角函数图象与性质含

2021版新高考数学三角函数图象与性质含

授课资料范本2021版新高考数学:三角函数的图象与性质含答案编辑: __________________时间: __________________第三节三角函数的图象与性质[考点要求 ] 1.能画出 y=sin x,y=cos x,y= tan x 的图象,认识三角函数的周期性.2.理解正弦函数、余弦函数在[0,2π]上的性质 (如单调性、最大值和最小值、π π图象与 x 轴的交点等 ),理解正切函数在区间-2,2内的单调性.(对应学生用书第70 页)1.用五点法作正弦函数和余弦函数的简图正弦函数 y=sin x, x∈[0 ,2π]图象的五个要点点是: (0,0),π,( π,,123π0),2,- 1 ,(2 π,0).π余弦函数 y=cos x, x∈ [0,2π]图象的五个要点点是: (0,1),2,0 , ( π,3π-1), 2 ,0,(2π,1).2.正弦函数、余弦函数、正切函数的图象与性质函数y=sin x y=cos x y= tan x 图象定义域R值域[-1,1]递加区间:ππ,+, k∈2kπ-22kπ2单调性Z ,递减区间:2kπ+π2k+3π,,k∈2π2ZR[-1,1]递加区间: [2kπ-π,2kπ],k∈Z ,递减区间: [2kπ, 2kπ+π],k∈Zπx x≠ k+π2,k∈ZR递加区间ππ,+,kkπ-2kπ2∈Z奇偶性奇函数对称中心 (kπ, 0),k∈Z 对称性π对称轴 x= kπ+2(k∈Z)周期性2π[ 常用结论 ]偶函数奇函数对称中心kππ对称中心2,0,k kπ+2, 0,k∈Z∈Z对称轴 x= kπ(k∈ Z)2ππ1.正弦曲线、余弦曲线相邻两对称中心、相邻两对称轴之间的距离是半个1周期,相邻的对称中心与对称轴之间的距离是4个周期.2.正切曲线相邻两对称中心之间的距离是半个周期.一、思虑辨析 (正确的打“√〞,错误的打“×〞 )(1)函数 y = sin x 的图象关于点 (k π,0)(k ∈ Z)中心对称. ( )(2)正切函数 y =tan x 在定义域内是增函数. ()(3) y = k sin x +1,x ∈R ,那么 y 的最大值为 k + 1.( )(4)y = sin |x|与 y =|sin x|都是周期函数. () [答案] (1)√ (2)× (3)× (4)×二、教材改编1.函数 y =tan 2x 的定义域是 ( )A . xπx ≠ k +π ,k ∈Z4 B . x k π πx ≠ + ,k ∈Z2 8 C . xπ x ≠ k +π ,k ∈Z8 D . x k π πx ≠ + ,k ∈Z2 4π k π πD [由 2x ≠k π+2, k ∈ Z ,得 x ≠2 +4,k ∈ Z ,k π π∴ y = tan 2x 的定义域为 x x ≠2 +4,k ∈Z .]π2.函数 f(x)=cos (2x +4)的最小正周期是 ________.2ππ [T = 2 =π.]. =πsin 2x - 的单调减区间是 ________.3 y 43π 7π π π π π, ∈ 得 2x2k8 8 (k Z) [ 2 2k 4 2 k Z3π7π8 +k π≤ x ≤ 8 +k π, k ∈Z .]ππ4.y =3sin (2x - 6)在区间 [0,2]上的值域是 ________.3 π π π 5π [-2,3] [ 当 x ∈[0 ,2]时, 2x -6∈[ -6, 6 ] ,π 1,1],故 3sin (2x - π - 3,3],∈ sin (2x -6)∈ [-26) [2π3即 y =3sin (2x -6)的值域为 [-2,3].](对应学生用书第 71 页)考点 1三角函数的定义域和值域1.三角函数定义域的求法求三角函数定义域实际上是构造简单的三角不等式(组),常借助三角函数线或三角函数图象来求解.2.求三角函数最值或值域的常用方法(1)直接法:直接利用sin x 和 cos x 的值域求解.(2)化一法:把所给三角函数化为y=A sin (ωx+φ)+k 的形式,由正弦函数单调性写出函数的值域.(3)换元法:把 sin x, cos x, sin x cos x 或 sin x± cos x 换成 t,转变成二次函数求解.π1.函数 f(x)=- 2tan (2x+6)的定义域是()πA . x|x ≠6πB . x|x ≠- 12π C . x|x ≠ k +π 〔k ∈ Z 〕6k π πD . x|x ≠2 +6〔k ∈ Z 〕ππD [由正切函数的定义域 ,得 2x +6≠k π+2,k ∈ Z ,k π π即 x ≠ 2 +6(k ∈ Z),应选 D.]3π2.(20xx ·全国卷 Ⅰ)函数 f(x)= sin (2x + 2 )-3cos x 的最小值为 ________.3π - 4 [f(x)=sin (2x + 2 )-3cos x =- cos 2x - 3cos x =- 2cos 2x -3cosx + 1,令 cos x =t ,那么 t ∈[- 1, 1].23217 f(t)=- 2t -3t + 1=- 2(t + 4) + 8 ,易知当 t =1 时,f(t)min =- 2×12- 3× 1+ 1=- 4.故 f(x)的最小值为- 4.].函数ππ∈ - ,a],假设 f(x)的值域是 [ -1,1],3f(x)=sin (x +6),其中 x [ 3 2那么实数 a 的取值范围是 ________.ππ[ 3, π][ ∵x ∈[- 3, a] ,π π π ∴ x + 6∈ [ -6,a +6],π π π1∵当 x +6∈[ -6,2]时, f(x)的值域为 [-2,1] ,ππ 7π π ∴由函数的图象 (图略 )知2≤a +6≤ 6 ,∴3≤a ≤π.]4.函数 y =sin x -cos x +sin x cos x 的值域为 ________.12= sin 2x +cos 2x - 2sinx · cos x , sin x [-2- 2,1][ 设 t =sin x -cos x ,那么 t=1- t2,且- 2≤ t ≤ 2.cos x 2t211∴ y=-2+t+2=-2(t-1)2+ 1, t∈[ -2, 2].当 t= 1 时,y max= 1;1当 t=-2时,y min=-2- 2.1∴函数的值域为 [-2-2,1].]求解三角函数的值域(最值 )常有的几各种类(1)形如 y= a sin x+b cos x+c 的三角函数化为y= A sin (ωx+φ)+ c 的形式,再求值域 (最值 ).(2)形如 y= a sin2x+ b sinx+c 的三角函数,可先设 sin x= t,化为关于 t 的二次函数求值域 (最值 ).(3)形如 y= a sin3x+ b sin2x+c sinx+ d,近似于 (2)进行换元,尔后用导数法求最值.考点 2三角函数的单调性(1)形如 y= A sin (ωx+φ)的函数的单调性问题,一般是将ωx+φ看作一个整体,再结合图象利用y=sin x 的单调性求解; (2)若是函数中自变量的系数为负值,要依照引诱公式把自变量系数化为正当,再确定其单调性.求三角函数的单调性(1)函数 f(x)=tan (2x-π3)的单调递增区间是 ()kπ π kπ 5πA.[ 2-12,2+12](k∈Z)kπ π kπ 5πB.( 2-12,2+12)(k∈ Z)π2πC. (kπ+6, kπ+3 )(k∈Z)π5πD. [kπ-12,kπ+12](k∈Z)13π(2)(20xx 大·连模拟 )函数 y=2sin x+2 cos x(x∈[0,2]) 的单调递加区间是________.ππππ(1)B(2)[0 ,6][(1) 由 kπ-2< 2x-3<kπ+2(k∈ Z),kπ πkπ 5π得2-12<x<2+12(k∈Z),πkππkπ 5π所以函数 f(x)=tan (2x-3)的单调递加区间为 ( 2-12,2+12)(k∈ Z),应选B.13π(2)∵y=2sin x+2cos x=sin (x+3),πππ由 2kπ-2≤x+3≤2kπ+2(k∈Z),5ππ解得 2kπ-6≤x≤2kπ+6(k∈Z).5ππ∴函数的单调递加区间为[2kπ-6,2kπ+6](k∈ Z),ππ又 x∈[0,2],∴单调递加区间为 [0,6].]本例 (2)在用整体思想求得函数y ππ=sin (x+3)的所有增区间后,采用对 k 赋值的方式,求得 x∈ [0 ,2]上的单调增区间.依照函数的单调性求参数(1) ω>0,函数 f(x)=sinπ πωx, π2+4 在 上单调递减,那么 ω的取值范围是 ()A .(0,2]B . 0,12 1 31 5 C . 2,4D . 2,4 (2)(20xx 全·国卷 Ⅱ )假设 f(x)=cos x - sin x 在 [0,a] 是减函数,那么 a 的最大值是()ππ3πA . 4B .2C . 4D .π由ππ3π 2k π π2k π 5π(1)D (2)C[(1) ≤ωx + ≤2k π+2,得ω +≤ x ≤ω + , k2k π+244ω4ω∈Z ,π π因为 f(x)=sin ωx+ 4 在 2, π上单调递减,2k π π π1ω +≤ ,,所以4ω 2 解得 ω≥ 4k +2 因为 k ∈Z ,ω>0,所以 k =0,2k π 5π5ω≤ 2k +ω + ≥π, .4ω 41 5 1 5所以 2≤ω≤4,即 ω的取值范围为 2,4 .应选 D.π(2)f(x)=cos x -sin x =- 2sin x -4 ,ππππ 3π12/24sin x-ππ4单调递加,- 2sin x-4单调递减,π 3π∴ -4,4是 f(x)在原点周边的单调递减区间,π 3π结合条件得 [0,a]?-4,4,3π3π∴ a≤4,即 a max=4,应选 C.]单调区间求参数范围的 3 种方法求出原函数的相应单调区间,由区间是所求某区间的子集,子集法列不等式 (组)求解由所给区间求出整体角的范围,由该范围是某相应正、余弦函数反子集法的某个单调区间的子集,列不等式 (组)求解由所给区间的两个端点到其相对付称中心的距离不高出14周期列周期性法不等式 (组)求解1.假设函数 f(x)= sin ωx(ω> 0)在区ππ π间[0,3] 上单调递加,在区间 [ 3,2] 上单调递减,那么ω=________.3Tπ4π2π 32[ 由得4=3,∴T=3,∴ω=T=2.]-+π2.函数=sin2x的单调减区间为________.f(x)3π5ππkπ-12,kπ+12 (k∈ Z)[ 由,得函数为 y=- sin (2x-3),欲求函数的π单调减区间,只需求 y= sin (2x-3)的单调增区间即可.πππ由 2kπ-2≤2x-3≤ 2kπ+2,k∈ Z ,π5π得 kπ-12≤x≤kπ+12,k∈Z .π,+5π故所求函数的单调减区间为 kπ-12kπ12 (k∈Z).]考点 3三角函数的周期性、奇偶性、对称性14/24求解三角函数 y=sin (ωx+φ)(ω>0)的周期性、奇偶性、对称性问题,其实质都是依照 y=sin x 的对应性质,利用整体代换的思想求解.三角函数的周期性(1)(20xx 全·国卷 Ⅱ )以下函数中,ππ π 单调递加的是 ()以2为周期且在区间 4,2 A . f(x)= |cos 2x| B . f(x)= |sin 2x|C . f(x)= cos |x|D . f(x)= sin |x|π(2)假设函数 f(x)=2tan (kx + 3)的最小正周期 T 满足 1<T <2,那么自然数 k 的值为________.(1)A (2)2 或 3 [(1) 关于选项 A ,作出 y =|cos 2x|的局部图象 ,如图 1 所π ππ示,那么 f(x)在( 4, 2)上单调递加 ,且最小正周期 T = 2,故 A 正确.π π关于选项 B ,作出 f(x)=|sin 2x|的局部图象 ,如图 2 所示,那么 f(x)在( 4, 2)上π单调递减 ,且最小正周期 T = 2,故 B 不正确.关于选项 C ,∵ f(x)= cos |x|=cosx ,∴最小正周期 T = 2π,故 C 不正确.关于选项 D ,作出 f(x)=sin |x|的局部图象 ,如图 3 所示.显然 f(x) 不是周期函数,故 D 不正确.应选 A.图1图2]图 3ππ(2)由题意得,1<k<2,∴ k<π< 2k,即2<k<π,又 k∈Z,∴ k=2 或 3.]公式莫忘绝对值,对称抓住“心〞与“轴〞(1)公式法求周期2π①正弦型函数 f(x)= A sin (ωx+φ)+B 的周期 T=; |ω|2π②余弦型函数 f(x)= A cos (ωx+φ)+ B 的周期 T=; | ω|π③正切型函数f(x)= A tan (ωx+φ)+B 的周期 T=.| ω|(2)对称性求周期T①两对称轴距离的最小值等于2;T;②两对称中心距离的最小值等于2T③对称中心到对称轴距离的最小值等于4.(3)特色点法求周期①两个最大值点之差的最小值等于T;②两个最小值点之差的最小值等于T;T特色点法求周期实质上就是由图象的对称性求周期,因为最值点与函数图象的对称轴相对应. (说明:此处的 T 均为最小正周期 )三角函数的奇偶性π函数 f(x)=3sin (2x-3+φ),φ∈ (0,π ).(1)假设 f(x)为偶函数,那么φ=________;(2)假设 f(x)为奇函数,那么φ=________.5ππ(1)6π (2)3[(1) 因为 f(x)=3sin (2x-3+φ)为偶函数,ππ所以-3+φ=kπ+2,k∈ Z ,5π又因为φ∈ (0,π),所以φ=6 .π(2)因为 f(x)=3sin (2x-3+φ)为奇函数,π所以-3+φ=kπ,k∈ Z ,又φ∈(0,π),π所以φ=3.]假设 f(x)=A sin (ωx+φ)(A,ω≠π0),那么① f(x)为偶函数的充要条件是φ=2+kπ(k∈ Z);② f(x)为奇函数的充要条件是φ=kπ(k∈Z).三角函数的对称性π(1)函数 f(x)=2sin (ωx+6)(ω>0)的最小正周期为 4π,那么该函数的图象 ( )πA .关于点 (3,0)对称5πB .关于点 ( 3 , 0)对称πC .关于直线 x =3对称5πD .关于直线 x = 3 对称ππ π(2)函数 y =sin (2x +φ)(-2<φ<2)的图象关于直线x =3对称,那么 φ的值为________.ππ(1)B (2)-6 [(1) 因为函数 f(x)= 2sin (ωx+6)(ω>0)的最小正周期是 4π,而2π1T = ω=4π,所以 ω=2,x π即 f(x)=2sin (2+6).π π 2π 令 x+ = + k π(k ∈Z),解得 x =3 +2k π(k ∈Z),2 622π故 f(x)的对称轴为 x = 3 +2k π(k ∈Z),x ππ令 2+ 6= k π(k ∈Z),解得 x =- 3+2k π(k ∈Z).π故 f(x)的对称中心为 (-3+2kπ, 0)(k∈Z),对照选项可知 B 正确.π2π(2)由题意得 f(3)= sin ( 3+φ)=±1,2πππ∴3+φ=kπ+2(k∈Z),∴φ=kπ-6(k∈Z).π ππ∵φ∈ (-2,2),∴φ=-6.]三角函数图象的对称轴和对称中心的求解方法π假设求 f(x)=A sin (ωx+φ)(ω≠ 0)图象的对称轴,那么只需令ωx+φ=2+kπ(k∈Z),求 x;假设求 f(x)= A sin (ωx+φ)(ω≠ 0)图象的对称中心的横坐标,那么只需令ωx+φ= kπ(k∈Z),求 x.π1.[ 多项选择 ] 设函数 f(x)=cos (x+3),那么以下结论正确的选项是 ()A . f(x)的一个周期为- 2π8πB. y=f(x)的图象关于直线x=3对称πC. f(x+π)的一个零点为x=6πD. f(x)在 (2,π)上单调递减πABC [A 项,因为 f(x) =cos (x+3)的周期为 2kπ(k∈ Z),所以 f(x)的一个周期为- 2π,A 项正确;ππB项,因为 f(x)=cos (x+3)图象的对称轴为直线 x= kπ-3(k∈Z),所以 y=8πf(x)的图象关于直线 x=3对称,B 项正确;4πC 项,f(x+π)=cos (x+3 ).4ππ令 x+3= kπ+2(k∈Z),5ππ得 x=kπ-6,当 k= 1 时,x=6,π所以 f(x+π)的一个零点为 x=6,C 项正确;ππ2π3332π 5π单调递加区间为 [2k π+ 3 , 2k π+ 3 ](k ∈Z),π 2π2π 所以 (2, 3 )是 f(x)的单调递减区间 ,[ 3 ,π)是 f(x)的单调递加区间 ,D 项错误. ]π2.(20xx ·成都模拟 )函数 f(x)=sin (ωx+φ)(ω>0,|φ|< 2)的最小正周期为π4π,且 ? x ∈R ,有 f(x)≤f(3)成立,那么 f(x)图象的一个对称中心坐标是 ()A .(- 2ππ 3 ,0) B .(- ,0)3 2π5π C .( 3 , 0)D . (3,0)1A [由 f(x)=sin (ωx+φ)的最小正周期为 4π,得 ω=2.π因为 f(x)≤f(3)恒成立,π所以 f(x)max =f(3),即π π1× + φ= + 2k π(k ∈Z),2 32ππ由 |φ|<2,得 φ=3,1 π 故 f(x)=sin (2x +3).1 π2π令 2x +3=k π(k ∈ Z),得 x =2k π- 3 (k ∈ Z),2π 故 f(x)图象的对称中心为 (2k π- 3 , 0)(k ∈Z),2π当 k =0 时,f(x)图象的对称中心为 (- 3 ,0).]。

