年中考数学试题分项版解析汇编:专题05+数量和位置的变化(第02期)(山东专版)
中考数学试题分项版解析汇编第期专题数量和位置变化含解析
专题5:数量和位置变化一、选择题1.(2017北京第3题)右图是某个几何题的展开图,该几何体是()A.三棱柱 B.圆锥 C.四棱柱 D.圆柱【答案】A.【解析】试题分析:根据三棱柱的概念,将该展开图翻折起来正好是一个三棱柱.故选A.考点:三视图2.(2017天津第5题)右图是一个由4个相同的正方体组成的立体图形,它的主视图是()【答案】D.【解析】试题分析:从正面看可得从下往上有2列正方形,个数依次为3,1,故选D.3.(2017福建第2题)如图,由四个正方体组成的几何体的左视图是()A. B. C. D.【答案】B【解析】从左边看可以看到两个小正方形摞在一起,故选B.4.(2017河南第3题)某几何体的左视图如下图所示,则该几何体不可能是()A. B. C. D.【答案】D.考点:几何体的三视图.5.(2017河南第9题)我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD 的边AB在x轴上,AB的中点是坐标原点O固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点'D处,则点C的对应点'C的坐标为()A. B.(2,1) C. D.【答案】D.【解析】OD 试题分析:由题意可知A'D=AD=2,CD='C'D=2,AO=OB=1,在Rt△AO'D中,根据勾股定理求得'C D AB即可得点'C的坐标为,故选D.由''//考点:图形与坐标.6.(2017湖南长沙第7题)某几何体的三视图如图所示,因此几何体是()A.长方形 B.圆柱 C.球 D.正三棱柱【答案】B【解析】试题分析:根据三视图的意义,可知这个几何体是圆柱.故选:B考点:几何体的三视图7. (2017山东临沂第5题)如图所示的几何体是由五个小正方体组成的,它的左视图是()A. B. C. D.【答案】D【解析】试题分析:根据三视图的意义,该几何体的三视图如下:主视图:;俯视图:;左视图:.故选:D考点:三视图7.(2017四川泸州第4题)下图是一个由4个相同的正方体组成的立体图形,它的左视图是()【答案】D.【解析】试题分析:题目所给的立体图形,从左边看是两个竖排的正方形,故选D.8. (2017四川泸州第5题)已知点(,1)A a 与点(4,)B b -关于原点对称,则a b +的值为( )A .5B .5-C .3D .3-【答案】C.【解析】试题分析:平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),由此可得a=4,b=-1,所以a+b=3,故选C.9. (2017四川泸州第7题)下列命题是真命题的是( )A .四边都相等的四边形是矩形B .菱形的对角线相等C .对角线互相垂直的平行四边形是正方形D .对角线相等的平行四边形是矩形【答案】D.【解析】试题分析:选项A ,四边都相等的四边形是菱形,选项A 是假命题;选项B ,矩形的对角线相等,选项B 是假命题;选项C,对角线互相垂直平分且相等的平行四边形是正方形,选项C 是假命题;选项D,对角线相等的平行四边形是矩形,选项D 是真命题,故选D.10. (2017辽宁沈阳第2题)如图所示的几何体的左视图是( )A.B. C. D.【答案】D.【解析】 试题分析:这个几何体从左面看到的图形是两个竖排的正方形,故选D.考点:简单几何体的三视图.11. (2017山东日照第7题)下列说法正确的是( )A .圆内接正六边形的边长与该圆的半径相等B .在平面直角坐标系中,不同的坐标可以表示同一点C .一元二次方程ax 2+bx+c=0(a ≠0)一定有实数根D .将△ABC 绕A 点按顺时针方向旋转60°得△ADE ,则△ABC 与△ADE 不全等【答案】A .考点:正多边形和圆;根的判别式;点的坐标;旋转的性质.12. (2017辽宁沈阳第6题)在平面直角坐标系中,点A ,点B 关于y 轴对称,点A 的坐标是()2,8-,则点B 的坐标是( )A. ()2,8--B. ()2,8C. ()2,8-D. ()8,2【答案】A.【解析】试题分析:关于y 轴对称点的坐标的特点是横坐标互为相反数,纵坐标不变,由此可得点B 的坐标为(-2,-8),故选A.考点:关于y 轴对称点的坐标的特点.13. (2017江苏宿迁第4题)将抛物线2y x =向右平移2个单位,再向上平移1个单位,所得抛物线相应的函数表达式是A .()221y x =++B .()221y x =+- C.()221y x =-+ D .()221y x =--【答案】C.【解析】试题分析:根据抛物线的平移规律“左加右减。
中考数学试题分项版解析(第01期)专题05 数量和位置变化-人教版初中九年级全册数学试题
专题05 数量和位置变化一、选择题1.(2016某某某某第5题)如图所示的几何体的主视图为【答案】B.考点:几何体的三视图.2.(2016某某第3题)下列几何体是由4个相同的小正方体搭成的,其中主视图和左视图相同的是【】【答案】C.【解析】试题分析:观察可得,只有选项C的主视图和左视图相同,都为,故答案选C.考点:简单几何体的三视图.3.(2016某某第8题)图1和图2中所有的正方形都全等,将图1的正方形放在图2中的○1○2○3○4某一位置,所组成的图形不能..围成正方体的位置是()图1 图2第8题图A.○1B.○2C.○3D.○4【答案】A.考点:几何体的侧面展开图.4.(2016某某第13题)ABCD沿对角线AC折叠,使点B落在点B’处.若∠1=∠2=44°,则∠B为()第13题图A.66°B.104°C.114°D.124°【答案】C.【解析】试题分析:因为AB∥CD,∠1=∠B'AB,由于折叠,∠BAC=∠B'AC=22°,在△ABC中,∠B=180°-∠ACB-∠CAB=114°,故答案选C.考点:平行线的性质;折叠的性质.5.(2016某某达州第3题)如图是一个正方体的表面展开图,则原正方体中与“你”字所在面相对的面上标的字是()A.遇B.见C.未D.来【答案】D.考点:正方体的展开图.6.(2016某某滨州第9题)如图是由4个大小相同的正方体组合而成的几何体,其主视图是()【答案】C.【解析】试题分析:根据图形可得主视图为:.故答案选C.考点:简单组合体的三视图7.(2016某某某某第6题)如图是由六个相同的小正方体搭成的几何体,这个几何体的主视图是()【答案】B.【解析】试题分析:观察可得,从正面看第一层是三个小正方形,第二层左边一个小正方形,第三层左边一个小正方形,所以该几何体的主视图为,故答案选B.考点:几何体的三视图.8.(2016某某枣庄第6题)有3块积木,每一块的各面都涂上不同的颜色,3块的涂法完全相同.现把它们摆放成不同的位置(如图),请你根据图形判断涂成绿色一面的对面涂的颜色是A.【答案】C.考点:几何体的侧面展开图.9.(2016某某某某第7题)某几何体的主视图和左视图如图所示,则该几何体可能是A.长方体B.圆锥C. 圆柱D.球【答案】C.【解析】试题分析:由几何体的主视图、左视图可得该几何体是一个放倒的圆柱,故答案选C.考点:根据三视图判定几何体.10.(2016某某某某第10题)小明用计算器计算(a+b)c的值,其按键顺序和计算器显示结果如表:这时他才明白计算器是先做乘法再做加法的,于是他依次按键:从而得到了正确结果,已知a是b的3倍,则正确的结果是()A.24 B.39 C.48 D.96【答案】C.【解析】试题分析:根据题意得方程组,解得:,所以(9+3)×4=48.故答案选C.考点:计算器的基础知识.11.(2016某某某某第8题)若将点A(1,3)向左平移2个单位,再向下平移4个单位得到点B,则点B 的坐标为()A.(﹣2,﹣1)B.(﹣1,0)C.(﹣1,﹣1)D.(﹣2,0)【答案】C.考点:坐标与图形变化﹣平移.12.(2016某某某某第11题)如图,直线l1∥l2∥l3,一等腰直角三角形ABC的三个顶点A,B,C分别在l1,l2,l3上,∠ACB=90°,AC交l2于点D,已知l1与l2的距离为1,l2与l3的距离为3,则的值为()A.B. C.D.【答案】A.∴=.故答案选A.考点:平行线分线段成比例.13.(2016某某某某第4题)一个几何体及它的主视图和俯视图如图所示,那么它的左视图正确的是()【答案】B.考点:几何体的三视图.14.(2016某某某某第5题)如图是某几何体的三视图,则该几何体可能是()A.圆柱 B.圆锥 C.球D.长方体【答案】A.【解析】试题分析:观察可得,几何体的主视图和俯视图都是宽度相等的长方形,所以该几何体是一个柱体,俯视图是一个圆,即可判定该几何体是一个圆柱.故答案选A.考点:由三视图判断几何体.15.(2016某某某某第7题)下列说法错误的是()A.角平分线上的点到角的两边的距离相等B.直角三角形斜边上的中线等于斜边的一半C.菱形的对角线相等D.平行四边形是中心对称图形【答案】C.【解析】试题分析:根据角平分线的性质,可得角平分线上的点到角的两边的距离相等,选项A正确;根据直角三角形斜边上的中线的性质,可得直角三角形斜边上的中线等于斜边的一半,选项B正确;根据菱形的性质,菱形的对角线互相垂直,但是不一定相等,选项C不正确;根据中心对称图形的性质,可得常见的中心对称图形有:平行四边形、圆形、正方形、长方形,选项D正确.故答案选C.考点:中心对称图形;角平分线的性质;直角三角形斜边上的中线;菱形的性质.16.2016某某某某第2题)图1所示几何体的左视图是()【答案】A.【解析】试题分析:观察可知几何体由两个圆锥组合而成,所以该几何体的左视图是由两个三角形组成,故答案选A.考点:几何体的三视图.16.(2016某某威海第6题)一个几何体由几个大小相同的小正方体搭成,其左视图和俯视图如图所示,则搭成这个几何体的小正方体的个数是()A.3 B.4 C.5 D.6【答案】B.考点:几何体的三视图.17.(2016某某威海第18题)如图,点A1的坐标为(1,0),A2在y轴的正半轴上,且∠A1A2O=30°,过点A2作A2A3⊥A1A2,垂足为A2,交x轴于点A3;过点A3作A3A4⊥A2A3,垂足为A3,交y轴于点A4;过点A4作A4A5⊥A3A4,垂足为A4,交x轴于点A5;过点A5作A5A6⊥A4A5,垂足为A5,交y轴于点A6;…按此规律进行下去,则点A2016的纵坐标为.【答案】﹣(3)2015.考点:规律探究题.18.(2016某某襄阳第4题)一个几何体的三视图如图所示,则这个几何体是()A.球体B.圆锥C.棱柱D.圆柱【答案】D.【解析】试题分析:观察可知,这个几何体的俯视图为圆,主视图与左视图都是矩形,所以这个几何体是圆柱,故答案选D.考点:几何体的三视图.19.(2016某某某某第4题)如图,几何体是由3个大小完全一样的正方体组成的,它的左视图是()A.B.C.D.【答案】D.考点:简单几何体的三视图.20.(2016某某永州第5题)如图,将两个形状和大小都相同的杯子叠放在一起,则该实物图的主视图为()A. B. C. D.【答案】B.【解析】试题分析:该实物图的主视图为,故答案选B.考点:简单几何体的三视图.21.(2016某某永州第7题)对下列生活现象的解释其数学原理运用错误的是()A.把一条弯曲的道路改成直道可以缩短路程是运用了“两点之间线段最短”的原理B.木匠师傅在刨平的木板上任选两个点就能画出一条笔直的墨线是运用了“直线外一点与直线上各点连接的所有线段中,垂线段最短”的原理C.将自行车的车架设计为三角形形状是运用了“三角形的稳定性”的原理D.将车轮设计为圆形是运用了“圆的旋转对称性”的原理【答案】B.考点:线段的性质;垂线段最短;圆的认识;三角形的稳定性.22.(2016某某某某第2题)下面几何体中,其主视图与俯视图相同的是()【答案】C.【解析】试题分析:选项A,圆柱主视图是矩形,俯视图是圆;选项B,圆锥主视图是三角形,俯视图是圆;选项C,正方体的主视图与俯视图都是正方形;选项D,三棱柱的主视图是矩形与俯视图都是三角形;故答案选C.考点:几何体的三视图.23.(2016某某某某第4题)下列命题中,错误的是()A.两组对边分别平行的四边形是平行四边形B.有一个角是直角的平行四边形是矩形C.有一组邻边相等的平行四边形是菱形D.内错角相等【答案】D.【解析】试题分析:选项A,根据平行四边形的判定可知,两组对边分别平行的四边形是平行四边形,正确.选项B,根据矩形的判定可知,有一个角是直角的平行四边形是矩形,正确.选项C,根据菱形的判定可知,有一组邻边相等的平行四边形是菱形,正确.选项D,内错角相等,错误,缺少条件两直线平行,内错角相等.故答案选D.考点:命题.24.(2016某某某某第5题)下列几何体中,主视图和俯视图都为矩形的是()A. B. C. D.【答案】B.考点:几何体的三视图.二、填空题1.(2016某某威海第17题)如图,直线y=x+1与x轴交于点A,与y轴交于点B,△BOC与△B′O′C′是以点A为位似中心的位似图形,且相似比为1:3,则点B的对应点B′的坐标为.【答案】(﹣8,﹣3)或(4,3).【解析】试题分析:直线y=x+1与x轴、y轴的交点坐标为A(﹣2,0),B(0,1),已知△BOC与△B′O′C′是以点A为位似中心的位似图形,且相似比为1:3,所以==,即可求得O′B′=3,AO′=6,所以B′的坐标为(﹣8,﹣3)或(4,3).考点:一次函数图象上点的坐标特征;位似变换.2.(2016某某某某第13题)如图,AB∥CD∥EF,AF 与BE 相交于点G ,且AG=2,GD=1,DF=5,那么的值等于.【答案】53.考点:平行线分线段成比例定理.。
中考数学试题分项版解析汇编第期专题数量和位置变化含解析3.doc
专题05 数量和位置变化一、选择题1. (2017湖北咸宁第8题)在平面直接坐标系xOy 中,将一块含义45角的直角三角板如图放置,直角顶点C 的坐标为)0,1(,顶点A 的坐标为)2,0(,顶点B 恰好落在第一象限的双曲线上,现将直角三角板沿x 轴正方向平移,当顶点A 恰好落在该双曲线上时停止运动,则此点C 的对应点C 的坐标为()A .)0,23( B .)0,2( C. )0,25( D .)0,3(考点:反比例函数图象上点的坐标特征;坐标与图形变化﹣平移.2. (2017湖南常德第7题)将抛物线22x y =向右平移3个单位,再向下平移5个单位,得到的抛物线的表达式为( )A.5)3(22--=x y B .5)3(22++=x yC .5)3(22+-=x yD .5)3(22-+=x y【答案】A .【解析】试题分析:抛物线22x y =的顶点坐标为(0,0),点(0,0)向右平移3个单位,再向下平移5个单位所得对应点的坐标为(3,﹣5),所以平移得到的抛物线的表达式为5)3(22--=x y .故选A .考点:二次函数图象与几何变换;几何变换.3. (2017广西百色第10题)如图,在距离铁轨200米处的B 处,观察由南宁开往百色的“和谐号”动车,当动车车头在A 处时,恰好位于B 处的北偏东60︒方向上,10秒钟后,动车车头到达C 处,恰好位于B 处西北方向上,则这时段动车的平均速度是( )米/秒.A .1)B .1) C. 200 D .300【答案】A考点:1.解直角三角形的应用﹣方向角问题;2.勾股定理的应用.4. (2017湖北孝感第8题) 如图,在平面直角坐标系中,点A 的坐标为(- ,以原点O 为中心,将点A 顺时针旋转150得到点'A ,则点'A 坐标为( )A .()0,2-B .(1, C.()2,0 D .)1- 【答案】D考点:坐标与图形的变化﹣旋转.5. (2017内蒙古呼和浩特第3题)如图中序号(1)(2)(3)(4)对应的四个三角形,都是ABC ∆这个图形进行了一次变换之后得到的,其中是通过轴对称得到的是( )A .(1)B .(2)C .(3)D .(4)【答案】A【解析】试题分析:∵轴对称是沿着某条直线翻转得到新图形,∴通过轴对称得到的是(1).故选A .考点:轴对称图形.6. (2017青海西宁第6题)在平面直角坐标系中,将点()1,2A --向右平移3个单位长度得到点B ,则点B 关于x 轴的对称点B ' 的坐标为( )A .()3,2--B . ()2,2 C. ()2,2- D .()2,2-【答案】B考点:1.关于x 轴、y 轴对称的点的坐标;2.坐标与图形变化﹣平移.7. (2017辽宁大连第7题)在平面直角坐标系xOy 中,线段AB 的两个端点坐标分别为)1,1(--A ,)2,1(B .平移线段AB ,得到线段''B A .已知点'A 的坐标为)1,3(-,则点'B 的坐标为( )A .)2,4(B .)2,5( C. )2,6( D .)3,5(【答案】B.【解析】试题分析:根据A 点的坐标及对应点的坐标可得线段AB 向右平移4个单位,然后可得B′点的坐标. ∵A (﹣1,﹣1)平移后得到点A′的坐标为(3,﹣1),∴向右平移4个单位,∴B (1,2)的对应点坐标为(1+4,2),即(5,2).故选B .考点:坐标与图形变化﹣平移.8. (2017海南第6题)如图,在平面直角坐标系中,△ABC 位于第二象限,点A 的坐标是(﹣2,3),先把△ABC 向右平移4个单位长度得到△A 1B 1C 1,再作与△A 1B 1C 1关于x 轴对称的△A 2B 2C 2,则点A 的对应点A 2的坐标是( )A.(-3,2)B.(2,-3)C.(1,-2)D.(-1,2)【答案】B.考点:平移的性质,轴对称的性质.9. (2017河池第14题)点)1,2(A与点B关于原点对称,则点B的坐标是.【答案】(﹣2,﹣1).【解析】试题分析:根据两个点关于原点对称时,它们的坐标符号相反可得答案.∵点A(2,1)与点B关于原点对称,∴点B的坐标是(﹣2,﹣1),故答案为(﹣2,﹣1).考点:关于原点对称的点的坐标.二、填空题1. (2017郴州第9题)在平面直角坐标系中,把点(2,3)A向左平移一个单位得到点A',则点A'的坐标为.【答案】(1,3).【解析】试题分析:由点A(2,3)向左平移1个单位长度,可得点A′的横坐标为2﹣1=1,纵坐标不变,即A′的坐标为(1,3).考点:坐标的平移.2.(2017湖南株洲第16题)如图示直线与x轴、y轴分别交于点A、B,当直线绕着点A按顺时针方向旋转到与x轴首次重合时,点B运动的路径的长度为.【答案】23π.考点:一次函数图象与几何变换;轨迹.3.(2017湖南株洲第17题)如图所示是一块含30°,60°,90°的直角三角板,直角顶点O 位于坐标原点,斜边AB 垂直于x 轴,顶点A 在函数y 1=1k x (x >0)的图象上,顶点B 在函数y 2=2k x(x >0)的图象上,∠ABO=30°,则12k k = .【答案】12k k =﹣13.考点:反比例函数图象上点的坐标特征.3. (2017湖北咸宁第15题) 如图,边长为4的正六边形ABCDEF 的中心与坐标原点O 重合,x AF //轴,将正六边形ABCDEF 绕原点O 顺时针旋转n 次,每次旋转60,当2017=n 时,顶点A 的坐标为 .【答案】(2,)考点:坐标与图形变化﹣旋转;规律型:点的坐标.4. (2017湖南常德第16题)如图,有一条折线A 1B 1A 2B 2A 3B 3A 4B 4…,它是由过A 1(0,0),B 1(2,2),A 2(4,0)组成的折线依次平移4,8,12,…个单位得到的,直线y =kx +2与此折线恰有2n (n ≥1,且为整数)个交点,则k 的值为 .【答案】12n-.【解析】试题分析:∵A 1(0,0),A 2(4,0),A 3(8,0),A 4(12,0),…,∴A n (4n ﹣4,0)∵直线y =kx +2与此折线恰有2n (n ≥1,且为整数)个交点,∴点A n +1(4n ,0)在直线y =kx +2上,∴0=4nk +2,解得:k =12n -.故答案为:12n-. 考点:一次函数图象上点的坐标特征;坐标与图形变化﹣平移;规律型;综合题.5. (2017广西百色第16题)如图,在正方形OABC 中,O 为坐标原点,点C 在y 轴正半轴上,点A 的坐标为(2,0),将正方形OABC 沿着OB 方向平移12OB 个单位,则点C 的对应点坐标是 .【答案】(1,3).考点:坐标与图形变化﹣平移.6. (2017湖北孝感第13题)如图,将直线y x =- 沿y 轴向下平移后的直线恰好经过点()2,4A - ,且与y 轴交于点B ,在x 轴上存在一点P 使得PA PB +的值最小,则点P 的坐标为 .【答案】(23,0) 【解析】考点:1.最短路线问题;2.一次函数图象与几何变换的运用.7. (2017贵州六盘水第19题)已知()2,1A -,()6,0B -,若白棋A 飞挂后,黑棋C 尖顶,黑棋C 的坐标为( , ).【答案】C(-1,1).试题分析:根据()2,1A -,()6,0B -,建立平面直角坐标系如图所示:所以C(-1,1).考点:平面直角坐标系.三、解答题1. (2017广西百色第21题)已知反比例函数(0)k y k x=≠的图象经过点(3,2)B ,点B 与点C 关于原点O 对称,BA x ⊥轴于点A ,CD x ⊥轴于点.D(1)求这个反比例函数的解析式;(2)求ACD 的面积.【答案】(1)反比例函数的解析式为y=6x;(2)S△ACD=6.反比例函数的解析式为y=6x;(2)由B(3,2),点B与点C关于原点O对称,得C(﹣3,﹣2).由BA⊥x轴于点A,CD⊥x轴于点D,得A(3,0),D(﹣3,0).S△ACD=12AD•CD=12[3﹣(﹣3)]×|﹣2|=6.考点:1.反比例函数系数k的几何意义;2.反比例函数图象上点的坐标特征;3.坐标与图形变化﹣旋转.2. (2017哈尔滨第22题)如图,方格纸中每个小正方形的边长均为1,线段AB的两个端点均在小正方形的顶点上.(1)在图中画出以AB为底、面积为12的等腰ABC△,且点C在小正方形的顶点上;(2)在图中画出平行四边形ABDE,且点D和点E均在小正方形的顶点上,3tan2EAB=∠,连接CD,请直接写出线段CD的长.【答案】(1)画图见解析;(2)画图见解析,考点:1.作图—应用与设计作图;2.勾股定理;3.平行四边形的判定;4.解直角三角形.3. (2017黑龙江齐齐哈尔第21题)如图,平面直角坐标系内,小正方形网格的边长为1个单位长度,ABC ∆的三个顶点的坐标分别为(3,4)A -,(5,2)B -,(2,1)C -.(1)画出ABC ∆关于y 轴的对称图形111A B C ∆;(2)画出将ABC ∆绕原点O 逆时针方向旋转90︒得到的222A B C ∆;(3)求(2)中线段OA 扫过的图形面积.【答案】(1)画图见解析;(2)画图见解析;(3)线段OA 扫过的图形面积为254π.考点:1.作图﹣旋转变换;2.扇形面积的计算;3.作图﹣轴对称变换.4. (2017河池第21题)直线l 的解析式为22+-=x y ,分别交x 轴、y 轴于点B A ,.⑴写出B A ,两点的坐标,并画出直线l 的图象;⑵将直线l 向上平移4个单位得到1l ,1l 交x 轴于点C .作出1l 的图象,1l 的解析式是 . ⑶将直线l 绕点A 顺时针旋转 90得到2l ,2l 交1l 于点D .作出2l 的图象,=∠CAD tan .【答案】(1)A (1,0),B (0,2),图象见解析;(2)y=﹣2x+6;(3)12.考点:一次函数图象与几何变换;一次函数的图象.5. (2017贵州六盘水第22题)如图,在边长为1的正方形网格中,ABC △的顶点均在格点上.(1)画出ABC △关于原点成中心对称的'''A B C △,并直接写出'''A B C △各顶点的坐标.(2)求点B 旋转到点'B 的路径(结果保留p ).【答案】(1) )31()33()04(,,,,,C B A ''' ;(2) . 试题分析:(1)利用中心对称画出图形并写出坐标;(2)利用弧线长计算公式计算点B 旋转到点'B 的路径. 试题解析:(1)图形如图所示,)31()33()04(,,,,,C B A '''考点:坐标与图形变化-旋转(中心对称);弧线长计算公式.。
中考数学往年考点分类解析汇编5 数量和位置变化
