全国高中数学联合竞赛一试(模拟)及答案201334

合集下载

2013年全国高中数学联赛一试模拟卷(共7套)附详细解答

2013年全国高中数学联赛一试模拟卷(共7套)附详细解答

2013年全国高中数学联赛模拟卷(1)第一试(考试时间:80分钟 满分:120分)姓名:_____________考试号:______________得分:____________一、填空题(本大题共8小题,每小题8分,共64分)1. 函数1cos sin 1cos sin ++-=x x x x y 的值域是___________2. 设a , b , c 为RT △ACB 的三边长, 点(m , n )在直线ax +by +c =0上. 则m 2+n 2的最小值是___________3. 若N n ∈,且92422--+n n 为正整数,则.________=n4. 掷6次骰子, 令第i 次得到的数为i a , 若存在正整数k 使得61=∑=ki ia的概率mnp =,其中n m ,是互质的正整数. 则n m 76log log -= .5. 已知点P 在曲线y =e x 上,点Q 在曲线y =lnx 上,则PQ 的最小值是_______6. 已知多项式f (x )满足:222(3)2(35)61017()f x x f x x x x x R +++-+=-+∈, 则(2011)f =_________7. 四面体OABC 中, 已知∠AOB =450,∠AOC =∠BOC =300, 则二面角A -OC -B 的平面角α的余弦值是__________ 8. 设向量)cos sin ,cos sin 2(),,3(θθθθβαa a x x +=+=满足对任意R x ∈和θ∈[0, π2],2||≥+βα恒成立. 则实数a 的取值范围是________________.二、解答题(本大题共3小题,第9题16分,第10、11题20分,共56分)9.设数列{}n a 满足0a N +∈,211n n n a a a +=+.求证:当1200+≤≤a n 时,n a a n -=0][. (其中[]x 表示不超过x 的最大整数).10. 过点)3,2(作动直线l 交椭圆1422=+y x 于两个不同的点Q P ,,过Q P ,作椭圆的切线, 两条切线的交点为M , ⑴ 求点M 的轨迹方程;⑵ 设O 为坐标原点,当四边形POQM 的面积为4时,求直线l 的方程.11. 若a 、b 、c R +∈,且满足22)4()(c b a b a cb a kabc++++≤++,求k 的最大值。

2013年全国高中数学联赛一试(试题word版,有答案)

2013年全国高中数学联赛一试(试题word版,有答案)

2013年全国高中数学联合竞赛一试试题一、填空题:本大题共8小题,每小题8分,共64分.1.设集合{2,0,1,3}A =,集合2{,2}B x x A x A =-∈-∉.则集合B 中所有元素的和为 __________.2.在平面直角坐标系xOy 中,点,A B 在抛物线24y x =上,满足4OA OB ⋅=-.F 是抛物线的焦点,则OFA OFB S S ∆∆⋅=______________.3.在ABC ∆中,已知sin 10sin sin ,cos 10cos cos A B C A B C ==,则t a n A 的值为_______.4.已知正三棱锥P ABC -的底面边长为1,高为2,则其内切球半径为__________.5.设,a b 为实数,函数()f x ax b =+满足:对任意[0,1]x ∈,有()1f x ≤.则ab 的最大值 为_________.6.从1,2,…,20中任取5个不同的数,其中至少有两个是相邻数的概率为_________.7.若实数,x y 满足42x y x y -=-,则x 的取值范围是____________________.8.已知数列{}n a 共有9项,其中191a a ==,且对每个{1,2,,8}i ∈ ,均有11{2,1,}2i i a a +∈-, 则这样的数列的个数为_________.二、解答题:本大题共3小题,共56分.解答应写出文字说明、证明过程或演算步骤. 9.(本题满分16分)给定正数数列{}n x 满足12,2,3,n n S S n -≥= .这里1n n S x x =++ . 证明:存在常数0C >,使得2, 1,2,nn x C n ≥⋅=10.(本题满分20分)在平面直角坐标系xOy 中,椭圆的方程为2222 1 (0)x y a b a b+=>>,12,A A 分别为椭圆的左、右顶点,12,F F 分别为椭圆的左、右焦点.P 为椭圆上不同于 12,A A 的任意一点.若平面中两个点,Q R 满足112211,,QA PA QA PA RF PF ⊥⊥⊥,22,RF PF ⊥试确定线段QR 的长度与b 的大小关系,并给出证明.11.(本题满分20分)设函数2()f x ax b =+,求所有的正实数对(,)a b ,使得对任意实数 ,x y ,有()()()()f xy f x y f x f y ++≥。

2013年全国高中数学联合竞赛一试试题参考答案及评分标准

2013年全国高中数学联合竞赛一试试题参考答案及评分标准

2013年全国高中数学联合竞赛一试试题参考答案及评分标准说明:1. 评阅试卷时,请依据本评分标准. 填空题只设8分和0分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不要增加其他中间档次.2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,解答题中第9小题4分为一个档次,第10、11小题5分为一个档次,不要增加其他中间档次.一、填空题:本大题共8小题,每小题8分,共64分.1. 设集合{2,0,1,3}A ,集合2{|,2}B x x A x A .则集合B 中所有元素的和为 .答案 5−.解 易知{2,0,1,3}B .当2,3x 时,222,7x ,有22x A ;而当0,1x 时,222,1x ,有22x A .因此,根据B 的定义可知{2,3}B . 所以,集合B 中所有元素的和为5−.2. 在平面直角坐标系xOy 中,点A 、B 在抛物线24y x 上,满足4OA OB ,F 是抛物线的焦点. 则OFA OFB S S .答案 2.解 点F 坐标为(1,0).设1122(,),(,)A x y B x y ,则221212,44y y x x ,故21212121214()16OA OB x x y y y y y y ,即2121(8)016y y ,故128y y . 21212111()2224OFA OFB S S OF y OF y OF y y =(). 3. 在ABC 中,已知sin 10sin sin ,A B C cos 10cos cos ,A B C 则tan A 的值为 .答案 11.解 由于sin cos 10(sin sin cos cos )10cos()10cos A A B C B C B C A ,所以sin 11cos A A ,故tan 11A .4. 已知正三棱锥P ABC 底面边长为1,高为,则其内切球半径为 .答案解 如图,设球心O 在面ABC 与面ABP 内的射影分别为H 和K ,AB 中点为M ,内切球半径为r ,则P 、K 、M 共线,P 、O 、H 共线,2PHM PKO ,且,OH OK r PO PH OH r ,MH ABPM , 于是有1sin5OK MH KPO POPM ,解得r. 5. 设,a b 为实数,函数()f x ax b 满足:对任意[0,1]x ,有()1f x . 则ab 的最大值为 .答案14. 解 易知(1)(0),(0)a f f b f ,则2221111(0)((1)(0))(0)(1)(1)(1)2444ab f f f f f f f . 当2(0)(1)1f f ,即12a b 时,14ab .故ab 的最大值为14. 6. 从1,2,,20 中任取5个不同的数,其中至少有两个是相邻数的概率为 .答案 232323.解 设12345a a a a a <<<<取自1,2,…,20,若12345,,,,a a a a a 互不相邻,则123451123416a a a a a ≤<−<−<−<−≤,由此知从1,2,,20 中取5个互不相邻的数的选法与从1,2,,16 中取5个不同的数的选法相同,即516C 种.所以,从1,2,,20 中任取5个不同的数,其中至少有两个是相邻数的概率为5552016165520202321323C C C C C −=−=. 7. 若实数,x y满足x ,则x 的取值范围是 . 答案 {0}[4,20] . 解,(,0)a b a b ,此时22()x y x y a b ,且条件中等式化为2242a b a b ,从而,a b 满足方程22(2)(1)5a b (,0)a b .如图所示,在aOb 平面内,点(,)a b 的轨迹是以(1,2)为,0a b 的部分,即点O 与弧 ACB 的02, ,从而 2204,20x a b . 8. 已知数列{}n a 共有9项,其中191a a ,且对每个{1,2,,8}i ,均有112,1,2i i a a,则这样的数列的个数为 . 答案 491. 解 令1(18)i i ia b i a,则对每个符合条件的数列{}n a ,有 88191111i i i i ia ab a a,且12,1,(18)2i b i . ① 反之,由符合条件①的8项数列{}n b 可唯一确定一个符合题设条件的9项数列{}n a .记符合条件①的数列{}n b 的个数为N .显然(18)i b i 中有偶数个12,即2k 个12;继而有2k 个2,84k 个1.当给定k 时,{}n b 的取法有22882C C k kk 种,易见k 的可能值只有0,1,2,所以224486841C C C C 12815701491N .因此,根据对应原理,符合条件的数列{}n a 的个数为491.二、解答题:本大题共3小题,共56分.解答应写出文字说明、证明过程或演算步骤.9.(本题满分16分)给定正数数列{}n x 满足12,2,3,n n S S n −≥= ,这里1n n S x x =++ .证明:存在常数0C >,使得2,1,2,n n x C n ≥⋅=. 解 当2n ≥时,12n n S S −≥等价于11n n x x x −≥++ . ① …………………4分对常数114C x =,用数学归纳法证明: 2,1,2,n n x C n ≥⋅= . ②……………………8分1n =时结论显然成立.又2212x x C ≥=⋅.对3n ≥,假设2,1,2,,1kk x C k n ≥⋅=− ,则由①式知()121n n x x x x −≥+++()21122n x C C −≥+⋅++⋅()223122222n n C C −=++++=⋅ ,所以,由数学归纳法知,②式成立.…………………16分10.(本题满分20分)在平面直角坐标系xOy 中,椭圆的方程为22221(0)x y a b a b ,1A 、2A 分别为椭圆的左、右顶点,1F 、2F 分别为椭圆的左、右焦点,P 为椭圆上不同于1A 和2A 的任意一点.若平面中两个点Q 、R 满足11QA PA ,22QA PA ,11RF PF ,22RF PF ,试确定线段QR 的长度与b 的大小关系,并给出证明.解 令c ,则1212(,0),(,0),(,0),(,0)A a A a F c F c .设001122(,),(,),(,)P x y Q x y R x y ,其中22000221,0x y y a b.由1122,QA PA QA PA 可知111010()()0A Q A P x a x a y y,① 221010()()0A Q A P x a x a y y. ②…………………5分将①、②相减,得102()0a x x ,即10x x ,将其代入①,得220100x a y y ,故22010x a y y ,于是22000,x a Q x y . …………………10分 根据1122,RF PF RF PF ,同理可得22000,x c R x y. …………………15分 因此2222200000x a x c b QR y y y ,由于0(0,]y b ,故QR b (其中等号成立的充分必要条件是0y b ,即点(0,)P b 为 ). …………………20分 11. (本题满分20分)求所有的正实数对(,)a b ,使得函数2()f x ax b 满足:对任意实数,x y ,有()()()()f xy f x y f x f y .解 已知条件可转化为:对任意实数,x y ,有22222()(())()()ax y b a x y b ax b ay b . ①先寻找,a b 所满足的必要条件.在①式中令0y ,得22()()b ax b ax b b ,即对任意实数x ,有2(1)(2)0b ax b b .由于0a ,故2ax 可取到任意大的正值,因此必有10b ,即01b . …………………5分在①式中再令y x ,得422()()ax b b ax b ,即对任意实数x ,有2422()2(2)0a a x abx b b . ②将②的左边记为()g x .显然20a a (否则,由0a 可知1a ,此时22()2(2)g x bx b b ,其中0b ,故()g x 可取到负值,矛盾),于是 2222222()()()(2)ab ab g x a a x b b a a a a 222()(22)11b b a a x a b a a0 对一切实数x 成立,从而必有20a a ,即01a . …………………10分进一步,考虑到此时01b a ,再根据(22)01b g a b a,可得22a b .至此,求得,a b 满足的必要条件如下:01b ,01a ,22a b . ③…………………15分下面证明,对满足③的任意实数对(,)a b 以及任意实数,x y ,总有①成立,即222222(,)()(1)()2(2)h x y a a x y a b x y axy b b对任意,x y 取非负值.事实上,在③成立时,有2(1)0,0a b a a ,(22)01ba b a,再结合222x y xy ,可得2222(,)()(1)(2)2(2)h x y a a x y a b xy axy b b2222()2(2)a a x y abxy b b22()(22)11b b a a xy a b a a0 . 综上所述,所求的正实数对(,)a b 全体为{(,)|01,01,22}a b b a a b . …………………20分。

