选修2-2第1章第1-2节 导数的概念及运算(理)(习题+解析)
(复习课)高中数学选修2-2_第一章_导数及其应用
回例6
……当x=1时, V(x)取得最大值.则当长方体的长 为2m,宽为1m,高为1.5m时体积最大为3m3.
练习三
1. 计算下列定积分:
cos x | 0 (2) | x 1 | dx 1 2 2 (1 x )dx ( x 2 1)dx 2 0 1
的平面图 dx 0 4 4
9 4 0
2
9 y dy . 2转练习三
练习一
1. 函数 f ( x ) cos(3 x
3x A. f ( x ) 3 sin(
3
) 的导数是(
A
).
) B. f ( x ) 3 cos(3 x ) 3 3 3x ) 3 x ) D. f ( x ) ( 3 x ) sin( C. f ( x ) sin( 3 3 3 2. 曲线y=x3在点P处的切线斜率为3, 则点P的坐标 为( B ) .
函数的平均变化率 运动的平均速度 曲线割线的斜率
运 算
应 用
定 积 分
概念
定理
要点归纳
一、导数的概念与运算
1、导数的概念及其几何意义
y | x x0 f ( x0 ) lim f ( x0 x ) f ( x0 ) y lim x 0 x x 0 x
2、基本初等函数的导数
f ( x ) 0 函数 y = f(x)在区间(a, b)上单调递减
2、求函数的极值与最值
求导→单调性→极值→最值
3、解决最优化问题
审题→建模→解模→检验→答题
要点归纳
三、定积分及其应用
1、定积分的概念(曲边梯形的面积)
ba f ( x )dx lim f ( i ) = S曲边梯形 n n i 1
人教版高中数学选修2-2习题第一章导数及其应用1.1.2导数的概念
第一章导数及其应用1.1变化率与导数导数的观点A 级基础稳固一、选择题1. y= x2在 x= 1 处的导数为 ()A. 2x B. 2 C. 2+ x D. 1分析:由于 f(x)= x2,x= 1,因此y= f(1+x)- f (1)= (1+x)2- 1= 2x+ (x)2,所以y=(2+x)= 2.x答案: B2.一物体运动知足曲线方程s=4t2+ 2t- 3,且 s′(5)= 42(m/s),其实质意义是 () A.物体 5 秒内共走过42 米B.物体每 5 秒钟运动42 米C.物体从开始运动到第 5 秒运动的均匀速度是42 米/秒D.物体以 t= 5 秒时的刹时速度运动的话,每经过一秒,物体运动的行程为42 米分析:由导数的物理意义知,s′ (5)= 42(m/s)表示物体在t= 5 秒时的刹时速度.答案: D3.设函数 f (x)在点 x0邻近有定义,且有 f(x0+x)- f(x0 )= a x+ b(x)2,(a,b 为常数 ),则 ()A. f′ (x)= a B. f′ (x)= bC. f′ (x0)= a D. f′ (x0)= b分析:由于 f′(x=f( x0+x)-f(x)=0)xa x+ b(x)2=(a+ b x)= a,因此 f′(xx0)=a.答案: C4.已知 y=x+ 4,则 y′|x1= ________.=555A. 2B. 10C. 5 D.-10分析:由题意知y=1+x+ 4- 1+ 4=5+x-5,y+-5+-5所以=5x1=5x=. 所以 y′|xx x=xx=5x ( 5+ x +5) 10.答案: B5.假如某物体做运动方程为s = 2(1- t 2)的直线运动 (s 的单位为 m , t 的单位为 s),那么 其在 1.2 s 末的刹时速度为 ()A .- 4.8 m/sB .- 0.88 m/sC . 0.88 m/sD . 4.8 m/s解 析 : 运 动 物 体 在1.2s 末 的 瞬 时 速 度 即 为 s 在 1.2 处 的 导数 , 所 以f ( 1.2+ t )- f ( 1.2)=t222[1-( 1.2+t ) ]- 2×( 1- 1.2 )=2(- 答案: A 二、填空题6.设函数t - 2.4)=- 4.8(m/s).f(x)知足f ( 1)- f ( 1- x )=- 1,则 f ′(1)= ________.x分析: f ( 1)- f ( 1- x ) = f ( 1- x )- f ( 1)= f ′(1)=- 1.x- x答案:- 17.函数 f(x)= x 2+ 1 在 x = 1 处可导,在求 f ′(1)的过程中,设自变量的增量为x ,则函数的增量y = ________.分析:y = f(1+ x)- f(1) =- (1 2+ 1)=2 x + ( x)2.答案: 2 x + (x)28.某物体做匀速直线运动,其运动方程是 s = vt ,则该物体在运动过程中其均匀速度与任何时辰的刹时速度的大小关系是________.s ( +t )- s ( t )分析: v 0== s t 0=ttv ( t 0+ t )- v ( t 0)=v tt= v.t答案:相等三、解答题19.利用导数的定义,求函数y = x 2+ 2 在点 x = 1 处的导数. 解:由于y = 1 2+2 - 1 =( x + x ) x 2+ 2- 2x x -(x ) 2,因此y =- 2x - x ,( x + x ) 2· x 2 x ( x + x ) 2· x 2因此 y ′=y = - 2x - x2=- 23,( x +2xx ) · xx因此 y ′|x =1=- 2.10.在自行车竞赛中,运动员的位移与竞赛时间t 存在关系 s(t)= 10t + 5t 2(s 的单位是 m ,t 的单位是 s).(1)求 t = 20,t = 0.1 时的s 与s ;t(2)求 t = 20 时的速度.解: (1) 当 t = 20, t = 0.1 时,s = s(20+ t)- s(20)= 10(20+ 0.1)+ 5(20+ 0.1)2- (10 ×20+ 5× 202)= 1+ 20+ 5×0.01=21.05.因此s 21.05 = 210.5.= 0.1ts( + t)+(+ t) 2- 10t - 5t 2(2)v ==10 t 5 t =tt5(t ) 2+ 10 t + 10tt(5 t + 10+ 10t)= 10+ 10t ,t=因此 t = 20 时的速度即为10+ 10×20= 210(m/s).B 级 能力提高1.某物体运动规律是 s = t 2 - 4t + 5,若此物体的刹时速度为 0,则 t = ()A .3B .2.5C .2D .1分析: s = (t + t)2- 4(t +t) + 5- ( t 2- 4t + 5)= 2t t + ( t)2- 4 t ,由于 v =st= 2t - 4= 0,因此 t = 2.答案: C2.婴儿从出生到第24 个月的体重变化如下图,第二年婴儿体重的均匀变化率为________kg/ 月.分析:第二年婴儿体重的均匀变化率为14.25- 11.25= 0.25(kg/月 ).24- 12答案: 0.253.若一物体运动方程是 (s 的单位是 m , t 的单位是 s)3t 2+ 2( t ≥3),s =29+ 3( t - 3) 2( 0≤t < 3) .求: (1) 物体在 t ∈内的均匀速度;(2) 物体的初速度v 0;(3) 物体在 t = 1 时的刹时速度.解: (1) 由于物体在 t ∈内的时间变化量为t = 5-3= 2,物体在 t ∈内的位移变化量为:= × 2+ 2- (3 ×32+ 2)= 3×(52- 32s 3 5 )= 48,因此物体在 t ∈上的均匀速度为 s 48 = 24(m/s).= 2t (2) 求物体的初速度 v 0 即求物体在 t = 0 时的刹时速度.由于物体在 t = 0 邻近的均匀变化率为s ( +)- ( ) == ftftt29+ 3[( 0+ t )- 3]2- 29- 3( 0- 3) 2= 3t - 18.t因此物体在 t = 0 处的刹时变化率为,s (3 t - 18)=- 18,t =即物体的初速度为- 18 m/s.(3)物体在 t = 1 时的刹时速度即为函数在 t = 1 处的刹时变化率.由于物体在 t = 1 邻近的均匀变化率为:s ( + )- ( )= f 1 t f 1 = tt29+ 3[( 1+ t )- 3]2- 29- 3( 1- 3) 2t - 12,= 3t因此物体在 t = 1 处的刹时变化率为:s = (3 t - 12)=- 12.t即物体在 t = 1 时的速度为- 12 m/s.。
_高中数学第一章导数及其应用2
[提示] ΔΔyx=x+Δx2+xΔ+2xΔx-x2+2x
=2x+Δx+xx-+2Δx
∴ lim Δx→0
2x+Δx+xx-+2Δx
=2x-x22.
Байду номын сангаас
[问题3] F(x)的导数与f(x)、g(x)的导数有何关系? [提示] F(x)的导数等于f(x)、g(x)导数和.
[问题 4] 试说明 y=cos3x-π4如何复合的. [提示] 令 u=g(x)=3x-π4,y=f(u)=cos u,
(3)y′=(2x2+3)′·(3x-2)+(2x2+3)·(3x-2)′
=4x·(3x-2)+(2x2+3)·3
=18x2-8x+9.
(4)y′=xl+n x1′-(2x)′
=1xx+x+1- 12ln
x -2xln
2
=1+x1x+-1ln2
x -2xln
2.
二. 复合函数的导数
例题 2 求下列函数的导数:
(1)y=1-12x3;
(2)y=cos x2;
(3)y=sin3x-π4; (4)y=lg(2x2+3x+1).
• [思路点拨] 解答本题可先分析复合函数的复合过 程,然后运用复合函数的求导法则求解.
解析: (1)设 y=u13,u=1-2x, 则 y′x=y′u·u′x =u13′·(1-2x)′ =-3u-4·(-2) =1-62x4. (2)设 y=cos u,u=x2, 则 y′x=y′u·u′x=(cos u)′·(x2)′ =-sin u·2x =-2x·sin x2.
(4)开始学习求复合函数的导数要一步步写清楚,熟 练后中间步骤可省略.
特别提醒:只要求会求形如f(ax+b)的复合函数的导 数.
高中数学选修2-2(人教B版)第一章导数及其应用1.2知识点总结含同步练习题及答案
′
解:(1)y ′ = (e3x+2 ) = e3x+2 ⋅ (3x + 2)′ = 3e3x+2 ; (2)y ′ = (ln(2x − 1))′ =
1 2 . ⋅ (2x − 1)′ = 2x − 1 2x − 1
2.利用导数求函数的切线方程 描述: 利用导数求函数的切线方程 步骤一:求出函数 y = f (x) 在点 x0 处的导数 f ′ (x0 ) ; 步骤二:根据直线方程的点斜式,得到切线方程为 y − f (x0 ) = f ′ (x0 )(x − x0 ). 例题: 求曲线 y = ex + 1 在 (0, 2) 处的切线方程. 解:因为 y = ex + 1,所以 y ′ = ex ,故曲线 y = ex + 1在 (0, 2)处的切线斜率为
解:(1)因为 y =
所以在点 P 处的切线的斜率等于 4 .所以在点 P 处的切线方程是
y−
即
8 = 4(x − 2), 3
12x − 3y − 16 = 0.
(2)设切点为 (x 0 , y 0 ),则由(1)知切线的斜率 k = x2 ,切线方程为 y − y 0 = x2 (x − x 0 ) . 0 0 又切线过点 P (2,
8 1 ) 且 (x0 , y 0 ) 在曲线 y = x3 上,所以 3 3 ⎧ ⎪ 8 − y = x2 (2 − x0 ), 0 0 ⎨3 1 ⎪ ⎩ y = x3 , ⎪ 0 3 0 − 3x2 + 4 = 0, x3 0 0
整理得
即
(x0 − 2)2 (x0 + 1) = 0.