高一数学三角函数的图像与性质试题答案及解析

高一数学三角函数的图像与性质试题答案及解析

高一数学三角函数的图像与性质试题答案及解析1.已知,函数在上单调递减.则的取值范围()A.B.C.D.【答案】B【解析】结合正弦函数的图象可知,要使函数在上单调递减,需要,解得的取值范围是.【考点】本小题主要考查三角函数图象的应用和由三角函数的单调性求参数的取值范围,考查学生综合应用函数图象解决问题的能力.点评:函数在上单调递减,则应该是函数的单调区间的一个子区间.2.函数的图象()A.关于直线对称B.关于直线对称C.关于轴对称D.关于原点对称【答案】B【解析】令,当时,,所以该函数图象关于直线对称.【考点】本小题主要考查三角函数图象的对称性.点评:正余弦函数图象的对称轴过最值点,所以本小题也可以将选项代入验证求解.3.已知函数(其中)图象的相邻两条对称轴间的距离为,且图象上一个最高点的坐标为.(1)求的解析式;(2)将函数的图象向右平移个单位后,得到函数的图象,求函数的单调递减区间.【答案】; (2)【解析】(1)由题意知,函数的周期为,所以,……2分因为图象上一个最高点的坐标为,所以,所以……7分(2)将函数的图象向右平移个单位后,得到函数,……10分令,解得函数的单调递减区间为. ……14分【考点】本小题主要考查由三角函数图象求三角函数解析式和由解析式求函数的性质,考查学生数形结合思想的应用.点评:求参数时要注意参数的取值范围,求单调区间时要注意不要忘记4. (2010·衡水市高考模拟)设a=log tan70°,b=log sin25°,c=log cos25°,则它们的大小关系为()A.a<c<b B.b<c<aC.a<b<c D.b<a<c【答案】A【解析】∵tan70°>cos25°>sin25°>0,log x为减函数,∴a<c<b.5.已知函数f(x)=2a sin+b的定义域为,函数最大值为1,最小值为-5,求a和b的值.【答案】a=12-6,b=-23+12,或a=-12+6,b=19-12.【解析】∵0≤x≤,∴-≤2x-≤.∴-≤sin≤1.若a>0,则,解得,若a<0,则,解得,综上可知,a=12-6,b=-23+12,或a=-12+6,b=19-12.6.要得到函数y=tan x图象,只需将函数y=tan的图象()A.向左平移个单位B.向左平移个单位C.向右平移个单位D.向右平移个单位【答案】C【解析】将y=tan中的x换作x-可得到y=tan x,故右移个单位.7.函数f(x)=tan的单调递增区间为()A.,k∈ZB.(kπ,kπ+π),k∈ZC.,k∈ZD.,k∈Z【答案】C【解析】∵kπ-<x+<kπ+,k∈Z,∴kπ-<x<kπ+ (k∈Z).8.求函数y=的值域和单调区间.【答案】递增区间是k∈Z;递减区间是k∈Z.【解析】y=,∵(tan x-1)2+1≥1,∴值域是(0,1],递增区间是k∈Z;递减区间是k∈Z.9.如果sinα·tanα<0,且sinα+cosα∈(0,1),那么角α的终边在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】B【解析】∵sinα·tanα<0,∴α是第二或第三象限角,又∵sinα+cosα∈(0,1),∴α不是一和三象限角,∴α为第二象限角10.已知sin(490°+α)=-,则sin(230°-α)的值为()A.-B.C.-D.【答案】B【解析】∵sin(490°+α)=-,∴sin(490°+α-720°)=-,即sin(α-230°)=-,∴sin(230°-α)=.11.由y=sin x变换成y=-2sin x,则()A.各点右移π个单位,纵坐标伸长到原来2倍B.各点左移π个单位,纵坐标缩短到原来的C.各点右移π个单位,纵坐标缩短到原来的D.各点左移个单位,纵坐标伸长到原来的2倍【答案】A【解析】因为由y=sin x各点右移π个单位得到y=sin(x-π)="-sinx," 纵坐标伸长到原来2倍得到y=-2sin x,因此选A12.化简=________.【答案】1【解析】原式==1.13.作出函数y=2cos的图象,观察图象回答.(1)此函数的最大值是多少?(2)此函数图象关于哪些点中心对称(至少写出2个).【答案】(1)2 (2),.【解析】描点作出图象如图.(1)最大值为2.(2),.14.下列函数中是偶函数的是()A.y=sin2x B.y=-sin xC.y=sin|x|D.y=sin x+1【答案】C【解析】A、B是奇函数,D是非奇非偶函数,C符合f(-x)=sin|-x|=sin|x|=f(x),∴y=sin|x|是偶函数15.已知f(x)是定义在(-3,3)上的奇函数,当0<x<3时,f(x)的图象如图所示,那么不等式f(x)cos x<0的解集是( )A .(-3,-)∪(0,1)∪(,3) B .(-,-1)∪(0,1)∪(,3)C .(-3,-1)∪(0,1)∪(1,3)D .(-3,-)∪(0,1)∪(1,3)【答案】B【解析】f (x )>0的解集为(-1,0)∪(1,3),f (x )<0的解集为(-3,-1)∪(0,1), 当x ∈(-3,3)时,cos x >0的解集为(-,),cos x <0的解集为(-3,-)∪(,3),∴f (x )·cos x <0的解集为 (-,-1)∪(0,1)∪(,3).16. 函数y =cos x 在区间[-π,a ]上为增函数,则a 的取值范围是________ 【答案】(-π,0]【解析】∵y =cos x 在[-π,0]上是增函数, 在[0,π]上是减函数,∴只有-π<a ≤0时满足条件,故a ∈(-π,0].17. 若函数f (x )=2cos 的最小正周期为T ,且T ∈(1,3),则正整数ω的最大值是_______【答案】6 【解析】∵1<<3,∴<ω<2π,∴正整数ω的最大值是6.18. 已知函数f (x )=sin,其中k ≠0,当自变量x 在任何两个整数间(包括整数本身)变化 时,至少含有一个周期,求最小正整数k 的值. 【答案】63【解析】函数f (x )=sin 的周期为T ==.由题意知T ≤1,即≤1,|k |≥20π≈62.8.所以最小正整数k 的值为63.19. 求下列函数的最大值和最小值,并求出取得最值时自变量x 的值. (1)y =-cos3x +; (2)y =3sin +1.【答案】(1) x =π(k ∈Z)时有,y max=2,x =π(k ∈Z)时,y min =-×1+=1.(2)x =+k π(k ∈Z)时,有y max =3+1=4,x =π+k π(k ∈Z)时,y min =3×(-1)+1=-2.【解析】(1)∵-1≤cos3x≤1,∴当cos x=-1,即3x=π+2kπ,=-×(-1)+=2;x=π(k∈Z)时有,ymax=-×1+=1.当cos3x=1,即3x=2kπ,x=π(k∈Z)时,ymin(2)∵-1≤sin≤1,∴当sin=1,=3+1=4;当sin=-1,即x=π即2x+=+2kπ,x=+kπ(k∈Z)时,有ymax+kπ(k∈Z)时,y=3×(-1)+1=-2.min20.设θ是不等边三角形的最小内角,且cosθ=,求实数a的取值范围.【答案】(-∞,-3)【解析】∵θ是不等边三角形的最小内角,∴0°<θ<60°.由cosθ在内单调递减知:<cosθ<1,即<<1.解得a<-3.故所求实数a的范围为(-∞,-3).本题容易误判θ∈(0°,90°)或用错单调性得出0<cosθ<而致误。

2021新高考数学专项训练题--三角函数图像与性质(单选题)(含解析)

2021新高考数学专项训练题--三角函数图像与性质(单选题)(含解析)

三角函数图像与性质一、单选题(共28题;共56分)1.(2021·湛江模拟)将函数f(x)=sinx的图象上所有点的横坐标变为原来的(ω>0),纵坐标不变,得到函数g(x)的图象,若函数g(x)的最小正周期为6π,则()A. ω=B. ω=6C. ω=D. ω=32.(2021·江西一模)函数的图象如图所示,为了得到的图象,只需把的图象上所有点()A. 向右平移个单位长度B. 向右平移个单位长度C. 向左平移个长度单位D. 向左平移个长度单位3.(2021·吉安模拟)已知函数,的部分图象如图所示,的图象过,两点,将的图象向左平移个单位得到的图象,则函数在上的最小值为()A. B. C. D. -14.(2021·贵阳二模)将函数的图象向左平移个单位得到函数的图象,则的最小值为()A. B. C. D.5.(2021·成都一诊)已知锐角φ满足sinφ-cosφ=1,若要得到函数f(x)= -sin2(x+q)的图象,则可已将函数y= sin2x的图象( )A. 向左平移个单位长度B. 向左平移个单位长度C. 向右平移个单位长度D. 向右平移个单位长度6.(2021·玉溪模拟)已知函数的部分图象如图所示,若,则函数的单调递增区间为()A. B.C. D.7.(2020·安徽模拟)若函数在区间上是增函数,且,,则函数在区间上( )A. 是增函数B. 是减函数C. 可以取得最大值2D. 可以取得最小值8.(2020·南昌模拟)函数的部分图象如图所示,则( )A. B. C. D.9.(2020·平顶山模拟)已知函数的图象过点,则要得到函数的图象,只需将函数的图象()A. 向右平移个单位长度B. 向左平移个单位长度C. 向左平移个单位长度D. 向右平移个单位长度10.(2020·龙岩模拟)已知函数,则下列命题中正确的是( )A. 的最小正周期为πB. 的图象关于直线对称C. 的值域为D. 在区间上单调递减11.(2020·辽宁模拟)已知函数的图象与轴交点的横坐标构成一个公差为的等差数列,把函数的图象沿轴向左平移个单位,得到函数的图象.关于函数,下列说法正确的是()A. 在上是增函数B. 其图象关于直线对称C. 函数是奇函数D. 当时,函数的值域是12.(2020·莆田模拟)函数的部分图象如图所示,把图象上所有点的纵坐标保持不变,横坐标缩短到原来的,整体再向右平移个单位长度后,得到函数的图象,则下列结论正确的是( )A. 的图象关于直线对称B. 的图象关于点中心对称C. 在上单调递增D. 在上的最大值是213.(2020·池州模拟)已知函数,则关于的有关性质说法中,正确的是()A. 极值点为B. 最小正周期为C. 最大值为3D. 在上单调递减14.(2020·赤峰模拟)关于函数有下述四个结论:()① 是偶函数;② 在区间上是单调递增函数;③ 在上的最大值为2;④在区间上有4个零点.其中所有正确结论的编号是()A. ①②④B. ①③C. ①④D. ②④15.(2020·马鞍山模拟)关于函数有下述四个结论:① 在区间上是减函数;② 的图象关于直线对称;③ 的图象关于点对称;④ 在区间上的值域为.其中所有正确结论的个数是()A. 1B. 2C. 3D. 416.(2020·梅河口模拟)如图是函数在区间上的图象,为了得到这个函数的图象,只需将的图象上的所有的点( )A. 向左平移个长度单位,再把所得各点的横坐标变为原来的,纵坐标不变B. 向左平移个长度单位,再把所得各点的横坐标变为原来的2倍,纵坐标不变C. 向左平移个长度单位,再把所得各点的横坐标变为原来的,纵坐标不变D. 向左平移个长度单位,再把所得各点的横坐标变为原来的2倍,纵坐标不变17.(2020·吉林模拟)函数的部分图像如图所示,若,点A的坐标为,若将函数向右平移个单位后函数图像关于y轴对称,则m的最小值为()A. B. C. D.18.(2020·辽宁模拟)函数的值域为()A. B. C. D.19.(2020·抚顺模拟)如图,P,Q是函数的图象与轴的两个相邻交点,是函数的图象的一个最高点,若是等腰直角三角形,则函数的解析式是()A. B.C. D.20.(2020·连城模拟)将函数f(x)=sin 3x- cos 3x+1的图象向左平移个单位长度,得到函数g(x)的图象,给出下列关于g(x)的结论:①它的图象关于直线x= 对称;②它的最小正周期为;③它的图象关于点( ,1)对称;④它在[ ]上单调递增.其中所有正确结论的编号是()A. ①②B. ②③C. ①②④D. ②③④21.(2020·大庆模拟)的最小正周期为π,若其图象向左平移个单位后得到的函数为奇函数则函数的图象( )A. 关于点对称B. 关于点对称C. 关于直线对称D. 关于直线对称22.(2020·呼和浩特模拟)已知函数,给出下列四个结论:①函数的最小正周期是;②函数在区间上是减函数;③函数的图象关于直线对称;④函数的图象可由函数的图象向左平移个单位得到其中所有正确结论的编号是()A. ①②B. ①③C. ①②③D. ①③④23.(2020·湛江模拟)已知函数的图象与轴的两个相邻交点的横坐标为,下面4个有关函数的结论:①函数的图象关于原点对称;②在区间上,的最大值为;③是的一条对称轴;④将的图象向左平移个单位,得到的图象,若为两个函数图象的交点,则面积的最小值为.其中正确的结论个数为()A. 1B. 2C. 3D. 424.(2020·武汉模拟)已知函数f(x)=sin2x+sin2(x),则f(x)的最小值为()A. B. C. D.25.(2020·随县模拟)函数的最小正周期是,则函数在区间上的零点个数为()A. 31B. 32C. 63D. 6426.(2020·大连模拟)如图是函数的部分图象,则,的值分别为()A. 1,B. 1,C. 2,D. 2,27.(2020·咸阳模拟)关于函数,下列说法正确的是()A. 函数的定义域为B. 函数一个递增区间为C. 函数的图像关于直线对称D. 将函数图像向左平移个单位可得函数的图像28.(2020·宝鸡模拟)函数的图象为C,以下结论中正确的是()①图象C关于直线对称;②图象C关于点对称;③由y =2sin2x的图象向右平移个单位长度可以得到图象C.A. ①B. ①②C. ②③D. ①②③答案解析部分一、单选题1.【答案】A【解析】【解答】由题意可知,由,解得故答案为:A【分析】根据图像的坐标变换求出解析式,再根据正弦函数的周期公式即可得出答案。

2021年高考数学二轮复习 三角函数的图象与性质专题训练(含解析)

2021年高考数学二轮复习 三角函数的图象与性质专题训练(含解析)

2021年高考数学二轮复习 三角函数的图象与性质专题训练(含解析)一、选择题1.(xx·全国大纲卷)已知角α的终边经过点(-4,3),则cos α=( ) A.45 B.35 C .-35D .-45解析 cos α=-4-42+32=-45.答案 D2.(xx·四川卷)为了得到函数y =sin(2x +1)的图象,只需把函数y =sin2x 的图象上所有的点( )A .向左平行移动12个单位长度B .向右平行移动12个单位长度C .向左平行移动1个单位长度D .向右平行移动1个单位长度解析 ∵y =sin(2x +1)=sin2⎝ ⎛⎭⎪⎫x +12,∴只需把y =sin2x 图象上所有的点向左平移12个单位长度即得到y =sin(2x +1)的图象.答案 A3.(xx·北京东城一模)将函数y =sin(2x +φ)的图象沿x 轴向左平移π8个单位后,得到一个偶函数的图象,则φ的一个可能取值为( )A.3π4B.π2C.π4D .-π4解析 y =sin(2x +φ)错误!sin 错误!=sin 错误!是偶函数,即错误!+φ=k π+错误!(k ∈Z )⇒φ=k π+π4(k ∈Z ),当k =0时,φ=π4,故选C.答案 C4.函数f (x )=A sin(ωx +φ)⎝⎛⎭⎪⎫A >0,ω>0,|φ|<π2的部分图象如图所示,若x 1,x 2∈⎝ ⎛⎭⎪⎫-π6,π3,且f (x 1)=f (x 2),则f (x 1+x 2)=( )A .1 B.12 C.22D.32解析 观察图象可知,A =1,T =π, ∴ω=2,f (x )=sin(2x +φ).将⎝ ⎛⎭⎪⎫-π6,0代入上式得sin ⎝ ⎛⎭⎪⎫-π3+φ=0, 由|φ|<π2,得φ=π3, 则f (x )=sin ⎝⎛⎭⎪⎫2x +π3. 函数图象的对称轴为x =-π6+π32=π12.又x 1,x 2∈⎝ ⎛⎭⎪⎫-π6,π3,且f (x 1)=f (x 2),∴x 1+x 22=π12,∴x 1+x 2=π6, ∴f (x 1+x 2)=sin ⎝⎛⎭⎪⎫2×π6+π3=32.故选D.答案 D5.函数f (x )=sin(ωx +φ)(ω>0,|φ|<π2)的最小正周期是π,若其图象向右平移π6个单位后得到的函数为奇函数,则函数f (x )的图象( )A .关于点⎝ ⎛⎭⎪⎫π12,0对称B .关于直线x =π12对称C .关于点⎝ ⎛⎭⎪⎫π6,0对称 D .关于直线x =π6对称解析 ∵T =2πω=π,∴ω=2.∴f (x )=sin(2x +φ)向右平移π6个单位,得y =sin ⎝⎛⎭⎪⎫2x -π3+φ为奇函数, ∴-π3+φ=k π(k ∈Z ),∴φ=π3+k π(k ∈Z ),∴φ=π3,∴f (x )=sin ⎝⎛⎭⎪⎫2x +π3. ∵sin ⎝ ⎛⎭⎪⎫2×π12+π3=1,∴直线x =π12为函数图象的对称轴.故选B.答案 B6.已知函数f (x )=cos ⎝⎛⎭⎪⎫2x +π3-cos2x ,其中x ∈R ,给出下列四个结论:①函数f (x )是最小正周期为π的奇函数;②函数f (x )图象的一条对称轴是直线x =2π3;③函数f (x )图象的一个对称中心为⎝ ⎛⎭⎪⎫5π12,0;④函数f (x )的递增区间为k π+π6,k π+2π3,k ∈Z .则正确结论的个数是( ) A .1 B .2 C .3D .4解析 由已知得,f (x )=cos ⎝⎛⎭⎪⎫2x +π3-cos2x =cos2x cos π3-sin2x sin π3-cos2x =-sin ⎝ ⎛⎭⎪⎫2x +π6,不是奇函数,故①错;当x =2π3时,f ⎝ ⎛⎭⎪⎫2π3=-sin ⎝ ⎛⎭⎪⎫4π3+π6=1,故②正确;当x=5π12时,f ⎝ ⎛⎭⎪⎫5π12=-sinπ=0,故③正确;令2k π+π2≤2x +π6≤2k π+32π,k ∈Z ,得k π+π6≤x ≤k π+23π,k ∈Z ,故④正确.综上,正确的结论个数为3.答案 C 二、填空题7.若sin ⎝ ⎛⎭⎪⎫π3+α=13,则sin ⎝ ⎛⎭⎪⎫π6+2α=________. 解析 sin ⎝ ⎛⎭⎪⎫π6+2α=-cos ⎝ ⎛⎭⎪⎫π2+π6+2α=-cos ⎝ ⎛⎭⎪⎫2π3+2α=2sin 2⎝ ⎛⎭⎪⎫π3+α-1=-79.答案 -798.(xx·江苏卷)已知函数y =cos x 与y =sin(2x +φ)(0≤φ<π),它们的图象有一个横坐标为π3的交点,则φ的值是________. 解析 利用函数y =cos x 与y =sin(2x +φ)(0≤φ<π)的图象交点横坐标,列方程求解. 由题意,得sin ⎝⎛⎭⎪⎫2×π3+φ=cos π3, 因为0≤φ<π,所以φ=π6.答案π69.(xx·北京卷)设函数f (x )=A sin(ωx +φ)(A ,ω,φ是常数,A >0,ω>0).若f (x )在区间⎣⎢⎡⎦⎥⎤π6,π2上具有单调性,且f ⎝ ⎛⎭⎪⎫π2=f ⎝ ⎛⎭⎪⎫2π3=-f ⎝ ⎛⎭⎪⎫π6,则f (x )的最小正周期为________. 解析 由f (x )在区间⎣⎢⎡⎦⎥⎤π6,π2上具有单调性,且f ⎝ ⎛⎭⎪⎫π2=-f ⎝ ⎛⎭⎪⎫π6知,f (x )有对称中心⎝ ⎛⎭⎪⎫π3,0,由f ⎝ ⎛⎭⎪⎫π2=f ⎝ ⎛⎭⎪⎫23π知f (x )有对称轴x =12⎝ ⎛⎭⎪⎫π2+23π=712π,记T 为最小正周期,则12T ≥π2-π6⇒T ≥23π,从而712π-π3=T4,故T =π.答案 π 三、解答题10.(xx·重庆卷)已知函数f (x )=3sin(ωx +φ)(ω>0,-π2≤φ<π2)的图象关于直线x =π3对称,且图象上相邻两个最高点的距离为π.(1)求ω和φ的值;(2)若f ⎝ ⎛⎭⎪⎫α2=34⎝ ⎛⎭⎪⎫π6<α<2π3,求cos ⎝ ⎛⎭⎪⎫α+3π2的值.解 (1)因f (x )的图象上相邻两个最高点的距离为π,所以f (x )的最小正周期T =π,从而ω=2πT=2.又因f (x )的图象关于直线x =π3对称, 所以2·π3+φ=k π+π2,k =0,±1,±2,….因-π2≤φ<π2得k =0,所以φ=π2-2π3=-π6.(2)由(1)得f ⎝ ⎛⎭⎪⎫α2=3sin ⎝ ⎛⎭⎪⎫2·α2-π6=34,所以sin ⎝ ⎛⎭⎪⎫α-π6=14.由π6<α<2π3得0<α-π6<π2, 所以cos ⎝⎛⎭⎪⎫α-π6=1-sin 2⎝⎛⎭⎪⎫α-π6= 1-⎝ ⎛⎭⎪⎫142=154.因此cos ⎝ ⎛⎭⎪⎫α+3π2=sin α=sin ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫α-π6+π6 =sin ⎝⎛⎭⎪⎫α-π6cos π6+cos ⎝⎛⎭⎪⎫α-π6sin π6 =14×32+154×12=3+158. 11.(xx·山东菏泽一模)已知函数f (x )=2sin ωx cos ωx +23sin 2ωx -3(ω>0)的最小正周期为π.(1)求函数f (x )的单调增区间; (2)将函数f (x )的图象向左平移π6个单位,再向上平移1个单位,得到函数y =g (x )的图象,若y =g (x )在[0,b ](b >0)上至少含有10个零点,求b 的最小值.解 (1)由题意得f (x )=2sin ωx cos ωx +23sin 2ωx -3=sin2ωx -3cos2ωx =2sin ⎝⎛⎭⎪⎫2ωx -π3, 由最小正周期为π,得ω=1,所以f (x )=2sin ⎝⎛⎭⎪⎫2x -π3, 由2k π-π2≤2x -π3≤2k π+π2,k ∈Z , 整理得k π-π12≤x ≤k π+5π12,k ∈Z ,所以函数f (x )的单调增区间是⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12,k ∈Z . (2)将函数f (x )的图象向左平移π6个单位,再向上平移1个单位,得到y =2sin2x +1的图象, 所以g (x )=2sin2x +1. 令g (x )=0,得x =k π+7π12或x =k π+11π12(k ∈Z ), 所以在[0,π]上恰好有两个零点,若y =g (x )在[0,b ]上有10个零点,则b 不小于第10个零点的横坐标即可,即b 的最小值为4π+11π12=59π12.B 级——能力提高组1.设函数f (x )=3cos(2x +φ)+sin(2x +φ)⎝ ⎛⎭⎪⎫|φ|<π2,且其图象关于直线x =0对称,则( )A .y =f (x )的最小正周期为π,且在⎝ ⎛⎭⎪⎫0,π2上为增函数B .y =f (x )的最小正周期为π,且在⎝⎛⎭⎪⎫0,π2上为减函数 C .y =f (x )的最小正周期为π2,且在⎝ ⎛⎭⎪⎫0,π4上为增函数 D .y =f (x )的最小正周期为π2,且在⎝⎛⎭⎪⎫0,π4上为减函数 解析 f (x )=3cos(2x +φ)+sin(2x +φ) =2sin ⎝⎛⎭⎪⎫2x +π3+φ, ∵其图象关于x =0对称,∴f (x )是偶函数. ∴π3+φ=π2+k π,k ∈Z . 又∵|φ|<π2,∴φ=π6. ∴f (x )=2sin ⎝⎛⎭⎪⎫2x +π3+π6=2cos2x .易知f (x )的最小正周期为π,在⎝⎛⎭⎪⎫0,π2上为减函数.答案 B2.(xx·全国大纲卷)若函数f (x )=cos2x +a sin x 在区间⎝ ⎛⎭⎪⎫π6,π2是减函数,则实数a 的取值范围是________.解析 f (x )=1-2sin 2x +a sin x =-2sin 2x +a sin x +1,sin x ∈⎝ ⎛⎭⎪⎫12,1,令t =sin x ∈⎝ ⎛⎭⎪⎫12,1,则y =-2t 2+at +1在⎝ ⎛⎭⎪⎫12,1是减函数,∴对称轴t =a 4≤12,∴a ≤2.答案 (-∞,2]3.(xx·湖北卷)某实验室一天的温度(单位:℃)随时间t (单位:h)的变化近似满足函数关系:f (t )=10-3cos π12t -sin π12t ,t ∈[0,24).(1)求实验室这一天的最大温差;(2)若要求实验室温度不高于11 ℃,则在哪段时间实验室需要降温? 解 (1)因为f (t )=10-2⎝ ⎛⎭⎪⎫32cos π12t +12sin π12t =10-2sin ⎝ ⎛⎭⎪⎫π12t +π3,又0≤t <24,所以π3≤π12t +π3<7π3, -1≤sin ⎝ ⎛⎭⎪⎫π12t +π3≤1. 当t =2时,sin ⎝ ⎛⎭⎪⎫π12t +π3=1;当t =14时,sin ⎝ ⎛⎭⎪⎫π12t +π3=-1. 于是f (t )在[0,24)上取得最大值12,取得最小值8.故实验室这一天最高温度为12 ℃,最低温度为8 ℃,最大温差为4 ℃. (2)依题意,当f (t )>11时实验室需要降温.由(1)得f (t )=10-2sin ⎝ ⎛⎭⎪⎫π12t +π3,故有10-2sin ⎝ ⎛⎭⎪⎫π12t +π3>11,即sin ⎝ ⎛⎭⎪⎫π12t +π3<-12.又0≤t <24,因此7π6<π12t +π3<11π6,即10<t <18. 在10时至18时实验室需要降温. 36014 8CAE 貮33058 8122 脢39755 9B4B 魋21980 55DC 嗜34759 87C7 蟇 30825 7869 硩f33504 82E0 苠 ?" y。

