第十六届华罗庚金杯少年数学邀请赛决赛试题A 参考答案(小学组)
蝴蝶定理巧解小学竞赛中的图形问题
蝴蝶定理巧解小学竞赛中的图形问题特级教师吴乃华梯形的两条对角线,把梯形分割为“上”、“下”、“左”、“右”四个部分,这四个三角形的面积以及相应边长的比例关系,都是由梯形上、下底的长短或者比例关系所决定的。
由于这四个部分形状有点像蝴蝶,揭示梯形上、下底与“上”、“下”、“左”、“右”四个部分的关系,以及这四个部分相互之间规律的理论,就叫做“梯形蝴蝶定理”。
它的奇妙之处在于,运用这种理论解答图形问题,轻松便捷,化难为易。
下面以几道小学竞赛题的解答,就定理的部分内容作浅显的解读,敬请校正。
一、紧盯翅膀求答案梯形的左右两个三角形,就像蝴蝶的一对翅膀,它们的面积是相等的,这是因为它们分属于同底同高的两个三角形,并且共有一个“上”(或者“下”)三角形。
简记为:“左=右”。
在有关梯形的图形里,关注这一部分的情况,有时能得到答案,有时为解答提供思路。
例1、如图的梯形ABCD中,三角形ABP的面积为20平方厘米,三角形CDQ的面积为35平方厘米,求四边形MPNQ的面积。
解:连接MN,这样把梯形ABCD分成ABNM和MNCD两个小梯形。
由“左=右”知道:S△MNQ=S△CDQ=35;S△MNP=S△ABP=20。
所以,四边形MPNQ的面积是:20+35=55(平方厘米)。
例2、如图所示, 四边形ABCD与四边形CPMN都是平行四边形, 若三角形DFP 与三角形AEF 的面积分别是22 和36, 则三角形BNE 的面积是多少?(第十六届华罗庚金杯赛少年数学邀请赛小学组决赛试题)解:连接AM。
把四边形CPMN以外的部分,分成了AMND和ABGM两个梯形。
由“左=右”知道:S△AFM=22;S△AEM=36-22=14。
所以,三角形BNE 的面积是14。
二、上底下底藏玄机梯形上、下底的长度,决定了对角线交叉所成的角度。
上、下底的比,决定了对角线上、下段的比,也决定了这些线段所围成的三角形面积的比。
所以相应边长的比,等于边长所在的三角形面积的比,反之,三角形面积的比,等于三角形相应边长的比。
历届“华杯赛”初赛决赛试题汇编【小中组(附答案)】
二、简答题(每小题 15 分, 共 60 分, 要求写出简要过程)
9. 用 4 个数码 4 和一些加、减、乘、除号和小括号, 写出值分别等于 2、3、4、 5、6 的五个算式. 10. 右图是 U, V, W, X 四辆不同类型的汽车每百千米的耗油 量. 如果每辆车都有 50 升油, 那么这四辆车最多可行驶 的路程总计是多少千米? 11. 某商店卖出一支钢笔的利润是 9 元, 一个小熊玩具的进 价为 2 元. 一次, 商家采取 “买 4 支钢笔赠送一个小熊玩具”的打包促销, 共 获利润 1922 元. 问这次促销最多卖出了多少支钢笔? 12. 编号从 1 到 10 的 10 个白球排成一行, 现按照如下方法涂红色: 1)涂 2 个球; 2)被涂色的 2 个球的编号之差大于 2. 那么不同的涂色方法有多少种?
四百米比赛进入冲刺阶段,甲在乙前面 30 米,丙在丁后面 60 米,乙在丙前面 20 米. 这时,跑在最前面的两位同学相差( (A)10 (B)20 )米. (D)60
(C)50
5.
在右图所示的两位数的加法算式中, 已知 A B C D 22 , ). (B)4 (C)7 (D)13
一、选择题 (每小题 10 分, 满分 60 分. 以下每题的四个选项中, 仅 有一个是正确的, 请将表示正确答案的英文字母写在每题的圆括号 内.)