高中数学选修2-2全套知识点及练习答案解析
选修2-2 知识点及习题答案解析导数及其应用一.导数概念的引入1. 导数的物理意义:瞬时速率。
一般的,函数()y f x =在0x x =处的瞬时变化率是000()()lim x f x x f x x∆→+∆-∆,我们称它为函数()y f x =在x x =处的导数,记作0()f x '或|x x y =',即0()f x '=000()()limx f x x f x x∆→+∆-∆2.导数的几何意义:曲线的切线.通过图像,我们可以看出当点n P 趋近于P 时,直线PT 与曲线相切。
容易知道,割线n PP 的斜率是00()()n nn f x f x k x x -=-,当点n P 趋近于P 时,函数()y f x =在0x x =处的导数就是切线PT 的斜率k ,即00()()lim ()n x n f x f x k f x x x ∆→-'==-3. 导函数:当x 变化时,()f x '便是x 的一个函数,我们称它为()f x 的导函数. ()y f x =的导函数有时也记作y ',即()()()limx f x x f x f x x∆→+∆-'=∆二.导数的计算基本初等函数的导数公式:1若()f x c =(c 为常数),则()0f x '=; 2 若()f x x α=,则1()f x x αα-'=;3 若()sin f x x =,则()cos f x x '=4 若()cos f x x =,则()sin f x x '=-;5 若()x f x a =,则()ln x f x a a '=6 若()x f x e =,则()x f x e '=7 若()log xaf x =,则1()ln f x x a '= 8 若()ln f x x =,则1()f x x'=导数的运算法则1. [()()]()()f x g x f x g x '''±=±2.[()()]()()()()f x g x f x g x f x g x '''∙=∙+∙3. 2()()()()()[]()[()]f x f xg x f x g x g x g x ''∙-∙'= 复合函数求导 ()y f u =和()u g x =,称则y 可以表示成为x 的函数,即(())y f g x =为一个复合函数(())()y f g x g x '''=∙三.导数在研究函数中的应用1.函数的单调性与导数:一般的,函数的单调性与其导数的正负有如下关系: 在某个区间(,)a b 内(1)如果()0f x '>,那么函数()y f x =在这个区间单调递增;(2)如果()0f x '<,那么函数()y f x =在这个区间单调递减. 2.函数的极值与导数极值反映的是函数在某一点附近的大小情况.求函数()y f x =的极值的方法是:(1)如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么0()f x 是极大值(2)如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么0()f x 是极小值; 4.函数的最大(小)值与导数求函数()y f x =在[,]a b 上的最大值与最小值的步骤: (1)求函数()y f x =在(,)a b 内的极值; (2) 将函数()y f x =的各极值与端点处的函数值()f a ,()f b 比较,其中最大的是一个最大值,最小的是最小值.推理与证明考点一 合情推理与类比推理根据一类事物的部分对象具有某种性质,退出这类事物的所有对象都具有这种性质的推理,叫做归纳推理,归纳是从特殊到一般的过程,它属于合情推理根据两类不同事物之间具有某些类似(或一致)性,推测其中一类事物具有与另外一类事物类似的性质的推理,叫做类比推理.类比推理的一般步骤:(1) 找出两类事物的相似性或一致性;(2) 用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想);(3) 一般的,事物之间的各个性质并不是孤立存在的,而是相互制约的.如果两个事物在某些性质上相同或相似,那么他们在另一写性质上也可能相同或类似,类比的结论可能是真的.(4) 一般情况下,如果类比的相似性越多,相似的性质与推测的性质之间越相关,那么类比得出的命题越可靠.考点二 演绎推理(俗称三段论)由一般性的命题推出特殊命题的过程,这种推理称为演绎推理. 考点三 数学归纳法1. 它是一个递推的数学论证方法.2. 步骤:A.命题在n=1(或0n )时成立,这是递推的基础;B.假设在n=k 时命题成立; C.证明n=k+1时命题也成立,完成这两步,就可以断定对任何自然数(或n>=0n ,且n N ∈)结论都成立。
(完整版)高中数学选修2-2知识点总结(最全版)
高中数学选修2-2知识点总结第一章、导数1.函数的平均变化率为=∆∆=∆∆xfx y x x f x x f x x x f x f ∆-∆+=--)()()()(111212 注1:其中x ∆是自变量的改变量,平均变化率 可正,可负,可零。
注2:函数的平均变化率可以看作是物体运动的平均速度。
2、导函数的概念:函数)(x f y =在0x x =处的瞬时变化率是xx f x x f x yx x ∆-∆+=∆∆→∆→∆)()(lim lim 0000,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数,记作)(0'x f 或0|'x x y =,即)(0'x f =xx f x x f x yx x ∆-∆+=∆∆→∆→∆)()(lim lim0000.3.函数的平均变化率的几何意义是割线的斜率; 函数的导数的几何意义是切线的斜率。
4导数的背景(1)切线的斜率;(2)瞬时速度;6、常见的导数和定积分运算公式:若()g x均可导(可积),则有:f x,().用导数求函数单调区间的步骤:①求函数f(x)的导数'()f x②令'()f x>0,解不等式,得x的范围就是递增区间.③令'()f x<0,解不等式,得x的范围,就是递减区间;[注]:求单调区间之前一定要先看原函数的定义域。
7.求可导函数f(x)的极值的步骤:(1)确定函数的定义域。
(2) 求函数f(x)的导数'()f x(3)求方程'()f x=0的根(4) 用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格,f x在方程根左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如检查/()果左负右正,那么f (x )在这个根处取得极小值;如果左右不改变符号,那么f (x )在这个根处无极值8.利用导数求函数的最值的步骤:求)(x f 在[]b a ,上的最大值与最小值的步骤如下: ⑴求)(x f 在[]b a ,上的极值;⑵将)(x f 的各极值与(),()f a f b 比较,其中最大的一个是最大值,最小的一个是最小值。
【最新】高二数学苏教版选修2-2讲义:第1章 1.2 1.2.3 简单复合函数的导数【有解析】
1.2.3简单复合函数的导数[对应学生用书P11]已知函数f (x )=sin ⎝⎛⎭⎫2x +π6,g (x )=(3x +2)2. 问题1:这两个函数是复合函数吗? 提示:是复合函数.问题2:试说明g (x )=(3x +2)2是如何复合的?提示:函数g (x )=(3x +2)2是由 g (u )=u 2,u =3x +2复合而成的. 问题3:试求g (x )=(3x +2)2,g (u )=u 2,u =3x +2的导数.提示:g ′(x )=[(3x +2)2]′=[9x 2+12x +4]′=18x +12.g ′(u )=2u ,u ′=3. 问题4:观察问题3中导数有何关系? 提示:g ′(x )=g ′(u )·u ′.若y =f (u ),u =ax +b ,则y ′x =y ′u ·u ′x ,即y ′x =y ′u ·a .1.求复合函数的导数,关键在于分清函数的复合关系,选好中间变量. 2.利用复合关系求导前,若函数关系可以化简,则先化简再求导会更简单. 3.判断复合函数的复合关系的一般方法是:从外向里分析,最外层的主体函数结构是以基本函数为主要形式,各层的中间变量结构也都是基本函数关系,这样一层一层分析,最里层应是关于自变量x 的基本函数或关于自变量x 的基本函数经过有限次四则运算而得到的函数.[对应学生用书P11][例1] (1)y =1(2x +3)3;(2)y =e-0.05x +1;(3)y =cos(ωx +φ)(其中ω、φ为常数); (4)y =log 2(5-3x ).[思路点拨] 先分清函数自身结构,再合理地选取中间变量,利用复合函数的求导法则求解.[精解详析] (1)y =1(2x +3)3=(2x +3)-32是函数y =u -32,u =2x +3的复合函数,所以y ′x =y ′u ·u ′x =(u -32)′·(2x +3)′=-32u -52·2=-3u -52=-3(2x +3)-52.(2)y =e-0.05x +1是函数y =e u ,u =-0.05x +1的复合函数,所以y ′x =y ′u ·u ′x =(e u )′·(-0.05x +1)′=-0.05e u =-0.05e-0.05x +1.(3)y =cos(ωx +φ)是y =cos u ,u =ωx +φ的复合函数, 所以y ′x =y ′u ·u ′x =(cos u )′·(ωx +φ)′ =-sin u ·ω=-ωsin(ωx +φ).(4)y =log 2(5-3x )是y =log 2u ,u =5-3x 的复合函数, 所以y ′x =y ′u ·u ′x =(log 2u )′·(5-3x )′=-3·1u ln 2=-3(5-3x )ln 2=3(3x -5)ln 2. [一点通] 对于简单复合函数的求导,其一般步骤为“分解——求导——回代”,即:(1)弄清复合关系,将复合函数分解成基本初等函数形式;(2)利用求导法则分层求导;(3)最终结果要将中间变量换成自变量.1.若函数f (x )=ln 1x ,则f ′(x )=________.解析:f (x )=ln 1x 是f (u )=ln u 与u =1x的复合函数,所以y ′x =y ′u ·u ′x =(ln u )′·⎝⎛⎭⎫1x ′ =1u ·⎝⎛⎭⎫-1x 2=-1x . 答案:-1x2.函数y =sin 3x +sin x 3的导数为________. 解析:y ′=(sin 3x +sin x 3)′=(sin 3x )′+(sin x 3)′ =3sin 2x cos x +cos x 3·3x 2 =3sin 2x cos x +3x 2·cos x 3.答案:3sin 2x cos x +3x 2·cos x 3 3.求下列函数的导数: (1)y =e2x 2+3x ;(2)y =1(1-3x )4.解:(1)y =e u ,u =2x 2+3x , 所以y ′x =y ′u ·u ′x =e u ·(2x 2+3x )′ =e u ·(4x +3)=(4x +3)e2x 2+3x . (2)∵y =1(1-3x )4=(1-3x )-4, ∴可设y =u -4,u =1-3x , ∵y ′u =-4u -5,u ′x =-3,∴y ′x =y ′u ·u ′x =-4u -5×(-3)=12(1-3x )-5.[例2] (1)y =31-x sin(2x -1);(2)y =ln (2x -1)2x -1.[思路点拨] 根据导数的运算法则及复合函数的求导公式求解. [精解详析] (1)y ′=(31-x )′sin(2x -1)+31-x ·[sin(2x -1)]′=-31-x ln 3·sin(2x -1)+31-x ·2cos(2x -1)=31-x [2cos(2x -1)-sin(2x -1)·ln 3].(2)y ′=[ln (2x -1)]′·2x -1-ln (2x -1)·(2x -1)′(2x -1)2=22x -12x -1-ln (2x -1)·12(2x -1)-12·22x -1=22x -1-ln (2x -1)2x -12x -1=2-ln (2x -1)(2x -1)·2x -1. [一点通] (1)利用加减乘除四则运算与复合生成函数的方法,都能由基本初等函数生成一些新的函数,认清这一点可帮助我们分析函数结构.(2)认清函数结构之后,不要急于求导,应注意恰当利用代数、三角变换方法,化简函数解析式,以达到准确套用法则,明确求导过程的目的.4.若函数f (x )=x cos 2x ,则f ′(x )=________. 解析:f ′(x )=x ′cos 2x +x (cos 2x )′ =cos 2x -2x sin 2x . 答案:cos 2x -2x sin 2x 5.求下列函数的导数: (1)y =2x -1x ;(2)y =12sin 2(1-x ). 解:(1)y ′=(2x -1)′x -2x -1·x ′x 2=x2x -1-2x -1x 2=1-xx 22x -1 .(2)∵y =12sin 2(1-x )=14[1-cos(2-2x )]=14-14cos(2-2x )=14-14cos(2x -2). ∴y ′=12sin(2x -2).[例3] (1,f (1))处的切线为l ,若l 与圆C :x 2+y 2=14相切,求a 的值.[思路点拨]求函数f (x )的导数→求f ′(1)得切线l 的斜率→写出直线l 的点斜式方程→由l 与圆C 相切列方程→解方程求a .[精解详析] ∵f ′(x )=a (x 2)′+2·12-x ·(2-x )′=2ax -22-x,∴f ′(1)=2a -2,又f (1)=a +2ln 1=a , ∴切线l 的方程为y -a =2(a -1)(x -1), 即2(a -1)x -y -a +2=0.∵直线l 与圆C :x 2+y 2=14 相切,∴圆心(0,0)到直线l 的距离为12,所以有|2-a |4(a -1)2+1=12,解得a =118.∴a 的值为118.[一点通] 有了复合函数的求导法则,可以求导的函数类型更加丰富了.在实际应用中,先要准确求出函数的导数,然后注意切线的定义,导数的几何意义以及直线方程的求法的综合应用.6.函数y =cos 2x 在点⎝⎛⎭⎫π4,0处的切线方程是________. 解析:∵y ′=-2sin 2x ,∴k =-2sin π2=-2.∴切线方程为y -0=-2⎝⎛⎭⎫x -π4, 即2x +y -π2=0.答案:2x +y -π2=07.求y =ln(2x +3)的导数,并求在点⎝⎛⎭⎫-12,ln 2处切线的倾斜角. 解:令y =ln u ,u =2x +3,则y ′x =y ′u ·u ′x =(ln u )′·(2x +3)′=1u ·2=22x +3.当x =-12时,y ′=23-1=1,即在⎝⎛⎭⎫-12,ln 2处切线的倾斜角的正切值为1, 所以倾斜角为π4.8.设曲线y =e -x (x ≥0)在点M (t ,e -t )处的切线l 与x 轴,y 轴围成的三角形面积为S (t ).(1)求切线l 的方程; (2)求S (t )的解析式. 解:∵y =e -x ,∴y ′=(e -x )′=-e -x ,∴y ′|x =t =-e -t .故切线方程为y -e -t =-e -t (x -t ),即x +e t y -(t +1)=0. (2)令y =0得x =t +1. 令x =0得y =e -t (t +1).∴S (t )=12(t +1)·e -t (t +1)=12(t +1)2e -t (t ≥0).求复合函数导数的技巧及注意点(1)对于分式、根式、三角函数式、指数式、对数式的复合函数的导数,关键仍然在于分析清楚函数的复合关系,选好中间变量,熟用复合函数求导法则,迅速正确地求出导数.(2)在复合函数的求导熟练以后,中间步骤可以省略,不必再写出函数的复合过程,对于经过多次复合及四则运算而成的复合函数,可以直接应用公式和法则,从最外层开始由表及里逐层求异.(3)灵活运用复合函数的求导法则,正确地进行求导运算,树立多角度、换方位思考问题的意识,达到优化解题思维、简化解题过程的目的.[对应课时跟踪训练(五)]一、填空题1.设函数f (x )=sin(4x -2),则f ′(x )=________. 解析:∵f (x )=sin(4x -2),∴f ′(x )=[sin(4x -2)]′=4cos(4x -2). 答案:4cos(4x -2)2.(全国大纲卷改编)曲线y =x e x-1在点(1,1)处切线的斜率等于________.解析:y ′=e x -1+x e x -1,故曲线在点(1,1)处切线的斜率为y ′|x =1=2. 答案:23.设曲线y =f (x )=e ax 在点(0,1)处的切线与直线x +2y +1=0垂直,则a =________. 解析:∵切线与直线x +2y +1=0垂直, ∴切线的斜率k =2. 又∵f ′(x )=(e ax )′=a e ax , ∴k =f ′(0)=a =2. 答案:24.函数y =x sin ⎝⎛⎭⎫2x +π2cos ⎝⎛⎭⎫2x +π2的导数为________. 解析:∵y =x sin ⎝⎛⎭⎫2x +π2cos ⎝⎛⎭⎫2x +π2=x 2sin(4x +π)=-x2sin 4x ,∴y ′=⎝⎛⎭⎫-x 2′sin 4x +⎝⎛⎭⎫-x 2·(sin 4x )′ =-12sin 4x -2x cos 4x .答案:-12sin 4x -2x cos 4x5.已知直线y =x +1与曲线y =ln(x +a )相切,则a 的值为________. 解析:设切点为(x 0,y 0),则y 0=x 0+1, 且y 0=ln(x 0+a ),所以x 0+1=ln(x 0+a )① 对y =ln(x +a )求导得y ′=1x +a, 则1x 0+a=1,x 0+a =1,② 由①②可得x 0=-1,所以a =2. 答案:2 二、解答题6.求下列函数的导数. (1)y =5log 2(2x +1); (2)y =cos(53π-7x );(3)y =(2x -1)5.解:(1)设y =log 2u ,u =2x +1.则y ′=y ′u ·u ′x =5u ln 2×2=10u ln 2=10(2x +1)ln 2.(2)设y =cos u ,u =53π-7x .则y ′=y ′u ·u ′x =-sin u ×(-7)=7sin ⎝⎛⎭⎫53π-7x . (3)设y =u 5,u =2x -1,则y ′=y ′u ·u ′x =5u 4×2=10u 4=10(2x -1)4.7.已知函数f (x )=ln(1+x )-x +x 2.求曲线y =f (x )在点(1,f (1))处的切线方程. 解:f ′(x )=11+x -1+2x .由于f (1)=ln 2,f ′(1)=32,所以曲线y =f (x )在点(1,f (1))处的切线方程为 y -ln 2=32(x -1),即3x -2y +2ln 2-3=0.8.已知A (1,f ′(x ))是函数y =f (x )的导函数图象上的一点,点B 的坐标为(x ,ln(2-x )),向量a =(1,1),设f (x )=AB ―→·a ,试求函数y =f (x )的表达式.解:∵AB ―→=(x ,ln(2-x ))-(1,f ′(1)) =(x -1,ln(2-x )-f ′(1)), a =(1,1),∴f (x )=AB ―→·a =x -1+ln(2-x )-f ′(1) =ln(2-x )+x -f ′(1)-1∴f ′(x )=12-x ·(2-x )′+1=1x -2+1,∴f ′(1)=0,∴f (x )=ln(2-x )+x -1.。
选修2-2第1章第1-2节 导数的概念及运算(理)(习题+解析)
选修2-2第1章第1-2节导数的概念及运算(理)(习题+解析)年级 高二 学科 数学 版本 苏教版(理)课程标题 选修2-2第1章第1-2节 导数的概念及运算1. 已知f (x )=x 2+2xf ′(1),则f ′(0)等于( )A. 0B. -4C. -2D. 22. 设f 0(x )=cos x ,f 1(x )=f 0′(x ),f 2(x )=f 1′(x ),…,f n +1(x )=f n ′(x ),n ∈N ,则f 2 010(x )=( )A. sin xB. -sin xC. cos xD. -cos x3. 设函数f (x )=sin θ3x 3+3cos θ2x 2+tan θ,其中θ∈[0,5π12],则导数f ′(1)的取值范围是 ( )A. [-2,2]B. [2,3]C. [3,2]D. [2,2]4. 曲线y =x x -2在点(1,-1)处的切线方程为( )A. y =x -2B. y =-3x +2切线方程;(2)直线l 为曲线y =f (x )的切线,且经过原点,求直线l 的方程及切点坐标;(3)如果曲线y =f (x )的某一切线与直线y =-14x +3垂直,求切点坐标与切线的方程。
11. 设函数f (x )=ax -b x ,曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y -12=0。
(1)求f (x )的解析式;(2)证明:曲线y =f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形面积为定值,并求此定值。
12. 已知抛物线1C :22y x x =+和2C :2y x a =-+,如果直线l 同时是1C 和2C 的切线,称l 是1C 和2C 的公切线。
若1C 和2C 有且仅有一条公切线,求a 的值,并写出此公切线的方程。
1. B 解析:∵f ′(x )=2x +2f ′(1),∴f ′(1)=2+2f ′(1),即f ′(1)=-2, ∴f (x )=x 2-4x ,∴f ′(x )=2x -4,∴f ′(0)=-4。
高中数学 选修2-2 第一章 1.2 导数的计算 1.2.1 1.2.2讲解
3 2.