2021年全国新高考卷数学试题含答案

2021年全国新高考卷数学试题含答案

2021年全国新高考卷数学试题含答案一、选择题(每题1分,共5分)1. 下列函数中,奇函数的是()A. y = x^2B. y = |x|C. y = x^3D. y = x^2 + 12. 已知集合A={x|0<x<3},B={x|x≤2},则A∩B等于()A. {x|0<x<2}B. {x|0<x≤2}C. {x|0≤x<3}D. {x|0≤x≤2}3. 在等差数列{an}中,若a1=1,a3=3,则公差d等于()A. 1B. 2C. 3D. 44. 若复数z满足|z|=1,则z的共轭复数z的模等于()A. 0B. 1C. 2D. z5. 下列函数中,在区间(0,+∞)上单调递减的是()A. y = e^xB. y = ln(x)C. y = x^2D. y = 1/x二、判断题(每题1分,共5分)1. 两个平行线的斜率相等。

()2. 若矩阵A可逆,则其行列式值不为0。

()3. 任何两个实数的和都是实数。

()4. 二项式展开式中,各项系数的和等于2的n次方。

()5. 函数y = x^3在区间(∞,+∞)上单调递增。

()三、填空题(每题1分,共5分)1. 若向量a=(1,2),b=(1,3),则向量a与向量b的夹角余弦值为______。

2. 在等比数列{bn}中,若b1=2,公比q=3,则b6=______。

3. 若函数f(x)=3x^24x+1,则f'(x)=______。

4. 三角形内角和为______。

5. 圆的标准方程为(xa)^2+(yb)^2=r^2,其中圆心坐标为______。

四、简答题(每题2分,共10分)1. 简述函数的极值的定义。

2. 什么是排列组合?请举例说明。

3. 请写出余弦定理的公式。

4. 简述概率的基本性质。

5. 举例说明平面向量的线性运算。

五、应用题(每题2分,共10分)1. 已知函数f(x)=x^22x+1,求f(x)的最小值。

2. 设有4个红球,3个蓝球,求从中任取3个球,恰有2个红球的概率。

2021新高考数学精选考点专项突破:三角函数的图像与性质

2021新高考数学精选考点专项突破:三角函数的图像与性质

三角函数的图像与性质一、单选题1.(2020届山东省潍坊市高三上期中)sin 225︒= ( )A .12-B .2-C .D .1-【答案】B 【解析】因为2sin 225sin(18045)sin 452=+=-=-. 故选:B.2、(2020届北京市昌平区新学道临川学校高三上学期期中考试数学试题)sin 20cos10cos160sin10︒︒-︒︒=( )A .BC .12-D .12【答案】D【解析】sin 20cos10cos160sin10︒︒-︒︒sin 20cos10cos20sin10=︒︒+︒︒ sin30=︒12=. 故选:D.3、(2020年全国1卷)设函数()cos π()6f x x ω=+在[π,π]-的图像大致如下图,则f (x )的最小正周期为( )A. 10π9 B.7π6 C. 4π3D. 3π2【答案】C【解析】由图可得:函数图象过点4,09π⎛⎫-⎪⎝⎭,将它代入函数()f x 可得:4cos 096ππω⎛⎫-⋅+= ⎪⎝⎭又4,09π⎛⎫-⎪⎝⎭是函数()f x 图象与x 轴负半轴的第一个交点, 所以4962πππω-⋅+=-,解得:32ω= 所以函数()f x 的最小正周期为224332T πππω===故选:C4、(2020·浙江温州中学高三3月月考)函数()sin 2sin3f x x x =+的最小正周期为( ) A .π B .2πC .3πD .6π【答案】B 【解析】2y sin x =的最小正周期为:π;函数3y sin x =的最小正周期为:23π, π与23π的最小公倍数为:2π, 所以函数()23f x sin x sin x =+的最小正周期为:2π. 故选:B .5、(2020年天津卷)已知函数()sin 3f x x π⎛⎫=+ ⎪⎝⎭.给出下列结论: ①()f x 的最小正周期为2π; ②2f π⎛⎫⎪⎝⎭是()f x 的最大值; ③把函数sin y x =的图象上所有点向左平移3π个单位长度,可得到函数()y f x =的图象. 其中所有正确结论的序号是 A. ① B. ①③C. ②③D. ①②③【答案】B【解析】因为()sin()3f x x π=+,所以周期22T ππω==,故①正确;51()sin()sin 122362f ππππ=+==≠,故②不正确; 将函数sin y x =的图象上所有点向左平移3π个单位长度,得到sin()3y x π=+的图象,故③正确. 故选:B.6、(2020届山东省潍坊市高三上期末)已知345sin πα⎛⎫-= ⎪⎝⎭,0,2πα⎛⎫∈ ⎪⎝⎭,则cos α=( )A B C D 【答案】A 【解析】0,2πα⎛⎫∈ ⎪⎝⎭,,444πππα⎛⎫-∈- ⎪⎝⎭4cos 45πα⎛⎫-== ⎪⎝⎭,cos cos cos cos sin sin 444444ππππππαααα⎡⎤⎛⎫⎛⎫⎛⎫=-+=--- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦4355=-=故选:A7、(2020届山东省济宁市高三上期末)函数22cos cos 1yx x ,,22x ππ⎡⎤∈-⎢⎥⎣⎦的图象大致为( ) A . B .C .D .【答案】B【解析】∵22()2cos ()cos()12cos cos 1()f x x x x x f x -=--+-+=-++=, ∴函数()f x 为偶函数.故排除选项A ,D.2219()2cos cos 12(cos ),,4822f x x x x x ππ⎡⎤=-++=--+∈-⎢⎥⎣⎦,∵0cos 1x ≤≤, ∴当1cos 4x =时,()f x 取得最大值98;当cos 1x =时,()f x 取得最小值0.故排除C. 故选:B.8、(2020届山东师范大学附中高三月考)为了得函数23y sin x π⎛⎫=+ ⎪⎝⎭的图象,只需把函数2y sin x =的图象( ) A .向左平移6π个单位 B .向左平移3π单位 C .向右平移6π个单位 D .向右平移3π个单位【答案】A【解析】不妨设函数2y sin x =的图象沿横轴所在直线平移ϕ个单位后得到函数23y sin x π⎛⎫=+⎪⎝⎭的图象.于是,函数2y sin x =平移ϕ个单位后得到函数,sin 2()y x ϕ=+,即sin(22)y x ϕ=+, 所以有223k πϕπ=+,6k πϕπ=+,取0k =,6π=ϕ.答案为A .9、(2020届山东实验中学高三上期中)已知函数()sin 2f x a x x =的图象关于直线12x π=-对称,若()()124f x f x ⋅=-,则12a x x -的最小值为( ) A .4πB .2π C .πD .2π【答案】B 【解析】()f x 的图象关于直线12x π=-对称,(0)()6f f π∴=-,即-1a =,则()sin 222sin 26f x x x x π⎛⎫=-=- ⎪⎝⎭,12()()4f x f x =-,1()2f x ∴=,2()2f x =-或1()2f x =-,2()2f x =,即1()f x ,2()f x 一个为最大值,一个为最小值, 则12||x x -的最小值为2T,T π=, 12||x x ∴-的最小值为2π,即12a x x -的最小值为2π.故选:B .10、(2020·武邑县教育局教研室高三上期末(理))已知()cos 2cos 2παπα⎛⎫-=+ ⎪⎝⎭,且()1tan 3αβ+=,则tan β的值为( ) A .-7 B .7C .1D .-1【答案】B 【解析】因为()cos 2cos 2παπα⎛⎫-=+⎪⎝⎭, 所以sin 2cos αα=-,即tan 2α,又()1tan 3αβ+=,则tan tan 11tan tan 3αβαβ+=-,解得tan β= 7, 故选B.11、(2020届山东省潍坊市高三上期中)已知函数()sin cos f x x x =+,则( ) A .()f x 的最小正周期为π B .()y f x =图象的一条对称轴方程为4x π=C .()f x 的最小值为2-D .()f x 的0,2π⎡⎤⎢⎥⎣⎦上为增函数 【答案】B【解析】()sin cos )4f x x x x π=+=+,对A ,()f x ∴的最小正周期为2π,故A 错误;对B ,()42f ππ==()y f x ∴=图象的一条对称轴方程为4x π=,故B 正确;对C ,()f x 的最小值为,故C 错误; 对D ,由[0,]2x π∈,得3[,]444x πππ+∈,则()f x 在[0,]2π上先增后减,故D 错误. 故选:B .12、(2020届山东省滨州市三校高三上学期联考)若π1sin 34α⎛⎫-= ⎪⎝⎭,则πcos 23α⎛⎫+= ⎪⎝⎭( ).A .78-B .14-C .14 D .78【答案】A 【解析】2π2π2πππcos 2cos π2cos 2cos 22sin 133333ααααα⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+=--=--=--=--⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ 1721168=⨯-=-. 故选A .13、(2020届山东省临沂市高三上期末)已知函数2()2cos 12f x x πω⎛⎫=- ⎪⎝⎭(0)>ω的图象关于直线4x π=对称,则ω的最小值为( )A .13B .16C .43D .56【答案】A 【解析】2()2cos 12f x x πω⎛⎫=- ⎪⎝⎭,()1cos 26f x x πω⎛⎫∴=+- ⎪⎝⎭,又因为2()2cos 12f x x πω⎛⎫=- ⎪⎝⎭的图象关于4x π=对称,所以2()46k k Z ππωπ⨯-=∈,即12()3k k Z ω=+∈, 因为0>ω,所以ω的最小值为13.故选:A.14、(2020年全国3卷)关于函数f (x )=1sin sin x x+有如下四个命题: ①f (x )的图像关于y 轴对称. ②f (x )的图像关于原点对称. ③f (x )的图像关于直线x =2π对称. ④f (x )的最小值为2.其中所有真命题的序号是__________. 【答案】②③【解析】对于命题①,152622f π⎛⎫=+= ⎪⎝⎭,152622f π⎛⎫-=--=- ⎪⎝⎭,则66f f ππ⎛⎫⎛⎫-≠ ⎪ ⎪⎝⎭⎝⎭, 所以,函数()f x 的图象不关于y 轴对称,命题①错误;对于命题②,函数()f x 的定义域为{},x x k k Z π≠∈,定义域关于原点对称,()()()()111sin sin sin sin sin sin f x x x x f x x x x ⎛⎫-=-+=--=-+=- ⎪-⎝⎭,所以,函数()f x 的图象关于原点对称,命题②正确;对于命题③,11sin cos 22cos sin 2f x x x x x πππ⎛⎫⎛⎫-=-+=+⎪ ⎪⎛⎫⎝⎭⎝⎭- ⎪⎝⎭,11sin cos 22cos sin 2f x x x x x πππ⎛⎫⎛⎫+=++=+⎪ ⎪⎛⎫⎝⎭⎝⎭+ ⎪⎝⎭,则22f x f x ππ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭, 所以,函数()f x 的图象关于直线2x π=对称,命题③正确;对于命题④,当0x π-<<时,sin 0x <,则()1sin 02sin f x x x=+<<, 命题④错误. 故答案为:②③.15、(2020届山东省滨州市高三上期末)已知函数()2sin(2)f x x ϕ=+的图象过点,26A π⎛⎫⎪⎝⎭,则( ) A .把()y f x =的图象向右平移6π个单位得到函数2sin 2y x =的图象 B .函数()f x 在区间,02π⎛⎫- ⎪⎝⎭上单调递减C .函数()f x 在区间[]0,2π内有五个零点D .函数()f x 在区间0,3π⎡⎤⎢⎥⎣⎦上的最小值为1【答案】D【解析】因为函数()2sin(2)f x x ϕ=+的图象过点,26A π⎛⎫ ⎪⎝⎭, 所以2sin 23πϕ⎛⎫+= ⎪⎝⎭,因此2,32k k Z ππϕπ+=+∈,所以2,6k k Z πϕπ=+∈,因此()2sin(2)2sin 222sin 266f x x x k x ππϕπ⎛⎫⎛⎫=+=++=+ ⎪ ⎪⎝⎭⎝⎭; A 选项,把()y f x =的图象向右平移6π个单位得到函数2sin 26y x π⎛⎫=- ⎪⎝⎭的图象,故A 错; B 选项,由3222,262k x k k Z πππππ+≤+≤+∈得2,63k x k k Z ππππ+≤≤+∈,即函数()2sin 26f x x π⎛⎫=+ ⎪⎝⎭的单调递减区间是:2,,63k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦,故B 错;C 选项,由()2sin 206f x x π⎛⎫=+= ⎪⎝⎭得2,6x k k Z ππ+=∈,即,122k x k Z ππ=-+∈, 因此[]0,2x π∈,所以5111723,,,12121212x ππππ=,共四个零点,故C 错; D 选项,因为0,3x π⎡⎤∈⎢⎥⎣⎦,所以52,666x πππ⎡⎤+∈⎢⎥⎣⎦,因此1sin 2,162x π⎛⎫⎡⎤+∈ ⎪⎢⎥⎝⎭⎣⎦,所以[]2sin 21,26x π⎛⎫+∈ ⎪⎝⎭,即()2sin 26f x x π⎛⎫=+ ⎪⎝⎭的最小值为1,故D 正确;故选:D.二、多选题16、(2020年山东卷)下图是函数y = sin(ωx +φ)的部分图像,则sin(ωx +φ)= ( )A. πsin(3x +)B. πsin(2)3x -C. πcos(26x +)D. 5πcos(2)6x -【答案】BC【解析】由函数图像可知:22362T πππ=-=,则222T ππωπ===,所以不选A, 当2536212x πππ+==时,1y =-∴()5322122k k Z ππϕπ⨯+=+∈, 解得:()223k k ϕππ=+∈Z ,即函数的解析式为:2sin 22sin 2cos 2sin 236263y x k x x x ππππππ⎛⎫⎛⎫⎛⎫⎛⎫=++=++=+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.而5cos 2cos(2)66x x ππ⎛⎫+=-- ⎪⎝⎭ 故选:BC.17、(2020届山东省滨州市三校高三上学期联考)设函数()sin 23f x x π⎛⎫=- ⎪⎝⎭,则下列结论正确的是( ) A .π-是()f x 的一个周期 B .()f x 的图像可由sin 2y x =的图像向右平移3π得到 C .()f x π+的一个零点为6x π=D .()y f x =的图像关于直线1712x π=对称 【答案】ACD【解析】()sin 23f x x π⎛⎫=-⎪⎝⎭的最小正周期为π,故π-也是其周期,故A 正确; ()f x 的图像可由sin 2y x =的图像向右平移6π得到,故B 错误; ()77()()sin sin 066323f f ππππππ⎛⎫+==-== ⎪⎝⎭,故C 正确; sin sin 17175()1262sin 132f πππππ⎛⎫⎛⎫⎛⎫-=== ⎪ =⎪ ⎪⎝⎭⎝⎭⎝⎭,故D 正确. 故选:ACD18、(2020届山东省枣庄市高三上学期统考)将函数()sin 23f x x π⎛⎫=+ ⎪⎝⎭的图象向右平移2π个单位长度得到()g x 图象,则下列判断正确的是( ) A .函数()g x 在区间,122ππ⎡⎤⎢⎥⎣⎦上单调递增 B .函数()g x 图象关于直线712x π=对称 C .函数()g x 在区间,63ππ⎡⎤-⎢⎥⎣⎦上单调递减 D .函数()g x 图象关于点,03π⎛⎫⎪⎝⎭对称 【答案】ABD【解析】函数()sin 23f x x π⎛⎫=+⎪⎝⎭的图像向右平移2π个单位长度得到()ππsin 223g x x ⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦2πsin 23x ⎛⎫=- ⎪⎝⎭.由于7π7π2ππsin sin 112632g ⎛⎫⎛⎫=-==⎪ ⎪⎝⎭⎝⎭,故7π12x =是()g x 的对称轴,B 选项正确. 由于π2π2πsin sin 00333g ⎛⎫⎛⎫=-==⎪ ⎪⎝⎭⎝⎭,故,03π⎛⎫ ⎪⎝⎭是()g x 的对称中心,D 选项正确. 由π2ππ2232x -≤-≤,解得π7π1212x ≤≤,即()g x 在区间π7π,1212⎡⎤⎢⎥⎣⎦上递增,故A 选项正确、C 选项错误. 故选:ABD.19、(2020届山东省济宁市高三上期末)将函数()sin 2f x x =的图象向右平移4π个单位后得到函数()g x 的图象,则函数()g x 具有性质( ) A .在0,4π⎛⎫⎪⎝⎭上单调递增,为偶函数 B .最大值为1,图象关于直线32x π=-对称 C .在3,88ππ⎛⎫-⎪⎝⎭上单调递增,为奇函数 D .周期为π,图象关于点3,04π⎛⎫⎪⎝⎭对称 【答案】ABD 【解析】()sin 2sin 2cos 242x x x g x ππ⎛⎫⎛⎫=-=-=- ⎪ ⎪⎝⎭⎝⎭0,4x π⎛⎫∈ ⎪⎝⎭则20,2x π⎛⎫∈ ⎪⎝⎭,()cos2g x x =-单调递增,为偶函数,A 正确C 错误;最大值为1,当32x π=-时23x π=-,为对称轴,B 正确; 22T ππ==,取2,,242k x k x k Z ππππ=+∴=+∈,当1k =时满足,图像关于点3,04π⎛⎫ ⎪⎝⎭对称,D 正确; 故选:ABD20、(2020届山东省烟台市高三上期末)已知函数()()sin 322f x x ππϕϕ⎛⎫=+-<< ⎪⎝⎭的图象关于直线4x π=对称,则( )A .函数12f x π⎛⎫+⎪⎝⎭为奇函数 B .函数()f x 在,123ππ⎡⎤⎢⎥⎣⎦上单调递增 C .若()()122f x f x -=,则12x x -的最小值为3πD .函数()f x 的图象向右平移4π个单位长度得到函数cos3y x =-的图象 【答案】AC【解析】因为直线4x π=是()()sin 322f x x ππϕϕ⎛⎫=+-<< ⎪⎝⎭的对称轴,所以()342k k Z ππϕπ⨯+=+∈,则()4k k Z πϕπ=-+∈,当0k =时,4πϕ=-,则()sin 34f x x π⎛⎫=-⎪⎝⎭, 对于选项A,sin 3sin 312124f x x x πππ⎡⎤⎛⎫⎛⎫+=+-= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,因为()sin 3sin3x x -=-,所以12f x π⎛⎫+ ⎪⎝⎭为奇函数,故A 正确; 对于选项B,()232242k x k k Z πππππ-+<-<+∈,即()21212343k kx k Z ππππ-+<<+∈,当0k =时,()f x 在,124ππ⎡⎤-⎢⎥⎣⎦当单调递增,故B 错误;对于选项C,若()()122f x f x -=,则12x x -最小为半个周期,即21323ππ⨯=,故C 正确; 对于选项D,函数()f x 的图象向右平移4π个单位长度,即()sin 3sin 3sin 344x x x πππ⎡⎤⎛⎫--=-=- ⎪⎢⎥⎝⎭⎣⎦,故D错误 故选:AC21、(2020·山东省淄博实验中学高三上期末)已知函数()sin cos f x x x =-,()g x 是()f x 的导函数,则下列结论中正确的是( )A .函数()f x 的值域与()g x 的值域不相同B .把函数()f x 的图象向右平移2π个单位长度,就可以得到函数()g x 的图象 C .函数()f x 和()g x 在区间,44ππ⎛⎫-⎪⎝⎭上都是增函数 D .若0x 是函数()f x 的极值点,则0x 是函数()g x 的零点 【答案】CD【解析】∵函数f (x )=sinx ﹣cosx =(x 4π-)∴g (x )=f '(x )=cosx +sinx =(x 4π+), 故函数函数f (x )的值域与g (x )的值域相同, 且把函数f (x )的图象向左平移2π个单位,就可以得到函数g (x )的图象, 存在x 0=+,4k k Z ππ-∈,使得函数f (x )在x 0处取得极值且0x 是函数()g x 的零点,函数f (x )在,44ππ⎛⎫- ⎪⎝⎭上为增函数,g (x )在,44ππ⎛⎫- ⎪⎝⎭上也为增函数,∴单调性一致, 故选:CD .三、填空题22、(2020年江苏卷)将函数y =πsin(2)43x ﹢的图象向右平移π6个单位长度,则平移后的图象中与y 轴最近的对称轴的方程是____. 【答案】524x π=-【解析】3sin[2()]3sin(2)6412y x x πππ=-+=- 72()()122242k x k k Z x k Z πππππ-=+∈∴=+∈当1k =-时524x π=- 故答案为:524x π=- 23、(2020年全国1卷).已知 π()0,α∈,且3cos28cos 5αα-=,则sin α=______.【解析】3cos28cos 5αα-=,得26cos 8cos 80αα--=, 即23cos 4cos 40αα--=,解得2cos 3α=-或cos 2α=(舍去),又(0,),sin 3απα∈∴==24、(2020年浙江卷)已知tan 2θ=,则cos2θ=________;πtan()4θ-=______. 【答案】 (1).35 (2). 13【解析】2222222222cos sin 1tan 123cos 2cos sin cos sin 1tan 125θθθθθθθθθ---=-====-+++, tan 1211tan()41tan 123πθθθ---===++,故答案为:31,53-25、(2020年江苏卷)】已知2sin ()4πα+ =23,则sin 2α的值是____. 【答案】13【解析】221sin ()(cos )(1sin 2)4222παααα+=+=+121(1sin 2)sin 2233αα∴+=∴= 故答案为:1326、(2019年高考江苏卷)已知tan 2π3tan 4αα=-⎛⎫+ ⎪⎝⎭,则πsin 24α⎛⎫+ ⎪⎝⎭的值是 . 【答案】10【解析】由()tan 1tan tan tan 2tan 1πtan 13tan 1tan 4αααααααα-===-++⎛⎫+ ⎪-⎝⎭,得23tan 5tan 20αα--=,解得tan 2α=,或1tan 3α=-. πππsin 2sin 2cos cos 2sin 444ααα⎛⎫+=+ ⎪⎝⎭)22222sin cos cos sin sin 2cos 2=22sin cos αααααααα⎛⎫+-=+ ⎪+⎝⎭222tan 1tan tan 1ααα⎫+-⎪+⎝⎭, 当tan 2α=时,上式222212==22110⎛⎫⨯+- ⎪+⎝⎭ 当1tan 3α=-时,上式=22112()1()33[]=1210()13⨯-+---+综上,πsin 2410α⎛⎫+= ⎪⎝⎭四、解答题27、(2020届山东省滨州市三校高三上学期联考)已知函数()sin()f x A x ωϕ=+,其中0A >,0>ω,(0,)ϕπ∈,x ∈R ,且()f x 的最小值为-2,()f x 的图象的相邻两条对称轴之间的距离为2π,()f x 的图象过点,03π⎛-⎫⎪⎝⎭. (1)求函数()f x 的解析式和单调递增区间; (2)若[0,2]x π函数()f x 的最大值和最小值.【解析】(1)∵函数()sin()f x A x ωϕ=+的最小值是-2,∴2A =, ∵()f x 的图象的相邻两条对称轴之间的距离为2π,∴24T ππω==,解得:12ω=又∵()f x 的图象过点,03π⎛-⎫⎪⎝⎭, ∴123k πϕπ⎛⎫⨯-+= ⎪⎝⎭,k ∈Z ﹐解得:6k πϕπ=+,k ∈Z ,又∵(0,)ϕπ∈,解得:6π=ϕ. 可得:1()2sin 26f x x π⎛⎫=+ ⎪⎝⎭因为1222262k x k πππππ-+≤+≤+,k ∈Z∴424433k x k ππ-+π≤≤+π,k ∈Z 所以()f x 的递增区间为:424,433k k ππ⎡⎤-+π+π⎢⎥⎣⎦,k ∈Z .(2)∵[0,2]x π ∴17,2666x πππ⎡⎤+∈⎢⎥⎣⎦, ∴11sin 1226x π⎛⎫-≤+≤ ⎪⎝⎭ ∴1()2f x -≤≤所以()f x 的最大值为2,最小值为-1.28、(2020届山东师范大学附中高三月考)设函数5()2cos()cos 2sin()cos 122f x x x x x ππ=++++. (1)设方程()10f x -=在(0,)π内有两个零点12,x x ,求12x x +的值; (2)若把函数()y f x =的图象向左平移6π个单位,再向下平移2个单位,得函数()g x 图象,求函数()g x 在[,]33ππ-上的最值.【解析】(1)由题设知()sin 21cos 21224f x x x x π⎛⎫=-+++=++ ⎪⎝⎭,()10,221,cos 2442f x x x ππ⎛⎫⎛⎫-=++=∴+=-⎪ ⎪⎝⎭⎝⎭ 32244x k πππ+=+或522,44x k k Z πππ+=+∈ 得4x k ππ=+或2x k ππ=+,12123(0,),,,424x x x x x ππππ∈∴==∴+=(2)=()y f x 图像向左平移6π个单位,得222222643412y x x x πππππ⎡⎤⎛⎫⎛⎫⎛⎫=+++=+++=++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦再向下平移2个单位得()212g x x π⎛⎫=+ ⎪⎝⎭当[,]33x ππ∈-时,73(2)[,]12124x πππ+∈-,sin(2)[1,1]12x π+∈- ()f x ∴在[,]33ππ-,最小值为.29、(2020届山东省济宁市高三上期末)已知()()2sin cos 2f x x x x ππ⎛⎫=-+-⎪⎝⎭. (1)若1210f α⎛⎫=⎪⎝⎭,求2cos 23πα⎛⎫+⎪⎝⎭的值; (2)在△ABC 中,角A ,B ,C 所对应的边分别,,a b c ,若有()2cos cos a c B b C -=,求角B 的大小以及()f A 的取值范围.【解析】 (1)()211cos cos 2cos 222f x x x x x x =-=--1sin 262x π⎛⎫=-- ⎪⎝⎭ 因为11sin 26210f απα⎛⎫⎛⎫=--= ⎪ ⎪⎝⎭⎝⎭,所以3sin 65πα⎛⎫-= ⎪⎝⎭所以2223cos 2cos 22sin 1213365πππααα⎛⎫⎛⎫⎛⎫⎛⎫+=--=--=⨯- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭725=- (2)因为()2cos cos a c B b C -=,由正弦定理得:()2sin sin cos sin cos ,A C B B C -=所以2sin cos sin cos sin cos A B C B B C -=, 即()2sin cos sin sin A B B C A =+=,因为sin 0A >,1cos 23B B π=∴=,,所以22=033A C A ππ⎛⎫+∈ ⎪⎝⎭,,,72,666A πππ⎛⎫-∈- ⎪⎝⎭,所以1sin 2,162A π⎛⎫⎛⎤-∈- ⎪ ⎥⎝⎭⎝⎦,所以()f A 的取值范围是11,2⎛⎤- ⎥⎝⎦30、(2020届山东实验中学高三上期中)己知函数()cos sin 244f x x x x a ππ⎛⎫⎛⎫=++++ ⎪ ⎪⎝⎭⎝⎭的最大值为1.(1)求实数a 的值;(2)若将()f x 的图象向左平移6π个单位,得到函数()g x 的图象,求函数()g x 在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值.【解析】(1)()cos sin 244f x x x x a ππ⎛⎫⎛⎫=++++ ⎪ ⎪⎝⎭⎝⎭()2sin 22sin 22f x x x a x x a π⎛⎫∴=+++=++ ⎪⎝⎭2sin 23x a π⎛⎫=++ ⎪⎝⎭21a ∴+=,1a ∴=- (2)将()f x 的图象向左平移6π个单位,得到函数()g x 的图象, ()22sin 212sin 216633g x f x x x ππππ⎡⎤⎛⎫⎛⎫⎛⎫∴=+=++-=+- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦, 0,2x π⎡⎤∈⎢⎥⎣⎦2252,333x πππ⎡⎤∴+∈⎢⎥⎣⎦∴当22233x ππ+=时,2sin 232x π⎛⎫+= ⎪⎝⎭,()g x 1, 当23232x ππ+=时,2sin 213x π⎛⎫+=- ⎪⎝⎭,()g x 取最小值3-.31、(2020·浙江温州中学3月高考模拟)已知()sin()f x A x ωφ=+(0,04,)2A πωφ><<<)过点1(0,)2,且当6x π=时,函数()f x 取得最大值1.(1)将函数()f x 的图象向右平移6π个单位得到函数()g x ,求函数()g x 的表达式; (2)在(1)的条件下,函数2()()()2cos 1h x f x g x x =++-,求()h x 在[0,]2π上的值域.【解析】 (1)由函数()f x 取得最大值1,可得1A =,函数过10,2⎛⎫ ⎪⎝⎭得12sin φ=,,26ππφφ<= 12,6662f k k Z ππππωπ⎛⎫=⇒+=+∈ ⎪⎝⎭,∵04ω<<,∴2ω=()26f x sin x π⎛⎫=+ ⎪⎝⎭,()266g x f x sin x ππ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭.(2) ()22226h x x cos x sin x π⎛⎫=+=+⎪⎝⎭, 710,,2,21266626x x sin x πππππ⎡⎤⎛⎫∈≤+≤-≤+≤ ⎪⎢⎥⎣⎦⎝⎭,12226sin x π⎛⎫-≤+≤ ⎪⎝⎭,值域为[]1,2-.。