第16届华杯赛决赛模拟题.答案版(终版)
第十六届华罗庚金杯少年数学邀请赛决赛——模拟试卷一、 填空题(每小题10分,共80分)1. 计算:=+⨯++⨯+⨯125.0201131407725.040223201114 。
【分析】: 2。
2. 四位数中,数码0出现_ ____次。
【分析】一个数中出现3个0的有1000,2000,……, 9000.共9个。
一个数中出现2个0的有993243⨯⨯=个;只出现1个0的有39992187⨯⨯⨯=个。
因此 ,四位数中,数码0出现21872243392700+⨯+⨯=次。
3. 如图,每个正六边形的面积是1,则图中虚线围成的五边形的面积是_______.【分析】:整个图形的面积减去外面的8个小块的面积.整个图形一共有10个小正六边形.我们把外面8个小块编号为1,2,3,4,5,6,7,8.如图.1号和6号正好是小六边形的一半,面积都是0.5.2号和3号刚好可以凑成一个六边形,所以,面积是1.同样,7号和8好凑成一个六边形,面积是1.4号和5号是两个一样的小三角形,而正六边形可以分成6个这样的小三角形,所以,4号和5号的面积都是1/6.所求面积是: 10-0.5×2-1-1-1/6×2=6+2/3=6.7.4. “12345678910111213…484950”是一个位数很多的多位数,从中划去80个数字,使剩下的数字(顺序不变)组成一个首位不为0的多位数,则这个多位数最大为______,最小为___ ___。
【分析】:根据题意,由于共有941291+⨯=个数字,最后划去80个数字,还剩下11个数字,99997484950;10000123440。
,为得到最小值,留下小的数字。
5. 所有适合不等式187<5n <720的自然数n 之和为 。
【分析】:根据题意,n 可以是2到14中的任意自然数,于是:2+3+…+14 = 104。
6. 请从2、3、5、7、9中选出4个不同的数字组成一个四位完全平方数,那么这个平方数是 。
(完整版)第十六届华杯赛总决赛试题
第十六届华罗庚金杯少年数学邀请赛 总决赛 小学组一试2011年7月23日中国·惠州一. 填空题:(共3题,每题10分)1. 计算 313615176413900114009144736543++++++=_________.2. 如右图所示,正方形ABCD 的面积为12,AE =ED ,且EF =2FC ,则三角形ABF 的面积等于_________.3. 某地区的气象记录表明,在一段时间内,全天下雨共1天;白天雨夜间晴或白天晴夜间雨共9天;6个夜间和7个白天晴朗。
则这段时间有_______天,其中全天天晴有_______天。
二. 解答题:(共3题,每题10分,写出解答过程)4. 已知a 是各位数字相同的两位数,b 是各位数字相同的两位数,c 是各位数字相同的四位数,且c b a =+2。
求所有满足条件的(a ,b ,c )。
5. 纸板上写着100、200、400三个自然数,再写上两个自然数,然后从这五个数中选出若干个数(至少两个)做只有加、减法的四则运算,在一个四则运算式子中,选出的数只能出现一次,经过所有这样的运算,可以得到k 个不同的非零自然数。
那么k 最大是多少?6. 将1,2,3,4,5,6,7,8,9填入右图的圆圈中,每个圆圈恰填一个数,满足下列条件:1) 正三角形各边上的数之和相等;2) 正三角形各边上的数之平方和除以3的余数相等。
问:有多少种不同的填入方法?( 注意,经过旋转和轴对称反射,排列一致的,视为同一种填法 )总决赛 小学组二试2011年7月23日中国·惠州一. 填空题:(共3题,每题10分)1. 某班共36人都买了铅笔,共买了50支,有人买了1支,有人买了2支,有人买了3支。
如果买1支的人数是其余人数的2倍,则买2支的人数是_________.2. 右图中,四边形ABCD 的对角线AC 与BD 相交于O ,E 为BC 的中点,三角形ABO 的面积为45,三角形ADO 的面积为18,三角形CDO 的面积为69。
最新第10~16届全国华罗庚金杯少年数学邀请赛决赛试题详细解释答案
第十届全国"华罗庚金杯"少年数学邀请赛决赛试题一、填空(每题10分,共80分)1.下表中每一列为同一年在不同历法中的年号,请完成下表:第1小题:2.计算:① 18.3×0.25+5.3÷0.4-7.13 = ( ); ②= ( )。
答案:10.695;13.计算机中最小的存储单位称为“位”,每个“位”有两种状态:0和1。
一个字节由8个“位”组成,记为B。
常用KB,MB等记存储空间的大小,其中1KB=1024B, 1MB=1024KB。
现将240MB的教育软件从网上下载,已经下载了70%。
如果当前的下载速度为每秒72KB,则下载完毕还需要()分钟。
(精确到分钟)答案:174.a,b和c都是二位的自然数,a,b的个位分别是7与5,c的十位是1。
如果它们满足等式ab+c=2005,则a+b+c=( )。
答案:1025.一个正方体的每个顶点都有三条棱以其为端点,沿这三条棱的三个中点,从这个正方体切下一个角,这样一共切下八个角,则余下部分的体积(图1中的阴影部分)和正方体体积的比是()。
答案:6.某种长方体形的集装箱,它的长宽高的比是4∶3∶2,如果用甲等油漆喷涂它的表面,每平方米的费用是0.9元,如果改用乙等油漆,每平方米的费用降低为0.4元,一个集装箱可以节省6.5元,则集装箱总的表面积是()平方米,体积是()立方米。
答案:13:37.一列自然数0,1,2,3,…,2005,…,2004,第一个数是0,从第二个数开始,每一个都比它前一个大1,最后一个是2024。
现在将这列自然数排成以下数表:规定横排为行,竖排为列,则2005在数表中位于第()行和第()列。