中考数学往年考点分类解析汇编5 数量和位置变化中考数学往年考点分类解析汇编5-数量和位置变化广东省中考数学试题分类、分析与编写专题5数量和位置变化一、多项选择题1.(广州3分)将点a(2,1)向左平移2个单位长度得到点a′,则点a′的坐标是a、(0,1)B,(2,1)C,(4,1)d,(2,3)[回答]a[测试场地]坐标翻译。
【分析】根据坐标的平移变化的规律,左右平移只改变点的横坐标,左减右加。
由此将点a的横坐标减2,纵坐标不变可得a′的坐标(0,1)。
故选a。
2.(广州3分)实数x的值等于x时?2个错误!未找到引用源。
有意义时,函数y=4x+1中y的取值范围是a、Y≥ 7b,y≥ 9C,y>9D,y≤ 9[答]B。
【考点】函数值,二次根式有意义的条件。
【分析】根据二次根的有意义平方数为非负的条件,得到x2≥ 0,也就是X≥ 2.将不等式的两边乘以4,得到4x≥ 8.在不等式两边加1,得到4x+1≥ 9,也就是说,y≥ 9.所以选择B。
3.(肇庆3分)点m(?2,1)关于x轴对称的点的坐标是a、(-2,1)b.(2.1)c.(2,1)d(1.2)【答案】a。
【考点】轴对称。
【分析】根据直角坐标系中x轴对称点的横坐标相同、纵坐标相对的特点,直接得出结果。
所以选择a.2.填空1.(广东省4分)已知反比例函数y=k的图象经过(1,-2),则xk?_____;▲______.【答案】-2。
[测试点]点坐标与方程式之间的关系。
【分析】根据点在曲线上,点的坐标满足方程的关系,只要将(1,-2)代入y=k,即可求出k值。
x2。
(广东省4分)打x?2在实数范围内,有意义的x的值范围为-_________;▲______. [答:]x?2.【考点】二次根式有意义的条件。
【分析】根据二次根的平方数必须为非负的条件,直接从ebagc出结果:x?2?0?x?2。
3.(3点)如图所示,对象从a点开始,然后跟随a?B(第一步)?CDA.E(第2步) fd?f?g?a?b??的顺序循环运动,则第2021直截了当▲; [答:]D[试验场地]分类和归纳。
山东省各市2019年中考数学分类解析专题5:数量和位置变化
山东各市2019年中考数学试题分类解析汇编专题5:数量和位置变化一、选择题1. (2019山东东营3分)将点A(2,1)向左..平移2个单位长度得到点A′,则点A′的坐标是【】A.(2,3) B.(2,-1)C.(4,1) D. (0,1)【答案】D。
【考点】坐标平移。
【分析】根据坐标的平移变化的规律,左右平移只改变点的横坐标,左减右加。
上下平移只改变点的纵坐标,下减上加。
因此,将点A(2,1)向左..平移2个单位长度得到点A′,则点A′的坐标是(0,1)。
故选D。
2. (2019山东东营3分)如图,在直角坐标系中,矩形OABC的顶点O在坐标原点,边OA在x轴上,OC在y轴上,如果矩形OA′B′C′与矩形OABC关于点O位似,且矩形OA′B′C′的面积等于矩形OABC面积的14,那么点B′的坐标是【】A.(-2,3) B.(2,-3)C.(3,-2)或(-2,3)D.(-2,3)或(2,-3)【答案】D。
【考点】位似,相似多边形的性质,坐标与图形性质。
【分析】如果两个图形不仅是相似图形,而且每组对应点的连线交于一点,对应边互相平行或在一条直线上,那么这两个图形叫做位似图形。
把一个图形变换成与之位似的图形是位似变换。
因此,∵矩形OA′B′C′与矩形OABC关于点O位似,∴矩形OA′B′C′∽矩形OABC。
∵矩形OA′B′C′的面积等于矩形OABC面积的14,∴位似比为:12。
∵点B的坐标为(-4,6),∴点B′的坐标是:(-2,3)或(2,-3)。
故选D。
3. (2019山东菏泽3分)点P(﹣2,1)在平面直角坐标系中所在的象限是【】A.第一象限B.第二象限C.第三象限D.第四象限【答案】B。
【考点】平面直角坐标系中各象限点的特征。
【分析】根据平面直角坐标系中各象限点的特征,判断其所在象限,四个象限的符号特征分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)。
所以点P(﹣2,1)位于第二象限。
2024年中考数学真题分类汇编(全国通用)(第一期)专题05 分式及其运算(37题)(解析版)
专题05分式及其运算(37题)一、单选题1.(2024·甘肃·中考真题)计算:4222a ba b a b-=--()A .2B .2a b -C .22a b-D .2a b a b-【答案】A【分析】本题主要考查了同分母分式减法计算,熟知相关计算法则是解题的关键.【详解】解:()42422222222a b a b a b a b a a b a bb --===-----,故选:A .2.(2024·黑龙江绥化·中考真题)下列计算中,结果正确的是()A .()2139--=B .()222a b a b +=+C 93=±D .()3263x y x y -=【答案】A【分析】本题考查了负整数指数幂,完全平方公式,算术平方根,积的乘方,据此逐项分析计算,即可求解.【详解】解:A.()2139--=,故该选项正确,符合题意;B.()2222a b a ab b +=++,故该选项不正确,不符合题意;C.93=,故该选项不正确,不符合题意;D.()3263x y x y -=-,故该选项不正确,不符合题意;故选:A .3.(2024·黑龙江牡丹江·中考真题)下列计算正确的是()A .32622a a a ⋅=B .331(2)8a b a b-÷⨯=-C .()322a a a a a a++÷=+D .2233aa -=【答案】D【分析】本题考查了单项式的乘除法,多项式除以单项式,负整数指数幂,根据运算法则进行逐项计算,即可作答.4.(2024·山东威海·中考真题)下列运算正确的是()A .5510x x x +=B .21m m n n n÷⋅=C .624a a a ÷=D .()325a a -=-5.(2024·广东广州·中考真题)若0a ≠,则下列运算正确的是()A .235a a a +=B .325a a a ⋅=C .235a a a⋅=D .321a a ÷=故选:B .6.(2024·天津·中考真题)计算3311x x x ---的结果等于()A .3B .xC .1x x -D .231x -【答案】A【分析】本题考查分式加减运算,熟练运用分式加减法则是解题的关键;运用同分母的分式加减法则进行计算,对分子提取公因式,然后约分即可.【详解】解:原式()3133311x x x x --===--故选:A7.(2024·河北·中考真题)已知A 为整式,若计算22A y xy y x xy-++的结果为xy -,则A =()A .xB .yC .x y+D .x y-【答案】A【分析】本题考查了分式的加减运算,分式的通分,平方差公式,熟练掌握分式的加减运算法则是解题的关键.由题意得22y x y A x xy xy xy y -+=++,对2y x yx xy xy-++进行通分化简即可.【详解】解:∵22A y xy y x xy-++的结果为x yxy -,∴22y x y Ax xy xy xy y -+=++,∴()()()()()2222x y x y y x x Axy x y xy x y xy x y xy y xy y -++===+++++,∴A x =,故选:A .二、填空题8.(2024·四川南充·中考真题)计算-a b a b a b的结果为.【答案】1【分析】本题主要考查了同分母分式减法运算,按照同分母减法运算法则计算即可.【详解】解:1a b a ba b a b a b--==---,故答案为:1.9.(2024·湖北·中考真题)计算:111m m m +=.10.(2024·广东·中考真题)计算:333a a -=.11.(2024·吉林·中考真题)当分式11x +的值为正数时,写出一个满足条件的x 的值为.12.(2024·山东威海·中考真题)计算:422x x x+=.13.(2024·四川内江·中考真题)在函数1y x=中,自变量x 的取值范围是;【答案】0x ≠【分析】本题考查函数的概念,根据分式成立的条件求解即可.熟练掌握分式的分母不等于零是解题的关键.【详解】解:由题意可得,0x ≠,故答案为:0x ≠.14.(2024·四川眉山·中考真题)已知11a x =+(0x ≠且1x ≠-),23121111,,,111-==⋯=---n n a a a a a a ,则2024a 的值为.【答案】1x-【分析】此题考查了分式的混合运算,利用分式的运算法则计算得到每三个为一个循环,分别为1x +,1x-,1xx +,进一步即可求出2024a .【详解】解:11a x =+ ,()21111111a a x x∴===---+,32111111xa a x x ===-+⎛⎫-- ⎪⎝⎭,43111111111a x xa x x ∴====+--++,51a x∴=-,61x a x =+,……,由上可得,每三个为一个循环,2024367432÷=⨯+ ,20241a x∴=-.故答案为:1x-.三、解答题16.(2024·江苏盐城·中考真题)先化简,再求值:2391a a a---÷,其中4a =.17.(2024·四川泸州·中考真题)化简:2222y x y x y x x ⎛⎫-+-÷ ⎪⎝⎭.22222y x xy x x x y +-=⋅-()()()2x y xx x y x y -=⋅+-x y x y-=+18.(2024·四川广安·中考真题)先化简111a a a ++⎛⎫+-÷--⎝⎭,再从2-,0,1,2中选取一个适合的数代入求值.【答案】22a a -+,0a =时,原式1=-,2a =时,原式0=.【分析】本题考查的是分式的化简求值,先计算括号内分式的加减运算,再计算分式的除法运算,再结合分式有意义的条件代入计算即可.【详解】解:2344111a a a a a ++⎛⎫+-÷⎪--⎝⎭2213(2)111a a a a a ⎛⎫-+=-÷⎪---⎝⎭2(2)(2)11(2)a a a a a +--=⋅-+22a a -=+1a ≠ 且2a ≠-∴当0a =时,原式1=-;当2a =时,原式0=.19.(2024·山东·中考真题)(111422-⎛⎫+-- ⎪⎝⎭;(2)先化简,再求值:212139a a a +⎛⎫-÷ ⎪,其中1a =.【答案】(1)3(2)3a -2-【分析】本题主要考查实数的运算、分式的运算:(1)根据求算术平方根和负整数指数幂、有理数的减法的运算法则计算即可;(2)先通分,然后求解即可.【详解】(1)原式112+322=+=(2)原式()()3123333a a a a a a ++⎛⎫-÷ ⎪+++-⎝⎭()()332·32a a a a a +-+=++3a =-将1a =代入,得原式132=-=-21.(2024·江苏连云港·中考真题)计算0|2|(π1)-+-【答案】1-【分析】本题考查实数的混合运算,零指数幂,先进行去绝对值,零指数幂和开方运算,再进行加减运算即可.【详解】解:原式2141=+-=-22.(2024·江苏连云港·中考真题)下面是某同学计算21211m m ---的解题过程:解:2121211(1)(1)(1)(1)m m m m m m m +-=---+-+-①(1)2m =+-②1m =-③上述解题过程从第几步开始出现错误?请写出完整的正确解题过程.23.(2024·江西·中考真题)(1)计算:0π5+-;(2)化简:888x x x -.【答案】(1)6;(2)1【分析】题目主要考查零次幂、绝对值的化简,分式的加减运算,熟练掌握运算法则是解题关键.(1)先计算零次幂及绝对值化简,然后计算加减法即可;(2)直接进行分式的减法运算即可.【详解】解:(1)0π5+-=1+5=6;(2)888x x x ---88x x -=-1=.24.(2024·江苏苏州·中考真题)计算:()0429-+-.【答案】2【分析】本题考查了实数的运算,利用绝对值的意义,零指数幂的意义,算术平方根的定义化简计算即可.【详解】解:原式413=+-2=.25.(2024·福建·中考真题)计算:0(1)54-+-【答案】4【分析】本题考查零指数幂、绝对值、算术平方根等基础知识,熟练掌握运算法则是解题的关键.根据零指数幂、绝对值、算术平方根分别计算即可;【详解】解:原式152=+-4=.26.(2024·陕西·()()025723-+-⨯.【答案】2-【分析】本题考查了实数的运算.根据算术平方根、零次幂、有理数的乘法运算法则计算即可求解.【详解】解:()()025723--+-⨯516=--2=-.27.(2024·湖南·中考真题)先化简,再求值:22432x x x x x-⋅+,其中3x =.28.(2024·北京·中考真题)已知10a b --=,求代数式222a ab b-+的值.29.(2024·甘肃临夏·中考真题)计算:10120253-⎛⎫-+ ⎪⎝⎭.【答案】0【分析】本题考查实数的混合运算,先进行开方,去绝对值,零指数幂和负整数指数幂的运算,再进行加减运算即可.【详解】解:原式2310=-+=.30.(2024·甘肃临夏·中考真题)化简:21111a a a a a +⎛⎫++÷ ⎪.【答案】1a a +【分析】本题考查分式的混合运算,掌握分式的混合运算法则是解题关键.根据分式的混合运算法则计算即可.【详解】解:21111a a a a a +⎛⎫++÷ ⎪--⎝⎭,()()()1111111a a a a a a a ⎡⎤-+=⎢+÷⎣-⎥+--⎦()211111a a a a a -+=⨯--+()2111a a a a a =-⨯-+1a a =+.31.(2024·浙江·中考真题)计算:131854-⎛⎫-- ⎪⎝⎭【答案】7【分析】此题考查了负整数指数幂,立方根和绝对值,解题的关键是掌握以上运算法则.首先计算负整数指数幂,立方根和绝对值,然后计算加减.【详解】131854-⎛⎫-+- ⎪⎝⎭425=-+7=.32.(2024·四川广元·中考真题)先化简,再求值:22222a a b a b a b a ab b a b--÷-,其中a ,b 满足20b a -=.【答案】b a b +,23【分析】本题考查了分式的化简求值,熟练掌握分式的化简求值方法是解题的关键.先将分式的分子分母因式分解,然后将除法转化为乘法计算,再计算分式的加减得到b a b+,最后将20b a -=化为2b a =,代入b a b +即得答案.33.(2024·黑龙江牡丹江·中考真题)先化简,再求值:2669x x x x x --⎛⎫÷- ⎪⎝⎭,并从1-,0,1,2,3中选一个合适的数代入求值.34.(2024·山东烟台·中考真题)利用课本上的计算器进行计算,按键顺序如下:,若m 是其显示结果的平方根,先化简:27442393m m m m m m --⎛⎫+÷ ⎪--+⎝⎭,再求值.【答案】262m m --,25-.【分析】本题考查了分式的化简求值,先利用分式的性质和运算法则对分式化简,然后根据题意求出m 的值,把m 的值代入到化简后的结果中计算即可求解,正确化简分式和求出m 的值是解题的关键.【详解】解:27442393m m m m m m --⎛⎫+÷ ⎪--+⎝⎭()22274393m m m m m m --⎛⎫=-÷ ⎪--+⎝⎭,()()()()()()3743333322m m m m m m m m m ⎡⎤+-+=-⨯⎢⎥+-+--⎢⎥⎣⎦,()()()()()23743333322m m m m m m m m m ⎡⎤+-+=-⨯⎢⎥+-+--⎢⎥⎣⎦,()()()24433322m m m m m m -++=⨯+--,()()()()2233322m m m m m -+=⨯+---,()223m m -=--,262m m -=-,∵2354-=,∴235-的平方根为2±,∵420m -≠,∴2m ≠,又∵m 为235-的平方根,∴2m =-,∴原式()2226225--==--⨯-.35.(2024·江苏苏州·中考真题)先化简,再求值:212124x x +-⎛⎫+÷ ⎪.其中3x =-.【答案】2x x+,13【分析】本题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.原式括号中两项通分并利用同分母分式的加法法则计算,同时利用因式分解和除法法则变形,约分得到最简结果,把x 的值代入计算即36.(2024·贵州·中考真题)(1)在①22,②2-,③()01-,④122⨯中任选3个代数式求和;(2)先化简,再求值:()21122x x -⋅,其中3x =.4=;(2)解:()21122x x -⋅+()()11(1)21x x x =-+⋅+12x -=;当3x =时,原式3112-==.37.(2024·四川乐山·中考真题)先化简,再求值:242x x ---,其中3x =.小乐同学的计算过程如下:解:()()2212142222x x x x x x x -=---+--…①()()()()222222x x x x x x +=-+-+-…②()()2222x x x x -+=+-…③()()222x x x +=+-…④12x =-…⑤当3x =时,原式1=.(1)小乐同学的解答过程中,第______步开始出现了错误;(2)请帮助小乐同学写出正确的解答过程.【答案】(1)③(2)见解析【分析】本题考查了分式的化简求值,异分母的分式减法运算,熟练掌握知识点是解题的关键.(1)第③步分子相减时,去括号变号不彻底;(2)先通分,再进行分子相减,化为最简分式后,再代入求值即可.【详解】(1)解:∵第③步分子相减时,去括号变号不彻底,应为:()()()()()()2222222222x x x x x x x x x x -----=+++-+;(2)解:()()2212142222x x x x x x x -=---+--()()()()222222x x x x x x +=-+-+-。
山东省17市中考数学试题分类解析汇编 专题5 数量和位置变化
山东17市中考数学试题分类解析汇编专题5:数量和位置变化一、选择题1. (日照3分)以平行四边形ABCD 的顶点A 为原点,直线AD 为x 轴建立直角坐标系,已知B 、D 点的坐标分别为(1,3),(4,0),把平行四边形向上平移2个单位,那么C 点平移后相应的点的坐标是A 、(3,3)B 、(5,3)C 、(3,5)D 、(5,5)【答案】D 。
【考点】坐标与图形变化(平移),平行四边形的性质。
【分析】根据题意画出图形,由已知即可求出点C 的坐标为(5,3),从而根据坐标平移变化的规律,左右平移只改变点的横坐标,左减右加;上下平移只改变点的纵坐标,下减上加。
平行四边形向上平移2个单位,那么平行四边形上的点都相应向上平移2个单位,因此C 点平移后得到对应点的坐标是(5,5)。
故选D 。
2. (日照4分)在平面直角坐标系中,已知直线334y x =-+与x 轴、y 轴分别交于A 、B 两点,点C (0,n )是y 轴上一点.把坐标平面沿直线AC 折叠,使点B 刚好落在x 轴上,则点C 的坐标是A 、(0,34) B 、(0,43) C 、(0,3) D 、(0,4)【答案】B 。
【考点】一次函数综合题,翻折变换(折叠问题)的性质,直线上点的坐标与方程的关系,勾股定理,角平分线的性质。
【分析】过C 作CD⊥AB 于D ,交AO 于B′,根据点在直线上点的坐标满足方程的关系,在334y x =-+中分别令x =0和y =0求出A ,B 的坐标,分别为(4,0),(0,3)。
从而得OA =4,OB =3,根据勾股定理得AB =5。
再根据折叠对称的性质得到AC 平分∠OAB,得到CD =CO =n ,DA =OA =4,则DB =5-4=1,BC =3-n 。
从而在Rt△BCD中,DC2+BD 2=BC 2,即n 2+12=(3-n )2,解得n =43,因此点C 的坐标为(0,43)。
故选B 。
3.(滨州3分)二次根式12x +有意义时,x 的取值范围是A 、x ≥12B 、x ≤﹣12 C 、x ≥﹣12D 、x ≤12【答案】C 。
【2020】中考数学试题分项解析汇编第02期专题05数量和位置变化含解析
专题5:数量和位置变化一、选择题1.(20xx北京第3题)右图是某个几何题的展开图,该几何体是( )A. 三棱柱 B. 圆锥 C.四棱柱 D. 圆柱【答案】A.【解析】试题分析:根据三棱柱的概念,将该展开图翻折起来正好是一个三棱柱.故选A.考点:三视图2.(20xx天津第5题)右图是一个由4个相同的正方体组成的立体图形,它的主视图是( )【答案】D.【解析】试题分析:从正面看可得从下往上有2列正方形,个数依次为3,1,故选D.3.(20xx福建第2题)如图,由四个正方体组成的几何体的左视图是( )A.B.C.D.【答案】B【解析】从左边看可以看到两个小正方形摞在一起,故选B.4.(20xx河南第3题)某几何体的左视图如下图所示,则该几何体不可能是( )A. B. C. D.【答案】D.考点:几何体的三视图.5.(20xx河南第9题)我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD的边AB在x轴上,AB的中点是坐标原点O固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点'D处,则点C的对应点'C的坐标为( )A.(3,1)B.(2,1) C.(1,3)D.(2,3)【答案】D.【解析】试题分析:由题意可知A'D=AD=2,CD='C'D=2,AO=OB=1,在Rt△AO'D中,根据勾股定理求得OD ,由''//'3C D AB即可得点'C的坐标为(2,3),故选D.考点:图形与坐标.6.(20xx湖南长沙第7题)某几何体的三视图如图所示,因此几何体是( )A.长方形 B.圆柱 C.球 D.正三棱柱【答案】B【解析】试题分析:根据三视图的意义,可知这个几何体是圆柱.故选:B考点:几何体的三视图7.(20xx山东临沂第5题)如图所示的几何体是由五个小正方体组成的,它的左视图是( )A. B. C. D.【答案】D【解析】试题分析:根据三视图的意义,该几何体的三视图如下:主视图:;俯视图:;左视图:.故选:D考点:三视图7.(20xx四川泸州第4题)下图是一个由个相同的正方体组成的立体图形,它的左视图是( )【答案】D.【解析】试题分析:题目所给的立体图形,从左边看是两个竖排的正方形,故选D.8. (20xx四川泸州第5题)已知点与点关于原点对称,则的值为( )A.B.C.D.【答案】C.【解析】试题分析:平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),由此可得a=4,b=-1,所以a+b=3,故选C.9. (20xx四川泸州第7题)下列命题是真命题的是( )A.四边都相等的四边形是矩形B.菱形的对角线相等C.对角线互相垂直的平行四边形是正方形D.对角线相等的平行四边形是矩形【答案】D.【解析】试题分析:选项A,四边都相等的四边形是菱形,选项A是假命题;选项B,矩形的对角线相等,选项B是假命题;选项C,对角线互相垂直平分且相等的平行四边形是正方形,选项C是假命题;选项D,对角线相等的平行四边形是矩形,选项D是真命题,故选D.10. (20xx辽宁沈阳第2题)如图所示的几何体的左视图是( )A. B. C. D.【答案】D.【解析】试题分析:这个几何体从左面看到的图形是两个竖排的正方形,故选D.考点:简单几何体的三视图.11. (20xx山东日照第7题)下列说法正确的是()A.圆内接正六边形的边长与该圆的半径相等B.在平面直角坐标系中,不同的坐标可以表示同一点C.一元二次方程ax2+bx+c=0(a≠0)一定有实数根D.将△ABC绕A点按顺时针方向旋转60°得△ADE,则△ABC与△ADE不全等【答案】A.考点:正多边形和圆;根的判别式;点的坐标;旋转的性质.12. (20xx辽宁沈阳第6题)在平面直角坐标系中,点,点关于y轴对称,点A的坐标是()2,8-,则点B的坐标是( )A. ()2,8-- B. ()2,8 C. ()2,8- D. ()8,2【答案】A. 【解析】试题分析:关于y 轴对称点的坐标的特点是横坐标互为相反数,纵坐标不变,由此可得点B 的坐标为(-2,-8),故选A.考点:关于y 轴对称点的坐标的特点.13. (20xx江苏宿迁第4题)将抛物线2y x =向右平移2个单位,再向上平移1个单位,所得抛物线相应的函数表达式是A.()221y x =++ B.()221y x =+- C.()221y x =-+D.()221y x =-- 【答案】C.【解析】试题分析:根据抛物线的平移规律“左加右减。
