Shigeru MASUYAMA + and Shin-ichi NAKAYAMA ++, Members SUMMARY This

合集下载

名侦探柯南英文介绍

名侦探柯南英文介绍

《名侦探柯南》(日文:名探侦コナン;英文:Detective Conan;美方英文:Case Closed)是日本一部以侦探推理情节为主题的漫画与动画作品。

始创作于1994年,目前仍在日本小学馆的漫画杂志《少年SUNDAY》连载。

高中生侦探工藤新一,被称为“日本警察的救世主”、“平成年代的福尔摩斯”、“关东的名侦探”。

一次在与青梅竹马毛利兰去游乐园游玩时,发现两个行动诡异的黑衣人。

工藤新一跟踪他们直到交易现场,另一个黑衣人琴酒趁其不注意从后面将他一棒击倒,并灌下一种名为APTX-4869的神秘毒药企图杀他灭口,但因为副作用他的身体竟回到发育期的孩童状态。

考虑到要是黑衣人知道他还活着,必将使周围的亲朋好友受到牵连,于是工藤新一化名为“江户川柯南”寄住在毛利兰的家中,想借助其父亲毛利小五郎来找寻黑衣人。

不料小五郎不但对其没有帮助,还是个冒失的迷糊侦探。

所以发生案件后,柯南就用阿笠博士发明的手表型麻醉枪让小五郎睡着,接着用蝴蝶结型变声器模仿他的声音来进行推理,解决了许多连警方都束手无策的案件。

同时也结交了许多同伴,也一直寻找着黑衣组织的人的下落,希望有朝一日将其绳之以法,并变回原来的样子……作者:Gosho Aoyama出版社:Anonymous内容简介:A grade 11 student named Shinichi hopes to be a detective. He solves challenging mysteries for police. One day, he met Gin & Vodka and they give Shinichi which bring him to a child.Dr. Agasa discover Shinichi turn into child and Dr. Agasa call him to keep this secret.Shinichi pretends to be Conan Edogawa and live in his friend's house, Ran Mouri. Ran's father,Kogorou Mouri,also is a detective but a stupid detective. Conan help kogorou using a changing voice bow tie and his watch to help kogorou to solve case.Intro:"Detective Conan" is a detective mystery manga created by Gosho Aoyama in 1994. It's serialized in the weekly shounen magazine "Shounen Sunday." There's also an anime series based on the manga. Both manga and anime are wildly popular in Japan, and they are both still ongoing. There are 67+ volumes of the manga published so far, and 500+ episodes of the anime aired. The manga and anime are being released in North America under the name "Case Closed" by VIZ. (See the Americanization section below.)Story:The story is about a 17-year-old genius detective named Shinichi Kudo who gets poisoned by a mysterious underground crime organization and shrinks into his 7-year-old body. He's forced to hide his true identity, and fools hisalmost-girlfriend Ran into believing that he's just a 7-year-old boy named Conan Edogawa. He ends up living with Ran and her father in their home slash private detective agency. He continues to try and find a cure to un-shrink his body, solving various mystery cases along the way. Very few people know Conan's secret, and to this day, Ran is still clueless.作者简介Gosho AOYAMAGosho Aoyama (Yoshimasa Aoyama) was born the 21 June 1963 in Tottori, close to Kyoto. ... Gosho Aoyama is also fan of cinemas, in particular of films of Akira Kurosawa and the films based on the legend of the samuraiFamily name (in kanji): 青山Given name (in kanji): 刚昌Birth name: Yoshimasa (刚昌) Aoyama (青山)Date of birth: 1963-06-21Hometown: Daiei, Tottori, JapanChronology:(1963-06-21) Born as Yoshimasa Aoyama in Daiei, Tottori, Japan(1986) Joined a comic contest for freshmen and won, which was astepping-stone for his career as manga artist and author(1987) His first maiden work, "Chotto mattete", was published in the Shounen Sunday magazine(1992) He wins the Shogakukan manga contest for "Yaiba".(1994) Case Closed (a.k.a. Detective Conan) makes manga debut(1994) Designed characters for the "Bakunetsu" chapter in Square's Super Famicom RPG, "Live-A-Live"(2004) Reached the legendary limit of 100 million sold manga copies(2005-03) Accepted proposal from Minami TAKAYAMA, voice actress of the most popular character he created, Conan of Case Closed.(2005-05-05) Married on Takayama's birthdayFavorites:Favorite food: Rice with curry江户川柯南Conan EDOGAWAConan, who has the physical appearance of elementary school kid, is in reality Shinichi Kudo, a high schooler who is equivalent to a modern Sherlock Holmes. One night, Shinichi Kudo was discovered eavesdropping into criminal activity. He was caught and beaten by the criminals. In order not to disturb the police, the criminals forced Shinichi to consume a newly invented pill that was designed to kill anyone without a trace. However, the drug failed, and instead of killing Shinichi, it turned him into a small kid! From then on, Shinichi resumes a totally different identity under Conan Edogawa. Conan befriends Ayumi, Genta, and Mitsuhiko. Together, they form the Detective Boys team.工藤新一Shinichi KUDOShinichi, a high school student, is equivalent to a modern Sherlock Holmes. However, he turns into a small kid after being forced into consuming a deadly pill. He is professional at soccer and uses his soccer practice to train his bodyand mind. His close friends include another high schooler, Ran Mouri, and his next door neighbor and inventor, Dr. Agasa. All the high school girls swoon Shinichi, which often makes Ran jealous.毛利兰Ran MOURIRan, who is high school friends with Shinichi, was with him on the night that he disappeared. Later, she accidentally stumbles into Conan and adopts him. She doesn't know that Conan really is Shinichi even though she eventually suspects it. Ran is trained in martial arts and often uses her skills to help defeat criminals. Ran lives with her dad, Kogoro Mouri, a detective who isn't quite bright.灰原哀Ai HAIBARA/sherryA fan favorite, this mysterious little girl is just plain mysterious and quiet. She, like Conan, also took the APTX-4869 pill (she used to be a woman with the codename of Sherry among other names). So, it might as well be that she's in serious danger if the members of the Black Organization ever come lurking around! There's also a lot of indication/talk on whether she likes Shinichi/Conan or not. So, things do get interesting in the ongoing love-triangles.