2019届理科一轮复习北师大版专题探究课4立体几何中的高考热点问题教案.doc

合集下载

近年年高考数学一轮复习专题突破练4立体几何中的高考热点问题理北师大版(2021学年)

近年年高考数学一轮复习专题突破练4立体几何中的高考热点问题理北师大版(2021学年)

2019年高考数学一轮复习专题突破练4 立体几何中的高考热点问题理北师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019年高考数学一轮复习专题突破练4 立体几何中的高考热点问题理北师大版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019年高考数学一轮复习专题突破练4立体几何中的高考热点问题理北师大版的全部内容。

专题突破练(四) 立体几何中的高考热点问题(对应学生用书第293页)1.如图7所示,已知直三棱柱ABC.A1B1C1中,△ABC为等腰直角三角形,∠BAC=90°,且AB=AA1,D,E,F分别为B1A,C1C,BC的中点.求证:图7(1)DE∥平面ABC;(2)B1F⊥平面AEF.[证明] (1)如图,建立空间直角坐标系A.xyz,令AB=AA1=4,则A(0,0,0),E(0,4,2),F(2,2,0),B(4,0,0),B1(4,0,4).取AB中点为N,连接CN,则N(2,0,0),C(0,4,0),D(2,0,2),∴错误!=(-2,4,0),错误!=(-2,4,0),∴错误!=错误!,∴DE∥NC。

又∵NC平面ABC,DE⃘平面ABC。

故DE∥平面ABC.(2)错误!=(-2,2,-4),错误!=(2,-2,-2),错误!=(2,2,0).\o(B1F,→)·错误!=(-2)×2+2×(-2)+(-4)×(-2)=0,错误!·错误!=(-2)×2+2×2+(-4)×0=0.∴\o(B1F,→)⊥错误!,错误!⊥错误!,即B1F⊥EF,B1F⊥AF.又∵AF∩FE=F,∴B1F⊥平面AEF.2.(2018·贵州适应性考性)如图8(1),在等腰直角三角形ABC中,∠B=90°,将△ABC沿中位线DE翻折得到如图8(2)所示的空间图形,使二面角A­DE­C的大小为θ错误!。

高三数学一轮复习备考教学设计:高考中的立体几何问题说课稿

高三数学一轮复习备考教学设计:高考中的立体几何问题说课稿

《高考中的立体几何问题》说课稿立体几何是高中数学知识体系的重要组成部分,是培养学生空间想象能力的重要载体,是每年高考必考的重要知识点!无论是从高考的现实出发,还是从学生个人的长远发展来看,学好立体几何这一模块的内容对于学生来说都是极为重要的。

在此,我仅从高考要求、命题趋势、考纲变化、复习意义四个方面来对立体几何模块谈谈我的看法。

一、高考要求1、空间几何体(1)认识柱、锥、台、球及其简单组合体的结构特征;(2)能画出简单空间图形的三视图,能识别相应三视图所表示的立体模型,会用斜二测画法画出他们的直观图;(3)会用平行投影方法画出简单空间图形的三视图与直观图,了解空间图形的不同表现形式;(4)了解球、棱柱、棱锥、台的表面积和体积的计算公式。

2、点、直线、平面之间的位置关系(1)理解空间直线、平面位置关系的定义,并了解四个公理及推论;(2)认识和理解空间中线面平行、垂直的有关性质与判定定理;(3)能够用公理、定理和已获得的结论证明一些空间位置关系的简单命题。

3、空间向量与立体几何(1)了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示;(2)掌握空间向量的线性运算及其坐标表示;(3)掌握空间向量的数量积及其坐标表示,能用向量数量积判断向量的共线与垂直;(4)理解直线的方向向量及平面的法向量;(5)能用向量语言表述线线、线面、面面的平行和垂直关系;(6)能用向量法证明立体几何中有关线面位置关系的一些简单定理;(7)能用向量方法解决直线与直线、直线与平面、平面与平面的夹角的计算问题,了解向量方法在研究立体几何问题中的应用。

二、命题趋势通过分析最近5年全国卷在立体几何模块的命题可以发现如下规律:1、题型一般是两道小题一道大题(偶尔出现一道小题一道大题);2、小题中必考内容:三视图!三视图一般与特殊的柱体、锥体、球体及相关组合体的表面积与体积结合考查;3、小题中变化的内容:直线平面平行垂直的性质判定与命题结合、球的切接几何体问题、简单的空间角的计算等。

2019年一轮北师大版(理)数学教案:热点探究课1 导数应用中的高考热点问题

2019年一轮北师大版(理)数学教案:热点探究课1 导数应用中的高考热点问题

热点探究课(一) 导数应用中的高考热点问题[命题解读] 函数是中学数学的核心内容,导数是研究函数的重要工具,因此,导数的应用是历年高考的重点与热点,常涉及的问题有:讨论函数的单调性(求函数的单调区间)、求极值、求最值、求切线方程、求函数的零点或方程的根、求参数的范围、证明不等式等,涉及的数学思想有:函数与方程、分类讨论、数形结合、转化与化归思想等,中、高档难度均有.热点1 利用导数研究函数的单调性、极值与最值(答题模板) 函数的单调性、极值是局部概念,函数的最值是整体概念,研究函数的性质必须在定义域内进行,因此,务必遵循定义域优先的原则,本热点主要有三种考查方式:(1)讨论函数的单调性或求单调区间;(2)求函数的极值或最值;(3)利用函数的单调性、极值、最值,求参数的范围.(本小题满分12分)(2015·全国卷Ⅱ)已知函数f (x )=ln x +a(1-x ).(1)讨论f (x )的单调性;(2)当f (x )有最大值,且最大值大于2a -2时,求a 的取值范围.[思路点拨] (1)求出导数后对a 分类讨论,然后判断单调性;(2)运用(1)的结论分析函数的最大值,对得到的不等式进行等价转化,通过构造函数并分析该函数的单调性求a 的范围.[规范解答] (1)f (x )的定义域为(0,+∞),f ′(x )=1x -a.2分 若a ≤0,则f ′(x )>0,所以f (x )在(0,+∞)上递增.3分若a>0,则当x ∈⎝ ⎛⎭⎪⎫0,1a 时,f ′(x )>0; 当x ∈⎝ ⎛⎭⎪⎫1a ,+∞时,f ′(x )<0. 5分 所以f (x )在⎝ ⎛⎭⎪⎫0,1a 上递增,在⎝ ⎛⎭⎪⎫1a ,+∞上递减. 6分 (2)由(1)知,当a ≤0时,f (x )在(0,+∞)上无最大值;7分 当a>0时,f (x )在x =1a 取得最大值,最大值为f ⎝ ⎛⎭⎪⎫1a =ln ⎝ ⎛⎭⎪⎫1a +a ⎝ ⎛⎭⎪⎫1-1a =-ln a +a -1. 9分 因此f ⎝ ⎛⎭⎪⎫1a >2a -2等价于ln a +a -1<0. 10分 令g(a)=ln a +a -1,则g(a)在(0,+∞)上递增,g(1)=0.于是,当0<a<1时,g(a)<0;当a>1时,g(a)>0.因此,a 的取值范围是(0,1).12分[答题模板] 讨论含参函数f (x )的单调性的一般步骤第一步:求函数f (x )的定义域(根据已知函数解析式确定).第二步:求函数f (x )的导数f ′(x ). 第三步:根据f ′(x )=0的零点是否存在或零点的大小对参数分类讨论. 第四步:求解(令f ′(x )>0或令f ′(x )<0).第五步:下结论.第六步:反思回顾,查看关键点、易错点、注意解题规范.温馨提示:1.讨论函数的单调性,求函数的单调区间、极值问题,最终归结到判断f ′(x )的符号问题上,而f ′(x )>0或f ′(x )<0,最终可转化为一个一元一次不等式或一元二次不等式问题.2.若已知f (x )的单调性,则转化为不等式f ′(x )≥0或f ′(x )≤0在单调区间上恒成立问题求解.[对点训练1] (2017·郑州模拟)已知函数f (x )=x 2e -a x ,a ∈R .(1)当a =1时,求函数y =f (x )的图像在点(-1,f (-1))处的切线方程;(2)讨论f (x )的单调性.[解] (1)因为当a =1时,f (x )=x 2e -x ,f ′(x )=2x e -x -x 2e -x =(2x -x 2)e -x ,2分 所以f (-1)=e ,f ′(-1)=-3e.从而y =f (x )的图像在点(-1,f (-1))处的切线方程为y -e =-3e(x +1),即y =-3e x -2e.4分 (2)f ′(x )=2x e -ax -ax 2e -ax =(2x -ax 2)e -ax .①当a =0时,若x <0,则f ′(x )<0,若x >0,则f ′(x )>0.所以当a =0时,函数f (x )在区间(-∞,0)上为减函数,在区间(0,+∞)上为增函数. 6分②当a >0时,由2x -ax 2<0,解得x <0或x >2a ,由2x -ax 2>0,解得0<x <2a .所以f (x )在区间(-∞,0)与⎝ ⎛⎭⎪⎫2a ,+∞上为减函数,在⎝ ⎛⎭⎪⎫0,2a 上为增函数. 8分③当a <0时,由2x -ax 2<0,解得2a <x <0,由2x -ax 2>0,解得x <2a 或x>0.所以,当a <0时,函数f (x )在区间⎝ ⎛⎭⎪⎫-∞,2a ,(0,+∞)上为增函数,在区间⎝ ⎛⎭⎪⎫2a ,0上为减函数. 10分 综上所述,当a =0时,f (x )在(-∞,0)上递减,在(0,+∞)上递增;当a >0时,f (x )在(-∞,0),⎝ ⎛⎭⎪⎫2a ,+∞上递减,在⎝ ⎛⎭⎪⎫0,2a 上递增; 当a <0时,f (x )在⎝ ⎛⎭⎪⎫2a ,0上递减,在⎝ ⎛⎭⎪⎫-∞,2a ,(0,+∞)上递增. 12分 热点2 利用导数研究函数的零点或曲线交点问题研究函数零点的本质就是研究函数的极值的正负,为此,我们可以通过讨论函数的单调性来解决,求解时应注重等价转化与数形结合思想的应用,其主要考查方式有:(1)确定函数的零点、图像交点的个数;(2)由函数的零点、图像交点的情况求参数的取值范围.(2016·北京高考节选)设函数f (x )=x 3+ax 2+bx +c .(1)求曲线y =f (x )在点(0,f (0))处的切线方程;(2)设a =b =4,若函数f (x )有三个不同零点,求c 的取值范围.[解] (1)由f (x )=x 3+ax 2+bx +c ,得f ′(x )=3x 2+2ax +b .2分因为f (0)=c ,f ′(0)=b ,所以曲线y =f (x )在点(0,f (0))处的切线方程为y =bx +c .4分 (2)当a =b =4时,f (x )=x 3+4x 2+4x +c ,所以f ′(x )=3x 2+8x +4. 6分令f ′(x )=0,得3x 2+8x +4=0,解得x =-2或x =-23.8分 f (x )与f ′(x )在区间(-∞,+∞)上的情况如下:所以,当c >0且c -3227<0时,存在x 1∈(-4,-2),x 2∈⎝ ⎭⎪⎫-2,-23,x 3∈⎝ ⎛⎭⎪⎫-23,0,使得f (x 1)=f (x 2)=f (x 3)=0. 由f (x )的单调性知,当且仅当c ∈⎝⎛⎭⎪⎫0,3227时,函数f (x )=x 3+4x 2+4x +c 有三个不同零点. 12分[规律方法] 用导数研究函数的零点,常用两种方法:一是用导数判断函数的单调性,借助零点存在性定理判断;二是将零点问题转化为函数图像的交点问题,利用数形结合来解决.[对点训练2] 设函数f (x )=ln x +m x ,m ∈R .(1)当m =e(e 为自然对数的底数)时,求f (x )的极小值;(2)讨论函数g (x )=f ′(x )-x 3零点的个数.【导学号:57962128】[解] (1)由题设,当m =e 时,f (x )=ln x +e x ,则f ′(x )=x -e x 2,由f ′(x )=0,得x =e.2分∴当x ∈(0,e),f ′(x )<0,f (x )在(0,e)上递减;当x ∈(e ,+∞),f ′(x )>0,f (x )在(e ,+∞)上递增,∴当x =e 时,f (x )取得极小值f (e)=ln e +e e =2,∴f (x )的极小值为2.4分 (2)由题设g (x )=f ′(x )-x 3=1x -m x 2-x 3(x >0),令g(x)=0,得m=-13x3+x(x>0). 5分设φ(x)=-13x3+x(x≥0),则φ′(x)=-x2+1=-(x-1)(x+1),当x∈(0,1)时,φ′(x)>0,φ(x)在(0,1)上递增;当x∈(1,+∞)时,φ′(x)<0,φ(x)在(1,+∞)上递减,∴x=1是φ(x)唯一的极值点,且是极大值点,因此x=1也是φ(x)的最大值点,∴φ(x)的最大值为φ(1)=23. 8分又φ(0)=0,结合y=φ(x)的图像(如图),可知①当m>23时,函数g(x)无零点;②当m=23时,函数g(x)有且只有一个零点;③当0<m<23时,函数g(x)有两个零点;④当m≤0时,函数g(x)有且只有一个零点.综上所述,当m>23时,函数g(x)无零点;当m=23或m≤0时,函数g(x)有且只有一个零点;当0<m<23时,函数g(x)有两个零点. 12分热点3利用导数研究不等式问题导数在不等式中的应用问题是每年高考的必考内容,且以解答题的形式考查,难度较大,属中高档题.归纳起来常见的命题角度有:(1)证明不等式;(2)不等式恒成立问题;(3)存在型不等式成立问题.☞角度1证明不等式(2015·全国卷Ⅰ)设函数f(x)=e2x-a ln x.(1)讨论f(x)的导函数f′(x)零点的个数;(2)证明:当a>0时,f(x)≥2a+a ln 2 a.[解](1)f(x)的定义域为(0,+∞),f′(x)=2e2x-ax(x>0).当a≤0时,f′(x)>0,f′(x)没有零点;当a>0时,设u(x)=e2x,v(x)=-ax,3分因为u(x)=e2x在(0,+∞)上递增,v(x)=-ax在(0,+∞)上递增,所以f′(x)在(0,+∞)上递增.又f′(a)>0,当b满足0<b<a4且b<14时,f′(b)<0,故当a>0时,f′(x)存在唯一零点. 5分(2)证明:由(1),可设f′(x)在(0,+∞)上的唯一零点为x0,当x∈(0,x0)时,f′(x)<0;当x∈(x0,+∞)时,f′(x)>0.故f(x)在(0,x0)上递减,在(x0,+∞)上递增,所以当x=x0时,f(x)取得最小值,最小值为f(x0). 9分由于2e2x0-ax0=0,所以f(x0)=a2x0+2ax0+a ln2a≥2a+a ln2a.故当a>0时,f(x)≥2a+a ln 2a. 12分☞角度2不等式恒成立问题(2016·全国卷Ⅱ)已知函数f(x)=(x+1)ln x-a(x-1).(1)当a=4时,求曲线y=f(x)在(1,f(1))处的切线方程;(2)若当x∈(1,+∞)时,f(x)>0,求a的取值范围.[解](1)f(x)的定义域为(0,+∞).1分当a=4时,f(x)=(x+1)ln x-4(x-1),f(1)=0,f′(x)=ln x+1x-3,f′(1)=-2. 3分故曲线y=f(x)在(1,f(1))处的切线方程为2x+y-2=0. 5分(2)当x∈(1,+∞)时,f(x)>0等价于ln x-a(x-1)x+1>0.设g(x)=ln x-a(x-1) x+1,则g′(x)=1x-2a(x+1)2=x2+2(1-a)x+1x(x+1)2,g(1)=0. 9分①当a≤2,x∈(1,+∞)时,x2+2(1-a)x+1≥x2-2x+1>0,故g′(x)>0,g(x)在(1,+∞)递增,因此g(x)>0;②当a>2时,令g′(x)=0得x1=a-1-(a-1)2-1,x2=a-1+(a-1)2-1.由x2>1和x1x2=1得x1<1,故当x∈(1,x2)时,g′(x)<0,g(x)在(1,x2)递减,因此g(x)<0.综上,a的取值范围是(-∞,2]. 12分☞角度3存在型不等式成立问题(2014·全国卷Ⅰ)设函数f(x)=a ln x+1-a2x2-bx(a≠1),曲线y=f(x)在点(1,f(1))处的切线斜率为0.(1)求b;(2)若存在x0≥1,使得f(x0)<aa-1,求a的取值范围.[解](1)f′(x)=ax+(1-a)x-b.由题设知f′(1)=0,解得b=1. 3分(2)f(x)的定义域为(0,+∞),由(1)知,f(x)=a ln x+1-a2x2-x,f′(x)=ax+(1-a)x-1=1-ax⎝⎛⎭⎪⎫x-a1-a(x-1). 5分①若a≤12,则a1-a≤1,故当x∈(1,+∞)时,f′(x)>0,f(x)在(1,+∞)递增.所以,存在x0≥1,使得f(x0)<aa-1的充要条件为f(1)<aa-1,即1-a2-1<aa-1,解得-2-1<a<2-1. 7分②若12<a<1,则a1-a>1,故当x∈⎝⎛⎭⎪⎫1,a1-a时,f′(x)<0,当x∈⎝⎛⎭⎪⎫a1-a,+∞时,f ′(x )>0,f (x )在⎝ ⎛⎭⎪⎫1,a 1-a 上递减,在⎝ ⎛⎭⎪⎫a 1-a ,+∞上递增. 9分 所以存在x 0≥1,使得f (x 0)<a a -1的充要条件为f ⎝ ⎛⎭⎪⎫a 1-a <a a -1. 而f ⎝ ⎛⎭⎪⎫a 1-a =a ln a 1-a +a 22(1-a )+a a -1>a a -1,所以不合题意. ③若a >1,则f (1)=1-a 2-1=-a -12<a a -1恒成立,所以a >1. 综上,a 的取值范围是(-2-1,2-1)∪(1,+∞). 12分[规律方法] 1.运用导数证明不等式,常转化为求函数的最值问题.2.不等式恒成立通常可以利用函数的单调性求出最值解决.解答相应的参数不等式,如果易分离参数,可先分离变量,构造函数,直接转化为函数的最值问题,避免参数的讨论.3.“恒成立”与“存在性”问题的求解是“互补”关系,即f (x )≥g (a )对于x ∈D 恒成立,应求f (x )的最小值;若存在x ∈D ,使得f (x )≥g (a )成立,应求f (x )的最大值.应特别关注等号是否成立问题.。