高中数学联赛的模拟试题及答案

高中数学联赛的模拟试题及答案

全国高中数学联赛模拟试题第一试一、 选择题:(每小题6分,共36分)1、空间中n (n ≥3)个平面,其中任意三个平面无公垂面.那么,下面四个结论(1) 没有任何两个平面互相平行;(2) 没有任何三个平面相交于一条直线; (3) 平面间的任意两条交线都不平行;(4) 平面间的每一条交线均与n -2个平面相交. 其中,正确的个数为 (A )1 (B )2 (C )3 (D )42、若函数y =f (x )在[a ,b ]上的一段图像可以近似地看作直线段,则当c ∈(a ,b )时,f (c )的近似值可表示为(A )()()2b f a f + (B )⎪⎭⎫ ⎝⎛+2b a f (C )()()()()()a b b f a c a f c b --+-(D )()()()[]a f b f a b ac a f ----3、设a >b >c ,a +b +c =1,且a 2+b 2+c 2=1,则(A )a +b >1 (B )a +b =1 (C )a +b <1 (D )不能确定,与a 、b 的具体取值有关4、设椭圆12222=+b y a x 的离心率23=e ,已知点⎪⎭⎫ ⎝⎛23,0P 到椭圆上的点的最远距离是47,则短半轴之长b =(A )161 (B )81 (C )41(D )215、S ={1,2,…,2003},A 是S 的三元子集,满足:A 中的所有元素可以组成等差数列.那么,这样的三元子集A 的个数是(A )32003C (B )2100221001C C + (C )2100221001A A + (D )32003A6、长方体ABCD -A 1B 1C 1D 1,AC 1为体对角线.现以A 为球心,AB 、AD 、AA 1、AC 1为半径作四个同心球,其体积依次为V 1、V 2、V 3、V 4,则有 (A )V 4<V 1+V 2+V 3 (B )V 4=V 1+V 2+V 3 (C )V 4>V 1+V 2+V 3(D )不能确定,与长方体的棱长有关二、 填空题:(每小题9分,共54分)1、已知k ==βαβαcos cos sin sin 33,则k 的取值范围为 .2、等差数列{a n }的首项a 1=8,且存在惟一的k 使得点(k ,a k )在圆x 2+y 2=102上,则这样的等差数列共有 个.3、在四面体P -ABC 中,P A =PB =a ,PC =AB =BC =CA =b ,且a <b ,则b a的取值范围为 .4、动点A 对应的复数为z =4(cos θ+isin θ),定点B 对应的复数为2,点C 为线段AB 的中点,过点C 作AB 的垂线交OA 与D ,则D 所在的轨迹方程为 .5、∑=200313k k被8所除得的余数为 . 6、圆周上有100个等分点,以这些点为顶点组成的钝角三角形的个数为 .三、 (20分)已知抛物线y 2=2px (p >0)的一条长为l 的弦AB .求AB 中点M 到y轴的最短距离,并求出此时点M 的坐标.四、 (20分)单位正方体ABCD -A 1B 1C 1D 1中,正方形ABCD 的中心为点M ,正方形A 1B 1C 1D 1的中心为点N ,连AN 、B 1M . (1)求证:AN 、B 1M 为异面直线; (2)求出AN 与B 1M 的夹角.五、 (20分)对正实数a 、b 、c .求证:c abc b ac b a bc a 888222+++++≥9.第二试一、 (50分)设ABCD 是面积为2的长方形,P 为边CD 上的一点,Q 为△P AB 的内切圆与边AB 的切点.乘积P A ·PB 的值随着长方形ABCD 及点P 的变化而变化,当P A ·PB 取最小值时, (1)证明:AB ≥2BC ; (2)求AQ ·BQ 的值.二、 (50分)给定由正整数组成的数列⎩⎨⎧+===++n n n a a a a a 12212,1(n ≥1).(1)求证:数列相邻项组成的无穷个整点(a 1,a 2),(a 3,a 4),…,(a 2k -1,a 2k ),…均在曲线x 2+xy -y 2+1=0上.(2)若设f (x )=x n +x n -1-a n x -a n -1,g (x )=x 2-x -1,证明:g (x )整除f (x ).三、 (50分)我们称A 1,A 2,…,A n 为集合A 的一个n 分划,如果 (1)A A A A n = 21;(2)∅≠j i A A ,1≤i <j ≤n .求最小正整数m ,使得对A ={1,2,…,m }的任意一个13分划A 1,A 2,…,A 13,一定存在某个集合A i (1≤i ≤13),在A i 中有两个元素a 、b满足b <a ≤89b .参考答案第一试二、填空题:1、⎪⎭⎫⎢⎣⎡⎥⎦⎤ ⎝⎛--1,2121,1 ; 2、17;3、⎪⎭⎫ ⎝⎛-1,32; 4、()134122=+-y x ;5、4;6、117600.三、⎪⎪⎩⎪⎪⎨⎧⎪⎪⎭⎫ ⎝⎛--≥-⎪⎪⎭⎫ ⎝⎛<<2222,2,2,20,8,20,8p pl p l M p l p l p l M p l p l . 四、(1)证略;(2)32arccos.五、证略.第二试一、(1)证略(提示:用面积法,得P A ·PB 最小值为2,此时∠APB =90°); (2)AQ ·BQ =1.二、证略(提示:用数学归纳法).三、m =117.。

全国高中数学联合竞赛试题一试

全国高中数学联合竞赛试题一试

竞赛试卷全国高中数学联合竞赛试题( B 卷)一试一、填空题(每小题8 分,共 64 分,)1.函数 f (x)x524 3x 的值域是.2.已知函数 y( a cos2 x3) sin x 的最小值为 3 ,则实数a的取值范围是.3.双曲线 x 2y2 1 的右半支与直线x100围成的区域内部(不含边界)整点(纵横坐标均为整数的点)的个数是.4.已知 { a n} 是公差不为0的等差数列, { b n } 是等比数列,其中a1 3,b11, a2b2 ,3a5b3,且存在常数,使得对每一个正整数n都有a n logb n,则.5.函数f ()a2x3 x2(a0,a1) 在区间x [ 1,1]上的最大值为8,则它在这个区间上的x a最小值是.6.两人轮流投掷骰子,每人每次投掷两颗,第一个使两颗骰子点数和大于 6 者为胜,否则轮由另一人投掷 . 先投掷人的获胜概率是.7.正三棱柱 ABC A1B1C1的9条棱长都相等,P 是CC1的中点,二面角B A1 P B1, 则sin.8.方程 x y z2010 满足 x y z 的正整数解(x,y,z)的个数是.二、解答题(本题满分56 分)9.(16分)已知函数 f ( x)ax3bx 2cx d (a0),当0x 1时,f (x) 1,试求 a 的最大值 .10. ( 20分)已知抛物线 y 26x上的两个动点A( x1 , y1)和B( x2 , y2 ) ,其中x1x2且 x1x2 4 .线段 AB 的垂直平分线与x轴交于点C,求ABC 面积的最大值.11.( 20 分)证明:方程2x35x 2 0 恰有一个实数根r ,且存在唯一的严格递增正整数数列{ a n } ,使得2r a1r a2r a3.5加试A1.(40 分)如图,锐角三角形ABC的外心为O,K是边BC上一点(不是边BC 的中点),D 是线段AK 延长线上一点,直线 BD 与 AC交于点 N,直线 CD 与 AB 交于点 M .求证:若OK⊥ MN ,则 A, B, D, C 四点共圆.OB CEKDQPNM2.( 40分)设 k是给定的正整数, r k1.记 f ( 1( )r ) f ( r ) r ,r2f (l ) (r ) f ( f (l1) (r )), l 2 .证明:存在正整数m,使得f(m)(r )为一个整数.这里,x 表示不小于实数 x 的最小整数,例如:11,11.23. ( 50 分)给定整数n2,设正实数a1, a2,, a n满足 a k 1, k1, 2,, n ,记A k a1a2ak , k 1, 2, , n .kn nn 1 .求证:a k A kk 1k 124. ( 50 分)一种密码锁的密码设置是在正n 边形A1A2A n的每个顶点处赋值0和1两个数中的一个,同时在每个顶点处涂染红、蓝两种颜色之一,使得任意相邻的两个顶点的数字或颜色中至少有一个相同.问:该种密码锁共有多少种不同的密码设置?2010 年全国高中数学联合竞赛试题参考答案及评分标准( B 卷)说明:1.评阅试卷时,请依据本评分标准. 填空题只设 8 分和 0 分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不要增加其他中间档次.2.如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,解答题中第9小题 4分为一个档次,第10、11 小题 5 分为一个档次,不要增加其他中间档次。