中考数学试题分项版解析汇编第期专题数量和位置变化含解析7.doc
专题05 数量和位置变化一、选择题1.(2017四川省绵阳市)下列图案中,属于轴对称图形的是( )A .B .C .D .【答案】A . 【解析】试题分析:A .此图案是轴对称图形,有5条对称轴,此选项符合题意; B .此图案不是轴对称图形,此选项不符合题意;C .此图案不是轴对称图形,而是旋转对称图形,不符合题意;D .此图案不是轴对称图形,不符合题意; 故选A .考点:轴对称图形.2.(2017四川省绵阳市)将二次函数2x y =的图象先向下平移1个单位,再向右平移3个单位,得到的图象与一次函数y =2x +b 的图象有公共点,则实数b 的取值范围是( ) A .b >8 B .b >﹣8 C .b ≥8 D .b ≥﹣8 【答案】D . 【解析】试题分析:由题意得:平移后得到的二次函数的解析式为:2(3)1y x =-- ,则2(3)12y x y x b⎧=--⎨=+⎩,2(3)12x x b --=+,2880x x b -+-=,△=(﹣8)2﹣4×1×(8﹣b )≥0,b ≥﹣8,故选D .考点:1.二次函数图象与几何变换;2.一次函数图象与系数的关系.3.(2017四川省绵阳市)如图所示,将形状、大小完全相同的“●”和线段按照一定规律摆成下列图形,第1幅图形中“●”的个数为a 1,第2幅图形中“●”的个数为a 2,第3幅图形中“●”的个数为a 3,…,以此类推,则193211111a a a a ++++ 的值为( )A .2120 B .8461 C .840589 D .760421 【答案】C . 【解析】试题分析:a 1=3=1×3,a 2=8=2×4,a 3=15=3×5,a 4=24=4×6,…,a n =n (n +2); ∴193211111a a a a ++++ =11111 (132435461921)+++++⨯⨯⨯⨯⨯ =1111111111(1...)232435461921-+-+-+-++-=1111(1)222021+--=840589,故选C . 考点:1.规律型:图形的变化类;2.综合题.4.(2017四川省达州市)如图,将矩形ABCD 绕其右下角的顶点按顺时针方向旋转90°至图①位置,继续绕右下角的顶点按顺时针方向旋转90°至图②位置,以此类推,这样连续旋转2017次.若AB =4,AD =3,则顶点A 在整个旋转过程中所经过的路径总长为( )A .2017πB .2034πC .3024πD .3026π 【答案】D . 【解析】试题分析:∵AB =4,BC =3,∴AC =BD =5,转动一次A 的路线长是:904180π⨯ =2π,转动第二次的路线长是:905180π⨯ =52π,转动第三次的路线长是:903180π⨯ =32π,转动第四次的路线长是:0,以此类推,每四次循环,故顶点A 转动四次经过的路线长为:52π+32π+2π=6π,∵2017÷4=504…1,∴顶点A 转动四次经过的路线长为:6π×504+2π=3026π,故选D .考点:1.轨迹;2.矩形的性质;3.旋转的性质;4.规律型;5.综合题.5.(2017山东省枣庄市)将数字“6”旋转180°,得到数字“9”,将数字“9”旋转180°,得到数字“6”,现将数字“69”旋转180°,得到的数字是()A.96 B.69 C.66 D.99【答案】B.考点:生活中的旋转现象.6.(2017山东省枣庄市)如图,把正方形纸片ABCD沿对边中点所在的直线对折后展开,折痕为MN,再过点B折叠纸片,使点A落在MN上的点F处,折痕为BE.若AB的长为2,则FM的长为()A.2 B C D.1【答案】B.【解析】试题分析:∵四边形ABCD为正方形,AB=2,过点B折叠纸片,使点A落在MN上的点F处,∴FB=AB=2,BM=1,则在Rt△BMF中,FM B.考点:翻折变换(折叠问题).7.(2017山东省济宁市)下列图形中是中心对称图形的是()A.B.C.D.【答案】C.【解析】试题分析:A.不是中心对称图形,故本选项错误;B .不是中心对称图形,故本选项错误;C .是中心对称图形,故本选项正确;D .不是中心对称图形,故本选项错误. 故选C .考点:中心对称图形.8.(2017山东省济宁市)如图,在Rt △ABC 中,∠ACB =90°,AC =BC =1,将Rt △ABC 绕点A 逆时针旋转30°后得到Rt △ADE ,点B 经过的路径为,则图中阴影部分的面积是( )A .6π B . 3πC .122π-D . 12 【答案】A . 【解析】试题分析:∵∠ACB =90°,AC =BC =1,∴AB ,∴S 扇形ABD =230360π⨯ =6π.又∵Rt △ABC 绕A 点逆时针旋转30°后得到Rt △ADE ,∴Rt △ADE ≌Rt △ACB ,∴S 阴影部分=S △ADE +S 扇形ABD ﹣S △ABC =S扇形ABD=6π.故选A . 考点:1.扇形面积的计算;2.等腰直角三角形;3.旋转的性质.9.(2017广东省)下列所述图形中,既是轴对称图形又是中心对称图形的是( ) A .等边三角形 B .平行四边形 C .正五边形 D .圆 【答案】D .考点:1.中心对称图形;2.轴对称图形.10.(2017江苏省盐城市)下列图形中,是轴对称图形的是( )A .B .C .D .【答案】D .考点:轴对称图形.11.(2017江苏省盐城市)如图,将函数()21212y x =-+的图象沿y 轴向上平移得到一条新函数的图象,其中点A (1,m ),B (4,n )平移后的对应点分别为点A '、B '.若曲线段AB 扫过的面积为9(图中的阴影部分),则新图象的函数表达式是( )A .()21222y x =--B .()21272y x =-+C .()21252y x =-- D .()21242y x =-+ 【答案】D . 【解析】试题分析:解:∵函数()21212y x =-+的图象过点A (1,m ),B (4,n ),∴m =()211212-+=32,n =()214212-+=3,∴A (1,32),B (4,3),过A 作AC ∥x 轴,交B ′B 的延长线于点C ,则C (4,32),∴AC =4﹣1=3,∵曲线段AB 扫过的面积为9(图中的阴影部分),∴AC •AA ′=3AA ′=9,∴AA ′=3,即将函数()21212y x =-+的图象沿y 轴向上平移3个单位长度得到一条新函数的图象,∴新图象的函数表达式是()21242y x =-+.故选D .考点:二次函数图象与几何变换.12.(2017江苏省连云港市)如图所示,一动点从半径为2的⊙O 上的A 0点出发,沿着射线A 0O 方向运动到⊙O 上的点A 1处,再向左沿着与射线A 1O 夹角为60°的方向运动到⊙O 上的点A 2处;接着又从A 2点出发,沿着射线A 2O 方向运动到⊙O 上的点A 3处,再向左沿着与射线A 3O 夹角为60°的方向运动到⊙O 上的点A 4处;…按此规律运动到点A 2017处,则点A 2017与点A 0间的距离是( )A .4B .C .2D .0 【答案】A .考点:1.规律型:图形的变化类;2.综合题.13.(2017河北省)图1和图2中所有的小正方形都全等,将图1的正方形放在图2中①②③④的某一位置,使它与原来7个小正方形组成的图形是中心对称图形,这个位置是()A.①B.②C.③D.④【答案】C.考点:中心对称图形.14.(2017河北省)已知正方形MNOK和正六边形ABCDEF边长均为1,把正方形放在正六边形中,使OK边与AB边重合,如图所示,按下列步骤操作:将正方形在正六边形中绕点B顺时针旋转,使KM边与BC边重合,完成第一次旋转;再绕点C顺时针旋转,使MN边与CD边重合,完成第二次旋转;…在这样连续6次旋转的过程中,点B,M间的距离可能是()A.1.4 B.1.1 C.0.8 D.0.5【答案】C . 【解析】试题分析:如图,在这样连续6次旋转的过程中,点M 的运动轨迹是图中的红线,观察图象可知点B ,M 间的距离大于0.5小于等于1,故选C .考点:1.正多边形和圆;2.旋转的性质;3.操作型;4.综合题.15.(2017浙江省丽水市)将函数2y x 的图象用下列方法平移后,所得的图象不经过点A (1,4)的方法是( )A .向左平移1个单位B .向右平移3个单位C .向上平移3个单位D .向下平移1个单位 【答案】D .考点:二次函数图象与几何变换.16.(2017浙江省台州市)如图,矩形EFGH 的四个顶点分别在菱形ABCD 的四条边上,BE =BF ,将△AEH ,△CFG 分别沿边EH ,FG 折叠,当重叠部分为菱形且面积是菱形ABCD 面积的116时,则AEEB为( )A . 53 B .2 C . 52 D .4【答案】A . 【解析】试题分析:设重叠的菱形边长为x ,BE =BF =y ,由矩形和菱形的对称性以及折叠的性质得:四边形AHME 、四边形BENF 是菱形,∴AE =EM ,EN =BE =y ,EM =x +y ,∵当重叠部分为菱形且面积是菱形ABCD 面积的116,且两个菱形相似,∴AB =4MN =4x ,∴AE =AB ﹣BE =4x ﹣y ,∴4x ﹣y =x +y ,解得:x =23y ,∴AE =53y ,∴AE EB =53yy =53;故选A .考点:1.翻折变换(折叠问题);2.菱形的性质;3.矩形的性质.17.(2017浙江省绍兴市)矩形ABCD 的两条对称轴为坐标轴,点A 的坐标为(2,1).一张透明纸上画有一个点和一条抛物线,平移透明纸,使这个点与点A 重合,此时抛物线的函数表达式为2y x =,再次平移透明纸,使这个点与点C 重合,则该抛物线的函数表达式变为 ( )A .2814y x x =++ B .2814y x x =-+ C .243y x x =++ D .243y x x =-+ 【答案】A . 【解析】试题分析:如图,A (2,1),则可得C (-2,-1).由A(2,1)到C(-2,-1),需要向左平移4个单位,向下平移2个单位,则抛物线的函数表达式为y=x2,经过平移与为y=(x+4)2-2= x2+8x+14,故选A.考点:二次函数图象与几何变换.18.(2017浙江省绍兴市)一块竹条编织物,先将其按如图所示绕直线MN翻转180°,再将它按逆时针方向旋转90°,所得的竹条编织物是()A.B.C.D.【答案】B.考点:利用旋转设计图案.19.(2017湖北省襄阳市)下列图形中,既是中心对称图又是轴对称图形的是()A .B .C .D .【答案】C . 【解析】试题分析:A .是轴对称图形,不是中心对称图形,故本选项错误; B .是中心对称图,不是轴对称图形,故本选项错误; C .既是中心对称图又是轴对称图形,故本选项正确; D .是轴对称图形,不是中心对称图形,故本选项错误. 故选C .考点:1.中心对称图形;2.轴对称图形.20.(2017湖北省襄阳市)将抛物线()2241y x =--先向左平移4个单位长度,再向上平移2个单位长度,平移后所得抛物线的解析式为( )A . 221y x =+ B .223y x =- C . ()2281y x =-+ D .()2283y x =--【答案】A .考点:二次函数图象与几何变换.21.(2017重庆市B 卷)下列图形中是轴对称图形的是( )A .B .C .D .【答案】D . 【解析】试题分析:A .不是轴对称图形,不合题意;B.不是轴对称图形,不合题意;C.不是轴对称图形,不合题意;D.是轴对称图形,符合题意.故选D.考点:轴对称图形.22.(2017重庆市B卷)下列图象都是由相同大小的按一定规律组成的,其中第①个图形中一共有4颗,第②个图形中一共有11颗,第③个图形中一共有21颗,…,按此规律排列下去,第⑨个图形中的颗数为()A.116 B.144 C.145 D.150【答案】B.考点:规律型:图形的变化类.23.(2017山东省枣庄市)如图,直线243y x=+与x轴、y轴分别交于点A和点B,点C、D分别为线段AB、OB的中点,点P为OA上一动点,PC+PD值最小时点P的坐标为()A.(﹣3,0)B.(﹣6,0)C.(32-,0)D.(52-,0)【答案】C.【解析】试题分析:(方法一)作点D关于x轴的对称点D′,连接CD′交x轴于点P,此时PC+PD值最小,如图所示.令243y x=+中x=0,则y=4,∴点B的坐标为(0,4);令243y x=+中y=0,则2403x+=,解得:x=﹣6,∴点A的坐标为(﹣6,0).∵点C、D分别为线段AB、OB的中点,∴点C(﹣3,2),点D(0,2).∵点D′和点D关于x轴对称,∴点D′的坐标为(0,﹣2).设直线CD′的解析式为y=kx+b,∵直线CD′过点C(﹣3,2),D′(0,﹣2),∴232k bb=-+⎧⎨-=⎩,解得:432kb⎧=-⎪⎨⎪=-⎩,∴直线CD′的解析式为423y x=--.令423y x=--中y=0,则0=423x--,解得:x=32-,∴点P的坐标为(32-,0).故选C.(方法二)连接CD ,作点D 关于x 轴的对称点D ′,连接CD ′交x 轴于点P ,此时PC +PD 值最小,如图所示.令243y x =+中x =0,则y =4,∴点B 的坐标为(0,4); 令243y x =+中y =0,则2403x +=,解得:x =﹣6,∴点A 的坐标为(﹣6,0).∵点C 、D 分别为线段AB 、OB 的中点,∴点C (﹣3,2),点D (0,2),CD ∥x 轴,∵点D ′和点D 关于x 轴对称,∴点D ′的坐标为(0,﹣2),点O 为线段DD ′的中点. 又∵OP ∥CD ,∴点P 为线段CD ′的中点,∴点P 的坐标为(32-,0). 故选C .考点:1.一次函数图象上点的坐标特征;2.轴对称﹣最短路线问题;3.最值问题. 二、填空题24.(2017四川省南充市)如图,正方形ABCD 和正方形CEFG 边长分别为a 和b ,正方形CEFG 绕点C 旋转,给出下列结论:①BE =DG ;②BE ⊥DG ;③222222DE BG a b +=+,其中正确结论是 (填序号)【答案】①②③. 【解析】试题分析:设BE ,DG 交于O ,∵四边形ABCD 和EFGC 都为正方形,∴BC =CD ,CE =CG ,∠BCD =∠ECG =90°,∴∠BCE +∠DCE =∠ECG +∠DCE =90°+∠DCE ,即∠BCE =∠DCG ,在△BCE 和△DCG 中,∵BC =DC ,∠BCE =∠DCG ,CE=CG,∴△BCE≌△DCG(SAS),∴BE=DG,∴∠1=∠2,∵∠1+∠4=∠3+∠1=90°,∴∠2+∠3=90°,∴∠BOC=90°,∴BE⊥DG;故①②正确;连接BD,EG,如图所示,∴DO2+BO2=BD2=BC2+CD2=2a2,EO2+OG2=EG2=CG2+CE2=b2,则BG2+DE2=DO2+BO2+EO2+OG2=2a2+b2,故③正确.故答案为:①②③.考点:1.旋转的性质;2.全等三角形的判定与性质;3.正方形的性质.25.(2017四川省广安市)已知点P(1,2)关于x轴的对称点为P′,且P′在直线y=kx+3上,把直线y=kx+3的图象向上平移2个单位,所得的直线解析式为.【答案】y=﹣5x+5.【解析】试题分析:∵点P(1,2)关于x轴的对称点为P′,∴P′(1,﹣2),∵P′在直线y=kx+3上,∴﹣2=k+3,解得:k=﹣5,则y=﹣5x+3,∴把直线y=kx+3的图象向上平移2个单位,所得的直线解析式为:y=﹣5x+5.故答案为:y=﹣5x+5.考点:一次函数图象与几何变换.26.(2017四川省眉山市)△ABC是等边三角形,点O是三条高的交点.若△ABC以点O为旋转中心旋转后能与原来的图形重合,则△ABC旋转的最小角度是.【答案】120°.考点:旋转对称图形.27.(2017四川省绵阳市)将形状、大小完全相同的两个等腰三角形如图所示放置,点D在AB边上,△DEF绕点D旋转,腰DF和底边DE分别交△CAB的两腰CA,CB于M,N两点,若CA=5,AB=6,AB=1:3,则MD+12 MA DN的最小值为 .【答案】.考点:1.相似三角形的判定与性质;2.等腰三角形的性质;3.旋转的性质;4.最值问题;5.综合题. 28.(2017四川省达州市)如图,矩形ABCD 中,E 是BC 上一点,连接AE ,将矩形沿AE 翻折,使点B 落在CD 边F 处,连接AF ,在AF 上取点O ,以O 为圆心,OF 长为半径作⊙O 与AD 相切于点P .若AB =6,BC =则下列结论:①F 是CD 的中点;②⊙O 的半径是2;③AE =92CE ;④S 阴影.其中正确结论的序号是 .【答案】. 【解析】试题分析:①∵AF 是AB 翻折而来,∴AF =AB =6,∵AD =BC =DF =3,∴F 是CD 中点;∴①正确;②连接OP ,∵⊙O 与AD 相切于点P ,∴OP ⊥AD ,∵AD ⊥DC ,∴OP ∥CD ,∴AO OP AF DF =,设OP =OF =x ,则636x x-=,解得:x =2,∴②正确;③∵RT △ADF 中,AF =6,DF =3,∴∠DAF =30°,∠AFD =60°,∴∠EAF =∠EAB =30°,∴AE =2EF ; ∵∠AFE =90°,∴∠EFC =90°﹣∠AFD =30°,∴EF =2EC ,∴AE =4CE ,∴③错误;④连接OG ,作OH ⊥FG ,∵∠AFD =60°,OF =OG ,∴△OFG 为等边△;同理△OPG 为等边△;∴∠POG =∠FOG =60°,OH S 扇形OPG =S 扇形OGF ,∴S 阴影=(S 矩形OPDH ﹣S 扇形OPG ﹣S △OGH )+(S 扇形OGF ﹣S △OFG )=S 矩形OPDH ﹣32S △OFG =312(222⨯⨯=2.∴④正确;故答案为:①②④.考点:1.切线的性质;2.矩形的性质;3.扇形面积的计算;4.翻折变换(折叠问题);5.综合题. 29.(2017山东省济宁市)如图,正六边形A 1B 1C 1D 1E 1F 1的边长为1,它的六条对角线又围成一个正六边形A 2B 2C 2D 2E 2F 2,如此继续下去,则正六边形A 4B 4C 4D 4E 4F 4的面积是 ..【答案】18考点:1.正多边形和圆;2.规律型;3.综合题.30.(2017广东省)如图,矩形纸片ABCD中,AB=5,BC=3,先按图(2)操作:将矩形纸片ABCD沿过点A 的直线折叠,使点D落在边AB上的点E处,折痕为AF;再按图(3)操作,沿过点F的直线折叠,使点C 落在EF上的点H处,折痕为FG,则A、H两点间的距离为.【解析】试题分析:如图3中,连接AH.由题意可知在Rt△AEH中,AE=AD=3,EH=EF﹣HF=3﹣2=1,∴AH考点:1.翻折变换(折叠问题);2.矩形的性质;3.综合题.31.(2017广西四市)如图,菱形ABCD 的对角线相交于点O ,AC =2,BD =点B 与点O 重合,折痕为EF ,则五边形AEFCD 的周长为 .【答案】7. 【解析】试题分析:∵四边形ABCD 是菱形,AC =2,BD =ABO =∠CBO ,AC ⊥BD ,∵AO =1,BO tan ∠ABO =AOBO ABO =30°,AB =2,∴∠ABC =60°,由折叠的性质得,EF ⊥BO ,OE =BE ,∠BEF =∠OEF ,∴BE =BF ,EF ∥AC ,∴△BEF 是等边三角形,∴∠BEF =60°,∴∠OEF =60°,∴∠AEO =60°,∴△AEO 是等边三角形,∴AE =OE ,∴BE =AE ,∴EF 是△ABC 的中位线,∴EF =12AC =1,AE =OE =1,同理CF =OF =1,∴五边形AEFCD 的周长为=1+1+1+2+2=7.故答案为:7.考点:1.翻折变换(折叠问题);2.菱形的性质;3.综合题.32.(2017广西四市)如图,把正方形铁片OABC 置于平面直角坐标系中,顶点A 的坐标为(3,0),点P (1,2)在正方形铁片上,将正方形铁片绕其右下角的顶点按顺时针方向依次旋转90°,第一次旋转至图①位置,第二次旋转至图②位置…,则正方形铁片连续旋转2017次后,点P 的坐标为 .【答案】(1517,1).考点:1.坐标与图形变化﹣旋转;2.规律型:点的坐标.33.(2017江苏省盐城市)如图,在边长为1的小正方形网格中,将△ABC绕某点旋转到△A'B'C'的位置,则点B运动的最短路径长为..考点:1.轨迹;2.旋转的性质.34.(2017江苏省盐城市)如图,曲线l是由函数6yx=在第一象限内的图象绕坐标原点O逆时针旋转45°得到的,过点A( ,,B(的直线与曲线l相交于点M、N,则△OMN的面积为.【答案】8.考点:1.坐标与图形变化﹣旋转;2.反比例函数系数k的几何意义.35.(2017江苏省连云港市)如图,已知等边三角形OAB与反比例函数kyx=(k>0,x>0)的图象交于A、B两点,将△OAB沿直线OB翻折,得到△OCB,点A的对应点为点C,线段CB交x轴于点D,则BDDC的值为.(已知)【答案】1 2.【解析】试题分析:如图,过O作OM⊥x轴于M,∵△AOB是等边三角形,∴AM=BM,∠AOM=∠BOM=30°,∴A、B关于直线OM对称,∵A、B两点在反比例函数kyx=(k>0,x>0)的图象上,且反比例函数关于直线y=x对称,∴直线OM的解析式为:y=x,∴∠BOD=45°﹣30°=15°,过B作BF⊥x轴于F,过C作CN⊥x轴于N,sin∠BOD=sin15°=BFOB,∵∠BOC=60°,∠BOD=15°,∴∠CON=45°,∴△CNO是等腰直角三角形,∴CN=ON,设CN=x,则OC,∴OB,∴BF,∵BF⊥x轴,CN⊥x轴,∴BF∥CN,∴△BDF∽△CDN,∴BD BFCD CN==2x.考点:1.反比例函数与一次函数的交点问题;2.等边三角形的性质;3.翻折变换(折叠问题);4.解直角三角形.36.(2017浙江省丽水市)如图,由6个小正方形组成的2×3网格中,任意选取5个小正方形并涂黑,则黑色部分的图形是轴对称图形的概率是.【答案】13.【解析】试题分析:由题意可得:空白部分有6个位置,只有在1,2处时,黑色部分的图形是轴对称图形,故黑色部分的图形是轴对称图形的概率是:26=13.故答案为:13.考点:1.利用轴对称设计图案;2.列表法与树状图法.37.(2017湖北省襄阳市)如图,在△ABC中,∠ACB=90°,点D,E分别在AC,BC上,且∠CDE=∠B,将△CDE沿DE折叠,点C恰好落在AB边上的点F处.若AC=8,AB=10,则CD的长为.【答案】258.考点:1.翻折变换(折叠问题);2.勾股定理;3.综合题.38.(2017重庆市B 卷)如图,正方形ABCD 中,AD =4,点E 是对角线AC 上一点,连接DE ,过点E 作EF ⊥ED ,交AB 于点F ,连接DF ,交AC 于点G ,将△EFG 沿EF 翻折,得到△EFM ,连接DM ,交EF 于点N ,若点F是AB 的中点,则△EMN 的周长是 ..