不正确.因为sin 6π = 12 是一个常数,而常数的导
数为零,所以sin6π′=0.
指数函数、对数函数的导数公式的记忆对于公式(ln
x)′=
1 x
,(ex)′=ex很好记,但公式(logax)′=
1 xln
a
,(ax)′
=axln a的记忆比较难,设平行于直线y=x的直线与曲线y =ex相切于点P(x0,y0),该切点即为与y=x距离最近的点, 如图所示.
则在点P(x0,y0)处的切线斜率为1,即y′|x=x0=1. ∵y′=(ex)′=ex, ∴ex0=1,
得x0=0,代入y=ex,得y0=1,即P(0,1).
利用点到直线的距离公式得最小距离为|0-1|= 2
5.一质点沿直线运动的路程和时间的关系是s= 5 t , 求质点在t=4时的速度.
解:∵s=5 t=t51,∴s′=(t15)′=15t-45.
t=4时,s′=15·4-54=
1 5
.
10 8
即质点在t=4时的速度为 1 . 5
10 8
∴y′=(x32)′=32x21=32
x .
(2)y=x5,∴y′=(x5)′=5x4.
求曲线y=lg x在点M(10,1)处的切线的斜率 和切线方程.
【分析】 M(10,1)在曲线上,故所求切线斜率就是 函数y=lg x在x=10处的导数.
【解】 ∵y′=(lg x)′=xln110,∴y′|x=10=10l1n 10. ∴曲线y=lg x在点M(10,1)处的切线的斜率为k=10l1n 10. ∴切线方程为y-1=10l1n 10(x-10), 即x-(10ln 10)y+10(ln 10-1)=0.
(x0,x02).
最新人教版高中数学选修2-2第一章《导数的概念》知识讲解
1.1.2 导数的概念1.通过对大量实例的分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景.2.会求函数在某一点附近的平均变化率. 3.会利用导数的定义求函数在某点处的导数.关于平均变化率应注意以下几点:①x 1,x 2是定义域内不同的两点,因此Δx ≠0,但Δx 可正也可负;Δy =f (x 2)-f (x 1)是相应Δx =x 2-x 1的改变量,Δy 的值可正可负,也可为零.因此,平均变化率可正可负,也可为零.平均变化率的绝对值反映函数在给定区间上变化的快慢,平均变化率的绝对值越大(小),函数在给定区间上的变化越快(慢).②在求函数的平均变化率时,当x 1取定值后,Δx 取不同的数值时,函数的平均变化率不一定相同;当Δx 取定值后,x 1取不同的数值时,函数的平均变化率也不一定相同.③平均变化率的几何意义:观察函数f (x )的图象(如图),我们可以发现x 2-x 1=|AC |,f (x 2)-f (x 1)=|BC |,所以平均变化率f (x 2)-f (x 1)x 2-x 1表示的是直线AB 的斜率.【做一做1-1】 设函数y =f (x ),当自变量x 由x 0改变到x 0+Δx 时,函数的改变量Δy 为( )A .f (x 0+Δx )B .f (x 0)+ΔxC .f (x 0+Δx )-f (x 0)D .f (x 0)Δx【做一做1-2】 一质点的运动方程是s =4-2t 2,则在时间段[1,1+Δt ]内相应的平均速度为( )A .2Δt +4B .-2Δt +4C .2Δt -4D .-2Δt -4 2.导数的概念一般地,函数y =f (x )在x =x 0处的______称为函数y =f (x )在x =x 0处的导数,记作____________,即f ′(x 0)=lim Δx →ΔyΔx=______.对导数概念的理解:①Δx →0是指Δx 从0的左右两侧分别趋向于0,但永远不会为0. ②若lim Δx →ΔyΔx存在,则称f (x )在x =x 0处可导. ③令x =x 0+Δx ,得Δx =x -x 0,于是f ′(x 0)=lim x →x 0f (x )-f (x 0)x -x 0,与概念中的f ′(x 0)=lim Δx →0f (x 0+Δx )-f (x 0)Δx意义相同.【做一做2】 设函数y =f (x )在点x 0附近有定义,且有f (x 0+Δx )-f (x 0)=a Δx +b (Δx )2(a ,b 为常数),则f ′(x 0)=__________.答案:1.f (x 2)-f (x 1)x 2-x 1 [x 1,x 2] 0lim x ∆→ f (x 0+Δx )-f (x 0)Δxx 0点【做一做1-1】 C 函数值的改变量Δy 是表示函数y =f (x )在x =x 0+Δx 处的函数值与x =x 0处的函数值之差,因此有Δy =f (x 0+Δx )-f (x 0).故选C.【做一做1-2】 D Δs Δt =4-2(1+Δt )2-4+2×12Δt=-4Δt -2(Δt )2Δt=-2Δt -4.2.瞬时变化率 f ′(x 0)或y ′|x =x 0 0lim x ∆→f (x 0+Δx )-f (x 0)Δx【做一做2】 a f ′(x 0)=lim Δx →0 ΔyΔx =lim Δx →0 a Δx +b (Δx )2Δx=lim Δx →(a +b Δx ) =a .1.如何理解平均变化率?剖析:(1)Δx 的意义:Δx 是相对于x 1的一个增量,可以是正数,也可以是负数,可以用x 1+Δx 代替x 2.(2)Δy Δx =f (x 1)-f (x 0)x 1-x 0,式子中Δx ,Δy 的值都可正可负,但Δx 的值不能为0,Δy 的值可以为0,当f (x )为常数函数时,Δy =0.(3)一般地,现实生活中的变化现象和过程可以用函数来描述,所以这些实际问题的变化率的问题可以转化为函数的变化率.(4)为求点x 0附近的平均变化率,上述表达形式常写为f (x 0+Δx )-f (x 0)Δx的形式.2.如何理解瞬时变化率? 剖析:瞬时变化率的实质是当平均变化率中自变量的改变量趋向于0时的值,其作用是刻画函数值在x 0点处变化的快慢.3.如何理解导数的概念?剖析:(1)函数f(x)在x 0处可导,是指Δx →0时,Δy Δx 有极限.如果ΔyΔx 不存在极限,就说函数在点x 0处无导数.(2)导数是研究在点x 0处及其附近函数的改变量Δy 与自变量的改变量Δx 之比的极限,它是一个局部性的概念,即lim Δx →ΔyΔx存在,表示一个定数,函数f(x)在点x 0处的导数应是一个定数.当对Δy Δx 取极限时,一定要把ΔyΔx 变形到Δx →0时,分母是一个非零常数的形式.4.如果函数f(x)在区间(-∞,+∞)上是增(或减)函数.那么函数f(x)在任意闭区间[x 1,x 2]上的平均变化率的值的正负如何?剖析:如果函数f(x)在区间(-∞,+∞)上是增(或减)函数,那么函数f(x)在任意区间[x 1,x 2]上的平均变化率为正(或负)数,反之,如果函数f(x)在任意区间[x 1,x 2]上的平均变化率为正(或负)数,则f(x)在区间(-∞,+∞)上也一定是增(或减)函数.证明:任取x 1∈R ,x 2∈R ,且x 1<x 2.∵函数f (x )在(-∞,+∞)上是增(或减)函数, ∴f (x 1)<f (x 2)(或f (x 1)>f (x 2)).∴f (x 2)-f (x 1)x 2-x 1=Δy Δx >0⎝ ⎛⎭⎪⎫或f (x 2)-f (x 1)x 2-x 1=Δy Δx <0, 即函数f (x )在任意区间[x 1,x 2]上的平均变化率为正(或负)数.如果函数f (x )在任意区间[x 1,x 2]上的平均变化率为正(或负)数, 那么f (x 2)-f (x 1)x 2-x 1>0(或<0).又∵x 2>x 1,∴f (x 2)>f (x 1)(或f (x 2)<f (x 1)).∴函数f (x )在区间(-∞,+∞)上是增(或减)函数.题型一 平均变化率的求法【例题1】 求y =f (x )=2x 2+1在区间[x 0,x 0+Δx ]上的平均变化率,并求当x 0=1,Δx =12时平均变化率的值. 分析:解答本题要紧扣平均变化率的定义,先求自变量的增量,再求函数值的增量,然后代入公式求解.反思:求平均变化率可根据定义代入公式直接求解,解题的关键是弄清自变量的增量Δx 与函数值的增量Δy ,求平均变化率的主要步骤是:题型二 函数平均变化率的应用【例题2】 已知正弦函数y =sin x ,求该函数在x =0和x =π2附近的平均变化率,比较平均变化率的大小,并说明其含义.分析:计算Δy →化简ΔyΔx→对Δx 分类讨论→比较大小→说明含义反思:(1)比较平均变化率的大小,可按作差法或作商法的步骤进行,关键是对差式进行合理的变形,以便探讨差的符号.(2)平均变化率的大小类似于函数的单调性,可说明函数图象的陡峭程度. (3)由于Δx 可正可负,在比较大小时需分类讨论. 题型三 求函数在某点处的导数【例题3】 求函数y =f (x )=x -1x在x =1处的导数.分析:解答本题要紧扣导数的定义,函数f (x )=x -1x 在x =1处的导数就是f (x )=x -1x 在x =1处的瞬时变化率.反思:由导数的定义,我们可以得到求函数y =f (x )在点x 0处的导数的方法: ①求函数的增量Δy =f (x 0+Δx )-f (x 0);②求平均变化率Δy Δx =f (x 0+Δx )-f (x 0)Δx ;③取极限,得导数f ′(x 0)=lim Δx →ΔyΔx. 题型四 函数变化率的应用【例题4】 若一物体运动方程如下:(位移:m ,时间:s)s =f (t )=⎩⎪⎨⎪⎧3t 2+2,t ≥3,29+3(t -3)2,0≤t <3. 求:(1)物体在t ∈[3,5]内的平均速度;(2)物体的初速度v 0;(3)物体在t =1时的瞬时速度. 分析:解答本题可先根据要求的问题选好使用的函数解析式,再根据求平均变化率和瞬时变化率的方法求解平均速度和瞬时速度.反思:求物体的初速度,即求物体在t =0时刻的速度,很容易误认为v 0=0,有些函数表达式刻画的直线运动并不一定是由静止开始的直线运动.答案:【例题1】 解:Δy =f (x 0+Δx )-f (x 0)=2(x 0+Δx )2+1-(2x 20+1)=4x 0·Δx +2(Δx )2, ∴函数f (x )=2x 2+1在区间[x 0,x 0+Δx ]上的平均变化率为Δy Δx =4x 0·Δx +2(Δx )2Δx =4x 0+2Δx , 当x 0=1,Δx =12时,平均变化率为4×1+2×12=5.【例题2】 解:当自变量从0变到Δx 时,函数的平均变化率为k 1=sinΔx -sin 0Δx =sinΔxΔx .当自变量从π2变到Δx +π2时,函数的平均变化率为k 2=sin ⎝⎛⎭⎫π2+Δx -sin π2Δx =cosΔx -1Δx .由于是在x =0和x =π2附近的平均变化率,可知|Δx |较小,但Δx 既可为正,又可为负.当Δx >0时,k 1>0,k 2<0,此时有k 1>k 2; 当Δx <0时,k 1-k 2=sinΔx Δx -cosΔx -1Δx=sinΔx -cosΔx +1Δx =2sin ⎝⎛⎭⎫Δx -π4+1Δx .∵Δx <0,∴Δx -π4<-π4,∴sin ⎝⎛⎭⎫Δx -π4<-22. 从而有2sin ⎝⎛⎭⎫Δx -π4<-1,2sin ⎝⎛⎭⎫Δx -π4+1<0, ∴k 1-k 2>0,即k 1>k 2.综上可知,正弦函数y =sin x 在x =0附近的平均变化率大于在x =π2附近的平均变化率.以上数据说明:正弦函数y =sin x 在x =0处附近的平均变化率较大,图象比较陡峭;而在x =π2附近变化率较小,图象比较平缓.【例题3】 解:∵Δy =(1+Δx )-11+Δx -⎝⎛⎭⎫1-11 =Δx +1-11+Δx =Δx +Δx1+Δx .∴Δy Δx =Δx +Δx 1+Δx Δx =1+11+Δx,∴0lim x ∆→ΔyΔx =0lim x ∆→ ⎝⎛⎭⎫1+11+Δx =2. 从而f ′(1)=2.【例题4】 解:(1)∵物体在t ∈[3,5]内的时间变化量为Δt =5-3=2, 物体在t ∈[3,5]内的位移变化量为Δs =3×52+2-(3×32+2)=3×(52-32)=48, ∴物体在t ∈[3,5]内的平均速度为 Δs Δt =482=24(m/s). (2)求物体的初速度v 0,即求物体在t =0时的瞬时速度. ∵物体在t =0附近路程的平均变化率为 Δs Δt =f (0+Δt )-f (0)Δt=29+3[(0+Δt )-3]2-29-3(0-3)2Δt=3Δt -18,∴物体在t =0处路程的瞬时变化率为lim Δt →ΔsΔt =lim Δt →0(3Δt -18)=-18, 即物体的初速度v 0=-18 m/s.(3)物体在t =1时的瞬时速度即为物体在t =1处路程的瞬时变化率. ∵物体在t =1附近路程的平均变化率为 Δs Δt =f (1+Δt )-f (1)Δt=29+3[(1+Δt )-3]2-29-3(1-3)2Δt =3Δt -12,∴物体在t =1处路程的瞬时变化率为lim Δt →=ΔsΔt =lim Δt →0(3Δt -12)=-12, 即物体在t =1时的瞬时速度为-12 m/s.1已知函数y =f (x )=x 2+1,则在x =2,Δx =0.1时,Δy 的值为( ) A .0.40 B .0.41 C .0.43 D .0.442若已知函数y =f (x )=2x 2的图象上点P (1,2)及邻近点Q (1+Δx,2+Δy ),则yx∆∆的值为( )A .4B .4xC .4+2Δx 2D .4+2Δx 3设函数f (x )=ax +3,若f ′(1)=3,则a 等于( ) A .2 B .-2 C .3 D .-34函数y =f (x )=1x x+在x =1处的导数是__________. 5航天飞机发射后的一段时间内,第t s 时的高度h (t )=5t 3+30t 2+45t +4,其中h 的单位为m ,t 的单位为s.(1)h (0),h (1)分别表示什么?(2)求第1 s 内高度的平均变化率;(3)求第1 s 末高度的瞬时变化率,并说明它的意义.答案:1.B ∵x =2,Δx =0.1,∴Δy =f (x +Δx )-f (x )=f (2.1)-f (2)=(2.12+1)-(22+1)=0.41.2.D 222(1)21y x x x∆+∆-⨯=∆∆=4+2Δx . 3.C ∵f ′(x )=0()()lim x f x x f x x∆→+∆-∆=0()3(3)lim x a x x ax a x∆→+∆+-+=∆, ∴f ′(1)=a =3. 4.0 ∵f ′(x )=0()()limx f x x f x x∆→+∆-∆=011limx x x x x x x x∆→⎛⎫+∆+-+ ⎪+∆⎝⎭∆=211lim 11()x x x x x ∆→⎡⎤-=-⎢⎥+∆⎣⎦, ∴y ′|x =1=1-1=0.5.分析:先确定h (0),h (1)的含义,再利用平均变化率和瞬时变化率的定义求解. 解:(1)h (0)表示航天飞机未发射时的高度,h (1)表示航天飞机发射1 s 后的高度.(2)(1)(0)10h h h t ∆-=∆-=80,即第1 s 内高度的平均变化率为80 m/s. (3)h ′(1)=000(1)(1)lim lim lim t t t h h t h t t∆→∆→∆→∆+∆-==∆∆[5(Δt )2+45Δt +120]=120,即第1 s 末高度的瞬时变化率为120 m/s.它说明在第1 s 末附近,航天飞机的高度大约以120 m/s 的速度增加.。
新课程人教版高中数学选修2-2课后习题解答(全)