答案:20;458.图2中,ABCD是长方形,E,F分别是AB,DA的中点,G是BF和DE的交点,四边形BCDG 的面积是40平方厘米,那么ABCD的面积是()平方厘米。
图2答案:60二、解答下列各题,要求写出简要过程(每题10分,共40分)9.图3是由风筝形和镖形两种不同的砖铺设而成。
华杯数论
华杯赛数论专辑A1.哥德巴赫猜想是说:“每个大于2的偶数都可以袤示成两个质数之和”。
问:168是哪两个两位数的质数之和,并且其中的一个的个位数字是1?【第六届华杯赛初赛试题】2.任意写一个两位数,再将它依次重复3遍成一个8位数.将此8位数除以该两位数所得到的商再除以9,问:得到的余数是多少?【第九届华杯赛初赛试题】3.将l999表示为两个质数之和:l999=口+口,在口中填入质数。
共有多少种表示法?【第七届华杯赛初赛试题】4.五个比0大的数它们两两的乘积是1,80,35,1.4,50,56,1.6,2,40,70这十个值,问这五个数中最大数是最小数的多少倍?【第07届华罗庚金杯少年数学邀请赛团体决赛口试试题】5.能将1,2,3,4,5,6,7,8,9填在3×3的方格表中(如下图),使得横向与竖向任意相邻两数之和都是质数吗?如果能,请给出一种填法:如果不能,请你说明理由.【第07届华罗庚金杯少年数学邀请赛团体决赛口试试题】6.将1,2,3,4,5,6,7,8,9九个数排成一行,使得第二个数整除第一个数,第三个数整除前两个数的和,第四个数整除前三个数的和,…,第九个数整除前八个数的和,如果第一个数是6,第四个数是2,第五个数是1.问排在最后的数是几?【第07届华罗庚金杯少年数学邀请赛团体决赛口试试题】7.能否找到自然数a和b,使a2=2002+b2.【第八届华杯赛复赛试题及解答】8.1到100所有自然数中与100互质各数之和是多少?【第九届华杯赛总决赛一试试题】9.a,b和c都是二位的自然数,a,b的个位分别是7与5,c的十位是1。
如果它们满足等式ab+c=2005,则a+b+c=( )。
【第十届华杯赛决赛试题】10.小于10且分母为36的最简分数共有多少个? 【第十届华杯赛口赛试题】11.构成自然数的所有数字互不相同,这些数字的乘积等于360。
求n的最大值。
【第十届华杯赛口赛试题】12.将两个不同的自然数中较大的数换成这两个数的差,称为一次操作,如对18和42可连续进行这样的操作。
第十六届华赛杯小学组决赛试题及答案
第十六届华罗庚金杯少年数学邀请赛决赛试题(深圳赛区小学组)(时间: 2011年4月16日)一、填空(每题 10 分, 共80分)1.11122181819 .2320320192020⎛⎫⎛⎫⎛⎫++++++++++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2.甲车从A 出发驶向B,往返来回;乙车从B 同时出发驶向A,往返来回.两车第一次相遇后,甲车继续行驶4小时到达B ,乙车继续行驶1小时到达A. 若A,B 两地相距100千米,那么当甲车第一次到达B 时,乙车的位置距离A 千米。
3.每个铅字上刻有一个数码.如果印刷十二页书,所用的页码铅字要以下15个:1,2,3,4,5,6,7,8,9,1,0,1,1,1,2。
现要印刷一本新书,从库房领出页码铅字共2011个,排版完成后有剩余.那么,这本书最多有页.最少剩余 个铅字.4. 一列数:8,3,1,4,.….., 从第三个开始,每个数都是最靠近它前两个数的和的个位数.那么第2011个数是 .5.编号从1到50的50个球排成一行,现在按照如下方法涂色:1)涂2个球;2)被涂色的2个球的编号之差大于2.如果一种涂法被涂色的两个球与另一种涂法被涂色的两个球至少有一个是不同号的,这两种涂法就称为”不同的”.那么不同的涂色方法有种.6. A,B两地相距100千米。
甲车从A到B要走m个小时,乙车从A 到B要走n个小时,m ,n是整数.现在甲车从A,乙车从B同时出发,相向而行,经过5小时在途中C点相遇。
若甲车已经走过路程的一半,那么C到A路程是千米。
7. 自然数b与175的最大公约数记为d. 如果176(111)51⨯-⨯+=⨯+,b d d则b = .8. 如右图. ABCD为平行四边形.AE=2EB.若三角形CEF的面积=1.那么,平行四边形ABCD的面积= .二、解答下列各题(每题10 分, 共40分, 要求写出简要过程)9.三位数的十位数字与个位数字的和等于百位数字的数,称为”好数”.共有多少个好数?10.在下列2n 个数中,最多能选出多少个数,使得被选出的数中任意两个数的比都不是2或12?2345213, 32, 32, 32, 32, 32,, 32.n -⨯⨯⨯⨯⨯⨯11 .一个四位数abcd 和它的反序数dcba 都是65 的倍数.求这个数.12. 用写有+1和-1的长方块放在10n方格中,使得每一列和每一行的数的乘积都是正的,n的最小值是多少?三、解答下列各题(每题15 分, 共30分, 要求写出详细过程)13. 十五个盒子,每个盒子装一个白球或一个黑球.,且白球不多于 12个.你可以任选三个盒子来提问:“这三个盒子中的球是否有白球?”并得到真实的回答. 那么你最少要问多少次,就能找出一个或更多的白球?14. 求与2001互质,且小于2001的所有自然数的和。
第十六届华罗庚杯初赛真题及详解
2011年第十六届“华杯赛”初赛一、选择题(第小题10分,以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内。
)1.若连续的四个自然数都为合数,那么这四个数之和的最小值为( ) (A )100 (B )101 (C )102 (D )1032.用火柴棍摆放数字0-9的方式如下:现在,去掉8的左下侧一根,就成了数字9,我们称9对应1;去掉8的上下两根和左下角一根,就成了数字4,我们称4对应3。