数学三角函数的图象与性质试题答案及解析

数学三角函数的图象与性质试题答案及解析

数学三角函数的图象与性质试题答案及解析1.(本题满分14分)已知函数的周期(Ⅰ)若直线与函数的图象在是两个公共点,其横坐标分别为求的值;(Ⅱ)已知三角形的内角的对边分别为且若向量共线,求的值.【答案】(Ⅰ)(Ⅱ)【解析】(Ⅰ)且周期为.的图像关于对称,所以当时,与函数图像的交点关于对称,.(Ⅱ)由(Ⅰ)知,.又.,.2.(本题满分12分)已知,.(I)求函数的单调递增区间;(II)函数的图象可以由函数的图象经过怎样的变换得到?【答案】(I),(II)见解析【解析】(Ⅰ)由已知,4分当,,即,时,函数单调递增,所以函数的单调递增区间为,. 7分(II)函数图象向左平移个单位长度,得到函数的图象;然后使曲线上各点的横坐标缩为原来的倍得到函数的图象;再将曲线上各点的纵坐标伸长为原来的倍得到函数的图象. 12分另法:函数图象上各点的横坐标缩为原来的倍,得到函数的图象;然后使图象向左平移个单位长度,得到函数的图象;再将曲线上各点的纵坐标伸长为原来的倍得到函数的图象. 12分【考点】本题考查平面向量的坐标运算、三角恒等变换、三角函数图象得到变换等基础知识,意在考查考生的数学运算能力、作图视图的能力及应用数学知识解决问题的能力.3.将函数的图象沿轴向左平移个单位后,得到一个偶函数的图象,则的一个可能取值为A.B.C.D.【答案】B【解析】得到的偶函数解析式为,显然【考点】本题考查三角函数的图象和性质,要注意三角函数两种变换的区别,选择合适的值通过诱导公式把转化为余弦函数是考查的最终目的.4.已知函数,下列结论中错误的是()A.的图像关于点中心对称B.的图像关于直线对称C.的最大值为D.既是奇函数,又是周期函数【答案】C【解析】由题意知.令,则.令,得.当时,函数值为0;当时,函数值为;当时,函数值为.∴,即f(x)的最大值为.故选C.【考点】三角函数的性质5.已知,函数在上单调递减.则的取值范围是()A.B.C.D.【答案】A【解析】函数的导数为,要使函数在上单调递减,则有恒成立,则,即,所以,当时,,又,所以有,解得,即,选6.在同一平面直角坐标系中,函数y=cos(+)(x∈[0,2π])的图象和直线y=的交点个数是()A.0B.1C.2D.4【答案】C.【解析】因为y=cos(+)(x∈[0,2π]),即(x∈[0,2π])的图像是半个周期的图像,所以它与直线y=的交点有两个.【考点】三角函数的诱导公式及正弦函数的图像.点评:本小题关键是利用诱导公式把y=cos(+)(x∈[0,2π])转化为(x∈[0,2π])然后画出它的图像从图像上观察它与直线y=的交点个数.7.函数的图象为C,:①图象关于直线对称;②函数在区间内是增函数;③由的图象向右平移个单位长度可以得到图象.以上三个论断中正确论断的个数为A.0B.1C.2D.3【答案】C【解析】函数的图象为C①图象关于直线对称,当k=1时,图象C关于对称;①正确;②x∈时,∈(-,),∴函数在区间内是增函数;②正确;③由的图象向右平移个单位长度可以得到,得不到图象,③错误;∴正确的结论有2个,选C。

高中试卷-5.4 三角函数的图象和性质(含答案)

高中试卷-5.4 三角函数的图象和性质(含答案)