北师大版版高考数学一轮复习高考大题增分课立体几何中的高考热点问题教学案理解析版

北师大版版高考数学一轮复习高考大题增分课立体几何中的高考热点问题教学案理解析版

错误![命题解读] 立体几何是高考的重要内容,从近五年全国卷高考试题来看,立体几何每年必考一道解答题,难度中等,主要采用“论证与计算”相结合的模式,即首先利用定义、定理、公理等证明空间的线线、线面、面面平行或垂直,再利用空间向量进行空间角的计算,考查的热点是平行与垂直的证明、二面角的计算,平面图形的翻折,探索存在性问题,突出三大能力:空间想象能力、运算能力、逻辑推理能力与两大数学思想:转化化归思想、数形结合思想的考查.空间的平行与垂直及空间角的计算空间点、线、面的位置关系通常考查平行、垂直关系的证明,一般出现在解答题的第(1)问,解答题的第(2)问常考查求空间角,一般都可以建立空间直角坐标系,用空间向量的坐标运算求解.【例1】(2017·全国卷Ⅱ)如图,四棱锥P­ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC=错误!AD,∠BAD=∠ABC=90°,E是PD的中点.(1)证明:直线CE∥平面PAB;(2)点M在棱PC上,且直线BM与底面ABCD的夹角为45°,求二面角M­AB­D的余弦值.[解] (1)证明:如图,取PA的中点F,连接EF,BF.因为E是PD的中点,所以EF∥AD,EF=错误!AD.由∠BAD=∠ABC=90°,得BC∥AD.又BC=错误!AD,所以EF綊BC,四边形BCEF是平行四边形,所以CE∥BF.又BF平面PAB,CE平面PAB,故CE∥平面PAB.(2)由已知得BA⊥AD,以A为坐标原点,错误!的方向为x轴正方向,|错误!|为单位长,建立如图所示的空间直角坐标系A­xyz,则A(0,0,0),B(1,0,0),C(1,1,0),P(0,1,错误!),错误!=(1,0,—错误!),错误!=(1,0,0).设M(x,y,z)(0<x<1),则错误!=(x—1,y,z),错误!=(x,y—1,z—错误!).因为BM与底面ABCD的夹角为45°,而n=(0,0,1)是底面ABCD的法向量,所以|cos〈错误!,n〉|=sin 45°,即错误!=错误!,即(x—1)2+y2—z2=0.1又M在棱PC上,设错误!=λ错误!,则x=λ,y=1,z=错误!—错误!λ.2由12解得错误!(舍去),或错误!所以M错误!,从而错误!=错误!.设m=(x0,y0,z0)是平面ABM的法向量,则错误!即错误!所以可取m=(0,—错误!,2).于是cos〈m,n〉=错误!=错误!.因此二面角M­AB­D的余弦值为错误!.[规律方法] (1)证明空间线线、线面、面面的位置关系,常借助理论证明,必要时可依据题设条件添加辅助线.(2)求解空间角的问题,常借助坐标法,即建立恰当的坐标系,通过求解相应平面的法向量、直线的方向向量,利用向量的夹角公式求解便可,但需注意向量夹角与待求角的区别与联系.1111G分别为AA1,AC,A1C1,BB1的中点,AB=BC=错误!,AC=AA1=2.(1)求证:AC⊥平面BEF;(2)求二面角B­CD­C1的余弦值;(3)证明:直线FG与平面BCD相交.[解] (1)证明:在三棱柱ABC­A1B1C1中,因为CC1⊥平面ABC,所以四边形A1ACC1为矩形.又E,F分别为AC,A1C1的中点,所以AC⊥EF.因为AB=BC,所以AC⊥BE.所以AC⊥平面BEF.(2)由(1)知AC⊥EF,AC⊥BE,EF∥CC1.又CC1⊥平面ABC,所以EF⊥平面ABC.因为BE平面ABC,所以EF⊥BE.如图,建立空间直角坐标系E­xyz.由题意得B(0,2,0),C(—1,0,0),D(1,0,1),F(0,0,2),G(0,2,1).所以错误!=(—1,—2,0),错误!=(1,—2,1).设平面BCD的法向量为n=(x0,y0,z0),则错误!即错误!令y0=—1,则x0=2,z0=—4.于是n=(2,—1,—4).又因为平面CC1D的法向量为错误!=(0,2,0),所以cos〈n,错误!〉=错误!=—错误!.由题知二面角B­CD­C1为钝角,所以其余弦值为—错误!.(3)证明:由(2)知平面BCD的法向量为n=(2,—1,—4),错误!=(0,2,—1).因为n·错误!=2×0+(—1)×2+(—4)×(—1)=2≠0,所以直线FG与平面BCD相交.立体几何中的探索性问题此类试题一般以解答题形式呈现,常涉及线面平行与垂直位置关系的探索或空间角的计算问题,是高考命题的热点,一般有两种考查形式:(1)根据条件作出判断,再进一步论证;(2)利用空间向量,先假设存在点的坐标,再根据条件判断该点的坐标是否存在.【例2】(2016·北京高考)如图,在四棱锥P­ABCD中,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,AB⊥AD,AB=1,AD=2,AC=CD=错误!.(1)求证:PD⊥平面PAB;(2)求直线PB与平面PCD夹角的正弦值;(3)在棱PA上是否存在点M,使得BM∥平面PCD?若存在,求错误!的值;若不存在,说明理由.[解] (1)证明:因为平面PAD⊥平面ABCD,AB⊥AD,所以AB⊥平面PAD,所以AB⊥PD.又因为PA⊥PD,所以PD⊥平面PAB.(2)取AD的中点O,连接PO,CO.因为PA=PD,所以PO⊥AD.又因为PO平面PAD,平面PAD⊥平面ABCD,所以PO⊥平面ABCD.因为CO平面ABCD,所以PO⊥CO.因为AC=CD,所以CO⊥AD.如图,建立空间直角坐标系O­xyz.由题意得,A(0,1,0),B(1,1,0),C(2,0,0),D(0,—1,0),P(0,0,1).设平面PCD的法向量为n=(x,y,z),则错误!即错误!令z=2,则x=1,y=—2.所以n=(1,—2,2).又错误!=(1,1,—1),所以cos〈n,错误!〉=错误!=—错误!.所以直线PB与平面PCD夹角的正弦值为错误!.(3)设M是棱PA上一点,则存在λ∈[0,1]使得错误!=λ错误!.因此点M(0,1—λ,λ),错误!=(—1,—λ,λ).因为BM平面PCD,所以要使BM∥平面PCD,当且仅当错误!·n=0,即(—1,—λ,λ)·(1,—2,2)=0.解得λ=错误!.所以在棱PA上存在点M使得BM∥平面PCD,此时错误!=错误!.[规律方法] 解立体几何中探索性问题的方法(1)通常假设题中的数学对象存在(或结论成立),然后在这个前提下进行逻辑推理;(2)若能推导出与条件吻合的数据或事实,说明假设成立,即存在,并可进一步证明;(3)若推导出与条件或实际情况相矛盾的结论,则说明假设不成立,即不存在.易错警示:探索线段上是否存在点时,注意三点共线条件的应用.11111AB=BC=3错误!,点M,N分别为棱AB,BC上的动点,且AM=BN,D为B1C1的中点.(1)当点M,N运动时,能否出现AD∥平面B1MN的情况,请说明理由;(2)若BN=错误!,求直线AD与平面B1MN夹角的正弦值.[解] (1)当M,N分别为AB,BC的中点时,AD∥平面B1MN.证明如下:连接CD,当M,N 分别为AB,BC的中点时,CN∥B1D,且CN=B1D=错误!BC,∴四边形B1DCN为平行四边形,∴DC∥B1N.又DC平面B1MN,B1N平面B1MN,∴DC∥平面B1MN.又易知AC∥MN,AC平面B1MN,MN平面B1MN,∴AC∥平面B1MN.∵DC∩AC=C,∴平面ADC∥平面B1MN.∵AD平面ADC,∴AD∥平面B1MN.(2)如图,设AC的中点为O,作OE⊥OA,以O为原点,OA,OE,OB所在直线分别为x,y,z轴建立空间直角坐标系,∵BN=错误!,AB=BC=3错误!,∴AC=6.∴M(2,0,1),N(—1,0,2),A(3,0,0),B1(0,—4,3),D错误!,∴错误!=(—3,0,1),错误!=(2,4,—2).设平面B1MN的法向量为n=(x,y,z),则有错误!即错误!可得平面B1MN的一个法向量为n=(1,1,3).又错误!=错误!,∴|cos〈n,错误!〉|=错误!=错误!.设直线AD与平面B1MN的夹角为α,则sin α=|cos〈n,错误!〉|=错误!.平面图形的翻折问题将平面图形折叠成空间几何体,并以此为载体考查点、线、面间的位置关系及有关几何量的计算是近年高考的热点,注重考查空间想象能力、知识迁移能力和转化思想.试题以解答题为主要呈现形式,中档难度.【例3】(本题满分12分)(2018·全国卷Ⅰ)如图,四边形错误!1,E,F分别为AD,BC的中点,以错误!2,使点C到达点P的位置,且PF⊥BF.(1)证明:错误!3;(2)求错误!4.[信息提取] 看到1ABCD为正方形,想到正方形中的边角关系;看到2把△DFC折起,想到折叠问题中的“变”与“不变量”;看到3想到面面垂直的判定定理,想到线面垂直,想到线线垂直;看到4想到线面角的求法,想到如何建系求直线DP的方向向量和平面ABFD的法向量.[规范解答] (1)证明:由已知可得,BF⊥PF,BF⊥EF,所以BF⊥平面PEF.·2分又BF平面ABFD,所以平面PEF⊥平面ABFD.·3分(2)作PH⊥EF,垂足为H.由(1)得,PH⊥平面ABFD.·4分以H为坐标原点,错误!的方向为y轴正方向,|错误!|为单位长,建立如图所示的空间直角坐标系H­xyz.5分由(1)可得,DE⊥PE.又DP=2,DE=1,所以PE=错误!.又PF=1,EF=2,故PE⊥PF. ·6分可得PH=错误!,EH=错误!.7分则H(0,0,0),P错误!,D错误!,错误!=错误!,错误!=错误!为平面ABFD的法向量. ·10分设DP与平面ABFD的夹角为θ,则sin θ=错误!=错误!=错误!.·11分即DP与平面ABFD夹角的正弦值为错误!.·12分[易错与防范]易错点防范措施不能恰当的建立坐标系由(1)的结论入手,结合面面垂直的性质及正方形的性质建立空间直角坐标系.建系后写不出相应点的坐标结合折叠前后的不变量,注意题设条件中的隐含,如PF⊥平面PED,即可求出PH,从而求出相应点的坐标.况,一般地翻折后还在同一个平面上的性质不发生变化,不在同一个平面上的性质发生变化.(2019·湖南六校联考)如图,梯形EFBC中,EC∥FB,EF⊥BF,BF=错误!EC=4,EF=2,A是BF的中点,AD⊥EC,D在EC上,将四边形AFED沿AD折起,使得平面AFED⊥平面ABCD,点M是线段EC上异于E,C的任意一点.(1)当点M是EC的中点时,求证:BM∥平面AFED;(2)当平面BDM与平面ABF所成的锐二面角的正弦值为错误!时,求三棱锥E­BDM的体积.[解] (1)法一:取ED的中点N,连接MN,AN,∵点M是EC的中点,∴MN∥DC,且MN=错误!DC,而AB∥DC,且AB=错误!DC,∴MN綊AB,即四边形ABMN是平行四边形,∴BM∥AN,又BM平面AFED,AN平面AFED,∴BM∥平面AFED.法二:∵AD⊥CD,AD⊥ED,平面AFED⊥平面ABCD,平面AFED∩平面ABCD=AD,∴DA,DC,DE两两垂直.以DA,DC,DE所在直线分别为x,y,z轴建立如图所示的空间直角坐标系,则D(0,0,0),A(2,0,0),B(2,2,0),C(0,4,0),E(0,0,2),M(0,2,1),∴错误!=(—2,0,1),又平面AFED的一个法向量错误!=(0,4,0),错误!·错误!=0,∴错误!⊥错误!,又BM平面AFED,∴BM∥平面AFED.(2)依题意设点M错误!(0<t<4),设平面BDM的法向量n1=(x,y,z),则错误!·n1=2x+2y=0,错误!·n1=ty+错误!z=0,令y=—1,则n1=错误!,取平面ABF的一个法向量n2=(1,0,0),∵|cos〈n1,n2〉|=错误!=错误!=错误!,解得t=2.∴M(0,2,1)为EC的中点,S△DEM=错误!S△CDE=2,又点B到平面DEM的距离h=2,∴V E­BDM=V B­DEM=错误!·S△DEM·h=错误!.[大题增分专训]1.(2019·湖北八市联考)如图,在R t△ABC中,AB=BC=3,点E,F分别在线段AB,AC上,且EF∥BC,将△AEF沿EF折起到△PEF的位置,使得二面角P­EF­B的大小为60°.(1)求证:EF⊥PB;(2)当点E为线段AB的靠近B点的三等分点时,求直线PC与平面PEF夹角θ的正弦值.[解] (1)证明:∵AB=BC=3,BC⊥AB,EF∥BC,∴EF⊥AB,翻折后垂直关系没变,有EF⊥PE,EF⊥BE,且PE∩BE=E,∴EF⊥平面PBE,∴EF⊥PB.(2)∵EF⊥PE,EF⊥BE,∴∠PEB是二面角P­EF­B的平面角,∴∠PEB=60°,又PE=2,BE=1,由余弦定理得PB=错误!,∴PB2+EB2=PE2,∴PB⊥EB,∴PB,BC,EB两两垂直.以B为坐标原点,BC所在直线为x轴,BE所在直线为y轴,BP所在直线为z轴,建立如图所示的空间直角坐标系,则P(0,0,错误!),C(3,0,0),E(0,1,0),F(2,1,0),∴错误!=(0,1,—错误!),错误!=(2,1,—错误!),设平面PEF的法向量为n=(x,y,z),由错误!即错误!令y=错误!,则z=1,x=0,可得n=(0,错误!,1),又错误!=(3,0,—错误!),∴sin θ=错误!=错误!.故直线PC与平面PEF夹角θ的正弦值为错误!.2.(2019·西宁模拟)底面为菱形的直棱柱ABCD­A1B1C1D1中,E,F分别为棱A1B1,A1D1的中点.(1)在图中作出一个平面α,使得BDα,且平面AEF∥α;(不必给出证明过程,只要求作出α与直棱柱ABCD­A1B1C1D1的截面)(2)若AB=AA1=2,∠BAD=60°,求平面AEF与平面α的距离D.[解] (1)如图,取B1C1的中点M,D1C1的中点N,连接BM,MN,ND,则平面BMND即为所求平面α.(2)如图,连接AC交BD于点O,∵在直棱柱ABCD­A1B1C1D1中,底面为菱形,∴AC⊥BD,∴以点O为坐标原点,分别以DB,AC所在直线为x轴,y轴,过点O且垂直于平面ABCD的直线为z轴建立如图所示空间直角坐标系,又∵直棱柱ABCD­A1B1C1D1中所有棱长为2,∠BAD=60°,∴A(0,—错误!,0),B(1,0,0),C(0,错误!,0),D(—1,0,0),A1(0,—错误!,2),B1(1,0,2),D1(—1,0,2),∴E错误!,F错误!,∴错误!=错误!,错误!=错误!,错误!=(1,错误!,0),设平面AEF的法向量n=(x,y,z),则错误!即错误!令y=4错误!,得n=(0,4错误!,—3),|n|=错误!,∴点B到平面AEF的距离h=错误!=错误!=错误!,∴平面AEF与平面α的距离d=错误!.3.如图,在三棱锥P­ABC中,△PAC为正三角形,M为线段PA的中点,∠CAB=90°,AC=AB,平面PAB⊥平面PAC.(1)求证:平面PAC⊥平面ABC;(2)若Q是棱AB上一点,V Q­BMC=错误!V P­ABC,求二面角Q­MC­A的余弦值.[解] (1)证明:因为△PAC为正三角形,M为线段PA的中点,所以CM⊥PA,又平面PAC⊥平面PAB,平面PAC∩平面PAB=PA,所以CM⊥平面PAB.因为AB平面PAB,所以CM⊥AB,又CA⊥AB,CM∩CA=C,所以AB⊥平面PAC.又AB平面ABC,所以平面PAC⊥平面ABC.(2)连接PQ,由题意及(1)得V Q­BMC=V M­BQC=错误!V P­BQC=错误!V P­ABC,所以S△QBC=错误!S△ABC,所以Q为线段AB的中点.取AC的中点为O,连接OP,以O为坐标原点,错误!,错误!,错误!的方向分别为x轴,y轴,z轴的正方向建立如图所示的空间直角坐标系O­xyz,设AC=AB=2,则A(1,0,0),B(1,2,0),Q(1,1,0),C(—1,0,0),M错误!,则错误!=错误!,错误!=(2,1,0),错误!=(0,2,0),易知平面AMC的一个法向量为错误!=(0,2,0).设平面QMC的法向量为n=(x,y,z),则错误!即错误!令x=1,则n=(1,—2,—错误!),由图可知二面角Q­MC­A为锐角,故所求二面角的余弦值为|cos〈n,错误!〉|=错误!=错误!=错误!。

高三数学一轮专题4 高考中的立体几何问题(含解析)北师

高三数学一轮专题4 高考中的立体几何问题(含解析)北师

专题四 高考中的立体几何问题1.如图,四棱锥P -ABCD 中,PA ⊥底面ABCD ,AB ⊥AD ,点E 在线段AD 上,且CE ∥AB .(1)求证:CE ⊥平面PAD ;(2)若PA =AB =1,AD =3,CD =2,∠CDA =45°,求四棱锥P -ABCD 的体积.[解析] (1)∵PA ⊥底面ABCD ,CE 平面ABCD∴CE ⊥PA ,又∵AB ⊥AD ,CE ∥AB .∴CE ⊥AD .又∵PA ∩AD =A ,∴CE ⊥平面PAD .(2)由(1)可知CE ⊥AD .在Rt △ECD 中,DE =CD·cos45°=1,CE =CD·sin45°=1.又∵AB =CE =1,AB ∥CE ,所以四边形ABCE 为矩形.∴S 四边形ABCD =S 矩形ABCE +S △CDE =AB·AE +12CE·DE=1×2+12×1×1=52.又PA ⊥底面ABCD ,PA =1所以V 四棱锥p -ABCD =13S 四边形ABCD×PA =13×52×1=56.2.(2015·潍坊模拟)如图,在四棱锥P -ABCD 中,平面PAD ⊥平面ABCD ,AB =AD ,∠BAD =60°,E 、F 分别是AP 、AD 的中点.求证:(1)直线EF ∥平面PCD ;(2)平面BEF ⊥平面PAD .[证明] (1)在△PAD 中,因为E 、F 分别为AP 、AD 的中点,所以EF ∥PD .又因为E F ⃘平面PCD ,PD 平面PCD .所以直线EF ∥平面PCD .(2)连结BD .因为AB =AD ,∠BAD =60°,所以△ABD 为正三角形.因为F 是AD 的中点,所以BF ⊥AD .因为平面PAD ⊥平面ABCD ,BF平面ABCD,平面PAD∩平面ABCD=AD,所以BF⊥平面PAD.又因为BF平面BEF,所以平面BEF⊥平面PAD.3.如图,在四棱锥P-ABCD中,AB∥CD,AB⊥AD,CD=2AB,平面PAD⊥底面ABCD,PA⊥AD,E和F分别是CD、PC的中点,求证:(1)PA⊥底面ABCD;(2)BE∥平面PAD;(3)平面BEF⊥平面PCD.[解析](1)因为平面PAD⊥底面ABCD,且PA垂直于这两个平面的交线AD,所以PA⊥底面ABCD.(2)因为AB∥CD,CD=2AB,E为CD的中点,所以AB∥DE,且AB=DE.所以四边形ABED为平行四边形.所以BE∥AD.又因为B E⃘平面PAD,AD平面PAD,所以BE ∥平面PAD .(3)因为AB ⊥AD ,而且四边形ABED 为平行四边形,所以BE ⊥CD ,AD ⊥CD .由(1)知PA ⊥底面ABCD .所以PA ⊥CD .所以CD ⊥平面PAD .所以CD ⊥PD .因为E 和F 分别是CD 和PC 的中点,所以PD ∥EF.所以CD ⊥EF ,又因为CD ⊥BE ,BE ∩EF =E ,所以CD ⊥平面BEF.所以平面BEF ⊥平面PCD .4.如图,在几何体P -ABCD 中,四边形ABCD 为矩形,PA ⊥平面ABCD ,AB =PA =2.(1)当AD =2时,求证:平面PBD ⊥平面PAC ;(2)若PC 与AD 所成的角为45°,求几何求P -ABCD 的体积.[解析] (1)证明:当AD =2时,四边形ABCD 是正方形,则BD ⊥AC .∵PA ⊥平面ABCD ,BD 平面ABCD ,∴PA ⊥BD .又∵PA ∩AC =A ,∴BD ⊥平面PAC .∵BD 平面PBD ,∴平面PBD ⊥平面PAC .(2)解:PC 与AD 成45°角,AD ∥BC ,则∠PCB =45°.∵BC ⊥AB ,BC ⊥PA ,AB ∩PA =A ,∴BC ⊥平面PAB ,PB 平面PAB .∴BC ⊥PB .∴∠CPB =90°-45°=45°.∴BC =PB =2 2.∴几何体P -ABCD 的体积为13×(2×22)×2=823.1.(2014·四川高考)在如图所示的多面体中,四边形ABB1A1和ACC1A1都为矩形.(1)若AC ⊥BC ,证明:直线BC ⊥平面ACC1A1;(2)设D ,E 分别是线段BC ,CC1的中点,在线段AB 上是否存在一点M ,使直线DE ∥平面A1MC ?请证明你的结论.[解析] (1)因为四边形ABB1A1和ACC1A1都是矩形,所以AA1⊥AB ,AA1⊥AC .因为AB ,AC 为平面ABC 内两条相交直线,所以AA1⊥平面ABC .因为直线BC 平面ABC ,所以AA1⊥BC .又由已知,AC ⊥BC ,AA1,AC 为平面ACC1A1内两条相交直线,所以BC ⊥平面ACC1A1.(2)取线段AB 的中点M ,连接A1M ,MC ,A1C ,AC1,设O 为A1C ,AC1的交点. 由已知,O 为AC1的中点.连接MD ,OE ,则MD ,OE 分别为△ABC ,△ACC1的中位线,所以,MD 綊12AC ,OE 綊12AC ,因此MD綊OE.连接OM,从而四边形MDEO为平行四边形,则DE∥MO.因为直线D E⃘平面A1MC,MO平面A1MC.所以直线DE∥平面A1MC.即线段AB上存在一点M(线段AB的中点),使直线DE∥平面A1MC.2.如图,在四棱台ABCD-A1B1C1D1中,D1D⊥平面ABCD,底面ABCD是平行四边形,AB=2AD,AD=A1B1,∠BAD=60°.(1)证明:AA1⊥BD;(2)证明:CC1∥平面A1BD.[解析](1)∵DD1⊥平面ABCD,BD平面ABCD∴DD1⊥BD,又∵AB=2AD且∠BAD=60°∴由余弦定理得BD2=AB2+AD2-2AB·ADcos∠BAD即BD=3AD,∴AD2+BD2=AB2,∴BD⊥AD又∵AD∩DD1=D∴BD⊥平面ADD1A1,又∵AA1平面ADD1A1,∴BD⊥AA1(2)连接AC,交BD于M,连接A1M,A1C1,∵底面ABCD 是平行四边形,∴AM =CM =12AC又∵AB =2AD =2A1B1∴A1G 綊CM ,即四边形A1MCC1是平行四边形;∴CC1∥AM1,又∵CC 1⃘平面A1BD ,A1M 平面A1BD∴CC1∥平面A1BD .3.(文)(2015·临沂模拟)如图,在边长为3的正三角形ABC 中,G ,F 为边AC 的三等分点,E ,P 分别是AB ,BC 边上的点,满足AE =CP =1,今将△BEP ,△CFP 分别沿EP ,FP 向上折起,使边BP 与边CP 所在的直线重合,B ,C 折后的对应点分别记为B1,C1.(1)求证:C1F ∥平面B1GE ;(2)求证:PF ⊥平面B1EF.[解析] (1)取EP 的中点D ,连接FD ,C1D .因为BC =3,CP =1,所以折起后C1为B1P 的中点.所以在△B1EP 中,DC1∥EB1.又因为AB =BC =AC =3,AE =CP =1,所以EP AC =EB AB ,所以EP =2且EP ∥GF.因为G ,F 为AC 的三等分点,所以GF =1.又因为ED =12EP =1,所以GF =ED ,所以四边形GEDF 为平行四边形.所以FD ∥GE.又因为DC1∩FD =D ,GE ∩B1E =E ,所以平面DFC1∥平面B1GE.又因为C1F 平面DFC1, 所以C1F ∥平面B1GE.(2)连接EF ,B1F ,由已知得∠EPF =60°,且FP =1,EP =2,由余弦定理,得EF2=12+22-2×1×2×cos60°=3,所以FP2+EF2=EP2,可得PF ⊥EF.因为B1C1=PC1=1,C1F =1,得FC1=B1C1=PC1,所以△PB1F 的中线C1F =12PB1,可得△PB1F 是直角三角形,即B1F ⊥PF.因为EF ∩B1F =F ,EF ,B1F 平面B1EF ,所以PF ⊥平面B1EF.(理)(2014·浙江高考)如图,在四棱锥A -BCDE 中,平面ABC ⊥平面BCDE ,∠CDE =∠BED =90°,AB =CD =2,DE =BE =1,AC = 2.(1)证明:DE ⊥平面ACD ;(2)求二面角B -AD -E 的大小.[解析] (1)在平面四边形BCDE 中,BC =2,在三角形ABC 中,AB=2,BC =2,AC = 2.根据勾股定理逆定理.∴AC ⊥BC .∵平面ABC ⊥平面BCOE ,而平面ABC ∩平面BCDE =BCAC ⊥BC ,∴AC ⊥平面BCDE ,∴AC ⊥DE ,又∵AC ⊥DE ,DE ⊥DC ,∴DE ⊥平面ACD .(2)由(1)知分别以CD →、CA →为x 轴、z 轴正方向.以过C 平行DE →为y 轴正向建立坐标系.则B(1,1,0),A(0,0,2),D(2,0,0),E(2,1,0)∴AB →=(1,1,-2),AD →=(2,0,-2),DE →=(0,1,0)设平面ABD 法向量n1=(x1,y1,z1),由n1·DE →=n1·AD →=0,解得n1=(1,1,2)设平面ADE 法向量n2=(x2,y2,z2),则n2·AE →=n2·AD →=0,解得:n2=(1,0,2)设平面ABD 与平面ADE 夹角为θ,cosθ=|cos 〈n1,n2〉|=1+0+22×3=32π∴平面ABD与平面ADE的二面角平面角为6.。