规定8本身对应0,按照这样的规则,可以对应出( )个不同的数字。
(A )10 (B )8 (C )6 (D )53.两数之和与两数之商都为6,那么这两数之积减这两数之差(大减小)等于( )(A )7426 (B) 715 (C) 76 (D) 4964.老师问学生:“昨天你们有几个人复习数学了?”张:“没有人。
”李:“一个人。
”王:“二个人。
”赵:“三个人。
”刘:“四个人。
”老师知道,他们昨天下午有人复习,也有人没复习,复习了的人说的都是真话,没复习的人说的都是假话。
那么,昨天这5个人中复习数学的有( )个人。
(A )0 (B )1 (C )2 (D )310.在下面加法竖式中,如果不同的汉字代表不同的数字,使得算式成立,那么四位数华杯初赛的最大值是兔年十六届+ 华杯初赛2 0 1 1【参考答案及详解】(1) . C任何四个连续自然数之和一定被4除余2,所以只有102满足条件。
“都为合数”这个条件可以被无视了。
(2). C容易发现,如果原数字有n根火柴,则对应数字7-n。
原数字的火柴数目依次是2,5,5,4,5,6,3,7,6,6,包含了2,3,4,5,6,7,共6个不同数字,所以对应的也有6个不同的。
(3). D这属于和倍问题,大数是小数的6倍,所以它们的和等于小数的7倍,即小数为6/7,大数为36/7,两数之积为216/49,两数之差为30/7=210/49,所以差为6/49。
第十六届“华杯赛”小学组决赛试题A答案
第十六届华罗庚金杯少年数学邀请赛决赛试题A 参考答案(小学组)一、 填空题 (每小题 10分,共80分)二、解答下列各题 (每题10分,共40分, 要求写出简要过程)9. 答案: 2011平方厘米.解答. 连接FD 的直线与AE 的延长线相交于H . 则△DFG 绕点D 逆时针旋转180o 与△DHE 重合,DF=DH , ADH AFD S S ∆∆=.梯形AEGF 的面积=△AFH 的面积=2×△AFD 的面积=长方形ABCD 的面积 =2011(平方厘米).10. 答案:13种可能.解答. 分几种情形考虑.第一种情形: 线路号的数字中没有荧光管坏了. 只有351一个可能线路号. 第二种情形: 线路号的数字中有1支荧光管坏了.坏在第一位数字上, 可能的数字为9, 线路号可能是951;坏在第二位数字上, 可能的数字为6,9, 线路号可能是361, 391;坏在第三位数字上, 可能的数字为7, 线路号可能是357.第三种情形: 线路号的数字中有2支荧光管坏了.都坏在第一位数字上, 可能的数字为8, 线路号可能是851;都坏在第二位数字上, 可能的数字为8, 线路号可能是381;都坏在第三位数字上, 可能的数字为4, 线路号可能是354;坏在第一、二位数字上, 第一位数字可能的数字为9,第二位数字可能的数字为6,9, 线路号可能是961, 991;坏在第一、三位数字上, 第一位数字可能的数字为9,第三位数字可能的数字为7, 线路号可能是957;坏在第二、三位数字上,第二位数字可能的数字为6,9, 第三位数字可能的数字为7,线路号可能是367, 397.所以可能的线路号有13个:351,354,357,361,367,381,391,397,851,951,957,961,991.11. 答案: 3, 5.解答. 设这个月的第一个星期日是a 日(71≤≤a ), 则这个月内星期日的日期是a k +7, k 是自然数, 317≤+a k . 要求有三个奇数.当a =1时, 要使7k +1是奇数, k 为偶数, 即k 可取0, 2, 4三个值, 此时,177+=+k a k 分别为1, 15, 29, 这时20号是星期五.当a =2时, 要使7k +2是奇数, k 为奇数, 即k 可取1, 3两个值, 7k +2不可能有三个奇数.当a =3时, 要使7k +3是奇数, k 为偶数, 即k 可取0, 2, 4三个值, 此时377+=+k a k 分别为3, 17, 31, 这时20号是星期三.当74≤≤a 时, a k +7不可能有三个奇数.12. 答案: 253.解:令k m 15=, k 是自然数, 首先考虑满足下式的最大的m ,.201115151153152151≤⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡-++⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡m m 于是.2011213152)1(1515)1(152151150151511531521512≤-=+-=+⨯-++⨯+⨯+⨯=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡-++⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡k k k k k kk m m 因此.402213152≤-k k 又40224114171317152>=⨯-⨯, 40223632161316152<=⨯-⨯,得知k 最大可以取16. 当16=k 时, m =240. 注意到这时312161952363220112131520112+⨯==-=--k k . 注意到20112024131618161513151615121516152151615115161515161511516152151>=⨯+=⎥⎦⎤⎢⎣⎡+⨯+⎥⎦⎤⎢⎣⎡+⨯++⎥⎦⎤⎢⎣⎡+⨯+⎥⎦⎤⎢⎣⎡+⨯+⎥⎦⎤⎢⎣⎡⨯+⎥⎦⎤⎢⎣⎡-⨯++⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡ 而201120081216181615121516153152151<=⨯+=⎥⎦⎤⎢⎣⎡+⨯++⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡ .