Synthesis, Characterization, and Electrochemical Property of Nanometer Porphyrin Dimer
磷酸铁锂的制备及其电化学性能
磷酸铁锂的制备及其电化学性能杜炳林;朱华丽;张磊;王成武;陈召勇【摘要】以LiOH·H2O,FeSO4·7HO和H3PO4为原料[n(Li)∶n(Fe)∶n(P)=3∶1∶1],采用水热法合成了LiFePO4(P),其结构经XRD,FE-SEM,HR-TEM和SEAD表征.考察了pH值、反应温度、反应时间和表面活性剂对P的结晶度、颗粒形貌、晶粒大小和择优取向的影响.结果表明:在pH为9.27,0.5%的聚乙烯醇为表面活性剂,于150℃反应8h合成的P表现出规则的片状形貌,衍射峰强I(200)/I(211)为0.492 5;P在垂直b轴方向有一定的择优生长;P在ac面为最大面,b轴方向尺寸最短;采用乙炔黑为导电剂制备的P扣式电池表现出优良的电化学性能,于室温0.1C倍率充放电,放电比容量为108.3 mAh·g-1;葡萄糖包覆改性后的扣式电池,0.1C倍率放电比容量为148mAh·g-1,1C倍率放电时,放电比容量仍保持在133.9 mAh·g-1左右.【期刊名称】《合成化学》【年(卷),期】2014(022)003【总页数】5页(P322-326)【关键词】水热法;制备;LiFePO4;择优生长;包覆改性;充放电性能【作者】杜炳林;朱华丽;张磊;王成武;陈召勇【作者单位】长沙理工大学物理与电子科学学院,湖南长沙410114;长沙理工大学物理与电子科学学院,湖南长沙410114;长沙理工大学电力与交通材料保护湖南省重点实验室,湖南长沙410114;长沙理工大学物理与电子科学学院,湖南长沙410114;长沙理工大学物理与电子科学学院,湖南长沙410114;长沙理工大学物理与电子科学学院,湖南长沙410114【正文语种】中文【中图分类】O614.8;O613.6针对磷酸铁锂(LiFePO4)的电导率和离子扩散率低两大缺陷,研究人员纷纷展开了大量深入的研究。
希夫碱铜_配合物的合成_表征及其与DNA的相互作用_康敬万
第43卷2007年第4期 西 北 师 范 大 学 学 报(自然科学版) Vo l .43 2007 No .4 Jo urnal of No rthwe st N o rmal U niversity (Natura l Science ) 收稿日期:2007-04-28;修改稿收到日期:2007-05-30基金项目:国家自然科学基金资助项目(20275030);西北师范大学科技创新工程资助项目(K JCXG C -01)作者简介:康敬万(1938—),男,河南巩义人,教授,博士研究生导师.主要研究方向为电分析化学.E -mail :jwkang @nw nu .edu .cn希夫碱铜(Ⅱ)配合物的合成、表征及其与DNA 的相互作用康敬万,周红艳,武国凡,卢小泉(西北师范大学化学化工学院,甘肃兰州 730070)摘 要:用L -半胱氨酸、水杨醛和醋酸铜合成了一种新的希夫碱铜(Ⅱ)配合物(Cu (Ⅱ)L ),并对其结构进行了表征;用荧光、黏度和电化学方法研究了该配合物与DN A 的相互作用.结果表明,希夫碱铜(Ⅱ)配合物与DN A 的作用模式是插入和吸附的混合模式,测得Cu (Ⅱ)L 与CT DN A 的键合常数是1.63×104L /mol .该配合物与单链DN A 和双链DN A 有不同的电化学性质,利用这种性质可以作为识别dsDN A 和ssDN A 的探针试剂.关键词:希夫碱;铜(Ⅱ)配合物;合成;表征;DN A ;相互作用中图分类号:O 641.4;O 657.1 文献标识码:A 文章编号:1001-988Ⅹ(2007)04-0063-06Synthesis ,characterization of a Schiff base copper (Ⅱ)complexand interaction w ith DNAKANG Jing -w an ,ZHO U Ho ng -y an ,W U Guo -fan ,LU Xiao -quan(Co llege of Chemistry and Chemical Engineering ,N or thw est N orma l U nive rsity ,Lanzhou 730070,Gansu ,China )A bstract :A novel Schiff base copper (Ⅱ)com plex (Cu (Ⅱ)L )is synthesized from L -cy steine ,salicy laldehy de and co ppe r (Ⅱ)acetate and its structure is characterized .The interactio n o f the com plex with calf thy mus DNA (C T DM A )has been explo red by fluo rescence spectro sco py ,viscosity and electrochemistry m easurements .The results of e xperiments show the interaction modes of DNA w ith Cu (Ⅱ)L are inte rcalatio n and adso rption .The binding constant of the complex to CT DNA is 1.63×104L /mo l .Furthermo re ,the electro chem ical character of the interactio n of Cu (Ⅱ)L w ith dsDNA is different fro m w ith ssDNA ,so the co mplex can be used as probe indicato r to distinguish dsDNA and ssDNA .Key words :Schiff base ;copper (Ⅱ)co mplex ;synthesis ;characterize ;DNA ;interaction 脱氧核糖核酸(DNA )是一类重要的生命物质,是生物体遗传信息的载体[1].许多生物实验都已证明,DNA 是抗癌试剂的靶向分子,因为小分子能与DN A 相互作用从而阻止DNA 的复制和癌细胞的生长,导致癌细胞死亡[2].近几年来,过渡金属配合物和DNA 相互作用的研究成为DNA 分子探针和化学疗法发展中的一个重要方面[3,4].在过渡金属中铜是一种具有+1和+2两种氧化态的重要生物元素[5].许多生物酶都依靠铜元素的反应来激发其活性,从而完成它在生物体中对新陈代谢过程的催化作用[6].因此,铜的配合物的合成与其生物活性的研究成为一个焦点领域[7,8].同时,希夫碱的配合物在生理和药理上也具有特殊的活性[9-11].然而,目前对铜与希夫碱的63西 北 师 范 大 学 学 报(自然科学版) 第43卷 Journal of N or thw est N ormal U nive rsity (N atural Science ) Vo l .43 配合物的研究却甚少.笔者利用自身带有N 和S 螯合原子的L -半胱氨酸和水杨醛合成了希夫碱配体(L ),并进一步与醋酸铜作用合成了希夫碱铜(Ⅱ)配合物(Cu (Ⅱ)L )(图1),并对配体和配合物的结构进行了表征;同时,利用荧光、粘度和电化学等方法研究了铜配合物与DNA 的相互作用.图1 希夫碱铜(Ⅱ)配合物的合成路线Figure 1Sy nthe tic routes of Cu (Ⅱ)L1 实验部分1.1 仪器与试剂PE -2400CH N (美国PE 公司)自动元素分析仪;Digilab FTS -3000FT -IR 红外光谱仪(KBr 压片);M ercury Plus 400型核磁共振仪(DMSO -d 6为溶剂,TMS 为内标);TG /DTA -6300型热分析仪(氮气保护,加热速度为10℃/min ,扫描范围从室温到250℃);LS55型荧光光谱仪;CH I -660电化学工作站.小牛胸腺DNA (CT DNA )购自美国华美生物工程公司(北京),其他试剂均为分析纯;实验用水为二次蒸馏水.DNA 储备液是将天然双链DNA (dsDNA )溶解在二次水中,于4℃下保存,并在4d 内用完,DNA 在260和280nm 处的吸光度比值A 260/A 280为1.8∶1~1.9∶1,说明DNA 达到实验纯度要求[12];天然CT DNA 在沸水中加热8min ,在冰水混合物中迅速冷却得到单链DNA (ssDNA ).1.2 合成1.2.1 配体的合成 将2.42g (20m mol )L -半胱氨酸加入100m L 无水乙醇中,在60℃下搅拌1h 使其溶解,然后加入2.44g (20mmo l )水杨醛,回流反应3h .冷却,抽滤,收集得淡黄色固体,并依次用H 2O (10m L )和EtOH (5m L )洗涤,干燥即得希夫碱配体4.23g (18.8m mol ,产率94%).产物物理常数和分析表征数据如下:IR (KBr ,νcm -1):3441(OH ),2569,2693(SH ),1624(CN ),1454,1570(Ar ).1H NM R(d 6-DMSO ,δppm ):3.34(1H dd )—CH A H B SH ,3.21(1H dd )—CH A H B SH ,3.83(1H dd )—CH (N )(CH 2SH ),5.65,5.84(1H s )A r —CHN —,6.74~6.83(2H m )A r ,7.04~7.16(1H m )A r ,7.29~7.36(1H m )Ar .与文献一致[13].元素分析(计算)/%(C 10H 11NO 3S ):C 53.13(53.32),H 4.97(4.92),N 6.35(6.22).热分析:T =172.3~179.5℃(吸热峰,失重23.2%).熔点:170~171℃.1.2.2 配合物的制备 将0.675g (3mm ol )配体加入40mL 无水乙醇中,在60℃下搅拌20min 使其溶解,然后加入0.594g (3m mol )水合醋酸铜继续于60℃搅拌反应3h ,再升温回流反应1h .冷却,抽滤,收集得褐色固体,并依次用H 2O (2×10m L )和EtOH (2×5m L )洗涤,真空干燥2h 即得希夫碱铜(Ⅱ)配合物0.792g (2.76mmo l ,产率92%).产物物理常数和分析表征数据如下:IR (KBr ,νcm -1):1623(C N ),1448,1594(Ar ),537(Cu —O ).元素分析(计算)/%(C 10H 9NO 3SCu ):C 41.81(41.87),H 3.14(3.17),N 4.88(4.85).热分析:T =154.7~160.7℃(放热峰,失重16.4%).熔点:>300℃.1.3 Cu (Ⅱ)L 对EB -DN A 体系的荧光强度的影响在EB -DNA 的溶液中([EB ]=2.5μmol /L ,[DNA ]=14μm ol /L )加入不同量的配合物Cu (Ⅱ)L (0~249μmo l /L ),0.5h 后,在给定的条件下扫描其荧光发射图谱.1.4 黏度研究DNA 溶液的黏度使用乌贝路德黏度计在25±0.1℃的恒温水浴中测定.配制总体积为10m L 的醋酸缓冲溶液(固定DNA 的浓度为26.6μmol /L ,改变Cu (Ⅱ)L 的浓度).溶液混合30min 后测其黏度.64 2007年第4期 康敬万等:希夫碱铜(Ⅱ)配合物的合成、表征及其与DN A 的相互作用 2007 No .4Sy nthesis ,charac ter ization of a Schiff base co pper (Ⅱ)com plex and inte raction with DN A 1.5 电化学实验在CH I -660电化学工作站(美国)上完成;采用三电极系统:铂电极作为工作电极,铂丝电极作为对电极,Ag /AgCl 电极作为参比电极.用0.1mo l /L AcO H -AcONa 缓冲溶液(pH =3.6,支持电解质为50m mol /L NaCl 溶液).溶液在使用前都用氮气除氧,电极在使用前分别用0.3μm 和0.05μm 的A l 2O 3抛光粉抛光,然后放入超声清洗器中分别用二次水和丙酮清洗5min .实验均在室温下进行.2 结果和讨论2.1 铜(Ⅱ)配合物的结构IR 表明,希夫碱配体在2693,2569cm -1处的巯基伸缩振动吸收峰(S —H )和在3441cm-1附近较宽的酚羟基伸缩振动吸收峰(O —H )在形成希夫碱铜(Ⅱ)配合物后均消失,这表明巯基的S 原子和酚羟基的O 原子均与铜离子形成了配位键.同时,由于配合物中N 原子与铜离子间配位键的形成,配体中C N 在1624cm -1处的伸缩振动吸收在配合物中向低波数方向移动.此外,配合物在537cm-1出现了新的Cu —O 的伸缩振动吸收峰.配体和配合物的热分析数据表明,它们分子中都不含结晶水.铜(Ⅱ)配合物可能是一种配位数为3的平面三角形结构[14].2.2 荧光检测众所周知,EB 自身无荧光吸收,但是当有DNA 存在时,由于和DNA 发生插入作用,使其有了较强的荧光激发.据文献报道,当加入第二种物质时,其与EB 竞争和DN A 发生反应时,会发生荧光淬灭现象[6,15].因此,跟据这一体系的荧光强度变化可初步判断配合物与DNA 的结合模式.在图2荧光实验中看到随着Cu (Ⅱ)L 浓度的增加,EB -DNA 体系的荧光强度降低,说明Cu (Ⅱ)L 通过与EB 的竞争与DNA 相互作用.根据经典的S tern -Vo lmer 公式[16]:F 0/F =1+K [Q ],式中F 0,F 分别是DNA 存在和不存在时的荧光强度;K 是Ste rn -V olmer 结合常数;[Q ]是Cu (Ⅱ)L 的浓度.以未加入淬灭剂Cu (Ⅱ)L 荧光强度(F 0)对加入Cu (Ⅱ)L 时的荧光强度(F )之比(F 0/F )即淬灭几率对Cu (Ⅱ)L 浓度作图(图3).并且,通过斜率计算出结合强度K =1.63×104L /m ol .由此,可以推断Cu (Ⅱ)L 与DNA 的键合模式为插入作用.[EB ]=2.5μmol /L ;[DN A ]=14μmo l /L ;[CuL ]=0~249μmo l /L ;λe x =485nm .箭头方向表示随着配合物浓度的增大荧光强度的改变.图2 Cu (Ⅱ)L 不存在和存在时,EB 与DN A 的荧光光谱图Figure 2Emission spectra o f EB bound to D NA in theabsence and pre sence o f copper (Ⅱ)co mplex[EB ]=2.5μmol /L ;[DN A ]=14μmo l /L ;[CuL ]=0~249μmol /L ;λex =485nm .图3 Cu (Ⅱ)L 对EB -DN A 体系的荧光强度的影响Figure 3F luo rescence que nching curve o f EB boundto DN A by Cu (Ⅱ)L2.3 黏度研究黏度是研究分子长度增加的一种灵敏的方法[6],同时也是研究小分子与核酸相互作用的一种有效方法.当小分子与DNA 发生经典的嵌插作用时,DNA 碱基对中将插入配合物,因此,DNA 的链长度增加,黏度也随之增大.而当小分子与DNA 发生部分插入或外部键合时,配合物使DNA 双链弯曲或绞结,那么黏度将减小或变化较小[17].从Cu (Ⅱ)L 与CT DNA 相互作用的黏度变化(图4)可以看出,随着Cu (Ⅱ)L 浓度的增加,DNA 的相对黏度也增加,这也充分说明此配合物与DNA 的作用主要是插入模式.这与荧光实验的结果相吻合.65西 北 师 范 大 学 学 报(自然科学版) 第43卷 Journal of N or thw est N ormal U nive rsity (N atural Science ) Vo l .43[DN A ]=26.6μmol /L ,[CuL ]/[DN A ]=0~2.26.图4 增加Cu (Ⅱ)L 的浓度对CT D NA 在25.0±0.1℃的相对黏度的影响Figure 4Effect of increa sing amounts o f Cu (Ⅱ)complexo n the re lativ e viscosities o f CT DN A at 25.0±0.1℃2.4 电化学实验2.4.1 Cu (Ⅱ)L 与dsDNA 的相互作用 图5为Cu (Ⅱ)L 与dsDNA 在水溶液中相互作用的循环伏安图.由图5可知,配合物在0.296和0.082V 处有一对氧化还原峰(图5曲线a ),还原峰和氧化峰峰高的比值为0.91,峰电位差ΔE p =214mV ,E 1/2=0.189V .由此可以看出该电极反应是一个准可逆过程[18].图5 2×10-4mol /L 的Cu (Ⅱ)L 溶液(a )和2×10-4mol /L的Cu (Ⅱ)L 溶液+dsDN A (b )在扫速100mV /s 的循环伏安图F ig ure 5Cy clic v oltammog rams of Cu (Ⅱ)co mplex inabsence (a )and in pr esence of dsDN A (b ),in 0.1mo l /L A cO H -A cO N a /50mmo l /L N aCl buffer (pH 3.6)at 100mV /s图6给出了氧化峰电流与扫速平方根的关系.结果显示,配合物的氧化峰电流与扫速的平方根(v 1/2)成正比,表明配合物在电极上的反应过程主要由扩散过程控制.在配合物溶液中加入4.68μmo l /L dsDNA 后,铜配合物的氧化还原峰电流明显增加且峰电位分别正移至0.308和0.094V (图5曲线b ).根据Bard [19]等用电化学方法研究小分子与DNA 相互作用时得出的结论,当小分子与dsDNA 发生嵌插作用时,小分子的伏安峰电位将出现正移,由此推测配合物与dsDNA 主要以插入相互作用.这与上面的荧光、黏度实验结果一致.一般情况下,随着DNA 的加入配合物的峰电流是减小的,这是因为配合物结合了分子量大且扩散速度慢的DNA 分子[20]或是因为溶液中的电活性物质减少.但在本实验中,随着dsDNA 的加入配合物的峰电流是增大的,这说明Cu (Ⅱ)L 与dsDNA 的结合方式除了插入外还有吸附.当dsDNA 加入到溶液中时,dsDNA 吸附到电极上而配合物由于吸附作用被聚集到dsDNA 的沟槽中,因此,电极附近的电活性物质增多,峰电流增大.图6 Cu (Ⅱ)L 的氧化峰电流与v 1/2的关系Figur e 6Rela tionship between v 1/2and cy clic v oltamme tano dic peak cur rents o f Cu (Ⅱ)comple x in absence DN A而且,通过研究峰电流与扫速的关系,发现峰电流与扫速成线性关系(图7),说明加入dsDNA后配合物在电极上的反应由扩散控制转变为吸附控制,这更加证明了上面结论的正确性.图7 加入dsDN A 后Cu (Ⅱ)L 的氧化峰电流与v 的关系F ig ure 7Rela tionship betw ee n v and cy clic v oltammetricano dic peak currents of Cu (Ⅱ)co mplex in presence of dsDN A66 2007年第4期 康敬万等:希夫碱铜(Ⅱ)配合物的合成、表征及其与DN A 的相互作用 2007 No .4Sy nthesis ,charac ter ization of a Schiff base co pper (Ⅱ)com plex and inte raction with DN A 图8为dsDNA 浓度对配合物的差示脉冲氧化伏安(DPV )曲线的影响.随着dsDNA 浓度的增加,配合物的氧化峰电流逐渐增大,且峰电流与dsDNA 浓度在0~5.6μmo l /L 呈线性关系(图8的插图).箭头表示随着dsDN A 浓度的增加峰电流的改变插图:dsD NA 的浓度(0~5.6μmol /L )与峰电流的关系图8 2×10-4mo l /L 的Cu (Ⅱ)L 与不同量ds DN A(0~8.4μmo l /L )相互作用的DP V 曲线Figure 8DPV of titratio n Cu (Ⅱ)L with dsDNA in 0.1mol /LA cO H -A cON a /50mmo l /L N aCl buffe r (pH 3.6)2.4.2 Cu (Ⅱ)L 对dsDNA 和ssDNA 的识别 图9为Cu (Ⅱ)L 溶液的循环伏安图(曲线a )与在其中分别加入相同量的dsDNA (曲线c )和ssDNA (曲线b )的循环伏安图.由图可知,当在Cu (Ⅱ)L 溶液中加入ssDNA 后峰电流增大,但与加入相同量的dsDNA 后的峰电流相比,显然加入dsDNA 后的增幅要比加入ssDNA 的大,这就更加验证了我们上面的看法即配合物可以聚集在dsDNA的沟槽图9 2×10-4mo l /L 的Cu (Ⅱ)L 溶液(a ),2×10-4mo l /L 的Cu (Ⅱ)L 溶液+ssDN A (b )和2×10-4mo l /L 的Cu (Ⅱ)L 溶液+dsDN A (c )在扫速100mV /s 的循环伏安图Figure 9Cy clic vo ltammo g rams of Cu (Ⅱ)mple x in absenceDN A (a ),in presence of dsD NA (c )and ssDN A (b ),in 0.1mol /L A cO H -A cO N a /50mmol /L NaCl buffer (pH 3.6)at 100mV /s中.ssDNA 的沟槽大部分被破坏,所以它不能再聚集大量的配合物,故峰电流增加较少.利用配合物这个特殊的性质可以鉴别dsDNA 和ssDNA .3 结论合成了一种新希夫碱铜(Ⅱ)配合物,并用荧光光谱、黏度和电化学方法研究了Cu (Ⅱ)L 与DNA 的相互作用,它们的作用模式为插入、吸附的混合模式.通过荧光光谱测得Cu (Ⅱ)L 与C T DNA 的键合常数是1.63×104L /mol .根据Cu (Ⅱ)L 与DNA 的相互作用在电化学上表现出来的特殊性质,可以用Cu (Ⅱ)L 作为识别dsDNA 和ssDNA 的探针物质.参考文献:[1] N A SSA R A E F ,RUS LIN G J F .Electr on transferbetween electro des and heme pro teins in pr otein -DN A films [J ].J Am Chem Soc ,1996,118(12):3043-3044.[2] W AN G Bao -dui ,Y AN G Zheng -y in ,WA NG Qin ,et al .Sy nthesis ,characterization ,cy to toxicactivities ,and DN A -binding pro per ties o f the L a (Ⅲ)complex with N aring enin Schiff -base [J ].B ioorg Med Chem ,2006,14(6):1880-1888.[3] JA M IESO NER ,LIPP A RDSJ .Str ucture ,reco gnition ,and processing of cisplatin -DN A adducts [J ].Chem Rev ,1999,99(9):2467-2498.[4] CHI FO T IDES H T ,D U NBA R K R .Interac tions o fmetal -metal -bo nded antitumo r active co mplexe s with DN A frag ments and DN A [J ].Acc Chem Res ,2005,38(2):146-156.[5] K A IM W ,RA L LJ .Copper —a “modern ”bioelement [J ].Ange w Chem I nt Ed Eng l ,1996,35(1):43-60.[6] L I Lian -zhi ,Z HA O Chao ,X UTao ,et al .Synthesis ,cry stal str ucture and nuclease activity of a Schiff base copper (Ⅱ)complex [J ].J Inorg B iochem ,2005,99(5):1076-1082.[7] W AN G L R ,W AN G R X ,Y AN G L Z ,et al .Study o f the interaction of C TZ AM B -Cu (Ⅱ)with DN A and the de te rminatio n of DN A [J ].J Electroanal Chem ,2005,585(2):214-219.[8] A N N A RAJ J ,S RINI VA SA V S ,PO NV EL K M ,et al .M ixed ligand co pper (Ⅱ)co mplexe s o f phenanthroline /bipy ridyl and curcumin diketimines as DN A intercalator s and their elect rochemical behavior67西 北 师 范 大 学 学 报(自然科学版) 第43卷 Journal of N or thw est N ormal U nive rsity(N atural Science) Vo l.43 unde r N afion(R)and clay modified electro des[J].JI norg Biochem,2005,99(3):669-676.[9] T A K EUCH I T,BO T TC HER A,Q U EZA DA C M,e t al.Selective inhibitio n of huma n alpha-thro mbinby co balt(Ⅲ)Schiff base comple xes[J].J Am ChemSoc,1998,120(33):8555-8556.[10] ADS U LE S,BA RV E V,CHEN D,e t al.N ov elSchiff base coppe r co mplexes of quinoline-2ca rbo xaldehy de as proteasome inhibito rs in humanpr ostate cancer cells[J].J Med Chem,2006,49(24):7242-7246.[11] Z HO NG X,YI J,SU N J,et al.Sy nthesis andc rystal structure of some transitio n metal co mplexe sw ith a no vel bis-Schiff base lig and a nd their a ntitumo rac tivities[J].Eur J Med Chem,2006,41(9):1090-1092.[12] M A RM U R J.A pr ocedure fo r the isola tion ofdeox y ribonucleic acid fr om micro org anisms[J].JMol Biol,1961,3:208-218.[13] PIL L A R M R A,K O T HA RI K,BA N ERJEE S,e t a l.Radiochemical studies of T c-99m complex es ofmo dified cysteine ligands and bifunctional chelatingag ents[J].N ucl Med Biol,1999,26(5):555-561.[14] 卢小泉,康敬万,高锦章.配合物电化学分析[M].北京:中国石化出版社,2000.[15] W O LF E A,S HIM ER G H Jr,M EEHA N T.Polycy clic a roma tic hydro ca rbons phy sicallyintercalate into duple x reg io ns of dena tured DN A[J].Biochemistry,1987,26(20):6392-6396.[16] L A KO WICZ J R,W EBER G.Q uenching o ffluo rescence by o xy gen,pro be for structuralfluctuatio ns in macro molecules[J].Biochemistry,1973,12(21):4161-4170.[17] SA T Y AN A RA Y AN A S,DA BROW IA K J C,CHA I RES J B.T ris(phe nanthro line)r uthenium(Ⅱ)enantiomer inter actions w ith DN A-mode a ndspecificity of binding[J].Biochemistry,1993,32(10):2573-2584.[18] BABU M S S,REDDY K H,K RIS HN A P G.Synthesis,characterization,DN A interactio n a ndcleav ag e activity o f new mixed ligand co pper(Ⅱ)complex es with he te rocyclic ba ses[J].Polyhedron,2007,26(3):572-580.[19] CA RT ER M T,RO DRIG U EZ M,BA RD A J.V oltammetric studies of the interaction o f metalche lates with DN A.2.T ris-chelated co mplexes o fcobalt(Ⅲ)and ir on(Ⅱ)w ith1,10-phenanthrolineand2,2′-bipy ridine[J].J Am Chem Soc,1989,111(24):8901-8911.[20] SU N Jie,SO L AI M A N D K Y.T he cyclicvo ltammet ric study of iro n-tallysomy cin in theabsence and presence of DN A[J].J Inorg Biochem,1990,40(3):271-277.(责任编辑 陆泉芳)68。
Materials Characterization
Materials Characterization Materials characterization is a crucial aspect of scientific research and development, as it provides valuable insights into the properties and behavior of various materials. By analyzing the structure, composition, and properties of materials, researchers can better understand their performance in different applications and make informed decisions about their use. This process involves a combination of techniques, including microscopy, spectroscopy, and thermal analysis, to gather detailed information about the material at the atomic and molecular levels. One of the key goals of materials characterization is to determine the structure of a material, which can have a significant impact on its properties and performance. For example, the arrangement of atoms in a crystal lattice can affect the strength, conductivity, and other properties of a material. By using techniques such as X-ray diffraction and electron microscopy, researchers can visualize the atomic structure of a material and identify any defects or imperfections that may be present. This information is essential for understanding how a material will behave under different conditions and can help researchers design new materials with improved properties. In addition to determining the structure of a material, materials characterization also involves analyzing its composition. This includes identifying the elements present in the material, as well as their relative concentrations. Techniques such as energy-dispersive X-ray spectroscopy and mass spectrometry can be used to determine the chemical composition of a material with high precision. This information is crucial for ensuring the quality and consistency of materials, as even small variations in composition can have a significant impact on their properties. Another important aspect of materials characterization is studying the properties of a material, such as its mechanical, thermal, and electrical behavior. By subjecting a material to various tests and measurements, researchers can determine its strength, hardness, conductivity, and other important properties. This information is essential for determining the suitability of a material for a particular application and for predicting how it will perform in different environments. For example, the thermal conductivity of a material is crucial for designing efficient heat exchangers, while the electrical conductivity is important for developinghigh-performance electronic devices. Materials characterization is not only important for understanding the properties of existing materials but also for developing new materials with specific properties and performance characteristics. By combining different materials and studying their interactions at the atomic level, researchers can design materials with novel properties that are tailored to meet specific needs. This process often involves a combination of experimental techniques and computational modeling to predict how different materials will behave when combined. By understanding the structure-property relationships of materials, researchers can accelerate the development of new materials for a wide range of applications. Overall, materials characterization plays a crucial role in advancing scientific research and technological innovation. By providing detailed insights into the structure, composition, and properties of materials, researchers can make informed decisions about their use in various applications. This information is essential for optimizing the performance of materials, improving their quality and consistency, and developing new materials with unique properties. As technology continues to advance, materials characterization will remain a key area of focus for researchers seeking to push the boundaries of what is possible in materials science and engineering.。
Synthesis and characterization of carbon-doped titania as an artificial solar light photocatalyst