【解析】试题分析:如图1,过E 作PQ ⊥DC ,交DC 于P ,交AB 于Q ,连接BE ,∵DC ∥AB ,∴PQ ⊥AB ,∵四边形ABCD 是正方形,∴∠ACD =45°,∴△PEC 是等腰直角三角形,∴PE =PC ,设PC =x ,则PE =x ,PD =4﹣x ,EQ =4﹣x ,∴PD =EQ ,∵∠DPE =∠EQF =90°,∠PED =∠EFQ ,∴△DPE ≌△EQF ,∴DE =EF ,易证明△DEC ≌△BEC ,∴DE =BE ,∴EF =BE ,∵EQ ⊥FB ,∴FQ =BQ =12BF ,∵AB =4,F 是AB 的中点,∴BF =2,∴FQ =BQ =PE =1,∴CE Rt △DAF 中,DF DE =EF ,DE ⊥EF ,∴△DEF 是等腰直角三角形,∴DE =EFPD ,如图2,∵DC ∥AB ,∴△DGC ∽△FGA ,∴CG DC DG AG AF FG == =42=2,∴CG =2AG ,DG =2FG ,∴FG =13⨯=3,∵AC ,∴CG =23⨯3,∴EG =33,连接GM、GN,交EF于H,∵∠GFE=45°,∴△GHF是等腰直角三角形,∴GH=FH3,∴EH=EF﹣FH,∴∠NDE=∠AEF,∴tan∠NDE=tan∠AEF=EN GHDE EH==12,∴ENNH=EH﹣ENRt△GNH中,GN=6,由折叠得:MN=GN,EM=EG,∴△EMN的周长=EN+MN+EM6+3;故答案为:2.考点:1.翻折变换(折叠问题);2.正方形的性质;3.综合题.三、解答题39.(2017四川省广安市)在4×4的方格内选5个小正方形,让它们组成一个轴对称图形,请在图中画出你的4种方案.(每个4×4的方格内限画一种)要求:(1)5个小正方形必须相连(有公共边或公共顶点式为相连)(2)将选中的小正方行方格用黑色签字笔涂成阴影图形.(每画对一种方案得2分,若两个方案的图形经过反折、平移、旋转后能够重合,均视为一种方案)【答案】(1)答案见解析;(2)答案见解析.【解析】试题分析:利用轴对称图形的性质用5个小正方形组成一个轴对称图形即可.试题解析:如图..考点:1.利用旋转设计图案;2.利用轴对称设计图案;3.利用平移设计图案.40.(2017四川省眉山市)在如图的正方形网格中,每一个小正方形的边长为1.格点三角形ABC(顶点是网格线交点的三角形)的顶点A、C的坐标分别是(﹣4,6),(﹣1,4).(1)请在图中的网格平面内建立平面直角坐标系;(2)请画出△ABC关于x轴对称的△A1B1C1;(3)请在y轴上求作一点P,使△PB1C的周长最小,并写出点P的坐标.【答案】(1)答案见解析;(2)答案见解析;(3)P(0,2).【解析】试题分析:(1)根据A点坐标建立平面直角坐标系即可;(2)分别作出各点关于x轴的对称点,再顺次连接即可;(3)作出点B关于y轴的对称点B2,连接B2交y轴于点P,则P点即为所求.试题解析:(1)如图所示;(2)如图,即为所求;(3)作点C关于y轴的对称点C′,连接B1C′交y轴于点P,则点P即为所求.设直线B1C′的解析式为y=kx+b(k≠0),∵B1(﹣2,-2),C′(1,4),∴224k bk b-+=-⎧⎨+=⎩,解得:22kb=⎧⎨=⎩,∴直线AB2的解析式为:y=2x+2,∴当x=0时,y=2,∴P(0,2).考点:1.作图﹣轴对称变换;2.勾股定理;3.轴对称﹣最短路线问题;4.最值问题.41.(2017四川省达州市)如图1,点A坐标为(2,0),以OA为边在第一象限内作等边△OAB,点C为x 轴上一动点,且在点A右侧,连接BC,以BC为边在第一象限内作等边△BCD,连接AD交BC于E.(1)①直接回答:△OBC与△ABD全等吗?②试说明:无论点C如何移动,AD始终与OB平行;(2)当点C运动到使AC2=AE•AD时,如图2,经过O、B、C三点的抛物线为y1.试问:y1上是否存在动点P,使△BEP为直角三角形且BE为直角边?若存在,求出点P坐标;若不存在,说明理由;(3)在(2)的条件下,将y 1沿x 轴翻折得y 2,设y 1与y 2组成的图形为M ,函数y =+的图象l与M 有公共点.试写出:l 与M 的公共点为3个时,m 的取值.【答案】(1)①△OBC 与△ABD 全等;②证明见解析;(2)P (32,-;(3)﹣4912≤m <0. 【解析】试题分析:(1)①利用等边三角形的性质证明△OBC ≌△ABD ; ②证明∠OBA =∠BAD =60°,可得OB ∥AD ;(2)首先证明DE ⊥BC ,再求直线AE 与抛物线的交点就是点P ,所以分别求直线AE 和抛物线y 1的解析式组成方程组,求解即可;(2)如图2,∵AC 2=AE •AD ,∴AC AEAD AC=,∵∠EAC =∠DAC ,∴△AEC ∽△ACD ,∴∠ECA =∠ADC ,∵∠BAD =∠BAO =60°,∴∠DAC =60°,∵∠BED =∠AEC ,∴∠ACB =∠ADB ,∴∠ADB =∠ADC ,∵BD =CD ,∴DE ⊥BC ,Rt △ABE 中,∠BAE =60°,∴∠ABE =30°,∴AE =12AB =12×2=1,Rt △AEC 中,∠EAC =60°,∴∠ECA =30°,∴AC =2AE =2,∴C (4,0),等边△OAB 中,过B 作BH ⊥x 轴于H ,∴BH ,∴B (1,设y 1的解析式为:y =ax (x ﹣4),把B (1 =a (1﹣4),a =﹣3,∴设y 1的解析式为:y 1=x (x ﹣4)=2x x +,过E 作EG ⊥x 轴于G ,Rt △AGE 中,AE =1,∴AG =12AE =12,EGE (52,,设直线AE 的解析式为:y =kx +b ,把A (2,0)和E (52代入得:2052k b k b +=⎧⎪⎨+=⎪⎩,解得:k b ⎧=⎪⎨=-⎪⎩,∴直线AE 的解析式为:y =-,则2y y x x ⎧=-⎪⎨=⎪⎩,解得:113x y =⎧⎪⎨=⎪⎩112x y =-⎧⎪⎨=-⎪⎩P (32,-; (3)如图3,y 1=2x +=22)x -+,顶点(2),∴抛物线y 2的顶点为(2,﹣3),∴y 2=22)33x --m =0时,y =与图形M 两公共点,当y 2与l 相切时,即有一个公共点,l 与图形M 有3个公共点,则:2(2)33y x y ⎧=--⎪⎨⎪=⎩22)x =-x 2﹣7x ﹣3m =0,△=(﹣7)2﹣4×1×(﹣3m )≥0,m ≥﹣4912,∴当l 与M 的公共点为3个时,m 的取值是:﹣4912≤m <0.考点:1.二次函数综合题;2.翻折变换(折叠问题);3.动点型;4.存在型;5.分类讨论;6.压轴题. 42.(2017山东省枣庄市)如图,在平面直角坐标系中,已知△ABC 三个顶点的坐标分别是A (2,2),B (4,0),C (4,﹣4).(1)请在图中,画出△ABC 向左平移6个单位长度后得到的△A 1B 1C 1;(2)以点O 为位似中心,将△ABC 缩小为原来的12,得到△A 2B 2C 2,请在图中y 轴右侧,画出△A 2B 2C 2,并求出∠A 2C 2B 2的正弦值.【答案】(1)作图见解析;(2)作图见解析,sin ∠A 2C 2B 2 【解析】试题分析:(1)直接利用平移的性质得出对应点位置进而得出答案;(2)利用位似图形的性质得出对应点位置,再利用锐角三角三角函数关系得出答案. 试题解析:(1)如图所示:△A 1B 1C 1,即为所求;(2)如图所示:△A 2B 2C 2,即为所求,由图形可知,∠A 2C 2B 2=∠ACB ,过点A 作AD ⊥BC 交BC 的延长线于点D ,由A (2,2),C (4,﹣4),B (4,0),易得D (4,2),故AD =2,CD =6,AC ,∴sin ∠ACB =ADAC =10,即sin ∠A 2C 2B 2=10.考点:1.作图﹣位似变换;2.作图﹣平移变换;3.解直角三角形. 43.(2017山东省济宁市)实验探究:(1)如图1,对折矩形纸片ABCD ,使AD 与BC 重合,得到折痕EF ,把纸片展开;再一次折叠纸片,使点A落在EF上,并使折痕经过点B,得到折痕BM,同时得到线段BN,MN.请你观察图1,猜想∠MBN的度数是多少,并证明你的结论.(2)将图1中的三角形纸片BMN剪下,如图2,折叠该纸片,探究MN与BM的数量关系,写出折叠方案,并结合方案证明你的结论.【答案】(1)∠MBN=30°;(2)MN=12 BM.【解析】试题分析:(1)猜想:∠MBN=30°.只要证明△ABN是等边三角形即可;(2)结论:MN=12 BM.折纸方案:如图2中,折叠△BMN,使得点N落在BM上O处,折痕为MP,连接OP.理由:由折叠可知△MOP≌△MNP,∴MN=OM,∠OMP=∠NMP=12∠OMN=30°=∠B,∠MOP=∠MNP=90°,∴∠BOP=∠MOP=90°,∵OP=OP,∴△MOP≌△BOP,∴MO=BO=12BM,∴MN=12BM.考点:1.翻折变换(折叠问题);2.矩形的性质;3.剪纸问题.44.(2017广西四市)如图,在平面直角坐标系中,△ABC 的三个顶点分别为A (﹣1,﹣2),B (﹣2,﹣4),C (﹣4,﹣1).(1)把△ABC 向上平移3个单位后得到△A 1B 1C 1,请画出△A 1B 1C 1并写出点B 1的坐标;(2)已知点A 与点A 2(2,1)关于直线l 成轴对称,请画出直线l 及△ABC 关于直线l 对称的△A 2B 2C 2,并直接写出直线l 的函数解析式.【答案】(1)作图见解析;(2)y =﹣x .【解析】试题分析:(1)根据图形平移的性质画出△A 1B 1C 1并写出点B 1的坐标即可;(2)连接AA 2,作线段AA 2的垂线l ,再作△ABC 关于直线l 对称的△A 2B 2C 2即可.试题解析:(1)如图,△A 1B 1C 1即为所求,B 1(﹣2,﹣1);(2)如图,△A 2B 2C 2即为所求,直线l 的函数解析式为y =﹣x .考点:1.作图﹣轴对称变换;2.待定系数法求一次函数解析式;3.作图﹣平移变换.45.(2017广西四市)如图,已知抛物线a ax ax y 9322--=与坐标轴交于A ,B ,C 三点,其中C (0,3),∠BAC 的平分线AE 交y 轴于点D ,交BC 于点E ,过点D 的直线l 与射线AC ,AB 分别交于点M ,N .(1)直接写出a 的值、点A 的坐标及抛物线的对称轴;(2)点P 为抛物线的对称轴上一动点,若△PAD 为等腰三角形,求出点P 的坐标;(3)证明:当直线l 绕点D 旋转时,ANAM 11+均为定值,并求出该定值.【答案】(1)a =13-,A 0),抛物线的对称轴为x (2)点P ,2,04);(3)2. 【解析】 试题分析:(1)由点C 的坐标为(0,3),可知﹣9a =3,故此可求得a 的值,然后令y =0得到关于x 的方程,解关于x 的方程可得到点A 和点B 的坐标,最后利用抛物线的对称性可确定出抛物线的对称轴;(2)∵OA OC =3,∴tan ∠CAO ,∴∠CAO =60°.∵AE 为∠BAC 的平分线,∴∠DAO =30°,∴DO =1,∴点D 的坐标为(0,1).设点P a ).依据两点间的距离公式可知:AD 2=4,AP 2=12+a 2,DP 2=3+(a ﹣1)2.当AD =PA 时,4=12+a 2,方程无解.当AD =DP 时,4=3+(a ﹣1)2,解得a =2或a =0,∴点P ,20). 当AP =DP 时,12+a 2=3+(a ﹣1)2,解得a =﹣4,∴点P 的坐标为(,﹣4).综上所述,点P ,204).(3)设直线AC 的解析式为y =mx +3,将点A 的坐标代入得:30+=,解得:m ,∴直线AC 的解析式为3y =+.设直线MN 的解析式为y =kx +1.把y =0代入y =kx +1得:kx +1=0,解得:x =1k -,∴点N 的坐标为(1k -,0),∴AN =1k-1k -.将3y =+与y =kx +1联立解得:x,∴点M .过点M 作MG ⊥x 轴,垂足为G .则AG∵∠MAG =60°,∠AGM =90°,∴AM =2AG =+,∴AN AM 11+考点:1.二次函数综合题;2.旋转的性质;3.定值问题;4.动点型;5.分类讨论;6.压轴题.46.(2017江苏省连云港市)如图,在平面直角坐标系xOy 中,过点A (﹣2,0)的直线交y 轴正半轴于点B ,将直线AB 绕着点顺时针旋转90°后,分别与x 轴、y 轴交于点D .C .(1)若OB =4,求直线AB 的函数关系式;(2)连接BD ,若△ABD 的面积是5,求点B 的运动路径长.【答案】(1)y=2x+4;(2.【解析】试题分析:(1)依题意求出点B坐标,然后用待定系数法求解析式;(2)设OB=m,则AD=m+2,根据三角形面积公式得到关于m的方程,解方程求得m的值,然后根据弧长公式即可求得.试题解析:(1)∵OB=4,∴B(0,4).∵A(﹣2,0),设直线AB的解析式为y=kx+b,则420bk bì=ïí-+=ïî,解得24kbì=ïí=ïî,∴直线AB的解析式为y=2x+4;考点:1.一次函数图象与几何变换;2.轨迹;3.弧长的计算.47.(2017江苏省连云港市)如图,已知二次函数23y ax bx=++(a≠0)的图象经过点A(3,0),B(4,1),且与y轴交于点C,连接AB、AC、BC.(1)求此二次函数的关系式;(2)判断△ABC的形状;若△ABC的外接圆记为⊙M,请直接写出圆心M的坐标;(3)若将抛物线沿射线BA方向平移,平移后点A、B、C的对应点分别记为点A1、B1、C1,△A1B1C1的外接圆记为⊙M1,是否存在某个位置,使⊙M1经过原点?若存在,求出此时抛物线的关系式;若不存在,请说明理由.【答案】(1)215322y x x =-+;(2)直角三角形,M (2,2);(3)21117(228y x -=--或21(2y x =. 【解析】试题分析:(1)直接利用待定系数法求出a ,b 的值进而得出答案;(2)首先得出∠OAC =45°,进而得出AD =BD ,求出∠OAC =45°,即可得出答案;(3)首先利用已知得出圆M 平移的长度,进而得出抛物线的平移规律,即可得出答案.试题解析:(1)把点A (3,0),B (4,1)代入23y ax bx =++中,得:933016431a b a b ì++=ïí++=ïî,解得:1252a b ì=ïïíï=-ïî,,所以所求函数关系式为:215322y x x =-+;(3)存在.取BC 的中点M ,过点M 作ME ⊥y 轴于点E ,∵M 的坐标为:(2,2),∴MC,OM=∴∠MOA =45°,又∵∠BAD =45°,∴OM ∥AB ,∴要使抛物线沿射线BA 方向平移,且使⊙M 1经过原点,则平移的长度为:∵∠BAD个单位长度或个单位长度,∵2215151322228y x x x 骣琪=-+=--琪桫,∴平移后抛物线的关系式为:2151228y x 骣琪=---琪桫212y x 骣琪=--琪桫或2151228y x 骣琪=---琪桫,即212y x 骣琪=--琪桫. 综上所述,存在一个位置,使⊙M 1经过原点,此时抛物线的关系式为:21117(228y x +-=--或21117(228y x +=--.考点:1.二次函数综合题;2.平移的性质;3.动点型;4.存在型;5.压轴题.48.(2017河北省)如图,AB =16,O 为AB 中点,点C 在线段OB 上(不与点O ,B 重合),将OC 绕点O 逆时针旋转270°后得到扇形COD ,AP ,BQ 分别切优弧CD 于点P ,Q ,且点P ,Q 在AB 异侧,连接OP .(1)求证:AP =BQ ;(2)当BQ =QD 的长(结果保留π);(3)若△APO 的外心在扇形COD 的内部,求OC 的取值范围.【答案】(1)见解析;(2)143π;(3)4<OC <8. 【解析】试题分析:(1)连接OQ .只要证明Rt △APO ≌Rt △BQO 即可解决问题;(2)求出优弧DQ 的圆心角以及半径即可解决问题;(3)由△APO 的外心是OA 的中点,OA =8,推出△APO 的外心在扇形COD 的内部时,OC 的取值范围为4<OC。
中考数学试题分类解析汇编专题5数量及位置变化.doc
2019-2020 年中考数学试题分类解析汇编专题 5 数量和位置变化一、选择题1.(常州、镇江A.x≥2 2 分)若B.x 2 在实数范围内有意义,则x ≤2C.x>2 Dx 的取值范围. x <2【答案】 A.【考点】函数自变量的取值范围,二次根式有意义的条件。
【分析】根据二次根式被开方数必须是非负数的条件,要使x 2 0x 2 ,故选 A。
x 2 在实数范围内有意义,必须2. (常州、镇江 2 分)在平面直角坐标系中,正方形ABCD的顶点分别为 A 1,1 、B 1, 1、C 1, 1 、D 1,1 ,y 轴上有一点P 0,2 。
作点P 关于点 A 的对称点 P1,作 P1关于点B的对称点 P2,作点 P2关于点C的对称点 P3,作 P3关于点D的对称点P4,作点P4关于点A 的对称点P5,作P5关于点B 的对称点P6┅,按如此操作下去,则点 P2011的坐标为A.0,2B.2,0C.0, 2D.2,0【答案】 D。
【考点】分类归纳,点对称。
【分析】找出规律, P1(2, 0), P2(0,- 2), P3(- 2, 0), P4( 0, 2} ,, P4n( 0, 2} , P4n+1( 2, 0),P4n+2( 0,- 2),P4n+3(- 2,0)。
而 2011 除以 4 余 3,所以点 P2011的坐标与P3坐标相同,为(-2,0)。
故选D。
3. (宿迁 3 分)在平面直角坐标中,点M(-2, 3) 在A.第一象限B.第二象限C.第三象限D.第四象限【答案】B。
【考点】点的坐标。
【分析】利用平面直角坐标系中各象限符号特征进行判断:点M(-2,3) 横坐标小于0,纵坐标大于0,则这点在第二象限。
故选B。
4. (徐州 2 分)若式子x 1 在实数范围内有意义,则x 的取什范围是A . x 1B . . x > 1C . . x < 1D . x 1【答案】 A。
【考点】二次根式有意义的条件。
中考数学试题分项版解析汇编(第05期)专题02 代数式和因式分解(含解析)-人教版初中九年级全册数学
专题02 代数式和因式分解一、选择题1.(2017年某某省某某地区第3题)下列计算正确的是( ) A .a 3•a 3=a 9B .(a+b )2=a 2+b 2C .a 2÷a 2=0 D .(a 2)3=a6【答案】D. 【解析】试题分析:A 、原式=a 6,不符合题意;B 、原式=a 2+2ab+b 2,不符合题意; C 、原式=1,不符合题意;D 、原式=a 6,符合题意, 故选D考点:整式的混合运算2.(2017年某某省黔东南州第3题)下列运算结果正确的是( ) A .3a ﹣a=2 B .(a ﹣b )2=a 2﹣b 2C .6ab 2÷(﹣2ab )=﹣3bD .a (a+b )=a 2+b 【答案】C 【解析】考点:整式的混合运算3. (2017年某某省某某市第7题)下列计算正确的是( )A .325a a a +=B .325a a a ⋅= C. ()235a a = D .623a a a ÷=【答案】B 【解析】考点:1、同底数幂的除法;2、合并同类项;3、同底数幂的乘法;4、幂的乘方与积的乘方4.(2017年某某省某某市第14题)计算()()224x y x yxy+--的结果为()A.1 B.12C.14D.0【答案】A【解析】考点:约分5.(2017年某某省第4题)下列运算正确的是()A.(﹣a5)2=a10B.2a•3a2=6a2C.﹣2a+a=﹣3a D.﹣6a6÷2a2=﹣3a3【答案】A【解析】试题分析: A.根据幂的乘方,可得(﹣a5)2=a10,故A正确;B.根据单项式乘以单项式,可得2a•3a2=6a3,故B错误;C.根据合并同类项法则,可得﹣2a+a =a,故C错误;D.根据单项式除以单项式法则,可得﹣6a6÷2a2=﹣3a4,故D错误;故选:A考点:整式的混合运算6.(2017年某某省东营市第2题)下列运算正确的是( ) A .(x ﹣y )2=x 2﹣y 2 B .|3﹣2|=2﹣3 C .8﹣3=5 D .﹣(﹣a+1)=a+1【答案】B 【解析】考点:1、二次根式的加减法,2、实数的性质,3、完全平方公式,4、去括号 7. (2017年某某省某某市第2题)下列运算正确的是( ) A .2222a a a = B .224a a a +=C .22(12)124a a a +=++D .2(1)(1)1a a a -++=- 【答案】D 【解析】试题分析:A 、根据同底数幂相乘,底数不变,指数相加,可知a 2•a 2=a 4,此选项错误; B 、根据合并同类项法则,可知a 2+a 2=2a 2,此选项错误; C 、根据完全平方公式,可知(1+2a )2=1+4a+4a 2,此选项错误; D 、根据平方差公式,可知(﹣a+1)(a+1)=1﹣a 2,此选项正确; 故选:D .考点:1、平方差公式;2、合并同类项;3、同底数幂的乘法;4、完全平方公式8. (2017年某某省某某市第5题)化简22211(1)(1)x x x--÷-的结果为( ) A .11x x -+ B .11x x +- C.1x x + D .1x x-【答案】A 【解析】试题分析:原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到:原式=2222211x x x x x-+-÷=222(1)(1)(1)x x x x x -⋅+-=11x x -+ , 故选:A考点:分式的混合运算9. (2017年某某省威海市第3题)下列运算正确的是( ) A .422743x x x =+ B .333632x x x =⋅ C .32a a a =÷- D .363261)21(b a b a -=-【答案】C 【解析】考点:1、整式的混合运算,2、负整数指数幂10.(2017年某某省潍坊市第1题)下列计算,正确的是().A.623a a a =⨯B.33a a a =÷C.422a a a =+D.422a a =)(【答案】D 【解析】试题分析:A 、根据同底数幂相乘,底数不变,指数相加,可知原式=a 5,故A 错误; B 、根据同底数幂相除,可知原式=a 2,故B 错误; C 、根据合并同类项法则,可知原式=2a 2,故C 错误;D 、根据幂的乘方,底数不变,指数相乘,可知422a a =)(,故正确. 故选:D考点:1、同底数幂的除法;2、合并同类项;3、同底数幂的乘法;4、幂的乘方与积的乘方11. (2017年某某省潍坊市第9题)若代数式12--x x 有意义,则实数x 的取值X 围是(). A.1≥x B.2≥x C.1>x D.2>x 【答案】B 【解析】试题分析:根据二次根式有意义的条件可知:2010x x -⎧⎨-⎩≥>,解得:x ≥2.故选:B考点:二次根式有意义的条件12. (2017年某某省某某市第4题)下列运算正确的是( )A .235()a a = B .235a a a ⋅= C .1a a -=- D .22()()a b a b a b +-=+【答案】B. 【解析】试题分析:选项A ,原式=a 6;选项B ,原式=a 5;选项C ,原式=1a;选项D ,原式=a 2﹣b 2,故选B. 考点:整式的运算.13.(2017年某某省内江市第8题)下列计算正确的是( ) A .232358x y xy x y += B .222()x y x y +=+ C .2(2)4x x x -÷= D .1y x x y y x+=-- 【答案】C . 【解析】考点:分式的加减法;整式的混合运算.14. (2017年某某省某某市第7题)下列运算正确的是( ) A.358x x x +=B.3515x x x +=C.()()2111x x x +-=-D.()5522x x =【答案】C. 【解析】试题分析:选项A ,不是同类项,不能够合并,选项A 错误;选项B ,不是同底数幂的乘法,不能够计算,选项B 错误;选项C ,根据平方差公式,选项C 计算正确;选项D ,根据积的乘方可得原式=532x =,选项D 错误,故选C. 考点:整式的计算.15. (2017年某某省某某市第6题)下列计算正确的是 ( )A .5510a a a += B . 76a a a ÷= C. 326a a a = D .()236a a -=-【答案】B 【解析】考点:幂的性质16. (2017年某某省六盘水市第3题)下列式子正确的是( ) A.7887m n m nB.7815m n mnC.7887m n n mD.7856m n mn 【答案】C.试题分析:选项C 、利用加法的交换律,此选项正确;故选C. 