怪盗基德KIDA genius thief who is also a worthy rival and enemy of Conan/Shinichi. I guess it shouldn't be that much of a surprise since he looks almost identical to Shinichi. He loves to steal things that are hard to get (especially jewelry) and doesn't mind in dwelling into risky adventures along the way. Will he ever get caught by Conan/Shinichi? We may never know.少年侦探队DETECTIVE BOYS吉田步美Ayumi YOSHIDAAyumi is a member of the Detective Boys team. She is very playful and friendly but often leads the whole group into trouble. However, she is so KAWAII! She likes Conan.圆谷光彦Mitsuhiko TSUBURAYAMitsuhiko is a member of the Detective Boys team. He is very science oriented. He usually doesn't cause much trouble and is often a great candidate to have in an adventure. Doesn't his voice sound more like a girl? He also likes Ayumi小岛元太Genta KOJIMAGenta is a member of the Detective Boys team. He is strong but often foolish. He adores food and fun stuff in general. He proved very useful in several episodes. He likes Ayumi.服部平次Heiji HATTORIA very worthy rival of Shinichi who figures out about the Shinichi/Conan's identity (that's how good he is!). At least it was kind of him to keep it under wraps. Anyway, he eventually befriends Conan and the two teamwork together to solve a ton of amazing mysteries. Lastly, he's from Osaka (dark skin anybody?).远山和叶Kazuha TOYAMAKazuha is Heiji's girlfriend. Since, of course, Heiji befriends Conan, Kazuha is, likewise, friends with Ran. She's in a bunch of those all-star episodes. So seeing her onscreen is always a good thing.铃木园子Sonoko SUZUKIRan's best friend and high school classmate. Very romantic (but unlucky in love I might add). She is often used by Conan (in an unconscious state of course) to explain the solutions to mysteries. She comes from a very wealthy family. Watch out for her more normal sister, Ayako, who also appears in a few major episodes!毛利小五郎Kogoro MOURIKogoro Mouri is the father of Ran Mouri. He is a detective whose business was doing badly after losing potential customers to Shinichi. However, when Shinichi disappeared, Kogoro's business as well as fame soared. In reality, it was Conan who would figure out all the cases and give credit to Kogoro. Besides not being a very intelligent detective, Kogoro also lives a sloppy lifestyle. But once you get to know him, he can be really funny.妃英理Eri KISAKIRan's mom and a very intelligent lawyer. She is divorced from Ran's father Kogoro (any questions...? She plays a major part in several episodes and movies. It seems that whether or not she will get back with Kogoro has been an on and off question. Probably not since Kogoro happens to be easily attracted to famous/good looking females (for example, the model/singer Yoko Okino).阿笠博士Hiroshi AGASADr. Agasa is Shinichi's neighbor, friend, and inventor. After Shinichi gets drugged and shrinks into a elementary kid, Shinichi first goes to Agasa for help. From then on, both Agasa and Conan share the secret of Conan's true identity. In addition, Agasa often helps Conan solve cases by inventing cool gadgets for Conan to use.工藤优作Yusaku KUDOHe's the father of Shinichi/Conan. His career is writing detective stories. He apparently does such a good job of this that women will crowd around him whenever he's in public (making his wife Yukiko jealous - that's the price you pay for being famous). He also seems to cause a lot of unprecedented surprises in several of the mysterious (especially at the climax).目暮十三Juzo MEGUREMegure is often at crime scenes with Shinichi or Kogoro. He is there to sort out all the evidence as well as to make the necessary arrests. It is often he who the Detective Boys report problems to.白鸟任三郎Ninzaburo SHIRAITORIA police officer who appears in several episodes (early, middle, and as well as late). He's not shabby when it comes to solving crimes. His affections for Officer Sato cause some tension between him and officer Takagi.高木涉Wataru TKAGITakagi is just an ordinary officer under Megure's command. He's not smart or dumb, just your plain decent citizen. He is greatly helped by Conan (no, he doesn't know the secret yet). Oh yeah, it seems he has a crush on his co-officer Sato佐藤美加子Miwako SATOAn female officer whose kicks and punches are something that criminals need to watch out for. On top of that, she's much smarter than the average officer. She apparently is hot, otherwise why do you have the whole police force panicked whenever she's in trouble?琴酒GINOne of the evil members of the Black Organization. He was directly responsible for hitting Shinichi with a stick and then shrinking Shinichi to a kid with the APTX-4869 pill. Has a habit of smoking which contributes to his scariness.伏特加VodkaOne of the evil members of the Black Organization that was there when buddy Gin shrunk Shinichi to Conan. I guess you can't judge an enemy by hownot-so-detailed they look! Heck, Vodka was the one that suggested shooting Shinichi in the first place (which probably would have ended their troubles once and for all, but then there wouldn't be a Conan show so never mind).JODIE Jodie SAINTEMILIONJodie is the new English teacher for Ran and Sonoko's class. But she's not any ordinary being, as she seems to have some link to the Black Organization. Her English accent isn't that great. So, this mirror definitely has two faces. Is she good or bad?。