5.4 三角函数的图象和性质1. 用“五点法”作三角函数的图象;2. 利用图象变换作三角函数的图象;3. 利用正、余弦函数的图象解三角不等式;4. 利用正弦函数、余弦函数图象判断方程根的个数;5. 求三角函数的周期;6. 三角函数奇偶性的判断;7. 三角函数奇偶性与周期性的综合运用;8. 求三角函数的单调区间;9. 三角函数对称轴、对称中心;10. 与三角函数有关的函数的值域(或最值)的求解问题;11. 求定义域;12.三角函数的图像和性质的综合应用.一、单选题1.(浙北四校2021届高三12月模拟)若函数f (x )=2x ,x ∈R ,则f (x )是( )A . 最小正周期为π为奇函数B . 最小正周期为π为偶函数C . 最小正周期为π2为奇函数 D . 最小正周期为π2为偶函数【答案】A 【解析】∵+2x =-sin2x ,∴f(x )=-sin2x ,可得f (x )是奇函数,最小正周期T=2π2=π故选:A .2.(2021·永州市第四中学高一月考)函数1sin y x =-,[]0,2x p Î的大致图像是( )A .B .C .D .【答案】B 【解析】当0x =时,1y =;当2x p=时,0y =;当πx =时,1y =;当3π2x =时,2y =;当2x p =时,1y =.结合正弦函数的图像可知B 正确.故选B.3.(2021·全国高三课时练习(理))已知函数,则()f x 在[]0,2p 上的零点的个数为( )A .1B .2C .3D .4【答案】C 【解析】由下图可得()f x 在[]0,2p 上的零点的个数为3,故选C.4.(2021·河南濮阳·高一期末(文))下列函数中,为偶函数的是( )A .()21y x =+B .2xy -=C .sin y x =D .()()lg 1lg 1y x x =++-【答案】C 【解析】对于A,函数关于1x =-对称,函数为非奇非偶函数,故A 错误;对于B,函数为减函数,不具备对称性,不是偶函数,故B 错误;对于C,()()()sin sin sin f x x x x f x -=-==-=,则函数()f x 是偶函数,满足条件,故C 正确;对于D,由1010x x +>ìí->î得11x x >-ìí>î得1x >,函数的定义为()1,+¥,定义域关于原点不对称,为非奇非偶函数,故D 错误.故选:C.5.(2021·河南信阳·°的大小属于区间(A .1,02æö-ç÷èøB .æççèC .10,2æöç÷èøD .【答案】B 【解析】cos 2020cos(5360220)cos 220cos(18040)cos 40°=´°+°=°=°+°=-°,因为cos y x =在(0,90)°上递减,且304045°<°<°,所以cos30cos 40cos 45°>°>°,cos 40>°>所以cos 40<-°<所以cos 2020<°<故选:B6.(2021·辽宁大连·高一期末)函数()cos 26f x x p æö=+ç÷èø的图像的一条对称轴方程为()A .6x p=B .512x p =C .23x p =D .23x p =-【答案】B 【解析】函数()cos 26f x x p æö=+ç÷èø令()26x k k pp +=ÎZ ,则,212k x k p p=-ÎZ ,当1k =时,512x p =,故选B.7.(2021·海南枫叶国际学校高一期中)函数()f x =cos()x w j +的部分图像如图所示,则()f x 的单调递减区间为( )A .13(,44k k k Z p p -+ÎB .13(2,2),44k k k Z p p -+ÎC .13(,),44k k k Z-+ÎD .13(2,244k k k Z-+Î【答案】D 【解析】由五点作图知,1+42{53+42pw j p w j ==,解得=w p ,=4p j ,所以()cos()4f x x p p =+,令22,4k x k k Z pp p p p <+<+Î,解得124k -<x <324k +,k Z Î,故单调减区间为(124k -,324k +),k Z Î,故选D.8.(2021·河南林州一中高一月考)函数()21sin 1xf x x eæö=-ç÷+èø的图象的大致形状是( )A .B .C .D .【答案】A【解析】()211sin sin 11x xxe f x x x ee æö-æö=-=ç÷ç÷++èøèø故()()f x f x -=则()f x 是偶函数,排除C 、D ,又当()0,0x f x ®> 故选:A.9.(2021·山东聊城·高一期末)用五点法作函数()sin 0,0,2y A x A p w j w j æö=+>><ç÷èø的图象时,得到如下表格:x6p 23p x w j+02pp32p 2py4-4则A ,w ,j 的值分别为( )A .4,2,3p-B .4,12,3p C .4,2,6pD .4,12,6p -【答案】A 【解析】由表中的最大值为4,最小值为4-,可得4A =,由21362T p p -=,则T p =,22p w p\==,4sin(2)y x j =+Q ,图象过(6p,0),04sin(2)6p j \=´+,\226k pj p ´+=,()k ÎZ ,解得23k pj p =-,||2pj <Q ,\当0k =时,3pj =-.故选:A .10.(2021·镇原中学高一期末)若点,26P p æö-ç÷èø是函数()()sin 0,2f x x m p w j w j æö=++><ç÷èø的图象的一个对称中心,且点P 到该图象的对称轴的距离的最小值为2p,则( )A .()f x 的最小正周期是pB .()f x 的值域为[]0,4C .()f x 的初相3pj =D .()f x 在4,23p p éùêúëû上单调递增【答案】D 【解析】由题意得()62k k Z m pw j p ì-+=Îïíï=î,且函数的最小正周期为422T p p =´=,故21T p w ==.代入()6k k Z p w j p -+=Î,得()6k k Z pj p =+Î,又2p j <,所以6π=j .所以()sin 26f x x p æö=++ç÷èø.故函数()f x 的值域为[]1,3,初相为6p.故A ,B ,C 不正确,当4[,2]3x p p Î时,313[,626x p p p +Î,而sin y x =在313[,26p p 上单调递增,所以()f x 在4,23p p éùêúëû上单调递增,故D 正确.故选:D.二、多选题11.(2021·陕西渭滨·高一期末)函数tan(2)6y x p=-的一个对称中心是( )A .(,0)12pB .2(,0)3pC .(,0)6pD .(,0)3p【答案】AD 【解析】因为tan()01266f p p p æö=-=ç÷èø;24tan()tan 3366f pp p p æö=-==ç÷èø;tan 66f p p æö==ç÷èø;当3x p =时, 2362p p p ´-=.所以(,0)12p 、(,0)3p 是函数tan(2)6y x p=-的对称中心.故选:AD12.(2021·浙江高三专题练习)下列函数中,是奇函数的是( ).A .2sin y x x=B .sin y x =,[0,2]x p ÎC .sin y x =,[,]x p p Î-D .cos y x x=【答案】ACD 【解析】对A ,由()2sin ==y f x x x ,定义域为R ,且()()()()22sin sin f x x x x x f x -=--=-=-,故函数2sin y x x =为奇函数,故A 正确对B ,由函数的定义域为[0,2]x p Î,故该函数为非奇非偶函数,故B 错对C ,()sin y gx x ==,定义域关于原点对称,且()()()sin sin -=-=-=-g x x x g x ,故C 正确对D ,()cos ==y m x x x 的定义域为R ,且()()()()cos cos -=--=-=-m x x x x x m x ,故该函数为奇函数,故D 正确故选:ACD13.(2021·湖南天心·长郡中学高三月考)下图是函数()sin()f x A x w j =+(其中0A >,0>w ,0||x j <<)的部分图象,下列结论正确的是( )A .函数12y f x p æö=-ç÷èø的图象关于顶点对称B .函数()f x 的图象关于点,012p æö-ç÷èø对称C .函数()f x 在区间,34p p éù-êúëû上单调递增D .方程()1f x =在区间23,1212p p éù-êúëû上的所有实根之和为83p 【答案】ABD 【解析】由已知,2A =,2543124T p p p=-=,因此T p =,∴22pw p==,所以()2sin(2)f x x j =+,过点2,23p æö-ç÷èø,因此43232k p pj p +=+,k ÎZ ,又0||j p <<,所以6π=j ,∴()2sin 26f x x p æö=+ç÷èø,对A ,2sin 212y f x x p æö=-=ç÷èø图象关于原点对称,故A 正确;对B ,当12x p=-时,012f p æö-=ç÷èø,故B 正确;对C ,由222262k x k pppp p -£+£+,有36k x k ppp p -££+,k ÎZ 故C 不正确;对D ,当231212x pp -££时,2[0,4]6x pp +Î,所以1y =与函数()y f x =有4个交点令横坐标为1x ,2x ,3x ,4x ,12317822663x x x x p p p+++=´+´=,故D 正确.故选:ABD.14.(2021·江苏海安高级中学高二期末)关于函数()sin cos f x x x =+()x R Î,如下结论中正确的是( ).A .函数()f x 的周期是2pB .函数()f x 的值域是éëC .函数()f x 的图象关于直线x p =对称D .函数()f x 在3,24p pæöç÷èø上递增【答案】ACD 【解析】A .∵()sin cos f x x x =+,∴sin cos cos sin cos sin ()222f x x x x x x x f x p p p æöæöæö+=+++=+-=+=ç÷ç÷ç÷èøèøèø,∴()f x 是周期为2p的周期函数,A 正确,B .当[0,]2x p Î时,()sin cos 4f x x x x p æö=+=+ç÷èø,此时3,444x p p p éù+Îêúëû,,∴()f x Î,又()f x 的周期是2p,∴x ÎR 时,()f x 值域是,B 错;C .∵()()(2)sin 2cos 2sin cos sin cos ()f x x x x x x x f x p p p -=-+-=-+=+=,∴函数()f x 的图象关于直线x p =对称,C 正确;D .由B 知[0,2x pÎ时,()4f x x p æö=+ç÷èø,当[0,]4x p Î时,[,]442x p p p +Î,()f x 单调递增,而()f x 是周期为2p的周期函数,因此()f x 在3,24p p æöç÷èø上的图象可以看作是在0,4p æöç÷èø上的图象向右平移2p 单位得到的,因此仍然递增.D 正确.故选:ACD .三、填空题15.(2021·山东高一期末)函数tan 2xy =的定义域为_____.【答案】{}2,x x k k Z p p ¹+Î【解析】解不等式()22x k k Z pp ¹+Î,可得()2x k k Z p p ¹+Î,因此,函数tan2xy =的定义域为{}2,x x k k Z p p ¹+Î.故答案为:{}2,x x k k Z p p ¹+Î.16.(2021·河南林州一中高一月考)函数224sin 6cos 633y x x x pp æö=+--££ç÷èø的值域________.【答案】16,4éù-êúëû【解析】224sin 6cos 64(1cos )6cos 6y x x x x =+-=-+-22314cos 6cos 24(cos )44x x x =-+-=--+,233x p p -££Q ,1cos 12x \-££ ,故231164(cos )444x -£--+£,故答案为:16,4éù-êúëû17.(2021·全国高考题)关于函数f (x )=1sin sin x x+有如下四个命题:①f(x )的图像关于y 轴对称.②f(x )的图像关于原点对称.③f(x )的图像关于直线x=2p对称.④f(x )的最小值为2.其中所有真命题的序号是__________.【答案】②③【解析】对于命题①,152622f p æö=+=ç÷èø,152622f p æö-=--=-ç÷èø,则66f f p p æöæö-¹ç÷ç÷èøèø,所以,函数()f x 的图象不关于y 轴对称,命题①错误;对于命题②,函数()f x 的定义域为{},x x k k Z p ¹Î,定义域关于原点对称,()()()()111sin sin sin sin sin sin f x x x x f x x x x æö-=-+=--=-+=-ç÷-èø,所以,函数()f x 的图象关于原点对称,命题②正确;对于命题③,11sin cos 22cos sin 2f x x x x x p p p æöæö-=-+=+ç÷ç÷æöèøèø-ç÷èøQ ,11sin cos 22cos sin 2f x x x x x p p p æöæö+=++=+ç÷ç÷æöèøèø+ç÷èø,则22f x f x p p æöæö-=+ç÷ç÷èøèø,所以,函数()f x 的图象关于直线2x p=对称,命题③正确;对于命题④,当0x p -<<时,sin 0x <,则()1sin 02sin f x x x=+<<,命题④错误.故答案为:②③.18.(2021·上海高一课时练习)函数42cos 133æö=+-ç÷èøx y p ,当x =_________时有最小值,最小值是___________.【答案】3,22k k Z pp +Î 3- 【解析】当4cos 133x p æö+=-ç÷èø时,即4233x k p p p +=+,可得3,22x k k Z pp =+Î,此时y 取得最小值;此时,最小值为3-;故答案为:3,22k k Z pp +Î; 3-.19.(2021·浙江高一课时练习)设函数()sin f x A B x =+,当0B <时,()f x 的最大值是32,最小值是12-,则A =_____,B =_____.【答案】121- 【解析】根据题意,得3212A B A B ì-=ïïíï+=-ïî,解得1,12A B ==-.故答案为:1,12-20.(2021·上海高一课时练习)函数sin 2sin =+xy x的最大值是________,最小值是________.【答案】131- 【解析】Q 21si 2sin 2sin n x y x x -==++,Q 221sin 11sin 232sin 23x x x -££Þ£+£Þ-£-£-+,\2111sin 23x -£-£+,\函数sin 2sin =+xy x 的最大值是13;最小值是1-.故答案为:13;1-.21.(2021·上海高一课时练习)若函数2()cos sin (0)=-+>f x x a x b a 的最大值为0,最小值为4-,则实数a =_________,b =________.【答案】2 2- 【解析】Q 2sin si )n (1x f a x b x =--++,令sin (11)t x t =-££,则21(11)y t at b t --++££=-,函数的对称轴为2a t =-,当12a-£-,即2a ³时,110,2,114,2,a b a a b b -+++==ììÞíí--++=-=-îî当102a -<-<,即02a <<时,2((1022a aa b ---×-++=且114a b --++=-,此时方程组无解;\2,2,a b =ìí=-î故答案为:2,2-.五、解答题22.(2021·全国高一课时练习)求下列函数的定义域.(1)y =(2)sin cos tan x xy x+=.【答案】(1){|22,}x k x k k Z p p p ££+Î;(2)|,2k x x k Z p ìü¹Îíýîþ【解析】(1)要使函数有意义,必须使sin 0x ³.由正弦的定义知,sin 0x ³就是角x 的终边与单位圆的交点的纵坐标是非负数.∴角x 的终边应在x 轴或其上方区域,∴22,k x k k Z p p p ££+Î.∴函数y ={|22,}x k x k k Z p p p ££+Î.(2)要使函数有意义,必须使tan x 有意义,且tan 0x ¹.∴,()2x k k Z x k p p pì¹+ïÎíï¹î∴,2kx k Z p ¹Î.∴函数sin cos tan x x y x +=的定义域为|,2k x x k Z p ìü¹Îíýîþ.23.(2021·涡阳县第九中学高一月考)已知函数()()2sin (0,0)f x x w j w j p =+><<最小正周期为p,图象过点4p æçè.(1)求函数()f x 解析式(2)求函数()f x 的单调递增区间.【答案】(1)()2sin(2)4f x x p=+;(2)()3,88k k k Z p p p p éù-++Îêúëû.【解析】(1)由已知得2pp =w,解得2w =.将点4p æçè2sin 24p j æö=´+ç÷èø,可知cos j =,由0j p <<可知4pj =,于是()2sin 24f x x p æö=+ç÷èø.(2)令()222242k x k k Z pppp p -+£+£+Î解得()388k x k k Z p pp p -+££+Î, 于是函数()f x 的单调递增区间为()3,88k k k Z p pp p éù-++Îêúëû.24.(2021·全国高三(文))(1)利用“五点法”画出函数1()sin()26f x y x p==+在长度为一个周期的闭区间的简图.列表:126x p +x y 作图:(2)并说明该函数图象可由sin (R)y x x =Î的图象经过怎么变换得到的.(3)求函数()f x 图象的对称轴方程.【答案】(1)见解析(2) 见解析(3) 22,3x k k Z pp =+Î.【解析】(1)先列表,后描点并画图126x p +02pp32p 2px3p-23p 53π83p 113p y 01-1;(2)把sin y x =的图象上所有的点向左平移6p个单位, 再把所得图象的点的横坐标伸长到原来的2倍(纵坐标不变),得到1sin(26y x p=+的图象,即1sin(26y x p=+的图象;(3)由12,2,2623x kx x k k Z p p pp +=+=+Î,所以函数的对称轴方程是22,3x k k Z pp =+Î.25.(2021·全国高一课时练习)求函数πtan(3)3y x =-的定义域、值域,并判断它的奇偶性和单调性.【答案】定义域为5|,,318k x x x k p p ìüι+ÎíýîþR Z 且,值域为R ,非奇非偶函数,递增区间为5,()183183k k k p p p pæö-++Îç÷èøZ 【解析】tan y t =的定义域为|,2t t k k Z p p ìü¹+Îíýîþ,单调增区间为,,22k k k Z pp p p æö-+Îç÷èø.又tan 33y x p æö=-ç÷èø看成tan ,33y t t x p==-的复合函数,由2t k pp ¹+得5,318k x k Z p p¹+Î,所以所求函数的定义域为5|,318k x x k Z p p ìü¹+Îíýîþ,值域为R ;函数tan 33y x p æö=-ç÷èø的定义域不关于原点对称,因此该函数是非奇非偶函数;令3232k x k pppp p -<-<+,解得5,318318k k x k Z p p p p -<<+Î,即函数tan 33y x p æö=-ç÷èø的单调递增区间为5,,318318k k k Z p p p p æö-+Îç÷èø.26.(2021·陕西省汉中中学(理))已知函数()2sin(1(0)6f x x pw w =-->的周期是p .(1)求()f x 的单调递增区间;(2)求()f x 在[0,2p上的最值及其对应的x 的值.【答案】(1)(),63k k k Z p p p p éù-++Îêúëû;(2)当0x =时,()min 2f x =-;当3x p =时,()max 1f x =.【解析】(1)解:∵2T pp w==,∴2w =,又∵0>w ,∴2w =,∴()2sin 216f x x p æö=--ç÷èø,∵222262k x k pppp p -+£-£+,k Z Î,∴222233k x k p pp p -+££+,k Z Î,∴63k x k ppp p -+££+,k Z Î,∴()f x 的单调递增区间为(),63k k k Z p p p p éù-++Îêúëû(2)解:∵02x p££,∴02x ££p ,∴52666x ppp-£-£,∴1sin 2126x p æö-£-£ç÷èø,∴12sin 226x p æö-£-£ç÷èø,∴22sin 2116x p æö-£--£ç÷èø,当0x =时,()min 2f x =-,当226x ππ-=,即3x p=时,()max 1f x =27.(2021·镇原中学高一期末)已知函数()()()sin 0,0,f x A x A w j w j p =+>><,在一周期内,当12x p=时,y 取得最大值3,当712x p=时,y 取得最小值3-,求(1)函数的解析式;(2)求出函数()f x 的单调递增区间、对称轴方程、对称中心坐标;(3)当,1212x p p éùÎ-êúëû时,求函数()f x 的值域.【答案】(1)()3sin 23f x x p æö=+ç÷èø;(2)增区间为()5,1212k k k Z p p p p éù-+Îêúëû,对称轴方程为212k x p p =+,k Z Î,对称中心为,062k p p æö-+ç÷èø(k Z Î);(3)3,32éùêúëû.【解析】(1)由题设知,3A =,周期7212122T p p p =-=,T p =,由2T p w =得2w =.所以()()3sin 2f x x j =+.又因为12x p=时,y 取得最大值3,即3sin 36j p æö+=ç÷èø,262k p p j p \+=+,解得23k p j p =+,又j p <,所以3pj =,所以()3sin 23f x x p æö=+ç÷èø.(2)由222232k x k pppp p -£+£+,得51212k x k p p p p -££+.所以函数()f x 的单调递增区间为()5,1212k k k Z p p p p éù-+Îêúëû.由232x k ppp +=+,k Z Î,得212k x p p=+,k Z Î.对称轴方程为212k x p p=+,k Z Î..由23x k pp +=,得62πkπx =-+(k Z Î).所以,该函数的对称中心为,062k p p æö-+ç÷èø(k Z Î).(3)因为,1212x p p éùÎ-êúëû,所以2,362x p p p éù+Îêúëû,则1sin 2,132x p æöéù+Îç÷êúèøëû,所以33sin 2323x p æö£+£ç÷èø.所以值域为:3,32éùêúëû.所以函数()f x 的值域为3,32éùêúëû.。

(word完整版)高中数学三角函数习题及答案(2021年整理)

(word完整版)高中数学三角函数习题及答案(2021年整理)

(word完整版)高中数学三角函数习题及答案(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((word完整版)高中数学三角函数习题及答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(word完整版)高中数学三角函数习题及答案(word版可编辑修改)的全部内容。

第一章 三角函数一、选择题 1.已知为第三象限角,则2α所在的象限是( ). A .第一或第二象限 B .第二或第三象限 C .第一或第三象限D .第二或第四象限2.若sin θcos θ>0,则θ在( ). A .第一、二象限 B .第一、三象限 C .第一、四象限D .第二、四象限3.sin3π4cos 6π5tan ⎪⎭⎫⎝⎛3π4-=( ). A .-433 B .433 C .-43 D .43 4.已知tan θ+θtan 1=2,则sin θ+cos θ等于( ). A .2B .2C .-2D .±25.已知sin x +cos x =51(0≤x <π),则tan x 的值等于( ). A .-43B .-34C .43D .346.已知sin >sin ,那么下列命题成立的是( ).A .若,是第一象限角,则cos >cosB .若,是第二象限角,则tan >tanC .若,是第三象限角,则cos >cosD .若,是第四象限角,则tan>tan7.已知集合A ={|=2k π±3π2,k ∈Z },B ={|=4k π±3π2,k ∈Z },C = {γ|γ=k π±3π2,k ∈Z },则这三个集合之间的关系为( ). A .A ⊆B ⊆C B .B ⊆A ⊆C C .C ⊆A ⊆B D .B ⊆C ⊆A8.已知cos(+)=1,sin =31,则sin 的值是( ).A .31B .-31C .322 D .-322 9.在(0,2π)内,使sin x >cos x 成立的x 取值范围为( ).A .⎪⎭⎫ ⎝⎛2π ,4π∪⎪⎭⎫⎝⎛4π5 ,π B .⎪⎭⎫⎝⎛π ,4πC .⎪⎭⎫⎝⎛4π5 ,4πD .⎪⎭⎫ ⎝⎛π ,4π∪⎪⎭⎫ ⎝⎛23π ,4π5 10.把函数y =sin x (x ∈R )的图象上所有点向左平行移动3π个单位长度,再把所得图象上所有点的横坐标缩短到原来的21倍(纵坐标不变),得到的图象所表示的函数是( ).A .y =sin ⎪⎭⎫⎝⎛3π - 2x ,x ∈RB .y =sin ⎪⎭⎫⎝⎛6π + 2x ,x ∈RC .y =sin ⎪⎭⎫ ⎝⎛3π + 2x ,x ∈RD .y =sin ⎪⎭⎫⎝⎛32π + 2x ,x ∈R二、填空题11.函数f (x )=sin 2x +3tanx 在区间⎥⎦⎤⎢⎣⎡3π4π ,上的最大值是 .12.已知sin =552,2π≤≤π,则tan = . 13.若sin ⎪⎭⎫ ⎝⎛α + 2π=53,则sin ⎪⎭⎫⎝⎛α - 2π= .14.若将函数y =tan ⎪⎭⎫ ⎝⎛4π + x ω(ω>0)的图象向右平移6π个单位长度后,与函数y =tan ⎪⎭⎫ ⎝⎛6π + x ω的图象重合,则ω的最小值为 .15.已知函数f (x )=21(sin x +cos x )-21|sin x -cosx |,则f (x )的值域是 .16.关于函数f (x )=4sin ⎪⎭⎫⎝⎛3π + 2x ,x ∈R ,有下列命题:①函数 y = f (x )的表达式可改写为y = 4cos ⎪⎭⎫ ⎝⎛6π - 2x ;②函数 y = f (x )是以2π为最小正周期的周期函数; ③函数y =f (x )的图象关于点(-6π,0)对称; ④函数y =f (x )的图象关于直线x =-6π对称. 其中正确的是______________.三、解答题17.求函数f (x )=lgsin x +1cos 2-x 的定义域.18.化简:(1))-()+(-)++()+()-(-)++(-αααααα︒︒︒︒180cos cos 180tan 360tan sin 180sin ;(2))-()+()-()++(πcos πsin πsin πsin n n n n αααα(n ∈Z ).19.求函数y =sin ⎪⎭⎫⎝⎛6π - 2x 的图象的对称中心和对称轴方程.20.(1)设函数f (x )=xax sin sin +(0<x <π),如果 a >0,函数f (x )是否存在最大值和最小值,如果存在请写出最大(小)值;(2)已知k <0,求函数y =sin 2x +k (cos x -1)的最小值.参考答案一、选择题 1.D解析:2k π+π<<2k π+23π,k ∈Z ⇒k π+2π<2α<k π+43π,k ∈Z .2.B解析:∵ sin θcos θ>0,∴ sin θ,cos θ同号.当sin θ>0,cos θ>0时,θ在第一象限;当sin θ<0,cos θ<0时,θ在第三象限.3.A解析:原式=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-3πtan 6πcos 3πsin =-433.4.D解析:tan θ+θtan 1=θθcos sin +θθsin cos =θθcos sin 1=2,sin cos =21.(sin θ+cos θ)2=1+2sin θcos θ=2.sin +cos =±2.5.B解析:由得25cos 2x -5cos x -12=0. 解得cos x =54或-53. 又 0≤x <π,∴ sin x >0.若cos x =54,则sin x +cos x ≠51,∴ cos x =-53,sin x =54,∴ tan x =-34. 6.D解析:若 ,是第四象限角,且sin >sin ,如图,利⎩⎨⎧1=cos +sin 51=cos +sin 22x x x x用单位圆中的三角函数线确定,的终边,故选D .7.B解析:这三个集合可以看作是由角±3π2的终边每次分别旋转一周、两周和半周所得到的角的集合.8.B解析:∵ cos (+)=1,∴ +=2k π,k ∈Z . ∴=2k π-.∴ sin =sin(2k π-)=sin (-)=-sin =-31.9.C解析:作出在(0,2π)区间上正弦和余弦函数的图象,解出两交点的横坐标4π和45π,由图象可得答案.本题也可用单位圆来解.10.C解析:第一步得到函数y =sin ⎪⎭⎫ ⎝⎛+3πx 的图象,第二步得到函数y =sin ⎪⎭⎫ ⎝⎛+3π2x 的图象.二、填空题 11.415. 解析:f (x )=sin 2 x +3tan x 在⎥⎦⎤⎢⎣⎡3π4π,上是增函数,f (x )≤sin 23π+3tan 3π=415. 12.-2. 解析:由sin =552,2π≤≤πcos =-55,所以tan =-2.13.53.解析:sin ⎪⎭⎫⎝⎛α + 2π=53,即cos=53,∴ sin ⎪⎭⎫⎝⎛α - 2π=cos=53.14.21.解析:函数y =tan⎪⎭⎫ ⎝⎛4π+x ω (ω>0)的图象向右平移6π个单位长度后得到函数y =tan ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛4π+6π-x ω=tan ⎪⎭⎫ ⎝⎛ωω6π-4π+x 的图象,则6π=4π-6πω+k π(k ∈Z ),ω=6k +21,又ω>0,所以当k =0时,ωmin =21.15.⎥⎦⎤⎢⎣⎡221 ,-.解析:f (x )=21(sin x +cos x )-21|sin x -cos x |=⎩⎨⎧)<()(x x x x x x cos sinsin cos ≥sin cos 即 f (x )等价于min {sin x ,cos x },如图可知,f (x )max =f ⎪⎭⎫⎝⎛4π=22,f (x )min =f (π) =-1.16.①③.解析:① f (x )=4sin ⎪⎭⎫ ⎝⎛+3π2x =4cos ⎪⎭⎫ ⎝⎛--3π22πx=4cos ⎪⎭⎫ ⎝⎛+-6π2x=4cos ⎪⎭⎫ ⎝⎛-6π2x .② T =22π=π,最小正周期为π. ③ 令 2x +3π=k π,则当 k =0时,x =-6π,∴ 函数f (x )关于点⎪⎭⎫⎝⎛0 6π-,对称. ④ 令 2x +3π=k π+2π,当 x =-6π时,k =-21,与k ∈Z 矛盾.∴ ①③正确. 三、解答题(第15题)17.{x |2k π<x ≤2k π+4π,k ∈Z }.解析:为使函数有意义必须且只需⎪⎩⎪⎨⎧-② 0 ≥1 cos 2① >0 sin x x先在[0,2π)内考虑x 的取值,在单位圆中,做出三角函数线. 由①得x ∈(0,π),由②得x ∈[0,4π]∪[47π,2π].二者的公共部分为x ∈⎥⎦⎤ ⎝⎛4π0,.所以,函数f (x )的定义域为{x |2k π<x ≤2k π+4π,k ∈Z }. 18.(1)-1;(2) ±αcos 2. 解析:(1)原式=αααααα cos cos tan tan sin sin -+--=-ααtan tan =-1.(2)①当n =2k ,k ∈Z 时,原式=)-()+()-()++(π2 cos π2sin π2sin π2sin k k k k αααα=αcos 2.②当n =2k +1,k ∈Z 时,原式=])+-([])++([])+-([]+)++([π12 cos π12sin π12sin π12sin k k k k αααα=-αcos 2.19.对称中心坐标为⎪⎭⎫⎝⎛0 ,12π + 2πk ;对称轴方程为x =2πk +3π(k ∈Z ). 解析:∵ y =sin x 的对称中心是(k π,0),k ∈Z ,∴ 令2x -6π=k π,得x =2πk +12π. ∴ 所求的对称中心坐标为⎪⎭⎫⎝⎛0 ,12π + 2πk ,k ∈Z . 又 y =sin x 的图象的对称轴是x =k π+2π, ∴ 令2x -6π=k π+2π,得x =2πk +3π. ∴ 所求的对称轴方程为x =2πk +3π(k ∈Z ). 20.(1)有最小值无最大值,且最小值为1+a ; (2)0. 解析:(1) f (x )=x a x sin sin +=1+xa sin ,由0<x <π,得0<sin x ≤1,又a >0,所以当sin x =1时,f (x )取最小值1+a ;此函数没有最大值.(2)∵-1≤cos x ≤1,k <0,∴k(cos x-1)≥0,又 sin2x≥0,∴当 cos x=1,即x=2k(k∈Z)时,f(x)=sin2 x+k(cos x-1)有最小值f(x)min =0.。