2019版高考数学大一轮复习 第八章 立体几何初步 专题探究课四 高考中立体几何问题的热点题型学案 北师大版

2019版高考数学大一轮复习 第八章 立体几何初步 专题探究课四 高考中立体几何问题的热点题型学案 北师大版

专题探究课四 高考中立体几何问题的热点题型高考导航 1.立体几何是高考考查的重要内容,每年的高考试题中基本上都是“一大一小”两题,即一个解答题,一个选择题或填空题,题目难度中等偏下;2.高考试题中的选择题或填空题主要考查学生的空间想象能力及计算能力,解答题则主要采用“论证与计算”相结合的模式,即首先是利用定义、定理、公理等证明空间的线线、线面、面面平行或垂直,再利用空间向量进行空间角的计算,重在考查学生的逻辑推理能力及计算能力,热点题型主要有平面图形的翻折、探索性问题等;3.解决立体几何问题要用的数学思想方法主要有:(1)转化与化归(空间问题转化为平面问题);(2)数形结合(根据空间位置关系利用向量转化为代数运算).热点一 空间点、线、面的位置关系及空间角的计算(教材VS 高考)空间点、线、面的位置关系通常考查平行、垂直关系的证明,一般出现在解答题的第(1)问,解答题的第(2)问常考查求空间角,一般都可以建立空间直角坐标系,用空间向量的坐标运算求解.【例1】 (满分12分)(2017·全国Ⅱ卷)如图,四棱锥P -ABCD 中,侧面PAD 为等边三角形且垂直于底面ABCD ,AB =BC =12AD ,∠BAD =∠ABC =90°,E 是PD 的中点.(1)证明:直线CE ∥平面PAB ;(2)点M 在棱PC 上,且直线BM 与底面ABCD 所成角为45°,求二面角M -AB -D 的余弦值. 教材探源 本题源于教材选修2-1P109例4,在例4的基础上进行了改造,删去了例4的第(2)问,引入线面角的求解.满分解答 (1)证明 取PA 的中点F ,连接EF ,BF , 因为E 是PD 的中点,所以EF ∥AD ,EF =12AD ,1分(得分点1)由∠BAD =∠ABC =90°得BC ∥AD ,又BC =12AD ,所以EF 綊BC ,四边形BCEF 是平行四边形,CE ∥BF , 3分(得分点2)又BF 平面PAB ,CE 平面PAB , 故CE ∥平面PAB .4分(得分点3)(2)解 由已知得BA ⊥AD ,以A 为坐标原点,AB →的方向为x 轴正方向,|AB →|为单位长度,建立如图所示的空间直角坐标系A -xyz ,则A (0,0,0),B (1,0,0),C (1,1,0),P (0,1,3),PC →=(1,0,-3),AB →=(1,0,0).设M (x ,y ,z )(0<x <1),则BM →=(x -1,y ,z ),PM →=(x ,y -1,z -3).6分(得分点4)因为BM 与底面ABCD 所成的角为45°, 而n =(0,0,1)是底面ABCD 的一个法向量, 所以|cos 〈BM →,n 〉|=sin 45°,|z |(x -1)2+y 2+z2=22, 即(x -1)2+y 2-z 2=0.① 又M 在棱PC 上,设PM →=λPC →,则x =λ,y =1,z =3-3λ.②由①,②解得⎩⎪⎨⎪⎧x =1+22,y =1,z =-62(舍去),⎩⎪⎨⎪⎧x =1-22,y =1,z =62,所以M ⎝ ⎛⎭⎪⎫1-22,1,62,从而AM →=⎝⎛⎭⎪⎫1-22,1,62. 8分(得分点5)设m =(x 0,y 0,z 0)是平面ABM 的法向量,则 ⎩⎪⎨⎪⎧m ·AM →=0,m ·AB →=0,即⎩⎨⎧(2-2)x 0+2y 0+6z 0=0,x 0=0, 所以可取m =(0,-6,2).10分(得分点6)于是cos 〈m ,n 〉=m ·n |m ||n |=105.因此二面角M -AB -D 的余弦值为105. 12分(得分点7)❶得步骤分:抓住得分点的解题步骤,“步步为赢”,在第(1)问中,作辅助线→证明线线平行→证明线面平行;第(2)问中,建立空间直角坐标系→根据直线BM 和底面ABCD 所成的角为45°和点M 在直线PC 上确定M 的坐标→求平面ABM 的法向量→求二面角M -AB -D 的余弦值. ❷得关键分:(1)作辅助线;(2)证明CE ∥BF ;(3)求相关向量与点的坐标;(4)求平面的法向量;(5)求二面角的余弦值,都是不可少的过程,有则给分,无则没分.❸得计算分:解题过程中计算准确是得满分的根本保证,如(得分点4),(得分点5),(得分点6),(得分点7).利用向量求空间角的步骤第一步:建立空间直角坐标系. 第二步:确定点的坐标.第三步:求向量(直线的方向向量、平面的法向量)坐标. 第四步:计算向量的夹角(或函数值). 第五步:将向量夹角转化为所求的空间角.第六步:反思回顾,查看关键点、易错点和答题规范.【训练1】 (2018·渭南模拟)在四棱锥P -ABCE 中,PA ⊥底面ABCE ,CD ⊥AE ,AC 平分∠BAD ,G 为PC 的中点,PA =AD =2,BC =DE ,AB =3,CD =23,F ,M 分别为BC ,EG 上一点,且AF ∥CD .(1)求EMMG的值,使得CM ∥平面AFG ;(2)求直线CE 与平面AFG 所成角的正弦值. 解 (1)在Rt △ADC 中,∠ADC 为直角, tan ∠CAD =232=3,则∠CAD =60°,又AC 平分∠BAD ,∴∠BAC =60°, ∵AB =3,AC =2AD =4,∴在△ABC 中,由余弦定理可得BC =13, ∴DE =13. 连接DM , 当EM MG =ED DA =132时,AG ∥DM , 又AF ∥CD ,AF ∩AG =A , ∴平面CDM ∥平面AFG , 又CM 平面CDM , ∴CM ∥平面AFG .(2)分别以DA ,AF ,AP 为x ,y ,z 轴的正方向,A 为原点,建立空间直角坐标系A -xyz ,如图所示,则A (0,0,0),C (-2,23,0),D (-2,0,0),P (0,0,2),E (-2-13,0,0),可得G (-1,3,1),则AG →=(-1,3,1),CD →=(0,-23,0), CE →=(-13,-23,0).设平面AFG 的法向量为n =(x ,y ,z ),∵AF ∥CD , ∴⎩⎪⎨⎪⎧AG →·n =0,CD →·n =0,即⎩⎨⎧-x +3y +z =0,-23y =0,令x =1,得平面AFG 的一个法向量为n =(1,0,1).∴直线CE 与平面AFG 所成角的正弦值为|cos 〈CE →,n 〉|=1313+12·2=2610.热点二 立体几何中的探索性问题此类试题一般以解答题形式呈现,常涉及线、面平行、垂直位置关系的探究或空间角的计算问题,是高考命题的热点,一般有两种解决方式: (1)根据条件作出判断,再进一步论证;(2)利用空间向量,先假设存在点的坐标,再根据条件判断该点的坐标是否存在.【例2】 如图所示,四棱锥P -ABCD 的底面是边长为1的正方形,PA ⊥CD ,PA =1,PD =2,E 为PD 上一点,PE =2ED .(1)求证:PA ⊥平面ABCD ;(2)在侧棱PC 上是否存在一点F ,使得BF ∥平面AEC ?若存在,指出F 点的位置,并证明;若不存在,说明理由.(1)证明 ∵PA =AD =1,PD =2, ∴PA 2+AD 2=PD 2,即PA ⊥AD .又PA ⊥CD ,AD ∩CD =D ,AD ,CD 平面ABCD , ∴PA ⊥平面ABCD .(2)解 存在.以A 为坐标原点,AB ,AD ,AP 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系.则A (0,0,0),B (1,0,0),C (1,1,0),P (0,0,1),E ⎝ ⎛⎭⎪⎫0,23,13,所以AC →=(1,1,0),AE →=⎝ ⎛⎭⎪⎫0,23,13.设平面AEC 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·AC →=0,n ·AE →=0,即⎩⎪⎨⎪⎧x +y =0,2y +z =0,令y =1,则n =(-1,1,-2).假设侧棱PC 上存在一点F ,且CF →=λCP →(0≤λ≤1),使得BF ∥平面AEC ,则BF →·n =0.又∵BF →=BC →+CF →=(0,1,0)+(-λ,-λ,λ)=(-λ,1-λ,λ), ∴BF →·n =λ+1-λ-2λ=0,∴λ=12,∴存在点F ,使得BF ∥平面AEC ,且F 为PC 的中点.探究提高 (1)对于存在判断型问题的求解,应先假设存在,把要成立的结论当作条件,据此列方程或方程组,把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等.(2)对于位置探究型问题,通常借助向量,引进参数,综合已知和结论列出等式,解出参数. 【训练2】 (2018·河北“五个一”名校二模)如图,在梯形ABCD 中,AB ∥CD ,AD =DC =CB =1,∠BCD =120°,四边形BFED 是以BD 为直角腰的直角梯形,DE =2BF =2,平面BFED ⊥平面ABCD . (1)求证:AD ⊥平面BFED ;(2)在线段EF 上是否存在一点P ,使得平面PAB 与平面ADE 所成的锐二面角的余弦值为5728?若存在,求出点P 的位置;若不存在,说明理由. (1)证明 在梯形ABCD 中,∵AB ∥CD ,AD =DC =CB =1,∠BCD =120°, ∴AB =2,在△DCB 中,由余弦定理得BD 2=DC 2+BC 2-2DC ·BC cos ∠BCD =3, ∴AB 2=AD 2+BD 2,∴BD ⊥AD .∵平面BFED ⊥平面ABCD ,平面BFED ∩平面ABCD =BD ,AD 平面ABCD ,∴AD ⊥平面BFED . (2)解 存在.理由如下: 假设存在满足题意的点P , ∵AD ⊥平面BFED ,∴AD ⊥DE ,以D 为原点,DA ,DB ,DE 所在直线分别为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系,则D (0,0,0),A (1,0,0),B (0,3,0),E (0,0,2),F (0,3,1),则EF →=(0,3,-1),AB →=(-1,3,0),AE →=(-1,0,2),设P 是线段上一点,则存在λ∈[0,1],使得EP →=λEF →, 则EP →=λEF →=λ(0,3,-1), 在△AEP 中,AP →=AE →+EP →=AE →+λEF →=(-1,0,2)+λ(0,3,-1)=(-1,3λ,2-λ). 取平面ADE 的一个法向量为n =(0,1,0), 设平面PAB 的法向量为m =(x ,y ,z ),由⎩⎪⎨⎪⎧AB →·m =0,AP →·m =0,得⎩⎨⎧-x +3y =0,-x +3λy +(2-λ)z =0,令y =2-λ,则m =(3(2-λ),2-λ,3(1-λ))为平面PAB 的一个法向量, ∵二面角A -PD -C 为锐二面角,∴cos 〈m ,n 〉=|m ·n ||m ||n |=5728,解得λ=13,故P 为线段EF 上靠近点E 的三等分点. 热点三 立体几何中的折叠问题将平面图形沿其中一条或几条线段折起,使其成为空间图形,这类问题称为立体几何中的折叠问题,折叠问题常与空间中的平行、垂直以及空间角相结合命题,考查学生的空间想象力和分析问题的能力.【例3】 (2016·全国Ⅱ卷)如图,菱形ABCD 的对角线AC 与BD 交于点O ,AB =5,AC =6,点E ,F 分别在AD ,CD 上,AE =CF =54,EF 交BD 于点H .将△DEF 沿EF 折到△D ′EF 的位置,OD ′=10. (1)证明:D ′H ⊥平面ABCD ; (2)求二面角B -D ′A -C 的正弦值. (1)证明 由已知得AC ⊥BD ,AD =CD . 又由AE =CF 得AE AD =CF CD,故AC ∥EF . 因此EF ⊥HD ,从而EF ⊥D ′H .由AB =5,AC =6得DO =BO =AB 2-AO 2=4.由EF ∥AC 得OH DO =AE AD =14.所以OH =1,D ′H =DH =3.于是D ′H 2+OH 2=32+12=10=D ′O 2,故D ′H ⊥OH . 又D ′H ⊥EF ,而OH ∩EF =H , 所以D ′H ⊥平面ABCD .(2)解 如图,以H 为坐标原点,HF →的方向为x 轴正方向,建立空间直角坐标系H -xyz .则H (0,0,0),A (-3,-1,0),B (0,-5,0),C (3,-1,0),D ′(0,0,3),AB →=(3,-4,0),AC →=(6,0,0),AD ′→=(3,1,3).设m =(x 1,y 1,z 1)是平面ABD ′的法向量, 则⎩⎪⎨⎪⎧m ·AB →=0,m ·AD ′→=0,即⎩⎪⎨⎪⎧3x 1-4y 1=0,3x 1+y 1+3z 1=0,所以可取m =(4,3,-5).设n =(x 2,y 2,z 2)是平面ACD ′的法向量, 则⎩⎪⎨⎪⎧n ·AC →=0,n ·AD ′→=0,即⎩⎪⎨⎪⎧6x 2=0,3x 2+y 2+3z 2=0,所以可取n =(0,-3,1).于是cos 〈m ,n 〉=m ·n |m ||n |=-1450×10=-7525.sin 〈m ,n 〉=29525.因此二面角B -D ′A -C 的正弦值是29525.探究提高 立体几何中的折叠问题,关键是搞清翻折前后图形中线面位置关系和度量关系的变化情况,一般地翻折后还在同一个平面上的性质不发生变化,不在同一个平面上的性质发生变化.【训练3】 (2018·衡水中学调研)如图(1)所示,在直角梯形ABCD 中,AD ∥BC ,∠BAD =π2,AB =BC =1,AD =2,E 是线段AD 的中点,O 是AC 与BE 的交点.将△ABE 沿BE 折起到△A 1BE的位置,如图(2)所示.(1)证明:CD ⊥平面A 1OC ;(2)若平面A 1BE ⊥平面BCDE ,求直线BD 与平面A 1BC 所成角的正弦值.(1)证明 在题图(1)中,连接CE ,因为AB =BC =1,AD =2,E 是AD 的中点,∠BAD =π2,所以四边形ABCE 为正方形,四边形BCDE 为平行四边形, 所以BE ⊥AC .在题图(2)中,BE ⊥OA 1,BE ⊥OC , 又OA 1∩OC =O ,OA 1,OC 平面A 1OC , 从而BE ⊥平面A 1OC .又CD ∥BE ,所以CD ⊥平面A 1OC . (2)解 由(1)知BE ⊥OA 1,BE ⊥OC ,所以∠A 1OC 为二面角A 1-BE -C 的平面角,又平面A 1BE ⊥平面BCDE , 所以∠A 1OC =π2,所以OB ,OC ,OA 1两两垂直.如图,以O 为原点,OB ,OC ,OA 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,则B (22,0,0),E (-22,0,0),A 1(0,0,22),C (0,22,0), 得BC →=(-22,22,0),A 1C →=(0,22,-22),由CD →=BE →=(-2,0,0),得D (-2,22,0).所以BD →=(-322,22,0).设平面A 1BC 的法向量为n =(x ,y ,z ), 直线BD 与平面A 1BC 所成的角为θ,则⎩⎪⎨⎪⎧n ·BC →=0,n ·A 1C →=0,得⎩⎪⎨⎪⎧-x +y =0,y -z =0,取x =1,得n =(1,1,1). 从而sin θ=|cosBD →,n |=25×3=3015, 即直线BD 与平面A 1BC 所成角的正弦值为3015.1.(2018·成都诊断)如图所示,四棱锥P -ABCD 中,PA ⊥底面ABCD ,PA =2, ∠ABC =90°,AB =3,BC =1,AD =23,∠ACD =60°,E 为CD 的中点.(1)求证:BC ∥平面PAE ;(2)求直线PD 与平面PBC 所成角的正弦值. (1)证明 ∵AB =3,BC =1,∠ABC =90°, ∴AC =2,∠BCA =60°.在△ACD 中,∵AD =23,AC =2,∠ACD =60°, ∴由余弦定理得:AD 2=AC 2+CD 2-2AC ·CD ·cos ∠ACD , 解得CD =4, ∴AC 2+AD 2=CD 2, ∴△ACD 是直角三角形.又E 为CD 的中点,∴AE =12CD =CE ,又∠ACD =60°,∴△ACE 是等边三角形, ∴∠CAE =60°=∠BCA ,∴BC ∥AE . 又AE 平面PAE ,BC 平面PAE , ∴BC ∥平面PAE .(2)解 由(1)可知∠BAE =90°,以点A 为原点,以AB ,AE ,AP 所在直线分别为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系,则P (0,0,2),B (3,0,0),C (3,1,0),D (-3,3,0),∴PB →=(3,0,-2),PC →=(3,1,-2),PD →=(-3,3,-2). 设n =(x ,y ,z )为平面PBC 的法向量,则 ⎩⎪⎨⎪⎧n ·PB →=0,n ·PC →=0,即⎩⎨⎧ 3x -2z =0,3x +y -2z =0, 设x =1,则y =0,z =32,n =⎝⎛⎭⎪⎫1,0,32, ∴cos 〈n ,PD →〉=n ·PD →|n |·|PD →|=-2374·16=-217,∴直线PD 与平面PBC 所成角的正弦值为217. 2.(2018·郑州调研)在矩形ABCD 中,AB =1,AD =2,点E 为AD 中点,沿BE 将△ABE 折起至△PBE ,如图所示,点P 在平面BCDE 的射影O 落在BE 上.(1)求证:BP ⊥CE ;(2)求二面角B -PC -D 的余弦值.(1)证明 由条件,点P 在平面BCDE 的射影O 落在BE 上,∴平面PBE ⊥平面BCDE ,且在△BCE 中,BE 2+CE 2=BC 2,∵BE 2=2,CE 2=2,BC 2=4,∴BE ⊥CE ,又平面PBE ∩平面BCDE =BE ,CE 平面BCDE , ∴CE ⊥平面PBE ,又BP 平面PBE ,∴BP ⊥CE .(2)解 以O 为坐标原点,以过点O 且平行于CD 的直线为x 轴,过点O 且平行于BC 的直线为y 轴,直线PO 为z 轴,建立如图所示空间直角坐标系.则B (12,-12,0),C (12,32,0),D (-12,32,0),P (0,0,22),设平面PCD 的法向量为n 1=(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧n 1·CD →=0,n 1·CP →=0,即⎩⎨⎧x 1=0,x 1+3y 1-2z 1=0,令z 1=2,可得n 1=⎝ ⎛⎭⎪⎫0,23,2,设平面PBC 的法向量为n 2=(x 2,y 2,z 2), 则⎩⎪⎨⎪⎧n 2·PB →=0,n 2·BC →=0,即⎩⎨⎧x 2-y 2-2z 2=0,2y 2=0,令z 2=2,可得n 2=(2,0,2),∴cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=3311,结合图形判断二面角B -PC -D 为钝二面角, 则二面角B -PC -D 的余弦值为-3311. 3.(2018·西安模拟)如图在直角梯形BB 1C 1C 中,∠CC 1B 1=90°,BB 1∥CC 1,CC 1=B 1C 1=2BB 1=2,D 是CC 1的中点,四边形AA 1C 1C 可以通过直角梯形BB 1C 1C 以CC 1为轴旋转得到,且二面角B 1-CC 1-A 为120°.(1)若点E 是线段A 1B 1上的动点,求证:DE ∥平面ABC ; (2)求二面角B -AC -A 1的余弦值.(1)证明 连接DA 1,DB 1,∵CD ∥AA 1且CD =AA 1, ∴四边形AA 1DC 是平行四边形, ∴AC ∥A 1D ,同理BC ∥DB 1,∴A 1D ∥平面ABC ,DB 1∥平面ABC , 又A 1D ∩DB 1=D ,A 1D ,DB 1平面DA 1B 1, ∴平面DA 1B 1∥平面CAB ,又DE 平面DA 1B 1,∴DE ∥平面ABC .(2)解 在平面A 1B 1C 1内,过C 1作C 1F ⊥B 1C 1, 由题知CC 1⊥C 1B 1,CC 1⊥A 1C 1,∴CC 1⊥平面A 1B 1C 1.分别以C 1F ,C 1B 1,C 1C 为x 轴、y 轴、z 轴正方向建立空间直角坐标系C 1-xyz , 则C 1(0,0,0),A (3,-1,1),C (0,0,2),B (0,2,1),所以C 1A →=(3,-1,1),C 1C →=(0,0,2),AC →=(-3,1,1),BC →=(0,-2,1), 设平面A 1AC 的法向量为m =(x ,y ,z ),平面BAC 的法向量为n =(a ,b ,c ), 有⎩⎪⎨⎪⎧C 1C →·m =0,C 1A →·m =0则⎩⎨⎧2z =0,3x -y +z =0,可取m =(3,3,0),有⎩⎪⎨⎪⎧BC →·n =0,AC →·n =0则⎩⎨⎧-2b +c =0,-3a +b +c =0,可取n =(3,1,2),cos 〈m ,n 〉=m ·n |m |·|n |=3+33+9·3+1+4=64,所以二面角B -AC -A 1的余弦值为64. 4.(2018·武汉模拟)如图,四边形ABCD 是正方形,四边形BDEF 为矩形,AC ⊥BF ,G 为EF 的中点.(1)求证:BF ⊥平面ABCD ;(2)二面角C -BG -D 的大小可以为60°吗,若可以求出此时BFBC的值,若不可以,请说明理由. (1)证明 ∵四边形ABCD 是正方形,四边形BDEF 为矩形, ∴BF ⊥BD ,又∵AC ⊥BF ,AC ,BD 为平面ABCD 内两条相交直线, ∴BF ⊥平面ABCD .(2)解 假设二面角C -BG -D 的大小可以为60°,由(1)知BF ⊥平面ABCD ,以A 为原点,分别以AB ,AD 为x 轴,y 轴建立空间直角坐标系,如图所示,不妨设AB =AD =2,BF =h (h >0),则A (0,0,0),B (2,0,0),D (0,2,0),C (2,2,0),EF 的中点G (1,1,h ),BG →=(-1,1,h ),BC →=(0,2,0).设平面BCG 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧BG →·n =0,BC →·n =0,即⎩⎪⎨⎪⎧-x +y +hz =0,2y =0,取n =(h ,0,1).由于AC ⊥BF ,AC ⊥BD ,∴AC ⊥平面BDG ,平面BDG 的法向量为AC →=(2,2,0). 由题意得cos 60°=⎪⎪⎪⎪⎪⎪⎪⎪n ·AC →|n |·|AC →|=2h h 2+1·4+4,解得h =1,此时BF BC =12.∴当BF BC =12时,二面角C -BG -D 的大小为60°.5.(2018·上饶名校调研)如图,在四棱锥P -ABCD 中,底面ABCD 是直角梯形,AB ∥DC ,AD ⊥DC ,PD ⊥平面ABCD ,E ,F ,M 分别是棱PD ,PC 和BC 上的点,且DE EP =CF FP =CM MB =12,N 是PA 上一点,AD =PD .(1)求当AN NP为何值时,平面NEF ⊥平面MEF ;(2)在(1)的条件下,若AB =12DC =2,PD =3,求平面BCN 与平面MEF 所成锐二面角的余弦值.解 (1)在AD 上取一点G ,使得DG GA =12,连接EG ,MG ,∴DG GA =DE EP =CM MB =12,∴EG ∥PA ,MG ∥CD .∵PD ⊥平面ABCD ,∴PD ⊥CD , ∵AD ⊥CD ,∴CD ⊥平面PAD ,∵DE EP =CF FP,∴EF ∥DC ,则EF ⊥平面PAD . ∵平面NEF ⊥平面MEF ,∴∠NEG =90°, 在Rt △PAD 中,AD =PD ,∴PA =2PD , 在△PNE 中,由正弦定理得PN =23PD . ∴当AN NP=2时,平面NEF ⊥平面MEF .(2)以D 为坐标原点,建立如图所示的空间直角坐标系D -xyz , 则A (3,0,0),B (3,2,0),C (0,4,0),P (0,0,3),N (1,0,2),∴NB →=(2,2,-2),CB →=(3,-2,0),PA →=(3,0,-3),AB →=(0,2,0), 设平面BCN 的法向量n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·NB →=0,n ·CB →=0,即⎩⎪⎨⎪⎧2x +2y -2z =0,3x -2y =0, 令y =3,则x =2,z =5,∴n =(2,3,5), ∵EF ∥AB ,FM ∥PB 且EF ∩FM =F , ∴平面MEF ∥平面PAB ,设平面PAB 的法向量为n 1=(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧PA →·n 1=0,AB →·n 1=0,即⎩⎪⎨⎪⎧3x 1-3z 1=0,2y 1=0,令x 1=1,z 1=1,∴n 1=(1,0,1), ∴平面MEF 的一个法向量为n 1=(1,0,1),∴|cos 〈n 1,n 〉|=71938,即平面BCN 与平面MEF 所成锐二面角的余弦值为71938.6.(2018·广州模拟)如图1,在正方形ABCD 中,点E ,F 分别是AB ,BC 的中点,BD 与EF 交于点H ,G 为BD 的中点,点R 在线段BH 上,且BRRH=λ(λ>0).现将△AED ,△CFD ,△DEF 分别沿DE ,DF ,EF 折起,使点A ,C 重合于点B (该点记为P ),如图2所示.(1)若λ=2,求证:GR ⊥平面PEF ;(2)是否存在正实数λ,使得直线FR 与平面DEF 所成角的正弦值为225?若存在,求出λ的值;若不存在,请说明理由.(1)证明 由题意,可知PE ,PF ,PD 三条直线两两垂直. ∴PD ⊥平面PEF .在图1中,E ,F 分别是AB ,BC 的中点,G 为BD 的中点, 则EF ∥AC ,GD =GB =2GH . 在图2中,∵PR RH =BR RH =2,且DGGH=2,∴在△PDH 中,GR ∥PD . ∴GR ⊥平面PEF .(2)解 存在.由题意,分别以PF ,PE ,PD 所在直线为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系P -xyz .设PD =4,则P (0,0,0),F (2,0,0),E (0,2,0),D (0,0,4),∴H (1,1,0). ∵BR RH =PRRH=λ,∴PR →=λ1+λPH →,∴R ⎝ ⎛⎭⎪⎫λ1+λ,λ1+λ,0.∴RF →=⎝ ⎛⎭⎪⎫2-λ1+λ,-λ1+λ,0=⎝ ⎛⎭⎪⎫2+λ1+λ,-λ1+λ,0. EF →=(2,-2,0),DE →=(0,2,-4),设平面DEF 的法向量为m =(x ,y ,z ),由⎩⎪⎨⎪⎧EF →·m =0,DE →·m =0,得⎩⎪⎨⎪⎧2x -2y =0,2y -4z =0.取z =1,则m =(2,2,1).∵直线FR 与平面DEF 所成角的正弦值为225,∴|cos 〈m ,RF →〉|=|m ·RF →||m ||RF →|=41+λ3⎝ ⎛⎭⎪⎫2+λ1+λ2+⎝ ⎛⎭⎪⎫-λ1+λ2=223λ2+2λ+2=225, ∴9λ2+18λ-7=0,解得λ=13或λ=-73(不合题意,舍去).故存在正实数λ=13,使得直线FR 与平面DEF 所成角的正弦值为225.。