2013年全国高中数学联合竞赛试题及解答.(B卷)

2013年全国高中数学联合竞赛试题及解答.(B卷)

知 u 2 6 (当且仅当 x y z
30
,等号成立)
3
所以 u 的最大值为 2 6 。 接下来,我们考虑 u 的最小值。不妨设 x y z ,则由 x2 y2 z2 10 得 x 2 10 ,
3
又 u 6 x 2 6 y 2 6 z 2 6 x 2 6 y 2 6 z 2 6 x 2 2 x 2
3
2013B 7、设 a, b 为实数,函数 f x ax b 满足:对任意 x 0,1 , f x 1,则 ab 的最大值
为.
1
◆答案:
4 ★解析:由题意得 a f (1) f (0) , b f (0)
所 以 ab f (0) f (1) f (0) f (0) 1 f (1)2 1 f 2 (1) 1 f 2 (1) 1 , 当 且 仅 当
Байду номын сангаас
MH 3 AB 3 , PM MH 2 PH 2
1
2 5
3
,
6
6
12
6
2013 年全国高中数学联合竞赛试题)(B 卷) 第 1 页 共 7 页
所以 r OK sin KPO MH 1 ,解得 r 2
2 r OP
MP 5
6
2013B 5、在区间 0, 中,方程 sin12x x 的解的个数为
3
3
3
411
法二:由 abc 1 得 a a 3 b 3 c 3 。
2a2
所以
b2
c2

1
a2
a2
a2

2013年全国高中数学联赛A卷一试真题+答案 Word版可编辑

2013年全国高中数学联赛A卷一试真题+答案  Word版可编辑

2013年全国高中数学联赛A 卷一试一、填空题1. 设集合{}3,1,0,2=A ,集合{}A x A x xB ∉-∈-=22,.则集合B 中所有元素的和为__________.2. 在平面直角坐标系xOy 中,点B A ,在抛物线x y 42=上,满足4-=⋅OB OA ,F 是抛物线的焦点,则=⋅∆∆OFB OFA S S __________.3. 在ABC ∆中,已知C B A sin sin 10sin =,C B A cos cos 10cos =,则A tan 的值为__________.4. 已知正三棱锥ABC P -底面边长为1,高为2,则其内切球半径为 .5. 设b a ,为实数,函数()b ax x f +=满足:对任意[]1,0∈x ,有()1≤x f .则ab 的最大值为________.6. 从20,,2,1 中任取5个不同的数,其中至少有两个是相邻数的概率为__________.7. 若实数y x ,满足y x y x -=-24,则x 的取值范围是__________.8. 已知数列{}n a 共有9项,其中191==a a ,且对每个{}8,,2,1 ∈i ,均有⎭⎬⎫⎩⎨⎧-∈+21,1,21i i a a ,则这样的数列个数为__________.二、解答题9. 给定正整数列{}n x 满足 ,3,2,21=≥-n S S n n ,这里n n x x x S +++= 21.证明:存在常数0>C ,使得 ,2,1,2=⋅≥n C x nn .10. 在平面直角坐标系xOy 中,椭圆的方程为12222=+by a x ()0>>b a ,1A 、2A 分别为椭圆的左、右顶点,1F 、2F 分别为椭圆的左、右焦点,P 为椭圆上不同于1A 和2A 的任意一点.若平面中两个点Q 、R 满足11PA QA ⊥,22PA QA ⊥,11PF RF ⊥,22PF RF ⊥,试确定线段QR 的长度与b 的大小关系,并给出证明.11. 求所有的正实数对()b a ,,使得函数()b ax x f +=2满足:对任意实数y x ,,有()()()()y f x f y x f xy f ≥++.答案:1、5- 代元素检验,2-、3-满足条件,故和为5-;2、2 记⎪⎪⎭⎫ ⎝⎛121,4y y A ,⎪⎪⎭⎫ ⎝⎛222,4y y B ,故0416212221=++y y y y ,821-=y y ,()0,1F ,24222121==⋅=⋅∆∆y y y OF y OF S S OFB OFA ;3、11 ()10sin 10cos sin sin cos cos cos cos AA CBC B C B A +-=+-=+-=,所以A A cos 11sin =, 11cos sin tan ==AAA ; 4、62 Sr V 31=,其中r 为内切球半径,S 为表面积,根据数据可算出, 12624331=⨯⨯=V ,()32363212134322=⎪⎪⎭⎫ ⎝⎛+⨯⨯⨯+=S ,故62=r ; 5、41 一次函数区间端点取最值,故⎪⎩⎪⎨⎧≤+≤11b a b ,由于121222≤++⇒≤+ab b a b a ,且ab b a 222≥+,故4114≤⇒≤ab ab ,取“=”时,21==b a ; 6、323232 20个数选5个共有520C 种情况,5个数全不相邻共有516C 种情况(插空法),故至少有两个 相邻的概率为3232321520516=-C C ;7、{}[]20,40 由题意0≥≥y x ,令0≥-=y x m ,0≥=y n ,故22n m x +=,等式可化为m n n m 2422=-+,即()()52122=-+-n m ,故n m ,为圆上的点,且0≥m ,0≥n ,再根据几何意义,x 为满足等式的点()n m ,到坐标原点的距离的平方,算出∈x {}[]20,40 ;8、491 由于119892312==⨯⨯⨯a a a a a a a a ,且⎭⎬⎫⎩⎨⎧-=+21,1,21i i a a ,故每一个比值在选取数值时,选21-的 比值个数为偶数,结合8个比值成绩为1,可知选21-的个数与选2的个数必相同,故整体分为 3类:①全选1,1种选法;②2个21-,2个2,4个1,4202628=⨯C C 种; ③4个21-,4个2,7048=C 种;综上,共有491704201=++种选法,故由491个数列;9、证明:2≥n 时,12-≥n n S S 等价于121-+++≥n n x x x x , 下面我们对常数141x C =用数学归纳法证明n n C x 2⋅≥; 当1=n 时,24111⨯≥x x 显然成立;2=n 时,2x 211241⨯=≥x x 也成立; 当3≥=k n 时,假设kk C x 2⋅≥成立,有121-+++≥n n x x x x 可得k k x x x x +++≥+ 211()k C C C x 222321⋅++⋅+⋅+≥ ()k C 2222322++++= 12+⋅=k C 成立,故由数学归纳法可得nn C x 2⋅≥成立.10、证明:令22b a c -=,则()0,1a A -,()0,2a A ,()0,1c F -,()0,2c F .设()00,y x P ,()11,y x Q ,()22,y x R ,其中()010220220≠=+y by a x ,由11PA QA ⊥,22PA QA ⊥可知,()()0010111=+++=⋅y y a x a x P A Q A ,()()0010122=+--=⋅y y a x a x P A Q A ,两式相减可得()0201=+x x a ,即01x x -=,反代可解得02201y a x y -=,所以⎪⎪⎭⎫ ⎝⎛--02200,y a x x Q ; 同理可解得⎪⎪⎭⎫⎝⎛--02200,y c x x R ,故02y b QR =,由于(]b y ,00∈,所以b QR ≥. 11、解:由题意,0>a ,0>b ,()()()()b ay b ax b y x a b xy a ++≥++++2222;①取0=x ,不等式化为()()0222≥-+-b b y ab a 恒成立,故100202≤<⇒⎩⎨⎧≥-≥-b b b ab a ; ②取x y -=,不等式化为()()0222242≥-+--b b aby yaa 恒成立,故1002<<⇒>-a a a ,此时,仍需满足()0222222222≥-+--⎪⎭⎫ ⎝⎛---b b a a b a a a ab y a a 恒成立,故022222≥-+--b b a a b a , 化简得022≤-+b a ;综上,不等式成立可推出022,10,10≤-+<<≤<b a a b ;同时,由不等式可得()()()()()()()()()22222222222bb axy y xab a xy aa bay b ax b y x a b xy a -+++-+-=++-++++,其中xy y x 222≥+,在推出条件下,可得 故(){}22,10,10,≤+≤<<<b a b a b a . ()()()()()()()()()()()02211222222222222≥---+⎪⎭⎫ ⎝⎛-+-=-++-+-≥++-++++b a a b a b xy a a b b axy xy ab a xy a a bay b ax b y x a b xy a。