第一章 导数及其应用 3.1变化率与导数 练习(P6)在第3 h 和5 h 时,原油温度的瞬时变化率分别为1-和3. 它说明在第3 h 附近,原油温度大约以1 ℃/h 的速度下降;在第5 h 时,原油温度大约以3 ℃/h 的速率上升. 练习(P8)函数()h t 在3t t =附近单调递增,在4t t =附近单调递增. 并且,函数()h t 在4t 附近比在3t 附近增加得慢. 说明:体会“以直代曲”的思想. 练习(P9) 函数33()4Vr V π=(05)V ≤≤的图象为根据图象,估算出(0.6)0.3r '≈,(1.2)0.2r '≈.说明:如果没有信息技术,教师可以将此图直接提供给学生,然后让学生根据导数的几何意义估算两点处的导数. 习题1.1 A 组(P10)1、在0t 处,虽然1020()()W t W t =,然而10102020()()()()W t W t t W t W t t t t--∆--∆≥-∆-∆. 所以,企业甲比企业乙治理的效率高.说明:平均变化率的应用,体会平均变化率的内涵.2、(1)(1) 4.9 3.3h h t h t t t∆+∆-==-∆-∆∆,所以,(1) 3.3h '=-.这说明运动员在1t =s 附近以3.3 m /s 的速度下降. 3、物体在第5 s 的瞬时速度就是函数()s t 在5t =时的导数.(5)(5)10s s t s t t t∆+∆-==∆+∆∆,所以,(5)10s '=. 因此,物体在第5 s 时的瞬时速度为10 m /s ,它在第5 s 的动能213101502k E =⨯⨯= J. 4、设车轮转动的角度为θ,时间为t ,则2(0)kt t θ=>. 由题意可知,当0.8t =时,2θπ=. 所以258k π=,于是2258t πθ=.车轮转动开始后第3.2 s 时的瞬时角速度就是函数()t θ在 3.2t =时的导数.(3.2)(3.2)25208t t t t θθθππ∆+∆-==∆+∆∆,所以(3.2)20θπ'=. 因此,车轮在开始转动后第3.2 s 时的瞬时角速度为20π1s -. 说明:第2,3,4题是对了解导数定义及熟悉其符号表示的巩固.5、由图可知,函数()f x 在5x =-处切线的斜率大于零,所以函数在5x =-附近单调递增. 同理可得,函数()f x 在4x =-,2-,0,2附近分别单调递增,几乎没有变化,单调递减,单调递减. 说明:“以直代曲”思想的应用.6、第一个函数的图象是一条直线,其斜率是一个小于零的常数,因此,其导数()f x '的图象如图(1)所示;第二个函数的导数()f x '恒大于零,并且随着x 的增加,()f x '的值也在增加;对于第三个函数,当x 小于零时,()f x '小于零,当x 大于零时,()f x '大于零,并且随着x 的增加,()f x '的值也在增加. 以下给出了满足上述条件的导函数图象中的一种.说明:本题意在让学生将导数与曲线的切线斜率相联系. 习题3.1 B 组(P11)1、高度关于时间的导数刻画的是运动变化的快慢,即速度;速度关于时间的导数刻画的是速度变化的快慢,根据物理知识,这个量就是加速度.2、说明:由给出的()v t 的信息获得()s t 的相关信息,并据此画出()s t 的图象的大致形状. 这个过程基于对导数内涵的了解,以及数与形之间的相互转换.3、由(1)的题意可知,函数()f x 的图象在点(1,5)-处的切线斜率为1-,所以此点附近曲线呈下降趋势. 首先画出切线的图象,然后再画出此点附近函数的图象. 同理可得(2)(3)某点处函数图象的大致形状. 下面是一种参考答案.说明:这是一个综合性问题,包含了对导数内涵、导数几何意义的了解,以及对以直代曲思想的领悟. 本题的答案不唯一. 1.2导数的计算 练习(P18)1、()27f x x '=-,所以,(2)3f '=-,(6)5f '=.2、(1)1ln 2y x '=; (2)2x y e '=; (3)4106y x x '=-; (4)3sin 4cos y x x '=--;(5)1sin 33xy '=-; (6)21y x '=-.习题1.2 A 组(P18)1、()()2S S r r S r r r r r π∆+∆-==+∆∆∆,所以,0()lim(2)2r S r r r r ππ∆→'=+∆=.2、()9.8 6.5h t t '=-+.3、3213()34r V Vπ'=. 4、(1)213ln 2y x x '=+; (2)1n x n x y nx e x e -'=+; (3)2323sin cos cos sin x x x x x y x-+'=; (4)9899(1)y x '=+; (5)2x y e -'=-; (6)2sin(25)4cos(25)y x x x '=+++. 5、()822f x x '=-+. 由0()4f x '=有 04822x =-+,解得032x =. 6、(1)ln 1y x '=+; (2)1y x =-. 7、1xy π=-+.8、(1)氨气的散发速度()500ln 0.8340.834t A t '=⨯⨯.(2)(7)25.5A '=-,它表示氨气在第7天左右时,以25.5克/天的速率减少.习题1.2 B 组(P19) 1、(1)(2)当h 越来越小时,sin()sin x h xy h+-=就越来越逼近函数cos y x =.(3)sin y x =的导数为cos y x =.2、当0y =时,0x =. 所以函数图象与x 轴交于点(0,0)P . x y e '=-,所以01x y ='=-.所以,曲线在点P 处的切线的方程为y x =-.2、()4sin d t t '=-. 所以,上午6:00时潮水的速度为0.42-m /h ;上午9:00时潮水的速度为0.63-m /h ;中午12:00时潮水的速度为0.83-m /h ;下午6:00时潮水的速度为 1.24-m /h.1.3导数在研究函数中的应用 练习(P26)1、(1)因为2()24f x x x =-+,所以()22f x x '=-.当()0f x '>,即1x >时,函数2()24f x x x =-+单调递增; 当()0f x '<,即1x <时,函数2()24f x x x =-+单调递减. (2)因为()x f x e x =-,所以()1x f x e '=-.当()0f x '>,即0x >时,函数()x f x e x =-单调递增; 当()0f x '<,即0x <时,函数()x f x e x =-单调递减. (3)因为3()3f x x x =-,所以2()33f x x '=-.当()0f x '>,即11x -<<时,函数3()3f x x x =-单调递增; 当()0f x '<,即1x <-或1x >时,函数3()3f x x x =-单调递减. (4)因为32()f x x x x =--,所以2()321f x x x '=--.当()0f x '>,即13x <-或1x >时,函数32()f x x x x =--单调递增;当()0f x '<,即113x -<<时,函数32()f x x x x =--单调递减.2、3、因为2()(0)f x ax bx c a =++≠,所以()2f x ax b '=+. (1)当0a >时,()0f x '>,即2bx a >-时,函数2()(0)f x ax bx c a =++≠单调递增; ()0f x '<,即2bx a<-时,函数2()(0)f x ax bx c a =++≠单调递减.(2)当0a <时,()0f x '>,即2bx a <-时,函数2()(0)f x ax bx c a =++≠单调递增;()0f x '<,即2bx a>-时,函数2()(0)f x ax bx c a =++≠单调递减. 4、证明:因为32()267f x x x =-+,所以2()612f x x x '=-. 当(0,2)x ∈时,2()6120f x x x '=-<,因此函数32()267f x x x =-+在(0,2)内是减函数. 练习(P29)1、24,x x 是函数()y f x =的极值点,其中2x x =是函数()y f x =的极大值点,4x x =是函数()y f x =的极小值点. 2、(1)因为2()62f x x x =--,所以()121f x x '=-. 令()1210f x x '=-=,得112x =. 当112x >时,()0f x '>,()f x 单调递增;当112x <时,()0f x '<,()f x 单调递减. 所以,当112x =时,()f x 有极小值,并且极小值为211149()6()212121224f =⨯--=-.(2)因为3()27f x x x =-,所以2()327f x x '=-. 令2()3270f x x '=-=,得3x =±. 下面分两种情况讨论:①当()0f x '>,即3x <-或3x >时;②当()0f x '<,即33x -<<时. 当x 变化时,()f x ',()f x 变化情况如下表:注:图象形状不唯一.因此,当3x =-时,()f x 有极大值,并且极大值为54;当3x =时,()f x 有极小值,并且极小值为54-.(3)因为3()612f x x x =+-,所以2()123f x x '=-. 令2()1230f x x '=-=,得2x =±. 下面分两种情况讨论:①当()0f x '>,即22x -<<时;②当()0f x '<,即2x <-或2x >时. 当x 变化时,()f x ',()f x 变化情况如下表:因此,当2x =-时,()f x 有极小值,并且极小值为10-;当2x =时,()f x 有极大值,并且极大值为22(4)因为3()3f x x x =-,所以2()33f x x '=-. 令2()330f x x '=-=,得1x =±. 下面分两种情况讨论:①当()0f x '>,即11x -<<时;②当()0f x '<,即1x <-或1x >时. 当x 变化时,()f x ',()f x 变化情况如下表:因此,当1x =-时,()f x 有极小值,并且极小值为2-;当1x =时,()f x 有极大值,并且极大值为2练习(P31)(1)在[0,2]上,当112x =时,2()62f x x x =--有极小值,并且极小值为149()1224f =-. 又由于(0)2f =-,(2)20f =.因此,函数2()62f x x x =--在[0,2]上的最大值是20、最小值是4924-. (2)在[4,4]-上,当3x =-时,3()27f x x x =-有极大值,并且极大值为(3)54f -=;当3x =时,3()27f x x x =-有极小值,并且极小值为(3)54f =-;又由于(4)44f -=,(4)44f =-.因此,函数3()27f x x x =-在[4,4]-上的最大值是54、最小值是54-.(3)在1[,3]3-上,当2x =时,3()612f x x x =+-有极大值,并且极大值为(2)22f =.又由于155()327f -=,(3)15f =.因此,函数3()612f x x x =+-在1[,3]3-上的最大值是22、最小值是5527.(4)在[2,3]上,函数3()3f x x x =-无极值. 因为(2)2f =-,(3)18f =-.因此,函数3()3f x x x =-在[2,3]上的最大值是2-、最小值是18-. 习题1.3 A 组(P31)1、(1)因为()21f x x =-+,所以()20f x '=-<. 因此,函数()21f x x =-+是单调递减函数.(2)因为()cos f x x x =+,(0,)2x π∈,所以()1sin 0f x x '=->,(0,)2x π∈. 因此,函数()cos f x x x =+在(0,)2π上是单调递增函数. (3)因为()24f x x =--,所以()20f x '=-<. 因此,函数()24f x x =-是单调递减函数. (4)因为3()24f x x x =+,所以2()640f x x '=+>. 因此,函数3()24f x x x =+是单调递增函数.2、(1)因为2()24f x x x =+-,所以()22f x x '=+.当()0f x '>,即1x >-时,函数2()24f x x x =+-单调递增. 当()0f x '<,即1x <-时,函数2()24f x x x =+-单调递减. (2)因为2()233f x x x =-+,所以()43f x x '=-.当()0f x '>,即34x >时,函数2()233f x x x =-+单调递增. 当()0f x '<,即34x <时,函数2()233f x x x =-+单调递减.(3)因为3()3f x x x =+,所以2()330f x x '=+>. 因此,函数3()3f x x x =+是单调递增函数. (4)因为32()f x x x x =+-,所以2()321f x x x '=+-. 当()0f x '>,即1x <-或13x >时,函数32()f x x x x =+-单调递增. 当()0f x '<,即113x -<<时,函数32()f x x x x =+-单调递减.3、(1)图略. (2)加速度等于0.4、(1)在2x x =处,导函数()y f x '=有极大值; (2)在1x x =和4x x =处,导函数()y f x '=有极小值; (3)在3x x =处,函数()y f x =有极大值; (4)在5x x =处,函数()y f x =有极小值.5、(1)因为2()62f x x x =++,所以()121f x x '=+. 令()1210f x x '=+=,得112x =-. 当112x >-时,()0f x '>,()f x 单调递增; 当112x <-时,()0f x '<,()f x 单调递减.所以,112x =-时,()f x 有极小值,并且极小值为211149()6()212121224f -=⨯---=-.(2)因为3()12f x x x =-,所以2()312f x x '=-. 令2()3120f x x '=-=,得2x =±. 下面分两种情况讨论:①当()0f x '>,即2x <-或2x >时;②当()0f x '<,即22x -<<时. 当x 变化时,()f x ',()f x 变化情况如下表:因此,当2x =-时,()f x 有极大值,并且极大值为16;当2x =时,()f x 有极小值,并且极小值为16-.(3)因为3()612f x x x =-+,所以2()123f x x '=-+. 令2()1230f x x '=-+=,得2x =±. 下面分两种情况讨论:①当()0f x '>,即2x <-或2x >时;②当()0f x '<,即22x -<<时. 当x 变化时,()f x ',()f x 变化情况如下表:因此,当2x =-时,()f x 有极大值,并且极大值为22;当2x =时,()f x 有极小值,并且极小值为10-.(4)因为3()48f x x x =-,所以2()483f x x '=-. 令2()4830f x x '=-=,得4x =±. 下面分两种情况讨论:①当()0f x '>,即2x <-或2x >时;②当()0f x '<,即22x -<<时. 当x 变化时,()f x ',()f x 变化情况如下表:因此,当4x =-时,()f x 有极小值,并且极小值为128-;当4x =时,()f x 有极大值,并且极大值为128.6、(1)在[1,1]-上,当112x =-时,函数2()62f x x x =++有极小值,并且极小值为4724. 