所以253 是满足题目要求的n的最小值.三、解答下列各题(每小题15分,共30分,要求写出详细过程)13.答案: 312解答. 由于2+0+1+1=4 且0+1+2+3+4+6+7+8+9=40, 4≡40(mod 9), 所以, 九个不同的汉字代表的数字:0, 1, 2, 3, 4, 6, 7, 8, 9.易知:40-4=36, 36÷9=4(次), 说明此算式共发生四次进位.“4=2+2=1+1+2=1+2+1”显然:①华=1, “4=2+2”无解②华=1, “4=1+1+2”有解A:28+937+1046=2011, 可组成算式36种(6×6×1=36)B:69+738+1204=2011, 可组成算式48种(6×4×2=48)C:79+628+1304=2011, 可组成算式48种(6×4×2=48)③华=1, “4=1+2+1”有解A:46+872+1093=2011, 可组成算式36种(6×6×1=36)B:98+673+1240=2011, 可组成算式72种(6×6×2=72)C:97+684+1230=2011, 可组成算式72种(6×6×2=72)总计:72×3+96=216+96=312(种).14.解答. 如左下图, 设M, N, P分别为棱GC, GF, GH的中点, 'M, 'N, 'P 分别为棱AE, AD, AB的中点, O为正方体的中心(长方形BDHF的中心).(1)第一只蜘蛛甲可以把爬虫控制在右上图所示的范围内.首先蜘蛛甲做与爬虫关于点O的对称方向的移动, 不妨设爬虫由G沿棱GC 向点M移动, 蜘蛛甲由A沿棱AE向点'M移动, 爬虫被限制在GM上. 当爬虫到达点M时, 蜘蛛甲也同时到达点'M. 然后蜘蛛甲改变策略, 做与爬虫关于平面BDHF对称的方向移动.a) 当爬虫到达点B, D, F, H时, 蜘蛛甲捉住爬虫.b) 当爬虫未到达点B, D, F, H时, 爬虫被控制在左上图所示的范围内.(2) 蜘蛛乙先移动到点G, 由于右上图无环路, 蜘蛛乙可以跟在爬虫后面, 总可以捉住爬虫.。
第十六届华罗庚金杯少年数学邀请赛决赛试卷(七年级组A卷)含答案
二、解答下列各题 (每题 10 分, 共 40 分, 要求写出解题过程)
9、一本书标有 2011 页, 从第一页开始每 11 页就在最后一页的页面加注一个红 圈, 直到末页. 然后从末页开始向前, 每 21 页也在最前一页加注一个红圈, 直到 第一页. 问一共有多少页加注了两个红圈, 并写出它们的页面号码. 10、 如图, M , N 分别为四边形 ABCD对角线 AC、BD 的中点 , 过 M、N 的直线分别交 CD、AB 于 E、F . 如果三角形 ABE 的面积为 45, 求三角形 CDF 的面积. 11、设 S1 | x1 |, S 2 | S1 x2 |, , S n | S n 1 xn | , 将1, 2, 3, , 2011这些数适当地分 配给 x1 , x2 , x3 , , x2011 , 使得 S 2011 尽量大, 那么 S 2011 最大是多少? 12、求所有正整数 x, y, 使得 x2+3y 与 y2+3x 都是完全平方数.
m 1 0 0 2k 3, 1
由
100 2k 3 1 2 0 11 k 0 。 8
所以,两圈重合的页面有 9 页。 10. 答案:45 解: 因为 M 是 AC 的中点, 所以 A与C到EF 的距离相等, 因此 S AEF S CEF 。 同理: S BEF S DEF 。 两式相加可得 S ABE S CDF 。
选手诚信协议:
在参加本次“华杯赛”活动期间,我确定没有就所涉及的问题或结论,与任何人、用 任何方式进行交流或讨论. 我确定本试卷的答案均为我个人独立完成的成果, 否则愿接受本 次成绩无效的处罚. 我同意遵守以上协议. 选手签名: .
一、填空题(每小题 10 分, 共 80 分)
1、公交车的线路号是由数字显示器显示的三位数, 其中每个数字是由横竖放置 的七支荧光管显示, 如下图所示.
第十六届“华杯赛”深圳小学组决赛试题答案
第十六届华罗庚金杯少年数学邀请赛决赛试题与解答(小学组)一、填空(每题 10 分, 共 80 分)1. ⎛ 11 1 ⎫ ⎛2 2 ⎫ ⎛ 18 18 ⎫19++ +⎪ ++ +⎪ + ++⎪ +=.2 3 20 20 20 ⎝ 20 ⎭ ⎝ 3 ⎭⎝ 19 ⎭解。
⎛ 1 11 ⎫ ⎛2 2 ⎫ ⎛ 18 18 ⎫ 19++ +⎪ + + +⎪ + + +⎪+2 3 3 20 20 ⎝ 20 ⎭ ⎝ 20 ⎭ ⎝ 19 ⎭1 ⎛ 12 ⎫ ⎛ 1 23 ⎫ ⎛ 1 2 18 ⎫ ⎛ 1 219 ⎫=++⎪ +++⎪ + + ++ +⎪ + ++ +⎪2 ⎝3 3 ⎭ ⎝4 4 4 ⎭ ⎝ 19 19 19 ⎭ ⎝ 20 20 20 ⎭=12 + 1 + 1 12 + + 9 + 9 12 = 12 ⨯ (1 + 2 +3 + + 19)= 952.甲车从 A 出发驶向 B,往返来回;乙车从 B 同时出发驶向 A,往返来回.两车第一次相遇后,甲车继续行驶 4 小时到达 B ,乙车继续行驶 1 小时到达 A.若 A,B 两地相距 100 千米,那么 当甲车第一次到达 B 时,乙车的位置距离 A 千米。
解.设甲车车速为 v 1 ,乙车车速为 v 2 . 如图,第一次相遇在 C 点,则AC = v 1 , 而AC = v , BC = 4 v , v 2 = v 1 , BC 4vv 2 2 1 v 21v 2 = 2v 1.所以, 当甲车第一次到达 B 时,乙车的位置 在 B 处.距离 A100 千米。