Synthesis and characterization of carbon-doped titania as an artificial solar light sensitive photocatalystYuanzhi Lia,b,Doo-Sun Hwang a ,Nam Hee Lee a ,Sun-Jae Kima,*aSejong Advanced Institute of Nano Technologies,#98Gunja-Dong,Gwangjin-Gu,Sejong University,Seoul 143-747,KoreabDepartment of Chemistry,China Three Gorges University,8College road,Yichang,Hubei 4430002,PR ChinaReceived 1December 2004;in final form 4January 2005AbstractThe carbon-doped titania with high surface area was prepared by temperature-programmed carbonization of K-contained ana-tase titania under a flow of cyclohexane.This carbon-doped titania has much better photocatalytic activity for gas-phase photo-oxi-dation of benzene under irradiation of artificial solar light than pure titania.The visible light photocatalytic activity is ascribed to the presence of oxygen vacancy states because of the formation of Ti 3+species between the valence and the conduction bands in the TiO 2band structure.The co-existence of K and carbonaceous species together stabilize Ti 3+species and the oxygen vacancy state in the as-synthesized carbon-doped titania.Ó2005Elsevier B.V.All rights reserved.Titania is well known as a cheap,nontoxic,efficient photocatalyst for the detoxication of air and water pol-lutants.However,it is activated only under UV light irradiation because of its large band gap (3.2eV).Be-cause only 3%of the solar spectrum has wavelengths shorter than 400nm,it is very important and challeng-ing to develop efficient visible light sensitive photocata-lysts by the modification of titania.Several attempts have been made to narrow the band gap energy by tran-sition metal doping [1–3],but these metal-doped photo-catalysts have been shown to suffer from thermal instability,and metal centers act as electron traps,which reduce the photocatalytic efficiency.Recently,the mod-ification of titania by nonmetals (e.g.S,N,C,B)receive much attention as the incorporation of these nonmetals into titania could efficiently extend photo-response from UV (ultra-violet)to visible regions [4–10].Here,we re-port a method of synthesizing carbon-doped titania with a high surface area.It was found that the as-synthesizedcarbon-doped titania showed much better photocata-lytic activity for photo-oxidation of benzene under irra-diation of artificial solar light than undoped titania.The as-synthesized carbon-doped titania was pre-pared by the following procedure.0.10mol TiCl 4(98%TiCl 4,Aldrich)were added slowly drop wise into 200ml portions of distilled water in an ice bath.The ob-tained transparent TiOCl 2aqueous solution was heated rapidly to 100°C,and then kept at this temperature for 10min for hydrolysis of TiOCl 2.The precipitates formed in the solution were filtered,neutralized to pH 8.0by 0.1mol/l KOH aqueous solution,washed thor-oughly with distilled water,and then finally dried at 150°C in air for 24h.The carbon-doped titania was prepared by temperature-programmed carbonization (TPC)of anatase titania in a flow of Ar saturated by cyclohexane at 20°C in a quartz tube reactor.The load-ing of titania was 2g,and the flowing rate of Ar was 500ml (STP)/min.The sample was heated to the car-bonization temperatures between 450and 500°C at a rate of 0.5°C/min and kept at the temperature for 2h.After rapidly cooling to room temperature in a flow of Ar,a grayish sample of titania was obtained.0009-2614/$-see front matter Ó2005Elsevier B.V.All rights reserved.doi:10.1016/j.cplett.2005.01.062*Corresponding author.Fax:+82234083664.E-mail address:sjkim1@sejong.ac.kr (S.-J.Kim)./locate/cplettChemical Physics Letters 404(2005)25–29The crystalline phase of samples was determined by XRD.Before TPC,the obtained titania prepared by hydrolysis of TiOCl2aqueous solution had pure anatase structure.The crystalline phase of anatase sample was almost unchanged even after TPC except for the forma-tion of a small amount of rutile phase infinally obtained carbon-doped pared to pure titania pre-pared by same procedure but replacing cyclohexane sat-urated Ar by air,the carbon doped titania has lower rutile content,indicating that TPC inhibited the trans-formation of anatase to rutile phase.The average crystal size of as-synthesized carbon-doped titania is estimated by the Scherrer formula:L=0.89k/b cos h to be7.6nm. BET surface area measurement showed that the as-syn-thesized carbon-doped titania by TPC at475°C had as high as204m2/g specific surface area,which is impor-tant for improving photocatalytic activity.But the car-bon-doped titania prepared by reported carbon doping method usually had a lower specific surface area and larger crystal size[11,12].Fig.1gives the UV–Vis diffusive reflectance absorp-tion spectra of the pure titania and carbon-doped titania pared to that of the carbon-doped titania, the absorption edge near400nm of the pure titania has a red-shift of20nm,which might be contributed by the higher content of rutile in pure titania than in carbon-doped titania,as rutile has a narrower band gap (3.0eV)than anatase(3.2eV).The as-synthesized pure titania almost has no absorption above400nm.How-ever,the doping of carbon results in obvious absorption of titania up to700nm.This absorption feature suggests that these carbon-doped titania can be activated by visible light.The photocatalytic activity of as-synthesized titania samples for the gas-phase oxidation of benzene was tested on a home-made re-circulating gas-phase photo-reactor with a quartz window,which was connected to the ppbRAE meter(RAE system Inc.)to re-circulate a mixture of benzene and ambient air without additional drying and measure concentration of the volatile organic compounds(VOCs).Artificial solar light with full spec-trum(32W VITA LITE lamp)was used as irradiation source.First,0.7000g titania powder was put into the reactor,then a known amount of benzene was injected in the system under dark.After the adsorption of benzene on titania reached to adsorption equilibrium,artificial solar light was turn on.Fig.2shows the amounts of total volatile organic compounds(VOCs)with the artificial so-lar light irradiation time.Morawski and co-workers[13] prepared carbon-modified titania by heating at the high temperatures of titanium dioxide in an atmosphere of gaseous n-hexane.They found that carbon-modified titania had catalytic photoactivity slightly lower than that of TiO2without carbon deposition.In our experi-ment of preparing anatase TiO2by hydrolysis of TiOCl2 solution,the precipitate was neutralized to pH8.0by 0.1mol/l KOH aqueous solution.When we did not use KOH solution to neutralize the titania precipitate and just washed thoroughly the titania precipitate with dis-tilled water.Then,we use this titania without neutraliza-tion by KOH solution to prepare the carbon-doped titania by TPC.It was found that this carbon-doped titania has almost similar photocatalytic activity for the gas-phase photo-oxidation of benzene to the un-doped titania prepared by the same procedure but replacing cyclohexane saturated Ar by air.This result is similar to the result reported by Morawski et al.How-ever,the as-synthesized carbon-doped titania,which was prepared by TPC of anatase titania with neutralization by KOH solution,have much better photoactivity for the gas-phase photo-oxidation of benzene than the un-doped titania as well as Degussa P25titania,a bench-marking photocatalyst.This result shows that the neutralization of titania by KOH solution plays very important role in the photocatlytic activity of thefinally obtained carbon-doped titania,and doping a proper26Y.Li et al./Chemical Physics Letters404(2005)25–29amount of carbon into the KOH neutralized titania by our method leads to the obvious enhancement of its photoactivity.Our experiment shows that thefinal carbonization temperature has an important effect on the photoactiv-ity,and the optimum carbonization temperature is be-tween475and500°C.The photocatalytic activity of the as-synthesized carbon-doped titania is unchanged after several successive cycles of photocatalytic tests un-der artificial light irradiation,indicating the stability of the catalysts after photolysis.Asahi et al.[5]made a theoretical calculation of the densities of states(DOSs)of the substitutional doping of C,N,F,P,or S for O in the anatase TiO2crystal by the full-potential linearized augmented plane wave in the framework of the local density approximation (LDA).They thought that the substitutional doping of N or S was the most effective because its p states contrib-ute to the band gap narrowing by mixing with O2p states,but the states introduced by C and P are too deep in the gap to satisfy one of the requirements for visible light sensitive photocatalyst.However,previous works [11,12,14]and our experiment show that the carbon-doped titania has visible light photocatalytic activity. Therefore,we must try tofind the reason why as-synthe-sized carbon-doped titania has visible light photocata-lytic activity.To investigate the carbon states in the photocatalyst, C1s core levels were measured by X-ray photoemission spectroscopy(XPS),as shown in Fig.3a.There are two XPS peaks at284.6,288.2eV for the as-synthesized carbon-doped titania,but it was confirmed that there was only one peak at284.6eV for pure titania even though it is not shown here.Obviously the peak at 284.6eV arises from adventitious elemental carbon. Hashimoto and co-workers[11]prepared carbon-doped titania by oxidizing TiC,and observed C1s XPS peak with much lower binding energy(281.8eV).They as-signed this C1s XPS peak to Ti–C bond in carbon-doped anatase titania by substituting some of the lattice oxygen atom by carbon.Khan et al.[12]synthesized carbon-modified rutile titania by controlledflame pyrolysis of Ti metal,and thought that the carbon substituted for some of the lattice oxygen atoms.However,Sakthivel and Kisch[14]prepared carbon-modified titania by hydrolysis of titanium tetrachloride with tetrabutylam-monium hydroxide followed by calcinations at400°C, and observed the two kinds of carbonate species with binding energies of287.5and288.5eV.These resultssuggest that the preparation method plays an important role in determining the carbon oxidation state in car-bon-modified titania:both substitution of the lattice oxygen in the titania and the formation of carbonate species in titania lead to the narrowing of the band gap infinal obtained carbon-doped titania.Our result is similar to that of Sakthivel and Kisch,but the carbon-doped titania prepared by our method only has one peak nearby at288.2eV,indicating the presence of only one kind of carbonate species.Therefore,our result does not contradict the theoretical expectation of Asahi et al.because the carbon exists in form of carbonate, not by substituting the oxygen of the anatase in the as-synthesized carbon-doped titania.The sensitivity ofY.Li et al./Chemical Physics Letters404(2005)25–2927the as-synthesized carbon-doped titania to visible light maybe arises from other reason.The surface carbon concentration in our sample was estimated by XPS to be7.3%.The XPS spectral of Ti2p region were also shown(Fig.3b).The XPS spectra of Ti2p3/2in the car-bon-doped titania can befitted as one peak at457.8eV. Compared to the binding energy of Ti4+in pure anatase titania(458.6eV),there is a red-shift of0.8eV for the carbon-doped titania,which suggests that Ti3+species was formed in the carbon-doped titania[15].In our experiment of preparing anatase TiO2,the precipitate was neutralized to pH8.0by0.1mol/l KOH aqueous solution.K was also detected by XPS in thefinally ob-tained carbon-doped titania prepared from this KOH neutralized titania.The XPS spectral of K2p region were also shown(Fig.3c).The XPS spectra of K2p3/2in the carbon-doped titania can befitted as one peak at 292.5eV,which could be assigned to K+.The surface K concentration in our sample was estimated by XPS to be13.3%.Fig.4shows EPR spectra of as-synthesized doped titania,recorded at77K and ambient temperature un-der dark.The XPS results show the presence of Ti3+ in the as-synthesized carbon-doped titania.It can be seen from Fig.4that Ti3+is also detected by EPR at low temperature(77K).Moreover,there are observed two kinds of Ti3+in the as-synthesized carbon-doped titania.The signal at g^=1.9709,g i=1.9482is assigned to surface Ti3+[16,17],and the signal at g=1.9190is as-signed to vacancy-stabilized Ti3+in the lattice sites or similar center in the subsurface layer of titania[18,19]. At ambient temperature,the Ti3+EPR signal disap-pears,but the strong symmetric signal at g=2.0055still exists,and no EPR signal was detected for pure anatase titania.Moreover,our experiment showed that the used carbon-doped titania still had a strong EPR signal at g=2.0055after experienced photocatalytic test.Serwicka[20]observed a broad signal assigned to Ti3+ ions at g=1.96and a sharp signal at g=2.003on the vacuum-reduced TiO2at673–773K.They attributed the latter signal to a bulk defect,probably an electron trapped on an oxygen vacancy.Nakamura et al.[21]re-ported that the symmetrical and sharp EPR signal at g=2.004detected on plasma-treated TiO2arose from the electron trapped on the oxygen vacancy.The pres-ence of Ti3+in the as-synthesized carbon-doped titania implies that there must be some change for oxygen spe-cies localized near Ti3+in the carbon-doped titania to satisfy the requirement of charge equilibrium,which is further confirmed by the EPR proof of the existence of vacancy-stabilized Ti3+in the as-synthesized carbon doped bined with the reported assignment for the EPR signal,the signal at g=2.0055newly ob-served here for the as-synthesized carbon-doped titania can be assigned to the electron trapped on the oxygen vacancy.It was reported that reducing TiO2introduces localized oxygen vacancy states located at0.75–1.18eV below the conduction band edge of TiO2[22],which re-sults in sensitivity of the reduced TiO x photocatalyst to visible light.So,for titania containing localized oxygen vacancy,the band gap between valence band and local-ized oxygen vacancy state is 2.45–2.02eV.Our UV experiments showed that the carbon-doped titania has an obvious absorption up to700nm(mainly in the re-gion of450–610nm(2.74–2.02eV))as shown in Fig.1, which further confirms that localized oxygen vacancy states actually exist in the as-synthesized carbon-doped titania and the existence of localized oxygen vacancy states results in the sensitivity of the as-synthesized car-bon-doped titania photocatalyst to visible light.Based on our results of UV,XPS and EPR,it is concluded that the presence of Ti3+species produced in the process of carbon doping of the K-contained titania leads to the formation of oxygen vacancy state(O t.Ti3+)in the as-synthesized carbon-doped titania between the valence and the conduction bands in the TiO2band structure, which results in the sensitivity of the as-synthesized car-bon-doped titania to visible light and its high photocat-alytic activity under irradiation of artificial solar light.It was proved by our photocatalytic experiment that the oxygen vacancy state in the as-synthesized carbon-doped titania had good stability because its photocata-lytic activity was unchanged after several successive cycles of photocatalytic test under artificial light irradiation.We think that the co-existence of K and carbonaceous species together stabilize Ti3+species and the oxygen vacancy state in the as-synthesized carbon-doped titania.In summary,the carbon-doped titania with high sur-face area and good crystallinity was prepared by temper-ature-programmed carbonization of nano anatase titania withfinal carbonization temperature of475°C under aflow of cyclohexane.This carbon-doped titania28Y.Li et al./Chemical Physics Letters404(2005)25–29showed an obvious absorption of titania up to700nm, and had much better photocatalytic activity for gas-phase photo-oxidation of benzene under irradiation of artificial solar light than pure titania.The visible light photocatalytic activity is ascribed to the presence of oxy-gen vacancy state because of the formation of Ti3+spe-cies in the as-synthesized carbon-doped titania between the valence and the conduction bands in the TiO2band structure,which results in sensitivity of the as-synthe-sized carbon-doped titania to the visible light. AcknowledgmentsThe authors are grateful to Basic Research Program of Korea Science and Engineering Foundation(Grant No.R01-2002-000-00338)forfinancial support. References[1]H.Kisch,L.Zang, nge,W.F.Maier, C.Antonius, D.Meissner,Angew.Chem.,Int.Ed.37(1998)3034.[2]W.Macyk,H.Kisch,Chem.Eur.J.7(2001)1862;C.Wang,D.W.Bahnemann,J.K.Dohrmann,mun.16(2000)1539.[3]H.Yamashita,M.Honda,M.Harada,Y.Ichihashi,M.Anpo,T.Hirao,N.Itoh,N.Iwamoto,J.Phys.Chem.B102(1998) 10707.[4]T.Umebayashi,T.Yamaki,H.Itoh,K.Asai,Appl.Phys.Lett.81(3)(2002)454.[5]R.Asahi,T.Ohwaki,K.Aoki,Y.Taga,Science293(2001)269.[6]C.Burda,Y.Lou,X.Chen,A.C.S.Samia,J.Stout,J.L.Gole,Nano Lett.3(8)(2003)1049.[7]H.Irie,Y.Watanabe,K.Hashimoto,J.Phys.Chem.B107(2003)5483.[8]J.L.Gole,J.D.Stout,C.Burda,Y.Lou,X.Chen,J.Phys.Chem.B108(2004)1230.[9]T.Lindgren,J.M.Mwabora,E.Avendano,J.Jonsson,A.Hoel,C.Granqvist,S.Lindquist,J.Phys.Chem.B107(2003)5709.[10]W.Zhao,W.Ma,C.Chen,J.Zhao,Z.Shuai,J.Am.Chem.Soc.126(2004)4782.[11]H.Irie,Y.Watanabe,K.Hashimoto,Chem.Lett.32(8)(2003)772.[12]S.U.M.Khan,M.Al-shahry,W.B.Ingler Jr.,Science297(2002)2243.[13]M.Janus,B.Tryba,M.Inagaki,A.W.Morawski,Appl.Catal.B52(2004)61.[14]S.Sakthivel,H.Kisch,Angew.Chem.,Int.Ed.42(2003)4908.[15]X.Y.Du,Y.Wang,Y.Y.Mu,L.L.Gui,P.Wang,Y.Q.Tang,Chem.Mater.14(2002)3953.[16]Y.Z.Li,Y.N.Fan,H.P.Yang,B.L.Xu,L.Y.Feng,M.F.Yang,Y.Chen,Chem.Phys.Lett.372(2003)160.[17]L.Bonneviot,G.L.Haller,J.Catal.113(1988)96.[18]T.Huizinga,R.Prins,J.Phys.Chem.85(1981)2156.[19]S.A.Fairhurst, A.D.Inglis,Y.Le Page,J.R.Morton,K.F.Preston,Chem.Phys.Lett.95(1983)444.[20]E.Serwicka,Colloid.Surf.13(1985)287.[21]I.Nakamura,N.Negishi,S.Kutsuna,T.Ihara,S.Sugihara,K.Takeuchi,J.Mol.Catal.A161(2000)205.[22]D.C.Cronemeyer,Phys.Rev.113(1959)1222.Y.Li et al./Chemical Physics Letters404(2005)25–2929。