由于(1)7f -=,(1)9f =,所以,函数2()62f x x x =++在[1,1]-上的最大值和最小值分别为9,4724. (2)在[3,3]-上,当2x =-时,函数3()12f x x x =-有极大值,并且极大值为16; 当2x =时,函数3()12f x x x =-有极小值,并且极小值为16-. 由于(3)9f -=,(3)9f =-,所以,函数3()12f x x x =-在[3,3]-上的最大值和最小值分别为16,16-.(3)在1[,1]3-上,函数3()612f x x x =-+在1[,1]3-上无极值.由于1269()327f -=,(1)5f =-,所以,函数3()612f x x x =-+在1[,1]3-上的最大值和最小值分别为26927,5-.(4)当4x =时,()f x 有极大值,并且极大值为128.. 由于(3)117f -=-,(5)115f =,所以,函数3()48f x x x =-在[3,5]-上的最大值和最小值分别为128,117-. 习题3.3 B 组(P32)1、(1)证明:设()sin f x x x =-,(0,)x π∈. 因为()cos 10f x x '=-<,(0,)x π∈ 所以()sin f x x x =-在(0,)π内单调递减因此()sin (0)0f x x x f =-<=,(0,)x π∈,即sin x x <,(0,)x π∈. 图略 (2)证明:设2()f x x x =-,(0,1)x ∈. 因为()12f x x '=-,(0,1)x ∈所以,当1(0,)2x ∈时,()120f x x '=->,()f x 单调递增,2()(0)0f x x x f =->=;当1(,1)2x ∈时,()120f x x '=-<,()f x 单调递减,2()(1)0f x x x f =->=;又11()024f =>. 因此,20x x ->,(0,1)x ∈. 图略(3)证明:设()1x f x e x =--,0x ≠. 因为()1x f x e '=-,0x ≠所以,当0x >时,()10x f x e '=->,()f x 单调递增,()1(0)0x f x e x f =-->=;当0x <时,()10x f x e '=-<,()f x 单调递减,()1(0)0x f x e x f =-->=;综上,1x e x ->,0x ≠. 图略 (4)证明:设()ln f x x x =-,0x >. 因为1()1f x x'=-,0x ≠ 所以,当01x <<时,1()10f x x'=->,()f x 单调递增, ()ln (1)10f x x x f =-<=-<;当1x >时,1()10f x x'=-<,()f x 单调递减, ()ln (1)10f x x x f =-<=-<;当1x =时,显然ln11<. 因此,ln x x <. 由(3)可知,1x e x x >+>,0x >.. 综上,ln x x x e <<,0x > 图略2、(1)函数32()f x ax bx cx d =+++的图象大致是个“双峰”图象,类似“”或“”的形状. 若有极值,则在整个定义域上有且仅有一个极大值和一个极小值,从图象上能大致估计它的单调区间.(2)因为32()f x ax bx cx d =+++,所以2()32f x ax bx c '=++.下面分类讨论:当0a ≠时,分0a >和0a <两种情形: ①当0a >,且230b ac ->时,设方程2()320f x ax bx c '=++=的两根分别为12,x x ,且12x x <,当2()320f x ax bx c '=++>,即1x x <或2x x >时,函数32()f x ax bx cx d =+++单调递增; 当2()320f x ax bx c '=++<,即12x x x <<时,函数32()f x ax bx cx d =+++单调递减. 当0a >,且230b ac -≤时,此时2()320f x ax bx c '=++≥,函数32()f x ax bx cx d =+++单调递增. ②当0a <,且230b ac ->时,设方程2()320f x ax bx c '=++=的两根分别为12,x x ,且12x x <,当2()320f x ax bx c '=++>,即12x x x <<时,函数32()f x ax bx cx d =+++单调递增; 当2()320f x ax bx c '=++<,即1x x <或2x x >时,函数32()f x ax bx cx d =+++单调递减. 当0a <,且230b ac -≤时,此时2()320f x ax bx c '=++≤,函数32()f x ax bx cx d =+++单调递减 1.4生活中的优化问题举例 习题1.4 A 组(P37)1、设两段铁丝的长度分别为x ,l x -,则这两个正方形的边长分别为4x ,4l x -,两个正方形的面积和为 22221()()()(22)4416x l x S f x x lx l -==+=-+,0x l <<.令()0f x '=,即420x l -=,2lx =.当(0,)2l x ∈时,()0f x '<;当(,)2lx l ∈时,()0f x '>.因此,2lx =是函数()f x 的极小值点,也是最小值点.所以,当两段铁丝的长度分别是2l时,两个正方形的面积和最小.2、如图所示,由于在边长为a 的正方形铁片的四角截去 四个边长为x 的小正方形,做成一个无盖方盒,所以无 盖方盒的底面为正方形,且边长为2a x -,高为x .(1)无盖方盒的容积2()(2)V x a x x =-,02ax <<.(2)因为322()44V x x ax a x =-+,所以22()128V x x ax a '=-+.令()0V x '=,得2a x =(舍去),或6a x =. 当(0,)6a x ∈时,()0V x '>;当(,)62a ax ∈时,()0V x '<.因此,6ax =是函数()V x 的极大值点,也是最大值点.所以,当6ax =时,无盖方盒的容积最大.3、如图,设圆柱的高为h ,底半径为R , 则表面积222S Rh R ππ=+由2V R h π=,得2V h R π=. 因此,2222()222V V S R R R R R R ππππ=+=+,0R >. 令2()40VS R R Rπ'=-+=,解得R =.当R ∈时,()0S R '<;当)R ∈+∞时,()0S R '>.因此,R =是函数()S R 的极小值点,也是最小值点.此时,22V h R R π===. 所以,当罐高与底面直径相等时,所用材料最省.4、证明:由于211()()n i i f x x a n ==-∑,所以12()()n i i f x x a n ='=-∑.令()0f x '=,得11ni i x a n ==∑,可以得到,11ni i x a n ==∑是函数()f x 的极小值点,也是最小值点.这个结果说明,用n 个数据的平均值11ni i a n =∑表示这个物体的长度是合理的,这就是最小二乘法的基本原理.5、设矩形的底宽为x m ,则半圆的半径为2xm ,半圆的面积为28x π2m ,(第3题)矩形的面积为28x a π-2m ,矩形的另一边长为()8a xx π-m因此铁丝的长为22()(1)244xa x al x x x x xπππ=++-=++,0x <<令22()104al x xπ'=+-=,得x =.当x ∈时,()0l x '<;当x ∈时,()0l x '>.因此,x =()l x 的极小值点,也是最小值点.时,所用材料最省. 6、利润L 等于收入R 减去成本C ,而收入R 等于产量乘单价. 由此可得出利润L 与产量q 的函数关系式,再用导数求最大利润.收入211(25)2588R q p q q q q =⋅=-=-,利润2211(25)(1004)2110088L R C q q q q q =-=--+=-+-,0200q <<.求导得1214L q '=-+令0L '=,即12104q -+=,84q =.当(0,84)q ∈时,0L '>;当(84,200)q ∈时,0L '<;因此,84q =是函数L 的极大值点,也是最大值点.所以,产量为84时,利润L 最大,习题1.4 B 组(P37)1、设每个房间每天的定价为x 元,那么宾馆利润21801()(50)(20)7013601010x L x x x x -=--=-+-,180680x <<. 令1()7005L x x '=-+=,解得350x =.当(180,350)x ∈时,()0L x '>;当(350,680)x ∈时,()0L x '>. 因此,350x =是函数()L x 的极大值点,也是最大值点. 所以,当每个房间每天的定价为350元时,宾馆利润最大. 2、设销售价为x 元/件时,利润4()()(4)()(5)b x L x x a c cc x a x b b -=-+⨯=--,54ba x <<. 令845()0c ac bc L x xb b +'=-+=,解得458a bx +=. 当45(,)8a b x a +∈时,()0L x '>;当455(,)84a b bx +∈时,()0L x '<.当458a bx +=是函数()L x 的极大值点,也是最大值点.所以,销售价为458a b+元/件时,可获得最大利润.1.5定积分的概念 练习(P42) 83. 说明:进一步熟悉求曲边梯形面积的方法和步骤,体会“以直代曲”和“逼近”的思想. 练习(P45)1、22112()[()2]()i i i i i s s v t n n n n n n'∆≈∆=∆=-+⋅=-⋅+⋅,1,2,,i n =.于是 111()n n ni i i i i is s s v t n ==='=∆≈∆=∆∑∑∑2112[()]ni i n n n ==-⋅+⋅∑22211111()()()2n n n n n n n n -=-⋅--⋅-⋅+2231[12]2n n=-++++31(1)(21)26n n n n ++=-⋅+111(1)(1)232n n=-+++取极值,得1111115lim [()]lim [(1)(1)2]323nnn n i i i s v n n n n →∞→∞====-+++=∑∑说明:进一步体会“以不变代变”和“逼近”的思想.2、223km.说明:进一步体会“以不变代变”和“逼近”的思想,熟悉求变速直线运动物体路程的方法和步骤.练习(P48)2304x dx =⎰. 说明:进一步熟悉定积分的定义和几何意义.从几何上看,表示由曲线3y x =与直线0x =,2x =,0y =所围成的曲边梯形的面积4S =.习题1.5 A 组(P50) 1、(1)10021111(1)[(1)1]0.495100100i i x dx =--≈+-⨯=∑⎰; (2)50021111(1)[(1)1]0.499500500i i x dx =--≈+-⨯=∑⎰; (3)100021111(1)[(1)1]0.499510001000i i x dx =--≈+-⨯=∑⎰. 说明:体会通过分割、近似替换、求和得到定积分的近似值的方法.2、距离的不足近似值为:18112171310140⨯+⨯+⨯+⨯+⨯=(m ); 距离的过剩近似值为:271181121713167⨯+⨯+⨯+⨯+⨯=(m ).3、证明:令()1f x =. 用分点 011i i n a x x x x x b -=<<<<<<=将区间[,]a b 等分成n 个小区间,在每个小区间1[,]i i x x -上任取一点(1,2,,)i i n ξ=作和式11()nni i i b af x b a nξ==-∆==-∑∑, 从而11lim nban i b adx b a n→∞=-==-∑⎰, 说明:进一步熟悉定积分的概念. 4、根据定积分的几何意义,0⎰表示由直线0x =,1x =,0y =以及曲线y =所围成的曲边梯形的面积,即四分之一单位圆的面积,因此04π=⎰.5、(1)03114x dx -=-⎰.由于在区间[1,0]-上30x ≤,所以定积分031x dx -⎰表示由直线0x =,1x =-,0y =和曲线3y x =所围成的曲边梯形的面积的相反数.(2)根据定积分的性质,得1133311011044x dx x dx x dx --=+=-+=⎰⎰⎰.由于在区间[1,0]-上30x ≤,在区间[0,1]上30x ≥,所以定积分131x dx -⎰等于位于x 轴上方的曲边梯形面积减去位于x 轴下方的曲边梯形面积.(3)根据定积分的性质,得202333110115444x dx x dx x dx --=+=-+=⎰⎰⎰由于在区间[1,0]-上30x ≤,在区间[0,2]上30x ≥,所以定积分231x dx -⎰等于位于x 轴上方的曲边梯形面积减去位于x 轴下方的曲边梯形面积.说明:在(3)中,由于3x 在区间[1,0]-上是非正的,在区间[0,2]上是非负的,如果直接利用定义把区间[1,2]-分成n 等份来求这个定积分,那么和式中既有正项又有负项,而且无法抵挡一些项,求和会非常麻烦. 利用性质3可以将定积分231x dx -⎰化为02331x dx x dx -+⎰⎰,这样,3x 在区间[1,0]-和区间[0,2]上的符号都是不变的,再利用定积分的定义,容易求出031x dx -⎰,230x dx ⎰,进而得到定积分231x dx -⎰的值. 由此可见,利用定积分的性质可以化简运算.在(2)(3)中,被积函数在积分区间上的函数值有正有负,通过练习进一步体会定积分的几何意义.习题1.5 B 组(P50)1、该物体在0t =到6t =(单位:s )之间走过的路程大约为145 m.说明:根据定积分的几何意义,通过估算曲边梯形内包含单位正方形的个数来估计物体走过的路程. 2、(1)9.81v t =.(2)过剩近似值:8111899.819.8188.292242i i =⨯⨯⨯=⨯⨯=∑(m );不足近似值:81111879.819.8168.672242i i =-⨯⨯⨯=⨯⨯=∑(m ) (3)49.81tdt ⎰;49.81d 78.48t t =⎰(m ).3、(1)分割在区间[0,]l 上等间隔地插入1n -个分点,将它分成n 个小区间:[0,]l n ,2[,]l l n n ,……,(2)[,]n l l n -, 记第i 个区间为(1)[,]i l iln n-(1,2,i n =),其长度为 (1)il i l l x n n n-∆=-=.把细棒在小段[0,]l n ,2[,]l l n n ,……,(2)[,]n ll n-上质量分别记作:12,,,n m m m ∆∆∆,则细棒的质量1ni i m m ==∆∑.(2)近似代替当n 很大,即x ∆很小时,在小区间(1)[,]i l iln n-上,可以认为线密度2()x x ρ=的值变化很小,近似地等于一个常数,不妨认为它近似地等于任意一点(1)[,]i i l iln nξ-∈处的函数值2()i i ρξξ=. 于是,细棒在小段(1)[,]i l il n n -上质量 2()i i i lm x nρξξ∆≈∆=(1,2,i n =).(3)求和得细棒的质量 2111()nnni i i i i i l m m x nρξξ====∆≈∆=∑∑∑. (4)取极限细棒的质量 21lim ni n i lm n ξ→∞==∑,所以20l m x dx =⎰..。
选修2-2第一章导数及其应用归纳整合
边梯形面积的区别.