考点:整式的加减.17. (2017年某某省六盘水市第8题)使函数3y x 有意义的自变量的取值X 围是( )A. 3≥xB. 0≥xC.3≤xD.0≤x【答案】C .试题分析:根据二次根式a ,被开方数0≥a 可得3-x ≥0,解得x ≤3,故选C . 考点:函数自变量的取值X 围.18. (2017年某某省某某市第2题)下列运算正确的是 A .()235xx = B .()55x x -=- C .326x x x ⋅= D .235325x x x +=【答案】B . 【解析】考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法. 19. (2017年某某省黄冈市第2题)下列计算正确的是( ) A . 235x y xy += B .()2239m m +=+ C . ()326xy xy = D .1055a a a ÷=【答案】D 【解析】试题分析:A 、原式中的2x 与3y 不是同类项,不能进行加减计算,故不正确;B 、根据完全平方公式()2222a b a ab b ±=±+,可知22(3)69m m m +=++,故不正确;C 、根据积的乘方,等于各项分别乘方,可得2336()xy x y =,故不正确; D 、根据同底数幂相除,底数不变,指数相减,可知1055a a a ÷=,故正确. 故选:D考点:整式的运算20.(2017年某某省某某市第2题)下列计算正确的是( ) A .532=+ B .222a a a =+ C .xy x y x +=+)1( D .632)(mn mn =【答案】C 【解析】考点:1、同类项,2、同类二次根式,3、单项式乘以多项式,4、积的乘方二、填空题1.(2017年某某省某某地区第16题)分解因式:2x2﹣8xy+8y2=.【答案】2(x﹣2y)2【解析】试题分析:2x2﹣8xy+8y2=2(x2﹣4xy+4y2)=2(x﹣2y)2.故答案为:2(x﹣2y)2.考点:提公因式法与公式法的综合运用2.(2017年某某省某某市第12题)若a﹣b=1,则代数式2a﹣2b﹣1的值为.【答案】1.【解析】试题分析:∵a﹣b=1,∴原式=2(a﹣b)﹣1=2﹣1=1.故答案为:1.考点:代数式求值3.(2017年某某省黔东南州第13题)在实数X围内因式分解:x5﹣4x=.【答案】x(x2+3)(x)【解析】试题分析:先提取公因式x,再把4写成22的形式,然后利用平方差公式继续分解因式.)(x即原式=x(x4﹣22)=x(x2+2)(x2﹣2)=x(x2+2)(故答案是:x(x2+3)()(x)考点:实数X围内分解因式4.(2017年某某省荆州市第12题)若单项式﹣5x4y2m+n与2017x m﹣n y2是同类项,则m-7n的算术平方根是_________.【答案】4【解析】考点:1、算术平方根;2、同类项;3、解二元一次方程组 5. (2017年某某某某市第14题)若关于x 的二次三项式412++ax x 是完全平方式,则a 的值是. 【答案】±1 【解析】试题分析:这里首末两项是x 和12这两个数的平方,那么中间一项为加上或减去x 和12积的2倍,故﹣a=±1,求解得a=±1, 故答案为:±1. 考点:完全平方式6.(2017年某某省东营市第12题)分解因式:﹣2x 2y+16xy ﹣32y=. 【答案】﹣2y (x ﹣4)2【解析】试题分析:根据提取公因式以及完全平方公式即可求出:原式=﹣2y (x 2﹣8x+16)=﹣2y (x ﹣4)2故答案为:﹣2y (x ﹣4)2 考点:因式分解7.(2017年某某省潍坊市第13题)计算:212(1)11x x x --÷-- = .【答案】x+1【解析】试题分析:根据分式的减法和除法可以化简题目中的式子,从而可以解212(1)11x x x --÷-- =11(1)(1)12x x x x x --+-⋅-- =2(1)(1)12x x x x x -+-⋅--=x+1,故答案为:x+1. 考点:分式的混合运算8. (2017年某某省潍坊市第14题)因式分解:=-+-)2(22x x x .【答案】(x+1)(x ﹣2) 【解析】考点:因式分解﹣提公因式法9. (2017年某某省某某市第10题)函数1y x =+的自变量x 的取值X 围是.【答案】x ≥﹣1. 【解析】试题分析:由题意得,x+1≥0,解得x ≥﹣1. 考点:函数自变量的取值X 围.10. (2017年某某省某某市第11题)把多项式2312x -因式分解的结果是. 【答案】3(x ﹣2)(x+2). 【解析】试题分析:先提取公因式,再利用平方差公式进行二次分解即可,即3x 2﹣12=3(x 2﹣4)=3(x ﹣2)(x+2). 考点:因式分解.11.(2017年某某省内江市第13题)分解因式:231827x x -+=. 【答案】23(3)x - . 【解析】试题分析:231827x x -+=23(69)x x -+=23(3)x -.故答案为:23(3)x -.考点:提公因式法与公式法的综合运用. 12.(2017年某某省内江市第14题)在函数123y x x =+--中,自变量x 的取值X 围是. 【答案】x ≥2且x ≠3.考点:函数自变量的取值X 围.13.(2017年某某省内江市第22题)若实数x 满足2210x x --=,则322742017x x x -+-=. 【答案】﹣2020. 【解析】 试题分析:∵2210x x --=,∴221x x =+,322742017x x x -+-=2(21)7(21)42017x x x x +-++-=24214742017x x x x +--+-=2482024x x --=4(21)82024x x +--=4﹣2024=﹣2020,故答案为:﹣2020. 考点:因式分解的应用;降次法;整体思想.14. (2017年某某省某某市第11题)因式分解23a a +=. 【答案】3(3a+1). 【解析】试题分析:直接提公因式a 即可,即原式=3(3a+1). 考点:因式分解.15. (2017年某某省某某市第13题)2121x xx x x +⋅=++. 【答案】11x +. 【解析】 试题分析:原式=211(1)1x x x x x +⋅=++. 考点:分式的运算.16.(2017年某某省六盘水市第14题)计算:2017×1983. 【答案】3999711.试题分析:2017×1983=()()399971117200017200017200022=-=-+考点:平方差公式.17.(2017年某某省日照市第13题)分解因式:2m 3﹣8m=.【答案】2m (m+2)(m ﹣2).试题分析:提公因式2m ,再运用平方差公式对括号里的因式分解即可,即2m 3﹣8m=2m (m 2﹣4)=2m (m+2)(m ﹣2).考点:提公因式法与公式法的综合运用.18. (2017年某某省某某市第10题)因式分解:269x x -+=. 【答案】(x-3)2. 【解析】试题解析:x 2-6x+9=(x-3)2. 考点:因式分解-运用公式法.19. (2017年某某省黄冈市第8题)分解因式:22mn mn m -+=____________. 【答案】m (n-1)2考点:分解因式20. (2017年某某省黄冈市第11题) 化简:23332xx x x x -⎛⎫+= ⎪---⎝⎭_____________. 【答案】1 【解析】试题分析:原式变形后,利用乘法分配律计算,再约分化简即可得23()332x x x x x -+⋅---=23()332x x x x x --⋅---=222x x x ---=1. 考点:分式的运算21.(2017年某某省某某市第13题)分解因式:=++2422a a . 【答案】2(a+1)2【解析】一般步骤:一提(公因式)、二套(平方差公式()()22-=+-a b a b a b ,完全平方公式()2222±+=±a ab b a b)、三检查(彻底分解),可以先提公因式2,再用完全平方分解为2(a+1)2.故答案为:2(a+1)2考点:因式分解22.(2017年某某省某某市第16题)某水果点销售50千克香蕉,第一天售价为9元/千克,第二天降价6元/千克,第三天再降为3元/千克.三天全部售完,共计所得270元.若该店第二天销售香蕉t千克,则第三天销售香蕉千克.【答案】30﹣2t【解析】考点:列代数式三、解答题1.(2017年某某省某某地区第22题)先化简,再求值:(2221x xx x-+-+2242xx x-+)÷1x,且x为满足﹣3<x<2的整数.【答案】【解析】试题分析:首先化简(2221x xx x-+-+2242xx x-+)÷1x,然后根据x为满足﹣3<x<2的整数,求出x的值,再根据x的取值X围,求出算式的值是多少即可.试题解析:(2221x xx x-+-+2242xx x-+)÷1x=[2(1)1)xx x--(+(2)(2(2)x xx x+-+)]×x=(1xx-+2xx-)×x=2x﹣3∵x为满足﹣3<x<2的整数,∴x=﹣2,﹣1,0,1,∵x要使原分式有意义,∴x≠﹣2,0,1,∴x=﹣1,当x=﹣1时,原式=2×(﹣1)﹣3=﹣5考点:分式的化简求值.2.(2017年某某省某某市第18题)化简:(21a++221aa+-)÷1aa-【答案】31aa+.【解析】考点:分式的混合运算3.(2017年某某省黔东南州第18题)先化简,再求值:(x﹣1﹣)÷,其中x=+1.【答案】3x-【解析】试题分析:原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.试题解析:原式=221(1).(1)(1) x x x xx x x-+++-=2(1)(1).(1)(1)x x x x x x -++- =x ﹣1,当x=3+1时,原式=3. 考点:分式的化简求值4. (2017年某某某某市第19题)先化简,再求值.165)121(2-+-÷--x x x x ,其中x 从0,1,2,3,四个数中适当选取.【答案】12x -,-12【解析】考点:分式的化简求值5.(2017年某某省东营市第19题)(1)计算:6cos45°+(13)﹣1+3﹣1.73)0+|5﹣2|+42017×(﹣0.25)2017(2)先化简,再求值:(31a +﹣a+1)÷244412a a a a -+++-﹣a ,并从﹣1,0,2中选一个合适的数作为a 的值代入求值.【答案】(1)8(2)﹣a ﹣1,当a=0时,原式=﹣0﹣1=﹣1 【解析】考点:1、分式的化简求值,2、实数的运算,3、殊角的三角函数值,4、负整数指数幂,5、零指数幂,6、绝对值,7、幂的乘方6. (2017年某某省威海市第19题)先化简)111(11222+-+-÷-+-x x x x x x ,然后从55<<-x 的X 围内选取一个合适的整数作为x 的值代入求值.【答案】1x -,12【解析】试题分析:根据分式的减法和除法可以化简题目中的式子,然后在﹣<x <中选取一个使得原分式有意义的整数值代入化简后的式子即可解答本题.试题解析:22211(1)11x x x x x x -+-÷-+-+ =2(1)1(1)(1)(1)(1)1x x x x x x x ----+÷+-+=211111x x x x x -+⋅+--+ =1(1)x x x --- =1x-∵﹣5<x <5且x+1≠0,x ﹣1≠0,x ≠0,x 是整数, ∴x=﹣2时,原式=﹣12-=12. 考点:1、分式的化简求值,2、估算无理数的大小 7. (2017年某某省某某市第18题)先化简,再求值21639a a ---,其中1a =. 【答案】原式=13a +,当a=1时,原式=14. 【解析】考点:分式的化简求值.8. (2017年某某省某某市第16题)化简求值:2121211x x x x -⎛⎫÷- ⎪+++⎝⎭,其中31x =-.【答案】11x +,33【解析】考点:分式的化简求值9.(2017年某某省日照市第17题)(1)计算:﹣(2﹣)﹣(π﹣3.14)0+(1﹣cos30°)×()﹣2; (2)先化简,再求值:﹣÷,其中a=.【答案】(1)3+1;(2)原式= 221a --,当2=2-.试题分析:(1)根据去括号得法则、零指数幂、特殊角的三角函数值、负整数指数幂可以解答本题;(2)根据分式的除法和减法可以化简题目中的式子,然后将a 的值代入即可解答本题. 试题解析:(1)原式==3﹣2﹣1+(1﹣32)×4 =3-2-1+4-23 =-3+1; (2)原式=21111(1)1a a a a a ++-÷+--考点:分式的化简求值;实数的运算.。
专题05 一次方程(组)与一元二次方程-2022年中考数学真题分项汇编(第2期)试题及答案
专题05 一次方程(组)与一元二次方程一.选择题1.(2022·内蒙古包头)若12,x x 是方程2230x x --=的两个实数根,则212x x ⋅的值为( ) A .3或9-B .3-或9C .3或6-D .3-或62.(2022·黑龙江)2022年北京冬奥会女子冰壶比赛有若干支队伍参加了单循环比赛,单循环比赛共进行了45场,共有多少支队伍参加比赛?( ) A .8B .10C .7D .93.(2022·四川雅安)若关于x 的一元二次方程x 2+6x +c =0配方后得到方程(x +3)2=2c ,则c 的值为( ) A .﹣3B .0C .3D .94.(2022·贵州黔东南)已知关于x 的一元二次方程220x x a --=的两根分别记为1x ,2x ,若11x =-,则2212a x x --的值为( )A .7B .7-C .6D .6-5.(2022·广西梧州)一元二次方程2310x x -+=的根的情况( ) A .有两个相等的实数根 B .有两个不相等的实数根 C .没有实数根D .无法确定6.(2022·湖北武汉)若关于x 的一元二次方程222410x mx m m -+--=有两个实数根1x ,2x ,且()()121222217x x x x ++-=,则m =( ) A .2或6B .2或8C .2D .67.(2022·湖南郴州)一元二次方程2210x x +-=的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根8.(2022·广西贵港)若2x =-是一元二次方程220x x m ++=的一个根,则方程的另一个根及m 的值分别是( ) A .0,2-B .0,0C .2-,2-D .2-,09.(2022·北京)若关于x 的一元二次方程20x x m ++=有两个相等的实数根,则实数m 的值为( ) A .4-B .14-C .14D .410.(2022·山东临沂)方程22240x x --=的根是( )A .16x =,24x =B .16x =,24x =-C .16x =-,24x =D .16x =-,24x =- 11.(2022·黑龙江牡丹江)下列方程没有实数根的是( )A .2410x x +=B .23830x x +-=C .2230x x -+=D .()()2312x x --= 12.(2022·海南)若代数式1x +的值为6,则x 等于( ) A .5B .5-C .7D .7-13.(2022·广西贺州)某餐厅为了追求时间效率,推出一种液体“沙漏”免单方案(即点单完成后,开始倒转“沙漏”, “沙漏”漏完前,客人所点的菜需全部上桌,否则该桌免费用餐).“沙漏”是由一个圆锥体和一个圆柱体相通连接而成.某次计时前如图(1)所示,已知圆锥体底面半径是6cm ,高是6cm ;圆柱体底面半径是3cm ,液体高是7cm .计时结束后如图(2)所示,求此时“沙漏”中液体的高度为( )A .2cmB .21cm 4C .4cmD .5cm14.(2022·黑龙江)国家“双减”政策实施后,某校开展了丰富多彩的社团活动.某班同学报名参加书法和围棋两个社团,班长为参加社团的同学去商场购买毛笔和围棋(两种都购买)共花费360元.其中毛笔每支15元,围棋每副20元,共有多少种购买方案?( ) A .5B .6C .7D .815.(2022·辽宁营口)我国元朝朱世杰所著的《算学启蒙》一书是中国较早的数学著作之一,书中记载一道问题:“良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何追及之?”题意是:快马每天走240里,慢马每天走150里,慢马先走12天,试问快马几天可以追上慢马?若设快马x 天可以追上慢马,则下列方程正确的是( ) A .24015015012x x +=⨯ B .24015024012x x -=⨯ C .24015024012x x +=⨯D .24015015012x x -=⨯16.(2022·广西)方程3x =2x +7的解是( ) A .x =4B .x =﹣4C .x =7D .x =﹣717.(2022·贵州铜仁)为了增强学生的安全防范意识,某校初三(1)班班委举行了一次安全知识抢答赛,抢答题一共20个,记分规则如下:每答对一个得5分,每答错或不答一个扣1分.小红一共得70分,则小红答对的个数为( ) A .14B .15C .16D .1718.(2022·广东深圳)张三经营了一家草场,草场里面种植上等草和下等草.他卖五捆上等草的根数减去11根,就等下七捆下等草的根数;卖七捆上等草的根数减去25根,就等于五捆下等草的根数.设上等草一捆为x 根,下等草一捆为y 根,则下列方程正确的是( )A .51177255y x y x -=⎧⎨-=⎩B .51177255x y x y +=⎧⎨+=⎩C .51177255x y x y -=⎧⎨-=⎩D .71155257x y x y -=⎧⎨-=⎩19.(2022·贵州贵阳)在同一平面直角坐标系中,一次函数y ax b =+与()0y mx n a m =+<<的图象如图所示,小星根据图象得到如下结论:①在一次函数y mx n =+的图象中,y 的值随着x 值的增大而增大;②方程组y ax by mx n -=⎧⎨-=⎩的解为32x y =-⎧⎨=⎩;③方程0mx n +=的解为2x =;④当0x =时,1ax b +=-.其中结论正确的个数是( ) A .1B .2C .3D .420.(2022·广西河池)某厂家今年一月份的口罩产量是30万个,三月份的口罩产量是50万个,若设该厂家一月份到三月份的口罩产量的月平均增长率为x .则所列方程为( ) A .30(1+x )2=50B .30(1﹣x )2=50C .30(1+x 2)=50D .30(1﹣x 2)=50二.填空题21.(2022·湖北鄂州)若实数a 、b 分别满足a 2﹣4a +3=0,b 2﹣4b +3=0,且a ≠b ,则11a b+的值为 _____.22.(2022·福建)推理是数学的基本思维方式、若推理过程不严谨,则推理结果可能产生错误.例如,有人声称可以证明“任意一个实数都等于0”,并证明如下: 设任意一个实数为x ,令x m =, 等式两边都乘以x ,得2x mx =.① 等式两边都减2m ,得222x m mx m -=-.②等式两边分别分解因式,得()()()x m x m m x m +-=-.③ 等式两边都除以x m -,得x m m +=.④ 等式两边都减m ,得x =0.⑤ 所以任意一个实数都等于0.以上推理过程中,开始出现错误的那一步对应的序号是______. 23.(2022·广西梧州)一元二次方程()()270x x -+=的根是_________.24.(2022·四川内江)已知x 1、x 2是关于x 的方程x 2﹣2x +k ﹣1=0的两实数根,且2112x x x x +=x 12+2x 2﹣1,则k 的值为 _____.25.(2022·广东深圳)已知一元二次方程260x x m ++=有两个相等的实数根,则m 的值为________________.26.(2022·上海)某公司5月份的营业额为25万,7月份的营业额为36万,已知5、6月的增长率相同,则增长率为_____.27.(2022·山东威海)幻方的历史很悠久,传说最早出现在夏禹时代的“洛书”.把洛书用今天的数学符号翻译出来,就是一个三阶幻方(如图1),将9个数填在3×3(三行三列)的方格中,如果满足每个横行、每个竖列、每条对角线上的三个数字之和都相等,就得到一个广义的三阶幻方.图2的方格中填写了一些数字和字母,若能构成一个广义的三阶幻方,则mn =_____.28.(2022·广西贺州)若实数m ,n 满足50m n --∣∣,则3m n +=__________. 29.(2022·广东)若1x =是方程220x x a -+=的根,则=a ____________.30.(2022·江苏无锡)二元一次方程组321221x y x y +=⎧⎨-=⎩的解为________.31.(2022·四川雅安)已知12x y =⎧⎨=⎩是方程ax +by =3的解,则代数式2a +4b ﹣5的值为 _____.32.(2022·广西)阅读材料:整体代值是数学中常用的方法.例如“已知32a b -=,求代数式621a b --的值.”可以这样解:()6212312213a b a b --=--=⨯-=.根据阅读材料,解决问题:若2x =是关于x 的一元一次方程3ax b +=的解,则代数式2244421a ab b a b ++++-的值是________.33.(2022·内蒙古呼和浩特)某超市糯米的价格为5元/千克,端午节推出促销活动:一次购买的数量不超过2千克时,按原价售出,超过2千克时,超过的部分打8折.若某人付款14元,则他购买了_______千克糯米;设某人的付款金额为x 元,购买量为y 千克,则购买量y 关于付款金额(10)x x >的函数解析式为______.34.(2022·山东潍坊)方程组2313320x y x y +=⎧⎨-=⎩的解为___________.35.(2022·贵州贵阳)“方程”二字最早见于我国《九章算术》这部经典著作中,该书的第八章名为“方程”如:从左到右列出的算筹数分别表示方程中未知数x ,y 的系数与相应的常数项,即可表示方程423x y +=,则表示的方程是_______.36.(2022·吉林长春)《算法统宗》是中国古代重要的数学著作,其中记载:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.其大意为:今有若干人住店,若每间住7人,则余下7人无房可住;若每间住9人,则余下一间无人住,设店中共有x 间房,可求得x 的值为________.37.(2022·湖南长沙)关于的一元二次方程220x x t ++=有两个不相等的实数根,则实数t 的值为___________.38.(2022·江苏泰州)方程2x 2x m 0-+=有两个相等的实数根,则m 的值为__________.39.(2022·湖北武汉)有大小两种货车,3辆大货车与4辆小货车一次可以运货22吨,5辆大货车与2辆小货车一次可以运货25吨,则4辆大货车与3辆小货车一次可以运货___________吨.40.(2022·上海)解方程组2213x y x y +=⎧⎨-=⎩的结果为_____. 三.解答题41.(2022·广东)《九章算术》是我国古代的数学专著,几名学生要凑钱购买1本.若每人出8元,则多了3元;若每人出7元,则少了4元.问学生人数和该书单价各是多少?42.(2022·内蒙古赤峰)某学校建立了劳动基地,计划在基地上种植A 、B 两种苗木共6000株,其中A 种苗木的数量比B 种苗木的数量的一半多600株. (1)请问A 、B 两种苗木各多少株?(2)如果学校安排350人同时开始种植这两种苗木,每人每天平均能种植A 种苗木50株或B 种苗木30株,应分别安排多少人种植A 种苗木和B 种苗木,才能确保同时..完成任务?43.(2022·湖南)中国“最美扶贫高铁”之一的“张吉怀高铁”开通后,张家界到怀化的运行时间由原来的3.5小时缩短至1小时,运行里程缩短了40千米.已知高铁的平均速度比普通列车的平均速度每小时快200千米,求高铁的平均速度.44.(2022·四川广安)某企业下属A、B两厂向甲乙两地运送水泥共520吨,A厂比B厂少运送20吨,从A厂运往甲乙两地的运费分别为40元/吨和35元/吨,从B厂运往甲乙两地的运费分别为28元/吨和25元/吨.