Materials-Letters-详细投稿指南
以下是Materials Letters的作者指南,我觉得它已经非常简明的说清楚整个投稿过程需要注意的东西2009年影响因子:1.94Guide for Authors Materials LettersMaterials Letters is dedicated to publishing novel, cutting edge reports of broad interest to the materials community. The journal provides a forum for materials scientists and engineers, physicists, and chemists to rapidly communicate on the most important topics in the field in materials. We are primarily interested in those contributions which bring new insights, and papers will be selected on the basis of the importance of the new knowledge they provide.Contributions include a variety of topics such as:• Materials- Metals and alloys, amorphous solids, ceramics, composites, nanocrystals, polymers, semiconductors.• Applications - Structural, opto-electronic, magnetic, medical, MEMS, sensors, smart.• Characterization- Analytical, microscopy, scanning probes, nanoscopic, optical, electrical, acoustic, spectroscopic, diffraction.• Novel Materials- Micro and nanostructures (nanowires, nanotubes, nanoparticles), nanocomposites, thin films, superlattices, quantum dots.• Processing - Thin film processing, sol-gel processing, mechanical processing, assembly, and nanocrystalline processing leading to unique materials.• Properties - Mechanical, magnetic, optical, electrical, ferroelectric, thermal, interfacial, transport, thermodynamic.• Synthesis- Quenching, solid state, solidification, solution synthesis, vapor deposition, and high pressure, explosive processes leading to unique materials. The following topics are inappropriate for publication:Building materials - aggregate, asphalt, cement, concrete, plasterCatalytic materialsCorrosion and oxidation phenomena and protectionLiquid crystalsMetallurgical ProcessesNatural raw materials – clays, minerals, rocksOxide glasses and glass ceramicsRecycled materialsRefractoriesSingle crystal growthTheoryWearTypes of Contribution:Letters are intended as brief reports of significant, original and timely research results on the science, applications and processing of materials which warrant rapid publication. In considering a manuscript for publication, particular attention will be given to the originality of the research, the desirability of speedy publication, the clarity of the presentation and the validity of the conclusions. There is a strict four-page limit to printed articles. Manuscripts must not exceed 2000 words plus three figures and one table. The maximum number of figures is strictly limited to five. If the maximum of 5 figures is used, then the total number of words must be reduced to 1600. If more than 5 figures are used, the manuscript will be rejected. The manuscript submitted for review should not exceed 8 pages (including title, abstract, references, figures, tables and figure captions).Contact Details:Authors should submit their article via the online submission system. Authors will be asked to choose the Editor whose subject area is most closely aligned to the subject of their article. Each Editor's specialties are given below. To expedite the review process, authors will also be prompted to nominate 3 potential referees, who are not at the same institute, to serve as potential referees. Contact details are helpful.Principal EditorsProf. J. Hojo - Nano-composites, Composites, Sol-gel preparationProf. T.G. Nieh - Metallic Alloys, Ceramics, Composites, High Temperature Materials, Mechanical Behavior, Material ProcessingProf. L.S. Shvindlerman - Nano-Crystalline Metals, Thermodynamics, Kinetics, Interfaces and Surfaces.Prof. A.F.W. Willoughby - Semiconductor/Electronic Materials, PolymersOnline Submission:Authors must submit their articles using the secure online submission system at .To facilitate rapid publication, it is essential to precisely follow these instructions. Failure to do so can result in a delay or rejection of the manuscript for publication. To ensure a timely review you will be required to answer the following questions before your paper will be considered for review.• Has your paper, or par t of your paper, been published before, or is it currently submitted for review to another journal?Yes / No(If yes, then do not submit your paper to Materials Letters.)• Is the total number of words less than 2000?Yes / No(If greater than 2000, please reduce the number of words.)• Is the number of figures greater than 5?Yes / No(If yes, then the paper will automatically be rejected.)• Are the x-ray diffraction patterns indexed?Yes / No(see 4.10) (If your x-ray patterns are not indexed, the paper will be rejected for publication.) [?奇怪]• Do the micrographs have professional quality scale markers?Yes / No(Please replace the black bar on SEM & TEM micrographs with a professional quality scale marker. See 4.9)Ethics in PublishingFor information on Ethics in Publishing and Ethical guidelines for journal publication see and .Policy and ethicsThe work described in your article must have been carried out in accordance with The Code of Ethics of the World Medical Association (Declaration of Helsinki) for experiments involving humans; EC Directive 86/609/EEC for animal experiments; Uniform Requirements for manuscripts submitted to Biomedical journals. This must be stated at an appropriate point in the article.Conflict of interestAll authors are requested to disclose any actual or potential conflict of interest including any financial, personal or other relationships with other people or organizations within three years of beginning the submitted work that could inappropriately influence, or be perceived to influence, their work. See also . Submission declarationpreviously (except in the form of an abstract or as part of a published lecture or academic thesis), that it is not under consideration for publication elsewhere, that its publication is approved by all authors and tacitly or explicitly by the responsible authorities where the work was carried out, and that, if accepted, it will not be published elsewhere including electronically in the same form, in English or in any other language, without the written consent of the copyright-holder.CopyrightUpon acceptance of an article, authors will be asked to complete a 'Journal Publishing Agreement' (for more information on this and copyright see ). Acceptance of the agreement will ensure the widest possible dissemination of information. An e-mail will be sent to the corresponding author confirming receipt of the manuscript together with a 'Journal Publishing Agreement' form or a link to the online version of this agreement.Subscribers may reproduce tables of contents or prepare lists of articles including abstracts for internal circulation within their institutions. Permission of the Publisher is required for resale or distribution outside the institution and for all other derivative works, including compilations and translations (please consult ). If excerpts from other copyrighted works are included, the author(s) must obtain written permission from the copyright owners and credit the source(s) in the article. Elsevier has preprinted forms for use by authors in these cases: please consult .Retained author rightsAs an author you (or your employer or institution) retain certain rights; for details you are referred to: .Role of the funding sourceYou are requested to identify who provided financial support for the conduct of the research and/or preparation of the article and to briefly describe the role of the sponsor(s), if any, in study design; in the collection, analysis and interpretation of data; in the writing of the report; and in the decision to submit the paper for publication. If the funding source(s) had no such involvement then this should be stated. Please see .Funding body agreements and policiesElsevier has established agreements and developed policies to allow authors whose articles appear in journals published by Elsevier, to comply with potential manuscript archiving requirements as specified as conditions of their grant awards. To learn more about existing agreements and policies please visit .Language and language servicesPlease write your text in good English (American or British usage is accepted, but not a mixture of these). Authors who require information about language editing and copyediting services pre- and post-submission please visit or our customer support site at for more information.SubmissionSubmission to this journal proceeds totally online and you will be guided stepwise through the creation and uploading of your files. The system automatically converts source files to a single PDF the article, which is used in the peer-review process. Please note that even though manuscript source files are converted to PDF files at submission for the review process, these source files are needed for further processing after acceptance. All correspondence, including notification of the Editor's decision and requests for revision, takes place by e-mail removing the need for a paper trail.RefereesPlease submit, with the manuscript, the names, addresses and e-mail addresses of 3 potential referees. Note that the editor retains the sole right to decide whether or not the suggested reviewers are used.Use of wordprocessing softwareIt is important that the saved in the native format of the wordprocessor used. The text should be in single-column format. Keep the layout of the text as simple as possible. Most formatting codes will be removed and replaced on processing the article. In particular, do not use the wordprocessor's options to justify text or to hyphenate words. However, do use bold face, italics, subscripts, superscripts etc. Do not embed "graphically designed" equations or tables, but prepare these using the wordprocessor's facility. When preparing tables, if you are using a table grid, use only one grid for each individual table and not a grid for each row. If no grid is used, use tabs, not spaces, to align columns. The electronic text should be prepared in a way very similar to that of conventional manuscripts (see also the Guide to Publishing with Elsevier: ). Do not import the figures into the text , instead, indicate their approximate locations directly in the electronic text and on the manuscript. See also the section on Electronic illustrations.To avoid unnecessary errors you are strongly advised to use the "spell-check" and "grammar-check" functions of your wordprocessor.Follow this order when submitting manuscripts: Title, Authors, Affiliations, Abstract, Keywords, Main text, Acknowledgements, Appendix, References, Figure Captions and then Tables. For submission via the website you are requested to import low-resolution images into the article at the approximate location you wish them to appear. Thus the PDF which is created for refereeing purposes will contain all necessary information. In addition you will be asked to separately upload high quality images. Collate acknowledgements in a separate section at the end of the article and do not include them on the title page, as a footnote to the title or otherwise.Text LayoutUse double spacing and wide (3 cm) margins. (Avoid full justification, i.e., do not use a constant right-hand margin.) Ensure that each new paragraph is clearly indicated. Present tables, figures and figure legends at the point they will appear in the manuscript. If possible, consult a recent issue of the journal to become familiar with layout and conventions. Number all pages consecutively, use 12 or 10 pt font size and standard fonts.Subdivision - numbered sectionsDivide your article into clearly defined and numbered sections. Subsections should be numbered 1.1 (then 1.1.1, 1.1.2, ...), 1.2, etc. (the abstract is not included in section numbering). Use this numbering also for internal cross-referencing: do not just refer to "the text". Any subsection may be given a brief heading. Each heading should appear on its own separate line. IntroductionState the objectives of the work and provide an adequate background, avoiding a detailed literature survey or a summary of the results.Material and methodsProvide sufficient detail to allow the work to be reproduced. Methods already published should be indicated by a reference: only relevant modifications should be described.Theory/calculationA Theory section should extend, not repeat, the background to the article already dealt with in the Introduction and lay the foundation for further work. In contrast, a Calculation section represents a practical development from a theoretical basis. ResultsResults should be clear and concise.DiscussionThis should explore the significance of the results of the work, not repeat them.A combined Results and Discussion section is often appropriate. Avoid extensive citations and discussion of published literature.ConclusionsThe main conclusions of the study may be presented in a short Conclusions section, which may stand alone or form a subsection of a Discussion or Results and Discussion section.Essential title page information• Title.Concise and informative. Titles are often used in information-retrieval systems. Avoid abbreviations and formulae where possible.• Author names and affiliations.Where the family name may be ambiguous (e.g., a double name), please indicate this clearly. Present the authors' affiliation addresses (where the actual work was done) below the names. Indicate all affiliations with a lower-case superscript letter immediately after the author's name and in front of the appropriate address. Provide the full postal address of each affiliation, including the country name, and, if available, the e-mail address of each author.• Corresponding author.Clearly indicate who will handle correspondence at all stages of refereeing and publication, also post-publication. Ensure that telephone and fax numbers (with country and area code) are provided in addition to the e-mail address and the complete postal address.• Present/permanent address.If an author has moved since the work described in the article was done, or was visiting at the time, a "Present address" (or "Permanent address") may be indicated as a footnote to that author's name. The address at which the author actually did the work must be retained as the main, affiliation address. Superscript Arabic numerals are used for such footnotes.Abstract:A self-contained abstract of 100 to 200 words, outlining in a single paragraph the aims, scope and conclusions of the paper must be supplied. Do not list the analytical equipment (e.g. SEM, XRD, TEM) used unless it is critical to the meaning. The abstract should state briefly the purpose of the research, the principal results and major conclusions. An abstract is often presented separate from the article, so it must be able to stand alone. For this reason, References should be avoided, but if essential, they must be cited in full, without reference to the reference list. Also, non-standard or uncommon abbreviations should be avoided, but if essential they must be defined at their first mention in the abstract itself.KeywordsImmediately after the abstract, provide a maximum of 6 keywords, using American spelling and avoiding general and plural terms and multiple concepts (avoid, for example, "and", "of"). Be sparing with abbreviations: only abbreviations firmly established in the field may be eligible. These keywords will be used for indexing purposes.AcknowledgementsCollate acknowledgements in a separate section at the end of the article before the references and do not, therefore, include them on the title page, as a footnote to the title or otherwise. List here those individuals who provided help during the research (e.g., providing language help, writing assistance or proof reading the article, etc.).Nomenclature and unitsFollow internationally accepted rules and conventions: use the international system of units (SI). If other quantities are mentioned, give their equivalent in SI. You are urged to consult IUGS: Nomenclature for geological time scales/rock names: for further information.Math formulaePresent simple formulae in the line of normal text where possible and use the solidus (/) instead of a horizontal line for small fractional terms, e.g., X/Y. In principle, variables are to be presented in italics. Powers of e are often more conveniently denoted by exp. Number consecutively any equations that have to be displayed separately from the text (if referred to explicitly in the text).ArtworkElectronic artworkGeneral points• Make sure you use uniform lettering and sizing of your original artwork.• Save text in illustrations as "graphics" or enclose the font.• Only use the following fonts in your illustrations: Arial, Courier, Times, Symbol. • Number the illust rations according to their sequence in the text.• Use a logical naming convention for your artwork files.• Provide captions to illustrations separately.• Produce images near to the desired size of the printed version.