3.每个铅字上刻有一个数码.如果印刷十二页书,所用的页码铅字要以下 15 个:1,2,3,4,5,6,7,8,9,1,0,1,1,1,2。
现要印刷一本新书,从库房领出页码铅字共 2011 个,排版完成后有剩余.那么,这本书最多有 页.最少剩余 个铅字. 解.前9 页用9个铅字;从第10页到99 页, 每页用2 个铅字, 前99 页共用189 个铅字.从第100页到999 页, 每页用3 个铅字, 前k 页,100 ≤ k ≤ 999, 共用189+3( k - 99) 个铅字. 189 + 3(k - 99) < 2011, 3k < 2011 + 297 - 189 = 2119 = 3⨯ 706 +1. 答。
2011、2012年华罗庚金杯少年数学邀请赛决赛真题及详解
2011、2012年华罗庚金杯少年数学邀请赛决赛真题及详解第十六届华罗庚金杯少年数学邀请赛 决赛试题A (小学组) (时间: 2011年4月16日10:00~11:30) 一、填空题(每小题 10分, 共80分) 1. 135713572468+++= . 2. 工程队的8个人用30天完成了某项工程的31, 接着增加了4个人完成其余的工程, 那么完成这项工程共用了 天. 3. 甲乙两人骑自行车同时从A 地出发去B 地, 甲的车速是乙的车速的1.2倍. 乙骑了5千米后, 自行车出现故障, 耽误的时间可以骑全程的61. 排除故障后, 乙的速度提高了60%, 结果甲乙同时到达B 地. 那么A, B 两地之间的距离为 千米. 4. 在火车站的钟楼上装有一个电子报时钟, 在圆形钟面的边界, 每分钟的刻度处都有一个小彩灯. 晚上9时35分20秒时, 在分针与时针所夹的锐角内有 个小彩灯. 5. 在边长为1厘米的正方形ABCD 中, 分别以A , B , C , D 为圆心, 1厘米为半径画四分之一圆, 交点E , F , G , H , 如图所示. 则中间阴影部分的周长为 厘米.(取圆周率 3.141π=) 6. 用40元钱购买单价分别为2元、5元和11元的三种练习本, 每种至少买一本, 而且钱恰好花完. 则不同的购买方法有 种.7. 已知某个几何体的三视图如右图,根据图中标示的尺寸(单位: 厘米),这个几何体的体积是 (立方厘米).学校____________姓名_________参赛证号密封线内请勿答题8. 将自然数1~22分别填在下面的“□”内(每个“□”只能填一个数), 在形成的11个分数中, 分数值为整数的最多能有 个.二、解答下列各题(每题10分, 共40分, 要求写出简要过程)9. 长方形ABCD 的面积是2011平方厘米. 梯形AFGE的顶点F 在BC 上, D 是腰EG 的中点. 试求梯形AFGE 的面积.10. 公交车的线路号是由数字显示器显示的三位数,其中每个数字是由横竖放置的七支荧光管显示,如右图所示. 某公交车的数字显示器有两支坏了的荧光管不亮, 显示的线路号为“351”, 则该公交车的线路号有哪些可能?11. 设某年中有一个月里有三个星期日的日期为奇数, 则这个月的20日可能是星期几?12. 以[]x 表示不超过x 的最大整数, 设自然数n 满足201115151153152151>⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡-++⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡n n , 则n 的最小值是多少?三、解答下列各题(每小题 15分,共30分,要求写出详细过程)13. 在右面的加法竖式中, 不同的汉字代表不同的数字. 问: 满足要求的不同算式共有多少种?14. 如图, 两只蜘蛛同处在一个正方体的顶点A , 而一只爬虫处在A 的体对顶点G . 假设蜘蛛和爬虫均以同样的速度沿正方体的棱移动, 任何时候它们都知道彼此的位置, 蜘蛛能预判爬虫的爬行方向. 试给出一个两只蜘蛛必定捉住爬虫的方案.2011年“华杯赛”复赛小学组试题及详解第16届华杯赛复赛小学组试题及详解1. 原式=(2+4+6+8)-(1/2+1/4+1/6+1/8)=20-(1+1/24)=18+23/24。
第十六届“华杯赛”小学组决赛试题D答案
第十六届华罗庚金杯少年数学邀请赛决赛试题D 参考答案(小学组)一、 填空题 (每小题 10分,共80分)二、解答下列各题 (每题10分,共40分, 要求写出简要过程)9. 答案: 1901解答. 因为华杯决赛是四位数, 十六届是三位数, 兔年是两位数, 所以等式成立时有华杯决赛=19011010020112011=--≤--兔年十六届.当华杯决赛=1901, 十六届=100, 兔年=10时题目要求的等式成立. 10. 答案: 52.5.解答:因为DE AC //,所以COD AOE S S ∆∆=.又CDE COD S S CE OC ∆∆=,EACCODEAC AOE S S S S CE OE ∆∆∆∆==, 所以=OE OC CDEEACS S ∆∆. 因为三角形EAC 在边AC 上的高和三角形CDE 在边DE 上的高相等,所以21===∆∆DE AC S S OE OC CDE EAC . 因为21==∆∆OE OC S S DOE COD , 所以202==∆∆COD DOE S S . 因为21==∆∆OE OC S S AOE AOC , 所以52121===∆∆∆COD AOE AOC S S S . 所以15=+=∆∆∆AOE AOC ACE S S S .因为CE AB //,所以21==∆∆CE AB S S ACE ABC , 即5.721==∆∆ACE ABC S S . 所以5.52=+++=∆∆∆∆DOE COD ACE ABC ABCDE S S S S S .11. 答案: 7.解答. 每张卡片, 所写数字有几个约数就被翻过几次. 