高考数学一轮复习高考大题增分课4立体几何中的高考热点问题教学案理含解析北师大版

高考数学一轮复习高考大题增分课4立体几何中的高考热点问题教学案理含解析北师大版

四立体几何中的高考热点问题立体几何是高考的重要内容,从近五年全国卷高考试题来看,立体几何每年必考一道解答题,难度中等,主要采用“论证与计算”相结合的模式,即首先利用定义、定理、空间点、线、面的位置关系通常考查平行、垂直关系的证明,一般出现在解答题的第的中点.平面∥平面由已知得-+-2+x0=0(20xx·北京高考,BE平面EF⊥BE如图,建立空间直角坐标系此类试题一般以解答题形式呈现,常涉及线面平行与垂直位置关系的探索或空间角的计AM的值;若不存在,说明AP平面⊥平面CO平面AC=CD如图,建立空间直角坐标系如图所示,在三棱柱,平面平面平面B MN平面1MN.平面如图,设,OE,将平面图形折叠成空间几何体,并以此为载体考查点、线、面间的位置关系及有关几何为正方形,想到正方形中的边角关系;平面作=2,································6分的中点时,求证:BM∥平面AFED;与平面ABF所成的锐二面角的正弦值为306时,求三棱锥法一:取ED的中点N,连接MN,AN,1BM平面平面-的靠近B点的三等分点时,求直线PC与平面=BC=3,BC⊥AB,EF∥BC,,翻折后垂直关系没变,,且PE∩BE=E,αα轴,=60°,1,0,0),AB 平面⊥AB ,平面连接PQ ⎭⎪⎫,32,。