• Submit each figure as a separ ate file.A detailed guide on electronic artwork is available on our website:You are urged to visit this site; some excerpts from the detailedFormatsRegardless of the application used, when your electronic artwork is finalised, please "save as" or convert the images to one of the following formats (note the resolution requirements for line drawings, halftones, and line/halftone combinations given below):EPS: Vector drawings. Embed the font or save the text as "graphics".TIFF: color or grayscale photographs (halftones): always use a minimum of 300 dpi.TIFF: Bitmapped line drawings: use a minimum of 1000 dpi.TIFF: Combinations bitmapped line/half-tone (color or grayscale): a minimum of 500 dpi is required.DOC, XLS or PPT: If your electronic artwork is created in any of these Microsoft Office applications please supply "as is".Please do not:• Supply embedded graphics in your wordprocessor (spreadsheet, presentation) document;• Supply files that are optimised for screen use (like GIF, BMP, PICT, WPG); the resolution is too low;• Supply files that are too low in resolution;• Submit g raphics that are disproportionately large for the content.Color artworkPlease make sure that artwork files are in an acceptable format (TIFF, EPS or MS Office files) and with the correct resolution. If, together with your accepted article, you submit usable color figures then Elsevier will ensure, at no additional charge, that these figures will appear in color on the Web (e.g., ScienceDirect and other sites) regardless of whether or not these illustrations are reproduced in color in the printed version. For color reproduction in print, you will receive information regarding the costs from Elsevier after receipt of your accepted article. Please indicate your preference for color in print or on the Web only. For further information on the preparation of electronic artwork, please see .Please note: Because of technical complications which can arise by converting color figures to "gray scale" (for the printed version should you not opt for color in print) please submit in addition usable black and white versions of all the color illustrations.Figure captionsEnsure that each illustration has a caption. Supply captions separately, not attached to the figure. A caption should comprise a brief title (not on the figure itself) and a description of the illustration. Keep text in the illustrations themselves to a minimum but explain all symbols and abbreviations used. TablesPlace footnotes to tables below the table body and indicate them with superscript lowercase letters. Avoid vertical rules. Be sparing in the use of tables and ensure that the data presented in tables do not duplicate results described elsewhere in the article.ReferencesCitation in textPlease ensure that every reference cited in the text is also present in the reference list (and vice versa). Any references cited in the abstract must be given in full. Unpublished results and personal communications are not recommended in the reference list, but may be mentioned in the text. If these references are included in the reference list they should follow the standard reference style of the journal and should include a substitution of the publication date with either "Unpublished results" or "Personal communication" Citation of a reference as "in press" implies that the item has been accepted for publication.Web referencesAs a minimum, the full URL should be given and the date when the reference was last accessed. Any further information, if known (DOI, author names, dates, reference to a source publication, etc.), should also be given. Web references can be listed separately (e.g., after the reference list) under a different heading if desired, or can be included in the reference list.References in a special issuePlease ensure that the words 'this issue' are added to any references in the list (and any citations in the text) to other articles in the same Special Issue. Reference management softwareThis journal has standard templates available in key reference management packages EndNote () and Reference Manager (). Using plug-ins to wordprocessing packages, authors only need to select the appropriate journal template when preparing their article and the list of references and citations to these will be formatted according to the journal style which is described below. Reference styleText: Indicate references by number(s) in square brackets in line with the text. The actual authors can be referred to, but the reference number(s) must always be given.List: Number the references (numbers in square brackets) in the list in the order in which they appear in the text.Examples:Reference to a journal publication:[1] Van der Geer J, Hanraads JAJ, Lupton RA. The art of writing a scientific article. J Sci Commun 2000;163:51-9.[2] Strunk Jr W, White EB. The elements of style. 3rd ed. New York: Macmillan; 1979.Reference to a chapter in an edited book:[3] Mettam GR, Adams LB. How to prepare an electronic version of your article. In: Jones BS, Smith RZ, editors. Introduction to the electronic age, New York: E-Publishing Inc; 1999, p. 281-304.Note shortened form for last page number. e.g., 51-9, and that for more than 6 authors the first 6 should be listed followed by "et al." For further details you are referred to "Uniform Requirements for Manuscripts submitted to Biomedical Journals" (J Am Med Assoc 1997;277:927-934) (see also ).Journal abbreviations sourceJournal names should be abbreviated according toIndex Medicus journal abbreviations: ;List of serial title word abbreviations: ;CAS (Chemical Abstracts Service): .Supplementary and multimedia dataElsevier accepts electronic supplementary and multimedia data to support and enhance your scientific research. Supplementary files offer the author additional possibilities to publish supporting applications, movies, animation sequences, high-resolution images, background datasets, sound clips and more. Supplementary files supplied will be published online alongside the electronic version of your article in Elsevier Web products, including ScienceDirect: . In order to ensure that your submitted material is directly usable, please ensure that data are provided in one of our recommended . Authors should submit the material in electronic format together with the article and supply a concise and descriptive caption for each file. Video files: please supply 'stills' with your files: you can choose any frame from the video or make a separate image. These will be used instead of standard icons and will personalize the link to your supplementary information. For more detailed instructions please visit our artwork instruction pages at .Submission checklistIt is hoped that this list will be useful during the final checking of an article prior to sending it to the journal's Editor for review. Please consult this Guide for Authors for further details of any item.Ensure that the following items are present:One Author designated as corresponding Author:• E-mail address• Full postal address• Telephone and fax numbersAll necessary files have been uploaded• Keywords• All figure captions• All tables (including t itle, description, footnotes)Further considerations• Manuscript has been "spellchecked" and "grammar-checked"• References are in the correct format for this journal• All references mentioned in the Reference list are cited in the text, and vice versa• Permission has been obtained for use of copyrighted material from other sources (including the Web)• Color figures are clearly marked as being intended for color reproduction on the Web (free of charge) and in print or to be reproduced in color on the Web (free of charge) and in black-and-white in print• If only color on the Web is required, black and white versions of the figures are also supplied for printing purposesFor any further information please visit our customer support site at .Use of the Digital Object IdentifierThe Digital Object Identifier (DOI) may be used to cite and link to electronic documents. The DOI consists of a unique alpha-numeric character string which is assigned to a document by the publisher upon the initial electronic publication. The assigned DOI never changes. Therefore, it is an ideal medium for citing a document, particularly 'Articles in press' because they have not yet received their full bibliographic information. The correct format for citing a DOI is shown as follows (example taken from a document in the journal Physics Letters B): doi:10.1016/j.physletb.2003.10.071When you use the DOI to create URL hyperlinks to documents on the web, they are guaranteed never to change.ProofsOne set of page proofs (as PDF files) will be sent by e-mail to the corresponding author (if we do not have an e-mail address then paper proofs will be sent by post) or, a link will be provided in the e-mail so that authors can download the files themselves. Elsevier now provides authors with PDF proofs which can be annotated; for this you will need to download Adobe Reader version 7 (or higher) available free from . Instructions on how to annotate PDF files will accompany the proofs (also given online). The exact system requirements are given at the Adobe site: .If you do not wish to use the PDF annotations function, you may list the corrections (including replies to the Query Form) and return them to Elsevier in an e-mail. Please list your corrections quoting line number. If, for any reason, this is not possible, then mark the corrections and any other comments (includingreplies to the Query Form) on a printout of your proof and return by fax, or scan the pages and e-mail, or by post. Please use this proof only for checking the typesetting, editing, completeness and correctness of the text, tables and figures. Significant changes to the article as accepted for publication will only be considered at this stage with permission from the Editor. We will do everything possible to get your article published quickly and accurately. Therefore, it is important to ensure that all of your corrections are sent back to us in one communication: please check carefully before replying, as inclusion of any subsequent corrections cannot be guaranteed. Proofreading is solely your responsibility. Note that Elsevier may proceed with the publication of your article if no response is received.OffprintsThe corresponding author, at no cost, will be provided with a PDF the article via e-mail or, alternatively, 25 free paper offprints. If the corresponding author opts for paper offprints, this preference must be indicated via the offprint order form which is sent once the article is accepted for publication. Additional paper offprints can also be ordered via this form for an extra charge. The PDF a watermarked version of the published article and includes a cover sheet with the journal cover image and a disclaimer outlining the terms and conditions of use. Keyword List(被省略)。
碳纳米管的结构、性能和应用
碳纳米管的制备、性质和应用摘要:综述了碳纳米管的研究进展,简单地介绍了单层碳纳米管和多层碳纳米管的基本形貌、结构及其表征,列举了几种主要的制备方法以及特点,介绍了碳纳米管优异的物理化学性质,以及在各个领域中潜在的应用前景和商业开发价值。
Abstract: the article reviews the study progress in nanotubes, and gives a brief introduction to single-layer carbon nanotubes and multi-walled carbon nanotubes of their morphology, structure and characterization. At the same time ,the commonly used ways of preparation and principlesas well as the applications and research prospect of carbon nanotubes are also presented.Key words: carbon nanotubes ; preparation; application前言仅仅在十几年前,人们一般认为碳的同素异形体只有两种:石墨和金刚石。
1985年,英国Sussex大学的Kroto教授和美国Rice大学的Smalley教授进行合作研究,用激光轰击石墨靶尝试用人工的方法合成一些宇宙中的长碳链分子。
在所得产物中他们意外发现了碳原子的一种新颖的排列方式,60个碳原子排列于一个截角二十面体的60个顶点,构成一个与现代足球形状完全相同的中空球,这种直径仅为0.7nm的球状分子即被称为碳60分子1-2。
此即为碳晶体的第三种形式。
1991年,碳晶体家族的又一新成员出现了,这就是碳纳米管。
日本NEC公司基础研究实验室的Iijima教授在给《Nature》杂志的信中宣布合成了这种一种新的碳结构3。
化学专业英语词汇
前沿讲座 Seminar专业英语 Professional English现代分析化学 Modern analytical che mistry生物分析技术 Bioanalytical techniques高分子进展 Advances in polymers功能高分子进展 Advances in function al polymers有机硅高分子研究进展 Progresses in organosilicon polymers高分子科学实验方法 Scientific experimental methods of polymers 高分子设计与合成 The design and sy nthesis of polymers反应性高分子专论 Instructions to re active polymers网络化学与化工信息检索 Internet Se arching for Chemistry & Chemical E ngineeringinformation有序分子组合体概论 Introduction to Organized Molecular Assembilies两亲分子聚集体化学 Chemistry of am phiphilic aggregates表面活性剂体系研究新方法 New Meth od for studying Surfactant System 微纳米材料化学 Chemistry of Micro-NanoMaterials分散体系研究新方法 New Method for studying dispersion分散体系相行为 The Phase Behavior of Aqueous Dispersions 溶液-凝胶材料 Sol-Gel Materials高等量子化学 Advanced Quantum Chemistry分子反应动力学 Molecular Reaction Dynamic计算量子化学 Computational QuantumChemistry群论 Group Theory分子模拟理论及软件应用 Theory andSoftware of Molecular Modelling &Application价键理论方法 Valence Bond Theory量子化学软件及其应用Software of Quantum Chemistry & its Application分子光谱学 Molecular Spectrum算法语言 Computational Languange高分子化学 Polymer Chemistry高分子物理 Polymer Physics药物化学 Medicinal Chemistry统计热力学 Statistic Thermodynamics液-液体系专论 Discussion on Liquid-Liquid System配位化学进展 Progress in Coordination Chemistry无机材料及物理性质 Inorganic Materials and Their Physical Properties物理无机化学 Physical Inorganic Chemistry相平衡 Phase Equilibrium现代无机化学 Today's Inorganic Chemistry无机化学前沿领域导论 Introduction to Forward Field in Inorganic Chemistry量子化学 Quantum Chemistry分子材料 Molecular Material固体酸碱理论 Solid Acid-Base Theory萃取过程物理化学 Physical Chemistryin Extraction表面电化学 Surface Electrochemistry电化学进展 Advances on Electrochemistry现代电化学实验技术 Modern Experimental Techniques of Electrochemistry金属-碳多重键化合物及其应用 Compounds with Metal-Carbon multiple bonds and Their Applications叶立德化学:理论和应用 Ylides Chemistry: Theory and Application立体化学与手性合成 Stereochemistryand Chiral Synthesis杂环化学 Heterocyclic Chemistry有机硅化学 Organosilicon Chemistry药物设计及合成 Pharmaceutical Design and Synthesis超分子化学 Supramolecular Chemistry分子设计与组合化学 Molecular Designand Combinatorial Chemistry纳米材料化学前沿领域导论 Introduction to Nano-materials Chemistry纳米材料控制合成与自组装 Controlled-synthesis and Self-assembly of Nan o-materials前沿讲座 Leading Front Forum专业英语 Professional English超分子化学基础 Basics of Supramolec ular Chemistry液晶材料基础 Basics of Liquid Crysta l Materials现代实验技术 Modern analytical testi ng techniques色谱及联用技术 Chromatography and Technology of tandem发光分析及其研究法 Luminescence an alysis and Research methods胶束酶学 Micellar Enzymology分析化学中的配位化合物 Complex in Analytical Chemistry电分析化学 Electroanalytical chemist ry生物分析化学 Bioanalytical chemistry分析化学 Analytical chemistry仪器分析 Instrument analysis高分子合成化学 Polymers synthetic c hemistry高聚物结构与性能 Structures and pr operties of polymers有机硅化学 Organosilicon chemistry 功能高分子Functional polymers有机硅高分子 Organosilicon polymers 高分子现代实验技术 Advanced experimental technology of polymers高分子合成新方法 New synthetic methods of polymers液晶与液晶高分子 Liquid crystals andliquid crystal polymers大分子反应 Macromolecules reaction水溶性高分子 Water-soluble polymers聚合物加工基础 The basic process ofpolymers聚合物复合材料 Composite materials高等化工与热力学 Advanced ChemicalEngineering and Thermodynamics高等反应工程学 Advanced Reaction Engineering高等有机化学 Advanced Organic Chemistry高等有机合成 Advanced Organic synthesis有机化学中光谱分析 Spectrum Analysis in Organic Chemistry催化作用原理 Principle of Catalysis染料化学 Dye Chemistry中间体化学与工艺学 Intermediate Chemistry and Technology化学动力学 Chemical Kinetics表面活性剂合成与工艺 Synthesis andTechnology of Surfactants环境化学 Environmental Chemistry化工企业清洁生产 Chemical Enterprise Clean Production化工污染及防治 Chemical Pollution and Control动量热量质量传递 Momentum, Heat and Mass Transmission化工分离工程专题 Separation Engineering耐蚀材料 Corrosion Resisting Material网络化学与化工信息检索 Internet Searching for Chemistry & Chemical Engineering information新型功能材料的模板组装 Templated Assembly of Novel Advanced Materials胶体与界面 Colloid and Interface纳米材料的胶体化学制备方法 Colloid Chemical Methods for Preparing Nano-materials脂质体化学 Chemistry of liposome表面活性剂物理化学 Physico-chemistry of surfactants高分子溶液与微乳液 Polymer Solutions and Microemulsions两亲分子的溶液化学 Chemistry of Amphiphilic Molecules in solution介孔材料化学 Mesoporous Chemistry超细颗粒化学 Chemistry of ultrafinepowder分散体系流变学 The Rheolgy of Aqueous Dispersions量子化学 Quantum Chemistry统计热力学 Statistic Thermodynamics群论 Group Theory分子模拟 Molecular Modelling高等量子化学 Advanced Quantum Ch emistry价键理论方法 Valence Bond Theory 量子化学软件及其应用Software of Q uantum Chemistry & its Application计算量子化学 Computational Quantum Chemistry分子模拟软件及其应用Software of M olecular Modelling & its Application分子反应动力学 Molecular Reaction D ynamic分子光谱学 Molecular Spectrum算法语言 Computational Languange 高分子化学 Polymer Chemistry高分子物理 Polymer Physics腐蚀电化学 Corrosion Electrochemist ry物理化学 Physical Chemistry结构化学 structural Chemistry现代分析与测试技术(试验为主) Moder n Analysis and Testing Technology(e xperimetally)高等无机化学 Advanced Inorganic Ch emistry近代无机物研究方法 Modern Research Methods for Inorganic Compounds 萃取化学研究方法 Research Methods for Extraction Chemistry单晶培养 Crystal Culture 固态化学 Chemistry of Solid Substance液-液体系专论 Discussion on Liquid-Liquid System配位化学进展 Progress in Coordination Chemistry卟啉酞箐化学 Chemistry of Porphyrine and Phthalocyanine无机材料及物理性质 Inorganic Materials and Their Physical Properties物理无机化学 Physical Inorganic Chemistry相平衡 Phase Equilibrium生物化学的应用 Application of Biologic Chemistry生物无机化学 Bio-Inorganic Chemistry绿色化学 Green Chemistry金属有机化合物在均相催化中的应用 Applied Homogeneous Catalysis with Organometallic Compounds功能性食品化学 Functionalized FoodChemistry无机药物化学 Inorganic Pharmaceutical Chemistry电极过程动力学 Kinetics on ElectrodeProcess电化学研究方法 Electrochemical Research Methods生物物理化学 Biological Physical Chemistry波谱与现代检测技术 Spectroscopy and Modern Testing Technology理论有机化学 theoretical Organic Chemistry合成化学 Synthesis Chemistry有机合成新方法 New Methods for Organic Synthesis生物有机化学 Bio-organic Chemistry药物化学 Pharmaceutical Chemistry金属有机化学 Organometallic Chemistry金属-碳多重键化合物及其应用 Compounds with Metal-Carbon multiple bonds and Their Applications分子构效与模拟 Molecular Structure-Activity and Simulation过程装置数值计算 Data Calculation ofProcess Devices石油化工典型设备 Common Equipmentof Petrochemical Industry化工流态化工程 Fluidization in Chemical Industry化工装置模拟与优化 Analogue and Optimization of Chemical Devices化工分离工程 Separation Engineering化工系统与优化 Chemical System andOptimization高等化工热力学 Advanced Chemical Engineering and Thermodynamics超临界流体技术及应用 Super CraticalLiguid Technegues and Applications膜分离技术 Membrane Separation T echnegues溶剂萃取原理和应用 Theory and Appli cation of Solvent Extraction树脂吸附理论 Theory of Resin Adso rption中药材化学 Chemistry of Chinese Me dicine生物资源有效成分分析与鉴定 Analysis and Detection of Bio-materials相平衡理论与应用 Theory and Applic ation of