高考数学专项练复习《三角函数的图像与性质》真题练习

高考数学专项练复习《三角函数的图像与性质》真题练习

高考数学专项练复习《三角函数的图像与性质》
1.(2021年北京卷数学试题)函数()cos cos2f x x x =-,试判断函数的奇偶性及最大值( )
A. 奇函数,最大值为2
B. 偶函数,最大值为2
C. 奇函数,最大值为9
8 D. 偶函数,最大值为98
2.(2021年全国高考乙卷数学(理)试题)把函数()y f x =图像上所有点的横坐标缩短到原来的12倍,纵坐标不变,再把所得曲线向右平移3π个单位长度,得到函数sin 4y x π⎛⎫=- ⎪⎝
⎭的图像,则()f x =( ) A .7sin 212x x ⎛⎫- ⎪⎝⎭
B .sin 212x π⎛⎫+ ⎪⎝⎭
C .7sin 212x π
⎛⎫-
⎪⎝⎭ D .sin 212x π⎛⎫
+ ⎪⎝⎭ 3.(2021年全国新高考Ⅰ卷数学试题)下列区间中,函数()7sin 6f x x π⎛
⎫=- ⎪⎝⎭
单调递增的区间是( ) A .0,
2π⎛⎫ ⎪⎝⎭ B .,2ππ⎛⎫ ⎪⎝⎭ C .3,2ππ⎛⎫ ⎪⎝⎭ D .3,22ππ⎛⎫ ⎪⎝⎭
4.(2021年全国高考甲卷数学(文)试题)已知函数()()2cos f x x ωϕ=+的部分图像如图所示,则2f π⎛⎫= ⎪⎝⎭
_______________.。

高一数学三角函数的图象与性质试题答案及解析

高一数学三角函数的图象与性质试题答案及解析

高一数学三角函数的图象与性质试题答案及解析1.已知函数的图像关于直线对称,且图像上相邻两个最高点的距离为.(1)求和的值;(2)若,求的值【答案】(1)ω=2,;(2).【解析】(1)由题意可得函数f(x)的最小正周期为π 求得ω=2.再根据图象关于直线对称,结合可得φ 的值.(2)由条件求得再根据的范围求得的值,再根据,利用两角和的正弦公式计算求得结果.试题解析:(1)因为f(x)图像上相邻两个最高点的距离为,所以f(x)的最小正周期,从而,又因f(x)的图象关于直线对称,所以,又因为得,所以.(2)由(1)得所以,又得所以,因此.【考点】三角函数的周期公式,诱导公式,三角函数的图像与性质,角的变换,两角和的正弦公式,同角三角函数的基本关系(平方关系).2.不等式的解集为 .【答案】【解析】本题主要考查三角函数的恒等变换.由得:,故不等式的解集为.【考点】三角函数的恒等变换,三角函数的性质.3.函数的一条对称轴方程是().A.B.C.D.【答案】A【解析】的对称轴方程为,即令,得.【考点】诱导公式、三角函数的图像与性质.4.已知函数,.(1)求的最小正周期;(2)求在闭区间上的最大值和最小值.【答案】(1);(2)最大值为,最小值为.【解析】解题思路:利用两角和与差的三角公式和二倍角公式及其变形化成的形式,再求周期与最值.规律总结:涉及三角函数的周期、最值、单调性、对称性等问题,往往先根据三角函数恒等变形化为的形式,再利用三角函数的图像与性质进行求解.注意点:求在给定区间上的最值问题,要注意结合正弦函数或余弦函数的图像求解.试题解析:(1),故的最小正周期为π.(2)函数在闭区间上的最大值为,最小值为 .【考点】1.三角恒等变形;2.三角函数的图像与性质.5.已知函数是定义在上的偶函数,且在区间上是增函数.令,,,则()A.B.C.D.【答案】A【解析】由于,又,又在区间上是增函数,所以有。

【考点】函数的单调性及三角函数值大小的比较。

2021年高考数学二轮复习 第一讲 三角函数的图象与性质

2021年高考数学二轮复习 第一讲 三角函数的图象与性质

2021年高考数学二轮复习 第一讲 三角函数的图象与性质题号 1 2 3 456 答案C .f (sin A )>f B f B f A解析:由题意知:周期函数f (x )在[-1,0]上是减函数,在[0,1]上是增函数.又因为A ,B 是锐角三角形的两个内角,A +B >π2,得:sin A >cos B ,故f (sin A )>f (cos B ).综上知选A.答案:A3.函数y =2sin ⎝ ⎛⎭⎪⎫πx 6-π3(0≤x ≤9)的最大值与最小值之和为( )A .2- 3B .0C .-1D .-1- 3解析:用五点作图法画出函数y =2sin ⎝ ⎛⎭⎪⎫πx 6-π3(0≤x ≤9)的图象,注意0≤x ≤9知,函数的最大值为2,最小值为- 3.故选A.答案:A4. 把函数y =cos 2x +1的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移 1个单位长度,得到的图象是( )解析:y =cos 2x +1的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移1个单位长度,得到的解析式为y =cos (x +1).故选A.答案:A5.(xx·辽宁卷)将函数y =3sin ⎝⎛⎭⎪⎫2x +π3的图象向右平移π2个单位长度,所得图象对应的函数( )A .在区间⎣⎢⎡⎦⎥⎤π12,7π12上单调递减B .在区间⎣⎢⎡⎦⎥⎤π12,7π12上单调递增C .在区间⎣⎢⎡⎦⎥⎤-π6,π3上单调递减 D .在区间⎣⎢⎡⎦⎥⎤-π6,π3上单调递增解析:将函数y =3sin ⎝⎛⎭⎪⎫2x +π3的图象向右平移π2个单位长度,得到y =3sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x -π2+π3=3sin ⎝ ⎛⎭⎪⎫2x -2π3,令2k π-π2≤2x -2π3≤2k π+π2,解得k π+π12≤x ≤k π+7π12,故递增区间为⎣⎢⎡⎦⎥⎤k π+π12,k π+7π12(k ∈Z),当k =0时,得递增区间为⎣⎢⎡⎦⎥⎤π12,7π12.故选B.答案:B6.已知函数f (x )=A sin(ωx +φ)(x ∈R,A >0,ω>0,|φ|<π2)的图象(部分)如图所示,则f (x )的解析式是( )A .f (x )=2sin ⎝⎛⎭⎪⎫πx +π6(x ∈R)B .f (x )=2sin ⎝ ⎛⎭⎪⎫2πx +π6(x ∈R) C .f (x )=2sin ⎝ ⎛⎭⎪⎫πx +π3(x ∈R) D .f (x )=2sin ⎝⎛⎭⎪⎫2πx +π3(x ∈R)解析:由图象可知其周期为:4⎝ ⎛⎭⎪⎫56-13=2,∵2πω=2,得ω=π,故只可能在A ,C 中选一个,又因为x =13时达到最大值,用待定系数法知φ=π6.答案:A二、填空题7.若sin θ=-45,tan θ>0,则cos θ=________.答案:-358.已知角α的终边经过点(-4,3),则cos α=________.解析:由题意可知x =-4,y =3,r =5,所以cos α=x r =-45.答案:-45三、解答题9. (xx·福建卷)已知函数f (x )=2cos x (sin x +cos x ).(1)求f ⎝ ⎛⎭⎪⎫5π4的值; (2)求函数f (x )的最小正周期及单调递增区间.分析:思路一 直接将5π4代入函数式,应用三角函数诱导公式计算.(2)应用和差倍半的三角函数公式,将函数化简2sin ⎝ ⎛⎭⎪⎫2x +π4+1. 得到T =2π2=π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z , 解得k π-3π8≤x ≤k π+π8,k ∈Z.思路二 先应用和差倍半的三角函数公式化简函数f (x )=2sin x cos x +2cos2x =2sin ⎝⎛⎭⎪⎫2x +π4+1.(1)将5π4代入函数式计算; (2)T =2π2=π. 由2k π-π2≤2x +π4≤2k π+π2,k ∈Z , 解得k π-3π8≤x ≤k π+π8,k ∈Z.解析:解法一 (1)f ⎝ ⎛⎭⎪⎫5π4=2cos 5π4⎝ ⎛⎭⎪⎫sin 5π4+cos 5π4=-2cos π4⎝ ⎛⎭⎪⎫-sin π4-cos π4 =2.(2)因为f (x )=2sin x cos x +2cos2x =sin 2x +cos 2x +1 =2sin ⎝⎛⎭⎪⎫2x +π4+1. 所以T =2π2=π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z , 得k π-3π8≤x ≤k π+π8,k ∈Z ,所以f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-3π8,k π+π8,k ∈Z. 解法二 因为f (x )=2sin x cos x +2cos2x=sin 2x +cos 2x +1 =2sin ⎝⎛⎭⎪⎫2x +π4+1. (1)f ⎝ ⎛⎭⎪⎫5π4=2sin 11π4+1=2sin π4+1=2.(2)T =2π2=π. 由2k π-π2≤2x +π4≤2k π+π2,k ∈Z , 得k π-3π8≤x ≤k π+π8,k ∈Z ,所以f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-3π8,k π+π8,k ∈Z.10.函数f (x )=A sin ⎝ ⎛⎭⎪⎫ωx -π6+1(A >0,ω>0)的最大值为3, 其图象相邻两条对称轴之间的距离为π2.(1)求函数f (x )的解析式;(2)设α∈⎝ ⎛⎭⎪⎫0,π2,则f ⎝ ⎛⎭⎪⎫α2=2,求α的值.解析:(1)∵函数f (x )的最大值为3,∴A +1=3,即A =2. ∵函数图象的相邻两条对称轴之间的距离为π2,∴最小正周期为 T =π, ∴ω=2,故函数f (x )的解析式为y =2sin ⎝⎛⎭⎪⎫2x -π6+1.(2)∵f ⎝ ⎛⎭⎪⎫α2=2sin ⎝ ⎛⎭⎪⎫α-π6+1=2, 即sin ⎝⎛⎭⎪⎫α-π6=12,∵0<α<π2,∴-π6 <α-π6<π3.∴α-π6=π6,故α=π3.11. (xx·北京卷)函数f (x )=3sin ⎝⎛⎭⎪⎫2x +π6的部分图象如图所示.(1)写出f (x )的最小正周期及图中x 0、y 0的值; (2)求f (x )在区间⎣⎢⎡⎦⎥⎤-π2,-π12上的最大值和最小值.分析:(1)由图可得出该三角函数的周期,从而求出x 0,y 0;(2)把2x +π6看作一个整体,从而求出最大值与最小值.解析:(1)由题意知:f (x )的最小正周期为π,x 0=7π6,y 0=3.(2)因为x ∈⎣⎢⎡⎦⎥⎤-π2,-π12,所以2x +π6∈⎣⎢⎡⎦⎥⎤-5π6,0,于是当2x +π6=0,即x =-π12时,f (x )取得最大值0;当2x +π6=-π2,即x =-π3时,f (x )取得最小值-3.39857 9BB1 鮱39411 99F3 駳 35477 8A95 誕37540 92A4 銤38156950C 锌z29672 73E8 珨a25207 6277 扷_'20296 4F48 佈。