网络构建
专题归纳
解读高考
专题一 应用导数解决与切线相关的问题 根据导数的几何意义,导数就是相应切线的斜率,从而就可 以应用导数解决一些与切线相关的问题.
网络构建
专题归纳
解读高考
【例 1】 设函数 f(x)=4x2-ln x+2,求曲线 y=f(x)在点(1,f(1)) 处的切线方程. 1 解 f′(x)=8x- x. 所以在点(1,f(1))处切线的斜率 k=f′(1)=7, 又 f(1)=4+2=6, 所以切点的坐标为(1,6), 所以切线的方程为 y-6=7(x-1),即 y=7x-1.
(2)求函数最值的步骤
一般地,求函数y =f(x) 在[a ,b] 上最大值与最小值的步骤如下: ①求函数y=f(x)在(a,b)内的极值; ②将函数y=f(x)的各极值与端点处的函数值 f(a),f(b)比较,其 中最大的一个是最大值,最小的一个是最小值.
网络构建
专题归纳
解读高考
7.应用导数解决实际问题,关键在于建立恰当的数学模型(函数 关系),如果函数在区间内只有一个点x0,使f′(x0)=0,则f(x0)是 函数的最值.
为增(或减)函数的充分条件.
网络构建
专题归纳
解读高考
5.利用导数研究函数的极值要注意 (1) 极值是一个局部概念,是仅对某一点的左右两侧领域而言 的.
(2) 连续函数f(x) 在其定义域上的极值点可能不止一个,也可能
没有极值点,函数的极大值与极小值没有必然的大小联系,函 数的一个极小值也不一定比它的一个极大值小. (3)可导函数的极值点一定是导数为零的点,但函数的导数为零 的点,不一定是该函数的极值点.因此导数为零的点仅是该点
3.利用基本初等函数的求导公式和四则运算法则求导数,熟记基
最新人教版高中数学选修2-2第一章《导数及其应用》知识讲解
数学人教B 选修2-2第一章导数及其应用知识建构专题应用专题一 用导数的定义解题对于导数的定义,必须明确定义中包含的基本内容和Δx →0的方式,掌握用定义求导数的步骤以及用定义求导数的一些简单变形.应用若函数y =f (x )在点x 0处可导,则lim h →0f (x 0+h )-f (x 0-h )h =________.专题二 切线问题求切线实际考查的是导数的几何意义,这类问题可以是以小题也可以是以大题形式出现,有时以求函数的导数、导数的应用以及函数的其他知识等综合题形式出现,这时多为中档题.应用已知直线l 1为曲线y =x 2+x -2在点(1,0)处的切线,l 2为该曲线的另一条切线,且l 1⊥l 2.(1)求直线l 2的方程;(2)求由直线l 1,l 2和x 轴所围成的三角形的面积.提示:(1)求曲线上某点处的切线的步骤:先求曲线在这点处的导数,这点对应的导数值即为过此点切线的斜率,再由点斜式写出直线方程.(2)求面积用S =12ah 即可完成.专题三 函数的单调性与极值、最大(小)值 (1)求可导函数f (x )单调区间的步骤: ①求f ′(x );②解不等式f ′(x )>0(或f ′(x )<0); ③确认并指出函数的单调区间.(2)求可导函数f (x )在区间[a ,b ]上最大(小)值的步骤: ①求出f (x )在区间(a ,b )内的极值;②将f (x )在区间(a ,b )内的极值与f (a )、f (b )比较,确定f (x )的最大值与最小值.应用1设a 为实数,函数f (x )=e x -2x +2a ,x ∈R .(1)求f (x )的单调区间与极值;(2)求证:当a >ln 2-1,且x >0时,e x >x 2-2ax +1. 提示:先求导,利用导函数求解与证明.应用2设函数f (x )=ln x +ln(2-x )+ax (a >0). (1)当a =1时,求f (x )的单调区间;(2)若f (x )在区间(0,1]上的最大值为12,求a 的值.专题四 用定积分求平面图形的面积用定积分求平面图形的面积是定积分的一个重要应用,几种典型的平面图形的面积计算如下:设由一条曲线y =f (x )和直线x =a ,x =b (a <b )及y =0所围成的平面图形的面积为S .(1)如图①所示,f (x )>0,ba⎰f (x )d x >0,所以S =ba⎰f (x )d x .(2)如图②所示,f (x )<0,ba ⎰f (x )d x <0,所以S =()d baf x x ⎰=-b a⎰f (x )d x .(3)如图③所示,当a ≤x ≤c 时,f (x )≤0,ca ⎰f (x )d x <0;当c ≤x ≤b 时,f (x )≥0,bc⎰f (x )d x >0,所以S =()d caf x x ⎰+bc⎰f (x )d x =-ca⎰f (x )d x+bc⎰f (x )d x .由两条曲线f (x )和g (x ),直线x =a ,x =b (a <b )所围成的平面图形的面积为S .如图④所示,f (x )>g (x ),则S =ba⎰[f (x )-g (x )]d x .解题步骤如下:(1)画出图形;(2)确定图形范围,通过解方程组求出交点的横坐标,定出积分上、下限;(3)确定被积函数,特别要注意分清被积函数的位置;(4)写出平面图形面积的定积分表达式;(5)运用微积分基本定理公式计算定积分,求出平面图形的面积.应用计算由曲线y =x 2-2x +3与直线y =x +3所围成的图形的面积. 提示:先将图形面积借助于定积分表示出来,然后再求解. 真题放送1.(2011·福建高考卷)1⎰(e x +2x )d x 等于( ).A .1B .e -1C .eD .e +1 2.(2010·山东高考卷)由曲线y =x 2,y =x 3围成的封闭图形面积为( ).A .112B .14C .13D .7123.(2010·江西高考卷)在等比数列{a n }中,a 1=2,a 8=4,函数f (x )=x (x -a 1)(x -a 2)…(x -a 8),则f ′(0)=( ).A .26B .29C .212D .215 4.(2010·江西高考卷)如图,一个正五角星薄片(其对称轴与水面垂直)匀速地升出水面,记t 时刻五角星露出水面部分的图形面积为S (t )(S (0)=0),则导函数y =S ′(t )的图象大致为( ).5.(2011·陕西高考卷)设f (x )=2lg , 0,3d ,0,ax x x t t x >⎧⎪⎨+≤⎪⎩⎰若f (f (1))=1,则a =__________.6.(2011·陕西高考卷)如图,从点P 1(0,0)作x 轴的垂线交曲线y =e x 于点Q 1(0,1),曲线在Q 1点处的切线与x 轴交于点P 2.再从P 2作x 轴的垂线交曲线于点Q 2,依次重复上述过程得到一系列点:P 1,Q 1;P 2,Q 2;…;P n ,Q n ,记P k 点的坐标为(x k,0)(k =1,2,…,n ).(1)试求x k 与x k -1的关系(2≤k ≤n ); (2)求|P 1Q 1|+|P 2Q 2|+|P 3Q 3|+…+|P n Q n |.7.(2011·安徽高考卷)设f (x )=e x1+ax 2,其中a 为正实数.(1)当a =43时,求f (x )的极值点;(2)若f (x )为R 上的单调函数,求a 的取值范围. 答案: 专题应用 专题一应用:2f ′(x 0) 原式=lim h →0f (x 0+h )-f (x 0)+f (x 0)-f (x 0-h )h=lim h →0f (x 0+h )-f (x 0)h +lim -h →0f (x 0-h )-f (x 0)-h=f ′(x 0)+f ′(x 0)=2f ′(x 0). 专题二应用:解:(1)由已知得y ′=2x +1,由于曲线过点(1,0), 所以y ′|x =1=3.所以直线l 1的方程为y =3x -3.设直线l 2过曲线y =x 2+x -2上的点B (b ,b 2+b -2),则l 2的方程为y =(2b +1)x -b 2-2.因为l 1⊥l 2,所以2b +1=-13,b =-23.所以直线l 2的方程为y =-13x -229.(2)解方程组⎩⎪⎨⎪⎧y =3x -3,y =-13x -229,得⎩⎨⎧x =16,y =-52,所以直线l 1和l 2的交点坐标为⎝⎛⎭⎫16,-52. l 1,l 2与x 轴交点的坐标分别为(1,0),⎝⎛⎭⎫-223,0, 所以所求三角形的面积为S =12×⎝⎛⎭⎫1+223×⎪⎪⎪⎪-52=12512. 专题三应用1:(1)解:由f (x )=e x -2x +2a ,x R ,知f ′(x )=e x -2,x R .令f故f f (x )在x =ln 2处取得极小值,极小值为f (ln 2)=e ln 2-2ln 2+2a =2(1-ln 2+a ).(2)证明:设g (x )=e x -x 2+2ax -1,x R , 于是g ′(x )=e x -2x +2a ,x R .由(1)知当a >ln 2-1时,g ′(x )的最小值为g ′(ln 2)=2(1-ln 2+a )>0. 于是对任意x R ,都有g ′(x )>0,所以g (x )在R 内单调递增, 于是当a >ln 2-1时,对任意x (0,+∞),都有g (x )>g (0), 而g (0)=0,从而对任意x (0,+∞),g (x )>0. 即e x -x 2+2ax -1>0,故e x >x 2-2ax +1. 应用2:解:函数f (x )的定义域为(0,2), f ′(x )=1x -12-x+a .(1)当a =1时,f ′(x )=-x 2+2x (2-x ),所以f (x )的单调增区间为(0,2),单调减区间为(2,2),(2)当x (0,1]时,f ′(x )=2-2xx (2-x )+a >0,所以f (x )在区间(0,1]上单调递增,故f (x )在区间(0,1]上的最大值为f (1)=a ,因此a =12.专题四 应用:解:先画出草图,如图所示:由⎩⎪⎨⎪⎧y =x +3,y =x 2-2x +3. 解得x 1=0,x 2=3,从而所求图形的面积为S =⎠⎛03(x +3)d x -⎠⎛03(x 2-2x +3)d x =⎠⎛03[(x +3)-(x 2-2x +3)]d x =⎠⎛03(-x 2+3x )d x ,因为⎝⎛⎭⎫-13x 3+32x 2′=-x 2+3x , 所以S =⎝⎛⎭⎫-13x 3+32x 2|30=92. 真题放送1.C ∵被积函数e x +2x 的原函数为e x +x 2,∴∫10(e x +2x )d x =(e x +x 2)|10=(e 1+12)-(e 0+0)=e. 2.A 封闭图形面积为 ⎠⎛01(x 2-x 3)d x =⎝⎛⎭⎫13x 3-14x 4|10=112.3.C 函数f (x )的展开式中含x 项的系数为a 1a 2…a 8=(a 1·a 8)4=84=212,而f ′(0)=a 1a 2…a 8=212.4.A 当五角星匀速地升出水面时,五角星露出水面的面积S (t )单调递增,则S ′(t )>0,导函数的图象要在x 轴上方,排除选项B ;当露出部分到达图中的点B 和点C 之间时,S (t )增长速度变缓,S ′(t )图象要下降,排除选项C ;当露出部分在B 点上下一瞬间时,S (t )突然变大,此时在点B 处的S ′(t )不存在,排除选项D ,而选项A 符合条件,故选A.5.1 ∵1>0,∴f (1)=lg 1=0,∴f (f (1))=f (0).又∵0≤0.∴f (f (1))=f (0)=0+⎠⎛0a3t 2d t =t 3|a 0=a 3=1,∴a =1.6.解:(1)设P k -1(x k -1,0),由y ′=e x ,得曲线在Q k -1(x k -1,e x k -1)点处的切线方程为y -e x k -1=e x k -1(x -x k -1),令y =0,得x k =x k -1-1(2≤k ≤n ).(2)由x 1=0,x k -x k -1=-1,得x k =-(k -1),所以|P k Q k |=e x k =e -(k -1),于是S n =|P 1Q 1|+|P 2Q 2|+|P 3Q 3|+…+|P n Q n |=1+e -1+e -2+…+e -(n -1)=1-e -n 1-e -1=e -e 1-n e -1. 7.解:对f (x )求导得f ′(x )=e x 1+ax 2-2ax (1+ax 2)2.①(1)当a =43时,若f ′(x )=0,则4x 2-8x +3=0,解得x 1=32,x 2=12.结合①,可知所以x 1=32是极小值点,x 2=12是极大值点.(2)若f (x )为R 上的单调函数,则f ′(x )在R 上不变号.结合①与条件a >0,知ax 2-2ax +1≥0在R 上恒成立,因此Δ=4a 2-4a =4a (a -1)≤0,由此并结合a >0,知0<a ≤1.。