Phase Equilibrium计算机在化学工程中的应用 Application of Computer in Chemical Engineerin g微乳液和高分子溶液 Micro-emulsion a nd High Molecular Solution传递过程 Transmision Process反应工程分析 Reaction Engineering A nalysis腐蚀电化学原理与应用 Principle and A pplication of Corrosion Electrochem istry腐蚀电化学测试方法与应用 Measureme nt Method and Application of Corro sion Electrochemistry耐蚀表面工程 Surface Techniques of Anti-corrosion缓蚀剂技术 Inhabitor Techniques 腐蚀失效分析 Analysis of Corrosion Destroy材料表面研究方法 Method of Studyin g Material Surfacc分离与纯化技术 Separation and Purification Technology现代精细有机合成 Modern Fine Organic Synthesis化学工艺与设备 Chemical Technologyand Apparatuas功能材料概论 Functional Materials Conspectus油田化学 Oilfield Chemistry精细化学品研究 Study of Fine Chemicals催化剂合成与应用 Synthesis and Application of Catalyzer低维材料制备 Preparation of Low-Dimension Materials手性药物化学 Symmetrical Pharmaceutical Chemistry光敏高分子材料化学 Photosensitive Polymer Materials Chemistry纳米材料制备与表征 Preparation andCharacterization of Nanostructuredmaterials溶胶凝胶化学 Sol-gel Chemistry纳米材料化学进展 Proceeding of Nano-materials Chemistry●化学常用词汇汉英对照表1●氨ammonia氨基酸amino acid铵盐ammonium salt饱和链烃saturated aliphatichydrocarbon苯benzene变性denaturation不饱和烃unsaturatedhydrocarbon超导材料superconductivematerial臭氧ozone醇alcohol次氯酸钾potassiumhypochlorite醋酸钠sodium acetate蛋白质protein氮族元素nitrogen groupelement碘化钾potassium iodide碘化钠sodium iodide电化学腐蚀electrochemicalcorrosion电解质electrolyte电离平衡ionizationequilibrium电子云electron cloud淀粉starch淀粉碘化钾试纸starchpotassium iodide paper二氧化氮nitrogen dioxide二氧化硅silicon dioxide二氧化硫sulphur dioxide二氧化锰manganese dioxide芳香烃arene放热反应exothermic reaction非极性分子non-polar molecule非极性键non-polar bond肥皂soap分馏fractional distillation酚phenol复合材料composite干电池dry cell干馏dry distillation甘油glycerol高分子化合物polymer共价键covalent bond官能团functional group光化学烟雾photochemical fog过氧化氢hydrogen peroxide合成材料synthetic material合成纤维synthetic fiber合成橡胶synthetic rubber核电荷数nuclear charge number核素nuclide化学电源chemical powersource化学反应速率chemical reactionrate化学键chemical bond化学平衡chemical equilibrium 还原剂reducing agent磺化反应sulfonation reaction 霍尔槽 Hull Cell极性分子polar molecule极性键polar bond加成反应addition reaction加聚反应addition polymerization甲烷methane碱金属alkali metal碱石灰soda lime结构式structural formula聚合反应po1ymerization可逆反应reversible reaction空气污染指数air pollution index勒夏特列原理Le Chatelier's principle离子反应ionic reaction离子方程式ionic equation离子键ionic bond锂电池lithium cell两性氢氧化物amphoteric hydroxide两性氧化物amphoteric oxide裂化cracking裂解pyrolysis硫氰化钾potassium thiocyanate硫酸钠sodium sulphide氯化铵ammonium chloride氯化钡barium chloride氯化钾potassium chloride氯化铝aluminium chloride氯化镁magnesium chloride氯化氢hydrogen chloride氯化铁iron (III) chloride氯水chlorine water麦芽糖maltose煤coal酶enzyme摩尔mole摩尔质量molar mass品红magenta或fuchsine葡萄糖glucose气体摩尔体积molar volume of gas铅蓄电池lead storage battery强电解质strong electrolyte氢氟酸hydrogen chloride氢氧化铝aluminium hydroxide取代反应substitutionreaction醛aldehyde炔烃alkyne燃料电池fuel cell弱电解质weak electrolyte石油Petroleum水解反应hydrolysis reaction四氯化碳carbontetrachloride塑料plastic塑料的降解plasticdegradation塑料的老化plastic ageing酸碱中和滴定acid-baseneutralization titration酸雨acid rain羧酸carboxylic acid碳酸钠 sodium carbonate碳酸氢铵 ammonium bicarbonate碳酸氢钠 sodium bicarbonate糖类 carbohydrate烃 hydrocarbon烃的衍生物 derivative ofhydrocarbon烃基 hydrocarbonyl同分异构体 isomer同素异形体 allotrope同位素 isotope同系物 homo1og涂料 coating烷烃 alkane物质的量amount of substance物质的量浓度 amount-of-substanceconcentration of B烯烃 alkene洗涤剂 detergent纤维素 cellulose相对分子质量 relative molecularmass相对原子质量relative atomic mass消去反应 elimination reaction硝化反应 nitratlon reaction硝酸钡 barium nitrate硝酸银silver nitrate溴的四氯化碳溶液 solution ofbromine in carbon tetrachloride溴化钠 sodium bromide溴水bromine water溴水 bromine water盐类的水解hydrolysis of salts盐析salting-out焰色反应 flame test氧化剂oxidizing agent氧化铝 aluminium oxide氧化铁iron (III) oxide乙醇ethanol乙醛 ethana1乙炔 ethyne乙酸ethanoic acid乙酸乙酯 ethyl acetate乙烯ethene银镜反应silver mirror reaction硬脂酸stearic acid油脂oils and fats有机化合物 organic compound元素周期表 periodic table ofelements元素周期律 periodic law ofelements原电池 primary battery原子序数 atomic number皂化反应 saponification粘合剂 adhesive蔗糖 sucrose指示剂 Indicator酯 ester酯化反应 esterification周期period族group(主族:main group)Bunsen burner 本生灯product 化学反应产物flask 烧瓶apparatus 设备PH indicator PH值指示剂,氢离子(浓度的)负指数指示剂matrass 卵形瓶litmus 石蕊litmus paper 石蕊试纸graduate, graduated flask 量筒,量杯reagent 试剂test tube 试管burette 滴定管retort 曲颈甑still 蒸馏釜cupel 烤钵crucible pot, melting pot 坩埚pipette 吸液管filter 滤管stirring rod 搅拌棒element 元素body 物体compound 化合物atom 原子gram atom 克原子atomic weight 原子量atomic number 原子数atomic mass 原子质量molecule 分子electrolyte 电解质ion 离子anion 阴离子cation 阳离子electron 电子isotope 同位素isomer 同分异物现象polymer 聚合物symbol 复合radical 基structural formula 分子式valence, valency 价monovalent 单价bivalent 二价halogen 成盐元素bond 原子的聚合mixture 混合combination 合成作用compound 合成物alloy 合金organic chemistry 有机化学inorganic chemistry 无机化学derivative 衍生物series 系列acid 酸hydrochloric acid 盐酸sulphuric acid 硫酸nitric acid 硝酸aqua fortis 王水fatty acid 脂肪酸organic acid 有机酸 hydrosulphuric acid 氢硫酸hydrogen sulfide 氢化硫alkali 碱,强碱ammonia 氨base 碱hydrate 水合物hydroxide 氢氧化物,羟化物hydracid 氢酸hydrocarbon 碳氢化合物,羟anhydride 酐alkaloid 生物碱aldehyde 醛oxide 氧化物phosphate 磷酸盐acetate 醋酸盐methane 甲烷,沼气butane 丁烷salt 盐potassium carbonate 碳酸钾soda 苏打sodium carbonate 碳酸钠caustic potash 苛性钾caustic soda 苛性钠ester 酯gel 凝胶体analysis 分解fractionation 分馏endothermic reaction 吸热反应exothermic reaction 放热反应precipitation 沉淀to precipitate 沉淀to distil, to distill 蒸馏distillation 蒸馏to calcine 煅烧to oxidize 氧化alkalinization 碱化to oxygenate, to oxidize 脱氧,氧化to neutralize 中和to hydrogenate 氢化to hydrate 水合,水化to dehydrate 脱水fermentation 发酵solution 溶解combustion 燃烧fusion, melting 熔解alkalinity 碱性isomerism, isomery 同分异物现象hydrolysis 水解electrolysis 电解electrode 电极anode 阳极,正极cathode 阴极,负极catalyst 催化剂catalysis 催化作用oxidization, oxidation 氧化reducer 还原剂dissolution 分解synthesis 合成reversible 可逆的1. The Ideal-Gas Equation 理想气体状态方程2. Partial Pressures 分压3. Real Gases: Deviation from IdealBehavior 真实气体:对理想气体行为的偏离4. The van der Waals Equation 范德华方程5. System and Surroundings 系统与环境6. State and State Functions 状态与状态函数7. Process 过程8. Phase 相9. The First Law of Thermodynamics热力学第一定律10. Heat and Work 热与功11. Endothermic and ExothermicProcesses 吸热与发热过程12. Enthalpies of Reactions 反应热13. Hess’s Law 盖斯定律14. Enthalpies of Formation 生成焓15. Reaction Rates 反应速率16. Reaction Order 反应级数17. Rate Constants 速率常数18. Activation Energy 活化能19. The Arrhenius Equation 阿累尼乌斯方程20. Reaction Mechanisms 反应机理21. Homogeneous Catalysis 均相催化剂22. Heterogeneous Catalysis 非均相催化剂23. Enzymes 酶24. The Equilibrium Constant 平衡常数25. the Direction of Reaction 反应方向26. Le Chatelier’s Principle 列·沙特列原理27. Effects of Volume, Pressure, Temperature Changes and Catalysts i. 体积,压力,温度变化以及催化剂的影响28. Spontaneous Processes 自发过程29. Entropy (Standard Entropy) 熵(标准熵)30. The Second Law of Thermodynamics 热力学第二定律31. Entropy Changes 熵变32. Standard Free-Energy Changes 标准自由能变33. Acid-Bases 酸碱34. The Dissociation of Water 水离解35. The Proton in Water 水合质子36. The pH Scales pH值37. Bronsted-Lowry Acids and Bases Bronsted-Lowry 酸和碱38. Proton-Transfer Reactions 质子转移反应39. Conjugate Acid-Base Pairs 共轭酸碱对40. Relative Strength of Acids and Bases 酸碱的相对强度41. Lewis Acids and Bases 路易斯酸碱42. Hydrolysis of Metal Ions 金属离子的水解43. Buffer Solutions 缓冲溶液44. The Common-Ion Effects 同离子效应45. Buffer Capacity 缓冲容量46. Formation of Complex Ions 配离子的形成47. Solubility 溶解度48. The Solubility-Product ConstantKsp 溶度积常数49. Precipitation and separation ofIons 离子的沉淀与分离50. Selective Precipitation of Ions 离子的选择沉淀51. Oxidation-Reduction Reactions 氧化还原反应52. Oxidation Number 氧化数53. Balancing Oxidation-ReductionEquations 氧化还原反应方程的配平54. Half-Reaction 半反应55. Galvani Cell 原电池56. Voltaic Cell 伏特电池57. Cell EMF 电池电动势58. Standard Electrode Potentials 标准电极电势59. Oxidizing and Reducing Agents 氧化剂和还原剂60. The Nernst Equation 能斯特方程61. Electrolysis 电解62. The Wave Behavior of Electrons电子的波动性63. Bohr’s Model of The HydrogenAtom 氢原子的波尔模型64. Line Spectra 线光谱65. Quantum Numbers 量子数66. Electron Spin 电子自旋67. Atomic Orbital 原子轨道68. The s (p, d, f) Orbital s(p,d,f)轨道69. Many-Electron Atoms 多电子原子70. Energies of Orbital 轨道能量71. The Pauli Exclusion Principle 泡林不相容原理72. Electron Configurations 电子构型73. The Periodic Table 周期表74. Row 行75. Group 族76. Isotopes, Atomic Numbers, andMass Numbers 同位素,原子数,质量数77. Periodic Properties of theElements 元素的周期律78. Radius of Atoms 原子半径79. Ionization Energy 电离能80. Electronegativity 电负性81. Effective Nuclear Charge 有效核电荷82. Electron Affinities 亲电性83. Metals 金属84. Nonmetals 非金属85. Valence Bond Theory 价键理论86. Covalence Bond 共价键87. Orbital Overlap 轨道重叠88. Multiple Bonds 重键89. Hybrid Orbital 杂化轨道90. The VSEPR Model 价层电子对互斥理论91. Molecular Geometries 分子空间构型92. Molecular Orbital 分子轨道93. Diatomic Molecules 双原子分子94. Bond Length 键长95. Bond Order 键级96. Bond Angles 键角97. Bond Enthalpies 键能98. Bond Polarity 键矩99. Dipole Moments 偶极矩100. Polarity Molecules 极性分子101. Polyatomic Molecules 多原子分子102. Crystal Structure 晶体结构103. Non-Crystal 非晶体104. Close Packing of Spheres 球密堆积105. Metallic Solids 金属晶体106. Metallic Bond 金属键107. Alloys 合金108. Ionic Solids 离子晶体109. Ion-Dipole Forces 离子偶极力110. Molecular Forces 分子间力111. Intermolecular Forces 分子间作用力112. Hydrogen Bonding 氢键113. Covalent-Network Solids 原子晶体114. Compounds 化合物115. The Nomenclature, Composition and Structure of Complexes 配合物的命名,组成和结构116. Charges, Coordination Numbers,and Geometries 电荷数、配位数、及几何构型117. Chelates 螯合物118. Isomerism 异构现象119. Structural Isomerism 结构异构120. Stereoisomerism 立体异构121. Magnetism 磁性122. Electron Configurations inOctahedral Complexes 八面体构型配合物的电子分布123. Tetrahedral and Square-planarComplexes 四面体和平面四边形配合物124. General Characteristics 共性125. s-Block Elements s区元素126. Alkali Metals 碱金属127. Alkaline Earth Metals 碱土金属128. Hydrides 氢化物129. Oxides 氧化物130. Peroxides and Superoxides 过氧化物和超氧化物131. Hydroxides 氢氧化物132. Salts 盐133. p-Block Elements p区元素134. Boron Group (Boron, Aluminium,Gallium, Indium, Thallium) 硼族(硼,铝,镓,铟,铊)135. Borane 硼烷136. Carbon Group (Carbon, Silicon,Germanium, Tin, Lead) 碳族(碳,硅,锗,锡,铅)137. Graphite, Carbon Monoxide,Carbon Dioxide 石墨,一氧化碳,二氧化碳138. Carbonic Acid, Carbonates andCarbides 碳酸,碳酸盐,碳化物139. Occurrence and Preparation ofSilicon 硅的存在和制备140. Silicic Acid,Silicates 硅酸,硅酸盐141. Nitrogen Group (Phosphorus,Arsenic, Antimony, and Bismuth) 氮族(磷,砷,锑,铋)142. Ammonia, Nitric Acid, PhosphoricAcid 氨,硝酸,磷酸143. Phosphorates, phosphorusHalides 磷酸盐,卤化磷144. Oxygen Group (Oxygen, Sulfur,Selenium, and Tellurium) 氧族元素(氧,硫,硒,碲)145. Ozone, Hydrogen Peroxide 臭氧,过氧化氢146. Sulfides 硫化物147. Halogens (Fluorine, Chlorine,Bromine, Iodine) 卤素(氟,氯,溴,碘)148. Halides, Chloride 卤化物,氯化物149. The Noble Gases 稀有气体150. Noble-Gas Compounds 稀有气体化合物151. d-Block elements d区元素152. Transition Metals 过渡金属153. Potassium Dichromate 重铬酸钾154. Potassium Permanganate 高锰酸钾155. Iron Copper Zinc Mercury 铁,铜,锌,汞156. f-Block Elements f区元素157. Lanthanides 镧系元素158. Radioactivity 放射性159. Nuclear Chemistry 核化学160. Nuclear Fission 核裂变161. Nuclear Fusion 核聚变162. analytical chemistry 分析化学163. qualitative analysis 定性分析164. quantitative analysis 定量分析165. chemical analysis 化学分析166. instrumental analysis 仪器分析167. titrimetry 滴定分析168. gravimetric analysis 重量分析法169. regent 试剂170. chromatographic analysis 色谱分析171. product 产物172. electrochemical analysis 电化学分析173. on-line analysis 在线分析174. macro analysis 常量分析175. characteristic 表征176. micro analysis 微量分析177. deformation analysis 形态分析178. semimicro analysis 半微量分析179. systematical error 系统误差180. routine analysis 常规分析181. random error 偶然误差182. arbitration analysis 仲裁分析183. gross error 过失误差184. normal distribution 正态分布185. accuracy 准确度186. deviation 偏差187. precision精密度188. relative standard deviation相对标准偏差(RSD)189. coefficient variation变异系数(CV)190. confidence level置信水平191. confidence interval置信区间192. significant test显著性检验193. significant figure有效数字194. standard solution标准溶液195. titration滴定196. stoichiometric point化学计量点197. end point滴定终点198. titration error滴定误差199. primary standard基准物质200. amount of substance物质的量201. standardization标定202. chemical reaction化学反应203. concentration浓度204. chemical equilibrium化学平衡205. titer滴定度206. general equation for a chemicalreaction化学反应的通式207. proton theory of acid-base酸碱质子理论208. acid-base titration酸碱滴定法209. dissociation constant解离常数210. conjugate acid-base pair共轭酸碱对211. acetic acid乙酸212. hydronium ion水合氢离子213. electrolyte电解质214. ion-product constant of water水的离子积215. ionization电离216. proton condition质子平衡217. zero level零水准218. buffer solution缓冲溶液219. methyl orange甲基橙220. acid-base indicator酸碱指示剂221. phenolphthalein酚酞222. coordination compound配位化合物223. center ion中心离子224. cumulative stability constant累积稳定常数225. alpha coefficient酸效应系数226. overall stability constant总稳定常数227. ligand配位体228. ethylenediamine tetraacetic acid 乙二胺四乙酸229. side reaction coefficient副反应系数230. coordination atom配位原子231. coordination number配位数232. lone pair electron孤对电子233. chelate compound螯合物234. metal indicator金属指示剂235. chelating agent螯合剂236. masking 掩蔽237. demasking解蔽238. electron电子239. catalysis催化240. oxidation氧化241. catalyst催化剂242. reduction还原243. catalytic reaction催化反应244. reaction rate反应速率245. electrode potential电极电势246. activation energy 反应的活化能247. redox couple 氧化还原电对248. potassium permanganate 高锰酸钾249. iodimetry碘量法250. potassium dichromate 重铬酸钾251. cerimetry 铈量法252. redox indicator 氧化还原指示253. oxygen consuming 耗氧量(OC)254. chemical oxygen demanded 化学需氧量(COD)255. dissolved oxygen 溶解氧(DO)256. precipitation 沉淀反应257. argentimetry 银量法258. heterogeneous equilibrium of ions多相离子平衡259. aging 陈化260. postprecipitation 继沉淀261. coprecipitation 共沉淀262. ignition 灼烧263. fitration 过滤264. decantation 倾泻法265. chemical factor 化学因数266. spectrophotometry 分光光度法267. colorimetry 比色分析268. transmittance 透光率269. absorptivity 吸光率270. calibration curve 校正曲线271. standard curve 标准曲线272. monochromator 单色器273. source 光源274. wavelength dispersion 色散275. absorption cell吸收池276. detector 检测系统277. bathochromic shift 红移278. Molar absorptivity 摩尔吸光系数279. hypochromic shift 紫移280. acetylene 乙炔281. ethylene 乙烯282. acetylating agent 乙酰化剂283. acetic acid 乙酸284. adiethyl ether 乙醚285. ethyl alcohol 乙醇286. acetaldehtde 乙醛287. β-dicarbontl compound β–二羰基化合物288. bimolecular elimination 双分子消除反应289. bimolecular nucleophilic substitution 双分子亲核取代反应290. open chain compound 开链族化合物291. molecular orbital theory 分子轨道理论292. chiral molecule 手性分子293. tautomerism 互变异构现象294. reaction mechanism 反应历程295. chemical shift 化学位移296. Walden inversio 瓦尔登反转n 297. Enantiomorph 对映体298. addition rea ction 加成反应299. dextro- 右旋300. levo- 左旋301. stereochemistry 立体化学302. stereo isomer 立体异构体303. Lucas reagent 卢卡斯试剂304. covalent bond 共价键305. conjugated diene 共轭二烯烃306. conjugated double bond 共轭双键307. conjugated system 共轭体系308. conjugated effect 共轭效应309. isomer 同分异构体310. isomerism 同分异构现象311. organic chemistry 有机化学312. hybridization 杂化313. hybrid orbital 杂化轨道314. heterocyclic compound 杂环化合物315. peroxide effect 过氧化物效应t316. valence bond theory 价键理论317. sequence rule 次序规则318. electron-attracting grou p 吸电子基319. Huckel rule 休克尔规则320. Hinsberg test 兴斯堡试验321. infrared spectrum 红外光谱322. Michael reacton 麦克尔反应323. halogenated hydrocarbon 卤代烃324. haloform reaction 卤仿反应325. systematic nomenclatur 系统命名法e326. Newman projection 纽曼投影式327. aromatic compound 芳香族化合物328. aromatic character 芳香性r329. Claisen condensation reaction克莱森酯缩合反应330. Claisen rearrangement 克莱森重排331. Diels-Alder reation 狄尔斯-阿尔得反应332. Clemmensen reduction 克莱门森还原333. Cannizzaro reaction 坎尼扎罗反应334. positional isomers 位置异构体335. unimolecular elimination reaction单分子消除反应336. unimolecular nucleophilicsubstitution 单分子亲核取代反应337. benzene 苯338. functional grou 官能团p339. configuration 构型340. conformation 构象341. confomational isome 构象异构体342. electrophilic addition 亲电加成343. electrophilic reagent 亲电试剂344. nucleophilic addition 亲核加成345. nucleophilic reagent 亲核试剂346. nucleophilic substitution reaction亲核取代反应347. active intermediate 活性中间体348. Saytzeff rule 查依采夫规则349. cis-trans isomerism 顺反异构350. inductive effect 诱导效应 t351. Fehling’s reagent 费林试剂352. phase transfer catalysis 相转移催化作用353. aliphatic compound 脂肪族化合物354. elimination reaction 消除反应355. Grignard reagent 格利雅试剂 356. nuclear magnetic resonance 核磁共振357. alkene 烯烃358. allyl cation 烯丙基正离子359. leaving group 离去基团360. optical activity 旋光性361. boat confomation 船型构象 362. silver mirror reaction 银镜反应363. Fischer projection 菲舍尔投影式 364. Kekule structure 凯库勒结构式365. Friedel-Crafts reaction 傅列德尔-克拉夫茨反应366. Ketone 酮367. carboxylic acid 羧酸368. carboxylic acid derivative 羧酸衍生物369. hydroboration 硼氢化反应 370. bond oength 键长371. bond energy 键能372. bond angle 键角373. carbohydrate 碳水化合物374. carbocation 碳正离子375. carbanion 碳负离子376. alcohol 醇377. Gofmann rule 霍夫曼规则 378. Aldehyde 醛379. Ether 醚380. Polymer 聚合物ace- 乙(酰基)acet- 醋;醋酸;乙酸acetamido- 乙酰胺基acetenyl- 乙炔基acetoxy- 醋酸基;乙酰氧基acetyl- 乙酰(基)aetio- 初allo- 别allyl- 烯丙(基);CH2=CH-CH2-amido- 酰胺(基)amino- 氨基amyl- ①淀粉②戊(基)amylo- 淀粉andr- 雄andro- 雄anilino- 苯胺基anisoyl- 茴香酰;甲氧苯酰anti- 抗apo- 阿朴;去水aryl- 芳(香)基aspartyl- 门冬氨酰auri- 金(基);(三价)金基aza- 氮(杂)azido- 叠氮azo- 偶氮basi- 碱baso- 碱benxoyl- 苯酰;苯甲酰benzyl- 苄(基);苯甲酰bi- 二;双;重biphenyl- 联苯基biphenylyl- 联苯基bis- 双;二bor- 硼boro- 硼bromo- 溴butenyl- 丁烯基(有1、2、3位三种)butoxyl- 丁氧基butyl- 丁基butyryl- 丁酰caprinoyl- 癸酰caproyl- 己酰calc- 钙calci- 钙calco- 钙capryl- 癸酰capryloyl- 辛酰caprylyl- 辛酰cef- 头孢(头孢菌素族抗生素词首)chlor- ①氯②绿chloro- ①氯②绿ciclo- 环cis- 顺clo- 氯crypto- 隐cycl- 环cyclo- 环de- 去;脱dec- 十;癸deca- 十;癸dehydro- 去氢;去水demethoxy- 去甲氧(基)demethyl- 去甲(基)deoxy- 去氧des- 去;脱desmethyl- 去甲(基)desoxy- 去氧dex- 右旋dextro- 右旋di- 二diamino- 二氨基diazo- 重氮dihydro- 二氢;双氢endo- 桥epi- 表;差向epoxy- 环氧erythro- 红;赤estr- 雌ethinyl- 乙炔(基)ethoxyl- 乙氧(基)ethyl- 乙基etio- 初eu- 优fluor- ①氟②荧光fluoro- ①氟②荧光formyl- 甲酰(基)guanyl- 脒基hepta- 七;庚hetero- 杂hexa- 六;己homo- 高(比原化合物多一个-CH2-)hypo- 次io- 碘indo- 碘iso- 异keto- 酮laevo- 左旋leuco- 白levo- 左旋。
Synthesis(怎样写Synthesis)
整理人: 报告人:
Definition
Definition of synthesis essay
A synthesis is a combination, usually a shortened version, of several texts. A synthesis is not a summary. A synthesis is an opportunity to create new knowledge out of already existing knowledge.