高考数学一轮复习 第八章 立体几何与空间向量 高考专题突破四 高考中的立体几何问题教学案 理

高考数学一轮复习 第八章 立体几何与空间向量 高考专题突破四 高考中的立体几何问题教学案 理

高考专题突破四 高考中的立体几何问题空间角的求法命题点1 求线线角例1 (2019·安徽知名示范高中联合质检)若在三棱柱ABC -A 1B 1C 1中,∠A 1AC =∠BAC =60°,平面A 1ACC 1⊥平面ABC ,AA 1=AC =AB ,则异面直线AC 1与A 1B 所成角的余弦值为________. 答案 24解析 方法一 令M 为AC 的中点,连接MB ,MA 1, 由题意知△ABC 是等边三角形,所以BM ⊥AC , 同理,A 1M ⊥AC ,因为平面A 1ACC 1⊥平面ABC ,平面A 1ACC 1∩平面ABC =AC ,BM ⊂平面ABC ,所以BM ⊥平面A 1ACC 1,因为A 1M ⊂平面A 1ACC 1,所以BM ⊥A 1M ,所以AC ,BM ,A 1M 两两垂直,以M 为原点,MA →,MB →,MA 1→的方向分别为x 轴,y 轴,z 轴的正方向建立如图所示的空间直角坐标系. 设AA 1=AC =AB =2,则A (1,0,0),B (0,3,0),A 1(0,0,3),C 1(-2,0,3),所以AC 1→=(-3,0,3),A 1B →=(0,3,-3), 所以cos 〈AC 1→,A 1B →〉=-323×6=-24,故异面直线AC 1与A 1B 所成角的余弦值为24.方法二 如图,在平面ABC ,平面A 1B 1C 1中分别取点D ,D 1,连接BD ,CD ,B 1D 1,C 1D 1,使得四边形ABDC ,A 1B 1D 1C 1为平行四边形,连接DD 1,BD 1,则AB =C 1D 1,且AB ∥C 1D 1,所以AC 1∥BD 1,故∠A 1BD 1或其补角为异面直线AC 1与A 1B 所成的角.连接A 1D 1,过点A 1作A 1M ⊥AC 于点M ,连接BM ,设AA 1=2,由∠A 1AM =∠BAC =60°,得AM =1,BM =3,A 1M =3, 因为平面A 1ACC 1⊥平面ABC ,平面A 1ACC 1∩平面ABC =AC ,A 1M ⊂平面A 1ACC 1,所以A 1M ⊥平面ABC ,又BM ⊂平面ABC , 所以A 1M ⊥BM ,所以A 1B =6,在菱形A 1ACC 1中,可求得AC 1=23=BD 1, 同理,在菱形A 1B 1D 1C 1中,求得A 1D 1=23,所以cos∠A 1BD 1=A 1B 2+BD 21-A 1D 212A 1B ·BD 1=6+12-1226×23=24,所以异面直线AC 1与A 1B 所成角的余弦值为24.思维升华 (1)求异面直线所成角的思路: ①选好基底或建立空间直角坐标系. ②求出两直线的方向向量v 1,v 2.③代入公式|cos 〈v 1,v 2〉|=|v 1·v 2||v 1||v 2|求解.(2)两异面直线所成角的关注点: 两异面直线所成角的范围是θ∈⎝ ⎛⎦⎥⎤0,π2,两向量的夹角α的范围是[0,π],当异面直线的方向向量的夹角为锐角或直角时,就是该异面直线的夹角;当异面直线的方向向量的夹角为钝角时,其补角才是异面直线的夹角.跟踪训练1 (2019·龙岩月考)若正四棱柱ABCD -A 1B 1C 1D 1的体积为3,AB =1,则直线AB 1与CD 1所成的角为( ) A .30°B.45°C.60°D.90° 答案 C解析 ∵正四棱柱ABCD -A 1B 1C 1D 1的体积为3,AB =1,∴AA 1=3, 以D 为原点,DA 所在直线为x 轴,DC 所在直线为y 轴,DD 1所在直线为z 轴,建立空间直角坐标系,则A (1,0,0),B 1(1,1,3),C (0,1,0),D 1(0,0,3), AB1→=(0,1,3),CD 1→=(0,-1,3), 设直线AB 1与CD 1所成的角为θ, 则cos θ=|AB 1→·CD 1→||AB 1→|·|CD 1→|=24·4=12,又0°<θ≤90°,∴θ=60°,∴直线AB 1与CD 1所成的角为60°.故选C. 命题点2 求线面角例2 (2018·浙江)如图,已知多面体ABCA 1B 1C 1,A 1A ,B 1B ,C 1C 均垂直于平面ABC ,∠ABC =120°,A 1A =4,C 1C =1,AB =BC =B 1B =2.(1)证明:AB 1⊥平面A 1B 1C 1;(2)求直线AC 1与平面ABB 1所成的角的正弦值.方法一 (1)证明 由AB =2,AA 1=4,BB 1=2,AA 1⊥AB ,BB 1⊥AB ,得AB 1=A 1B 1=22,所以A 1B 21+AB 21=AA 21, 故AB 1⊥A 1B 1.由BC =2,BB 1=2,CC 1=1,BB 1⊥BC ,CC 1⊥BC , 得B 1C 1= 5.由AB =BC =2,∠ABC =120°,得AC =2 3. 由CC 1⊥AC ,得AC 1=13, 所以AB 21+B 1C 21=AC 21, 故AB 1⊥B 1C 1.又因为A 1B 1∩B 1C 1=B 1,A 1B 1,B 1C 1⊂平面A 1B 1C 1, 所以AB 1⊥平面A 1B 1C 1.(2)解 如图,过点C 1作C 1D ⊥A 1B 1,交直线A 1B 1于点D , 连接AD .由AB 1⊥平面A 1B 1C 1, 得平面A 1B 1C 1⊥平面ABB 1.由C 1D ⊥A 1B 1,平面A 1B 1C 1∩平面ABB 1=A 1B 1,C 1D ⊂平面A 1B 1C 1,得C 1D ⊥平面ABB 1.所以∠C 1AD 即为AC 1与平面ABB 1所成的角. 由B 1C 1=5,A 1B 1=22,A 1C 1=21, 得cos∠C 1A 1B 1=427,sin∠C 1A 1B 1=77, 所以C 1D =3,故sin∠C 1AD =C 1D AC 1=3913.因此直线AC 1与平面ABB 1所成的角的正弦值是3913.方法二 (1)证明 如图,以AC 的中点O 为原点,分别以射线OB ,OC 为x ,y 轴的正半轴,建立空间直角坐标系.由题意知各点坐标如下:A (0,-3,0),B (1,0,0),A 1(0,-3,4),B 1(1,0,2),C 1(0,3,1).因此AB 1→=(1,3,2),A 1B 1——→=(1,3,-2),A 1C 1——→=(0,23,-3).由AB 1→·A 1B 1——→=0,得AB 1⊥A 1B 1. 由AB 1→·A 1C 1——→=0,得AB 1⊥A 1C 1.又A 1B 1∩A 1C 1=A 1,A 1B 1,A 1C 1⊂平面A 1B 1C 1, 所以AB 1⊥平面A 1B 1C 1.(2)解 设直线AC 1与平面ABB 1所成的角为θ. 由(1)可知AC 1→=(0,23,1),AB →=(1,3,0),BB 1→=(0,0,2). 设平面ABB 1的一个法向量为n =(x ,y ,z ). 由⎩⎨⎧n ·AB →=0,n ·BB1→=0,得⎩⎪⎨⎪⎧x +3y =0,2z =0,可取n =(-3,1,0).所以sin θ=|cos 〈AC 1→,n 〉|=|AC 1→·n ||AC 1→||n |=3913.因此直线AC 1与平面ABB 1所成的角的正弦值是3913.思维升华 (1)利用向量求直线与平面所成的角有两个思路:①分别求出斜线和它在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角).②通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角就是斜线和平面所成的角.(2)若直线l 与平面α的夹角为θ,直线l 的方向向量l 与平面α的法向量n 的夹角为β,则θ=π2-β或θ=β-π2,故有sin θ=|cos β|=|l ·n ||l ||n |.跟踪训练2 如图,已知三棱柱ABC -A 1B 1C 1中,平面A 1ACC 1⊥平面ABC ,∠ABC =90°,∠BAC =30°,A 1A =A 1C =AC ,E ,F 分别是AC ,A 1B 1的中点.(1)证明:EF ⊥BC ;(2)求直线EF 与平面A 1BC 所成角的余弦值.方法一 (1)证明 如图,连接A 1E ,因为A 1A =A 1C ,E 是AC 的中点,所以A 1E ⊥AC .又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1,平面A 1ACC 1∩平面ABC =AC ,所以A 1E ⊥平面ABC ,则A 1E ⊥BC . 又因为A 1F ∥AB ,∠ABC =90°,故BC ⊥A 1F , 又A 1E ,A 1F ⊂平面A 1EF ,A 1E ∩A 1F =A 1, 所以BC ⊥平面A 1EF .又EF ⊂平面A 1EF ,因此EF ⊥BC .(2)解 取BC 的中点G ,连接EG ,GF , 则EGFA 1是平行四边形.由于A 1E ⊥平面ABC ,故A 1E ⊥EG ,所以平行四边形EGFA 1为矩形.连接A 1G 交EF 于O ,由(1)得BC ⊥平面EGFA 1,则平面A 1BC ⊥平面EGFA 1,所以EF 在平面A 1BC 上的射影在直线A 1G 上.则∠EOG 是直线EF 与平面A 1BC 所成的角(或其补角). 不妨设AC =4,则在Rt△A 1EG 中,A 1E =23,EG = 3. 由于O 为A 1G 的中点,故EO =OG =A 1G2=152,所以cos∠EOG =EO 2+OG 2-EG 22EO ·OG =35.因此,直线EF 与平面A 1BC 所成角的余弦值是35.方法二 (1)证明 连接A 1E ,因为A 1A =A 1C ,E 是AC 的中点, 所以A 1E ⊥AC .又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1, 平面A 1ACC 1∩平面ABC =AC ,所以A 1E ⊥平面ABC .如图,以E 为原点,分别以射线EC ,EA 1为y ,z 轴的正半轴,建立空间直角坐标系.不妨设AC =4,则A 1(0,0,23),B (3,1,0),B 1(3,3,23),F ⎝⎛⎭⎪⎪⎫32,32,23,C (0,2,0). 因此,EF →=⎝ ⎛⎭⎪⎪⎫32,32,23,BC →=(-3,1,0).由EF →·BC→=0得EF ⊥BC . (2)解 设直线EF 与平面A 1BC 所成角为θ.由(1)可得BC →=(-3,1,0),A 1C →=(0,2,-23). 设平面A 1BC 的法向量为n =(x ,y ,z ).由⎩⎨⎧BC →·n =0,A 1C →·n =0,得⎩⎪⎨⎪⎧-3x +y =0,y -3z =0.取n =(1,3,1),故sin θ=|cos 〈EF →,n 〉|=|EF→·n ||EF →|·|n |=45.因此,直线EF 与平面A 1BC 所成角的余弦值为35.命题点3 求二面角例3 如图,在四棱锥A -BCDE 中,平面BCDE ⊥平面ABC ,BE ⊥EC ,BC =2,AB =4,∠ABC =60°.(1)求证:BE ⊥平面ACE ;(2)若直线CE 与平面ABC 所成的角为45°,求二面角E -AB -C 的余弦值.(1)证明 在△ACB 中,由余弦定理得cos∠ABC =AB 2+BC 2-AC 22AB ·BC =12,解得AC =23,所以AC 2+BC 2=AB 2,所以AC ⊥BC .又因为平面BCDE ⊥平面ABC ,平面BCDE ∩平面ABC =BC ,AC ⊂平面ABC ,所以AC ⊥平面BCDE .又BE ⊂平面BCDE ,所以AC ⊥BE .又BE ⊥EC ,AC ,CE ⊂平面ACE ,且AC ∩CE =C ,所以BE ⊥平面ACE .(2)解 方法一 因为直线CE 与平面ABC 所成的角为45°,平面BCDE ⊥平面ABC ,平面BCDE ∩平面ABC =BC ,所以∠BCE =45°,所以△EBC 为等腰直角三角形.取BC 的中点F ,连接EF ,过点F 作FG ⊥AB 于点G ,连接EG , 则∠EGF 为二面角E -AB -C 的平面角. 易得EF =BF =1,FG =32.在Rt△EFG 中,由勾股定理,得EG =EF 2+FG 2=72,所以cos∠EGF =FG EG =217, 所以二面角E -AB -C 的余弦值为217.方法二 因为直线CE 与平面ABC 所成的角为45°,平面BCDE ⊥平面ABC ,平面BCDE ∩平面ABC =BC ,所以∠BCE =45°,所以△EBC 为等腰直角三角形. 记BC 的中点为O ,连接OE ,则OE ⊥平面ABC ,以O 为坐标原点,分别以OB ,OE 所在直线为x 轴、z 轴,建立如图所示的空间直角坐标系,则A (-1,23,0),B (1,0,0),E (0,0,1), 所以BA →=(-2,23,0),BE →=(-1,0,1). 设平面ABE 的法向量m =(x ,y ,z ),则⎩⎨⎧BA →·m =0,BE →·m =0,即⎩⎪⎨⎪⎧-2x +23y =0,-x +z =0,令x =3,则m =(3,1,3)为平面ABE 的一个法向量. 易知平面ABC 的一个法向量为OE →=(0,0,1), 所以cos 〈m ,OE →〉=m ·OE→|m |·|OE →|=37=217,易知二面角E -AB -C 为锐角,所以二面角E -AB -C 的余弦值为217.思维升华 (1)求二面角最常用的方法就是分别求出二面角的两个半平面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角是锐角还是钝角.(2)利用向量法求二面角的大小的关键是确定平面的法向量,求法向量的方法主要有两种:①求平面的垂线的方向向量.②利用法向量与平面内两个不共线向量的数量积为零,列方程组求解. 跟踪训练3 (2020·湖北宜昌一中模拟)如图,在四棱锥P -ABCD 中,PA ⊥底面ABCD ,AD ⊥AB ,AB ∥DC ,AD =DC =AP =2,AB =1,点E 为棱PC 的中点. (1)证明:BE ⊥PD ;(2)若F 为棱PC 上一点,满足BF ⊥AC ,求二面角F -AB -D 的余弦值.解 依题意,以点A 为原点,以AB ,AD ,AP 为轴建立空间直角坐标系如图,可得B (1,0,0),C (2,2,0),D (0,2,0),P (0,0,2). 由E 为棱PC 的中点,得E (1,1,1).(1)证明 向量BE →=(0,1,1),PD →=(0,2,-2), 故BE →·PD →=0,所以BE →⊥PD →,所以BE ⊥PD .(2)解 BC →=(1,2,0),CP →=(-2,-2,2),AC →=(2,2,0),AB →=(1,0,0),由点F 在棱PC 上,设CF →=λCP →,0≤λ≤1,故BF →=BC →+CF →=BC →+λCP →=(1-2λ,2-2λ,2λ), 由BF ⊥AC ,得BF →·AC →=0,因此,2(1-2λ)+2(2-2λ)=0,λ=34,即BF →=⎝ ⎛⎭⎪⎫-12,12,32.设n 1=(x ,y ,z )为平面FAB 的法向量,则⎩⎨⎧n 1·AB →=0,n 1·BF →=0,即⎩⎪⎨⎪⎧x =0,-12x +12y +32z =0,不妨令z =-1,可得n 1=(0,3,-1)为平面FAB 的一个法向量, 取平面ABD 的法向量n 2=(0,0,1),则cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=-110=-1010,又因为二面角F -AB -D 为锐二面角,所以二面角F-AB-D的余弦值为10 10.立体几何中的探索性问题例4 (2019·淄博模拟)已知正方形的边长为4,E,F分别为AD,BC的中点,以EF为棱将正方形ABCD折成如图所示的60°的二面角,点M在线段AB上.(1)若M为AB的中点,且直线MF与由A,D,E三点所确定平面的交点为O,试确定点O的位置,并证明直线OD∥平面EMC;(2)是否存在点M,使得直线DE与平面EMC所成的角为60°;若存在,求此时二面角M-EC-F的余弦值,若不存在,说明理由.解(1)因为直线MF⊂平面ABFE,故点O在平面ABFE内也在平面ADE内,所以点O在平面ABFE与平面ADE的交线上(如图所示),因为AO∥BF,M为AB的中点,所以△OAM≌△FBM,所以OM=MF,AO=BF,所以点O在EA的延长线上,且AO=2,连接DF交EC于N,因为四边形CDEF为矩形,所以N是EC的中点,连接MN,因为MN为△DOF的中位线,所以MN∥OD,又因为MN⊂平面EMC,OD⊄平面EMC,所以直线OD∥平面EMC.(2)由已知可得,EF⊥AE,EF⊥DE,AE∩DE=E,所以EF⊥平面ADE,所以平面ABFE⊥平面ADE,取AE的中点H为坐标原点,以AH,DH所在直线分别为x轴,z轴,建立如图所示的空间直角坐标系,所以E (-1,0,0),D (0,0,3),C (0,4,3),F (-1,4,0), 所以ED →=(1,0,3),EC →=(1,4,3), 设M (1,t,0)(0≤t ≤4),则EM →=(2,t,0), 设平面EMC 的法向量m =(x ,y ,z ), 则⎩⎨⎧m ·EM →=0,m ·EC→=0⇒⎩⎪⎨⎪⎧2x +ty =0,x +4y +3z =0,取y =-2,则x =t ,z =8-t 3,所以m =⎝ ⎛⎭⎪⎪⎫t ,-2,8-t 3, 因为DE 与平面EMC 所成的角为60°, 所以82t 2+4+8-t 23=32, 所以23t 2-4t +19=32,所以t 2-4t +3=0,解得t =1或t =3,所以存在点M ,使得直线DE 与平面EMC 所成的角为60°, 取ED 的中点Q ,因为EF ⊥平面ADE ,AQ ⊂平面ADE , 所以AQ ⊥EF ,又因为AQ ⊥DE ,DE ∩EF =E ,DE ,EF ⊂平面CEF , 所以AQ ⊥平面CEF ,则QA →为平面CEF 的法向量,因为Q ⎝⎛⎭⎪⎪⎫-12,0,32,A (1,0,0), 所以QA →=⎝ ⎛⎭⎪⎪⎫32,0,-32,m =⎝⎛⎭⎪⎪⎫t ,-2,8-t 3, 设二面角M -EC -F 的大小为θ,所以|cos θ|=|QA →·m ||QA →|·|m |=|2t -4|3t 2+4+8-t23=|t -2|t 2-4t +19,因为当t =2时,cos θ=0,平面EMC ⊥平面CDEF , 所以当t =1时,θ为钝角,所以cos θ=-14.当t =3时,θ为锐角,所以cos θ=14.思维升华 (1)对于线面关系中的存在性问题,首先假设存在,然后在该假设条件下,利用线面关系的相关定理、性质进行推理论证,寻找假设满足的条件,若满足则肯定假设,若得出矛盾的结论则否定假设.(2)平面图形的翻折问题,关键是搞清翻折前后图形中线面位置关系和度量关系的变化情况.一般地,翻折后还在同一个平面上的性质不发生变化,不在同一个平面上的性质发生变化.跟踪训练4 (2019·天津市南开区南开中学月考)如图1,在边长为2的菱形ABCD 中,∠BAD =60°,DE ⊥AB 于点E ,将△ADE 沿DE 折起到△A 1DE 的位置,使A 1D ⊥BE ,如图2. (1)求证:A 1E ⊥平面BCDE ;(2)求二面角E -A 1D -B 的余弦值;(3)在线段BD 上是否存在点P ,使平面A 1EP ⊥平面A 1BD ?若存在,求BPBD的值;若不存在,说明理由. (1)证明 因为A 1D ⊥BE ,DE ⊥BE ,A 1D ∩DE =D ,A 1D ,DE ⊂平面A 1DE ,所以BE ⊥平面A 1DE ,因为A 1E ⊂平面A 1DE , 所以A 1E ⊥BE ,又因为A 1E ⊥DE ,BE ∩DE =E ,BE ,DE ⊂平面BCDE , 所以A 1E ⊥平面BCDE .(2)解 以E 为原点,分别以EB ,ED ,EA 1所在直线为x ,y ,z 轴,建立空间直角坐标系,则B (1,0,0),D (0,3,0),A 1(0,0,1), 所以BA 1→=(-1,0,1),BD →=(-1,3,0), 设平面A 1BD 的法向量n =(x ,y ,z ), 由⎩⎨⎧n ·BA 1→=-x +z =0,n ·BD→=-x +3y =0得⎩⎪⎨⎪⎧x =z ,x =3y ,令y =1,得n =(3,1,3), 因为BE ⊥平面A 1DE ,所以平面A 1DE 的法向量EB→=(1,0,0),cos 〈n ,EB →〉=n ·EB→|n |·|EB →|=37=217,因为所求二面角为锐角,所以二面角E -A 1D -B 的余弦值为217. (3)解 假设在线段BD 上存在一点P ,使得平面A 1EP ⊥平面A 1BD , 设P (x ,y ,z ),BP →=λBD→(0≤λ≤1),则(x -1,y ,z )=λ(-1,3,0),所以P (1-λ,3λ,0), 所以EA 1→=(0,0,1),EP →=(1-λ,3λ,0),设平面A 1EP 的法向量m =(x 1,y 1,z 1), 由⎩⎨⎧m ·EA1→=z 1=0,m ·EP→=1-λx 1+3λy 1=0,得⎩⎪⎨⎪⎧z 1=0,1-λx 1=-3λy 1,令x 1=3λ,得m =(3λ,λ-1,0), 因为平面A 1EP ⊥平面A 1BD ,所以m ·n =3λ+λ-1=0,解得λ=14∈[0,1],所以在线段BD 上存在点P ,使得平面A 1EP ⊥平面A 1BD ,且BP BD =14.例 (12分)(2019·全国Ⅰ)如图,直四棱柱ABCD -A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.(1)证明:MN ∥平面C 1DE ;(2)求二面角A -MA 1-N 的正弦值. (1)证明 连接B 1C ,ME .因为M ,E 分别为BB 1,BC 的中点,所以ME ∥B 1C ,且ME =12B 1C .[1分]又因为N 为A 1D 的中点,所以ND =12A 1D .[2分]由题设知A 1B 1∥DC 且A 1B 1=DC ,可得B 1C ∥A 1D 且B 1C =A 1D ,故ME ∥ND 且ME =ND ,因此四边形MNDE 为平行四边形,[3分] 所以MN ∥ED .[4分]又MN ⊄平面C 1DE ,ED ⊂平面C 1DE ,[5分] 所以MN ∥平面C 1DE .[6分](2)解 由已知可得DE ⊥DA ,以D 为坐标原点,DA →的方向为x 轴正方向,建立如图所示的空间直角坐标系D -xyz ,[7分]则A (2,0,0),A 1(2,0,4),M (1,3,2),N (1,0,2),A 1A →=(0,0,-4),A 1M →=(-1,3,-2),A 1N →=(-1,0,-2),MN →=(0,-3,0).[8分]设m =(x ,y ,z )为平面A 1MA 的一个法向量,则 ⎩⎨⎧ m ·A 1M →=0,m ·A 1A →=0,所以⎩⎪⎨⎪⎧-x +3y -2z =0,-4z =0,可得m =(3,1,0).[9分]设n =(p ,q ,r )为平面A 1MN 的一个法向量,则⎩⎨⎧n ·MN →=0,n ·A 1N →=0,所以⎩⎪⎨⎪⎧-3q =0,-p -2r =0,可取n =(2,0,-1).[10分]于是cos 〈m ,n 〉=m ·n |m ||n |=232×5=155,[11分]所以二面角A -MA 1-N 的正弦值为105.[12分]利用向量求空间角的步骤第一步:建立空间直角坐标系,确定点的坐标;第二步:求向量(直线的方向向量、平面的法向量)坐标;第三步:计算向量的夹角(或函数值),并转化为所求角.1.(2019·大连模拟)如图,在三棱柱ABC -A 1B 1C 1中,△ABC 和△AA 1C 均是边长为2的等边三角形,点O 为AC 中点,平面AA 1C 1C ⊥平面ABC .(1)证明:A 1O ⊥平面ABC ;(2)求直线AB 与平面A 1BC 1所成角的正弦值. (1)证明 ∵AA 1=A 1C ,且O 为AC 的中点, ∴A 1O ⊥AC ,又∵平面AA 1C 1C ⊥平面ABC ,平面AA 1C 1C ∩平面ABC =AC ,A 1O ⊂平面AA 1C 1C , ∴A 1O ⊥平面ABC .(2)解 如图,以O 为原点,OB ,OC ,OA 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系.由已知可得O (0,0,0),A (0,-1,0),B (3,0,0),A 1(0,0,3),C 1(0,2,3),∴AB →=(3,1,0),A 1B →=(3,0,-3),A 1C 1——→=(0,2,0), 设平面A 1BC 1的法向量为n =(x ,y ,z ),则⎩⎨⎧n ·A 1C 1→=0,n ·A 1B →=0,即⎩⎪⎨⎪⎧2y =0,3x -3z =0,∴平面A 1BC 1的一个法向量为n =(1,0,1), 设直线AB 与平面A 1BC 1所成的角为α, 则sin α=|cos 〈AB →,n 〉|,又∵cos〈AB →,n 〉=AB →·n|AB →||n |=322=64,∴AB 与平面A 1BC 1所成角的正弦值为64.2.如图1,在△ABC 中,BC =3,AC =6,∠C =90°,且DE ∥BC ,将△ADE 沿DE 折起到△A 1DE 的位置,使A 1D ⊥CD ,如图2. (1)求证:BC ⊥平面A 1DC ;(2)若CD =2,求BE 与平面A 1BC 所成角的正弦值. (1)证明 ∵DE ⊥A 1D ,DE ∥BC ,∴BC ⊥A 1D , 又∵BC ⊥CD ,A 1D ∩CD =D ,A 1D ,CD ⊂平面A 1CD , ∴BC ⊥平面A 1DC ,(2)解 以D 为原点,分别以DE →,DA 1→,CD →为x ,y ,z 轴的正方向,建立空间直角坐标系,在直角梯形CDEB 中,过E 作EF ⊥BC ,EF =2,BF =1,BC =3, ∴B (3,0,-2),E (2,0,0),C (0,0,-2),A 1(0,4,0), BE →=(-1,0,2),CA1→=(0,4,2),BA 1→=(-3,4,2),设平面A 1BC 的法向量为m =(x ,y ,z ), ⎩⎨⎧CA 1→·m =0,BA1→·m =0,⎩⎪⎨⎪⎧4y +2z =0,-3x +4y +2z =0,⎩⎪⎨⎪⎧z =-2y ,x =0,令y =1,∴m =(0,1,-2), 设BE 与平面A 1BC 所成角为θ,∴sin θ=|cos 〈BE →,m 〉|=|BE →·m ||BE →||m |=45·5=45.3.(2020·成都诊断)如图1,在边长为5的菱形ABCD 中,AC =6,现沿对角线AC 把△ADC 翻折到△APC 的位置得到四面体P -ABC ,如图2所示.已知PB =4 2. (1)求证:平面PAC ⊥平面ABC ;(2)若Q 是线段AP 上的点,且AQ →=13AP →,求二面角Q -BC -A 的余弦值.(1)证明 取AC 的中点O ,连接PO ,BO 得到△PBO . ∵四边形ABCD 是菱形,∴PA =PC ,PO ⊥AC . ∵DC =5,AC =6,∴OC =3,PO =OB =4, ∵PB =42,∴PO 2+OB 2=PB 2, ∴PO ⊥OB .∵OB ∩AC =O ,OB ,AC ⊂平面ABC ,∴PO ⊥平面ABC . ∵PO ⊂平面PAC ,∴平面PAC ⊥平面ABC . (2)解 ∵AB =BC ,∴BO ⊥AC . 易知OB ,OC ,OP 两两垂直.以O 为坐标原点,OB ,OC ,OP 所在直线分别为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系.则B (4,0,0),C (0,3,0),P (0,0,4),A (0,-3,0). 设点Q (x ,y ,z ).由AQ →=13AP →,得Q ⎝⎛⎭⎪⎫0,-2,43.∴BC →=(-4,3,0),BQ →=⎝⎛⎭⎪⎫-4,-2,43.设n 1=(x 1,y 1,z 1)为平面BCQ 的法向量.由⎩⎨⎧n 1·BC →=0,n 1·BQ →=0,得⎩⎪⎨⎪⎧-4x 1+3y 1=0,-4x 1-2y 1+43z 1=0,解得⎩⎪⎨⎪⎧x 1=34y 1,y 1=415z 1,取z 1=15,则n 1=(3,4,15).取平面ABC 的一个法向量n 2=(0,0,1).∵cos〈n 1,n 2〉=n 1·n 2|n 1||n 2|=1532+42+152=31010, 由图可知二面角Q -BC -A 为锐角, ∴二面角Q -BC -A 的余弦值为31010.4.如图所示,在正四棱锥P -ABCD 中,底面ABCD 的边长为2,侧棱长为2 2.(1)若点E 为PD 上的点,且PB ∥平面EAC ,试确定E 点的位置; (2)在(1)的条件下,在线段PA 上是否存在点F ,使平面AEC 和平面BDF 所成的锐二面角的余弦值为114,若存在,求线段PF 的长度,若不存在,请说明理由.解 (1)设BD 交AC 于点O ,连接OE , ∵PB ∥平面AEC ,平面AEC ∩平面BDP =OE , ∴PB ∥OE .又O 为BD 的中点,∴E 为PD 的中点.(2)连接OP ,由题意知PO ⊥平面ABCD ,且AC ⊥BD ,∴以O 为坐标原点,OC →,OD →,OP →所在直线分别为x ,y ,z 轴建立直角坐标系,如图所示.OP =PD 2-OD 2=6,∴O (0,0,0),A (-2,0,0),B (0,-2,0),C (2,0,0),D (0,2,0),P (0,0,6),则E ⎝⎛⎭⎪⎪⎫0,22,62,OC →=(2,0,0),OE →=⎝⎛⎭⎪⎪⎫0,22,62,OD →=(0,2,0).设平面AEC 的法向量为m =(x 1,y 1,z 1), 则⎩⎨⎧m ·OC→=0,m ·OE→=0,即⎩⎪⎨⎪⎧2x 1=0,22y 1+62z 1=0,令z 1=1,得平面AEC 的一个法向量m =(0,-3,1),假设在线段PA 上存在点F ,满足题设条件,不妨设PF →=λPA →(0≤λ≤1).则F (-2λ,0,6-6λ),OF →=(-2λ,0,6-6λ). 设平面BDF 的法向量n =(x 2,y 2,z 2), ∴⎩⎨⎧n ·OD →=0,n ·OF→=0,即⎩⎪⎨⎪⎧2y 2=0,-2λx 2+1-λr(6z 2=0.)令z 2=1得平面BDF的一个法向量n =⎝⎛⎭⎪⎪⎫31-λλ,0,1.由平面AEC 与平面BDF 所成锐二面角的余弦值为114,则cos 〈m ,n 〉=m ·n|m ||n |=12·1+3⎝ ⎛⎭⎪⎫1λ-12=114,解得λ=15(负值舍去).∴|PF →|=15|PA →|=225. 故在线段PA 上存在点F ,当PF =225时,使得平面AEC 和平面BDF所成的锐二面角的余弦值为114.5.如图,在四棱锥E -ABCD 中,底面ABCD 是圆内接四边形,CB =CD =CE =1,AB =AD =AE =3,EC ⊥BD .(1)求证:平面BED ⊥平面ABCD ;(2)若点P 在侧面ABE 内运动,且DP ∥平面BEC ,求直线DP 与平面ABE 所成角的正弦值的最大值.(1)证明 如图,连接AC ,交BD 于点O ,连接EO , ∵AD =AB ,CD =CB ,AC =AC , ∴△ADC ≌△ABC , 易得△ADO ≌△ABO , ∴∠AOD =∠AOB =90°, ∴AC ⊥BD .又EC ⊥BD ,EC ∩AC =C ,EC ,AC ⊂平面AEC , ∴BD ⊥平面AEC ,又OE ⊂平面AEC ,∴OE ⊥BD . 又底面ABCD 是圆内接四边形, ∴∠ADC =∠ABC =90°,在Rt△ADC 中,由AD =3,CD =1, 可得AC =2,AO =32,∴∠AEC =90°,AE AC =AO AE =32,易得△AEO ∽△ACE ,∴∠AOE =∠AEC =90°, 即EO ⊥AC .又AC ,BD ⊂平面ABCD ,AC ∩BD =O , ∴EO ⊥平面ABCD ,又EO ⊂平面BED ,∴平面BED ⊥平面ABCD .(2)解 如图,取AE 的中点M ,AB 的中点N ,连接MN ,ND ,DM , 则MN ∥BE ,由(1)知,∠DAC =∠BAC =30°, 即∠DAB =60°, ∴△ABD 为正三角形, ∴DN ⊥AB ,又BC ⊥AB ,DN ,CB ⊂平面ABCD ,∴DN ∥CB ,又MN ∩DN =N ,BE ∩BC =B ,MN ,DN ⊂平面DMN ,BE ,BC ⊂平面EBC , ∴平面DMN ∥平面EBC ,∴点P 在线段MN 上.以O 为坐标原点,OA ,OB ,OE 所在直线分别为x 轴、y 轴、z 轴,建立空间直角坐标系,则A ⎝ ⎛⎭⎪⎫32,0,0,B ⎝ ⎛⎭⎪⎪⎫0,32,0,E ⎝⎛⎭⎪⎪⎫0,0,32, M ⎝⎛⎭⎪⎪⎫34,0,34,D ⎝ ⎛⎭⎪⎪⎫0,-32,0,N ⎝ ⎛⎭⎪⎪⎫34,34,0, ∴AB →=⎝ ⎛⎭⎪⎪⎫-32,32,0,AE →=⎝ ⎛⎭⎪⎪⎫-32,0,32, DM →=⎝ ⎛⎭⎪⎪⎫34,32,34,MN →=⎝⎛⎭⎪⎪⎫0,34,-34, 设平面ABE 的法向量为n =(x ,y ,z ),则⎩⎨⎧AB →·n =0,AE →·n =0,即⎩⎪⎨⎪⎧-3x +y =0,-3x +z =0,令x =1,则n =(1,3,3),设MP →=λMN →(0≤λ≤1),可得DP →=DM →+MP →=⎝ ⎛⎭⎪⎪⎫34,32+34λ,34-34λ, 设直线DP 与平面ABE 所成的角为θ,则sin θ=|cos 〈n ,DP →〉|=|n ·DP →||n |·|DP →|=1242×λ2+λ+4, ∵0≤λ≤1,∴当λ=0时,sin θ取得最大值427.故直线DP 与平面ABE 所成角的正弦值的最大值为427.。