被翻了奇数次的卡片红色面朝上, 而只有完全平方数才能有奇数个约数, 所以本题也就是求写有完全平方数的卡片有几张, 而50765432112222222<<<<<<<≤,所以红色朝上的卡片共有7张. 12. 答案: 11厘米. 解答. 如图,球的内接正方体ABCD -A 1B 1C 1D 1的顶点在球面上, 它的(体)对角线AC 1就是球的直径, 即201021=⨯=AC (厘米).由图形的对称性, 可知 1111190,90AA C A B C ∠=︒∠=︒. 设正方体的棱长为a 即11111AA A B B C a ===, 连续用勾股定理两次, 得到2222221111112,3AC a AC AA AC a ==+=,则2224001320400,13333a a ====. 显然, 只要一个正方体的棱长a 为整数, 满足2133a ≤, 那么这个正方体一定可以放入球中, 因为 221112113314412=<<=. 故所求的棱长为整数的正方体的最大棱长等于11厘米.三、解答下列各题 (每小题 15分,共30分,要求写出详细过程)13. 答案: 2004, 2032, 2060, 2088.解答. 根据题意, 符合题意的年份必定是闰年(二月有29天), 并且二月一日恰好是星期日, 所以得先找到二十一世纪第一个二月一日是星期日的年份.根据题意, 2011年4月16日是星期六, 可倒推得2004年2月1日是星期日.这样可按每隔4⨯7(28)年为一个周期推算, 二十一世纪符合题意的年份有2004, 2032, 2060和2088年, 共有4个. 14. 答案:51703475,解答. 设这两个最简分数为am bk 和cm dk, 其中:()1b,d =; (1) ()1a,c =; (2) ()1am,bk =;()1cm,dk =. (3)既然cm am m -=, 所以有1a c -=. (4)又因为[]1050123557am,cm ==⨯⨯⨯⨯⨯,并结合(4),可得到: ① 14c =, 15a =,5m =,此时,757056bk dk -=,或 151416bk dk -=; (5) ② 6c =, 7a =,55m =⨯,此时,756516bk dk ⨯⨯-=; (6) ③ 5c =, 6a =,57m =⨯,此时,675716bk dk ⨯⨯-=; (7) ④ 2c =, 3a =,557m =⨯⨯,此时,35725716bk dk ⨯⨯⨯⨯-=; (8) ⑤ 1c =, 2a =,3557m =⨯⨯⨯,此时,235735716bk dk ⨯⨯⨯⨯⨯-=. (9) 上面第(6)式中,756576156bk dk bk dk ⨯⨯⎛⎫-=⨯-= ⎪⎝⎭,结合条件(1),必有5k ,即k 有约数5,和(3)矛盾. 即151416b k d k -=无解. 同样,(7) ,(8) 和 (9) 中,必有7k , 均和(3)矛盾,即都无解. 仅考虑(5),151416bk dk -=,151415141161514d bkbd bk dkkbd d b--===-, (10)根据(1),(2)和(3),应当有()()15141 15141b,d b ,d ,d b -=-=,此即意味着:n b d k ⨯-=)1415(, (11)并且(10)变形为11123nbd =⨯⨯,即n,b,d 只能取1,2,3,6. 由(3)和(11),可知:()()151141n,,n,==,因此得1n =. 同样,()151b,=,()141d ,=,因此可得:23b ,d ==. 所以()2151434bk d b =⨯-=,()3151451dk d b =⨯-=. 这两个分数是7534和7051.。
2011-2016年第16-22届华罗庚杯少年数学邀请赛几何试题(小学高年级组)全解析
B
2011年第16届华罗庚杯少年数学邀请赛决赛C几何试题 长方形ABCD的面积为70,梯形AFGE的顶点F在BC上,D是EG的中点,则梯形AFGE的 的面积是()。
E A D
G
B
F
C
长方形ABCD的面积为70,梯形AFGE的顶点F在BC上,D是EG的中点,则梯形AFGE的 的面积是()。 解1:连接DF, E A D S△ADF= G
������ ������
利用蝴蝶模型,在梯形AFGE中, S□ AFGE
利用蝴蝶模型,在长方形ABCD中, S△ADF=
������ ������
S□ ABCD
B
F
C
故: S□ AFGE= S□ ABCD=70
长方形ABCD的面积为70,梯形AFGE的顶点F在BC上,D是EG的中点,则梯形AFGE的 的面积是()。
一个长40、宽25、高60的无盖长方体容器(厚度忽略不计)盛有水,深度为a,其中0 ˂a ≤60,现将棱长尾10的长方体铁块放在容器底面,问放入铁块后水深是()。
1
2
3
分析:无盖长方体容器盛有水情况有三种: 1、水很满;放入铁块后,水溢出; 2、水深很浅,放入铁块后,铁块一部分在水中,另一部分露出水面,水面也有升高。
A
由三角形AFC的面积和四边形DBEF的面积相等,得: S△AEC=S△BCD,则:������������ × ������������ = ������������ × ������������ 由于BD:AB=DM:AN=1:3,则:EC:BC=1:3
E
A
O C D
B
如图所示,AB∥CE,AC ∥ DE,且AB=AC=5,CE=DE=10。若
2022年第十六届华罗庚金杯赛少年数学邀请赛初赛试卷(小学组)及
2022年第十六届华罗庚金杯赛少年数学邀请赛初赛试卷(小学组)及(时间2022年3月19日10:00-11:00)这次华杯赛,除上述十道题目外,南京有的考点还有2道附加题第11题:有6个时刻,6:30,6:31,6:32,6:33,6:34,6:35这几个时刻里,时刻时针和分针靠得最近,时刻时针和分针靠得最远。