全国高中数学联合竞赛试试题及答案

全国高中数学联合竞赛试试题及答案

全国高中数学联合竞赛一试一、选择题(本题满分 36 分,每小题 6 分)1.函数f (x)54x x 2 在 ( ,2) 上的最小值是( C )A . 0 2 xB . 1C .2D . 3[ 解 ]当 x2 时, 2 x 0,因此f (x)1(4 4x x 2 ) 1 (2 x)21 x)2 x2 x(212 x2 ,当且仅当2 x 时上式取等号.而此方程有解x 1(,2),因此f ( x) 在(,2) 上的最小值为 2.x2{ x x22.设 A[ 2,4) ,B ax 4 0},若BA ,则实数 a 的取值范围为( D )A . [1,2)B . [1,2]C . [0,3]D . [0,3)[ 解 ] 因 x 2ax 4 0有两个实根x 1 a4 a 2 ,x 2 a4 a 2 ,24 24故 BA等价于x 12 且 x 24 ,即a4a 2 2 且a4 a 24 ,解之得 0 a3 .2 4243.甲乙两人进行乒乓球比赛, 约定每局胜者得1 分,负者得 0 分,比赛进行到有一人比对方多2 分或打满 6 局时停止.设甲在每局中获胜的概率为2,乙在每局中获胜的概率为 1,且各局胜负相互独立,则比赛停止时已打局数的期望 E33为 ...( B )A.241 .B.266 .C.274 . . D.670818181243[解法一 ] 依题意知, 的所有可能值为2,4, 6 设每两局比赛为一轮,则该轮结束时比赛停止的概率为( 2 ) 2 ( 1 ) 2 5 .3 3 9若该轮结束时比赛还将继续,则甲、乙在该轮中必是各得一分,此时,该轮比赛结果对下轮比赛是否停止没有影响.从而有P (2)5,....P(4) ( 4)( 5) 20, .... P(6) (4)216 ,99 9 81981故 E 2 54 206 16266 .98181 81[ 解法二 ] 依题意知, 的所有可能值为 2,4,6.令A k 表示甲在第 k 局比赛中获胜,则 A k 表示乙在第 k 局比赛中获胜.由独立性与互不相容性得P(2) P( A 1A 2) P( A 1 A 2 ) 5 ,9P(4)P( A 1A 2A 3A 4) P( A 1 A 2 A 3A 4) P( A 1A 2 A 3 A 4 ) P( A 1A 2A 3A 4)2[( 2)3 (1) (1)3( 2)] 20 ,3 3 3 3 81P(6)P( A 1A 2 A 3 A 4 ) P( A 1 A 2A 3A 4) P( A 1 A 2 A 3A 4) P( A 1A 2 A 3 A 4 )4( 2)2 (1)216 , 故E254 206 16 266 . 3 381981 81 81564 cm2,则这 三个正方体的体积之和为4 .若 三个棱 长 均为整数(单 位: cm )的正 方体的表面积之和为( A )A. 764 cm 3 或 586 cm 3B. 764 cm 3.C. 586 cm 3 或 564 cm 3D. 586 cm 3[ 解 ]设 这 三 个 正 方 体 的 棱 长 分 别 为 a,b,c , 则 有 6 a 2b 2c 25 , a2b2c294 ,不妨设6 41 ab c 10,从而 3c 2 a 2 b 2 c 2 94 , c 231.故 6 c 10 . c 只能取 9,8,7, 6.若 c9 ,则 a 2 b 294 92 13 ,易知 a2 , b3 ,得一组解 (a, b, c)(2,3,9) .若 c8 ,则 a 2b 2 94 64 30 , b 5 .但 2b 2 30 , b 4 ,从而 b4 或 5.若 b5 ,则 a 2 5 无解,若 b4 ,则 a 2 14 无解.此时无解.若 c 7 ,则 a 2 b 2 94 49 45 ,有唯一解 a 3, b 6 .若 c6 ,则 a 2 b 294 36 58 ,此时 2b 2 a 2 b 2 , 2 29 .故b 6 ,但bc 6 ,故 b 6 ,此时a258 b58 3622 无解.a 2,a 3,综上,共有两组解b 3, 或b 6,c 9 c 7.体积为V 1233393764 cm 3或V 2 33 63 73 586 cm 3.x y z 0,的有理数解 (x, y, z) 的个数为5.方程组xyz z 0,( B )xy yz xz y 0A.1B. 2C. 3D. 4x y,, x,[ 解 ] 若 z 0 ,则 解得 xxy y0.0 或y 1.y 0若 z 0,则由xyz z 0得 xy 1.①由 x y z 0 得 z x y .②将②代入 xy yz xz y 0 得x2y2xyy 0.③由①得 x 1,代入③化简得 ( y1)( y 3 y1) 0.y3y1 0 无有理数根,故 y 1,由①得 x1 ,由②得 z 0 ,与 z0 矛盾,故该方程组共有两组易知 yx 0, x1,有理数解y 0,或y 1,z 0z 0.6. 设ABC 的内角 A, B, C 所对的边 a,b,c 成等比数列,则sin Acot Ccos A的取值范围是( C )sin B cot C cos BA.(0,)B.(0, 5 1)2C.(51,51)D.(51,)2 2 aq 2,而 2[ 解 ] 设 a, b, c 的公比为 q ,则 b aq, csin A cot C cos A sin AcosC cos Asin Csin B cot C cos B sin B cosC cosB sin C sin( A C) sin( B) sin B b q .sin(B C) sin( A) sin A a因此,只需求 q 的取值范围.因 a, b, c 成等比数列,最大边只能是 a 或 c ,因此 a, b,c 要构成三角形的三边,必需且只需a bc且b c a .即有不等式组a aq aq 2 ,q 2q 1 0,15 q5 1 ,22aq 2即q 2解得aq aq1 0.q5 1或 q5 1 .22从而 5 1q5 1 ,因此所求的取值范围是(5 1, 5 1).2222二、填空题(本题满分54 分,每小题 9 分)7.设 f ( x)ax b ,其中 a, b 为实数, f 1 ( x) f (x) ,f n 1 ( x)f ( f n ( x)) ,n 1,2,3,,若f 7 (x) 128 x381,则 a b . 5.[ 解 ]由题意知f n ( x) a n x (a n1a n 2a 1)ba nx a n1b,a 1由f 7 ( x)128 x 381 得 a7128 ,a 71 b381,因此a2 , b3 , a b5 .a 11,则8 f ( x) cos2 x 2a(1 cosx)的最小值为a 23..设22[ 解 ]f ( x)1 2a 2a cos x2cos x2(cosx a )2 1 a 2 2a 1,2 2(1) a 2 时, f ( x) 当 cosx 1 时取最小值 1 4a ;(2) a2时, f ( x) 当 cosx 1 时取最小值 1;(3)2 a 2时,f ( x) 当cos xa时取最小值 1 a 2 2a 1.22 又 a2 或a2时, f ( x) 的最小值不能为1 ,1 a 21,解得 a2故2a 12 3 , a 2 3 (舍去 ).229.将 24 个志愿者名额分配给 3 个学校,则每校至少有一个名额且各校名额互不相同的分配方法共有. 222..种.[解法一 ]用 4 条棍子间的空隙代表 3 个学校,而用 表示名额.如||||表示第一、二、三个学校分别有 4,18,2 个名额.若把每个 “ ”与每个 “”都视为一个位置,由于左右两端必须是“| ”,故不同的分配方法相当于24 2 26 个|位置(两端不在内)被 2 个 “|”占领的一种 “占位法 ”.”相当于在 24 个 “ ”之间的 23 个空隙中选出2253种.“每校至少有一个名额的分法 2 个空隙插入 “|”,故有 C 23 又在 “每校至少有一个名额的分法 ”中 “至少有两个学校的名额数相同 ”的分配方法有 31 种.综上知,满足条件的分配方法共有 253-31=222 种.[ 解法二 ].设分配给 3 个学校的名额数分别为 x 1 , x 2 , x 3 ,则每校至少有一个名额的分法数为不定方程x 1 x 2 x 3 24 .的正整数解的个数,即方程 x 1 x 2 x 321 的非负整数解的个数,它等于3 个不同元素中取 21 个元素的可重组合:H 321C 2321C 232253 .又在 “每校至少有一个名额的分法 ”中 “至少有两个学校的名额数相同 ”的分配方法有 31 种.综上知,满足条件的分配方法共有253 -31=222 种.10.设数列 { a n } 的前 n 项和 S n 满足: S na nn 1 ,n 1,2, ,则通项 a n =11 .n(n 1)2nn( n 1)[ 解 ] a n 1 S n 1 S n n a n 1 n 1 a n ,(n 1)(n n( n 1)2)即 2 a n 1 n 2 2 1 1 a n(n 1)(n 2) n 1 n(n 1)=2a n1,1)( n 2)n( n 1)( n由此得2( a n11)a n1.(n 1)( n 2) n(n1)令b n a n1,b 1 a 1 1 1( a 10 ),n( n 1) 22有 b11b ,故 b n 1 ,所以 a n11.n2 nnnn( n 1) 答12图12211.设 f ( x) 是定义在 R 上的函数,若 f (0) 2008 ,且对任意 xR ,满足f ( x 2)f ( x) 3 2 x , f ( x 6) f ( x) 63 2 x,则 f ( 2008) =220082007.[解法一 ] 由题设条件知f ( x 2) f ( x) ( f ( x 4) f ( x 2))( f (x6) f ( x4)) ( f (x6)f (x))3 2x 2 3 2x4 63 2x 3 2x , 因此有f ( x 2) f ( x) 3 2 x ,故f (2008)f (2008)f (2006) f (2006)f (2004)f (2) f (0)f (0)3200620042 21) f (0)(22341003 11 f (0)4 1220082007.2x,则[解法二 ] 令 g ( x)f (x)g( x 2) g ( x)x 2xxx,f (x 2) f ( x) 223 23 2g( x 6) g ( x)f ( x6) f ( x)x 6x63 x63 x,222 2即g( x2) g( x), g( x 6) g (x) ,故 g( x) g (x 6)g( x 4) g (x 2)g( x) ,得 g( x) 是周期为 2 的周期函数,所以f (2008) g(2008) 22008g (0)22008 220082007 .12.一个半径为 1 的小球在一个内壁棱长为4 6 的正四面体容器内可向各个方向自由运动,则该小球永远不可能接触到的容器内壁的面积是72 3.[解] 如答 12图 1,考虑小球挤在一个角时的情况,记小球半径为 r ,作平面 A 1 B 1 C 1 //平面 ABC ,与小球相切于点 D ,则小球球心 O 为正四面体P A1 11 的中心,1 1 1,垂足D 为A1 11 的中心.B CPO 面ABCB C因V P A 1 B 1C 11PDS A 1BC 1134 V OA 1B 1C 114S A 1 B 1C 1 OD ,3故PD4OD4r,从而PO PD OD 4r r 3r .记此时小球与面PAB 的切点为 P 1 ,连接 OP 1 ,则22 2 2 .PPPOOP 1 (3r ) r 2 2r1考虑小球与正四面体的一个面(不妨取为 PAB ) 相切时的情况, 易知小球在面 PAB 上最靠近边的切点的轨迹仍为正三角形,记为P 1 EF ,如答 12 图 2.记正四面体的棱长为 a ,过P 1 作 PM 1PA 于M .因MPP 1, 有PMPP 1 cosMPP 1 2 2r3 6r , 故 小三 角 形的 边长26P 1 EP 2AP M2 .r6a小球与面 PAB 不能接触到的部分的面积为(如答12图2中阴影部分)3 ( a 2 答12图2S PAB S PEF 1(a 2 6r )2 ) 3 2ar 6 3r 2 ..........4又 r1 , a 4 6 ,所以SPABSPEF24 3 63 18 3 .1由对称性,且正四面体共 4 个面,所以小球不能接触到的容器内壁的面积共为72 3 .三、解答题(本题满分 60 分,每小题 20 分)13.已知函数 f ( x) | sin x |的图像与直线y kx (k 0) 有且仅有三个交点,交点的横坐标的最大值为,求证:cos12.......sin sin 34[ 证 ]f ( x) 的图象与直线 ykx (k0)的三个交点如答13 图所示,且在 (3) 内相切,其,2切点为 A(, sin ),( , 3).25分由于 f( x)cosx ,x ( ,3) ,所以sin2答 13图cos,即tan.10 分因此coscossin sin 32sin 2 cos1 15 分4sincoscos 2 sin 24sin cos21 tan 4 tan21.....................20 分414.解不等式log 2 ( x 12 3x 10 5 x 8 3x 6 1)1 log2 ( x 4 1) .[解法一 ] 由1log 2 (x 41)42),且log 2 y 在 (0,) 上为增函数,故原不等式等价于log 2 (2 xx 12 3x 10 5x 83x 6 12x 4 2 . ..............即...... x 12 3x 10 5x 8 3x 6 2x 41 0 . .............. 5分分组分解 ... x 12 x 10 x 82x 10 2x 8 2 x 6 4x 8 4x 6 4x 4 x 6 x 4 x 2 x 4 x 2 1 0 ,( x 8 2x 6 4x 4 x 2 1)(x 4x 2 1) 0 ,.......... .. 10分所以 ... x 4x 21 0 ,(x215)( x215) 0.15 分22所以x2125 ,即x1 5或x1 5 .22故原不等式解集为(, 51(5 1)..20 分)2,424[解法二 ] 由1log 2 (x 1)2),且log 2 y 在 (0, ) 上为增函数,故原不等式等价于log 2 (2 xx 123x 10 5x 8 3x 6 1 2x 4 2 ............... 5分即2 1 x 63x 4 3x 21 2x2 2 ( x 21)3 2( x 21),x 2x 6( 12)32( 12 ) ( x 21)32( x21),.10 分xt 3 x令g (t)2t ,则不等式为g ( 12 ) g( x 21) ,3x显然g(t )2t 在 R 上为增函数,由此上面不等式等价于t1 x2 1,15 分x 2即 ( x 2 )2x21 0,解得 x25 1.( x 25 1舍去),22故原不等式解集为(,5 1 (5 1 )..20 分2 ) 2,15.如题 15 图, P 是抛物线 y 22 x 上的动点, 点 B, C 在 y 轴上,圆 (x 1)2y21 内切于 PBC,求PBC面积的最小值.[ 解 ] 设 P( x 0 , y 0 ), B(0, b ), C (0, c) ,不妨设 b c .直线 PB 的方程 : yby 0bx ,x 0化简得( y 0b)xx 0 y x 0 b0 .又圆心(1,0) 到PB的距离为1,y 0 b x 0 b1,5分( y 0b)2x 02故( y 0 b)2 x 02 ( y 0 b )2 2x 0b ( y 0b) x 02 b 2,易知x 0 2 ,上式化简得 ( x 0 2)b 2 2 y 0 b x 0 0 ,同理有( x 022 y 0 c x 0..............10 分2) c所以 bc2y 0 ,bcx 0 x0 ,则x 0 2 2(b c)24x 024 y 028x0 .题15图( x 0 2)2因P( x 0 , y 0 ) 是抛物线上的点,有 y 02 2 x 0 ,则( b c)24x 02 , b c 2x 0 . ...... 15 分( x 0 2)2x 0 2所以S PBC1(b c) x 0x 0 2x 0 ( x 0 2)4 42 x 0 x 022 44 8 .当( x 0 2) 2 4 时,上式取等号,此时x 0 4, y 02 2 .因此S PBC 的最小值为8.20 分。