(1)求A、B两厂各运送多少吨水泥?(2)现甲地需要水泥240吨,乙地需要水泥280吨.受条件限制,B厂运往甲地的水泥最多150吨.设从A厂运往甲地a吨水泥,A、B两厂运往甲乙两地的总运费为w元.求w与a 之间的函数关系式,请你为该企业设计一种总运费最低的运输方案,并说明理由45.(2022·广西桂林)解二元一次方程组:13x yx y-=⎧⎨+=⎩.46.(2022·江苏常州)第十四届国际数学教育大会(ICME-14)会徽的主题图案有着丰富的数学元素,展现了我国古代数学的文化魅力,其右下方的“卦”是用我国古代的计数符号写出的八进制数3745.八进制是以8作为进位基数的数字系统,有0~7共8个基本数字.八进制数3745换算成十进制数是3210387848582021⨯+⨯+⨯+⨯=,表示ICME-14的举办年份.(1)八进制数3746换算成十进制数是_______;(2)小华设计了一个n进制数143,换算成十进制数是120,求n的值.47.(2022·江苏泰州)如图,在长为50 m ,宽为38 m 的矩形地面内的四周修筑同样宽的道路,余下的铺上草坪.要使草坪的面积为1260 m 2,道路的宽应为多少?48.(2022·黑龙江齐齐哈尔)解方程:22(23)(32)x x +=+49.(2022·贵州贵阳)(1)a ,b 两个实数在数轴上的对应点如图所示.用“<”或“>”填空:a _______b ,ab _______0;(2)在初中阶段我们已经学习了一元二次方程的三种解法,他们分别是配方法、公式法和因式分解法,请从下列一元二次方程中任选两个,并解这两个方程. ①x 2+2x −1=0;②x 2−3x =0;③x 2−4x =4;④x 2−4=0.50.(2022·内蒙古呼和浩特)计算求解:(1)计算112sin45|23-⎛⎫-+-⎪⎝⎭︒(2)解方程组451223x yx y+=⎧⎪-⎨+=⎪⎩51.(2022·湖南长沙)电影《刘三姐》中,有这样一个场景,罗秀才摇头晃脑地吟唱道:“三百条狗交给你,一少三多四下分,不要双数要单数,看你怎样分得匀?”该歌词表达的是一道数学题.其大意是:把300条狗分成4群,每个群里,狗的数量都是奇数,其中一个群,狗的数量少:另外三个群,狗的数量多且数量相同.问:应该如何分?请你根据题意解答下列问题:(1)刘三姐的姐妹们以对歌的形式给出答案:“九十九条打猎去,九十九条看羊来,九十九条守门口,剩下三条给财主.”请你根据以上信息,判断以下三种说法是否正确,在题后相应的括号内,正确的打“√”,错误的打“×”.①刘三姐的姐妹们给出的答案是正确的,但不是唯一正确的答案.()②刘三姐的姐妹们给出的答案是唯一正确的答案.()③该歌词表达的数学题的正确答案有无数多种.()(2)若罗秀才再增加一个条件:“数量多且数量相同的三个群里,每个群里狗的数量比数量较少的那个群里狗的数量多40条”,求每个群里狗的数量.52.(2022·四川雅安)某商场购进A,B两种商品,已知购进3件A商品和5件B商品费用相同,购进3件A商品和1件B商品总费用为360元.(1)求A,B两种商品每件进价各为多少元?(列方程或方程组求解)(2)若该商场计划购进A,B两种商品共80件,其中A商品m件.若A商品按每件150元销售,B商品按每件80元销售,求销售完A,B两种商品后获得总利润w(元)与m(件)的函数关系式.53.(2022·海南)我省某村委会根据“十四五”规划的要求,打造乡村品牌,推销有机黑胡椒和有机白胡椒.已知每千克有机黑胡椒比每千克有机白胡椒的售价便宜10元,购买2千克有机黑胡椒和3千克有机白胡椒需付280元,求每千克有机黑胡椒和每千克有机白胡椒的售价.专题05 一次方程(组)与一元二次方程一.选择题1.(2022·内蒙古包头)若12,x x 是方程2230x x --=的两个实数根,则212x x ⋅的值为( ) A .3或9- B .3-或9 C .3或6- D .3-或6【答案】A【分析】结合根与系数的关系以及解出方程2230x x --=进行分类讨论即可得出答案. 【详解】解:∵2230x x --=, ∵12331x x -⋅==-, ()()130x x +-=,则两根为:3或-1,当23x =时,212212239x x x x x x ==--⋅=,当21x =-时,2121222··33x x x x x x ⋅==-=,故选:A . 【点睛】此题考查了根与系数的关系以及解二元一次方程,正确解出方程进行分类讨论是解题的关键.2.(2022·黑龙江)2022年北京冬奥会女子冰壶比赛有若干支队伍参加了单循环比赛,单循环比赛共进行了45场,共有多少支队伍参加比赛?( ) A .8 B .10 C .7 D .9【答案】B【分析】设有x 支队伍,根据题意,得1(1)452x x -=,解方程即可. 【详解】设有x 支队伍,根据题意,得1(1)452x x -=, 解方程,得x 1=10,x 2=-9(舍去),故选B .【点睛】本题考查了一元二次方程的应用,熟练掌握一元二次方程的解法是解题的关键. 3.(2022·四川雅安)若关于x 的一元二次方程x 2+6x +c =0配方后得到方程(x +3)2=2c ,则c 的值为( ) A .﹣3 B .0 C .3 D .9【答案】C【分析】先移项把方程化为26,x x c 再配方可得239,x c 结合已知条件构建关于c的一元一次方程,从而可得答案. 【详解】解:x 2+6x +c =0, 移项得:26,xxc配方得:239,x c 而(x +3)2=2c ,92,c c解得:3,c = 故选C【点睛】本题考查的是配方法,掌握“配方法解一元二次方程的步骤”是解本题的关键. 4.(2022·贵州黔东南)已知关于x 的一元二次方程220x x a --=的两根分别记为1x ,2x ,若11x =-,则2212a x x --的值为( )A .7B .7-C .6D .6-【答案】B【分析】根据根与系数关系求出2x =3,a =3,再求代数式的值即. 【详解】解:∵一元二次方程220x x a --=的两根分别记为1x ,2x , ∵1x +2x =2, ∵11x =-, ∵2x =3, ∵1x ·2x =-a =-3, ∵a =3,∵22123917a x x --=--=-.故选B .【点睛】本题考查一元二次方程的根与系数关系,代数式的值,掌握一元二次方程的根与系数关系,代数式的值是解题关键.5.(2022·广西梧州)一元二次方程2310x x -+=的根的情况( ) A .有两个相等的实数根 B .有两个不相等的实数根 C .没有实数根 D .无法确定【答案】B【分析】根据判别式24b ac ∆=-即可判断求解. 【详解】解:由题意可知:1,3,1a b c ==-=, ∵224(3)41150b ac ,∵方程2310x x -+=由两个不相等的实数根,故选:B .【点睛】本题考察了一元二次方程根的判别式:当240b ac ∆=->时,方程有两个不相等的实数根;当240b ac ∆=-=时,方程有两个相等的实数根;当240b ac ∆=-<时,方程没有实数根.6.(2022·湖北武汉)若关于x 的一元二次方程222410x mx m m -+--=有两个实数根1x ,2x ,且()()121222217x x x x ++-=,则m =( ) A .2或6 B .2或8C .2D .6【答案】A【分析】根据一元二次方程有实数根先确定m 的取值范围,再根据一元二次方程根与系数的关系得出212122,41x x m x x m m +==--,把()()121222217x x x x ++-=变形为12122()130x x x x +--=,再代入得方程28120m m -+=,求出m 的值即可.【详解】解:∵关于x 的一元二次方程222410x mx m m -+--=有两个实数根, ∵22=(2)4(41)0m m m ∆----≥, ∵14m ,≥-∵12x x ,是方程222410x mx m m -+--=的两个实数根,∵212122,41x x m x x m m +==--,又()()121222217x x x x ++-= ∵12122()130x x x x +--=把212122,41x x m x x m m +==--代入整理得,28120m m -+=解得,122,6m m == 故选A【点睛】本题考查了根的判别式、根与系数的关系以及解一元二次方程,解题的关键是:(1)牢记“当∵≥0时,方程有两个实数根”;(2)由根与系数的关系结合12122()130x x x x +--=,找出关于m 的一元二次方程.7.(2022·湖南郴州)一元二次方程2210x x +-=的根的情况是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .只有一个实数根 D .没有实数根【答案】A【分析】根据24b ac ∆=-即可判断. 【详解】解:2a =,1b =,1c =-,()22414211890b ac ∴∆=-=-⨯⨯-=+=>,∴ 一元二次方程2210x x +-=有两个不相等的实数根.故选:A .【点睛】本题主要考查利用判别式来判断一元二次方程根的个数:当0∆>时,方程有两个不相等的实数根; 当0∆=时,方程有两个相等的实数根; 当∆<0时,方程无实数根,掌握利用判别式判断方程根的方法是解题的关键.8.(2022·广西贵港)若2x =-是一元二次方程220x x m ++=的一个根,则方程的另一个根及m 的值分别是( ) A .0,2-B .0,0C .2-,2-D .2-,0【答案】B【分析】直接把2x =-代入方程,可求出m 的值,再解方程,即可求出另一个根. 【详解】解:根据题意,∵2x =-是一元二次方程220x x m ++=的一个根, 把2x =-代入220x x m ++=,则 2(2)2(2)0m -+⨯-+=,解得:0m =; ∵220x x +=, ∵(2)0x x +=, ∵12x =-,0x =, ∵方程的另一个根是0x =; 故选:B【点睛】本题考查了解一元二次方程,方程的解,解题的关键是掌握解一元二次方程的步骤进行计算.9.(2022·北京)若关于x 的一元二次方程20x x m ++=有两个相等的实数根,则实数m 的值为( ) A .4- B .14-C .14D .4【答案】C【分析】利用方程有两个相等的实数根,得到∆=0,建立关于m 的方程,解答即可. 【详解】∵一元二次方程20x x m ++=有两个相等的实数根, ∵∆=0, ∵2140m -=, 解得14m =,故C 正确. 故选:C .【点睛】此题考查利用一元二次方程的根的情况求参数,一元二次方程的根有三种情况:有两个不等的实数根时∆>0;当一元二次方程有两个相等的实数根时,∆=0;当方程没有实数根时,∆<0,正确掌握此三种情况是正确解题的关键. 10.(2022·山东临沂)方程22240x x --=的根是( ) A .16x =,24x = B .16x =,24x =- C .16x =-,24x = D .16x =-,24x =-【答案】B【分析】先把方程的左边分解因式化为460,x x 从而可得答案.【详解】解:22240x x --=,460,x x40x ∴+=或60,x -=解得:126, 4.x x故选B【点睛】本题考查的是利用因式分解的方法解一元二次方程,掌握“十字乘法分解因式”是解本题的关键.11.(2022·黑龙江牡丹江)下列方程没有实数根的是( ) A .2410x x += B .23830x x +-= C .2230x x -+= D .()()2312x x --=【答案】C【分析】通过题目可知这几个方程都是一元二次方程,因此可以通过24b ac ∆=-来确定有没有实数根,即可求解【详解】解:A 、∵=2441(10)560-⨯⨯-=>,有两个不相等的实数根; B 、∵=2843(3)1000-⨯⨯-=>,故有两个不相等的实数根; C 、∵=2(2)41380<--⨯⨯=-,故没有实数根;D 、∵=2-5-41-6=490()()>⨯⨯,故有两个不相等的实数根故选C12.(2022·海南)若代数式1x +的值为6,则x 等于( ) A .5 B .5-C .7D .7-【答案】A【分析】根据代数式1x +的值为6列方程计算即可. 【详解】∵代数式1x +的值为6 ∵16x +=,解得5x =故选:A【点睛】此题考查了解一元一次方程,根据题意列方程是解本题的关键.13.(2022·广西贺州)某餐厅为了追求时间效率,推出一种液体“沙漏”免单方案(即点单完成后,开始倒转“沙漏”, “沙漏”漏完前,客人所点的菜需全部上桌,否则该桌免费用餐).“沙漏”是由一个圆锥体和一个圆柱体相通连接而成.某次计时前如图(1)所示,已知圆锥体底面半径是6cm ,高是6cm ;圆柱体底面半径是3cm ,液体高是7cm .计时结束后如图(2)所示,求此时“沙漏”中液体的高度为( )A .2cmB .21cm 4C .4cmD .5cm【答案】B【分析】根据液体的体积不变列方程解答.【详解】解:圆柱体内液体的体积为:2313763cm 圆柱v sh ππ==⨯⨯=由题意得,232211663cm 33锥体v sh h ππ==⨯⨯=26321cm 364h ∴==, 故选:B .【点睛】本题考查一元一次方程的应用,涉及圆柱与圆锥的体积,是基础考点,掌握液体体积不变列方程是解题关键.14.(2022·黑龙江)国家“双减”政策实施后,某校开展了丰富多彩的社团活动.某班同学报名参加书法和围棋两个社团,班长为参加社团的同学去商场购买毛笔和围棋(两种都购买)共花费360元.其中毛笔每支15元,围棋每副20元,共有多少种购买方案?( ) A .5 B .6 C .7 D .8【答案】A【分析】设设购买毛笔x 支,围棋y 副,根据总价=单价×数量,即可得出关于x ,y 的二元一次方程,结合x ,y 均为正整数即可得出购买方案的数量. 【详解】解:设购买毛笔x 支,围棋y 副,根据题意得, 15x +20y =360,即3x +4y =72, ∵y =18-34x . 又∵x ,y 均为正整数,∵415x y =⎧⎨=⎩或812x y =⎧⎨=⎩或129x y =⎧⎨=⎩或166x y =⎧⎨=⎩或203x y =⎧⎨=⎩,∵班长有5种购买方案.故选:A .【点睛】本题考查了二元一次方程的应用,找准等量关系“共花费360元”,列出二元一次方程是解题的关键.15.(2022·辽宁营口)我国元朝朱世杰所著的《算学启蒙》一书是中国较早的数学著作之一,书中记载一道问题:“良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何追及之?”题意是:快马每天走240里,慢马每天走150里,慢马先走12天,试问快马几天可以追上慢马?若设快马x 天可以追上慢马,则下列方程正确的是( ) A .24015015012x x +=⨯ B .24015024012x x -=⨯ C .24015024012x x +=⨯ D .24015015012x x -=⨯【答案】D【分析】设快马x 天可以追上慢马,根据路程=速度×时间,即可得出关于x 的一元一次方程,此题得解.【详解】解:设快马x 天可以追上慢马, 依题意,得: 240x -150x =150×12. 故选:D .【点睛】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.16.(2022·广西)方程3x =2x +7的解是( ) A .x =4 B .x =﹣4C .x =7D .x =﹣7【答案】C【分析】先移项再合并同类项即可得结果; 【详解】解:3x =2x +7 移项得,3x -2x =7; 合并同类项得,x =7; 故选:C .【点睛】本题主要考查解一元一次方程,掌握一元一次方程的求解步骤是解题的关键. 17.(2022·贵州铜仁)为了增强学生的安全防范意识,某校初三(1)班班委举行了一次安全知识抢答赛,抢答题一共20个,记分规则如下:每答对一个得5分,每答错或不答一个扣1分.小红一共得70分,则小红答对的个数为( ) A .14 B .15C .16D .17【答案】B【分析】设小红答对的个数为x 个,根据抢答题一共20个,记分规则如下:每答对一个得5分,每答错或不答一个扣1分,列出方程求解即可.【详解】解:设小红答对的个数为x 个, 由题意得()52070x x --=, 解得15x =, 故选B .【点睛】本题主要考查了一元一次方程的应用,正确理解题意是列出方程求解是解题的关键. 18.(2022·广东深圳)张三经营了一家草场,草场里面种植上等草和下等草.他卖五捆上等草的根数减去11根,就等下七捆下等草的根数;卖七捆上等草的根数减去25根,就等于五捆下等草的根数.设上等草一捆为x 根,下等草一捆为y 根,则下列方程正确的是( )A .51177255y xy x -=⎧⎨-=⎩B .51177255x yx y +=⎧⎨+=⎩C .51177255x yx y -=⎧⎨-=⎩D .71155257x yx y -=⎧⎨-=⎩【答案】C【分析】设上等草一捆为x 根,下等草一捆为y 根,根据“卖五捆上等草的根数减去11根,就等下七捆下等草的根数;卖七捆上等草的根数减去25根,就等于五捆下等草的根数.”列出方程组,即可求解.【详解】解:设上等草一捆为x 根,下等草一捆为y 根,根据题意得:51177255x yx y -=⎧⎨-=⎩.故选:C 【点睛】本题主要考查了二元一次方程组的应用,明确题意,准确得到等量关系是解题的关键.19.(2022·贵州贵阳)在同一平面直角坐标系中,一次函数y ax b =+与()0y mx n a m =+<<的图象如图所示,小星根据图象得到如下结论:①在一次函数y mx n =+的图象中,y 的值随着x 值的增大而增大;②方程组y ax b y mx n -=⎧⎨-=⎩的解为32x y =-⎧⎨=⎩;③方程0mx n +=的解为2x =; ④当0x =时,1ax b +=-. 其中结论正确的个数是( ) A .1 B .2C .3D .4【答案】B【分析】由函数图象经过的象限可判断①,由两个一次函数的交点坐标可判断②,由一次函数与坐标轴的交点坐标可判断③④,从而可得答案.【详解】解:由一次函数y mx n =+的图象过一,二,四象限,y 的值随着x 值的增大而减小;故①不符合题意;由图象可得方程组y ax b y mx n =+⎧⎨=+⎩的解为32x y =-⎧⎨=⎩,即方程组y ax b y mx n -=⎧⎨-=⎩的解为32x y =-⎧⎨=⎩;故②符合题意;由一次函数y mx n =+的图象过()2,0, 则方程0mx n +=的解为2x =;故③符合题意; 由一次函数y ax b =+的图象过()0,2,- 则当0x =时,2ax b +=-.故④不符合题意; 综上:符合题意的有②③,故选B【点睛】本题考查的是一次函数的性质,一次函数的图象的交点坐标与二元一次方程组的解,一次函数与坐标轴的交点问题,熟练的运用数形结合的方法解题是关键.20.(2022·广西河池)某厂家今年一月份的口罩产量是30万个,三月份的口罩产量是50万个,若设该厂家一月份到三月份的口罩产量的月平均增长率为x .则所列方程为( ) A .30(1+x )2=50 B .30(1﹣x )2=50 C .30(1+x 2)=50 D .30(1﹣x 2)=50【答案】A【分析】根据题意和题目中的数据,可以得到()230150x +=,从而可以判断哪个选项是符合题意的.【详解】解:由题意可得,230(1)50x +=,故选:A .【点睛】本题考查由实际问题抽象出一元二次方程,解题的关键是明确题意,列出相应的方程,这是一道典型的增长率问题. 二.填空题21.(2022·湖北鄂州)若实数a 、b 分别满足a 2﹣4a +3=0,b 2﹣4b +3=0,且a ≠b ,则11a b+的值为 _____.【答案】43【分析】先根据题意可以把a 、b 看做是一元二次方程2430x x -+=的两个实数根,利用根与系数的关系得到a +b =4,ab =3,再根据11a b a b ab++=进行求解即可. 【详解】解:∵a 、b 分别满足a 2﹣4a +3=0,b 2﹣4b +3=0, ∵可以把a 、b 看做是一元二次方程2430x x -+=的两个实数根, ∵a +b =4,ab =3, ∵1143a b a b ab ++==, 故答案为:43. 【点睛】本题主要考查了分式的求值,一元二次方程根与系数的关系,熟知一元二次方程根与系数的关系是解题的关键.22.(2022·福建)推理是数学的基本思维方式、若推理过程不严谨,则推理结果可能产生错误.例如,有人声称可以证明“任意一个实数都等于0”,并证明如下: 设任意一个实数为x ,令x m =, 等式两边都乘以x ,得2x mx =.① 等式两边都减2m ,得222x m mx m -=-.②等式两边分别分解因式,得()()()x m x m m x m +-=-.③ 等式两边都除以x m -,得x m m +=.④ 等式两边都减m ,得x =0.⑤ 所以任意一个实数都等于0.以上推理过程中,开始出现错误的那一步对应的序号是______. 【答案】④【分析】根据等式的性质2即可得到结论.【详解】等式的性质2为:等式两边同乘或除以同一个不为0的整式,等式不变, ∵第④步等式两边都除以x m -,得x m m +=,前提必须为0x m -≠,因此错误; 故答案为:④.【点睛】本题考查等式的性质,熟知等式的性质是解题的关键. 23.(2022·广西梧州)一元二次方程()()270x x -+=的根是_________. 【答案】12x =或27x =-【分析】由两式相乘等于0,则这两个式子均有可能为0即可求解. 【详解】解:由题意可知:20x -=或70x +=,∵12x =或27x =-,故答案为:12x =或27x =-.【点睛】本题考查一元二次方程的解法,属于基础题,计算细心即可.24.(2022·四川内江)已知x 1、x 2是关于x 的方程x 2﹣2x +k ﹣1=0的两实数根,且2112x x x x +=x 12+2x 2﹣1,则k 的值为 _____.【答案】2【分析】根据一元二次方程根与系数的关系以及解的定义得到x 1+x 2=2,x 1•x 2=k ﹣1,x 12﹣2x 1+k ﹣1=0,再根据2112x x x x +=x 12+2x 2﹣1,推出222(1)1k k ---=4﹣k ,据此求解即可. 【详解】解:∵x 1、x 2是关于x 的方程x 2﹣2x +k ﹣1=0的两实数根,∵x 1+x 2=2,x 1•x 2=k ﹣1,x 12﹣2x 1+k ﹣1=0,∵x 12=2x 1﹣k +1, ∵2112x x x x +=x 12+2x 2﹣1, ∵2121212()2x x x x x x +-=2(x 1+x 2)﹣k , ∵222(1)1k k ---=4﹣k , 解得k =2或k =5,当k =2时,关于x 的方程为x 2﹣2x +1=0,Δ≥0,符合题意;当k =5时,关于x 的方程为x 2﹣2x +4=0,Δ<0,方程无实数解,不符合题意;∵k =2,故答案为:2.【点睛】本题主要考查了一元二次方程根与系数的关系,一元二次方程解的定义,熟知一元二次方程根与系数的关系是解题的关键.25.(2022·广东深圳)已知一元二次方程260x x m ++=有两个相等的实数根,则m 的值为________________.【答案】9【分析】根据根的判别式的意义得到∵2640m =-=,然后解关于m 的方程即可.【详解】解:根据题意得∵2640m =-=,解得9m =.故答案为:9.【点睛】本题考查了根的判别式,解题的关键是掌握一元二次方程20(a 0)++=≠ax bx c 的根与∵=-24b ac 有如下关系:当∵0>时,方程有两个不相等的实数根;当∵0=时,方程有两。
中考数学试题分项版解析汇编专题05数量和位置变化含解析.doc
专题05 数量与位置变化一、选择题1.(2017浙江衢州市第16题)如图,正△ABO 的边长为2,O 为坐标原点,A 在x 轴上,B 在第二象限。