2019高三数学文北师大版一轮教师用书:第7章 热点探究

2019高三数学文北师大版一轮教师用书:第7章 热点探究

热点探究课(四)立体几何中的高考热点问题(对应学生用书第107页)[命题解读] 1.立体几何初步是高考的重要内容,几乎每年都考查一个解答题,两个选择或填空题,客观题主要考查空间概念,三视图及简单计算;解答题主要采用“论证与计算”相结合的模式,即利用定义、公理、定理证明空间线线、线面、面面平行或垂直,并与几何体的性质相结合考查几何体的计算.2.重在考查学生的空间想象能力、逻辑推理论证能力及数学运算能力.考查的热点是以几何体为载体的垂直、平行的证明、平面图形的折叠、探索开放性问题等;同时考查转化化归思想与数形结合的思想方法.热点1线面位置关系与体积计算(答题模板) 以空间几何体为载体,考查空间平行与垂直关系是高考的热点内容,并常与几何体的体积计算交汇命题,考查学生的空间想象能力、计算与数学推理论证能力,同时突出转化与化归思想方法的考查,试题难度中等.(本小题满分12分)(2018·长春模拟)如图1,四边形ABCD为菱形,G为AC与BD的交点,BE⊥平面ABCD.图1(1)证明:平面AEC⊥平面BED;(2)若∠ABC=120°,AE⊥EC,三棱锥E-ACD的体积为63,求该三棱锥的侧面积.【导学号:00090256】[思路点拨](1)注意到四边形ABCD为菱形,联想到对角线垂直,从而进一步证线面垂直,面与面垂直;(2)根据几何体的体积求得底面菱形的边长,计算侧棱,求出各个侧面的面积.[规范解答](1)证明:因为四边形ABCD为菱形,所以AC⊥BD.因为BE⊥平面ABCD,AC 平面ABCD,所以AC⊥BE. 2分因为BD∩BE=B,故AC⊥平面BED.又AC 平面AEC,所以平面AEC⊥平面BED.4分(2)设AB=x,在菱形ABCD中,由∠ABC=120°,可得AG=GC=32x,GB=GD=x2.因为AE⊥EC,所以在Rt△AEC中,可得EG=32x. 6分由BE⊥平面ABCD,知△EBG为直角三角形,可得BE=2 2x.由已知得,三棱锥E-ACD的体积V三棱锥E-ACD=13×12·AC·GD·BE=624x3=63,故x=2. 9分从而可得AE=EC=ED= 6.所以△EAC的面积为3,△EAD的面积与△ECD的面积均为 5.故三棱锥E-ACD的侧面积为3+2 5. 12分[答题模板]第一步:由线面垂直的性质,得线线垂直AC⊥BE.第二步:根据线面垂直、面面垂直的判定定理证明平面AEC⊥平面BED.第三步:利用棱锥的体积求出底面菱形的边长.第四步:计算各个侧面三角形的面积,求得四棱锥的侧面积.第五步:检验反思,查看关键点,规范步骤.[温馨提示] 1.在第(1)问,易忽视条件BD∩BE=B,AC 平面AEC,造成推理不严谨,导致扣分.2.正确的计算结果是得分的关键,本题在求三棱锥的体积与侧面积时,需要计算的量较多,防止计算结果错误失分,另外对于每一个得分点的解题步骤一定要写全.阅卷时根据得分点评分,有则得分,无则不得分.[对点训练1]如图2,在三棱柱ABC-A1B1C1中,侧棱垂直于底面,AB⊥BC,AA1=AC=2,BC=1,E,F分别是A1C1,BC的中点.图2(1)求证:平面ABE ⊥平面B 1BCC 1;(2)求证:C 1F ∥平面ABE ;(3)求三棱锥E -ABC 的体积.[解] (1)证明:在三棱柱ABC -A 1B 1C 1中,因为BB 1⊥底面ABC ,AB 平面ABC , 所以BB 1⊥AB .2分又因为AB ⊥BC ,BB 1∩BC =B ,所以AB ⊥平面B 1BCC 1.又AB 平面ABE ,所以平面ABE ⊥平面B 1BCC 1. 4分(2)证明:取AB 的中点G ,连接EG ,FG .因为G ,F 分别是AB ,BC 的中点,所以FG ∥AC ,且FG =12AC .因为AC ∥A 1C 1,且AC =A 1C 1,所以FG ∥EC 1,且FG =EC 1,6分 所以四边形FGEC 1为平行四边形,所以C 1F ∥EG .又因为EG 平面ABE ,C 1F平面ABE , 所以C 1F ∥平面ABE . 8分(3)因为AA 1=AC =2,BC =1,AB ⊥BC ,所以AB =AC 2-BC 2=3,10分所以三棱锥E -ABC 的体积V=13S△ABC·AA1=13×12×3×1×2=33. 12分热点2平面图形折叠成空间几何体先将平面图形折叠成空间几何体,再以其为载体研究其中的线、面间的位置关系与计算有关的几何量,是近几年高考考查立体几何的一类重要考向,它很好地将平面图形拓展成空间图形,同时也为空间立体图形向平面图形转化提供了具体形象的途径,是高考深层次上考查空间想象能力的主要方向.如图3,在长方形ABCD中,AB=2,BC=1,E为CD的中点,F为AE的中点.现沿AE将三角形ADE向上折起,在折起的图形中解答下列问题:图3(1)在线段AB上是否存在一点K,使BC∥平面DFK?若存在,请证明你的结论;若不存在,请说明理由;(2)若平面ADE⊥平面ABCE,求证:平面BDE⊥平面ADE.[解](1)如图,线段AB上存在一点K,且当AK=14AB时,BC∥平面DFK.1分证明如下:设H为AB的中点,连接EH,则BC∥EH.∵AK=14AB,F为AE的中点,∴KF∥EH,∴KF∥BC.3分∵KF 平面DFK,BC平面DFK,∴BC∥平面DFK. 5分(2)证明:∵在折起前的图形中E为CD的中点,AB=2,BC=1,∴在折起后的图形中,AE=BE=2,从而AE2+BE2=4=AB2,∴AE⊥BE. 8分∵平面ADE⊥平面ABCE,平面ADE∩平面ABCE=AE,∴BE ⊥平面ADE .∵BE 平面BDE ,∴平面BDE ⊥平面ADE . 12分[规律方法] 1.解决与折叠有关的问题的关键是搞清折叠前后的变化量和不变量,一般情况下,线段的长度是不变量,而位置关系往往会发生变化,抓住不变量是解决问题的突破口.2.在解决问题时,要综合考虑折叠前后的图形,既要分析折叠后的图形,也要分析折叠前的图形.[对点训练2] (2016·全国卷Ⅱ)如图4,菱形ABCD 的对角线AC 与BD 交于点O ,点E ,F 分别在AD ,CD 上,AE =CF ,EF 交BD 于点H .将△DEF 沿EF 折到△D ′EF 的位置.图4(1)证明:AC ⊥HD ′;(2)若AB =5,AC =6,AE =54,OD ′=22,求五棱锥D ′-ABCFE 的体积.【导学号:00090257】[解] (1)证明:由已知得AC ⊥BD ,AD =CD .2分 又由AE =CF 得AE AD =CF CD ,故AC ∥EF .由此得EF ⊥HD ,故EF ⊥HD ′,所以AC ⊥HD ′.5分 (2)由EF ∥AC 得OH DO =AE AD =14. 由AB =5,AC =6得DO =BO =AB 2-AO 2=4.7分 所以OH =1,D ′H =DH =3.于是OD ′2+OH 2=(22)2+12=9=D ′H 2,故OD ′⊥OH .由(1)知AC ⊥HD ′,又AC ⊥BD ,BD ∩HD ′=H ,所以AC⊥平面BHD′,于是AC⊥OD′. 又由OD′⊥OH,AC∩OH=O,所以OD′⊥平面ABC.又由EFAC=DHDO得EF=92. 10分五边形ABCFE的面积S=12×6×8-12×92×3=694.所以五棱锥D′-ABCFE的体积V=13×694×22=2322. 12分热点3线、面位置关系中的开放存在性问题是否存在某点或某参数,使得某种线、面位置关系成立问题,是近几年高考命题的热点,常以解答题中最后一问的形式出现,一般有三种类型:(1)条件追溯型.(2)存在探索型.(3)方法类比探索型.(2018·秦皇岛模拟)如图5所示,在四棱锥P-ABCD中,底面ABCD是边长为a的正方形,侧面P AD⊥底面ABCD,且E,F分别为PC,BD的中点.图5(1)求证:EF∥平面P AD;(2)在线段CD上是否存在一点G,使得平面EFG⊥平面PDC?若存在,请说明其位置,并加以证明;若不存在,请说明理由.[解](1)证明:如图所示,连接AC,在四棱锥P-ABCD中,底面ABCD是边长为a的正方形,且点F为对角线BD的中点. 2分所以对角线AC经过点F.又在△P AC中,点E为PC的中点,所以EF为△P AC的中位线,所以EF∥P A.又P A 平面P AD,EF平面P AD,所以EF∥平面P AD.5分(2)存在满足要求的点G.在线段CD上存在一点G为CD的中点,使得平面EFG⊥平面PDC.因为底面ABCD是边长为a的正方形,所以CD⊥AD.7分又侧面P AD⊥底面ABCD,CD 平面ABCD,侧面P AD∩平面ABCD=AD,所以CD⊥平面P AD.又EF∥平面P AD,所以CD⊥EF.取CD中点G,连接FG,EG. 9分因为F为BD中点,所以FG∥AD.又CD⊥AD,所以FG⊥CD,又FG∩EF=F,所以CD⊥平面EFG,又CD 平面PDC,所以平面EFG⊥平面PDC.12分[规律方法] 1.在立体几何的平行关系问题中,“中点”是经常使用的一个特殊点,通过找“中点”,连“中点”,即可出现平行线,而线线平行是平行关系的根本.2.第(2)问是探索开放性问题,采用了先猜后证,即先观察与尝试给出条件再加以证明,对于命题结论的探索,常从条件出发,探索出要求的结论是什么,对于探索结论是否存在,求解时常假设结论存在,再寻找与条件相容或者矛盾的结论.[对点训练3](2017·湖南师大附中检测)如图6,四棱锥S-ABCD的底面是正方形,每条侧棱的长都是底面边长的2倍,P为侧棱SD上的点.图6(1)求证:AC ⊥SD ;(2)若SD ⊥平面P AC ,则侧棱SC 上是否存在一点E ,使得BE ∥平面P AC ?若存在,求SE ∶EC ;若不存在,请说明理由. 【导学号:00090258】[证明] (1)连接BD ,设AC 交BD 于点O ,连接SO ,由题意得四棱锥S -ABCD 是正四棱锥,所以SO ⊥AC . 2分 在正方形ABCD 中,AC ⊥BD ,又SO ∩BD =O ,所以AC ⊥平面SBD . 因为SD 平面SBD ,所以AC ⊥SD .5分(2)在棱SC 上存在一点E ,使得BE ∥平面P AC .连接OP .设正方形ABCD 的边长为a ,则SC =SD =2A .7分 由SD ⊥平面P AC 得SD ⊥PC ,易求得PD =2a 4.故可在SP 上取一点N ,使得PN =PD .过点N 作PC 的平行线与SC 交于点E ,连接BE ,BN ,在△BDN 中,易得BN ∥PO . 10分 又因为NE ∥PC ,NE 平面BNE ,BN 平面BNE ,BN ∩NE =N ,PO 平面P AC ,PC 平面P AC ,PO ∩PC =P ,所以平面BEN ∥平面P AC ,所以BE ∥平面P AC .因为SN ∶NP =2∶1,所以SE ∶EC =2∶1.12分。

2019届理科一轮复习北师大版专题探究课1函数与导数中的高考热点问题教案.doc

2019届理科一轮复习北师大版专题探究课1函数与导数中的高考热点问题教案.doc

于是,当 0<a<1 时, g(a)<0;当 a>1 时, g(a)>0. 因此, a 的取值范围是 (0,1).
[ 规律方法 ] 1.研究函数的性质,必须在定义域内进行,因此利用导数研究函数
的性质,应遵循定义域优先的原则 . 2.讨论函数的单调性,求函数的单调区间、极值问题,最终归结到判断
f′ x 的
1 [ 解] (1)f (x)的定义域为 (0,+ ∞ ),f′(x)= x- a.
若 a≤ 0,则 f′(x)>0,所以 f(x)在(0,+ ∞)上单调递增.
1 若 a>0,则当 x∈ 0,a 时, f′ (x)>0;
1 当 x∈ a,+ ∞ 时, f′(x)<0.
1
1
所以 f(x)在 0,a 上单调递增,在 a,+ ∞ 上单调递减.
18-3a+a 所以 f′(3)= 3 =0,解得 a= 9.
2x2-9x+9 2x- 3 x-3
所以 f′ (x)=
x=
x