全国高中数学联赛模拟卷(6)(一试+二试 附详细答案)

全国高中数学联赛模拟卷(6)(一试+二试 附详细答案)

全国高中数学联赛模拟试题(6)一试一、填空题(每小题8分,共64分)1. 设函数32()3614f x x x x =+++,且()1f a =,()19f b =,则a b += .2. 圆内接四边形,1,2,3, 4.ABCD AB BC CD DA ====则此圆的半径为 .3. 函数xx xx y cos sin 1cos sin ++=的值域是 .4. 函数 y =的最大值是 .5. 设22()53196|53196|f x x x x x =-++-+,则(1)(2)+(50)f f f ++⋅⋅⋅的值为 .6. 已知椭圆2221(1)x y a a +=>,Rt ABC ∆以()0,1为直角顶点,边,AB BC 与椭圆交于两点,.B C 若ABC ∆面积的最大值为278,则a 的值为 . 7. 如果正整数a 的各位数字之和等于5,那么称a 为“吉祥数”.将所有“吉祥数”从小到大排成一列123,,,,a a a 若2012,n a =则3n a = .8. 将2个a 和2个b 共4个字母填在如图所示的25个小方格内,每个小方格内至多填1个字母,若使相同字母既不同行也不同列,则不同的填法共有 种(用数字作答).二、解答题(共56分)9. (16分)已知椭圆的两个焦点为12(1,0),(1,0)F F -,且椭圆与直线y x =. (1)求椭圆的方程;(2)过1F 作两条互相垂直的直线12,l l ,与椭圆分别交于,P Q 及,M N ,求四边形PMQN 面积的最大值与最小值.P n10.(20分) 在xoy 平面上有一系列点111222(,),(,),(,),n n n P x y P x y P x y ⋅⋅⋅⋅⋅⋅,对每个正整数n ,点n P 位于函数2(0)y x x =≥的图象上.以点n P 为圆心的⊙n P 与x 轴都相切,且⊙n P 与⊙1n P +彼此外切.若11x =,且1n n x x +<(*n N ∈). (1)求证:数列1{}nx 是等差数列; (2)设⊙n P 的面积为n S,n T =求证:对任意*n N ∈,均有n T <.11. (20分) 设0,0,0,x y z >>>求证:333.2x y z xy yz zxx y y z z x ++++≥+++二试一.(40分)设a 、b 、c 为正实数,证明:()()()()3525252333aa b b c c a b c -+-+-+≥++.二.(40分)设O 和I 分别为ABC ∆的外心和内心,ABC ∆的内切圆与边,,BC CA AB 分别相切于点,,D E F ,直线FD 与CA 相交于点P ,直线DE 与AB 相交于点Q ,点,M N 分别为线段,PE QF 的中点,求证:OI MN ⊥.三.(50分)若三元正整数组(,,)a b c 满足a b c ≤≤,(,,)1a b c =且()|n n n a b c a b c ++++,则称(,,)a b c 为“n -幂次”的.例如:(1,2,2)是“5-幂次”的.(1)求所有的三元组,使得对所有1n ≥,该数组是“n -幂次”的.(2)求所有的三元组,使之是“2009-幂次”的和“2010-幂次”的但不是“2012-幂次”的.四.(50分)如图,在7×8的长方形棋盘的每个小方格的中心点各放一个棋子.如果两个棋子所在的小方格共边或共顶点,那么称这两个棋子相连.现从这56个棋子中取出一些,使得棋盘上剩下的棋子,没有五个在一条直线(横、竖、斜方向)上依次相连.问最少取出多少个棋子才可能满足要求?并说明理由.全国高中数学联赛模拟试题参考答案一试一、填空题(每小题8分,共64分) 1.-2.解:由()()332()361413110f x x x x x x =+++=++++,令3()3g y y y =+,则()g y 为奇函数且单调递增.而()()3()131101f a a a =++++=, ()()3()1311019f b b b =++++=,所以(1)9g a +=-,(1)9g b +=,(1)9g b --=-,从而(1)(1)g a g b +=--,即11a b +=--, 故2a b +=-.2.24. 解:连BD ,设BAD θ∠=,那么BCD πθ∠=-,设四边形外接圆半径为R.ABD ∆中,由余弦定理知22214214cos 178cos BD θθ=+-⨯⨯=-BCD ∆中,由余弦定理知22223223cos()1312cos BD πθθ=+-⨯⨯-=+这样由178cos 1312cos θθ-=+解出1cos ,sin 5θθ==所以5BD ==. 在ABD ∆中,由正弦定理,2sin BD R θ==,从而得到R =.3. 11,11,22⎡⎫⎛⎤---⎪ ⎢⎥⎪ ⎣⎭⎝⎦.解:设=sin +cos ++.224t x x x x x π⎫⎛⎫⎪ ⎪⎪⎝⎭⎭因为-1s i n +1,4x π⎛⎫≤≤ ⎪⎝⎭所以.22≤≤-t 又因为2=1+2sin cos ,t x x 所以2-1sin cos =2t x x ,所以2-11-1==212t t y t ⨯+,所以.212212-≤≤--y 因为-1t ≠,所以121-≠-t ,所以-1y ≠.所以函数值域为.212,11,212⎥⎦⎤⎝⎛--⎪⎪⎭⎫⎢⎣⎡-+-∈ y4. 解:函数的定义域为[15],,且0y ≥.根据柯西不等式有:5y =22≤=5时,等号成立,即12727x =时函数取最大值5. 660.解:由于253196(4)(49)x x x x -+=--,因此449x ≤≤时,2531960x x -+≤,均有()f x =0.因此:(1)(2)...(50)(1)(2)(3)(50)f f f f f f f +++=+++,代入数据得:原式22222(153196)2(2532196)2(3533196)2(505350196)660=-++-⨯++-⨯++-⨯+= 6. 3.解:不妨设AB 的方程()10y kx k =+>,则AC 的方程为11y x k=-+. 由22211y kx x y a=+⎧⎪⎨+=⎪⎩得:2222(1)20a k x a kx ++=2222,1B a k x a k -⇒=+ 由222111y x k x y a ⎧=-+⎪⎪⎨⎪+=⎪⎩得:2222()20a k x a kx +-=2222,C a k x a k ⇒=+由弦长公式可得:AB AC ==于是 2442222224211(1)2212(1)()()1ABC k k k kSAB AC a a a k a k a k a k∆++===+++++. 令12t k k=+≥,有44222222222,(1)(1)ABC a ta Sa a t a a t t∆==-+-+因为2222(1)2(1),a a t a a t -+≥- 21a t a-=时等号成立. 因此当21a t a -=时,3max 2(),1ABC a S a ∆=-令32227(3)(839)018a a a a a =⇒---=-.解得:)3,a a a ===舍.又21=21a t a a -≥⇒≥+a ∴=舍去. 3.a ∴= 7. 100013.解:∵方程12k x x x m +++= 的非负整数解的个数为1m m k C +-.而使11,0(2)i x x i ≥≥≥的整数解个数为12m m k C -+-.现取5m =,可知,k 位“吉祥数”的个数为43().k P k C +=∵4445(1)1,(2)5,P C P C ====46(3)15,P C ==并且对于四位“吉祥数”1abc ,其个数为满足4a b c ++=的非负整数解个数,即443115C +-=个,而2012是形如2abc 的数中的第2个“吉祥数”,因此2012是第1+5+15+15+2=38个“吉祥数”,即382012a =,从而38,3114.n n ==又4378(4)35,(5)56,P C P C ====而51()151********.k P k ==++++=∑∴从小到大的前2个六位“吉祥数”是:100004,100013.∴第114个“吉祥数”是100013,即3100013.n a = 8.33800.解:使2个a 既不同行也不同列的填法有2255200C A =种,同样,使2个b 既不同行也不同列的填法也有2255200C A =种,故由乘法原理,这样的填法共有20020040000⨯=种.其中不符合要求的有两种情况:2个a 所在的方格内都填有b 的情况有200种;2个a 所在的方格内仅有1个方格内填有b 的情况有122516252406000C A =⨯=种.所以,符合题设条件的填法共有40000200600033800--=种.二.解答题(共56分)9.解:(1) 设椭圆方程为22221(0)x y a b a b +=>>.它与直线y x =1个交点,所以方程组22221x y ab y x ⎧+=⎪⎨⎪=⎩只有一解,即2222222()30b a x x a a b +-+-=只有一根(重根)2222222()4()(3)0a b a a b ∴∆=--+-=,化简得223a b +=又 焦点为(-1,0),(1,0),∴221a b -=,∴2221a b ⎧=⎪⎨=⎪⎩∴椭圆方程为:2212x y +=.(2)若PQ 斜率不存在(或为0),则||||22PMQNPQ MN S ⋅===四边形 ①若PQ 斜率存在,设为(0)k k ≠,则MN 的斜率为1k-, ∴直线PQ 的方程为=+y kx k .设PQ 与椭圆交点坐标()1122(,),,P x y Q x y ,P n联立方程2212y kx k x y =+⎧⎪⎨+=⎪⎩,12,x x 为方程2222(21)4220k x k x k +++-=的根,12||||=PQ x x a ∴=-=22121k k +=+同理221||2k MN k +=+.