△ABO 沿x 轴正方向作无滑动的翻滚,经第一次翻滚后得△A 1B 1O ,则翻滚3次后点B 的对应点的坐标是__________;翻滚2017次后AB 中点M 经过的路径长为__________【答案】(5,3);13463(+896)3π. 【解析】 试题解析:如图,作B 3E ⊥x 轴于E ,易知OE=5,B 33,∴B 3(53,观察图象可知三次一个循环,一个循环点M 的运动路径为:1203120112013+4++=1801801803ππππ⨯⨯⨯⨯, ∵2017÷3=672…1,∴翻滚2017次后AB 中点M 经过的路径长为:672•(3+4233+=(+896)333πππ. 考点:点的坐标.2.(2017山东德州第12题)观察下列图形,它是把一个三角形分别连接这个三角形的中点,构成4个小三角形,挖去中间的小三角形(如题1);对剩下的三角形再分别重复以上做法,……,将这种做法继续下去(如图2,图3……),则图6中挖去三角形的个数为( )A .121B .362C .364D .729【答案】C【解析】试题分析:①图1,0×3+1=1;②图2,1×3+1=4;③图3,4×3+1=13;④图4,13×3+1=40;⑤图5,40×3+1=121;⑥图6,121×3+1=364;故选C考点:探索规律3.(2017广西贵港第6题)在平面直角坐标系中,点()3,42P m m -- 不可能在()A .第一象限B .第二象限 C. 第三象限 D .第四象限【答案】A【解析】试题解析:①m ﹣3>0,即m >3时,﹣2m <﹣6,4﹣2m <﹣2,所以,点P (m ﹣3,4﹣2m )在第四象限,不可能在第一象限;②m ﹣3<0,即m <3时,﹣2m >﹣6,4﹣2m >﹣2,点P (m ﹣3,4﹣2m )可以在第二或三象限,综上所述,点P 不可能在第一象限.故选A .考点:点的坐标.4.(2017湖北武汉第6题)点(3,2)A -关于y 轴对称的坐标为( )A .(3,2)-B .(3,2)C . (3,2)--D .(2,3,)-【答案】B.考点:关于x 轴、y 轴对称的点的坐标特征5.(2017甘肃兰州第9题)抛物线233y x =-向右平移3个单位长度,得到新抛物线的表达式为( )A.()2333y x =--B.23y x =C.()2332y x =+-D.236y x =-【答案】A【解析】试题解析:y=3x 2﹣3向右平移3个单位长度,得到新抛物线的表达式为y=3(x ﹣3)2﹣3,故选:A .点:二次函数图象与几何变换.二、填空题:1.(2017湖南怀化第16题)如图,在菱形ABCD 中,120ABC =∠°,10cm AB =,点P 是这个菱形内部或边上的一点,若以,,P B C 为顶点的三角形是等腰三角形,则P ,A (P ,A 两点不重合)两点间的最短距离为 cm.【答案】310(cm ).【解析】③若以边PC为底,∠PBC为顶角,以点B为圆心,BC为半径作圆,则弧AC上的点A与点D均满足△PBC为等腰三角形,当点P与点A重合时,PA最小,显然不满足题意,故此种情况不存在;综上所述,PD的最小值为103﹣10(cm).考点:菱形的性质;等腰三角形的性质.2.(2017江苏盐城第15题)如图,在边长为1的小正方形网格中,将△ABC绕某点旋转到△A'B'C'的位置,则点B运动的最短路径长为.13【解析】试题解析:如图作线段AA′、CC′的垂直平分线相交于点P,点P即为旋转中心,观察图象可知,旋转角为90°(逆时针旋转)时B 运动的路径长最短,22233=1+∴B 运动的最短路径长为901313ππ=g . 考点:旋转的性质. 3.(2017贵州黔东南州第11题)在平面直角坐标系中有一点A (﹣2,1),将点A 先向右平移3个单位,再向下平移2个单位,则平移后点A 的坐标为 .【答案】(1,﹣1)【解析】试题解析:由题意可知:A 的横坐标+3,纵坐标﹣2,即可求出平移后的坐标,∴平移后A 的坐标为(1,﹣1)考点:坐标与图形变化﹣平移.4. (2017贵州黔东南州第16题)把多块大小不同的30°直角三角板如图所示,摆放在平面直角坐标系中,第一块三角板AOB 的一条直角边与y 轴重合且点A 的坐标为(0,1),∠ABO=30°;第二块三角板的斜边BB 1与第一块三角板的斜边AB 垂直且交y 轴于点B 1;第三块三角板的斜边B 1B 2与第二块三角板的斜边BB 1垂直且交x 轴于点B 2;第四块三角板的斜边B 2B 3与第三块三角板的斜边B 1B 2C 垂直且交y 轴于点B 3;…按此规律继续下去,则点B 2017的坐标为 .【答案】(0,﹣2017(3))【解析】考点:点的坐标.5.(2017山东烟台第16题)如图,在平面直角坐标系中,每个小方格的边长均为1.AOB ∆与''OB A ∆是以原点O 为位似中心的位似图形,且相似比为2:3,点B A ,都在格点上,则点'B 的坐标是 .【答案】(﹣2,43) 【解析】试题解析:由题意得:△A′OB′与△AOB 的相似比为2:3,又∵B (3,﹣2)∴B′的坐标是[3×2()3-,﹣2×2()3-],即B′的坐标是(﹣2,43) 考点:位似变换;坐标与图形性质.三、解答题1.(2017浙江宁波第20题)在44´的方格纸中,ABC △的三个顶点都在格点上.(1)在图1中画出与ABC △成轴对称且与ABC △有公共边的格点三角形(画出一个即可);(2)将图2中的ABC △绕着点C 按顺时针方向旋转90°,画出经旋转后的三角形.【答案】(1)作图见解析;(2)作图见解析.【解析】试题分析:根据题意画出图形即可.试题解析:(1)如图所示:或(2)如图所示:考点:1.轴对称图形;2.旋转.2.(2017江苏盐城第24题)如图,△ABC是一块直角三角板,且∠C=90°,∠A=30°,现将圆心为点O的圆形纸片放置在三角板内部.(1)如图①,当圆形纸片与两直角边AC、BC都相切时,试用直尺与圆规作出射线CO;(不写作法与证明,保留作图痕迹)(2)如图②,将圆形纸片沿着三角板的内部边缘滚动1周,回到起点位置时停止,若BC=9,圆形纸片的半径为2,求圆心O运动的路径长.【答案】(1)作图见解析;(2)3【解析】试题分析:(1)作∠ACB的平分线得出圆的一条弦,再作此弦的中垂线可得圆心O,作射线CO即可;(2)添加如图所示辅助线,圆心O的运动路径长为C△OO1O2,先求出△ABC的三边长度,得出其周长,证四边形OEDO1、四边形O1O2HG、四边形OO2IF均为矩形、四边形OECF为正方形,得出∠OO1O2=60°=∠ABC、∠O1OO2=90°,从而知△OO1O2∽△CBA,利用相似三角形的性质即可得出答案.试题解析:(1)如图①所示,射线OC即为所求;(2)如图,圆心O的运动路径长为C△OO1O2,∴D、G为切点,∴BD=BG,在Rt△O1BD和Rt△O1BG中,∵11BD =BGO B =O B ⎧⎨⎩,∴△O 1BD ≌△O 1BG (HL ),∴∠O 1BG=∠O 1BD=30°,在Rt △O 1BD 中,∠O 1DB=90°,∠O 1BD=30°, ∴BD=1303O D tan ==︒ ∴OO 1,∵O 1D=OE=2,O 1D ⊥BC ,OE ⊥BC , ∴O 1D ∥OE ,且O 1D=OE ,∴四边形OEDO 1为平行四边形, ∵∠OED=90°,∴四边形OEDO 1为矩形,同理四边形O 1O 2HG 、四边形OO 2IF 、四边形OECF 为矩形, 又OE=OF ,∴四边形OECF 为正方形,∵∠O 1GH=∠CDO 1=90°,∠ABC=60°, ∴∠GO 1D=120°,又∵∠FO 1D=∠O 2O 1G=90°,∴∠OO 1O 2=360°-90°-90°=60°=∠ABC , 同理,∠O 1OO 2=90°,∴△OO 1O 2∽△CBA , ∴1212OO O ABC C O O C BC =V VC = ∴C △OO 1O 2O 运动的路径长为考点:切线的性质;作图—复杂作图.。
中考数学试题分项版解析汇编:专题05数量和位置的变化(第02期)(山东专版)
一、选择题:1.(山东济宁,第4题,3分)一个正方体的每个面都有一个汉字,其平面展开图如图所示,那么在该正方体中和“值”字相对的字是( )A.记 B.观 C.心 D.间2.(山东济南,第5题,3分)如图,一个几何体是由两个小正方体和一个圆锥构成,其主视图是()A.B.C.D.3.(山东日照,第5题,3分)小红在观察由一些相同小立方块搭成的几何体时,发现它的右视图、俯视图、左视图均为如图,则构成该几何体的小立方块的个数有()A. 3个B. 4个C.5个D. 6个4.(山东泰安,第3题)(3分)下列四个几何体:其中左视图与俯视图相同的几何体共有()A.1个 B.2个 C.3个 D.4个5.(山东潍坊,第2题,3分)如右图所示几何体的左视图是()6.(山东枣庄,第3题,3分)如图,是有6个相同的小正方形搭成的几何体,那么这个几何体的俯视图是-A.--B.--C.--D.-7.(山东枣庄,第10题,3分)如图,在4×4的正方形网格中,每个小正方形的顶点称为格点,左上角阴影部分是一个以格点为顶点的正方形(简称格点正方形),若再作一个格点正方形,并涂上阴影,使这两个格点正方形无重叠面积,且组成的图形既是轴对称图形,又是中心对称图形,则这个格点正方形的作法共有A.2种B.3种C.4种D.5种4.(3分)(2015•聊城,第4题)某几何体的三视图如图所示,这个几何体是()A. 圆锥 B, 圆柱 C. 三棱柱 D. 三棱锥8.(3分)(2015•聊城,第7题)下列命题中的真命题是()A. 两边和一角分别相等的两个三角形全等B. 相似三角形的面积比等于相似比C. 正方形不是中心对称图形D. 圆内接四边形的对角互补9.(3分)(2015•聊城,第9题)图(1)是一个小正方体的表面展开图,小正方体从图(2)所示的位置依次翻到第1格、第2格、第3格、第4格,这时小正方体朝上一面的字是()A. 梦B.水C.城D.美10.(山东威海,第4题,3分)如图是由4个大小相等的正方形搭成的几何体,其左视图是()C11.(山东威海,第6题,3分)若点A(a+1,b﹣2)在第二象限,则点B(﹣a,b+1)在()A.第一象限B.第二象限C.第三象限D.第四象限12.(山东烟台,第3题,3分)如图,讲一个圆柱体放置在长方体上,其中圆柱体的底面直径与长方体的宽相等,则该几何体的左视图是()13.(山东淄博,第3题,4分)将图1围成图2的正方体,则图1中的红心“”标志所在的正方形是正方体中的()A.面CDHE B.面BCEF C.面ABFG D.面ADHG14.(山东淄博,第7题,4分)若锐角α满足cosα<且tanα<,则α的范围是()A.30°<α<45°B.45°<α<60° C.60°<α<90° D.30°<α<60°.二、填空题1.(山东枣庄,第15题,4分)如图,△ABC中,CD⊥AB于D,E是AC的中点,若AD=6,DE=5,则CD=________.2.(3分)(2015•聊城,第15题)如图,在△ABC中,∠C=90°,∠A=30°,BD是∠ABC的平分线.若AB=6,则点D到AB的距离是.3.(山东烟台,第41题,3分)正多边形的一个外角是72o,则这个多边形的内角和的度数是___________________。
中考数学试题分项版解析(第02期)专题05 数量和位置变化-人教版初中九年级全册数学试题
专题05 数量和位置变化一、选择题1.(2016某某市)如果将抛物线22y x =+向下平移1个单位,那么所得新抛物线的表达式是( ) A .2(1)2y x =-+ B .2(1)2y x =++ C .21y x =+ D .23y x =+ 【答案】C . 【解析】试题分析:∵抛物线22y x =+向下平移1个单位变为221y x =+-,即为21y x =+.故选C . 考点:二次函数图象与几何变换.2.(2016市)甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是( )A .B .C .D .【答案】D .考点:轴对称图形.3.(2016某某省某某市)如图,在Rt △ABC 中,∠BAC =90°,将Rt △ABC 绕点C 按逆时针方向旋转48°得到Rt △A ′B ′C ′,点A 在边B ′C 上,则∠B ′的大小为( )A .42°B .48°C .52°D .58°【答案】A.【解析】试题分析:∵在Rt△ABC中,∠BAC=90°,将Rt△ABC绕点C按逆时针方向旋转48°得到Rt△A′B′C′,∴∠A′=∠BAC=90°,∠ACA′=48°,∴∠B′=90°﹣∠ACA′=42°.故选A.考点:旋转的性质.4.(2016某某省凉山州)在线段、平行四边形、矩形、等腰三角形、圆这几个图形中既是轴对称图形又是中心对称图形的个数是()A.2个B.3个C.4个D.5个【答案】B.考点:1.中心对称图形;2.轴对称图形.5.(2016某某省凉山州)观察图中正方形四个顶点所标的数字规律,可知,数2016应标在()A.第504个正方形的左下角B.第504个正方形的右下角C.第505个正方形的左上角D.第505个正方形的右下角【答案】D.【解析】试题分析:∵2016÷4=504,又∵由题目中给出的几个正方形观察可知,每个正方形对应四个数,而第一个最小的数是0,0在右下角,然后按逆时针由小变大,∴第504个正方形中最大的数是2015,∴数2016在第505个正方形的右下角,故选D.考点:1.规律型:点的坐标;2.规律型.6.(2016某某省某某市)如图,在△ABC中,∠C=90°,AC=4,BC=3,将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,则B、D两点间的距离为()A.10B.22C.3D.25【答案】A.考点:旋转的性质.7.(2016某某省某某市)在一些美术字中,有的汉字是轴对称图形,下列四个汉字中,可以看作轴对称图形的是()A.B.C.D.【答案】D.【解析】试题分析:在一些美术字中,有的汉字是轴对称图形,下列四个汉字中,可以看作轴对称图形的是,故选D.考点:轴对称图形.8.(2016某某省某某市)下列图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.【答案】D.考点:1.中心对称图形;2.轴对称图形.9.(2016某某省某某市)平面直角坐标系中,点P(﹣2,3)关于x轴对称的点的坐标为()A.(﹣2,﹣3)B.(2,﹣3)C.(﹣3,﹣2)D.(3,﹣2)【答案】A.【解析】试题分析:点P(﹣2,3)关于x轴对称的点的坐标为(﹣2,﹣3).故选A.考点:关于x轴、y轴对称的点的坐标.10.(2016某某省某某市)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【答案】D.【解析】试题分析:A.平行四边形为中心对称图形,所以A选项错误;B.图形为中心对称图形,所以B选项错误;C.图形为轴对称图形,所以C选项错误;D.图形是中心对称图形也是轴对称图形,所以D选项正确.故选D.考点:1.中心对称图形;2.轴对称图形.11.(2016某某省某某市)下列图形中不是轴对称图形的是( )A .B .C .D .【答案】C .考点:轴对称图形.12.(2016某某省资阳市)如图,矩形ABCD 与菱形EFGH 的对角线均交于点O ,且EG ∥BC ,将矩形折叠,使点C 与点O 重合,折痕MN 恰好过点G 若AB =6,EF =2,∠H =120°,则DN的长为( )A .32B .632+C .63-D .236- 【答案】C . 【解析】试题分析:长EG 交DC 于P 点,连接GC 、FH ;如图所示:则CP =DP =12CD =62,△GCP 为直角三角形,∵四边形EFGH 是菱形,∠EHG =120°,∴GH =EF =2,∠OHG =60°,EG ⊥FH ,∴OG =GH •sin 60°=2×32=3,由折叠的性质得:C G =OG =3,OM =CM ,∠MOG =∠MCG ,∴PG =22CG CP -=62,∵OG ∥CM ,∴∠MOG +∠OMC =180°,∴∠MCG +∠OMC =180°,∴OM ∥CG ,∴四边形OGCM 为平行四边形,∵OM =CM ,∴四边形OGCM 为菱形,∴CM =OG =3,根据题意得:PG 是梯形MCDN 的中位线,∴D N +CM =2PG =6,∴DN =63-;故选C .考点:1.矩形的性质;2.菱形的性质;3.翻折变换(折叠问题).13.(2016某某省某某市)用大小相等的小正方形按一定规律拼成下列图形,则第n 个图形中小正方形的个数是( )A .2n +1B .21n - C .22n n + D .5n ﹣2 【答案】C .考点:规律型:图形的变化类.14.(2016某某省某某市)如图,将等边△ABC 绕点C 顺时针旋转120°得到△EDC ,连接AD ,BD .则下列结论:①AC =AD ;②BD ⊥AC ;③四边形ACED 是菱形.其中正确的个数是( )A .0B .1C .2D .3 【答案】D .考点:1.旋转的性质;2.等边三角形的性质;3.菱形的判定.15.(2016某某省某某市)在矩形ABCD 中,AD =2AB =4,E 是AD 的中点,一块足够大的三角板的直角顶点与点E 重合,将三角板绕点E 旋转,三角板的两直角边分别交AB ,BC (或它们的延长线)于点M ,N ,设∠AEM =α(0°<α<90°),给出下列四个结论: ①AM =;②∠AME =∠BNE ;③BN ﹣AM =2;④S △EMN =22cos. 上述结论中正确的个数是( )A .1B .2C .3D .4 【答案】C . 【解析】试题分析:①如图,在矩形ABCD 中,AD =2AB ,E 是AD 的中点,作EF ⊥BC 于点F ,则有AB =AE =EF =FC ,∵∠AEM +∠DEN =90°,∠FEN +∠DEN =90°,∴∠AEM =∠FEN ,在Rt △AME 和Rt △FNE 中,∵∠AEM =∠FEN ,AE =EF ,∠MAE =∠NFE ,∴Rt △AME ≌Rt △FNE ,∴AM =FN ,∴MB =.=2(1+2tan α) =22cos α,∴④正确. 故选C .考点:1.全等三角形的判定与性质;2.旋转的性质.16.(2016某某省某某市)以下微信图标不是轴对称图形的是( ) A .B .C .D .【答案】D .考点:轴对称图形.17.(2016某某省某某市)如图,A ,B 的坐标为(2,0),(0,1),若将线段AB 平移至A 1B 1,则a +b 的值为( )A .2B .3C .4D .5 【答案】A . 【解析】试题分析:由B 点平移前后的纵坐标分别为1、2,可得B 点向上平移了1个单位,由A 点平移前后的横坐标分别是为2、3,可得A 点向右平移了1个单位,由此得线段AB 的平移的过程是:向上平移1个单位,再向右平移1个单位,所以点A 、B 均按此规律平移,由此可得a =0+1=1,b =0+1=1,故a +b =2.故选A . 考点:坐标与图形变化-平移.18.(2016某某省宿迁市)如图,把正方形纸片ABCD 沿对边中点所在的直线对折后展开,折痕为MN ,再过点B 折叠纸片,使点A 落在MN 上的点F 处,折痕为BE .若AB 的长为2,则FM 的长为( )A .2B .3C .2D .1 【答案】B . 【解析】试题分析:∵四边形ABCD 为正方形,AB =2,过点B 折叠纸片,使点A 落在MN 上的点F 处,∴FB =AB =2,BM =1,则在Rt △BMF 中,FM =22BF BM -=2221-=3,故选B .考点:翻折变换(折叠问题).19.(2016某某省某某市)下列图案中,是轴对称图形但不是中心对称图形的是( )A .B .C .D .【答案】A .考点:1.中心对称图形;2.轴对称图形.20.(2016某某省某某市)如图,Rt △ABC 中,∠C =90°,∠ABC =30°,AC =2,△ABC 绕点C 顺时针旋转得△A1B1C,当A1落在AB边上时,连接B1B,取BB1的中点D,连接A1D,则A1D的长度是()A.7B.22C.3 D.23【答案】A.考点:1.旋转的性质;2.含30度角的直角三角形.21.(2016某某省某某市)下列图形是中心对称图形的是()A.B.C.D.【答案】C.【解析】试题分析:A.不是中心对称图形,故此选项错误;B.不是中心对称图形,故此选项错误;C.是中心对称图形,故此选项正确;D.不是中心对称图形,故此选项错误.故选C.考点:中心对称图形.22.(2016某某省某某市)下面四个手机应用图标中是轴对称图形的是( )A .B .C .D .【答案】D .考点:轴对称图形.23.(2016某某省某某市)如图所示,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y 与n 之间的关系是( )A .21y n =+B .2ny n =+C .12n y n +=+D .21n y n =++【答案】B . 【解析】试题分析:∵观察可知:左边三角形的数字规律为:1,2,…,n ,右边三角形的数字规律为:2,22,…,2n ,下边三角形的数字规律为:1+2,222+, (2)n +,∴2n y n =+.故选B .考点:规律型:数字的变化类.24.(2016某某省某某市)如图,用一个半径为5cm 的定滑轮带动重物上升,滑轮上一点P 旋转了108°,假设绳索(粗细不计)与滑轮之间没有滑动,则重物上升了( )A.πcm B.2πcm C.3πcm D.5πcm 【答案】C.【解析】试题分析:根据题意得:l=1085180π⨯=3πcm,则重物上升了3πcm,故选C.考点:1.旋转的性质;2.弧长的计算.25.(2016某某省某某市)下列图形中,是中心对称图形的是()A .B.C.D.【答案】A.考点:中心对称图形.二、填空题26.(2016某某市)如图,矩形ABCD中,BC=2,将矩形ABCD绕点D顺时针旋转90°,点A、C分别落在点A′、C′处.如果点A′、C′、B在同一条直线上,那么tan∠ABA′的值为.【答案】51 2.考点:1.旋转的性质;2.矩形的性质;3.锐角三角函数的定义.27.(2016市)百子回归图是由1,2,3…,100无重复排列而成的正方形数表,它是一部数化的澳门简史,如:中央四位“19991220”标示澳门回归日期,最后一行中间两位“2350”标示澳门面积,……,同时它也是十阶幻方,其每行10个数之和、每列10个数之和、每条对角线10个数之和均相等,则这个和为.【答案】505.【解析】试题分析:1~100的总和为:(1+100)×100÷2=5050,一共有10行,且每行10个数之和均相等,所以每行10个数之和为:5050÷10=505,故答案为:505. 考点:规律型:数字的变化类.28.(2016某某省凉山州)将抛物线2y x =-先向下平移2个单位,再向右平移3个单位后所得抛物线的解析式为.【答案】2611y x x =-+-.考点:二次函数图象与几何变换.29.(2016市)下面是“经过已知直线外一点作这条直线的垂线”的尺规作图过程: 已知:直线l 和l 外一点P .(如图1) 求作:直线l 的垂线,使它经过点P . 作法:如图2(1)在直线l 上任取两点A ,B ;(2)分别以点A ,B 为圆心,AP ,BP 长为半径作弧,两弧相交于点Q ; (3)作直线PQ .所以直线PQ 就是所求的垂线. 请回答:该作图的依据是.【答案】到线段两个端点的距离相等的点在线段的垂直平分线上(A 、B 都在线段PQ 的垂直平分线上). 【解析】试题分析:到线段两个端点的距离相等的点在线段的垂直平分线上(A 、B 都在线段PQ 的垂直平分线上),理由:如图,∵PA =PQ ,PB =PB ,∴点A 、点B 在线段PQ 的垂直平分线上,∴直线AB 垂直平分线段PQ ,∴PQ ⊥AB .考点:作图—基本作图.30.(2016某某省某某市)将点A (1,﹣3)沿x 轴向左平移3个单位长度,再沿y 轴向上平移5个单位长度后得到的点A ′的坐标为. 【答案】(﹣2,2).考点:坐标与图形变化-平移.31.(2016某某省某某市)我国南宋数学家杨辉用三角形解释二项和的乘方规律,称之为“杨辉三角”.