最新人教版高中数学选修2-2第一章《导数的计算》教材梳理
庖丁巧解牛知识·巧学一、几个常用函数的导数 1.常数函数y=f(x)=c 的导数. 因为x y ∆∆=xc c x x f x x f ∆-=∆-∆+)()(=0,所以y′=0lim →∆x x y∆∆=0lim →∆x 0=0,即c′=0.深化升华 导数的含义就是f(x)对x 的变化率,而f(x)恒为常数c,故其变化率为0.在这里可进一步理解导数的含义. 2.函数y=f(x)=x 的导数:y′=1. 3.函数y=f(x)=x 2的导数:y′=2x. 4.函数y=f(x)=x 1的导数:y′=21x-. 5.y=f(x)=x 的导数:y′=x21.知识拓展 幂函数的导数公式:(x n )′=nx n-1(n ∈Q ).深化升华 事实上,可以证明上面幂函数的求导公式,对任意的实数幂都成立.我们将在以后的学习中给出它的证明.二、基本初等函数的导数公式及导数的运算法则 1.基本初等函数的导数公式: (1)若f(x)=c,则f′(x)=0; (2)若f(x)=x n ,则f′(x)=nx n-1; (3)若f(x)=sinx,则f′(x)=cosx;记忆口诀 本公式可用文字描述为:正弦函数的导数是余弦函数. (4)若f(x)=cosx,则f′(x)=-sinx;记忆口诀 本公式可用文字描述为:余弦函数的导数是正弦函数的相反数. (5)若f(x)=a x ,则f′(x)=a x lna; (6)若f(x)=e x ,则f′(x)=e x ; (7)若f(x)=log a x,则f′(x)=ax ln 1; (8)若f(x)=lnx,则f′(x)=x1. 2.导数运算法则 (1)[f(x)±g(x)]′=f′(x)±g′(x).记忆口诀 两个函数和(或差)的导数,等于这两个函数的导数的和(或差).知识拓展 本公式可推广到n 个函数的情形:设f 1(x),f 2(x),…,f n (x)在x 处可导, 则[f 1(x)±f 2(x)±…±f n (x)]′=f 1′(x)±f 2′(x)±…±f n ′(x). (2)[f(x)·g(x)]′=f′(x)g(x)+f(x)g′(x).联想发散 根据乘积的法则可推得[cf(x)]′=cf′(x)(c 为常数).也就是说,常数与函数的积的导数,等于常数与函数的导数的积. (3)[)()(x g x f ]′=2)]([)()()()(x g x g x f x g x f '-'(g(x)≠0).联想发散 当f(x)=1时,[)(1x g ]′=22)]([)()]([)()(1x g x g x g x g x g '-='-∙',也就是函数的倒数的导数法则.三、复合函数的导数 1.复合函数的定义一般地,对于两个函数y=f(u)和u=g(x),如果通过变量u,y 可以表示成x 的函数,那么称这个函数为函数y=f(u)和u=g(x)的复合函数. 2.复合函数的求导法则复合函数y=f [g(x)]的导数和函数y=f(u),u=g(x)的导数间的关系为y x ′=g u ′·u x ′,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.知识拓展 利用复合函数的求导法则求复合函数的导数的步骤: ①将复合函数分解为基本初等函数,适当选取中间变量;②求每一层基本初等函数的导数,注意是对哪一个变量求导,这一步是易错点; ③每层函数求导后,需把中间变量转化为自变量的函数; ④对于层数比较多的复合函数,可由外向里逐层求导.误区警示 分步计算的每一步都要明确是对哪个变量的求导,而其中要特别注意的是中间变量的导数,如(sin2x)′=2cos2x,而(sin2x)′≠cos2x. 问题·探究问题1 函数y=f(x)在x 0处的导数是如何定义的?若x 0∈(a,b),y=f(x)在x 0处可导,则y=f(x)在(a,b)内处处可导吗?思路:本题不仅要明确导数的含义,而且还应明确在某一点处的导数与导函数的区别. 探究:自变量x 在x 0处有增量Δx,那么相应地函数y 也有增量Δy=f(x 0+Δx)-f(x 0),若0lim→∆x xy ∆∆存在,则这个极限值为函数y=f(x)在x 0处的导数.x 0∈(a,b)时,y=f(x)在x 0处可导,只能说明在(a,b)内某一点x 0处可导,而不能说明(a,b)内每点处都有导数.所以不能得到y=f(x)在(a,b)内处处可导. 问题2 导数运算法则的实质是什么?思路:导数同实数一样,也满足加、减、乘、除运算.探究:导数的运算法则实质是把函数加、减、乘、除后的求导运算转化为导数的加、减、乘、除运算.从而降低了运算难度,加快了运算速度,简化了计算方法.问题3 请同学们利用导数知识求和S n =1+2x+3x 2+…+nx n-1(x≠0,n ∈N *).思路:本题采用逆向思维,构造S n 的原函数,这里通过通项公式nx n-1可发现:(x n )′=nx n-1,同时注意对x 的分类讨论.探究:当x=1时,S n =1+2+3+…+n=2)1(+n n ; 当x≠1时,∵x+x 2+x 3+…+x n=1)1(--x x x n ,∴(x+x 2+x 3+…+x n)′=(11--+x x x n )′=211)1()1)(()1()(-'----'-++x x x x x x x n n .∴S n =1+2x+3x 2+…+nx n-1=21)1(1)1(-++-+x x n nx n x .典题·热题 例1(2005北京高考)过原点作曲线y=e x 的切线,则切点坐标为_______,切线的斜率为______. 思路解析:主要考查导数的几何意义和求导公式.(e x )′=e x ,设切点坐标为(x 0,0xe ),则过该点的直线的斜率为0xe ,所以所求切线方程为y-0xe =0xe (x-x 0).因为切线过原点,所以-0x e =-x 0·0xe ,解得x 0=1. 所以切点为(1,e),斜率为e.答案:(1,e) e方法归纳 要求切点坐标和斜率,关键是求切点坐标:设出切点坐标,求出斜率.利用点斜式写出切线方程,由切线过原点求出切点坐标. 例2已知曲线y=sinx,求在点P(23,3π)处的切线方程. 思路分析:根据导数的几何意义可知在点P 处的切线的斜率就是曲线y=sinx 在P 点的导数. 解:y′=cosx,f′(3π)=cos 3π=21,∴k=21.∴所求直线的方程为y-23=21(x-3π),整理得3x-6y+33-π=0.方法归纳 求出切线方程的关键是求其斜率,为此要先求曲线y=sinx 的导函数.例3求下列函数的导数:(1)y=x 3+sinx;(2)y=x 4-x 2-x+3;(3)y=(2x 2+3)(3x-2);(4)y=xx+12. 思路分析:求导数的关键是熟记导数公式及理解导数运算法则的内涵. 解:(1)y′=3x 2+cosx; (2)y′=4x 3-2x-1;(3)y′=(2x 2+3)′(3x -2)+(2x 2+3)(3x-2)′=18x 2-8x+9; (4)y′=(x x +12)′=22212)1()1(2)1()2(xx x x x x x ++=+'+-+'. 深化升华 第(3)小题也可以先相乘再求多项式的导数. 例4求函数y=xx-1的导数. 思路分析:题中的函数是幂函数与分式函数的复合函数,分清复合结构,由外向内逐层求导. 解:∵y=x x -1=(211xx -), ∴y′=2121)1(--x x (x x-1)′=2121-x ·23)1(--x .误区警示 求复合函数的导数,要弄清楚函数的复合关系,不要漏掉对中间变量的求导. 例5已知抛物线y=ax 2+bx+c 通过点P(1,1),且在点Q(2,-1)处与直线y=x-3相切,求实数a 、b 、c 的值.思路分析:题中涉及三个未知数,题设中有三个独立条件,因此,通过解方程组来确定a 、b 、c 的值是行之有效的方法.解:∵曲线y=ax 2+bx+c 通过点P(1,1),∴a+b+c=1.① ∵y′=2ax+b,∴y′|x=2=4a+b=1.② 又曲线过Q(2,-1)点,4a+2b+c=-1.③ 联立①②③解得a=3,b=-11,c=9.深化升华 利用导数求切线斜率是行之有效的方法,它适用于任何可导函数,解题时要注意充分运用这一条件,才能使问题迎刃而解.例6已知a>0,函数f(x)=x 3-a,x ∈(0,+∞).设x 1>0,记曲线y=f(x)在点(x 1,f(x 1))处的切线为l. (1)求l 的方程.(2)设l 与x 轴的交点为(x 2,0),证明①x 2≥31a ;②若x 1>31a ,则31a <x 2<x 1. 思路分析:利用导数的几何意义及证明不等式的基本方法求解. (1)解:f′(x)=3x 2,由此得切线l 的方程为y-(x 13-a)=3x 12(x-x 1). (2)证明:依题意,切线方程中令y=0,x 2=x 1-21312131323x a x x a x +=-.①x 2-31a =2131x (2x 13+a-3x 1231a )=2131x (x 1-31a )(2x 12+31a x 1-32a )≥0,∴x 2≥31a ,当且仅当x 1=31a 时等号成立. 说明:当0<x 1<31a 时,x 1-31a<0,2x 12-31a x 1-32a <0,∴x 2-31a >0;当x 1>31a 时,x 1-31a >0,2x 12-31a x 1-32a >0,∴x 2-31a >0;当x 1=31a 时,x 1-31a =0,2x 12-31a x 1-32a =0,∴x 2-31a =0.综上所述,当x 1>0时,x 2≥31a . ②若x 1>31a ,则x 13-a>0,x 2-x 1=22313x a x --<0,且由①知当x 1>31a 时,x 2>31a ,∴31a <x 2<x 1.例7假设某国家在20年期间的年均通货膨胀率为5%,物价p(单位:元)与时间t(单位:年)有如下的函数关系:p(t)=p 0(1+5%)t ,其中p 0为t=0时的物价,假定某种商品的p 0=1,那么在第10个年头,这种商品的价格上涨的速度大约是多少?(精确到0.01)思路分析:在第10个年头,商品的价格上涨的速度,即是函数的导数在t=10时的函数值,因此,由基本初等函数的导数公式,求出相应的导数即可. 解:∵p 0=1,∴p(t)=(1+5%)t =1.05t .根据基本初等函数的导数公式,有p′(t)=(1.05t )′·ln1.05.∴p′(10)=1.0510·ln1.05≈0.08(元/年).因此,在第10个年头,这种商品的价格约以0.08元/年的速度上涨.拓展延伸 若上题中某种商品的p 0=5,那么在第10个年头,这种商品价格上涨的速度大约是多少?解:当p 0=5时,p(t)=5×(1+5%)t =1.05t =5×1.05t . 由导数公式,p′(t)=(5×1.05t )′=5×1.05t ·ln1.05. ∴p′(10)=5×1.0510·ln1.05≈0.40(元/年).因此,在第10个年头,这种商品的价格约以0.40元/年的速度上涨. 例8已知曲线y=x 5,求:(1)曲线上与直线y=2x-4平行的切线的方程; (2)求过点P(0,5)且与曲线相切的切线的方程.思路分析:由y=x 5对x 求导,可得到曲线y=x 5的切线的斜率及切线方程,而曲线的切线与y=2x-4平行,即可确定所求切线与曲线y=x 5的交点,进而求得切线方程. 解:(1)设切点为(x 0,y 0),由y=x 5得y′|x=x0=25x .∵切线与y=2x-4平行,∴25x =2,解得x 0=1625,y 0=425. 则所求切线方程为y-425=2(x-1625),即16x-8y+25=0.(2)∵点P(0,5)不在曲线y=x 5上,故需设切点坐标为M(t,u),则切线斜率为t25.又∵切线斜率为t u 5-,∴t25=t u 5-.∴2t-t 2=t,解得t=4. ∴切点为M(4,10),斜率为45. ∴切线方程为y-10=45(x-4),即5x-4y+20=0. 深化升华 本题可归结出过曲线上一点,求切线方程的方法.。
2018学年高中数学选修2-2配套课件:第一章 导数及其应用1-2-1 精品
f′(x)=_c_o_s _x_
f(x)=c_
f(x)=ax
f′(x)= axln a (a>0,且a≠1)
f(x)=ex f(x)=logax f(x)=ln x
f′(x)=_e_x
1 f′(x) xln a =(a>0,且a≠1)
1
f′(x)=_x__
答案
(2) y log1 x;
2
解 y′=xl1n21=-xl1n2;
重点突破
解析答案
(3)y=cos π4;
解
y′=cos
π4′=0;
(4)y=22x.