3 所以当 0<x<2或 x>3 时, f′(x)>0;
3 当2<x<3 时, f′(x)<0.
3
3
所以 f(x)的单调递增区间为 0, 2 和(3,+ ∞),单调递减区间为 2, 3 .
利用导数研究函数的零点问题
研究函数零点的本质就是研究函数的极值的正负, 为此, 我们可以通过讨论
函数的单调性来解决, 求解时应注重等价转化与数形结合思想的应用, 其主要考
查方式有: (1)确定函数的零点、图像交点的个数; (2)由函数的零点、图像交点
的情况求参数的取值范围. (2017 ·全国卷 Ⅰ)已知函数 f(x)=ae2x+ (a-2)ex-x. (1)讨论 f(x)的单调性; (2)若 f(x)有两个零点,求 a 的取值范围 . [ 解] (1)f (x)的定义域为 (-∞ ,+ ∞ ),

高考数学一轮复习 专题讲座4 立体几何在高考中的常见题型与求解策略课件 文 北师大版.pptx

高考数学一轮复习 专题讲座4 立体几何在高考中的常见题型与求解策略课件 文 北师大版.pptx
11
过点 F 作 FG⊥CD,得 FG=FCsin 60°=12× 23= 43,
所以 DE=FG= 43,故 ME=PE= 3- 43=34 3,
所以 MD= ME2-DE2=
3
4
32-
432=
26.
S△CDE=12DE·DC=12×
43×1=
3 8.
故 VM­CDE=13MD·S△CDE=13× 26× 83= 162.
专题讲座四 立体几何在高考中 的常见题型与求解策略
1
专题讲座四 立体几何在高中的常见题型与求解策略
考情概述 通过近三年的高考命题可以发现,高考对本部 分内容的命题主要集中在空间线面平行关系、垂直关系的证 明以及几何体体积的计算等问题,考题设置通常是先证明后 计算,题型有折叠问题和探索性问题,主要考查考生的空间 想象能力和推理论证能力以及语言表达能力,难度中等.
又四边形 ABCD 是平行四边形,E 为 AD 的中点, 所以 AE 綊12BC,所以 GF 綊 AE,
即四边形 AEFG 是平行四边形, 所以 EF∥AG,又 AG 平面 PAB,EF 所以 EF∥平面 PAB.
平面 PAB,
8
(2)在平面 PAB 中,过 P 作 PH⊥AB,垂足为 H. 因为平面 PAB⊥平面 ABCD,平面 PAB∩平面 ABCD=AB,
12
折叠问题的求解策略 (1)解决与折叠有关的问题的关键是搞清折叠前后的变化量 和不变量.一般情况下,长度是不变量,而位置关系往往会 发生变化. (2)在解决问题时,要综合考虑折叠前后的图形,既要分析折 叠后的图形,也要分析折叠前的图形,进而将其转化为立体 几何的常规问题求解.
13
2.(2016·武汉调研)如图,已知正方形 ABCD 的 边长为 2,AC 与 BD 交于点 O,将正方形 ABCD 沿对角线

2019年一轮北师大版(理)数学教案:热点探究课5 平面解析几何中的高考热点题型

2019年一轮北师大版(理)数学教案:热点探究课5 平面解析几何中的高考热点题型

热点探究课(五) 平面解析几何中的高考热点题型[命题解读]圆锥曲线是平面解析几何的核心内容,每年高考必考一道解答题,常以求曲线的标准方程、位置关系、定点、定值、最值、范围、探索性问题为主.这些试题的命制有一个共同的特点,就是起点低,但在第(2)问或第(3)问中一般都伴有较为复杂的运算,对考生解决问题的能力要求较高,通常作为压轴题的形式出现.热点1圆锥曲线的标准方程与性质圆锥曲线的标准方程在高考中占有十分重要的地位.一般地,求圆锥曲线的标准方程是作为解答题中考查“直线与圆锥曲线”的第一小题,最常用的方法是定义法与待定系数法.离心率是高考对圆锥曲线考查的又一重点,涉及a,b,c 三者之间的关系.另外抛物线的准线,双曲线的渐近线也是命题的热点.(2017·石家庄质检)如图1,椭圆x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1,F2,过F2的直线交椭圆于P,Q两点,且PQ⊥PF1.图1(1)若|PF1|=2+2,|PF2|=2-2,求椭圆的标准方程;(2)若|PF1|=|PQ|,求椭圆的离心率e.[解](1)由椭圆的定义,2a=|PF1|+|PF2|=(2+2)+(2-2)=4,故a=2. 2分设椭圆的半焦距为c,由已知PF1⊥PF2,因此2c=|F1F2|=|PF1|2+|PF2|2=(2+2)2+(2-2)2=2 3.即c=3,从而b=a2-c2=1,故所求椭圆的标准方程为x24+y2=1. 5分(2)连接F1Q,如图,由椭圆的定义知|PF1|+|PF2|=2a,|QF1|+|QF2|=2a,又|PF1|=|PQ|=|PF2|+|QF2|=(2a-|PF1|)+(2a-|QF1|),可得|QF1|=4a-2|PF1|. ①又因为PF1⊥PQ且|PF1|=|PQ|,所以|QF1|=2|PF1|.②由①②可得|PF1|=(4-22)a,8分从而|PF2|=2a-|PF1|=(22-2)a.由PF1⊥PF2知|PF1|2+|PF2|2=|F1F2|2,即(4-22)2a2+(22-2)2a2=4c2,10分可得(9-62)a2=c2,即c2a2=9-62,因此e=ca=9-62=6- 3. 12分[规律方法] 1.用定义法求圆锥曲线的方程是常用的方法,同时应注意数形结合思想的应用.2.圆锥曲线的离心率刻画曲线的扁平程度,只要明确a,b,c中任意两量的等量关系都可求出离心率,但一定注意不同曲线离心率取值范围的限制.[对点训练1]已知椭圆中心在坐标原点,焦点在x轴上,离心率为22,它的一个顶点为抛物线x2=4y的焦点.(1)求椭圆方程;(2)若直线y=x-1与抛物线相切于点A,求以A为圆心且与抛物线的准线相切的圆的方程.[解](1)椭圆中心在原点,焦点在x轴上.设椭圆的方程为x 2a 2+y 2b 2=1(a >b >0).因为抛物线x 2=4y 的焦点为(0,1),所以b =1. 4分由离心率e =c a =22,a 2=b 2+c 2=1+c 2,从而得a =2,所以椭圆的标准方程为x 22+y 2=1. 6分(2)由⎩⎨⎧ x 2=4y ,y =x -1,解得⎩⎨⎧x =2,y =1,所以点A (2,1). 8分 因为抛物线的准线方程为y =-1,所以圆的半径r =1-(-1)=2, 10分所以圆的方程为(x -2)2+(y -1)2=4.12分 热点2 圆锥曲线中的定点、定值问题定点、定值问题一般涉及曲线过定点、与曲线上的动点有关的定值问题以及与圆锥曲线有关的弦长、面积、横(纵)坐标等的定值问题.☞角度1 圆锥曲线中的定值问题(2016·北京高考)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,A (a,0),B (0,b ),O (0,0),△OAB 的面积为1.(1)求椭圆C 的方程;(2)设P 是椭圆C 上一点,直线P A 与y 轴交于点M ,直线PB 与x 轴交于点N .求证:|AN |·|BM |为定值.[解] (1)由题意得⎩⎪⎨⎪⎧ c a =32,12ab =1,a 2=b 2+c 2,解得⎩⎨⎧ a =2,b =1,c = 3. 3分所以椭圆C 的方程为x 24+y 2=1. 5分(2)证明:由(1)知,A (2,0),B (0,1).设P (x 0,y 0),则x 20+4y 20=4.当x 0≠0时,直线P A 的方程为y =y 0x 0-2(x -2). 令x =0,得y M =-2y 0x 0-2, 从而|BM |=|1-y M |=⎪⎪⎪⎪⎪⎪1+2y 0x 0-2. 直线PB 的方程为y =y 0-1x 0x +1. 8分令y =0,得x N =-x 0y 0-1, 从而|AN |=|2-x N |=⎪⎪⎪⎪⎪⎪2+x 0y 0-1. 所以|AN |·|BM |=⎪⎪⎪⎪⎪⎪2+x 0y 0-1·⎪⎪⎪⎪⎪⎪1+2y 0x 0-2 =⎪⎪⎪⎪⎪⎪x 20+4y 20+4x 0y 0-4x 0-8y 0+4x 0y 0-x 0-2y 0+2 =⎪⎪⎪⎪⎪⎪4x 0y 0-4x 0-8y 0+8x 0y 0-x 0-2y 0+2 =4. 10分当x 0=0时,y 0=-1,|BM |=2,|AN |=2,所以|AN |·|BM |=4.综上,|AN |·|BM |为定值. 12分[规律方法] 1.求定值问题常见的方法有两种:(1)从特殊入手,求出定值,再证明这个值与变量无关.(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.2.定值问题求解的基本思路是使用参数表示要解决的问题,然后证明与参数无关,这类问题选择消元的方向是非常关键的.☞角度2 圆锥曲线中的定点问题设椭圆E: x 2a 2+y 2b 2=1(a >b >0)的离心率为e =22,且过点⎝⎛⎭⎪⎫-1,-62. (1)求椭圆E 的方程;(2)设椭圆E 的左顶点是A ,若直线l :x -my -t =0与椭圆E 相交于不同的两点M ,N (M ,N 与A 均不重合),若以MN 为直径的圆过点A ,试判定直线l 是否过定点,若过定点,求出该定点的坐标.【导学号:57962427】[解] (1)由e 2=c 2a 2=a 2-b 2a 2=12,可得a 2=2b 2, 2分 椭圆方程为x 22b 2+y 2b 2=1,代入点⎝⎛⎭⎪⎫-1,-62可得b 2=2,a 2=4, 故椭圆E 的方程为x 24+y 22=1.5分 (2)由x -my -t =0得x =my +t ,把它代入E 的方程得:(m 2+2)y 2+2mty +t 2-4=0,设M (x 1,y 1),N (x 2,y 2)得:y 1+y 2=-2mt m 2+2,y 1y 2=t 2-4m 2+2, x 1+x 2=m (y 1+y 2)+2t =4t m 2+2, x 1x 2=(my 1+t )(my 2+t )=m 2y 1y 2+tm (y 1+y 2)+t 2=2t 2-4m 2m 2+2. 8分 因为以MN 为直径的圆过点A ,所以AM ⊥AN ,所以AM →·AN →=(x 1+2,y 1)·(x 2+2,y 2)=x 1x 2+2(x 1+x 2)+4+y 1y 2=2t 2-4m 2m 2+2+2×4t m 2+2+4+t 2-4m 2+2=3t 2+8t +4m 2+2=(t +2)(3t +2)m 2+2=0.。

2019高三数学文北师大版一轮热点探究训练4 立体几何中

2019高三数学文北师大版一轮热点探究训练4 立体几何中

热点探究训练(四)立体几何中的高考热点问题(对应学生用书第260页)1.(2018·临沂模拟)如图7,在直角梯形ABCD中,AB∥CD,AB=2CD,∠BCD =90°,BC=CD,AE=BE,ED⊥平面ABCD.(1)若M是AB的中点,求证:平面CEM⊥平面BDE;(2)若N为BE的中点,求证:CN∥平面ADE.【导学号:00090262】图7[证明](1)∵ED⊥平面ABCD,∴ED⊥AD,ED⊥BD,∵AE=BE,∴△ADE≌△BDE,则AD=BD.2分连接DM,则DM⊥AB,∵AB∥CD,∠BCD=90°,BC=CD,∴四边形BCDM是正方形,则BD⊥CM. 4分又DE⊥CM,∴CM⊥平面BDE,∵CM平面CEM,∴平面CEM⊥平面BDE;6分(2)由(1)知,AB=2CD,取AE中点G,连接NG,DG,在△EBA中,∵N为BE的中点,∴NG∥AB且NG=12AB,8分又AB∥CD,且AB=2CD,∴NG∥CD,且NG=CD,又四边形CDGN 为平行四边形,∴CN ∥DG .10分 又∵CN 平面ADE ,DG 平面ADE ,∴CN ∥平面ADE . 12分2.(2017·合肥质检)如图8,直角三角形ABC 中,A =60°,沿斜边AC 上的高BD将△ABD 折起到△PBD 的位置,点E 在线段CD 上.图8(1)求证:BD ⊥PE ;(2)过点D 作DM ⊥BC 交BC 于点M ,点N 为PB 的中点,若PE ∥平面DMN ,求DE DC 的值.[解] (1)证明:∵BD ⊥PD ,BD ⊥CD 且PD ∩DC =D ,∴BD ⊥平面PCD ,而PE 平面PCD ,∴BD ⊥PE .5分(2)由题意得BM =14BC ,取BC 的中点F ,则PF ∥MN ,∴PF ∥平面DMN , 7分由条件PE ∥平面DMN ,PE ∩PF =P ,∴平面PEF ∥平面DMN ,∴EF ∥DM .10分 ∴DE DC =MF MC =13. 12分3.(2017·西安调研)如图9①,在直角梯形ABCD 中,AD ∥BC ,∠BAD =π2,AB=BC =12AD =a ,E 是AD 的中点,O 是AC 与BE 的交点.将△ABE 沿BE折起到图9②中△A1BE的位置,得到四棱锥A1-BCDE.①②图9(1)证明:CD⊥平面A1OC;(2)当平面A1BE⊥平面BCDE时,四棱锥A1-BCDE的体积为362,求a的值.[解](1)证明:在图①中,因为AB=BC=12AD=a,E是AD的中点,∠BAD=π2,所以BE⊥AC.2分则在图②中,BE⊥A1O,BE⊥OC,且A1O∩OC=O,从而BE⊥平面A1OC.又CD∥BE,所以CD⊥平面A1OC.5分(2)由已知,平面A1BE⊥平面BCDE,且平面A1BE∩平面BCDE=BE,又由(1)可得A1O⊥BE,所以A1O⊥平面BCDE. 8分即A1O是四棱锥A1-BCDE的高.由图①知,A1O=22AB=22a,平行四边形BCDE的面积S=BC·AB=a2,从而四棱锥A1-BCDE的体积为V=13S·A1O=13·a2·22a=26a3.由26a3=362,得a=6. 12分4.(2017·贵阳模拟)已知如图10,△ABC和△DBC所在的平面互相垂直,且AB =BC=BD=1,∠ABC=∠DBC=120°.图10(1)在直线BC 上求作一点O ,使BC ⊥平面AOD ,写出作法并说明理由;(2)求三棱锥A -BCD 的体积.[解] (1)作AO ⊥BC ,交CB 延长线于点O ,连接DO ,则BC ⊥平面AOD .1分证明如下:∵AB =DB ,OB =OB ,∠ABO =∠DBO ,∴△AOB ≌△DOB , 3分 则∠AOB =∠DOB =90°,即OD ⊥BC .又∵AO ∩OD =O ,∴BC ⊥平面AOD .5分(2)∵△ABC 和△DBC 所在的平面互相垂直,∴AO ⊥平面BCD ,即AO 是三棱锥A -BCD 底面BCD 上的高,7分 在Rt △AOB 中,AB =1,∠ABO =60°,∴AO =AB sin 60°=32. 10分 又∵S △BCD =12BC ·BD ·sin ∠CBD =34,∴V 三棱锥A -BCD =13·S △BCD ·AO =13×34×32=18. 12分5. 如图11,三棱锥P -ABC 中,P A ⊥平面ABC ,P A =1,AB =1,AC =2,∠BAC=60°.图11(1)求三棱锥P -ABC 的体积;(2)在线段PC 上是否存在点M ,使得AC ⊥BM ,若存在点M ,求出PM MC 的值;若不存在,请说明理由.【导学号:00090263】[解] (1)由题知AB =1,AC =2,∠BAC =60°,可得S △ABC =12·AB ·AC ·sin 60°=32. 2分由P A ⊥平面ABC ,可知P A 是三棱锥P -ABC 的高.又P A =1,所以三棱锥P -ABC 的体积V =13·S △ABC ·P A =36. 5分(2)证明:在平面ABC 内,过点B 作BN ⊥AC ,垂足为N .在平面P AC 内,过点N 作MN ∥P A 交PC 于点M ,连接BM .7分由P A ⊥平面ABC 知P A ⊥AC ,所以MN ⊥AC .由于BN ∩MN =N ,故AC ⊥平面MBN .又BM 平面MBN ,所以AC ⊥BM .10分 在Rt △BAN 中,AN =AB ·cos ∠BAC =12,从而NC =AC -AN =32.由MN ∥P A ,得PM MC =AN NC =13. 12分 6. (2015·湖南高考)如图12,直三棱柱ABC -A 1B 1C 1的底面是边长为2的正三角形,E ,F 分别是BC ,CC 1的中点.图12(1)证明:平面AEF⊥平面B1BCC1;(2)若直线A1C与平面A1ABB1所成的角为45°,求三棱锥F-AEC的体积.[解](1)证明:如图,因为三棱柱ABC-A1B1C1是直三棱柱,所以AE⊥BB1.又E是正三角形ABC的边BC的中点,所以AE⊥BC.3分因此AE⊥平面B1BCC1.而AE平面AEF,所以平面AEF⊥平面B1BCC1. 5分(2)设AB的中点为D,连接A1D,CD.因为△ABC是正三角形,所以CD⊥AB.又三棱柱ABC-A1B1C1是直三棱柱,所以CD⊥AA1.因此CD⊥平面A1ABB1,于是∠CA1D为直线A1C与平面A1ABB1所成的角.8分由题设,∠CA1D=45°,所以A1D=CD=32AB= 3.在Rt△AA1D中,AA1=A1D2-AD2=3-1=2,所以FC=12AA1=22.故三棱锥F-AEC的体积V=13S△AEC·FC=13×32×22=612. 12分。