||||42MN PQ S ⋅∴==四边形PMQN2424242121124()2522252k k k k k k k ++=-++++ 24214()24104k k k =-=++22114()124410k k -+⨯+22448k k +≥= ,当且仅当21k =时等号成立, 2211(0,]1184410k k∴∈+⨯+,221116=4(),21294410S k k ⎡⎫∴-∈⎪⎢⎣⎭+⨯+四边形PMQN ② 综合①②可得:PMQN S 四边形的面积的最小值为169,最大值为2. 10.(20分) 解:(1)依题意,⊙n P 的半径2n n n r y x ==, ⊙n P 与⊙1n P +彼此外切, 11n n n n P P r r ++∴=+,1n n y y +=+. 两边平方,化简得 211()4n n n n x x y y ++-=,即 22211()4n n n n x x x x ++-=,10n n x x +>> , ∴112n n n n x x x x ++-=, 即1112()n n n N x x +-=∈,∴ 数列1{}nx 是等差数列. (2) 由题设,11x =,∴111(1)2n n x x =+-⋅,即121n x n =-, 2244(21)n n n n S r y x n ππππ====-,n T =222111]35(21)n =++++-≤111]1335(23)(21)n n ++++⋅⋅-⋅-1111111[(1)()()]23352321n n ⎫+-+-++-⎬--⎭11(1)]221n +--=< 11. (20分) 证明:223()044()x x y x y x y x y ---=≥++ ,∴234x x y x y -≥+.进而可得323.4x x xyx y -≥+类似的3234y y yzy z -≥+,3234z z zx z x -≥+. ∴3332223334x y z x xy y yz z zx x y y z z x -+-+-++≥+++2223()4x y z xy yz zx++---=3()42xy yz zx xy yz zx xy yz zx ++---++≥=二试一.(40分)设a 、b 、c 为正实数,证明:()()()()3525252333aa b b c c a b c -+-+-+≥++.证明:注意到,当0a >时,有()5235323223(2)1(1)(1)a a a a a a a a a -+-+=--+=---3222(1)(1)(1)(1)(1)0a a a a a a =--=-+++≥.所以()5233(2)a a a -+≥+.因此,我们只需证明:3333(2)(2)(2)()a b c a b c +++≥++.为此,我们证明更一般的结论: 对任意正实数,,(1,2,3)i i i x y z i =,均有:3111222333()()()x y z x y z x y z ++++++≥. (1)事实上,由于3121112223331()3x x x x y z x y z x y z =≤++++++++同理,3121112223331()3y y y x y z x y z x y z ≤++++++++,3121112223331()3z z z x y z x y z x y z ≤++++++++,上述3个不等式相加可知(1)式成立.所以3333333(2)(2)(2)(11)(11)(11)()a b c a b c a b c +++=++++++≥++,原命题得证. 二.(40分)设O 和I 分别为ABC ∆的外心和内心,ABC ∆的内切圆与边,,BC CA AB 分别相切于点,,D E F ,直线FD 与CA 相交于点P ,直线DE 与AB 相交于点Q ,点,M N 分别为线段,PE QF 的中点,求证:OI MN ⊥.证明:考虑ABC ∆与截线PFD ,由梅涅劳斯定理,有1CP AF BDPA FB DC⋅⋅=, 所以PA AF BD AF s aCP FB DC DC s c-=⋅==-(s 为ABC ∆的半周长) 于是PA s aCA a c -=-,因此()b s a PA a c-=-,这样()()()2b s a s c s a PE PA AE s a a c a c---=+=+-=-- ()()()()()()21,2s c s a s c s a s a ME PE MA ME AE s a a c a c a c-----===-=--=--- ()()()()2s c s a s c MC ME EC s c a c a c ---=+=+-=--,于是2MA MC ME ⋅=.因为ME 是点M 到ABC ∆的内切圆的切线长,所以2ME 是点M 到内切圆的幂,而MA MC ⋅是点M 到ABC ∆外接圆的幂,等式2MA MC ME ⋅=表明点M 到到ABC ∆外接圆与内切圆的幂相等,因此点M 在ABC ∆外接圆与内切圆的根轴上,同理,点N 也在在ABC ∆外接圆与内切圆的根轴上,故OI MN ⊥.三.(50分)若三元正整数组(,,)a b c 满足a b c ≤≤,(,,)1a b c =且()|n n n a b c a b c ++++,则称(,,)a b c 为“n -幂次”的.例如:()1,2,2是“5-幂次”的.(1)求所有的三元组,使得对所有1n ≥,该数组是“n -幂次”的.(2)求所有的三元组,使之是“2009-幂次”和“2010-幂次”的,但不是“2012-幂次”的.解(1)设(,,)a b c 满足条件,则由222()|a b c a b c ++++得2222()|()()a b c a b c a b c ++++-++,于是()|2()a b c ab bc ca ++++. (1)由333()|a b c a b c ++++,得333222()|()()()a b c a b c a b c a b c ab bc ca ++++-++++--- 于是()|3a b c abc ++ (2)对于任意素因子5p ≥,若|()p a b c ++,则|p abc .不妨设|p a ,则0(mod )b c p +≡.又由(1)式可得0(mod )bc p ≡,于是0(mod )b c p ≡≡,这与(,,)1a b c =矛盾,故a b c ++无大于3的素因子.对于因子3,若3|()a b c ++,与上面相同的推理可得3不整除abc ,故由(2)式知,()a b c ++至多含3的一次因子.对于因子2,若2|()a b c ++,则由(,,)1a b c =,可知,,a b c 的奇偶性为两奇一偶,此时2()2(mod 4)ab bc ca ++≡,所以由(1)式知,()a b c ++至多含2的一次因子;综上所述,我们有()|6a b c ++,由,,a b c 为正整数,容易求得符合条件的数组为(1,1,1),(1,1,4).(2)记n n n n T a b c =++,注意到多项式:()()()()f x x a x b x c =---=32()()x a b c x ab bc ca x abc -+++++-,则32()()()0f a a a b c a ab bc ca a abc =-+++++-=,故32()()a a b c a ab bc ca a abc =++-+++,两边同乘以3n a -,得123()()()n n n n a a b c a ab bc ca a abc a ---=++-+++,对,b c 有类似的结论,将三者相加,得123()()n n n n T a b c T ab bc ca T abcT ---=++-+++.故若有3()|n a b c T -++,且2()|n a b c T -++,则必有()|n a b c T ++.由此,取2012n =,知不存在符合条件的正整数组.四.(50分)如图,在7×8的长方形棋盘的每个小方格的中心点各放一个棋子.如果两个棋子所在的小方格共边或共顶点,那么称这两个棋子相连.现从这56个棋子中取出一些,使得棋盘上剩下的棋子,没有五个在一条直线(横、竖、斜方向)上依次相连.问最少取出多少个棋子才可能满足要求?并说明理由.解:最少要取出11个棋子,才可能满足要求.其原因如下:如果一个方格在第i 行第j 列,则记这个方格为(i ,j ).第一步证明若任取10个棋子,则余下的棋子必有一个五子连珠,即五个棋子在一条直线(横、竖、斜方向)上依次相连.用反证法.假设可取出10个棋子,使余下的棋子没有一个五子连珠.如图1,在每一行的前五格中必须各取出一个棋子,后三列的前五格中也必须各取出一个棋子.这样,10个被取出的棋子不会分布在右下角的阴影部分.同理,由对称性,也不会分布在其他角上的阴影部分.第1、2行必在每行取出一个,且只能分布在(1,4)、(1,5)、(2,4)、(2,5)这些方格.同理(6,4)、(6,5)、(7,4)、(7,5)这些方格上至少要取出2个棋子.在第1、2、3列,每列至少要取出一个棋子,分布在(3,1)、(3,2)、(3,3)、(4,1)、(4,2)、(4,3)、(5,1)、(5,2)、(5,3)所在区域,同理(3,6)、(3,7)、(3,8)、(4,6)、(4,7)、(4,8)、(5,6)、(5,7)、(5,8)所在区域内至少取出3个棋子.这样,在这些区域内至少已取出了10个棋子.因此,在中心阴影区域内不能取出棋子.由于①、②、③、④这4个棋子至多被取出2个,从而,从斜的方向看必有五子连珠了.矛盾.图1 图2第二步构造一种取法,共取走11个棋子,余下的棋子没有五子连珠.如图2,只要取出有标号位置的棋子,则余下的棋子不可能五子连珠.综上所述,最少要取走11个棋子,才可能使得余下的棋子没有五子连珠.。