第12题:一个纸片倒过来,0,1,8三个数字转180°后不变,6变成9,9变成6,其他数字转180°后没意义。
问,7位数转180°后不变的有个,其中能被4整除的数有个,这些转180°后不变的7位数的总和是.【参考答案及详解】1.任何四个连续自然数之和一定被4除余2,所以只有102满足条件。
“都为合数”这个条件可以被无视了。
询2.容易发现,如果原数字有n根火柴,则对应数字7-n。
原数字的火柴数目依次是2,5,5,4,5,6,3,7,6,6,包含了2,3,4,5,6,7,共6个不同数字,所以对应的也有6个不同的。
C3.这属于和倍问题,大数是小数的6倍,所以它们的和等于小数的7倍,即小数为6/7,大数为36/7,两数之积为216/49,两数之差为30/7=210/49,所以差为6/49。
D口4.任何两人说的话都不能同时为真,所以最多有一个人说的是真话,如果有一个人复习了,那么李说的是真话,符合题意;如果没有人复习了,那么张说的是真话,矛盾。
B口5.看蚂蚁所在的列,可知应该在中间一列,这列上有N和Q;看蚂蚁所在的行,可知应该在中间一行,所以是N。
B口6.增加3台计算机,时间变成75%也就是3/4,说明计算机增加到4/3,增加了1/3,原来有9台;如果减少3台计算机,减少到2/3,时间变为3/2,增加了1/2,所以原定时间是5/6某2=5/3(小时)。
A7.如图所示,有8个。
画出其中的两个,其余的完全对称。
88.相遇后,甲还需要3小时返回甲地。
第二次相遇时,甲距离相遇点的距离等于甲2.5小时的路程,乙用了3.5小时走这些路程,所以甲乙速度比为7:5。
第10~16届全国华罗庚金杯少年数学邀请赛决赛试题详细解释答案
第十届全国"华罗庚金杯"少年数学邀请赛决赛试题一、填空(每题10分,共80分)1.下表中每一列为同一年在不同历法中的年号,请完成下表:第1小题:2.计算:① 18.3×0.25+5.3÷0.4-7.13 = ( ); ②= ( )。
答案:10.695;13.计算机中最小的存储单位称为“位”,每个“位”有两种状态:0和1。
一个字节由8个“位”组成,记为B。
常用KB,MB等记存储空间的大小,其中1KB=1024B, 1MB=1024KB。
现将240MB的教育软件从网上下载,已经下载了70%。
如果当前的下载速度为每秒72KB,则下载完毕还需要()分钟。
(精确到分钟)答案:174.a,b和c都是二位的自然数,a,b的个位分别是7与5,c的十位是1。
如果它们满足等式ab+c=2005,则a+b+c=( )。
答案:1025.一个正方体的每个顶点都有三条棱以其为端点,沿这三条棱的三个中点,从这个正方体切下一个角,这样一共切下八个角,则余下部分的体积(图1中的阴影部分)和正方体体积的比是()。
答案:6.某种长方体形的集装箱,它的长宽高的比是4∶3∶2,如果用甲等油漆喷涂它的表面,每平方米的费用是0.9元,如果改用乙等油漆,每平方米的费用降低为0.4元,一个集装箱可以节省6.5元,则集装箱总的表面积是()平方米,体积是()立方米。
答案:13:37.一列自然数0,1,2,3,…,2005,…,2004,第一个数是0,从第二个数开始,每一个都比它前一个大1,最后一个是2024。
现在将这列自然数排成以下数表:规定横排为行,竖排为列,则2005在数表中位于第()行和第()列。
答案:20;458.图2中,ABCD是长方形,E,F分别是AB,DA的中点,G是BF和DE的交点,四边形BCDG 的面积是40平方厘米,那么ABCD的面积是()平方厘米。
图2答案:60二、解答下列各题,要求写出简要过程(每题10分,共40分)9.图3是由风筝形和镖形两种不同的砖铺设而成。
“华罗庚金杯”数学邀请赛赛前训练模拟(小学组决赛卷)(一)(无答案)(竞赛)
“华罗庚金杯”数学邀请赛赛前训练模拟(小学组决赛卷)(一)一、填空: 1.)321()21(3)21(121++⨯+-+⨯-)4321()321(4+++⨯++-- …… - 2.一副中国象棋,黑方有将、车、马、炮、士、象、卒16个子,红方有帅、车、马、炮、士、象、兵16个子,把全部棋子放在一个盒子内,至少要取出( )个棋子,才能保证有3个同样的棋子。
(例如:3个车或3个炮等)。
3.把自然数1、2、3、…、99分成三组,如果每一组的平均数恰好相等,那么这三个平均数的乘积是( )。
4.359999是质数还是合数,答是:( )。
5.设1、3、9、27、81、243是6个给定的数,从这6个数中每次或者取一个,或者取几个不同的数求和(每个数只能取一次),可以得到一个新数,这样共得到63个新数。
如果把它们按从小到大的顺序依次排列起来就是1、3、4、9、10、12…,那么第60个数是( )。
6.小明家有4口人,他们的年龄各不相同,4人年龄的和是129岁,其中有3人的年龄是平方数。
如果倒退15年,这4人中仍有3人的年龄是平方数,请问他们4人现在的年龄分别是( )。
7.有一个长方形棋盘,每个小方格的边长都是1,长200格,宽120格(如图),纵横线交叉的点称为格点,连结A 、B 两点的线段共经过( )个格点。
(包括A 、B 两点)二、解答题:8.对120种食物是否含有甲、乙、丙三种维生素进行调查,结果是:含甲的62种,含乙的90种,含丙的68种,含甲、乙的48种,含甲、丙的36种,含乙、丙的50种,含甲、乙、丙的25种。
问(1)仅含维生素甲的有()种。
(2)不含甲、乙、丙三种维生素的有()种。
9.有12个位置,每个位置放一个自然数。
若第二个数与第一个数相等,从第三个数开始,每个数恰好是它前边所有数的总和,则我们称这样的12个数为“好串数”。
请问含1992这个数的好串数共多少个?。