高考数学专题《三角函数的图象与性质》习题含答案解析

高考数学专题《三角函数的图象与性质》习题含答案解析

专题5.3 三角函数的图象与性质1.(2021·北京市大兴区精华培训学校高三三模)下列函数中,既是奇函数又以π为最小正周期的函数是()A .cos 2y x =B .sin2y x=C .sin cos y x x=+D .tan 2y x=【答案】B 【解析】由三角函数的奇偶性和周期性判断即可得出答案.【详解】解:A 选项:cos 2y x =是周期为π的偶函数,故A 不正确;B 选项:sin2y x =是周期为π的奇函数,故B 正确;C选项:sin cos 4y x x x π⎛⎫=+=+ ⎪⎝⎭,周期为2π且非奇非偶函数,故C 不正确;D 选项:tan 2y x =是周期为2π的奇函数,故D 不正确.故选:B.2.(2021·海南高三其他模拟)下列函数中,既是偶函数又存在零点的是( )A .ln y x =B .21y x =+C .sin y x=D .cos y x=【答案】D 【解析】根据题意,依次分析选项中函数的奇偶性以及是否存在零点,综合即可得答案.【详解】解:根据题意,依次分析选项:对于A ,y lnx =,为对数函数,不是奇函数,不符合题意,对于B ,21y x =+,为二次函数,是偶函数,但不存在零点,不符合题意,对于C ,sin y x =,为正弦函数,是奇函数,不符合题意,对于D ,cos y x =,为余弦函数,既是偶函数又存在零点,符合题意,故选:D .练基础3.(2021·浙江高三其他模拟)函数y =sin tan x e xx在[-2,2]上的图像可能是( )A .B .C .D .【答案】B 【解析】利用同角三角函数的商数关系并注意利用正切函数的性质求得函数的定义域,可以化简得到()cos ,2x k f x e x x k Z π⎛⎫=≠∈ ⎪⎝⎭,考察当x 趋近于0时,函数的变化趋势,可以排除A,考察端点值的正负可以评出CD.【详解】()sin cos ,tan 2x x e x k f x e x x k Z x π⎛⎫==≠∈ ⎪⎝⎭,当x 趋近于0时,函数值趋近于0cos 01e =,故排除A;()22cos 20f e =<,故排除CD,故选:B4.(2021·全国高三其他模拟(理))函数y =tan(3x +6π)的一个对称中心是( )A .(0,0)B .(6π,0)C .(49π,0)D .以上选项都不对【答案】C 【解析】根据正切函数y =tan x 图象的对称中心是(2k π,0)求出函数y =tan(3x +6π)图象的对称中心,即可得到选项.【详解】解:因为正切函数y =tan x 图象的对称中心是(2k π,0),k ∈Z ;令3x +6π=2k π,解得618k x ππ=-,k ∈Z ;所以函数y =tan(3x +6π)的图象的对称中心为(618k ππ-,0),k ∈Z ;当k =3时,C 正确,故选:C.5.(2019年高考全国Ⅱ卷文)若x 1=,x 2=是函数f (x )=(>0)两个相邻的极值点,则=( )A .2B .C .1D .【答案】A【解析】由题意知,的周期,解得.故选A .6.(2021·临川一中实验学校高三其他模拟(文))若函数cos (0)y x ωω=>的图象在区间,24ππ⎛⎫- ⎪⎝⎭上只有一个对称中心,则ω的取范围为( )A .12ω<≤B .ω1≤<2C .13ω<≤D .13ω≤<【答案】A 【解析】根据题意可得422πππω≤<,即可求出.【详解】4π43πsin x ωωω3212()sin f x x ω=232()44T ωπππ==-=π2ω=由题可知,cos (0)y x ωω=>在,42ππ⎡⎫⎪⎢⎣⎭上只有一个零点,又2x πω=,2x πω=,所以422πππω≤<,即12ω<≤.故选:A.7.(2019年高考北京卷文)设函数f (x )=cos x +b sin x (b 为常数),则“b =0”是“f (x )为偶函数”的( ) A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【解析】时,,为偶函数;为偶函数时,对任意的恒成立,即,,得对任意的恒成立,从而.从而“”是“为偶函数”的充分必要条件,故选C.8.(2021·青海西宁市·高三二模(文))函数()cos 218f x x π⎛⎫=-- ⎪⎝⎭图象的一个对称中心为( )A .,14π⎛⎫-- ⎪⎝⎭B .,14π⎛⎫-⎪⎝⎭C .,116π⎛⎫-- ⎪⎝⎭D .3,116π⎛⎫-- ⎪⎝⎭【答案】D 【解析】根据余弦函数的对称中心整体代换求解即可.【详解】令2()82x k k πππ-=+∈Z ,可得5()216k x k ππ=+∈Z .所以当1k =-时,316x π=-,故3,116π⎛⎫-- ⎪⎝⎭满足条件,当0k =时,516x π=,故5,116π⎛⎫-⎪⎝⎭满足条件;故选:D0b =()cos sin cos f x x b x x =+=()f x ()f x ()=()f x f x -x ()cos()sin()cos sin f x x b x x b x -=-+-=-cos sin cos sin x b x x b x +=-sin 0b x =x 0b =0b =()f x9.(2021·全国高一专题练习)设函数()cos 3f x x π⎛⎫=+ ⎪⎝⎭,则下列结论错误的是( )A .()f x 的最小正周期为2πB .()f x 的图象关于直线23x π=对称C .()f x 在,2ππ⎛⎫⎪⎝⎭单调递减D .()f x 的一个零点为6x π=【答案】C 【解析】根据解析式结合余弦函数的性质依次判断每个选项的正误即可.【详解】函数()cos 3f x x π⎛⎫=+ ⎪⎝⎭,()f x ∴的最小正周期为2π,故A 正确;22(cos 1333f πππ⎛⎫=+=- ⎪⎝⎭,∴()f x 的图象关于直线23x π=对称,故B 正确;当x ∈,2ππ⎛⎫⎪⎝⎭时,54,363πππx ⎛⎫+∈ ⎪⎝⎭,()f x 没有单调性,故C 错误;()cos 0663f πππ⎛⎫=+= ⎪⎝⎭,∴()f x 的一个零点为6x π=,故D 正确.综上,错误的选项为C.故选:C.10.(2017·全国高考真题(理))函数f (x )=s in 2x +3cosx ―34(x ∈0,__________.【答案】1【解析】化简三角函数的解析式,则f (x )=1―cos 2x+3cos x ―34=―cos 2x +3cos x +14= ―(cos x ―32)2+1,由x ∈[0,π2]可得cos x ∈[0,1],当cos x =32时,函数f (x )取得最大值1.练提升1.(2021·河南高二月考(文))已知函数()()sin 0,02f x x πωϕωϕ⎛⎫=+ ⎪⎝⎭><<的相邻的两个零点之间的距离是6π,且直线18x π=是()f x 图象的一条对称轴,则12f π⎛⎫=⎪⎝⎭( )A.B .12-C .12D【答案】D 【解析】由相邻两个零点的距离确定周期求出6ω=,再由对称轴确定6π=ϕ,代入12x π=可求出结果.【详解】解:因为相邻的两个零点之间的距离是6π,所以26T π=,23T ππω==,所以6ω=,又sin 6sin 118183f πππϕϕ⎛⎫⎛⎫⎛⎫=⨯+=+=±⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,且02πϕ<<,则6π=ϕ,所以()sin 66f x x π⎛⎫=+ ⎪⎝⎭,则sin 612126f πππ⎛⎫⎛⎫=⨯+= ⎪ ⎪⎝⎭⎝⎭.故选:D.2.(2020·山东潍坊�高一期末)若函数的最小正周期为,则( )A .B .C .D .【答案】C 【解析】由题意,函数的最小正周期为,可得,解得,即,()tan (0)4f x x πωω⎛⎫=+> ⎪⎝⎭π(2)(0)5f f f π⎛⎫>>-⎪⎝⎭(0)(2)5f f f π⎛⎫>>-⎪⎝⎭(0)(2)5f f f π⎛⎫>-> ⎪⎝⎭(0)(2)5f f f π⎛⎫->> ⎪⎝⎭()tan (0)4f x x πωω⎛⎫=+> ⎪⎝⎭πwππ=1w =()tan()4f x x π=+令,即,当时,,即函数在上单调递增,又由,又由,所以.故选:C.3.(2021·广东佛山市·高三二模)设()0,θπ∈,则“6πθ<”是“1sin 2θ<”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A 【解析】由条件即06πθ<<,由06πθ<<,得1sin 2θ<;反之不成立,可举反例.再由充分必要条件的判定得答案.【详解】由()0,θπ∈,则6πθ<,即06πθ<<所以当06πθ<<时,由正弦函数sin y x =的单调性可得1sin sin62πθ<=,即由6πθ<可以得到1sin 2θ<.反之不成立,例如当56πθπ<<时,也有1sin 2θ<成立,但6πθ<不成立.故“6πθ<”是“1sin 2θ<”的充分不必要条件故选:A4.(2021·四川省华蓥中学高三其他模拟(理))已知函数()sin()0,0,||2f x A x A πωϕωϕ⎛⎫=+>><⎪⎝⎭的最,242k x k k Z πππππ-+<+<+∈3,44k x k k Z ππππ-+<<+∈1k =544x ππ<<()f x 5(,)44ππ4(0)(),()()()555f f f f f πππππ=-=-+=425ππ>>(0)(2)5f f f π⎛⎫>-> ⎪⎝⎭大值为2,其图象相邻两条对称轴之间的距离为2π且()f x 的图象关于点,06π⎛⎫-⎪⎝⎭对称,则下列判断不正确的是()A .要得到函数()f x 的图象,只需将2cos 2y x =的图象向右平移12π个单位B .函数()f x 的图象关于直线712x π=对称C .,126x ππ⎡⎤∈-⎢⎥⎣⎦时,函数()f x D .函数()f x 在5,612ππ⎡⎤⎢⎥⎣⎦上单调递减【答案】C 【解析】根据最大值为2,可得A ,根据正弦型函数的周期性,可求得ω,根据对称性,可求得ϕ,即可得()f x 解析式,根据正弦型函数的单调性、值域的求法,逐一分析选项,即可得答案.【详解】由题意得A =2,因为其图象相邻两条对称轴之间的距离为2π,所以22Tπ=,可得2T ππω==,所以2ω=,所以()2sin(2)f x x ϕ=+,因为,06π⎛⎫-⎪⎝⎭为对称中心,所以2,6k k Z πϕπ⎛⎫⨯-+=∈ ⎪⎝⎭,因为||2ϕπ<,令k =0,可得3πϕ=,所以2n 2)3(si f x x π⎛⎫=+⎪⎝⎭.对于A :将2cos 2y x =的图象向右平移12π个单位,可得2cos 22cos 22cos 22sin 22sin 21266263y x x x x x ππππππ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-=-=-=--=+ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦,故A 正确;对于B :令2,32x k k Z πππ+=+∈,解得,212k x k Z ππ=+∈,令k =1,可得712x π=,所以函数()f x 的图象关于直线712x π=对称,故B 正确;对于C :因为,126x ππ⎡⎤∈-⎢⎥⎣⎦,所以22,363x πππ⎡⎤+∈⎢⎥⎣⎦,所以当236x ππ+=时,min ()2sin16f x π==,故C 错误;对于D :令3222,232k x k k Z πππππ+≤+≤+∈,解得7,1212k x k k Z ππππ+≤≤+∈,令k =0,可得一个单调减区间为7,1212ππ⎡⎤⎢⎥⎣⎦,因为57,,6121212ππππ⎡⎤⎡⎤⊂⎢⎥⎢⎥⎣⎦⎣⎦,所以函数()f x 在5,612ππ⎡⎤⎢⎥⎣⎦上单调递减,故D 正确.故选:C5.(2021·玉林市第十一中学高三其他模拟(文))已知函数()sin (0)f x x ωω=>的图象向右平移4π个单位长度得y =g (x )的图象,若函数g (x )的图象与直线y =在,22ππ⎡⎤-⎢⎥⎣⎦上恰有两个交点,则a 的取值范围是( )A .[416,)39B .1620,[)99C .[208,93D .[8,4)3【答案】B 【解析】由函数的平移可得()sin 4g x x πωω⎛⎫=- ⎪⎝⎭,结合三角函数的图象与性质可得ω满足的不等式,即可得解.【详解】由题意,()sin sin 44g x x x ππωωω⎡⎤⎛⎫⎛⎫=-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,当,22x ππ⎡⎤∈-⎢⎥⎣⎦时,3,444x πωπωπωω⎡⎤-∈-⎢⎥⎣⎦,因为函数g (x )的图象与直线y =在,22ππ⎡⎤-⎢⎥⎣⎦上恰有两个交点,则3542,2433122,2433k k k k πωπππππωππππ⎧⎛⎤-∈-+-+ ⎪⎥⎪⎝⎦⎨⎡⎫⎪∈++⎪⎢⎪⎣⎭⎩或3412,2433272,2433k k k k πωπππππωππππ⎧⎛⎤-∈-++ ⎪⎥⎪⎝⎦⎨⎡⎫⎪∈++⎪⎢⎪⎣⎭⎩,k Z ∈,又0>ω,所以1620,99ω⎡∈⎫⎪⎢⎣⎭.故选:B.6.(2020·北京四中高三其他模拟)函数tan 42y x ππ⎛⎫=- ⎪⎝⎭ 的部分图象如图所示,则 ()OA OB AB +⋅=( )A .6B .5C .4D .3【答案】A 【解析】根据正切函数的图象求出A 、B 两点的坐标,再求出向量的坐标,根据向量数量积的坐标运算求出结果.【详解】由图象得,令tan 42y x ππ⎛⎫=- ⎪⎝⎭=0,即42x ππ-=kπ,k Z∈k =0时解得x =2,令tan 42y x ππ⎛⎫=-⎪⎝⎭=1,即424x πππ-=,解得x =3,∴A (2,0),B (3,1),∴()()()2,0,3,1,1,1OA OB AB ===,∴()()()5,11,1516OA OB AB +⋅=⋅=+=.故选:A .7.(2020·全国高三其他模拟(文))若函数()(0)xf x n nπ=>图象上的相邻一个最高点和一个最低点恰好都在圆222:O x y n +=上,则()1f =( )A B .C .-D .【答案】A 【解析】首先由题意判断该正弦型函数的大概图象及相邻最高点和最低点与圆的交点情况.从而解得n 的取值,再代入1x =求解.【详解】解:设两交点坐标分别为()11,x y ,()22,x y ,则1y =,2y =-又函数()(0)xf x n nπ=>为奇函数,∴12x x =-,当22xnx n ππ=⇒=时,函数取得最大值,∴12n x =-,22nx =,由题,函数()(0)xf x n nπ=>图象上的相邻一个最高点和一个最低点恰好都在圆22: O x y n +=上,∴22242n n n ⎛⎫+=⇒= ⎪⎝⎭,则(1)4f π==.故选:A.8.【多选题】(2021·全国高三其他模拟)已知函数()2sin(),(0,0)f x x ωϕωϕπ=+><<图象的一条对称轴为23x π=,4⎛⎫= ⎪⎝⎭f π,且()f x 在2,43ππ⎛⎫ ⎪⎝⎭内单调递减,则以下说法正确的是( )A .7,012π⎛⎫-⎪⎝⎭是其中一个对称中心B .145ω=C .()f x 在5,012π⎛⎫- ⎪⎝⎭单増D .16f π⎛⎫-=- ⎪⎝⎭【答案】AD 【解析】先根据条件求解函数的解析式,然后根据选项验证可得答案.【详解】∵f (x )关23x π=对称,4⎛⎫= ⎪⎝⎭f π,f (x )在2,43ππ⎛⎫ ⎪⎝⎭单调递减,232232,22643k k ωπωϕπππππϕωϕπ⎧=+=+⎧⎪⎪⎪∴∴⎨⎨=⎪⎪+=+⎩⎪⎩,B 错误;()2sin 2,6f x x π⎛⎫=+ ⎪⎝⎭令2,6x k k ππ+=∈Z ,可得,,122k x k ππ=-+∈Z 当1k =-时,7,12x π=-即()f x 关于7,012π⎛⎫- ⎪⎝⎭对称,A 正确;令222,262k x k πππππ-+<+<+得,312k x k ππππ-+<<+∴()f x 在,312ππ⎡⎤-⎢⎥⎣⎦单调递増,即C 错误;2sin 2sin 16366f ππππ⎛⎫⎛⎫⎛⎫-=-+=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,D 正确,故选:AD.9.【多选题】(2021·重庆市蜀都中学校高三月考)已知函数()f x 满足x R ∀∈,有()(6)f x f x =-,且(2)(2)f x f x +=-,当[1,1]x ∈-时,)()lnf x x =-,则下列说法正确的是( )A .(2021)0f =B .(2020,2022)x ∈时,()f x 单调递增C .()f x 关于点(1010,0)对称D .(1,11)x ∈-时,方程()sin 2f x x π⎛⎫=⎪⎝⎭的所有根的和为30【答案】CD 【解析】利用已知条件可知()f x 在[1,1]x ∈-上为奇函数且单调递减,关于21x k =+、(2,0)k ,k Z ∈对称,且周期为4,即可判断各选项的正误.【详解】由题设知:()))()f x x x f x -===-=-,故()f x 在[1,1]x ∈-上为奇函数且单调递减,又(2)(4)(2)f x f x f x +=-=-,即关于21x k =+、(2,0)k ,k Z ∈对称,且最小周期为4,A :(2021)(50541)(1)1)0f f f =⨯+==-≠,错误;B :(2020,2022)x ∈等价于(0,2)x ∈,由上易知:(0,1)上递减,(1,2)上递增,故()f x 不单调,错误;C :由上知:()f x 关于(2,0)k 对称且k Z ∈,所以()f x 关于(1010,0)对称,正确;D :由题意,只需确定()f x 与sin 2xy π=在(1,11)x ∈-的交点,判断交点横坐标的对称情况即可求和,如下图示,∴共有6个交点且关于5x =对称,则16253410x x x x x x +=+=+=,∴所有根的和为30,正确.故选:CD10.(2021·浙江杭州市·杭州高级中学高三其他模拟)设函数sin 3xy π=在[,1]t t +上的最大值为()M t ,最小值为()N t ,则()()M t N t -在3722t ≤≤上最大值为________.【答案】1【解析】依题意可得函数在39,22⎡⎤⎢⎥⎣⎦上单调递减,则39[,1],22t t ⎡⎤+⊆⎢⎥⎣⎦,所以()()cos 36t M t N t ππ⎛⎫-=-+⎪⎝⎭,即可求出函数的最大值;【详解】解:函数sin3xy π=的周期为6,函数sin3xy π=在39,22⎡⎤⎢⎥⎣⎦上单调递减,当3722t ≤≤时,39[,1],22t t ⎡⎤+⊆⎢⎥⎣⎦(1)()()sinsin2cos sin cos 3336636tt t t M t N t πππππππ+⎛⎫⎛⎫⎛⎫-=-=+-=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭因为3722t ≤≤,所以243363t ππππ≤+≤,所以11cos 362t ππ⎛⎫-≤+≤-⎪⎝⎭所以1()()12M t N t ≤-≤当52t =时取最大值1故答案为:11.(2021·全国高考真题(理))已知命题:,sin 1p x x ∃∈<R ﹔命题:q x ∀∈R ﹐||e 1x ≥,则下列命题中为真命题的是( )A .p q ∧B .p q⌝∧C .p q∧⌝D .()p q ⌝∨【答案】A 【解析】由正弦函数的有界性确定命题p 的真假性,由指数函数的知识确定命题q 的真假性,由此确定正确选项.【详解】由于1sin 1x -≤≤,所以命题p 为真命题;由于0x ≥,所以||e 1x ≥,所以命题q 为真命题;所以p q ∧为真命题,p q ⌝∧、p q ∧⌝、()p q ⌝∨为假命题.故选:A .2.(2021·全国高考真题)下列区间中,函数()7sin 6f x x π⎛⎫=-⎪⎝⎭单调递增的区间是( )练真题A .0,2π⎛⎫⎪⎝⎭B .,2ππ⎛⎫⎪⎝⎭C .3,2ππ⎛⎫ ⎪⎝⎭D .3,22ππ⎛⎫ ⎪⎝⎭【答案】A 【解析】解不等式()22262k x k k Z πππππ-<-<+∈,利用赋值法可得出结论.【详解】因为函数sin y x =的单调递增区间为()22,22k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭,对于函数()7sin 6f x x π⎛⎫=- ⎪⎝⎭,由()22262k x k k Z πππππ-<-<+∈,解得()22233k x k k Z ππππ-<<+∈,取0k =,可得函数()f x 的一个单调递增区间为2,33ππ⎛⎫-⎪⎝⎭,则20,,233πππ⎛⎫⎛⎫⊆- ⎪ ⎪⎝⎭⎝⎭,2,,233ππππ⎛⎫⎛⎫⊄- ⎪ ⎪⎝⎭⎝⎭,A 选项满足条件,B 不满足条件;取1k =,可得函数()f x 的一个单调递增区间为58,33ππ⎛⎫⎪⎝⎭,32,,233ππππ⎛⎫⎛⎫⊄- ⎪ ⎪⎝⎭⎝⎭且358,,233ππππ⎛⎫⎛⎫⊄ ⎪ ⎪⎝⎭⎝⎭,358,2,233ππππ⎛⎫⎛⎫⊄ ⎪⎪⎝⎭⎝⎭,CD 选项均不满足条件.故选:A.3.(2019年高考全国Ⅰ卷文)函数f (x )=在的图象大致为( )A .B .C .D .【答案】D2sin cos ++x xx x[,]-ππ【解析】由,得是奇函数,其图象关于原点对称,排除A .又,排除B ,C ,故选D .4.(2020·全国高考真题(理))设函数()cos π(6f x x ω=+在[π,π]-的图像大致如下图,则f (x )的最小正周期为( )A .10π9B .7π6C .4π3D .3π2【答案】C 【解析】由图可得:函数图象过点4,09π⎛⎫-⎪⎝⎭,将它代入函数()f x 可得:4cos 096ππω⎛⎫-⋅+= ⎪⎝⎭又4,09π⎛⎫-⎪⎝⎭是函数()f x 图象与x 轴负半轴的第一个交点,所以4962πππω-⋅+=-,解得:32ω=所以函数()f x 的最小正周期为224332T πππω===故选:C22sin()()sin ()()cos()()cos x x x xf x f x x x x x -+----===--+-+()f x 22π1π42π2(1,π2π()2f ++==>2π(π)01πf =>-+5.(2020·全国高考真题(理))关于函数f (x )=1sin sin x x+有如下四个命题:①f (x )的图像关于y 轴对称.②f (x )的图像关于原点对称.③f (x )的图像关于直线x =2π对称.④f (x )的最小值为2.其中所有真命题的序号是__________.【答案】②③【解析】对于命题①,152622f π⎛⎫=+=⎪⎝⎭,152622f π⎛⎫-=--=- ⎪⎝⎭,则66f f ππ⎛⎫⎛⎫-≠ ⎪ ⎪⎝⎭⎝⎭,所以,函数()f x 的图象不关于y 轴对称,命题①错误;对于命题②,函数()f x 的定义域为{},x x k k Z π≠∈,定义域关于原点对称,()()()()111sin sin sin sin sin sin f x x x x f x x x x ⎛⎫-=-+=--=-+=- ⎪-⎝⎭,所以,函数()f x 的图象关于原点对称,命题②正确;对于命题③,11sin cos 22cos sin 2f x x x x x πππ⎛⎫⎛⎫-=-+=+⎪ ⎪⎛⎫⎝⎭⎝⎭- ⎪⎝⎭ ,11sin cos 22cos sin 2f x x x x x πππ⎛⎫⎛⎫+=++=+⎪ ⎪⎛⎫⎝⎭⎝⎭+ ⎪⎝⎭,则22f x f x ππ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭,所以,函数()f x 的图象关于直线2x π=对称,命题③正确;对于命题④,当0x π-<<时,sin 0x <,则()1sin 02sin f x x x=+<<,命题④错误.故答案为:②③.6.(2018·北京高考真题(理))设函数f (x )=cos(ωx ―π6)(ω>0),若f (x )≤f (π4)对任意的实数x 都成立,则ω的最小值为__________.【答案】23【解析】因为f (x )≤f (π4)对任意的实数x 都成立,所以f (π4)取最大值,所以π4ω―π6=2k π(k ∈Z ),∴ω=8k +23(k∈Z ),因为ω>0,所以当k =0时,ω取最小值为23.。

高二数学三角函数的图象与性质试题答案及解析

高二数学三角函数的图象与性质试题答案及解析

高二数学三角函数的图象与性质试题答案及解析1.已知,x,y R.(1)若,求的最小值;(2)设,求的取值范围.【答案】(1);(2)。

【解析】(1)利用“乘1法”(即任何数乘以1等于其本身)把变形为,然后,利用基本不等式求最值。

(2)利用转化与化归思想,利用把中的二元转化为一元,既得,这是一个关于的二次函数,即问题转化为二次函数给定区间上的最值问题,注意对称轴与给定区间的关系。

试题解析:(1).当且仅当,时等号成立. 8分(2)由,得.由,,得.,当时,;当时,.所以,的取值范围是. 16分【考点】(1)转化与化归思想的应用;(2)利用基本不等式求最值,注意条件:一正、二定、三相等,(3)与三角函数有关的二次函数给定区间上的最值问题,注意对称轴与给定区间的关系。

2.已知函数(其中,,)的部分图象如图所示,则函数的解析式是 .【答案】.【解析】由图像,得,;代入得,令,得,所以函数的解析式为.【考点】三角函数的图像与性质.3.函数(其中,)的图象如图所示,为了得到的图象,只需将的图象()A.向右平移个单位长度B.向左平移个单位长度C.向右平移个单位长度D.向左平移个单位长度【答案】C【解析】由函数图象可知,,即,所以,又过,代入得,因为,所以,即有,从而,此时为了得到的图象,只需将的图象向右平移个单位长度,故选择C.【考点】三角函数的图象、性质及图象变换.4.若对可导函数,当时恒有,若已知是一锐角三角形的两个内角,且,记则下列不等式正确的是()A.B.C.D.【答案】C【解析】由于当时恒有,所以,故知函数F(x)在[0,1]上是减函数;又因为已知是一锐角三角形的两个内角,且,所以,因此有,故选C.【考点】1.函数的导数;2.三角函数的性质.5.已知函数满足,其图像与直线y=0的某两个交点的横坐标分别为、,的最小值为,则().A.B.C.D.【答案】D【解析】函数满足,即是奇函数,,即;因为其图像与直线y=0的某两个交点的横坐标分别为、,的最小值为,所以,即,.【考点】三角函数的图像与性质.6.将函数y=cos2x的图象向右平移个单位长度,再将所得图象的所有点的横坐标伸长到原来的2倍(纵坐标不变),得到的函数解析式为().A.y=sinx B.y=-cos4x C.y=sin4x D.y=cosx【答案】A.【解析】.【考点】函数图像的平移伸缩变换,诱导公式.7.函数的图象沿x轴向左平移个单位后,得到一个偶函数的图象,则φ的一个可能的值为().A.B.C.D.【答案】A.【解析】可知,即,而此函数为偶函数,则令,得,取,得,故选A.(此题也可由选项分别代入表达式进行排除.)【考点】图像的平移,偶函数的概念,诱导公式.8.函数的一个单调递增区间为 ( )A.B.C.D.【答案】D【解析】由余弦函数的图象:知应选D.【考点】余弦函数的单调性9.函数f(x)=Asin(ωx+)(ω>0)的图像与x轴交点的横坐标构成一个公差为的等差数列,要得到函数g(x)=Acosωx的图象,只需将f(x)的图像()A.向左平移个单位B.向右平移个单位C.向左平移个单位D.向右平移个单位【答案】A【解析】由题设知,又因为,而,所以所以,=,因为所以,要得到的图象,只需将的图象向左平移个单位.故选A.【考点】1、三解函数的图象与性质;2、三角函数的图象变换;3、诱导公式.10.下列函数中,最小正周期为π的偶函数是()A.B.C.y=sin2x+cos2x D.y=【答案】D【解析】,是最小正周期为π的奇函数;,,是最小正周期为的偶函数;,,最小正周期为,非奇非偶函数.,则函数是最小正周期为π的偶函数.【考点】1.诱导公式;2.函数的奇偶性;3.函数的周期.11.函数的最小正周期是()A.B.C.D.【答案】D【解析】,所以最小正期为.【考点】1.函数的周期;2.倍角公式.12.函数的值域为()A.B.C.D.【答案】B【解析】【考点】三角函数化简及性质点评:三角函数化简时常会用到关系式,其中由共同决定,结合的范围是求出值域13.函数(,,是常数,,)的部分图象如下图所示,则的值是【答案】【解析】依题意,,所以,令,则,故,所以.【考点】由y="A" sin(ωx+φ)的部分图象确定其解析式.点评:本题主要考查由函数y="A" sin(ωx+∅)的部分图象求函数的解析式,属于中档题.14.函数在点处的切线方程是( )A.B.C.D.【答案】D【解析】因为,所以,切线的斜率为-2,切线方程为,故选D。