2013年全国高中数学联合竞赛试题及解答.(A卷)

2013年全国高中数学联合竞赛试题及解答.(A卷)

2013年全国高中数学联合竞赛一试(A 卷)一、填空题:本大题共8个小题,每小题8分,共64分。

2013A1、设集合{}3,1,0,2=A ,集合{}A x A x xB ∉-∈-=22,|,则集合B 中所有元素的和为◆答案:5-★解析:易得{}0,1,2,3---⊆B ,验证即可得{}2,3--=B ,所以所求为532-=--2013A 2、在平面直角坐标系xOy 中,点B A ,在抛物线x y 42=上,满足4-=⋅OB OA ,F 是抛物线的焦点,则OFA ∆与OFB ∆的面积之比为◆答案:2★解析:由题意得()0,1F ,设⎪⎪⎭⎫ ⎝⎛121,4y y A ,⎪⎪⎭⎫⎝⎛222,4y y B ,代入4-=⋅OB OA 得821-=y y ,所以OFA ∆与OFB ∆的面积之比为241212=y y OF 2013A 3、在ABC ∆中,已知C B A sin sin 10sin ⋅=,C B A cos cos 10cos ⋅=,则A tan 的值为◆答案:11★解析:由于()()A C B C B C B A A cos 10cos 10cos cos sin sin 10cos sin =+-=-=-,即11tan =A 2013A 4、已知正三棱锥ABC P -的底面边长为1,高为2,则其内切球半径为◆答案:62★解析:如图,设球心O 在面ABC 和面ABP 内的射影分别是H 和K ,AB 中点为M ,内切球半径为r ,则M K P ,,共线,H O P ,,共线,090=∠=∠PKO PHM ,且r OK OH ==,r OH PH PO -=-=2,6363==AB MH ,635212122=+=+=PH MH PM ,所以51sin 2==∠==-MP MH KPO OP OK rr ,解得62=r 2013A 5、设b a ,为实数,函数b ax x f +=)(满足:对任意]1,0[∈x ,都有1)(≤x f ,则ab 的最大值为◆答案:1★解析:由题意得)0()1(f f a -=,)0(f b =所以()41)1(41)1(41)1(21)0()0()1()0(222≤≤+⎪⎭⎫⎝⎛--=-⋅=f f f f f f f ab ,当且仅当1)1()0(2±==f f ,即21±==b a 时,41=ab ,故所求最大值为41。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全国高中数学联合竞赛一试(模拟) 试题参考答案及评分标准(A 卷)说明:1.评阅试卷时,请依据本评分标准.选择题只设6分和0分两档,填空题只设9分和0分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不要增加其他中间档次.2.如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,解答题中5分为一个档次,不要增加其他中间档次.一、选择题(本题满分36分,每小题6分)1.函数254()2x x f x x-+=-在(,2)-∞上的最小值是 ( C )A .0B .1C .2D .3[解] 当2x <时,20x ->,因此21(44)1()(2)22x x f x x x x +-+==+---2≥2=,当且仅当122x x=--时上式取等号.而此方程有解1(,2)x =∈-∞,因此()f x 在(,2)-∞上的最小值为2.2.设[2,4)A =-,2{40}B x x ax =--≤,若B A ⊆,则实数a 的取值范围为 ( D ) A .[1,2)- B .[1,2]- C .[0,3] D .[0,3) [解] 因240x ax --=有两个实根12a x =22a x =故B A ⊆等价于12x ≥-且24x <,即22a -且42a ,解之得03a ≤<.3.甲乙两人进行乒乓球比赛,约定每局胜者得1分,负者得0分,比赛进行到有一人比对方多2分或打满6局时停止.设甲在每局中获胜的概率为23,乙在每局中获胜的概率为13,且各局胜负相互独立,则比赛停止时已打局数ξ的期望E ξ为 ( B ) A.24181 B. 26681 C. 27481 D. 670243 [解法一] 依题意知,ξ的所有可能值为2,4,6.设每两局比赛为一轮,则该轮结束时比赛停止的概率为22215()()339+=.若该轮结束时比赛还将继续,则甲、乙在该轮中必是各得一分,此时,该轮比赛结果对下轮比赛是否停止没有影响.从而有 5(2)9P ξ==, 4520(4)()()9981P ξ===,2416(6)()981P ξ===,故520162662469818181E ξ=⨯+⨯+⨯=.[解法二] 依题意知,ξ的所有可能值为2,4,6.令k A 表示甲在第k 局比赛中获胜,则k A 表示乙在第k 局比赛中获胜. 由独立性与互不相容性得12125(2)()()9P P A A P A A ξ==+=, 1234123412341234(4)()()()()P P A A A A P A A A A P A A A A P A A A A ξ==+++332112202[()()()()]333381=+=,1234123412341234(6)()()()()P P A A A A P A A A A P A A A A P A A A A ξ==+++2221164()()3381==,故520162662469818181E ξ=⨯+⨯+⨯=.4.若三个棱长均为整数(单位:cm )的正方体的表面积之和为564 cm 2,则这三个正方体的体积之和为 ( A ) A. 764 cm 3或586 cm 3 B. 764 cm 3 C. 586 cm 3或564 cm 3 D. 586 cm 3[解] 设这三个正方体的棱长分别为,,a b c ,则有()2226564a b c ++=,22294a b c ++=,不妨设110a b c ≤≤≤<,从而2222394c a b c ≥++=,231c >.故610c ≤<.c 只能取9,8,7,6.若9c =,则22294913a b +=-=,易知2a =,3b =,得一组解(,,)(2,3,9)a b c =.若8c =,则22946430a b +=-=,5b ≤.但2230b ≥,4b ≥,从而4b =或5.若5b =,则25a =无解,若4b =,则214a =无解.此时无解.若7c =,则22944945a b +=-=,有唯一解3a =,6b =.若6c =,则22943658a b +=-=,此时222258b a b ≥+=,229b ≥.故6b ≥,但6b c ≤=,故6b =,此时2583622a =-=无解.综上,共有两组解2,3,9a b c =⎧⎪=⎨⎪=⎩或3,6,7.a b c =⎧⎪=⎨⎪=⎩体积为3331239764V =++=cm 3或3332367586V =++=cm 3.5.方程组0,0,0x y z xyz z xy yz xz y ++=⎧⎪+=⎨⎪+++=⎩的有理数解(,,)x y z 的个数为 ( B ) A. 1 B. 2 C. 3 D. 4[解] 若0z =,则00.x y xy y +=⎧⎨+=⎩,解得00x y =⎧⎨=⎩,或11.x y =-⎧⎨=⎩, 若0z ≠,则由0xyz z +=得1xy =-. ① 由0x y z ++=得z x y =--. ②将②代入0xy yz xz y +++=得220x y xy y ++-=. ③ 由①得1x y=-,代入③化简得3(1)(1)0y y y ---=. 易知310y y --=无有理数根,故1y =,由①得1x =-,由②得0z =,与0z ≠矛盾,故该方程组共有两组有理数解0,0,0x y z =⎧⎪=⎨⎪=⎩或1,1,0.x y z =-⎧⎪=⎨⎪=⎩ 6.设ABC ∆的内角A B C ,,所对的边,,a b c 成等比数列,则sin cot cos sin cot cos A C AB C B++的取值范围是( C )A. (0,)+∞B.C.D. )+∞[解] 设,,a b c 的公比为q ,则2,b aq c aq ==,而sin cot cos sin cos cos sin sin cot cos sin cos cos sin A C A A C A CB C B B C B C++=++ s i n ()s i n ()s i ns i n ()s i n ()s i nA CB B b q BC A A a ππ+-=====+-. 因此,只需求q 的取值范围.因,,a b c 成等比数列,最大边只能是a 或c ,因此,,a b c 要构成三角形的三边,必需且只需a b c +>且b c a +>.即有不等式组22,a aq aq aq aq a ⎧+>⎪⎨+>⎪⎩即2210,10.q q q q ⎧--<⎪⎨+->⎪⎩解得11,22q q q ⎧<<⎪⎪⎨⎪><⎪⎩从而1122q <<,因此所求的取值范围是.二、填空题(本题满分54分,每小题9分)7.设()f x ax b =+,其中,a b 为实数,1()()f x f x =,1()(())n n f x f f x +=,1,2,3,n =,若7()128381f x x =+,则a b += 5 .[解] 由题意知12()(1)n n n n f x a x a a a b --=+++++11n na a xb a -=+⋅-,由7()128381f x x =+得7128a =,713811a b a -⋅=-,因此2a =,3b =,5a b +=.8.