sources.
Difference between summary and synthesis
Shows what the original authours wrote.
Not only reflects your knowledge about what the original authors wrote, but also creates something new out of two or more pieces of writing.
one unified entity.
Presents a cursory overview.
Forcuses on both main ideas and details.
Demonstrates an understanding of the overall
meaning.
Achieves new insight.
Addresses one set of information(eg.article,chapte r,document) at a time Each
化学专业英语词汇
前沿讲座 Seminar专业英语 Professional English现代分析化学 Modern analytical chemistry 生物分析技术 Bioanalytical techniques高分子进展 Advances in polymers功能高分子进展 Advances in functional polym ers有机硅高分子研究进展 Progresses in organosi licon polymers高分子科学实验方法 Scientific experimental methods of polymers高分子设计与合成 The design and synthesis o f polymers反应性高分子专论 Instructions to reactive p olymers网络化学与化工信息检索 Internet Searching f or Chemistry & Chemical Engineering information有序分子组合体概论 Introduction to Organize d Molecular Assembilies两亲分子聚集体化学 Chemistry of amphiphilic aggregates表面活性剂体系研究新方法 New Method for stu dying Surfactant System微纳米材料化学 Chemistry of Micro-NanoMater ials 分散体系研究新方法 New Method for studying dispersion分散体系相行为 The Phase Behavior of Aqueou s Dispersions溶液-凝胶材料 Sol-Gel Materials高等量子化学 Advanced Quantum Chemistry 分子反应动力学 Molecular Reaction Dynamic 计算量子化学 Computational Quantum Chemistr y群论 Group Theory分子模拟理论及软件应用 Theory and Software of Molecular Modelling & Application价键理论方法 Valence Bond Theory量子化学软件及其应用 Software of Quantum Ch emistry & its Application分子光谱学 Molecular Spectrum算法语言 Computational Languange高分子化学 Polymer Chemistry高分子物理 Polymer Physics药物化学 Medicinal Chemistry统计热力学 Statistic Thermodynamics液-液体系专论 Discussion on Liquid-Liquid S ystem配位化学进展 Progress in Coordination Chemi stry无机材料及物理性质 Inorganic Materials and Their Physical Properties物理无机化学 Physical Inorganic Chemistry 相平衡 Phase Equilibrium现代无机化学 Today's Inorganic Chemistry 无机化学前沿领域导论 Introduction to Forwar d Field in Inorganic Chemistry量子化学 Quantum Chemistry分子材料 Molecular Material固体酸碱理论 Solid Acid-Base Theory萃取过程物理化学 Physical Chemistry in Extr action表面电化学 Surface Electrochemistry电化学进展 Advances on Electrochemistry 现代电化学实验技术 Modern Experimental Tech niques of Electrochemistry金属-碳多重键化合物及其应用 Compounds with Metal-Carbon multiple bonds and Their Applications叶立德化学:理论和应用 Ylides Chemistry: The ory and Application立体化学与手性合成 Stereochemistry and Chir al Synthesis杂环化学 Heterocyclic Chemistry有机硅化学 Organosilicon Chemistry药物设计及合成 Pharmaceutical Design and Sy nthesis超分子化学 Supramolecular Chemistry 分子设计与组合化学 Molecular Design and Com binatorial Chemistry纳米材料化学前沿领域导论 Introduction to Na no-materials Chemistry纳米材料控制合成与自组装 Controlled-synthes is and Self-assembly of Nano-materials前沿讲座 Leading Front Forum专业英语 Professional English超分子化学基础 Basics of Supramolecular Che mistry液晶材料基础 Basics of Liquid Crystal Mater ials现代实验技术 Modern analytical testing tech niques色谱及联用技术 Chromatography and Technolog y of tandem发光分析及其研究法 Luminescence analysis an d Research methods胶束酶学 Micellar Enzymology分析化学中的配位化合物 Complex in Analytica l Chemistry电分析化学 Electroanalytical chemistry生物分析化学 Bioanalytical chemistry分析化学 Analytical chemistry仪器分析 Instrument analysis高分子合成化学 Polymers synthetic chemistry高聚物结构与性能 Structures and properties of polymers有机硅化学 Organosilicon chemistry功能高分子 Functional polymers有机硅高分子 Organosilicon polymers高分子现代实验技术 Advanced experimental te chnology of polymers高分子合成新方法 New synthetic methods of p olymers液晶与液晶高分子 Liquid crystals and liquid crystal polymers大分子反应 Macromolecules reaction水溶性高分子 Water-soluble polymers聚合物加工基础 The basic process of polymer s聚合物复合材料 Composite materials高等化工与热力学 Advanced Chemical Engineer ing and Thermodynamics高等反应工程学 Advanced Reaction Engineerin g高等有机化学 Advanced Organic Chemistry 高等有机合成 Advanced Organic synthesis 有机化学中光谱分析 Spectrum Analysis in Org anic Chemistry催化作用原理 Principle of Catalysis染料化学 Dye Chemistry 中间体化学与工艺学 Intermediate Chemistry a nd Technology化学动力学 Chemical Kinetics表面活性剂合成与工艺 Synthesis and Technolo gy of Surfactants环境化学 Environmental Chemistry化工企业清洁生产 Chemical Enterprise Clean Production化工污染及防治 Chemical Pollution and Contr ol动量热量质量传递 Momentum, Heat and Mass Tr ansmission化工分离工程专题 Separation Engineering 耐蚀材料 Corrosion Resisting Material网络化学与化工信息检索 Internet Searching f or Chemistry & Chemical Engineering informa tion新型功能材料的模板组装 Templated Assembly o f Novel Advanced Materials胶体与界面 Colloid and Interface纳米材料的胶体化学制备方法 Colloid Chemical Methods for Preparing Nano-materials脂质体化学 Chemistry of liposome表面活性剂物理化学 Physico-chemistry of sur factants高分子溶液与微乳液 Polymer Solutions and Mi croemulsions两亲分子的溶液化学 Chemistry of Amphiphilic Molecules in solution介孔材料化学 Mesoporous Chemistry超细颗粒化学 Chemistry of ultrafine powder 分散体系流变学 The Rheolgy of Aqueous Dispe rsions量子化学 Quantum Chemistry统计热力学 Statistic Thermodynamics群论 Group Theory分子模拟 Molecular Modelling高等量子化学 Advanced Quantum Chemistry价键理论方法 Valence Bond Theory量子化学软件及其应用 Software of Quantum Ch emistry & its Application计算量子化学 Computational Quantum Chemistr y分子模拟软件及其应用 Software of Molecular Modelling & its Application分子反应动力学 Molecular Reaction Dynamic 分子光谱学 Molecular Spectrum算法语言 Computational Languange高分子化学 Polymer Chemistry高分子物理 Polymer Physics腐蚀电化学 Corrosion Electrochemistry物理化学 Physical Chemistry结构化学 structural Chemistry 现代分析与测试技术(试验为主) Modern Analysi s and Testing Technology(experimetally)高等无机化学 Advanced Inorganic Chemistry 近代无机物研究方法 Modern Research Methods for Inorganic Compounds萃取化学研究方法 Research Methods for Extra ction Chemistry单晶培养 Crystal Culture固态化学 Chemistry of Solid Substance液-液体系专论 Discussion on Liquid-Liquid S ystem配位化学进展 Progress in Coordination Chemi stry卟啉酞箐化学 Chemistry of Porphyrine and Ph thalocyanine无机材料及物理性质 Inorganic Materials and Their Physical Properties物理无机化学 Physical Inorganic Chemistry 相平衡 Phase Equilibrium生物化学的应用 Application of Biologic Chem istry生物无机化学 Bio-Inorganic Chemistry绿色化学 Green Chemistry金属有机化合物在均相催化中的应用 Applied Ho mogeneous Catalysis with Organometallic Compounds功能性食品化学 Functionalized Food Chemistr y无机药物化学 Inorganic Pharmaceutical Chemi stry电极过程动力学 Kinetics on Electrode Proces s电化学研究方法 Electrochemical Research Met hods生物物理化学 Biological Physical Chemistry 波谱与现代检测技术 Spectroscopy and Modern Testing Technology理论有机化学 theoretical Organic Chemistry 合成化学 Synthesis Chemistry有机合成新方法 New Methods for Organic Synt hesis生物有机化学 Bio-organic Chemistry药物化学 Pharmaceutical Chemistry金属有机化学 Organometallic Chemistry金属-碳多重键化合物及其应用 Compounds with Metal-Carbon multiple bonds and Their Applications分子构效与模拟 Molecular Structure-Activity and Simulation过程装置数值计算 Data Calculation of Proces s Devices石油化工典型设备 Common Equipment of Petroc hemical Industry 化工流态化工程 Fluidization in Chemical Ind ustry化工装置模拟与优化 Analogue and Optimizatio n of Chemical Devices化工分离工程 Separation Engineering化工系统与优化 Chemical System and Optimiza tion高等化工热力学 Advanced Chemical Engineerin g and Thermodynamics超临界流体技术及应用 Super Cratical Liguid Technegues and Applications膜分离技术 Membrane Separation Technegues溶剂萃取原理和应用 Theory and Application o f Solvent Extraction树脂吸附理论 Theory of Resin Adsorption 中药材化学 Chemistry of Chinese Medicine 生物资源有效成分分析与鉴定 Analysis and Det ection of Bio-materials相平衡理论与应用 Theory and Application o f Phase Equilibrium计算机在化学工程中的应用 Application of Com puter in Chemical Engineering微乳液和高分子溶液 Micro-emulsion and High Molecular Solution传递过程 Transmision Process反应工程分析 Reaction Engineering Analysis腐蚀电化学原理与应用 Principle and Applicat ion of Corrosion Electrochemistry腐蚀电化学测试方法与应用 Measurement Method and Application of Corrosion Elect rochemistry耐蚀表面工程 Surface Techniques of Anti-cor rosion缓蚀剂技术 Inhabitor Techniques腐蚀失效分析 Analysis of Corrosion Destroy 材料表面研究方法 Method of Studying Materia l Surfacc分离与纯化技术 Separation and Purification Technology现代精细有机合成 Modern Fine Organic Synthe sis化学工艺与设备 Chemical Technology and Appa ratuas功能材料概论 Functional Materials Conspectu s油田化学 Oilfield Chemistry精细化学品研究 Study of Fine Chemicals催化剂合成与应用 Synthesis and Application of Catalyzer低维材料制备 Preparation of Low-Dimension M aterials手性药物化学 Symmetrical Pharmaceutical Che mistry 光敏高分子材料化学 Photosensitive Polymer M aterials Chemistry纳米材料制备与表征 Preparation and Characte rization of Nanostructured materials溶胶凝胶化学 Sol-gel Chemistry纳米材料化学进展 Proceeding of Nano-materia ls Chemistry●化学常用词汇汉英对照表1●氨 ammonia氨基酸 amino acid铵盐 ammonium salt饱和链烃saturated aliphatic hydrocarbon苯 benzene变性 denaturation不饱和烃unsaturated hydrocarbon超导材料superconductive material臭氧 ozone醇 alcohol次氯酸钾potassium hypochlorite醋酸钠sodium acetate蛋白质 protein氮族元素nitrogen group element碘化钾potassium iodide碘化钠sodium iodide电化学腐蚀 electrochemical corrosion电解质 electrolyte电离平衡ionization equilibrium电子云electron cloud淀粉 starch淀粉碘化钾试纸starch potassium iodide paper二氧化氮nitrogen dioxide二氧化硅silicon dioxide二氧化硫sulphur dioxide二氧化锰manganese dioxide芳香烃 arene放热反应exothermic reaction非极性分子non-polar molecule非极性键non-polar bond肥皂 soap分馏fractional distillation酚 phenol复合材料 composite干电池 dry cell干馏dry distillation甘油 glycerol高分子化合物 polymer共价键covalent bond官能团functional group光化学烟雾photochemical fog过氧化氢hydrogen peroxide合成材料synthetic material合成纤维synthetic fiber合成橡胶synthetic rubber核电荷数nuclear charge number核素 nuclide化学电源chemical power source化学反应速率chemical reaction rate化学键chemical bond化学平衡chemical equilibrium还原剂reducing agent磺化反应sulfonation reaction霍尔槽 Hull Cell极性分子polar molecule极性键 polar bond加成反应addition reaction加聚反应addition polymerization甲烷 methane碱金属alkali metal碱石灰 soda lime结构式structural formula聚合反应 po1ymerization可逆反应reversible reaction空气污染指数 air pollution index勒夏特列原理Le Chatelier's principle离子反应ionic reaction离子方程式ionic equation离子键 ionic bond锂电池lithium cell两性氢氧化物amphoteric hydroxide两性氧化物amphoteric oxide裂化 cracking裂解 pyrolysis硫氰化钾potassium thiocyanate硫酸钠sodium sulphide氯化铵ammonium chloride氯化钡barium chloride氯化钾potassium chloride氯化铝aluminium chloride氯化镁magnesium chloride氯化氢hydrogen chloride氯化铁iron (III) chloride氯水chlorine water麦芽糖 maltose煤 coal酶 enzyme摩尔 mole摩尔质量molar mass品红magenta或fuchsine葡萄糖 glucose气体摩尔体积 molar volume of gas铅蓄电池lead storage battery强电解质strong electrolyte氢氟酸hydrogen chloride氢氧化铝aluminium hydroxide取代反应substitution reaction醛 aldehyde炔烃 alkyne燃料电池 fuel cell弱电解质weak electrolyte石油 Petroleum水解反应hydrolysis reaction四氯化碳carbon tetrachloride塑料 plastic塑料的降解plastic degradation塑料的老化plastic ageing酸碱中和滴定acid-base neutralization titration酸雨 acid rain羧酸carboxylic acid碳酸钠 sodium carbonate碳酸氢铵 ammonium bicarbonate碳酸氢钠 sodium bicarbonate糖类 carbohydrate烃 hydrocarbon烃的衍生物derivative of hydrocarbon烃基 hydrocarbonyl同分异构体 isomer同素异形体 allotrope同位素 isotope同系物 homo1og涂料 coating烷烃 alkane物质的量 amount of substance物质的量浓度 amount-of-substance concentration of B烯烃 alkene洗涤剂 detergent纤维素 cellulose相对分子质量relative molecular mass相对原子质量 relative atomic mass消去反应 elimination reaction硝化反应 nitratlon reaction硝酸钡 barium nitrate硝酸银 silver nitrate溴的四氯化碳溶液solution of bromine in carbon tetrachloride溴化钠 sodium bromide溴水 bromine water溴水 bromine water盐类的水解 hydrolysis of salts盐析 salting-out焰色反应 flame test氧化剂 oxidizing agent氧化铝 aluminium oxide氧化铁 iron (III) oxide乙醇 ethanol乙醛 ethana1乙炔 ethyne乙酸 ethanoic acid乙酸乙酯 ethyl acetate乙烯 ethene银镜反应silver mirror reaction硬脂酸 stearic acid油脂 oils and fats有机化合物 organic compound元素周期表periodic table of elements元素周期律 periodic law of elements原电池 primary battery原子序数 atomic number皂化反应 saponification粘合剂 adhesive蔗糖 sucrose指示剂 Indicator酯 ester酯化反应 esterification周期 period族 group(主族:main group)Bunsen burner 本生灯product 化学反应产物flask 烧瓶apparatus 设备PH indicator PH值指示剂,氢离子(浓度的)负指数指示剂matrass 卵形瓶litmus 石蕊litmus paper 石蕊试纸graduate, graduated flask 量筒,量杯reagent 试剂 test tube 试管burette 滴定管retort 曲颈甑still 蒸馏釜cupel 烤钵crucible pot, melting pot 坩埚 pipette 吸液管filter 滤管stirring rod 搅拌棒element 元素body 物体compound 化合物atom 原子gram atom 克原子atomic weight 原子量atomic number 原子数atomic mass 原子质量molecule 分子electrolyte 电解质ion 离子anion 阴离子cation 阳离子electron 电子isotope 同位素isomer 同分异物现象polymer 聚合物symbol 复合radical 基structural formula 分子式valence, valency 价monovalent 单价bivalent 二价halogen 成盐元素bond 原子的聚合mixture 混合combination 合成作用compound 合成物alloy 合金organic chemistry 有机化学inorganic chemistry 无机化学derivative 衍生物series 系列acid 酸hydrochloric acid 盐酸sulphuric acid 硫酸nitric acid 硝酸aqua fortis 王水fatty acid 脂肪酸organic acid 有机酸 hydrosulphuric acid 氢硫酸hydrogen sulfide 氢化硫alkali 碱,强碱ammonia 氨base 碱 hydrate 水合物hydroxide 氢氧化物,羟化物hydracid 氢酸hydrocarbon 碳氢化合物,羟anhydride 酐alkaloid 生物碱aldehyde 醛oxide 氧化物phosphate 磷酸盐acetate 醋酸盐methane 甲烷,沼气butane 丁烷salt 盐potassium carbonate 碳酸钾soda 苏打sodium carbonate 碳酸钠caustic potash 苛性钾caustic soda 苛性钠ester 酯gel 凝胶体analysis 分解fractionation 分馏endothermic reaction 吸热反应 exothermic reaction 放热反应 precipitation 沉淀to precipitate 沉淀to distil, to distill 蒸馏distillation 蒸馏to calcine 煅烧to oxidize 氧化alkalinization 碱化to oxygenate, to oxidize 脱氧,氧化 to neutralize 中和to hydrogenate 氢化to hydrate 水合,水化to dehydrate 脱水fermentation 发酵solution 溶解combustion 燃烧fusion, melting 熔解alkalinity 碱性isomerism, isomery 同分异物现象hydrolysis 水解electrolysis 电解electrode 电极anode 阳极,正极cathode 阴极,负极catalyst 催化剂catalysis 催化作用oxidization, oxidation 氧化reducer 还原剂dissolution 分解synthesis 合成reversible 可逆的1. The Ideal-Gas Equation 理想气体状态方程2. Partial Pressures 分压3. Real Gases: Deviation from Ideal Behavior 真实气体:对理想气体行为的偏离4. The van der Waals Equation 范德华方程5. System and Surroundings 系统与环境6. State and State Functions 状态与状态函数7. Process 过程8. Phase 相9. The First Law of Thermodynamics 热力学第一定律10. Heat and Work 热与功11. Endothermic and Exothermic Processes 吸热与发热过程12. Enthalpies of Reactions 反应热13. Hess’s Law 盖斯定律14. Enthalpies of Formation 生成焓15. Reaction Rates 反应速率16. Reaction Order 反应级数17. Rate Constants 速率常数18. Activation Energy 活化能19. The Arrhenius Equation 阿累尼乌斯方程20. Reaction Mechanisms 反应机理21. Homogeneous Catalysis 均相催化剂22. Heterogeneous Catalysis 非均相催化剂23. Enzymes 酶24. The Equilibrium Constant 平衡常数25. the Direction of Reaction 反应方向26. Le Chatelier’s Principle 列·沙特列原理27. Effects of Volume, Pressure, Temperature Changes and Catalystsi. 