第20讲-三角函数的图象与性质-2021年新高考数学一轮专题训练含真题及解析

第20讲-三角函数的图象与性质-2021年新高考数学一轮专题训练含真题及解析

-1- 2,1
所以函数的值域为 2
.
规律方法 求解三角函数的值域(最值)常见三种类型:
(1)形如 y=asin x+bcos x+c 的三角函数化为 y=Asin(ωx+φ)+c 的形式,再求值域(最值);
(2)形如 y=asin2x+bsin x+c 的三角函数,可先设 sin x=t,化为关于 t 的二次函数求值域(最值);
D.
x|x≠kπ+π(k∈Z) 26
(2)不等式 3+2cos x≥0 的解集是________.
(3)函数 f(x)= 64-x2+log2(2sin x-1)的定义域是________.
【解析】 (1)由 2x+π≠kπ+π(k∈Z),得 x≠kπ+π(k∈Z).
6
2
26
(2)由 3+2cos x≥0,得 cos x≥- 3,由余弦函数的图象,得在一个周期[-π,π]上,不等式 cos 2
x≥-
3的解集为 2
x|-5π≤x≤5π
6
6
,故原不等式的解集为
x|-5π+2kπ≤x≤5π+2kπ,k∈Z
6
6
.
64-x2≥0,① (3)由题意,得
由①得-8≤x≤8,由②得 sin x>1,由正弦曲线得π+2kπ<x<5π+
2sin x-1>0,②
2
6
6
-11π,-7π π,5π 13π,8
2kπ(k∈Z).所以不等式组的解集为 6
第 20 讲-三角函数的图象与性质
一、 考情分析
1.能画出三角函数 y=sin x,y=cos x,y=tan x 的图象,了解三角函数的周期性、单调性、奇偶 性、最大(小)值;
-π,π 2.借助图象理解正弦函数、余弦函数在[0,2π]上,正切函数在 2 2 上的性质.

2021年高考数学 3.3 三角函数的图象与性质练习

2021年高考数学 3.3 三角函数的图象与性质练习

2021年高考数学 3.3 三角函数的图象与性质练习(25分钟60分)一、选择题(每小题5分,共25分)1.函数y=-4sin x+1,x∈[-π,π]的单调性是( )A.在[-π,0]上是增函数,在[0,π]上是减函数B.在上是增函数,在[-π,-]和[,π]上都是减函数C.在[0,π]上是增函数,在[-π,0]上是减函数D.在[,π]和[-π,-]上是增函数,在[-,]上是减函数【解析】选D.由正弦函数的图象知,函数y=4sin x,x∈[-π,π]时,在[-,]上是增函数,在[-π,-]和[,π]上是减函数.所以函数y=-4sin x+1在[-,]上是减函数,在[-π,-]和[,π]上是增函数,故选D.2.(xx·厦门模拟)已知函数f(x)=,则函数f(x)满足( )A.f(x)的最小正周期是2πB.若f(x1)=f(x2),则x1=x2C.f(x)的图象关于直线x=对称D.当x∈时,f(x)的值域为【解析】选C.因为f(x)=-(-sin 2x)= sin 2x,其最小正周期T==π,所以A不正确;B显然不正确;由2x= +kπ,得x= (k∈Z),当k=1时,函数f(x)的图象的对称轴为x=,所以C 正确;当x∈时,2x∈,所以-≤sin 2x≤,故D不正确.3.(xx·郑州模拟)如果函数y=3sin(2x+φ)的图象关于直线x=对称,则|φ|的最小值为( )A. B. C. D.【解析】选A.由题意,得sin(2×+φ)=±1.所以+φ=+kπ,即φ=+kπ(k∈Z),故|φ|min=.4.已知函数f(x)=cos x在区间[a,b]上是减函数,且f(a)+f(b)=0,则a+b的值可能是( )A.0B.πC.2πD.3π【解题提示】结合余弦函数f(x)=cos x的图象解答.【解析】选B.因为f(a)+f(b)=0,所以f(a)=-f(b).由余弦函数f(x)=cos x的图象知区间[a,b]的中点是+2kπ,(k∈Z),所以a+b=2(+2kπ)=π+4kπ(k∈Z),故a+b的可能值是π.5.(xx·大连模拟)已知函数f(x)=2sin(ωx+φ),x∈R,其中ω>0,-π<φ≤π.若f(x)的最小正周期为6π,且当x=时,f(x)取得最大值,则( )A.f(x)在区间[-2π,0]上是增函数B.f(x)在区间[-3π,-π]上是增函数C.f(x)在区间[3π,5π]上是减函数D.f(x)在区间[4π,6π]上是减函数【解题提示】先由题中条件确定ω与φ的值,再验证各选项即可.【解析】选A.因为f(x)的最小正周期为6π,所以ω=,因为当x=时,f(x)有最大值,所以×+φ=+2kπ(k∈Z),φ=+2kπ(k∈Z),因为-π<φ≤π,所以φ=.所以f(x)=2sin(+),由此函数验证易得,在区间[-2π,0]上是增函数,而在区间[-3π,-π]或[3π,5π]上均没单调性,在区间[4π,6π]上是增函数.二、填空题(每小题5分,共15分)6.函数y=的定义域是.【解析】由tan x-1≥0,得tan≥1.所以kπ+≤x<kπ+ (k∈Z).答案:[kπ+,kπ+)(k∈Z)7.cos 23°,sin 68°,cos 97°从小到大的顺序是.【解析】sin 68°=sin(90°-22°)=cos 22°.因为余弦函数y=cos x在[0,π]上是单调递减的.且22°<23°<97°,所以cos 97°<cos 23°<cos 22°.答案:cos 97°<cos 23°<sin 68°8.(xx·天津模拟)函数f(x)=-sin(2x-),x∈[0, ]的最大值是.【解题提示】先由x的取值范围确定2x-的范围,再根据正弦曲线求解.【解析】因为x∈[0, ],所以-≤2x-≤.根据正弦曲线,得当2x-=-时.sin(2x-)取得最小值为-.故f(x)=-sin(2x-)的最大值为.答案:【误区警示】解答本题易忽视函数表达式前面的负号而误填1.三、解答题(每小题10分,共20分)9.若x∈[0,π],且满足cos x≤0,求函数f(x)=的最大、最小值.【解题提示】先求x的取值范围,然后换元求解.【解析】由x∈[0,π],且满足cos x≤0,得x∈[,π].=令t=sin x,则t∈[0,1],y=所以ymax=,ymin=2.10.已知函数f(x)=2sin(2ωx+)(ω>0)的最小正周期为π.(1)求ω的值.(2)讨论f(x)在区间[0, ]上的单调性.【解析】(1)因为f(x)=2sin(2ωx+)的最小正周期为π,且ω>0.从而有=π,故ω=1.(2)因为f(x)=2sin(2x+).若0≤x≤,则≤2x+≤.当≤2x+≤,即0≤x≤时,f(x)单调递增;当<2x+≤,即<x≤时,f(x)单调递减.综上可知,f(x)在区间[0, ]上单调递增,在区间(,]上单调递减.(20分钟40分)1.(5分)(xx·哈师大附中模拟)若函数f(x)=Asin 2ωx(A>0,ω>0)在x=1处取得最大值,则函数f(x+1)为( )A.偶函数B.奇函数C.既是奇函数又是偶函数D.非奇非偶函数【解析】选A.因为f(x)=Asin 2ωx在x=1处取得最大值,故f(1)=A,即sin 2ω=1,所以2ω=+2kπ,k∈Z.因此,f(x+1)=Asin(2ωx+2ω)=Asin(2ωx++2kπ)=Acos 2ωx,故f(x+1)是偶函数.2.(5分)(xx·邯郸模拟)已知函数f(x)=2sinωx(ω>0)在区间上的最小值是-2,则ω的最小值为( )A. B. C.2 D.3【解题提示】结合正弦函数的图象解答.【解析】选B.因为ω>0,所以-ω≤ωx≤ω,由题意,结合正弦曲线易知,- ω≤-,即ω≥.故ω的最小值是.3.(5分)(xx·浦东模拟)若Sn=sin +sin+…+sin (n∈N*),则在S1,S2,…,S100中,正数的个数是( )A.16B.72C.86D.100【解析】选C.因为函数f(x)=sin的最小正周期为T=14,又sin>0,sinπ>0,…,sinπ>0,sinπ=0,sinπ<0,…,sinπ<0,sinπ=0,所以在S1,S2,S3,…,S13,S14中,只有S13=S14=0,其余均大于0.由周期性可知,在S1,S2,…,S100中共有14个0,其余都大于0,即共有86个正数.【加固训练】若f(x)=sin(x+),x∈[0,2π],关于x的方程f(x)=m有两个不相等实数根x1,x2,则x1+x2等于( )A. 或B.C. D.不确定【解析】选A.对称轴x=+kπ∈[0,2π],得对称轴x=或x=,所以x1+x2=2×=或x1+x2=2×=,故选A.4.(12分)已知函数f(x)=2asin(2x-)+b的定义域为[0, ],函数的最大值为1,最小值为-5,求a和b的值.【解题提示】先求出2x-的范围,再分a>0,a<0两类情况讨论,列出a,b的方程组,可求解.【解析】易知a≠0.因为0≤x≤,所以-≤2x-≤π.所以-≤sin(2x-)≤1.若a>0,则解得若a<0,则解得综上可知,a=12-6,b=-23+12或a=-12+6,b=19-12.5.(13分)(能力挑战题)已知函数f(x)=sin(ωx+φ)(0<ω<1,0≤φ≤π)是R上的偶函数,其图象关于点M(π,0)对称.(1)求φ,ω的值.(2)求f(x)的单调递增区间.(3)x∈,求f(x)的最大值与最小值.【解析】(1)因为f(x)=sin(ωx+φ)是R上的偶函数,所以φ= +kπ,k∈Z,且0≤φ≤π,则φ=,即f(x)=cosωx.因为图象关于点M(π,0)对称,所以ω×π=+kπ,k∈Z,且0<ω<1,所以ω=.(2)由(1)得f(x)=cosx,由-π+2kπ≤x≤2kπ且k∈Z得,3kπ-≤x≤3kπ,k∈Z,所以函数的递增区间是[3kπ-,3kπ],k∈Z.(3)因为x∈[-,],所以x∈[-,],当x=0时,即x=0,函数f(x)的最大值为1,当x=-时,即x=-,函数f(x)的最小值为0.【加固训练】设函数f(x)=sin(2x+φ)(-π<φ<0),y=f(x)图象的一条对称轴是直线x=. (1)求φ.(2)求函数y=f(x)的单调增区间.【解析】(1)令2×+φ=kπ+,k∈Z,所以φ=kπ+,又-π<φ<0,则-<k<-,所以k=-1,则φ=-.(2)由(1)得:f(x)=sin(2x-),令-+2kπ≤2x-≤+2kπ,k∈Z,可解得+kπ≤x≤+kπ,k∈Z,因此y=f(x)的单调增区间为[+kπ, +kπ], k∈Z.22112 5660 噠24514 5FC2 忂Y23090 5A32 娲34614 8736 蜶p27108 69E4 槤w b31935 7CBF 粿40419 9DE3 鷣38717 973D 霽。

三年高考(2021-2021)(理)真题分类:专题10-三角函数图象与性质

三年高考(2021-2021)(理)真题分类:专题10-三角函数图象与性质

专题10三角函数图象与性质考纲解读明方向考点内容解读要求高考示例常考题型预测热度1.三角函数的图象及其变换①能画出y=sin x,y=cos x,y=tan x的图象,了解三角函数的周期性;②了解函数y=Asin(ωx+φ)的物理意义;能画出y=Asin(ωx+φ)的图象,了解参数A,ω,φ对函数图象变化的影响掌握2021课标全国Ⅰ,9;2021北京,7;2021课标全国Ⅲ,14;2021湖南,9选择题填空题解答题★★★2.三角函数的性质及其应用理解正弦函数、余弦函数的性质(如单调性、最大值和最小值以及与x轴交点等).理解正切函数的单调性理解2021课标全国Ⅲ,6;2021课标全国Ⅱ,7;2021课标Ⅰ,8选择题填空题解答题★★★分析解读三角函数的图象和性质一直是高考中的热点,往往结合三角公式进行化简和变形来研究函数的单调性、奇偶性、对称性及最值问题,且常以解答题的形式考查,其考查内容及形式仍是近几年高考对该部分内容考查的重点.分值为10~12分,属于中低档题.2022年高考全景展示1.【2022年理天津卷】将函数的图象向右平移个单位长度,所得图象对应的函数A. 在区间上单调递增 B. 在区间上单调递减C. 在区间上单调递增D. 在区间上单调递减【答案】A【解析】分析:由题意首先求得平移之后的函数解析式,然后确定函数的单调区间即可.详解:由函数图象平移变换的性质可知:将的图象向右平移个单位长度之后的解析式为:.则函数的单调递增区间满足:,即,令可得一个单调递增区间为:.函数的单调递减区间满足:,即,令可得一个单调递减区间为:.本题选择A选项.点睛:本题主要考查三角函数的平移变换,三角函数的单调区间的判断等知识,意在考查学生的转化能力和计算求解能力.2.【2022年理北京卷】设函数f(x)=,若对任意的实数x都成立,则ω的最小值为__________.【答案】点睛:函数的性质(1).(2)周期(3)由求对称轴,最大值对应自变量满足,最小值对应自变量满足,(4)由求增区间; 由求减区间.3.【2022年江苏卷】已知函数的图象关于直线对称,则的值是________.【答案】【解析】分析:由对称轴得,再根据限制范围求结果.详解:由题意可得,所以,因为,所以点睛:函数(A>0,ω>0)的性质:(1);(2)最小正周期;(3)由求对称轴;(4)由求增区间; 由求减区间. 4.【2022年全国卷Ⅲ理】函数在的零点个数为________.点睛:本题主要考查三角函数的性质和函数的零点,属于基础题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2021年高三数学章节训练题10 《三角函数的
图象和性质练习题》
时量:60分钟 满分:80分 班级: 姓名: 计分: 个人目标:□优秀(70’~80’) □良好(60’~69’) □合格(50’~59’)
一、选择题(本大题共6小题,每小题5分,满分30分)
1. 函数sin(2)(0)y x ϕϕπ=+≤≤是R 上的偶函数,则ϕ的值是( )
A. 0
B.
4π C. 2
π D. π 2. 将函数sin()3y x π=-的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),
再将所得的图象向左平移3π个单位,得到的图象对应的僻析式是
( )
A. 1sin 2y x =
B. 1sin()22
y x π
=-
C. 1sin()26y x π=-
D. sin(2)6y x π=- 3. 若点(sin cos ,tan )P ααα-在第一象限,则在[0,2)π内α的取值范围是( )
A. 35(,)(,)244
ππππ B. 5(,)(,)424ππππ C. 353(,)(,)2442ππππ D. 33(,)(,)244
ππππ 4. 若,24π
απ
<<则( )
A. αααtan cos sin >>
B. αααsin tan cos >>
C. αααcos tan sin >>
D. αααcos sin tan >>
5. 函数)652cos(3π
-=x y 的最小正周期是( ) A. 5
2π B. 25π C. π2 D. π5 6. 在函数x y sin =、x y sin =、)322sin(π+
=x y 、)322cos(π+=x y 中, 最小正周期为π的函数的个数为( )
A. 1个
B. 2个
C. 3个
D. 4个
二、填空题(本大题共4小题,每小题5分,满分20分)
1. 关于x 的函数()cos()f x x α=+有以下命题: ①对任意α,()f x 都是非奇非偶函数;
②不存在α,使()f x 既是奇函数,又是偶函数;③存在α,使()f x 是偶函数;④对任意α,()f x 都不是奇函数. 其中一个假命题的序号是 ,因为当α= 时,该命题的结论不成立.
2. 函数x
x y cos 2cos 2-+=的最大值为________. 3. 若函数)3tan(2)(π
+=kx x f 的最小正周期T 满足12T <<,则自然数k 的值为______.
4. 若)10(sin 2)(<<=ϖϖx x f 在区间[0,]3π
上的最大值是2,则ϖ=________.
三、解答题(本大题共3小题,每小题10分,满分30分)
1. 画出函数[]π2,0,sin 1∈-=x x y 的图象.
2. (1)求函数1sin 1log 2-=x
y 的定义域. (2)设()sin(cos ),(0)f x x x π=≤≤,求()f x 的最大值与最小值.
3. 若2cos 2sin y x p x q =++有最大值9和最小值6,求实数,p q 的值. 高三数学章节训练题10《三角函数的图象和性质练习题》参考答案 一、选择题
1. C 当2πϕ=
时,sin(2)cos 22y x x π
=+=,而cos 2y x =是偶函数 2. C 111sin()sin()sin[()]sin()32323326
y x y x y x y x πππππ=-→=-→=+-→=- 3. B 5sin cos 0544(,)(,)tan 054240,24
ππαααπππαπαππ
απα⎧<<⎪->⎧⎪⇒⇒∈⎨⎨>⎩⎪<<<<⎪⎩或 4. D tan 1,cos sin 1,ααα><<αααcos sin tan >>
5. D 2525
T ππ=
= 6. C 由x y sin =的图象知,它是非周期函数
二、填空题 1. ① 0 此时()cos f x x =为偶函数
2. 3 22221(2cos )2cos ,cos 11,3113y y y x x x y y y ---=+=
⇒-≤≤≤≤++ 3. 2,3或 ,12,,2,32T k k N k k k πππ
π=<<<<∈⇒=而或
4. 34
[0,],0,0,3333x x x ππωππω∈≤≤≤≤<
max 23()2sin 2,sin ,,332344
f x ωπ
ωπ
ωππω===== 三、解答题
1. 解:将函数[]sin ,0,2y x x π=∈的图象关于x 轴对称,得函数[]sin ,0,2y x x π=-∈
的图象,再将函数[]sin ,0,2y x x π=-∈的图象向上平移一个单位即可.
2. 解:(1)2
21111log 10,log 1,2,0sin sin sin sin 2
x x x x -≥≥≥<≤ 22,6k x k πππ<≤+或522,6
k x k k Z ππππ+≤<+∈ 5(2,2][2,2),()66k k k k k Z ππππππ++∈为所求. (2)0,1cos 1x x π≤≤-≤≤当时,而[11]-,是()sin f t t =的递增区间 当cos 1x =-时,min ()sin(1)sin1f x =-=-; 当cos 1x =时,max ()sin1f x =.
3. 解:令sin ,[1,1]x t t =∈-,21sin 2sin y x p x q =-++
2222(sin )1()1y x p p q t p p q =--+++=--+++ 22()1y t p p q =--+++对称轴为t p = 当1p <-时,[1,1]-是函数y 的递减区间,max 1|29t y y p q =-==-+=
min 1|26t y y p q ===+=,得315,42
p q =-=,与1p <-矛盾; 当1p >时,[1,1]-是函数y 的递增区间,max 1|29t y y p q ===+= min 1|26t y y p q =-==-+=,得315,42
p q ==,与1p >矛盾; 当11p -≤≤时,2max |19t p y y p q ===++=,再当0p ≥, min 1|26t y y p q =-==-+=,得31,423p q ==+ 当0p <,min 1|26t y y p q ===+=,得31,423p q ==+ 31),43p q ∴=±=+。

相关文档
最新文档