设()cos 22(1cos )f x x a x =-+的最小值为12-,则a=.[解] 2()2cos 122cos f x x a a x =---2212(cos )2122a x a a =----,(1) 2a >时,()f x 当cos 1x =时取最小值14a -; (2) 2a <-时,()f x 当cos 1x =-时取最小值1; (3) 22a -≤≤时,()f x 当cos 2a x =时取最小值21212a a ---. 又2a >或2a <-时,()f x 的最小值不能为12-, 故2112122a a ---=-,解得2a =-2a =-舍去).9.将24个志愿者名额分配给3个学校,则每校至少有一个名额且各校名额互不相同的分配方法共有 222 种.[解法一] 用4条棍子间的空隙代表3个学校,而用*表示名额.如||||********表示第一、二、三个学校分别有4,18,2个名额.若把每个“*”与每个“|”都视为一个位置,由于左右两端必须是“|”,故不同的分配方法相当于24226+=个位置(两端不在内)被2个“|”占领的一种“占位法”.“每校至少有一个名额的分法”相当于在24个“*”之间的23个空隙中选出2个空隙插入“|”,故有223C 253=种. 又在“每校至少有一个名额的分法”中“至少有两个学校的名额数相同”的分配方法有31种.综上知,满足条件的分配方法共有253-31=222种.[解法二] 设分配给3个学校的名额数分别为123,,x x x ,则每校至少有一个名额的分法数为不定方程12324x x x ++=.的正整数解的个数,即方程12321x x x ++=的非负整数解的个数,它等于3个不同元素中取21个元素的可重组合:2121232323H C C 253===. 又在“每校至少有一个名额的分法”中“至少有两个学校的名额数相同”的分配方法有31种.综上知,满足条件的分配方法共有253-31=222种. 10.设数列{}n a 的前n 项和n S 满足:1(1)n n n S a n n -+=+,1,2,n =,则通项n a =112(1)nn n -+.[解] 1111(1)(2)(1)n n n n n n n a S S a a n n n n +++-=-=--++++,即 2n n a n n n n n n a ++++-++-+=+)1(111)2)(1(221=)1(1)2)(1(2+++++-n n a n n n , 由此得 2)1(1))2)(1(1(1++=++++n n a n n a n n . 令1(1)n n b a n n =++,111122b a =+= (10a =),有112n n b b +=,故12n n b =,所以)1(121+-=n n a nn . 11.设()f x 是定义在R 上的函数,若(0)2008f = ,且对任意x ∈R ,满足 (2)()32x f x f x +-≤⋅,(6)()632x f x f x +-≥⋅,则)2008(f =200822007+.[解法一] 由题设条件知答12图1(2)()((4)(2))((6)(4))((6)())f x f x f x f x f x f x f x f x +-=-+-+-+-+++-24323263232x x x x ++≥-⋅-⋅+⋅=⋅, 因此有(2)()32x f x f x +-=⋅,故(2008)(2008)(2006)(2006)(2004)(2)(0)(0)f f f f f f f f =-+-++-+2006200423(2221)(0)f =⋅+++++10031413(0)41f +-=⋅+- 200822007=+. [解法二] 令()()2x g x f x =-,则2(2)()(2)()2232320x x x x g x g x f x f x ++-=+--+≤⋅-⋅=,6(6)()(6)()226326320x x x x g x g x f x f x ++-=+--+≥⋅-⋅=,即(2)(),(6)()g x g x g x g x +≤+≥,故()(6)(4)(2)()g x g x g x g x g x ≤+≤+≤+≤, 得()g x 是周期为2的周期函数,所以200820082008(2008)(2008)2(0)222007f g g =+=+=+.12.一个半径为1的小球在一个内壁棱长为[解] 如答12图1,考虑小球挤在一个角时的情况,记小球半径为r ,作平面111A B C //平面ABC ,与小球相切于点D ,则小球球心O 为正四面体111P A B C -的中心,111PO A B C ⊥面,垂足D 为111A B C 的中心.因11111113P A B C A B C V S PD -∆=⋅1114O A B C V -=⋅111143A B C S OD ∆=⋅⋅⋅,故44PD OD r ==,从而43PO PD OD r r r =-=-=.记此时小球与面PAB 的切点为1P ,连接1OP ,则2211PP PO OP =-==. 考虑小球与正四面体的一个面(不妨取为PAB )相切时的情况,易知小球在面PAB 上最靠近边的切点的轨迹仍为正三角形,记为1PEF ,如答12图2.记正四面体答13图答12图2的棱长为a ,过1P 作1PM PA ⊥于M . 因16MPP π∠=,有11cos PM PP MPP =⋅==,故小三角形的边长12P E P AP M r=-=. 小球与面PAB 不能接触到的部分的面积为(如答12图2中阴影部分)1PAB PEF S S ∆∆-22())a a =--2=-. 又1r =,a =1PAB P EF S S ∆∆-==由对称性,且正四面体共4个面,所以小球不能接触到的容器内壁的面积共为 三、解答题(本题满分60分,每小题20分)13.已知函数|sin |)(x x f =的图像与直线y kx = )0(>k 有且仅有三个交点,交点的横坐标的最大值为α,求证:2cos 1sin sin 34ααααα+=+. [证] ()f x 的图象与直线y kx =)0(>k 的三个交点如答13图所示,且在3(,)2ππ内相切,其切点为(,sin )A αα-,3(,)2παπ∈. …5分由于()cos f x x '=-,3(,)2x ππ∈,所以sin cos ααα-=-,即tan αα=. …10分 因此cos cos sin sin 32sin 2cos αααααα=+ 14sin cos αα=…15分22cos sin 4sin cos αααα+=21tan 4tan αα+=214αα+=. …20分 14.解不等式121086422log (3531)1log (1)x x x x x ++++<++.[解法一] 由44221log (1)log (22)x x ++=+,且2log y 在(0,)+∞上为增函数,故原不等式等价于1210864353122x x x x x ++++>+.即 1210864353210x x x x x +++-->. …5分 分组分解 12108x x x +- 1086222x x x ++- 864444x x x ++- 642x x x ++- 4210x x ++->,864242(241)(1)0x x x x x x +++++->, …10分所以 4210x x +->,22(0x x >.…15分所以2x >,即x <x >故原不等式解集为51(,()2--∞+∞. …20分 [解法二] 由44221log (1)log (22)x x ++=+,且2log y 在(0,)+∞上为增函数,故原不等式等价于1210864353122x x x x x ++++>+. …5分即6422232262133122(1)2(1)x x x x x x x x +<+++++=+++, )1(2)1()1(2)1(232232+++<+x x xx , …10分 令3()2g t t t =+,则不等式为221()(1)g g x x<+, 显然3()2g t t t =+在R 上为增函数,由此上面不等式等价于题15图2211x x<+, …15分 即222()10x x +->,解得2x >(2x <),故原不等式解集为51(,()2--∞+∞. …20分 15.如题15图,P 是抛物线22y x =上的动点,点B C ,在y 轴上,圆22(1)1x y -+=内切于PBC ∆,求PBC ∆面积的最小值.[解] 设00(,),(0,),(0,)P x y B b C c ,不妨设b c >.直线PB 的方程:00y b y b x x --=,化简得 000()0y b x x y x b --+=.又圆心(1,0)到PB 的距离为1,1= , …5分故22222000000()()2()y b x y b x b y b x b -+=-+-+,易知02x >,上式化简得2000(2)20x b y b x -+-=,同理有2000(2)20x c y c x -+-=. …10分 所以0022y b c x -+=-,002x bc x -=-,则 22200020448()(2)x y x b c x +--=-.因00(,)P x y 是抛物线上的点,有2002y x =,则22204()(2)x b c x -=-,0022x b c x -=-. …15分 所以00000014()(2)4222PBC x S b c x x x x x ∆=-⋅=⋅=-++-- 48≥+=.当20(2)4x -=时,上式取等号,此时004,x y ==±因此PBC S ∆的最小值为8. …20分。

相关文档
最新文档