2019年一轮北师大版(理)数学教案:热点探究课5 平面解析几何中的高考热点题型

2019年一轮北师大版(理)数学教案:热点探究课5 平面解析几何中的高考热点题型

热点探究课(五) 平面解析几何中的高考热点题型[命题解读]圆锥曲线是平面解析几何的核心内容,每年高考必考一道解答题,常以求曲线的标准方程、位置关系、定点、定值、最值、范围、探索性问题为主.这些试题的命制有一个共同的特点,就是起点低,但在第(2)问或第(3)问中一般都伴有较为复杂的运算,对考生解决问题的能力要求较高,通常作为压轴题的形式出现.热点1圆锥曲线的标准方程与性质圆锥曲线的标准方程在高考中占有十分重要的地位.一般地,求圆锥曲线的标准方程是作为解答题中考查“直线与圆锥曲线”的第一小题,最常用的方法是定义法与待定系数法.离心率是高考对圆锥曲线考查的又一重点,涉及a,b,c 三者之间的关系.另外抛物线的准线,双曲线的渐近线也是命题的热点.(2017·石家庄质检)如图1,椭圆x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1,F2,过F2的直线交椭圆于P,Q两点,且PQ⊥PF1.图1(1)若|PF1|=2+2,|PF2|=2-2,求椭圆的标准方程;(2)若|PF1|=|PQ|,求椭圆的离心率e.[解](1)由椭圆的定义,2a=|PF1|+|PF2|=(2+2)+(2-2)=4,故a=2. 2分设椭圆的半焦距为c,由已知PF1⊥PF2,因此2c=|F1F2|=|PF1|2+|PF2|2=(2+2)2+(2-2)2=2 3.即c=3,从而b=a2-c2=1,故所求椭圆的标准方程为x24+y2=1. 5分(2)连接F1Q,如图,由椭圆的定义知|PF1|+|PF2|=2a,|QF1|+|QF2|=2a,又|PF1|=|PQ|=|PF2|+|QF2|=(2a-|PF1|)+(2a-|QF1|),可得|QF1|=4a-2|PF1|. ①又因为PF1⊥PQ且|PF1|=|PQ|,所以|QF1|=2|PF1|.②由①②可得|PF1|=(4-22)a,8分从而|PF2|=2a-|PF1|=(22-2)a.由PF1⊥PF2知|PF1|2+|PF2|2=|F1F2|2,即(4-22)2a2+(22-2)2a2=4c2,10分可得(9-62)a2=c2,即c2a2=9-62,因此e=ca=9-62=6- 3. 12分[规律方法] 1.用定义法求圆锥曲线的方程是常用的方法,同时应注意数形结合思想的应用.2.圆锥曲线的离心率刻画曲线的扁平程度,只要明确a,b,c中任意两量的等量关系都可求出离心率,但一定注意不同曲线离心率取值范围的限制.[对点训练1]已知椭圆中心在坐标原点,焦点在x轴上,离心率为22,它的一个顶点为抛物线x2=4y的焦点.(1)求椭圆方程;(2)若直线y=x-1与抛物线相切于点A,求以A为圆心且与抛物线的准线相切的圆的方程.[解](1)椭圆中心在原点,焦点在x轴上.设椭圆的方程为x2a2+y2b2=1(a>b>0).因为抛物线x2=4y的焦点为(0,1),所以b=1. 4分由离心率e =c a =22,a 2=b 2+c 2=1+c 2,从而得a =2,所以椭圆的标准方程为x 22+y 2=1. 6分(2)由⎩⎨⎧ x 2=4y ,y =x -1,解得⎩⎨⎧x =2,y =1,所以点A (2,1). 8分 因为抛物线的准线方程为y =-1,所以圆的半径r =1-(-1)=2, 10分所以圆的方程为(x -2)2+(y -1)2=4.12分 热点2 圆锥曲线中的定点、定值问题定点、定值问题一般涉及曲线过定点、与曲线上的动点有关的定值问题以及与圆锥曲线有关的弦长、面积、横(纵)坐标等的定值问题.☞角度1 圆锥曲线中的定值问题(2016·北京高考)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,A (a,0),B (0,b ),O (0,0),△OAB 的面积为1.(1)求椭圆C 的方程;(2)设P 是椭圆C 上一点,直线P A 与y 轴交于点M ,直线PB 与x 轴交于点N .求证:|AN |·|BM |为定值.[解] (1)由题意得⎩⎪⎨⎪⎧ c a =32,12ab =1,a 2=b 2+c 2,解得⎩⎨⎧ a =2,b =1,c = 3. 3分所以椭圆C 的方程为x 24+y 2=1. 5分(2)证明:由(1)知,A (2,0),B (0,1).设P (x 0,y 0),则x 20+4y 20=4.当x 0≠0时,直线P A 的方程为y =y 0x 0-2(x -2). 令x =0,得y M =-2y 0x 0-2,从而|BM |=|1-y M |=⎪⎪⎪⎪⎪⎪1+2y 0x 0-2. 直线PB 的方程为y =y 0-1x 0x +1. 8分令y =0,得x N =-x 0y 0-1, 从而|AN |=|2-x N |=⎪⎪⎪⎪⎪⎪2+x 0y 0-1. 所以|AN |·|BM |=⎪⎪⎪⎪⎪⎪2+x 0y 0-1·⎪⎪⎪⎪⎪⎪1+2y 0x 0-2 =⎪⎪⎪⎪⎪⎪x 20+4y 20+4x 0y 0-4x 0-8y 0+4x 0y 0-x 0-2y 0+2 =⎪⎪⎪⎪⎪⎪4x 0y 0-4x 0-8y 0+8x 0y 0-x 0-2y 0+2 =4. 10分 当x 0=0时,y 0=-1,|BM |=2,|AN |=2,所以|AN |·|BM |=4.综上,|AN |·|BM |为定值. 12分[规律方法] 1.求定值问题常见的方法有两种:(1)从特殊入手,求出定值,再证明这个值与变量无关.(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.2.定值问题求解的基本思路是使用参数表示要解决的问题,然后证明与参数无关,这类问题选择消元的方向是非常关键的.☞角度2 圆锥曲线中的定点问题设椭圆E: x 2a 2+y 2b 2=1(a >b >0)的离心率为e =22,且过点⎝⎛⎭⎪⎫-1,-62. (1)求椭圆E 的方程;(2)设椭圆E 的左顶点是A ,若直线l :x -my -t =0与椭圆E 相交于不同的两点M ,N (M ,N 与A 均不重合),若以MN 为直径的圆过点A ,试判定直线l 是否过定点,若过定点,求出该定点的坐标.【导学号:57962427】[解] (1)由e 2=c 2a 2=a 2-b 2a 2=12,可得a 2=2b 2, 2分椭圆方程为x 22b 2+y 2b 2=1,代入点⎝ ⎛⎭⎪⎫-1,-62可得b 2=2,a 2=4,故椭圆E 的方程为x 24+y 22=1. 5分(2)由x -my -t =0得x =my +t ,把它代入E 的方程得:(m 2+2)y 2+2mty +t 2-4=0,设M (x 1,y 1),N (x 2,y 2)得:y 1+y 2=-2mt m 2+2,y 1y 2=t 2-4m 2+2,x 1+x 2=m (y 1+y 2)+2t =4tm 2+2,x 1x 2=(my 1+t )(my 2+t )=m 2y 1y 2+tm (y 1+y 2)+t 2=2t 2-4m 2m 2+2. 8分因为以MN 为直径的圆过点A ,所以AM ⊥AN ,所以AM →·AN →=(x 1+2,y 1)·(x 2+2,y 2)=x 1x 2+2(x 1+x 2)+4+y 1y 2=2t 2-4m 2m 2+2+2×4t m 2+2+4+t 2-4m 2+2=3t 2+8t +4m 2+2=(t +2)(3t +2)m 2+2=0.因为M ,N 与A 均不重合,所以t ≠-2,所以t =-23,直线l 的方程是x =my -23,直线l 过定点T ⎝ ⎛⎭⎪⎫-23,0,10分由于点T 在椭圆内部,故满足判别式大于0,所以直线l 过定点T ⎝ ⎛⎭⎪⎫-23,0. 12分[规律方法] 1.假设定点坐标,根据题意选择参数,建立一个直线系或曲线系方程,而该方程与参数无关,故得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即所求定点.2.从特殊位置入手,找出定点,再证明该点适合题意.热点3 圆锥曲线中的最值、范围问题圆锥曲线中的最值问题大致可分为两类:一是涉及距离、面积的最值以及与之相关的一些问题;二是求直线或圆锥曲线中几何元素的最值以及这些元素存在最值时求解与之有关的一些问题.(2017·杭州调研)已知椭圆x 22+y 2=1上两个不同的点A ,B关于直线y =mx +12对称.图2(1)求实数m 的取值范围;(2)求△AOB 面积的最大值(O 为坐标原点).[解] (1)由题意知m ≠0,可设直线AB 的方程为y =-1m x +b .由⎩⎪⎨⎪⎧ x 22+y 2=1,y =-1m x +b ,消去y ,得⎝ ⎛⎭⎪⎫12+1m 2x 2-2b m x +b 2-1=0. 2分因为直线y =-1m x +b 与椭圆x 22+y 2=1有两个不同的交点,所以Δ=-2b 2+2+4m 2>0. ①将线段AB 中点M ⎝ ⎛⎭⎪⎫2mb m 2+2,m 2b m 2+2代入直线方程y =mx +12,解得b =-m 2+22m 2.② 由①②得m <-63或m >63.故m 的取值范围是⎝ ⎛⎭⎪⎫-∞,-63∪⎝ ⎛⎭⎪⎫63,+∞. 5分 (2)令t =1m ∈⎝ ⎛⎭⎪⎫-62,0∪⎝⎛⎭⎪⎫0,62, 则|AB |=t 2+1·-2t 4+2t 2+32t 2+12, 且O 到直线AB 的距离为d =t 2+12t 2+1. 9分 设△AOB 的面积为S (t ),所以S (t )=12|AB |·d =12-2⎝ ⎛⎭⎪⎫t 2-122+2≤22, 当且仅当t 2=12时,即m =±2时,等号成立.故△AOB 面积的最大值为22. 12分[规律方法] 范围(最值)问题的主要求解方法:(1)几何法,若题目的条件和结论能明显体现几何特征及意义,则考虑利用图形性质来解决.(2)代数法,若题目的条件和结论能体现一种明确的函数关系,则可先建立起目标函数或等量关系,利用判别式、基本不等式、函数的性质、导数法进行求解.[对点训练2] 如图3所示,设抛物线y 2=2px (p >0)的焦点为F ,抛物线上的点A 到y 轴的距离等于|AF |-1.(1)求p 的值;图3(2)若直线AF 交抛物线于另一点B ,过B 与x 轴平行的直线和过F 与AB 垂直的直线交于点N ,AN 与x 轴交于点M .求M 的横坐标的取值范围.[解] (1)由题意可得,抛物线上点A 到焦点F 的距离等于点A 到直线x =-1的距离,由抛物线的定义得p 2=1,即p =2. 5分(2)由(1)得,抛物线方程为y 2=4x ,F (1,0),可设A (t 2,2t ),t ≠0,t ≠±1. 因为AF 不垂直于y 轴,可设直线AF :x =sy +1(s ≠0).由⎩⎨⎧y 2=4x x =sy +1,消去x 得y 2-4sy -4=0. 故y 1y 2=-4,所以B ⎝ ⎛⎭⎪⎫1t 2,-2t . 8分又直线AB 的斜率为2t t 2-1,故直线FN 的斜率为-t 2-12t . 从而得直线FN :y =-t 2-12t (x -1),直线BN :y =-2t ,所以N ⎝ ⎛⎭⎪⎫t 2+3t 2-1,-2t . 设M (m,0),由A ,M ,N 三点共线得2t t 2-m =2t +2tt 2-t 2+3t 2-1,于是m =2t 2t 2-1=2+2t 2-1, 所以m <0或m >2. 10分 经推理知,m <0或m >2满足题意.综上,点M 的横坐标的取值范围是(-∞,0)∪(2,+∞). 12分热点4 圆锥曲线中的探索性问题(答题模板)圆锥曲线中的探索性问题主要体现在以下几个方面:(1)探索点是否存在;(2)探索曲线是否存在;(3)探索命题是否成立.涉及这类命题的求解主要是研究直线与圆锥曲线的位置关系问题.(本小题满分12分)(2015·全国卷Ⅰ)在直角坐标系xOy 中,曲线C :y =x 24与直线l :y =kx +a (a >0)交于M ,N 两点.(1)当k =0时,分别求C 在点M 和N 处的切线方程;(2)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM =∠OPN ?说明理由.[规范解答] (1)由题设可得M (2a ,a ),N (-2a ,a ),或M (-2a ,a ),N (2a ,a ). 1分.又y ′=x 2,故y =x 24在x =2a 处的导数值为a ,C 在点(2a ,a )处的切线方程为y -a =a (x -2a ), 即ax -y -a =0. 3分y =x 24在x =-2a 处的导数值为-a ,C 在点(-2a ,a )处的切线方程为y -a =-a (x +2a ), 即ax +y +a =0. 故所求切线方程为ax -y -a =0或ax +y +a =0. 6分(2)存在符合题意的点.证明如下:设P (0,b )为符合题意的点,M (x 1,y 1),N (x 2,y 2),直线PM ,PN 的斜率分别为k 1,k 2. 8分将y =kx +a 代入C 的方程,得x 2-4kx -4a =0.故x 1+x 2=4k ,x 1x 2=-4a .从而k 1+k 2=y 1-b x 1+y 2-b x 2=2kx 1x 2+(a -b )(x 1+x 2)x 1x 2=k (a +b )a. 10分 当b =-a 时,有k 1+k 2=0,则直线PM 的倾斜角与直线PN 的倾斜角互补, 故∠OPM =∠OPN ,所以点P (0,-a )符合题意. 12分[答题模板] 第一步:分别求出曲线y =x 24在M 点,N 点处的导数. 第二步:利用点斜式分别写出在M 点、N 点的切线方程.第三步:联立直线y =kx +a 与抛物线y =x 24,并写出根与系数的关系式. 第四步:由k PM +k PN =0,结合根与系数的关系式,探索点P 的坐标. 第五步:检验反思,查关键点,规范步骤.[温馨提示] 1.(1)在第(2)问中,不能把条件∠OPM =∠OPN 适当转化为k 1+k 2=0,找不到解题的思路和方法,而不能得分.(2)运算能力差或运算不细心,导致运算结果错误而扣分或者不得分.2.数学阅卷时,主要看关键步骤、关键点,有则得分,无则扣分,所以解题时要写全关键步骤.(1)本题的关键点一是利用导数的几何意义求切线方程,二是把条件中转化为只需直线PM ,PN 的斜率之和为0.(2)解析几何对运算能力要求较高,解题时一定要细心准确,否则可能是思路正确,但是运算结果错误,而不得分.[对点训练3] 如图4,椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率是22,点P (0,1)在短轴CD 上,且PC →·PD →=-1.图4(1)求椭圆E 的方程;(2)设O 为坐标原点,过点P 的动直线与椭圆交于A ,B 两点.是否存在常数λ,使得OA →·OB →+λP A →·PB →为定值?若存在,求λ的值;若不存在,请说明理由.[解] (1)由已知,点C ,D 的坐标分别为(0,-b ),(0,b ).又点P 的坐标为(0,1),且PC →·PD →=-1, 2分于是⎩⎪⎨⎪⎧ 1-b 2=-1,c a =22,a 2-b 2=c 2,解得a =2,b = 2.所以椭圆E 的方程为x 24+y 22=1. 5分(2)当直线AB 的斜率存在时,设直线AB 的方程为y =kx +1,A ,B 的坐标分别为(x 1,y 1),(x 2,y 2).联立⎩⎪⎨⎪⎧ x 24+y 22=1,y =kx +1,得(2k 2+1)x 2+4kx -2=0. 8分其判别式Δ=(4k )2+8(2k 2+1)>0,所以x 1+x 2=-4k 2k 2+1,x 1x 2=-22k 2+1. 从而,OA →·OB →+λP A →·PB →=x 1x 2+y 1y 2+λ[x 1x 2+(y 1-1)(y 2-1)]=(1+λ)(1+k 2)x 1x 2+k (x 1+x 2)+1=(-2λ-4)k 2+(-2λ-1)2k 2+1=-λ-12k 2+1-λ-2. 所以,当λ=1时,-λ-12k 2+1-λ-2=-3. 10分 此时,OA →·OB →+λP A →·PB →=-3为定值.当直线AB 斜率不存在时,直线AB 即为直线CD .此时,OA →·OB →+λP A →·PB →=OC →·OD →+PC →·PD →=-2-1=-3.故存在常数λ=1,使得OA →·OB →+λP A →·PB →为定值-3. 12分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

此类试题一般以解答题形式呈现,常角的计算问题,是高考命题的热点,一般有两种考查形式: (1)根据条件
作出判断,再进一步论证; (2) 利用空间向量,先假设存在点的坐标,再根据条
件判断该点的坐标是否存在.
(2016 ·



考 )如图 3,在四棱锥 P-ABCD中,平面 PAD⊥平面 ABCD,PA⊥PD,PA=PD
A→D ·D→C=(0,2,0) (1·,0,0)=0, 所以 A→P⊥ D→C, A→D ⊥D→C,即 AP⊥ DC, AD⊥ DC.
又因为 AP∩AD=A,AP 平面 PAD,AD 平面 PAD,
所以 DC⊥平面 PAD.
因为 DC 平面 PDC, 所以平面 PAD⊥平面 PDC .
立体几何中的探索性问题
空间点、线、面间的位置关系
空间线线、 线面、 面面平行、 垂直关系常与平面图形的有关性质及体积的计 算等知识交汇考查, 考查学生的空间想象能力和推理论证能力以及转化与化归思 想,一般以解答题的形式出现,难度中等.
用向量法证明平行、垂直、求空间角,通过建立空间直角坐标系,利用空间 向量的坐标运算来实现,实质是把几何问题代数化,注意问题:
再将 “线面垂直 ”问题转化为 “ 线线垂直 ”问题 .
2 证明 C1F∥平面 ABE:① 利用判定定理,关键是在平面 ABE 中找 作 出直线
EG,且满足 C1F∥EG.②利用面面平行的性质定理证明线面平行,则先要确定一
个平面 C1HF 满足面面平行,实施线面平行、面面平行的转化 .
2.计算几何体的体积时,能直接用公式时,关键是确定几何体的高,而不能直接
所以平面 ABE∥平面 C1HF .
又 C1F 平面 C1HF,
所以 C1F∥平面 ABE.
(3)因为 AA1=AC=2,BC=1,AB⊥BC,
所以 AB= AC2- BC2= 3.
所以三棱锥 E-ABC 的体积
1
11
3
V=3S△ABC·AA1=3×2× 3×1×2= 3 .
[ 规律方法 ] 1. 1 证明面面垂直,将“面面垂直 ”问题转化为 “线面垂直 ”问题,
又因为 EG 平面 ABE,C1F?/ 平面 ABE,
所以 C1F∥平面 ABE.
法二: 如图 (2),取 AC 的中点 H,连接 C1H,FH .
因为 H,F 分别是 AC,BC 的中点,所以 HF∥ AB.
又因为 E,H 分别是 A1C1, AC 的中点, 所以 EC1∥═AH,所以四边形 EAHC1 为平行四边形, 所以 C1H∥AE,又 C1H∩ HF= H,AE∩ AB= A,
,A→P=(0,0,1),A→D =(0,2,0),D→C= (1,0,0), A→B =
(1,0,0). (1)因为 E→F=- 12A→B ,所以 E→F∥ A→B ,即 EF∥AB.
又 AB 平面 PAB,EF?/ 平面 PAB,
所以 EF∥ 平面 PAB. (2)因为 A→P·D→C= (0,0,1) (1·,0,0)=0,
(1) 恰当建系,建系要直观;坐标简单易求,在图上标出坐标轴,特别注 意有时要证明三条轴两两垂直 (扣分点 ). (2)关键点,向量的坐标要求对,把用到的点的坐标一个一个写在步骤里. (3)计算要认真细心,特别是 |n|, n1、n2 的运算. (4)弄清各空间角与向量夹角的关系.
如图 1所示,在三棱柱 ABC-A1B1C1中,侧棱垂直于底面, AB⊥BC,AA1=AC =2,BC=1,E,F分别是 A1C1,BC的中点.
[ 证明 ] 以 A 为原点, AB,AD,AP 所在直线分别为 x 轴, y 轴, z 轴,建立空间
直角坐标系如图所示,
则 A(0,0,0), B(1,0,0), C(1,2,0), D(0,2,0) , P(0,0,1) ,所以
E
12,1,
1 2

F
1 0, 1, 2
,E→F=
- 12, 0, 0
四 立体几何中的高考热点问题
(对应学生用书第 127页) [ 命题解读 ] 立体几何是高考的重要内容,从近五年全国卷高考试题来看,立体 几何每年必考一道解答题,难度中等,主要采用 “论证与计算 ”相结合的模式, 即首先利用定义、定理、公理等证明空间的线线、线面、面面平行或垂直,再利 用空间向量进行空间角的计算, 考查的热点是平行与垂直的证明、 二面角的计算, 平面图形的翻折,探索存在性问题,突出三大能力:空间想象能力、运算能力、 逻辑推理能力与两大数学思想:转化化归思想、数形结合思想的考查.
(1)
(2)
(2)证明:法一: 如图 (1),取 AB 中点 G,连接 EG,FG.
因为 G,F 分别是 AB,BC 的中点, 1
所以 FG∥AC,且 FG= 2AC.
因为 AC∥A1C1,且 AC=A1C1,
所以 FG∥EC1,且 FG=EC1.
所以四边形 FGEC1 为平行四边形,
所以 C1F∥EG.
,AB⊥AD,AB=1,AD=2,AC=CD= 5.
图3
(1)求证: PD⊥平面 PAB;
(2)求直线 PB与平面 PCD所成角的正弦值;
AM
(3)在棱 PA上是否存在点 M,使得 BM∥平面 PCD?若存在,求
AP
的值;若不存在,说明理由.
[ 解] (1)证明: 因为平面 PAD⊥ 平面 ABCD,AB⊥AD,
用公式时,注意进行体积的转化 .
[




]
如图 2所示,在底面是矩形的四棱锥 P-ABCD中, PA⊥底面 ABCD,E,F分
别是 PC,PD的中点, PA= AB= 1, BC= 2.
图2 (1)求证: EF∥ 平面 PAB; (2)求证:平面 PAD⊥平面 PDC.
【导学号 :79140259】
所以 AB⊥ 平面 PAD,所以 AB⊥PD.
图1 (1)求证:平面 ABE⊥平面 B1BCC1; (2)求证: C1F∥平面 ABE; (3)求三棱锥 E-ABC的体积. [ 解] (1)证明:在三棱柱 ABC-A1B1C1中,BB1⊥底面 ABC,所以 BB1⊥ AB. 又因为 AB⊥BC,BB1∩BC=B,所以 AB⊥平面 B1BCC1.又 AB 平面 ABE, 所以平面 ABE⊥平面 B1BCC1.
相关文档
最新文档