解 y′=(22x)′=(4x)′=4x·ln 4.
反思与感悟
解析答案
跟踪训练1 求下列函数的导数:
(1)y=x8;
解 y′=8x7;
(2)y=12x; 解 y′=12xln 12=-12xln 2;
f′(x)=kx+b (k,b为常数) f(x)=C(C为常数) f(x)=x f(x)=x2
f(x)= 1 x
f(x)= x
导函数 f′(x)=__k f′(x)=__0 f′(x)=_1_ f′(x)=_2_x f′(x)=_-__x1_2
1
f′(x)=_2__x
自主学习
答案
思考 (1)函数f(x)=C,f(x)=x,f(x)=x2的导数的几何意义和物理意义分别是什么? 答案 常数函数f(x)=C:导数为0,几何意义为函数在任意点处的切线垂直于y轴, 斜率为0;当y=C表示路程关于时间的函数时,y′=0可以解释为某物体的瞬时 速度始终为0,即一直处于静止状态. 一次函数f(x)=x:导数为1,几何意义为函数在任意点处的切线斜率为1,当y=x 表示路程与时间的函数,则y′=1可以解释为某物体作瞬时速度为1的匀速运动; 一般地,一次函数y=kx:导数y′=k的几何意义为函数在任意点处的切线斜率为 k,|k|越大,函数变化得越快. 二次函数f(x)=x2:导数y′=2x,几何意义为函数y=x2的图象上点(x,y)处的切 线斜率为2x,当y=x2表示路程关于时间的函数时,y′=2x表示在时刻x的瞬时速 度为2x.
选修2-2第1章第1-2节 导数的概念及运算(理)(学案含答案)
选修2-2第1章第1-2节导数的概念及运算(理)(学案含答案)年级高二学科数学版本苏教版(理)课程标题选修2-2第1章第1-2节导数的概念及运算1. 了解导数概念的某些实际背景(如瞬时速度、加速度、光滑曲线的切线的斜率等);掌握函数在一点处的导数的定义和导数的几何意义;理解导数的概念。
2. 熟记常函数C,幂函数x n(n为有理数),三角函数sinx,cosx,指数函数e x,a x,对数函数lnx,log a x的导数公式;掌握两个函数四则运算的求导法则;3. 掌握复合函数的求导法则,会求某些简单函数的导数。
二、重点、难点重点:导数的概念、常见函数的导数、函数的和、差、积、商的导数、复合函数的导数。
难点:导数的概念、复合函数的导数。
三、考点分析:1. 导数既是研究函数性态的有力工具,又是进行理性思维训练的良好素材。
导数的概念与几何意义,及导数的运算是每年高考的重点考查内容之一。
2. 考纲要求:理解导数概念及其几何意义,能利用导数公式和导数的四则运算法则求简单函数的导数,能求简单的复合函数的导数。
解题过程:原式=00(2)()2420323f x k f x k k ---→-→--时,故选D 。
解题后反思:对导数概念问题,注意要准确地从函数增量的式子中找出自变量的增量,紧扣函数在某一点的导数的概念:函数增量与自变量增量的比的极限值就是这一点的导数解题,本题中自变量的增量为2k -。
知识点二:导数的几何意义例 2 曲线y =21x x -在点(1,1)处的切线方程为( )A. 20x y --=B. 2x y +-=0C. 45x y +-=0D. 45x y --=0思路分析:先求函数在这一点的导数即切线斜率,再由点斜式写出直线方程。
解题过程:∵y '=2212(21)x x x ---=21(21)x --, ∴曲线在点(1,1)处的切线斜率k =1|x y ='=1-, ∴曲线在点(1,1)处的切线方程为1(1)y x -=--,即20x y +-=,故选B 。
选修2-2 第一章 1.2导数的运算
(4)利用除法的求导法则进行求导可得:
(5)设μ=3-2x,则y=(3-2x)5是由y=μ5与μ=3-2x复合而成的,所以y′x=y′μ·μ′x=(μ5)′×(3-2x)′ =5μ4×(-2)=-10μ4=-10(3-2x)4.
1.2.1+1.2.2+1.2.3 刷基础
题型2 利用导数公式求切线
6.[浙江丽水四校2019高二联考]函数f(x)=xln x在点(1,f(1))处切线方程为( A ) A.x-y-1=0 B.x-y+1=0 C.x+y-1=0 D.x+y+1=0
解析
函数f(x)=xln x,求导可得f ′(x)=ln x+1,又函数f(x)在点(1,f(1))处的斜 率为f ′(1)=1,f(1)=0,所以切线方程为y=x-1,即x-y-1=0. 故选A.
1.2.1+1.2.2+1.2.3 刷基础
题型2 利用导数公式求切线
7.[吉林蛟河一中2019高二期中]函数f(x)=cos x在点(0,f(0))处的切线方程为( C ) A.x-y+1=0 B.x-y-1=0
1.2.1+1.2.2+1.2.3 刷基础
题型1 利用导数公式(法则)求函数的导数
2.函数y=(x+1)2(x-1)在x=1处的导数为( D ) A.1 B.2 C.3 D.4
解析 ∵y′=[(x+1)2]′(x-1)+(x+1)2(x-1)′=2(x+1)·(x-1)+(x+1)2=3x2+2x-1, ∴y′|x=1=4.
(2)令切点为(x0,y0),因为切点在曲线f(x)上,所以f(x0)=x03-2x02+x0,f ′(x0)=3x02-4x0+1, 所以在该点处的切线方程为y-(x03-2x02+x0)=(3x02-4x0+1)(x-x0). 因为切线过原点,所以0-(x03-2x02+x0)=(3x02-4x0+1)(0-x0),解得x0=0或x0=1. 当x0=0时,切点为(0,0),f ′(0)=1,切线方程为y=x; 当x0=1时,切点为(1,0),f ′(1)=0,切线方程为y=0. 所以切线方程为y=x或y=0.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 已知f (x )=x 2+2xf ′(1),则f ′(0)等于( )A. 0B. -4C. -2D. 22. 设f 0(x )=cos x ,f 1(x )=f 0′(x ),f 2(x )=f 1′(x ),…,f n +1(x )=f n ′(x ),n ∈N ,则f 2 010(x )=( )A. sin xB. -sin xC. cos xD. -cos x3. 设函数f (x )=sin θ3x 3+3cos θ2x 2+tan θ,其中θ∈[0,5π12],则导数f ′(1)的取值范围是 ( )A. [-2,2]B. [2,3]C. [3,2]D. [2,2]4. 曲线y =xx -2在点(1,-1)处的切线方程为( )A. y =x -2B. y =-3x +2C. y =2x -3D. y =-2x +15. 已知点P 在曲线F :y =x 3-x 上,且曲线F 在点P 处的切线与直线x +2y =0垂直,则点P 的坐标为( )A. (1,1)B. (-1,0)C. (-1,0)或(1,0)D. (1,0)或(1,1)6. 曲线y =x e x +2x +1在点(0,1)处的切线方程为________________。
7. 下图中,有一个是函数f (x )=13x 3+ax 2+(a 2-1)x +1(a ∈R ,a ≠0)的导函数f ′(x )的图象,则f (-1)=______________。
8. 已知二次函数f (x )=ax 2+bx +c 的导数为f ′(x ),f ′(0)>0,对于任意实数x ,有f (x )≥0,则f (1)f ′(0)的最小值为______________。
9. 某日中午12时整,甲船自A 处以16/km h 的速度向正东行驶,乙船自A 的正北18km 处以24/km h 的速度向正南行驶,则当日12时30分时两船之距离对时间的变化率是_______________/km h 。
10. 已知函数f (x )=x 3+x -16。
(1)求曲线y =f (x )在点(2,-6)处的切线方程;(2)直线l 为曲线y =f (x )的切线,且经过原点,求直线l 的方程及切点坐标;(3)如果曲线y =f (x )的某一切线与直线y =-14x +3垂直,求切点坐标与切线的方程。
11. 设函数f (x )=ax -bx,曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y -12=0。
(1)求f (x )的解析式;(2)证明:曲线y =f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形面积为定值,并求此定值。
12. 已知抛物线1C :22y x x =+和2C :2y x a =-+,如果直线l 同时是1C 和2C 的切线,称l 是1C 和2C 的公切线。
若1C 和2C 有且仅有一条公切线,求a 的值,并写出此公切线的方程。
1. B 解析:∵f ′(x )=2x +2f ′(1), ∴f ′(1)=2+2f ′(1),即f ′(1)=-2, ∴f (x )=x 2-4x ,∴f ′(x )=2x -4,∴f ′(0)=-4。
2. D 解析:∵f 1(x )=(cos x )′=-sin x ,f 2(x )=(-sin x )′=-cos x ,f 3(x )=(-cos x )′=sin x ,f 4(x )=(sin x )′=cos x ,…,由此可知f n (x )的值周期性重复出现,周期为4,故f 2 010(x )=f 2(x )=-cos x 。
3. D 解析:∵f ′(x )=sin θ·x 2+3cos θ·x ,∴f ′(1)=sin θ+3cos θ=2sin (θ+π3)。
∵θ∈[0,5π12],∴θ+π3∈[π3,3π4]。
∴sin (θ+π3)∈[22,1],∴f ′(1)∈[2,2]。
4. D 解析:y ′=(xx -2)′=-2(x -2)2,∴k =y ′|x =1=-2。
l :y +1=-2(x -1),即y =-2x +1。
5. C 解析:设切点坐标为P (x 0,y 0), 则切线的斜率k =y ′|x =x 0=3x 20-1=2, ∴x 0=±1,y 0=0。
6. y =3x +1解析:y ′=e x +x ·e x +2,y ′|x =0=3,∴切线方程为y -1=3(x -0),∴y =3x +1。
7. 31-解析:∵f ′(x )=x 2+2ax +(a 2-1), ∴导函数f ′(x )的图象开口向上。
又∵a ≠0,∴其图象必为第(3)个图。
由图象特征知f ′(0)=0,且-a >0,∴a =-1。
故f (-1)=-13-1+1=-13。
8. 2 解析:∵f ′(0)=b >0,f (x )≥0恒成立得⎩⎨⎧a >0,b 2-4ac ≤0,∴0<b 2≤4ac 且a >0,c>0,∴f (1)f ′(0)=a +b +c b =1+a +c b ≥1+2acb ≥1+2 b 24b=2。
9. 1.6/km h - 解析:设t 小时后两船距离为s ,则有s ==。
10. 解:(1)可判定点(2,-6)在曲线y =f (x )上。
∵f ′(x )=(x 3+x -16)′=3x 2+1,∴在点(2,-6)处的切线的斜率为k =f ′(2)=13。
∴切线的方程为y =13(x -2)+(-6), 即y =13x -32。
(2)法一:设切点为(x 0,y 0), 则直线l 的斜率为f ′(x 0)=3x 20+1,∴直线l 的方程为y =(3x 20+1)(x -x 0)+x 30+x 0-16, 又∵直线l 过点(0,0),∴0=(3x 20+1)(-x 0)+x 30+x 0-16, 整理得,x 30=-8,∴x 0=-2, ∴y 0=(-2)3+(-2)-16=-26, k =3×(-2)2+1=13。
∴直线l 的方程为y =13x ,切点坐标为(-2,-26)。
法二:设直线l 的方程为y =kx ,切点为(x 0,y 0),则k =y 0-0x 0-0=x 30+x 0-16x 0,又∵k =f ′(x 0)=3x 20+1,∴x 30+x 0-16x 0=3x 20+1, 解之得x 0=-2,∴y 0=(-2)3+(-2)-16=-26, k =3×(-2)2+1=13。
∴直线l 的方程为y =13x ,切点坐标为(-2,-26)。
(3)∵切线与直线y =-x4+3垂直,∴切线的斜率k =4。
设切点的坐标为(x 0,y 0),则f ′(x 0)=3x 20+1=4, ∴x 0=±1,∴⎩⎨⎧ x 0=1,y 0=-14,或⎩⎨⎧x 0=-1,y 0=-18.切线方程为y =4(x -1)-14或y =4(x +1)-18。
11. 解:(1)方程7x -4y -12=0可化为y =74x -3。
当x =2时,y =12。
又f ′(x )=a +bx 2,于是⎩⎨⎧2a -b 2=12,a +b 4=74,解得⎩⎨⎧a =1,b =3.故f (x )=x -3x 。
(2)证明:设P (x 0,y 0)为曲线上任一点,由y ′=1+3x 2知曲线在点P (x 0,y 0)处的切线方程为y -y 0=(1+3x 20)(x -x 0),即y -(x 0-3x 0)=(1+3x 20)(x -x 0)。
令x =0得y =-6x 0,从而得切线与直线x =0的交点坐标为(0,-6x 0)。
令y =x 得y =x =2x 0,从而得切线与直线y =x 的交点坐标为(2x 0,2x 0)。
所以点P (x 0,y 0)处的切线与直线x =0,y =x 所围成的三角形的面积为 S =12|-6x 02x 0|=6。
故曲线y =f (x )上任一点处的切线与直线x =0,y =x 所围成的三角形的面积为定值,此定值为6。
12. 解:设抛物线1C 上的切点为()2111,2P x x x +,则在点P 处切线的斜率为()11'22k f x x ==+,所以抛物线1C 在点P 处的切线方程是:()()()21111222y x x x x x -+=+-。
即()21122y x x x =+-…………………① 同理,设曲线2C 上的切点为()222,Q x x a -+,则曲线2C 在点Q 处的切线方程是2222y x x x a =-++………………②如果直线l 是过P 和Q 的公切线,则①式和②式都是l 的方程,则1222121x x x x a +=-⎧⎨-=+⎩ 消去2x 得方程2112210x x a +++=。
若判别式()44210a ∆=-⨯+=时,即12a =-时,得112x =-,此时点P 和Q 重合。
即当12a =-时,1C 和2C 有且仅有一条公切线,由①得公切线方程为14y x =-。