体积,压力,温度变化以及催化剂的影响28. Spontaneous Processes 自发过程29. Entropy (Standard Entropy) 熵(标准熵)30. The Second Law of Thermodynamics 热力学第二定律31. Entropy Changes 熵变32. Standard Free-Energy Changes 标准自由能变33. Acid-Bases 酸碱34. The Dissociation of Water 水离解35. The Proton in Water 水合质子36. The pH Scales pH值37. Bronsted-Lowry Acids and Bases Bronsted-Lowry 酸和碱38. Proton-Transfer Reactions 质子转移反应39. Conjugate Acid-Base Pairs 共轭酸碱对40. Relative Strength of Acids and Bases 酸碱的相对强度41. Lewis Acids and Bases 路易斯酸碱42. Hydrolysis of Metal Ions 金属离子的水解43. Buffer Solutions 缓冲溶液44. The Common-Ion Effects 同离子效应45. Buffer Capacity 缓冲容量46. Formation of Complex Ions 配离子的形成47. Solubility 溶解度48. The Solubility-Product Constant Ksp 溶度积常数49. Precipitation and separation of Ions 离子的沉淀与分离50. Selective Precipitation of Ions 离子的选择沉淀51. Oxidation-Reduction Reactions 氧化还原反应52. Oxidation Number 氧化数53. Balancing Oxidation-Reduction Equations 氧化还原反应方程的配平54. Half-Reaction 半反应55. Galvani Cell 原电池56. Voltaic Cell 伏特电池57. Cell EMF 电池电动势58. Standard Electrode Potentials 标准电极电势59. Oxidizing and Reducing Agents 氧化剂和还原剂60. The Nernst Equation 能斯特方程61. Electrolysis 电解62. The Wave Behavior of Electrons 电子的波动性63. Bohr’s Model of The Hydrogen Atom 氢原子的波尔模型64. Line Spectra 线光谱65. Quantum Numbers 量子数66. Electron Spin 电子自旋67. Atomic Orbital 原子轨道68. The s (p, d, f) Orbital s(p,d,f)轨道69. Many-Electron Atoms 多电子原子70. Energies of Orbital 轨道能量71. The Pauli Exclusion Principle 泡林不相容原理72. Electron Configurations 电子构型73. The Periodic Table 周期表74. Row 行75. Group 族76. Isotopes, Atomic Numbers, and Mass Numbers 同位素,原子数,质量数77. Periodic Properties of the Elements 元素的周期律78. Radius of Atoms 原子半径79. Ionization Energy 电离能80. Electronegativity 电负性81. Effective Nuclear Charge 有效核电荷82. Electron Affinities 亲电性83. Metals 金属84. Nonmetals 非金属85. Valence Bond Theory 价键理论86. Covalence Bond 共价键87. Orbital Overlap 轨道重叠88. Multiple Bonds 重键89. Hybrid Orbital 杂化轨道90. The VSEPR Model 价层电子对互斥理论91. Molecular Geometries 分子空间构型92. Molecular Orbital 分子轨道93. Diatomic Molecules 双原子分子94. Bond Length 键长95. Bond Order 键级96. Bond Angles 键角97. Bond Enthalpies 键能98. Bond Polarity 键矩99. Dipole Moments 偶极矩100. Polarity Molecules 极性分子101. Polyatomic Molecules 多原子分子102. Crystal Structure 晶体结构103. Non-Crystal 非晶体104. Close Packing of Spheres 球密堆积105. Metallic Solids 金属晶体106. Metallic Bond 金属键107. Alloys 合金108. Ionic Solids 离子晶体109. Ion-Dipole Forces 离子偶极力110. Molecular Forces 分子间力111. Intermolecular Forces 分子间作用力112. Hydrogen Bonding 氢键113. Covalent-Network Solids 原子晶体114. Compounds 化合物115. The Nomenclature, Composition and Structure of Complexes 配合物的命名,组成和结构116. Charges, Coordination Numbers, and Geometries 电荷数、配位数、及几何构型117. Chelates 螯合物118. Isomerism 异构现象119. Structural Isomerism 结构异构120. Stereoisomerism 立体异构121. Magnetism 磁性122. Electron Configurations in Octahedral Complexes 八面体构型配合物的电子分布123. Tetrahedral and Square-planar Complexes 四面体和平面四边形配合物124. General Characteristics 共性125. s-Block Elements s区元素126. Alkali Metals 碱金属127. Alkaline Earth Metals 碱土金属128. Hydrides 氢化物129. Oxides 氧化物130. Peroxides and Superoxides 过氧化物和超氧化物131. Hydroxides 氢氧化物132. Salts 盐133. p-Block Elements p区元素134. Boron Group (Boron, Aluminium, Gallium, Indium, Thallium) 硼族(硼,铝,镓,铟,铊)135. Borane 硼烷136. Carbon Group (Carbon, Silicon, Germanium, Tin, Lead) 碳族(碳,硅,锗,锡,铅)137. Graphite, Carbon Monoxide, Carbon Dioxide 石墨,一氧化碳,二氧化碳138. Carbonic Acid, Carbonates and Carbides 碳酸,碳酸盐,碳化物139. Occurrence and Preparation of Silicon 硅的存在和制备140. Silicic Acid,Silicates 硅酸,硅酸盐141. Nitrogen Group (Phosphorus, Arsenic, Antimony, and Bismuth) 氮族(磷,砷,锑,铋)142. Ammonia, Nitric Acid, Phosphoric Acid 氨,硝酸,磷酸143. Phosphorates, phosphorus Halides 磷酸盐,卤化磷144. Oxygen Group (Oxygen, Sulfur, Selenium, and Tellurium) 氧族元素(氧,硫,硒,碲)145. Ozone, Hydrogen Peroxide 臭氧,过氧化氢146. Sulfides 硫化物147. Halogens (Fluorine, Chlorine, Bromine, Iodine) 卤素(氟,氯,溴,碘)148. Halides, Chloride 卤化物,氯化物149. The Noble Gases 稀有气体150. Noble-Gas Compounds 稀有气体化合物151. d-Block elements d区元素152. Transition Metals 过渡金属153. Potassium Dichromate 重铬酸钾154. Potassium Permanganate 高锰酸钾155. Iron Copper Zinc Mercury 铁,铜,锌,汞156. f-Block Elements f区元素157. Lanthanides 镧系元素158. Radioactivity 放射性159. Nuclear Chemistry 核化学160. Nuclear Fission 核裂变161. Nuclear Fusion 核聚变162. analytical chemistry 分析化学163. qualitative analysis 定性分析164. quantitative analysis 定量分析165. chemical analysis 化学分析166. instrumental analysis 仪器分析167. titrimetry 滴定分析168. gravimetric analysis 重量分析法169. regent 试剂170. chromatographic analysis 色谱分析171. product 产物172. electrochemical analysis 电化学分析173. on-line analysis 在线分析174. macro analysis 常量分析175. characteristic 表征176. micro analysis 微量分析177. deformation analysis 形态分析178. semimicro analysis 半微量分析179. systematical error 系统误差180. routine analysis 常规分析181. random error 偶然误差182. arbitration analysis 仲裁分析183. gross error 过失误差184. normal distribution 正态分布185. accuracy 准确度186. deviation 偏差187. precision 精密度188. relative standard deviation 相对标准偏差(RSD)189. coefficient variation 变异系数(CV)190. confidence level 置信水平191. confidence interval置信区间192. significant test显著性检验193. significant figure 有效数字194. standard solution 标准溶液195. titration 滴定196. stoichiometric point 化学计量点197. end point 滴定终点198. titration error滴定误差199. primary standard 基准物质200. amount of substance 物质的量201. standardization 标定202. chemical reaction 化学反应203. concentration 浓度204. chemical equilibrium 化学平衡205. titer 滴定度206. general equation for a chemical reaction 化学反应的通式207. proton theory of acid-base酸碱质子理论208. acid-base titration酸碱滴定法209. dissociation constant解离常数210. conjugate acid-base pair共轭酸碱对211. acetic acid 乙酸212. hydronium ion 水合氢离子213. electrolyte 电解质214. ion-product constant of water水的离子积215. ionization电离216. proton condition 质子平衡217. zero level 零水准218. buffer solution缓冲溶液219. methyl orange甲基橙220. acid-base indicator酸碱指示剂221. phenolphthalein 酚酞222. coordination compound配位化合物223. center ion中心离子224. cumulative stability constant累积稳定常数225. alpha coefficient酸效应系数226. overall stability constant总稳定常数227. ligand 配位体228. ethylenediamine tetraacetic acid乙二胺四乙酸229. side reaction coefficient副反应系数230. coordination atom配位原子231. coordination number 配位数232. lone pair electron孤对电子233. chelate compound 螯合物234. metal indicator 金属指示剂235. chelating agent 螯合剂236. masking 掩蔽237. demasking 解蔽238. electron 电子239. catalysis催化240. oxidation 氧化241. catalyst 催化剂242. reduction还原243. catalytic reaction催化反应244. reaction rate反应速率245. electrode potential电极电势246. activation energy 反应的活化能247. redox couple 氧化还原电对248. potassium permanganate 高锰酸钾249. iodimetry 碘量法250. potassium dichromate 重铬酸钾251. cerimetry 铈量法252. redox indicator 氧化还原指示253. oxygen consuming 耗氧量(OC)254. chemical oxygen demanded 化学需氧量(COD) 255. dissolved oxygen 溶解氧(DO) 256. precipitation 沉淀反应257. argentimetry 银量法258. heterogeneous equilibrium of ions 多相离子平衡259. aging 陈化260. postprecipitation 继沉淀261. coprecipitation 共沉淀262. ignition 灼烧263. fitration 过滤264. decantation 倾泻法265. chemical factor 化学因数266. spectrophotometry 分光光度法267. colorimetry 比色分析268. transmittance 透光率269. absorptivity 吸光率270. calibration curve 校正曲线271. standard curve 标准曲线272. monochromator 单色器273. source 光源274. wavelength dispersion 色散275. absorption cell 吸收池276. detector 检测系统277. bathochromic shift 红移278. Molar absorptivity 摩尔吸光系数279. hypochromic shift 紫移280. acetylene 乙炔281. ethylene 乙烯282. acetylating agent 乙酰化剂283. acetic acid 乙酸284. adiethyl ether 乙醚285. ethyl alcohol 乙醇286. acetaldehtde 乙醛287. β-dicarbontl compound β–二羰基化合物288. bimolecular elimination 双分子消除反应289. bimolecular nucleophilic substitution 双分子亲核取代反应290. open chain compound 开链族化合物291. molecular orbital theory 分子轨道理论292. chiral molecule 手性分子293. tautomerism 互变异构现象294. reaction mechanism 反应历程295. chemical shift 化学位移296. Walden inversio 瓦尔登反转n297. Enantiomorph 对映体298. addition rea ction 加成反应299. dextro- 右旋300. levo- 左旋301. stereochemistry 立体化学302. stereo isomer 立体异构体303. Lucas reagent 卢卡斯试剂304. covalent bond 共价键305. conjugated diene 共轭二烯烃306. conjugated double bond 共轭双键307. conjugated system 共轭体系308. conjugated effect 共轭效应309. isomer 同分异构体310. isomerism 同分异构现象311. organic chemistry 有机化学312. hybridization 杂化313. hybrid orbital 杂化轨道314. heterocyclic compound 杂环化合物315. peroxide effect 过氧化物效应t 316. valence bond theory 价键理论317. sequence rule 次序规则318. electron-attracting grou p 吸电子基319. Huckel rule 休克尔规则320. Hinsberg test 兴斯堡试验321. infrared spectrum 红外光谱322. Michael reacton 麦克尔反应323. halogenated hydrocarbon 卤代烃324. haloform reaction 卤仿反应325. systematic nomenclatur 系统命名法e 326. Newman projection 纽曼投影式327. aromatic compound 芳香族化合物328. aromatic character 芳香性r329. Claisen condensation reaction克莱森酯缩合反应330. Claisen rearrangement 克莱森重排331. Diels-Alder reation 狄尔斯-阿尔得反应332. Clemmensen reduction 克莱门森还原333. Cannizzaro reaction 坎尼扎罗反应334. positional isomers 位置异构体335. unimolecular elimination reaction 单分子消除反应336. unimolecular nucleophilic substitution 单分子亲核取代反应337. benzene 苯338. functional grou 官能团p339. configuration 构型340. conformation 构象341. confomational isome 构象异构体342. electrophilic addition 亲电加成343. electrophilic reagent 亲电试剂344. nucleophilic addition 亲核加成345. nucleophilic reagent 亲核试剂346. nucleophilic substitution reaction亲核取代反应347. active intermediate 活性中间体348. Saytzeff rule 查依采夫规则349. cis-trans isomerism 顺反异构350. inductive effect 诱导效应 t351. Fehling’s reagent 费林试剂352. phase transfer catalysis 相转移催化作用353. aliphatic compound 脂肪族化合物354. elimination reaction 消除反应355. Grignard reagent 格利雅试剂356. nuclear magnetic resonance 核磁共振357. alkene 烯烃358. allyl cation 烯丙基正离子359. leaving group 离去基团360. optical activity 旋光性361. boat confomation 船型构象362. silver mirror reaction 银镜反应363. Fischer projection 菲舍尔投影式364. Kekule structure 凯库勒结构式365. Friedel-Crafts reaction 傅列德尔-克拉夫茨反应366. Ketone 酮367. carboxylic acid 羧酸368. carboxylic acid derivative 羧酸衍生物369. hydroboration 硼氢化反应370. bond oength 键长371. bond energy 键能372. bond angle 键角373. carbohydrate 碳水化合物374. carbocation 碳正离子375. carbanion 碳负离子376. alcohol 醇377. Gofmann rule 霍夫曼规则378. Aldehyde 醛379. Ether 醚380. Polymer 聚合物。
结构化学 英语
结构化学英语Structured ChemistryChemistry is a vast and complex field of study that encompasses the understanding of the composition, structure, and properties of matter. One of the key aspects of chemistry is the concept of structure, which plays a crucial role in determining the behavior and characteristics of chemical substances. Structural chemistry, a subfield of chemistry, focuses on the spatial arrangement of atoms and molecules, and how this arrangement influences the chemical and physical properties of materials.The study of structure in chemistry involves the investigation of the three-dimensional (3D) arrangements of atoms within molecules and the intermolecular interactions that exist between them. This knowledge is essential for understanding the behavior of chemical systems, predicting their properties, and designing new materials with desired characteristics.One of the fundamental tools used in structural chemistry is X-ray crystallography. This technique involves the bombardment of a crystalline sample with X-rays, which interact with the electrons inthe atoms of the crystal. The resulting diffraction pattern can be analyzed to determine the precise arrangement of atoms within the crystal structure. This information is crucial for understanding the properties of solid-state materials, such as metals, minerals, and ceramics.Another important technique in structural chemistry is nuclear magnetic resonance (NMR) spectroscopy. This method utilizes the magnetic properties of atomic nuclei to provide information about the chemical environment and connectivity of atoms within a molecule. NMR spectroscopy is widely used in the identification and characterization of organic compounds, as well as in the study of biomolecules, such as proteins and nucleic acids.In addition to these experimental techniques, computational methods have also become increasingly important in the field of structural chemistry. Quantum mechanical calculations, such as density functional theory (DFT), allow researchers to model the behavior of atoms and molecules at the quantum level, providing insights into their electronic structure and chemical reactivity.One of the key applications of structural chemistry is in the design and development of new materials. By understanding the relationship between the structure of a material and its properties, chemists can engineer substances with specific characteristics, suchas high strength, enhanced thermal stability, or improved electrical conductivity. This knowledge is particularly valuable in fields like materials science, nanotechnology, and catalysis.Another important aspect of structural chemistry is its role in the study of biological systems. The structures of proteins, nucleic acids, and other biomolecules are crucial for understanding their functions and interactions within living organisms. This knowledge is essential for the development of new drugs and the understanding of disease processes.In conclusion, the field of structural chemistry is a fundamental and multifaceted discipline that underpins our understanding of the physical and chemical properties of matter. Through the use of advanced experimental and computational techniques, structural chemists continue to unravel the mysteries of the molecular world, paving the way for new discoveries and innovations that have the potential to transform our lives.。
李金华个人简介
主持参与的部分项目 • 高介电栅极有机薄膜晶体管的湿法制备及界面物理研究,国家自然科学基面上项目
(11574075),86.8 万,2016.1-2019.12,主持人。 • 柔性低压高性能晶体管的湿法制备及应用研究,湖北省自然科学杰出青年基金
工作经历
2015 年 12 月至今湖北大学材料科学与工程系; 2012.8-2015.11 香港理工大学应用物理系,博士后研究员; 2008.10-2009.1 香港理工大学应用物理系,助理研究员; 2002.7-2008.9 湖北大学,助教。
获奖 • 卢朝靖、李金华、王世敏、邝安祥,无机功能薄膜的制备、显微结构与生长机制研究,湖
湖北武汉 430062 Email:jinhua_li@ or jinhua_li@ Tel: +86-27-88661729
教育经历:
2009.1-2012.7 香港理工大学应用物理系应用物理专业,博士研究生,导师严锋教授和陈王 丽华教授;
2005.9-2008.6 湖北大学材料科学与工程学院 材料学专业,硕士研究生,导师卢朝靖教授; 1998.9-2002.7 湖北大学物理学与电子技术学院电子科学与技术专业,本科。
(2014CB660809),78 万,2014.10-2016.8,科技部,参法原位制备及激子分离动力学研究,国家自然科学基
金青年项目(11304088), 30 万, 2014.1-2016.12, 参与。 • 医用钛合金骨植入体表面激光合金化 Ag-HA 复合纳米涂层的抗菌及生物相容性研究,国
目,2 万,2017.01-2018.12,主持人。 • 高介电栅极柔性有机薄膜晶体管的制备及性能研究,湖北省教育厅科学技术研究计划重点
NU_MRC_Overview_Orientation
Research Goals
IRG #1: Synergistic Linear and Nonlinear Phenomena in Multifunctional Oxide Ceramic Systems
Байду номын сангаас
Materials Research Center
• Started in 1960 • Funding originally from Department of Defense • Now funded by the National Science Foundation under the Materials Research Science and Engineering (MRSEC) program • 36 faculty members from 8 academic departments • 18 postdocs, 68 graduate students • Budget: approximately $2-3 million per year • 6-year renewal funding cycle
MRSEC
Northwestern: Research Centers
• Northwestern supports interdisciplinary research through Research Centers, which are independent of schools • List of Science and Engineering-related Centers:
MRSEC
Synergistic, Innovative Research
• Research organized into Interdisciplinary Research Groups (IRGs) • IRG 1 Synergistic Linear and Nonlinear Phenomena in Multifunctional Oxide Ceramic Systems • IRG 2 Novel Processing Methods for Nanostructured Polymer Blends, Composites and Supramolecular Structures • IRG 3 Molecular Plasmonics: Fundamentals, New Tools, and Devices • IRG 4 Hybrid Organic-Inorganic Nanoelectronic Materials from Molecules to Printable Thin Films • Groups of 6-10 researchers from various academic departments work on a complex set of problems for several years • Significant theory-experiment interactions • High-risk new project funded as Seeds • Currently, biology-related and biomaterials research
化学专业英语前沿词汇-推荐下载