这个三角形给出了()na b +(n =1,2,3,4…)的展开式的系数规律(按a 的次数由大到小的顺序): 请依据上述规律,写出20162()x x-展开式中含2014x项的系数是.【答案】﹣4032. 【解析】试题分析:20162()x x-展开式中含2014x项的系数,根据杨辉三角,就是展开式中第二项的系数,即﹣2016×2=﹣4032.故答案为:﹣4032.考点:1.整式的混合运算;2.阅读型;3.规律型.32.(2016某某省某某市)如图,面积为6的平行四边形纸片ABCD中,AB=3,∠BAD=45°,按下列步骤进行裁剪和拼图.第一步:如图①,将平行四边形纸片沿对角线BD剪开,得到△ABD和△BCD纸片,再将△ABD纸片沿AE剪开(E为BD上任意一点),得到△ABE和△ADE纸片;第二步:如图②,将△ABE纸片平移至△DCF处,将△ADE纸片平移至△BCG处;第三步:如图③,将△DCF纸片翻转过来使其背面朝上置于△PQM处(边PQ与DC重合,△PQM和△DCF在DC同侧),将△BCG纸片翻转过来使其背面朝上置于△PRN处,(边PR与BC重合,△PRN和△BCG在BC同侧).则由纸片拼成的五边形PMQRN中,对角线MN长度的最小值为.【答案】6105.考点:平移的性质.33.(2016某某省资阳市)设一列数中相邻的三个数依次为m 、n 、p ,且满足p =m 2﹣n ,若这列数为﹣1,3,﹣2,a ,﹣7,b …,则b =. 【答案】128. 【解析】试题分析:根据题意得:a =23﹣(﹣2)=11,则b =211﹣(﹣7)=128.故答案为:128.考点:规律型:数字的变化类.34.(2016某某省某某市)如图,将一矩形纸片ABCD 折叠,使两个顶点A ,C 重合,折痕为FG .若AB =4,BC =8,则△ABF 的面积为.【答案】6.考点:翻折变换(折叠问题).35.(2016某某省某某市)如图,半径为1的半圆形纸片,按如图方式折叠,使对折后半圆弧的中点M 与圆心O 重合,则图中阴影部分的面积是.36π-.【解析】试题分析:如图,连接OM 交AB 于点C ,连接OA 、OB ,由题意知,OM ⊥AB ,且OC =MC =12,在RT △AOC 中,∵OA =1,OC =12,∴cos ∠AOC =OC OA =12,AC =22OA OC -=32,∴∠AOC =60°,AB =2AC =3,∴∠AOB =2∠AOC =120°,则S 弓形ABM =S 扇形OAB ﹣S △AOB =2120111336022π⨯-⨯⨯=334π-,S 阴影=S 半圆﹣2S 弓形ABM=21312()234ππ⨯--=326π-.故答案为:326π-.考点:1.扇形面积的计算;2.翻折变换(折叠问题).36.(2016某某省某某市)如图,在平面直角坐标系中,函数y =2x 和y =﹣x 的图象分别为直线l 1,l 2,过点(1,0)作x 轴的垂线交l 2于点A 1,过点A 1作y 轴的垂线交l 2于点A 2,过点A 2作x 轴的垂线交l 2于点A 3,过点A 3作y 轴的垂线交l 2于点A 4,…依次进行下去,则点A 2017的坐标为.【答案】(21008,21009).考点:1.一次函数图象上点的坐标特征;2.规律型;3.一次函数的应用.37.(2016某某省某某市)如图,一段抛物线:y=﹣x(x﹣2)(0≤x≤2)记为C1,它与x轴交于两点O,A1;将C1绕A1旋转180°得到C2,交x轴于A2;将C2绕A2旋转180°得到C3,交x轴于A3;…如此进行下去,直至得到C6,若点P(11,m)在第6段抛物线C6上,则m=.【答案】﹣1.考点:1.二次函数图象与几何变换;2.抛物线与x轴的交点;3.规律型.38.(2016某某省某某市)点A(3,﹣2)关于x轴对称的点的坐标是.【答案】(3,2).【解析】试题分析:点A(3,﹣2)关于x轴对称的点的坐标是(3,2).故答案为:(3,2).考点:关于x轴、y轴对称的点的坐标.39.(2016某某省某某市)如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,点F在边AC上,并且CF=2,点E为边BC上的动点,将△CEF沿直线EF翻折,点C落在点P处,则点P到边AB距离的最小值是.【答案】1.2.考点:翻折变换(折叠问题).40.(2016某某省)如图所示,△ABC中,∠BAC=33°,将△ABC绕点A按顺时针方向旋转50°,对应得到△AB′C′,则∠B′AC的度数为.【答案】17°.【解析】试题分析:∵∠BAC=33°,将△ABC绕点A按顺时针方向旋转50°,对应得到△AB′C′,∴∠B'AC'=33°,∠BAB'=50°,∴∠B′AC的度数=50°﹣33°=17°.故答案为:17°.考点:旋转的性质.41.(2016某某省黄冈市)如图,在矩形ABCD中,点E、F分别在边CD、BC上,且DC=3DE=3a.将矩形沿直线EF折叠,使点C恰好落在AD边上的点P处,则FP=.【答案】23a.考点:1.矩形的性质;2.翻折变换(折叠问题).42.(2016某某省某某市)将等边△CBA绕点C顺时针旋转∠α得到△CB′A′,使得B,C,A′三点在同一直线上,如图所示,则∠α的大小是.【答案】120°.【解析】试题分析:∵三角形ABC是等边三角形,∴∠ACB=60°,∵等边△CBA绕点C顺时针旋转∠α得到△CB′A′,使得B ,C ,A′三点在同一直线上,∴∠BCA'=180°,∠B'CA'=60°,∴∠ACB'=60°,∴∠α=60°+60°=120°,故答案为:120°. 考点:1.旋转的性质;2.等边三角形的性质.43.(2016某某省某某市)将一X 矩形纸片折叠成如图所示的图形,若AB =6cm ,则AC =cm .【答案】6.考点:翻折变换(折叠问题).44.(2016某某省某某市)古希腊数学家把数1,3,6,10,15,21,…叫做三角形数,它有一定的规律性,若把第一个三角形数记为x 1,第二个三角形数记为x 2,…第n 个三角形数记为x n ,则x n +x n +1=. 【答案】2(1)n +. 【解析】试题分析:∵x 1=1,x 2═3=1+2,x 3=6=1+2+3,x 4═10=1+2+3+4,x 5═15=1+2+3+4+5,… ∴x n =1+2+3+…+n =1(1)2n n +,x n +1=1(1)(2)2n n ++,则x n +x n +1=1(1)2n n ++1(1)(2)2n n ++=2(1)n +,故答案为:2(1)n +.考点:规律型:数字的变化类. 三、解答题45.(2016某某省凉山州)如图,在边长为1的正方形网格中,△ABC 的顶点均在格点上,点A 、B 的坐标分别是A(4,3)、B(4,1),把△ABC绕点C逆时针旋转90°后得到△A1B1C.(1)画出△A1B1C,直接写出点A1、B1的坐标;(2)求在旋转过程中,△ABC所扫过的面积.【答案】(1)A1(﹣1,4),B1(1,4);(2)133 4π+.考点:1.作图-旋转变换;2.扇形面积的计算.46.(2016某某省某某市)如图,方格中,每个小正方形的边长都是单位1,△ABC在平面直角坐标系中的位置如图.(1)画出将△ABC向右平移2个单位得到△A 1B1C1;(2)画出将△ABC绕点O顺时针方向旋转90°得到的△A2B2C2;(3)求△A1B1C1与△A2B2C2重合部分的面积.【答案】(1)作图见解析;(2)作图见解析;(3)1509 676.(2)如图,△A2B2C2为所作;(3)B2C2与A1B1相交于点E,B2A2与A1B1相交于点F,如图,∵B2(0,1),C2(2,3),B1(1,0),A1(2,5),A2(5,0),∴直线A1B1为y=5x﹣5,直线B2C2为y=x+1,直线A2B2为115y x=-+,由551y xy x=-⎧⎨=+⎩解得:3252xy⎧=⎪⎪⎨⎪=⎪⎩,∴点E(32,52),由55115y xy x=-⎧⎪⎨=-+⎪⎩解得:15131013xy⎧=⎪⎪⎨⎪=⎪⎩,∴点F(1513,1013),∴S△BEF=35133139115322222222621313⨯-⨯⨯-⨯⨯-⨯⨯=1509676,∴△A1B1C1与△A2B2C2重合部分的面积为1509676.考点:1.作图-旋转变换;2.作图-平移变换;3.作图题.47.(2016某某省某某市)如图①,△ABC中,∠ABC=45°,AH⊥BC于点H,点D在AH上,且DH=CH,连结BD.(1)求证:B D=AC;(2)将△BHD绕点H旋转,得到△EHF(点B,D分别与点E,F对应),连接AE.①如图②,当点F落在AC上时,(F不与C重合),若BC=4,tanC=3,求AE的长;②如图③,当△EHF是由△BHD绕点H逆时针旋转30°得到时,设射线CF与AE相交于点G,连接GH,试探究线段GH与EF之间满足的等量关系,并说明理由.【答案】(1)证明见解析;(2310;②EFHG=12.考点:几何变换综合题.48.(2016某某省某某市)如图,在平面直角坐标系中,直角△ABC的三个顶点分别是A(﹣3,1),B(0,3),C(0,1)(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C1;(2)分别连结AB1、BA1后,求四边形AB1A1B的面积.【答案】(1)作图见解析;(2)12.【解析】试题分析:(1)利用网格特点,延长AC到A1使A1C=AC,延长BC到B1使B1C=BC,C点的对应点C1与C点重合,则△A1B1C1满足条件;(2)四边形AB1A1B的对角线互相垂直平分,则四边形AB1A1B为菱形,然后利用菱形的面积公式计算即可.试题解析:(1)如图,△A1B1C1为所作:(2)四边形AB1A1B的面积=12×6×4=12.考点:1.作图-旋转变换;2.作图题.49.(2016某某省资阳市)在Rt△ABC中,∠C=90°,Rt△ABC绕点A顺时针旋转到Rt△ADE 的位置,点E在斜边AB上,连结BD,过点D作DF⊥AC于点F.(1)如图1,若点F与点A重合,求证:A C=BC;(2)若∠DAF=∠DBA,①如图2,当点F在线段CA的延长线上时,判断线段AF与线段BE 的数量关系,并说明理由;②当点F在线段CA上时,设BE=x,请用含x的代数式表示线段AF.【答案】(1)证明见解析;(2)①AF=BE ;②AF=152 x .考点:几何变换综合题.50.(2016某某省资阳市)已知抛物线与x轴交于A(6,0)、B(54,0)两点,与y轴交于点C,过抛物线上点M(1,3)作MN⊥x轴于点N,连接OM.(1)求此抛物线的解析式;(2)如图1,将△OMN沿x轴向右平移t个单位(0≤t≤5)到△O′M′N′的位置,MN′、M′O′与直线AC分别交于点E、F.①当点F为M′O′的中点时,求t的值;②如图2,若直线M′N′与抛物线相交于点G,过点G作GH∥M′O′交AC于点H,试确定线段EH是否存在最大值?若存在,求出它的最大值及此时t的值;若不存在,请说明理由.【答案】(1)241921515y x x=-++;(2)①1;②t=2时,EH最大值为1219.考点:1.二次函数综合题;2.最值问题;3.二次函数的最值;4.存在型;5.平移的性质;6.压轴题. 51.(2016某某省某某市)在平面直角坐标系xOy 中,抛物线22y ax bx =++过B (﹣2,6),C (2,2)两点.(1)试求抛物线的解析式;(2)记抛物线顶点为D ,求△BCD 的面积; (3)若直线12y x =-向上平移b 个单位所得的直线与抛物线段BDC (包括端点B 、C )部分有两个交点,求b 的取值X 围.【答案】(1)2122y x x =-+;(2)3;(3)158<b ≤3.考点:1.待定系数法求二次函数解析式;2.平移的性质;3.二次函数的性质.52.(2016某某省宿迁市)已知△ABC是等腰直角三角形,AC=BC=2,D是边AB上一动点(A、B两点除外),将△CAD绕点C按逆时针方向旋转角α得到△CEF,其中点E是点A的对应点,点F是点D的对应点.(1)如图1,当α=90°时,G 是边AB 上一点,且BG =AD ,连接GF .求证:GF ∥AC ; (2)如图2,当90°≤α≤180°时,AE 与DF 相交于点M . ①当点M 与点C 、D 不重合时,连接CM ,求∠CMD 的度数;②设D 为边AB 的中点,当α从90°变化到180°时,求点M 运动的路径长. 【答案】(1)证明见解析;(2)①135°;②2.考点:几何变换综合题.53.(2016某某省宿迁市)如图,在平面直角坐标系xOy 中,将二次函数21y x =-的图象M 沿x 轴翻折,把所得到的图象向右平移2个单位长度后再向上平移8个单位长度,得到二次函数图象N . (1)求N 的函数表达式;(2)设点P (m ,n )是以点C (1,4)为圆心、1为半径的圆上一动点,二次函数的图象M 与x 轴相交于两点A 、B ,求22PA PB +的最大值;(3)若一个点的横坐标与纵坐标均为整数,则该点称为整点.求M 与N 所围成封闭图形内(包括边界)整点的个数.【答案】(1)245y x x =-++;(2)38417+;(3)25.由图象可知,M与N所围成封闭图形内(包括边界)整点的个数为25个.考点:1.二次函数综合题;2.最值问题;3.压轴题;4.几何变换综合题.54.(2016某某省某某市)如图1是一个用铁丝围成的篮框,我们来仿制一个类似的柱体形篮框.如图2,它是由一个半径为r、圆心角90°的扇形A2OB2,矩形A2C2EO、B2D2EO,及若干个缺一边的矩形状框A1C1D1B1、A2C2D2B2、…、A n B n D n,OEFG围成,其中A1、G、B1在22A B上,A2、A3…、A n与B2、B3、…B n分别在半径OA2和OB2上,C2、C3、…、和D2、D3…D n分别在EC2和ED2上,EF⊥C2D2于H2,C1D1⊥EF于H1,FH1=H1H2=d,C1D1、C2D2、C3D3、D n依次等距离平行排放(最后一个矩形状框的边D n与点E间的距离应不超过d),A1C1∥A2C2∥A3C3∥…∥A n.(1)求d的值;(2)问:D n与点E间的距离能否等于d?如果能,求出这样的n的值,如果不能,那么它们之间的距离是多少?【答案】(1)224r-;(2)不能,3242r-.假设不成立.∵22224r r-÷=222+≈4.8,∴n=6,此时D n与点E间的距离=222424r r--⨯=3242r-.考点:1.垂径定理;2.存在型;3.规律型.55.(2016某某省)(1)解方程组:21 x yx y y-=⎧⎨-=+⎩;(2)如图,Rt△ABC中,∠ACB=90°,将Rt△ABC向下翻折,使点A与点C重合,折痕为DE.求证:D E∥BC.【答案】(1)31xy=⎧⎨=⎩;(2)证明见解析.考点:1.翻折变换(折叠问题);2.解二元一次方程组.56.(2016某某省)如图,将正n边形绕点A顺时针旋转60°后,发现旋转前后两图形有另一交点O,连接AO,我们称AO为“叠弦”;再将“叠弦”AO所在的直线绕点A逆时针旋转60°后,交旋转前的图形于点P,连接PO,我们称∠OAB为“叠弦角”,△AOP为“叠弦三角形”.【探究证明】(1)请在图1和图2中选择其中一个证明:“叠弦三角形”(△AOP)是等边三角形;(2)如图2,求证:∠OAB=∠OAE′.【归纳猜想】(3)图1、图2中的“叠弦角”的度数分别为,;(4)图n中,“叠弦三角形”等边三角形(填“是”或“不是”)(5)图n中,“叠弦角”的度数为(用含n的式子表示)【答案】(1)证明见解析;(2)证明见解析;(3)15°,24°;(4)是;(5)18060n.(5)同(3)的方法得,∠OAB =[(n ﹣2)×180°÷n ﹣60°]÷2=18060n.故答案:18060n-.考点:1.几何变换综合题;2.新定义.57.(2016某某省某某市)如图,在平面直角坐标系中,OA⊥OB,AB⊥x轴于点C,点A(3,1)在反比例函数kyx=的图象上.(1)求反比例函数kyx=的表达式;(2)在x轴的负半轴上存在一点P,使得S△AOP=12S△AOB,求点P的坐标;(3)若将△BOA绕点B按逆时针方向旋转60°得到△BDE.直接写出点E的坐标,并判断点E是否在该反比例函数的图象上,说明理由.【答案】(1)3yx=;(2)P(23-,0);(3)E(3-,﹣1),在.考点:1.待定系数法求反比例函数解析式;2.反比例函数系数k的几何意义;3.坐标与图形变化-旋转.58.(2016某某省某某市)如图,在平面直角坐标系中,△ABC的顶点A(0,1),B(3,2),C(1,4)均在正方形网格的格点上.(1)画出△ABC关于x轴的对称图形△A1B1C1;(2)将△A1B1C1沿x轴方向向左平移3个单位后得到△A2B2C2,写出顶点A2,B2,C2的坐标.【答案】(1)答案见解析;(2)A2(﹣3,﹣1),B2(0,﹣2),C2(﹣2,﹣4).考点:1.作图-轴对称变换;2.作图-平移变换.59.(2016某某省某某市)如图,矩形ABCD中,AB=4,AD=3,M是边CD上一点,将△ADM沿直线AM对折,得到△ANM.(1)当AN平分∠MAB时,求DM的长;(2)连接BN,当DM=1时,求△ABN的面积;(3)当射线BN交线段CD于点F时,求DF的最大值.【答案】(1)DM=3;(2)245;(3)47.【解析】试题分析:(1)由折叠性质得∠MAN=∠DAM,证出∠DAM=∠MAN=∠NAB,由三角函数得出DM=AD•tan∠DAM3即可;(2)延长MN交AB延长线于点Q,由矩形的性质得出∠DMA=∠MAQ,由折叠性质得出∠DMA=∠AMQ,AN=AD=3,MN =MD =1,得出∠MAQ =∠AMQ ,证出MQ =AQ ,设NQ =x ,则AQ =MQ =1+x ,证出∠ANQ =90°,由折叠性质得:A D =AH ,∵AD =BC ,∴AH =BC ,在△ABH 和△BFC 中,∵∠HBA =∠BFC ,∠AHB =∠BCF ,AH =BC ,∴△ABH ≌△BFC (AAS ),∴CF =BH ,由勾股定理得:B 22AB AH -7,∴CF 7DF 的最大值=DC﹣CF =47考点:1.翻折变换(折叠问题);2.矩形的性质;3.最值问题;4.综合题.60.(2016某某省)如图,在平面直角坐标系中,点O为坐标原点,抛物线25y ax bx=++经过点M(1,3)和N(3,5)(1)试判断该抛物线与x轴交点的情况;(2)平移这条抛物线,使平移后的抛物线经过点A(﹣2,0),且与y轴交于点B,同时满足以A、O、B为顶点的三角形是等腰直角三角形,请你写出平移过程,并说明理由.【答案】(1)抛物线与x轴没有交点;(2)先向左平移3个单位,再向下平移3个单位或将原抛物线先向左平移2个单位,再向下平移5个单位.考点:1.二次函数综合题;2.二次函数图象与几何变换.。
专题05数量和位置变化(第01期)-2021年中考数学试题分项版解析汇编(各省统一命题版)(原卷版)
一、选择题:1. (2015.河北省,第7题,3分)在数轴上标注了四段范围,如图,则表示8的点落在()A.段①B.段②C.段③D.段④2. (2015.河北省,第9题,3分)已知:岛P位于岛Q的正西方,由岛P,Q分别测得船R位于南偏东30°和南偏西45°方向上,符合条件的示意图是()A. B.C. D.3. (2015.河北省,第15题,2分)如图,点A,B为定点,定直线l//AB,P是l上一动点.点M,N分别为PA,PB的中点,对于下列各值:①线段MN的长;②△PAB的周长;③△PMN的面积;④直线MN,AB之间的距离;⑤∠APB的大小.其中会随点P的移动而变化的是()A.②③B.②⑤C.①③④D.④⑤4.(2015.重庆市A卷,第11题,4分)如图,在平面直角坐标系中,菱形ABCD在第一象限内,边BC与x轴平行,A,B两点的纵坐标分别为3,1,反比例函数3yx=的图象经过A,B两点,则菱形ABCD的面积为() A. 2 B. 4 C. 22 D. 425. (2015.重庆市B卷,第4题,4分)在平面直角坐标系中,若点P的坐标为(-3,2),则点P所在的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限6. (2015.重庆市B卷,第12题,4分)如图,在平面直角坐标系中,菱形ABOC的顶点O在坐标原点,边BO在x轴的负半轴上,∠BOC=60°,顶点C的坐标为(m,33),反比例函数kyx=的图像与菱形对角线AO 交于D点,连接BD,当BD⊥x轴时,k的值是( )A.63B.-63C.123D.-123xy12题图DA CB O7. (2015.天津市,第7题,3分)在平面直角坐标系中,把点P(-3,2)绕原点O顺时针旋转180°,所得到的对应点P′的坐标为( )(A)(3,2)(B)(2,-3)(C)(-3,-2)(D)(3,-2)8. (2015.天津市,第10题,3分)已知一个表面积为12dm2的正方体,则这个正方体的棱长为( ) (A)1dm (B)2dm (C)6dm (D)3dm9. (2015.北京市,第8题,3分)右图是利用平面直角坐标系画出的故故宫博物院的主要建筑分布图,若这个12题图坐标系分别以正东、正北方向为x 轴,y 轴的正方向.表示太和门的点的坐标为(0,-1),表示九龙壁的点的坐标为(4,1),表示下列宫殿的点的坐标正确的是( )A.景仁宫(4,2)B.养心殿(-2,3)C.保和殿(1,0)D.武英殿(-3.5,-4)10. (2015.陕西省,第8题,3分)在平面直角坐标系中,将直线22:1--=x y l 平移后,得到直线42:2+-=x y l ,则下列平移作法正确的是( )A.将1l 向右平移3个单位长度B.将1l 向右平移6个单位长度C.将1l 向上平移2个单位长度D. 将1l 向上平移4个单位长度二、填空题:1. (2015.河北省,第19题,2分)平面上,将边长相等的正三角形、正方形、正五边形、正六边形的一边重合并叠在一起,如图,则∠3+∠1-∠2=____°.2. (2015.重庆市B 卷,第18题,4分)如图,AC 是矩形ABCD 的对角线,AB=2,BC=23,点E 、F 分别是线段AB ,AD 上的点,连接CE ,CF ,当∠BCE=∠ACF ,且CE=CF 时,AE+AF=______.18题图E F DCA B3.(2015.宁夏,第9题,3分)如图,将正六边形ABCDEF 放在直角坐标系中,中心与坐标原点重合,若A 点的坐标为()10-,,则点C 的坐标为 .4. (2015.天津市,第18题,3分)如图,在每个小正方形的边长为1的网格中,点A , B , C , D 均在格点上,点E , F 分别为线段BC ,DB 上的动点,且BE =DF .(Ⅰ)如图①,当BE =52时,计算AE AF +的值等于 ; (Ⅱ)当AE AF +取得最小值时,请在如图②所示的网格中,用无刻度...的直尺,画出线段AE ,AF ,并简要说明点E 和点F 的位置是如何找到的(不要求证明) .F B DE B D 图①图② 第(18)题5. (2015.陕西省,第14题,3分)如图,AB 为⊙0的弦,AB=6,点C 是⊙0上的一个动点,且∠ACB=45°,若点M 、N 分别是AB 、BC 的中点,则MN 长的最大值是______________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中毕业生重点卷
初中毕业生重点卷
一、选择题:
1.(山东济宁,第4题,3分)一个正方体的每个面都有一个汉字,其平面展开图如图所示,那么在该正方体中和“值”字相对的字是( )
A.记 B.观 C.心 D.间
2.(山东济南,第5题,3分)如图,一个几何体是由两个小正方体和一个圆锥构成,其主视图是()
A.
B.
C .D.
3.(山东日照,第5题,3分)小红在观察由一些相同小立方块搭成的几何体时,发现它的右视图、俯视图、左视图均为如图,则构成该几何体的小立方块的个数有()
A. 3个
B. 4个
C.5个
D. 6个
4.(山东泰安,第3题)(3分)下列四个几何体:
其中左视图与俯视图相同的几何体共有()
A.1个 B.2个 C.3个 D.4个。