化学专业英语前沿讲座Seminar专业英语Professional English现代分析化学Modern analytical chemistry生物分析技术Bioanalytical techniques高分子进展Advances in polymers功能高分子进展Advances in functional polymers有机硅高分子研究进展Progresses in organosilicon polymers高分子科学实验方法Scientific experimental methods of polymers高分子设计与合成The design and synthesis of polymers反应性高分子专论Instructions to reactive polymers网络化学与化工信息检索Internet Searching for Chemistry & Chemical Engineering information 有序分子组合体概论Introduction to Organized Molecular Assembilies两亲分子聚集体化学Chemistry of amphiphilic aggregates 表面活性剂体系研究新方法New Method for studying Surfactant System微纳米材料化学Chemistry of Micro-NanoMaterials分散体系研究新方法New Method for studying dispersion分散体系相行为The Phase Behavior of Aqueous Dispersions溶液-凝胶材料Sol-Gel Materials高等量子化学Advanced Quantum Chemistry分子反应动力学Molecular Reaction Dynamic计算量子化学Computational Quantum Chemistry群论Group Theory分子模拟理论及软件应用Theory and Software of Molecular Modelling & Application 价键理论方法Valence Bond Theory量子化学软件及其应用Software of Quantum Chemistry & its Application分子光谱学Molecular Spectrum算法语言Computational Languange高分子化学Polymer Chemistry高分子物理Polymer Physics药物化学Medicinal Chemistry统计热力学Statistic Thermodynamics液-液体系专论Discussion on Liquid-Liquid System配位化学进展Progress in Coordination Chemistry无机材料及物理性质Inorganic Materials and Their Physical Properties物理无机化学Physical Inorganic Chemistry相平衡Phase Equilibrium现代无机化学Today's Inorganic Chemistry无机化学前沿领域导论Introduction to Forward Field in Inorganic Chemistry量子化学Quantum Chemistry分子材料Molecular Material固体酸碱理论Solid Acid-Base Theory萃取过程物理化学Physical Chemistry in Extraction表面电化学Surface Electrochemistry电化学进展Advances on Electrochemistry现代电化学实验技术Modern Experimental Techniques of Electrochemistry金属-碳多重键化合物及其应用Compounds with Metal-Carbon multiple bonds and The ir Applications叶立德化学:理论和应用Ylides Chemistry: Theory and Application立体化学与手性合成Stereochemistry and Chiral Synthesis杂环化学Heterocyclic Chemistry有机硅化学Organosilicon Chemistry药物设计及合成Pharmaceutical Design and Synthesis超分子化学Supramolecular Chemistry分子设计与组合化学Molecular Design and Combinatorial Chemistry纳米材料化学前沿领域导论Introduction to Nano-materials Chemistry纳米材料控制合成与自组装Controlled-synthesis and Self-assembly of Nano-materials 前沿讲座Leading Front Forum专业英语Professional English超分子化学基础Basics of Supramolecular Chemistry 液晶材料基础Basics of Liquid Crystal Materials 现代实验技术Modern analytical testing techniques色谱及联用技术Chromatography and Technology of tandem发光分析及其研究法Luminescence analysis and Research methods胶束酶学Micellar Enzymology分析化学中的配位化合物Complex in Analytical Chemistry电分析化学Electroanalytical chemistry生物分析化学Bioanalytical chemistry分析化学Analytical chemistry仪器分析Instrument analysis高分子合成化学Polymers synthetic chemistry高聚物结构与性能Structures and properties of polymers有机硅化学Organosilicon chemistry功能高分子Functional polymers有机硅高分子Organosilicon polymers高分子现代实验技术Advanced experimental technology of polymers高分子合成新方法New synthetic methods of polymers液晶与液晶高分子Liquid crystals and liquid crystal polymers大分子反应Macromolecules reaction水溶性高分子Water-soluble polymers聚合物加工基础The basic process of polymers聚合物复合材料Composite materials高等化工与热力学Advanced Chemical Engineering and Thermodynamics高等反应工程学Advanced Reaction Engineering高等有机化学Advanced Organic Chemistry高等有机合成Advanced Organic synthesis有机化学中光谱分析Spectrum Analysis in Organic Chemistry催化作用原理Principle of Catalysis染料化学Dye Chemistry中间体化学与工艺学Intermediate Chemistry and Technology化学动力学Chemical Kinetics表面活性剂合成与工艺Synthesis and Technology of Surfactants环境化学Environmental Chemistry化工企业清洁生产Chemical Enterprise Clean Production化工污染及防治Chemical Pollution and Control动量热量质量传递Momentum, Heat and Mass Transmission化工分离工程专题Separation Engineering耐蚀材料Corrosion Resisting Material网络化学与化工信息检索Internet Searching for Chemistry & Chemical Engineering information 新型功能材料的模板组装Templated Assembly of Novel Advanced Materials 胶体与界面Colloid and Interface纳米材料的胶体化学制备方法Colloid Chemical Methods for Preparing Nano-materials脂质体化学Chemistry of liposome 表面活性剂物理化学Physico-chemistry of surfactants高分子溶液与微乳液Polymer Solutions and Microemulsions两亲分子的溶液化学Chemistry of Amphiphilic Molecules in solution介孔材料化学Mesoporous Chemistry超细颗粒化学Chemistry of ultrafine powder分散体系流变学The Rheolgy of Aqueous Dispersions量子化学Quantum Chemistry统计热力学Statistic Thermodynamics群论Group Theory分子模拟Molecular Modelling高等量子化学Advanced Quantum Chemistry价键理论方法Valence Bond Theory量子化学软件及其应用Software of Quantum Chemistry & its Application计算量子化学Computational Quantum Chemistry分子模拟软件及其应用Software of Molecular Modelling & its Application分子反应动力学Molecular Reaction Dynamic分子光谱学Molecular Spectrum算法语言Computational Languange高分子化学Polymer Chemistry高分子物理Polymer Physics腐蚀电化学Corrosion Electrochemistry物理化学Physical Chemistry结构化学structural Chemistry现代分析与测试技术(试验为主)Modern Analysis and Testing Technology(experime tally)高等无机化学Advanced Inorganic Chemistry近代无机物研究方法Modern Research Methods for Inorganic Compounds萃取化学研究方法Research Methods for Extraction Chemistry单晶培养Crystal Culture固态化学Chemistry of Solid Substance液-液体系专论Discussion on Liquid-Liquid System配位化学进展Progress in Coordination Chemistry卟啉酞箐化学Chemistry of Porphyrine and Phthalocyanine无机材料及物理性质Inorganic Materials and Their Physical Properties物理无机化学Physical Inorganic Chemistry相平衡Phase Equilibrium生物化学的应用Application of Biologic Chemistry生物无机化学Bio-Inorganic Chemistry绿色化学Green Chemistry金属有机化合物在均相催化中的应用Applied Homogeneous Catalysis with Organometa llic Compounds功能性食品化学Functionalized Food Chemistry无机药物化学Inorganic Pharmaceutical Chemistry电极过程动力学Kinetics on Electrode Process电化学研究方法Electrochemical Research Methods生物物理化学Biological Physical Chemistry波谱与现代检测技术Spectroscopy and Modern Testing Technology理论有机化学theoretical Organic Chemistry合成化学Synthesis Chemistry有机合成新方法New Methods for Organic Synthesis生物有机化学Bio-organic Chemistry药物化学Pharmaceutical Chemistry金属有机化学Organometallic Chemistry金属-碳多重键化合物及其应用Compounds with Metal-Carbon multiple bonds and The ir Applications分子构效与模拟Molecular Structure-Activity and Simulation过程装置数值计算Data Calculation of Process Devices石油化工典型设备Common Equipment of Petrochemical Industry化工流态化工程Fluidization in Chemical Industry化工装置模拟与优化Analogue and Optimization of Chemical Devices化工分离工程Separation Engineering化工系统与优化Chemical System and Optimization高等化工热力学Advanced Chemical Engineering and Thermodynamics超临界流体技术及应用Super Cratical Liguid Technegues and Applications膜分离技术Membrane Separation Technegues溶剂萃取原理和应用Theory and Application of Solvent Extraction树脂吸附理论Theory of Resin Adsorption中药材化学Chemistry of Chinese Medicine生物资源有效成分分析与鉴定Analysis and Detection of Bio-materials相平衡理论与应用Theory and Application of Phase Equilibrium计算机在化学工程中的应用Application of Computer in Chemical Engineering微乳液和高分子溶液Micro-emulsion and High Molecular Solution传递过程Transmision Process反应工程分析Reaction Engineering Analysis腐蚀电化学原理与应用Principle and Application of Corrosion Electrochemistry腐蚀电化学测试方法与应用Measurement Method and Application of Corrosion Elect rochemistry耐蚀表面工程Surface Techniques of Anti-corrosion缓蚀剂技术Inhabitor Techniques腐蚀失效分析Analysis of Corrosion Destroy材料表面研究方法Method of Studying Material Surfacc分离与纯化技术Separation and Purification Technology现代精细有机合成Modern Fine Organic Synthesis化学工艺与设备Chemical Technology and Apparatuas功能材料概论Functional Materials Conspectus油田化学Oilfield Chemistry精细化学品研究Study of Fine Chemicals催化剂合成与应用Synthesis and Application of Catalyzer低维材料制备Preparation of Low-Dimension Materials手性药物化学Symmetrical Pharmaceutical Chemistry光敏高分子材料化学Photosensitive Polymer Materials Chemistry纳米材料制备与表征Preparation and Characterization of Nanostructured materials 溶胶凝胶化学Sol-gel Chemistry纳米材料化学进展Proceeding of Nano-materials Chemistry。
Synthesis and characterization of metal complexes
Synthesis and characterization ofmetal complexesIntroductionMetal complexes have been actively studied due to their potential applications in various fields such as catalysts, materials, and medicine. The synthesis and characterization of metal complexes are fundamental steps towards understanding their properties and behaviors. In this article, we will discuss some of the methods and techniques used for synthesizing and characterizing metal complexes, as well as their applications.Synthesis of metal complexesThe synthesis of metal complexes can be achieved through various methods such as salt metathesis, ligand exchange, and coordination polymerization. Salt metathesis involves replacing one metal ion in a salt with another metal ion. Ligand exchange involves replacing one ligand in a metal complex with another ligand. Coordination polymerization involves the combination of metal ions and organic ligands to form a three-dimensional network structure.One example of a metal complex synthesis method is ligand exchange. In this method, a metal complex with a specific ligand is reacted with a new ligand to form a different metal complex. For example, the reaction between copper(II) sulfate and sodium acetate results in the formation of copper(II) acetate.CuSO4 + 2NaOAc → Cu(OAc)2 + Na2SO4Another example is coordination polymerization. In this method, metal ions and organic ligands are combined in a solution to form a solid network structure. For example, the reaction between zinc(II) nitrate and 2,6-naphthalenedicarboxylic acid results in the formation of a porous coordination polymer called MOF-5.Zn(NO3)2 + H2bdc → Zn4O(H2bdc)3 + 2HNO3Characterization of metal complexesCharacterization of metal complexes is important in understanding their physical and chemical properties. Techniques such as X-ray crystallography, infrared spectroscopy, and nuclear magnetic resonance (NMR) spectroscopy can be used to identify the structure and composition of metal complexes.X-ray crystallography involves the analysis of crystals using X-rays to determine the positions of atoms in a molecule. It provides information on the three-dimensional structure of a metal complex. Infrared spectroscopy involves the measurement of the energy absorbed by a molecule due to vibrations of its chemical bonds. It provides information on the functional groups present in a metal complex. NMR spectroscopy involves the measurement of the absorption of energy by nuclei in an external magnetic field. It provides information on the electronic environment surrounding metal ions in a complex.Applications of metal complexesMetal complexes have a wide range of applications in various fields. They can act as catalysts in chemical reactions, for example, the use of palladium complexes as catalysts in Suzuki coupling reactions. They can also be used as materials in the form of coordination polymers for gas storage or catalysis. In medicine, metal complexes can be used as contrast agents in imaging techniques or as anticancer drugs.ConclusionIn summary, the synthesis and characterization of metal complexes are important for understanding their properties and behavior. Various methods and techniques can be used for synthesizing and characterizing metal complexes. Applications for metal complexes are diverse and extend to fields such as catalysis, materials, and medicine. With continued research and development, metal complexes are expected to play an increasingly important role in these fields.。
英语作文synthesis范文
英语作文synthesis范文In recent years, the role of technology in education has become a topic of significant debate. While some argue that it has revolutionized the way we learn, others contend that traditional methods remain irreplaceable. This essay aims to synthesize various perspectives on the impact of technology on education, drawing on the works of James Paul Gee, Mark Bauerlein, and Henry Jenkins.James Paul Gee posits that technology has the potential to transform education by making it more personalized and engaging. He argues that digital tools can cater toindividual learning styles and pique the interest of students who may otherwise disengage from the learning process. For instance, educational software can adapt to the pace at which a student learns, providing a tailored experience that traditional classroom settings often cannot match.On the contrary, Mark Bauerlein expresses concerns that technology may erode the quality of education. He suggests that the internet and digital devices can be sources of distraction, leading to a decline in students' attention spans and critical thinking skills. Bauerlein also fears that the reliance on technology may diminish the importance of reading and deep engagement with complex texts, which are crucial for developing a well-rounded intellect.Henry Jenkins, however, offers a more balanced view,advocating for the integration of technology into education rather than a complete replacement of traditional methods. Jenkins believes that technology can enhance learning when used thoughtfully. For example, he cites the use of online forums for discussions, which can facilitate collaboration among students and broaden their perspectives by exposing them to diverse viewpoints.In synthesizing these viewpoints, it becomes evident that technology is not an inherently positive or negative force in education. Its impact largely depends on how it is utilized. When integrated thoughtfully into the curriculum, technology can supplement traditional teaching methods, providing a more dynamic and inclusive learning environment. It can offer personalized learning experiences, engage students with interactive content, and facilitate global collaboration.However, educators must also be vigilant about the potential pitfalls of technology use in the classroom. This includes ensuring that students are not overwhelmed by distractions, that they continue to develop essential literacy skills, and that their critical thinking abilities are not compromised by the ease of access to information online.In conclusion, the synthesis of these perspectives suggests that technology can be a powerful tool in the realm of education, but it must be approached with a clear understanding of its limitations and potential risks. By striking a balance between the use of technology and the preservation of traditional educational values, we can fosteran educational environment that is both innovative and grounded in the fundamentals of learning.。
氯化钪对铝酸镁尖晶石烧结致密化的影响研究
第4"卷第1期2021年3月有色金属设计Nonferrous Metals DesignVol.48No.1March.2021氯化铳对铝酸镁尖晶石烧结致密化的影响研究刘建华(昆明理工大学,云南昆明650093)摘要:该文开展共沉淀法制备铝酸镁尖晶石的研究。
研究了氯化铳烧结助剂对铝酸镁尖晶石致密度化的影响,以无水氯化铝和氯化镁为原料,采用共沉淀方法可制备得到铝酸镁尖晶石粉末。
最佳烧结添加量是2%,在最佳烧结助剂下所得的铝酸镁尖晶石材料致密度为98%,孔隙率1%"关键词:铝酸镁尖晶石;烧结助剂;氯化铳;致密度中图分类号:TF821文献标识码:A文章编号:1004-2660(2021)01-0035-04Effect of scandium chloride on sintering densification of magnesium aluminate spinelLiu Jianhua(Kunming University oO Science and Technology,Kunming650093,China)Abstract:The study on the preparation of magnesium aluminate spinel by co—precipitation method is cciried out.The peuencc of scandium chloOde sinteang aid on the densification of magnesium aluminate spinel was studied.Anhydrous aluminum chloOde and magnesium chloOde were used as raw mateaaSs ta prepare maanesi-um aluminate spinel powder by co—precipitation method.The optimal sinteeng additive amount is2%,and the magnesium aluminate spinel mateeal obtained undee the optimal sinteeng aid has a density of98%and a porosity of1%.Keywords:magnesium aluminate spinel;sinteeng aid;sccndium chloede;densityo引言铝酸镁尖晶石(MAS)具有高熔点(2135p),低热膨胀性,良好的机械强度和优异的耐化学性等。