鬼畜眼睛角色歌歌词

鬼畜眼睛角色歌歌词

「Contrast」歌:佐伯克哉&佐伯克哉(CV:平井達矢)惑(まど)う気持(きも)ちを独(ひと)りこの部屋(へや)「壊(こわ)したい…契(ちぎ)りたい…」繰(ぐ)り返(かえ)すのさ淡(あわ)い想(おも)いは儚(はかな)い夢(ゆめ)さ「憧(あこが)れと…消(き)えてゆく…」今宵(こよい)の影(かげ)へ長(なが)い雨(あめ)が傷(きず)を癒(いや)す一筋(ひとすじ)の光(ひか)りが空(そら)を裂(さ)いた白(しろ)と黒(くろ)と、月(つき)と星(ほし)に運命(さだめ)が始(はじ)まるどちらからも寄(よ)り添(そ)わない激(はげ)しいContrast魅惑(みわく)に潜(ひそ)む強(つよ)い衝動(しょうどう)「初(はじ)めから…知(し)っていた…」移(うつ)ろう心(こころ)青(あお)い雲(くも)が風(かぜ)を運(はこ)ぶ捕(とら)われたふたつの心包(こころつつ)んで霧(きり)と宵(よい)と、青(あお)と蒼(あお)に運命(さだめ)を感(かん)じる平行線交(へいこうせんまじ)わらない狂(くる)おしいContrast白(しろ)と黒(くろ)と、月(つき)と星(ほし)に運命(さだめ)が始(はじ)まるどちらからも寄(よ)り添(そ)わない激(はげ)しい誘惑(ゆうわく)狂気(きょうき)に満(み)ち、魔性(ましょう)を得(え)て、罠(わな)に堕(お)ちて往(い)くだけさ脅(おびや)かされ、支配(しはい)されて溺(おぼ)れるContrast对照困惑無措的情緒獨自一人的房間“想要打破……想去承諾……”口中反反復復微茫的思戀是縹緲的夢幻“如若向往……便會消散……”今夜對影而訴傷痛在久雨中平復一束光芒劃破天空在黑與白、月與星之間命運輪轉各自嚴守本域強烈的對照熱切的沖動潛藏于魅力之中“從一開始……我就明了……”此心游移不定沉沉鉛云攜風而來裹住兩顆入網的心在霧與夜、青與藍之中感受命運仿佛永不相交的平行線激狂的對照你是我我是你不知不覺交融的真正的自我彼此斷然分立的不同的存在索求奪取永無止盡在黑與白、月與星之間命運輪轉各自嚴守本域強烈的誘惑癲狂絕頂化生魔性唯有墮入陷阱在脅迫中在支配下沉溺對照「inside Black」歌:佐伯克哉(CV:平井達矢)早(はや)くその罠(わな)ハマってしまえよ楽(らく)になれる道(みち)さready soon…ねぇその罪(つみ)カブってしまえよ耳(みみ)に囁(ささや)く狂気(きょうき)への道(みち)建前(たてまえ)など捨(す)て去(さ)るのさ本音(ほんね)を曝(さら)してその扉(とびら)を開(ひら)くのさ闇(やみ)に放(はな)つ黒(くろ)い影(かげ) 自由(じゆう)になれホントの本性(じぶん)甘(あま)く苦(にが)い衝動(しょうどう)を奪(うば)い続(つづ)けるのさAh…inside Black塞(ふさ)げない傷(きず) 魔性(ましょう)の誘惑(ゆうわく) 染(そ)まってきたころさover time…そう契約(けいやく)交(か)わした心(こころ)に焦燥(しょうそう)ばかりが付(つ)きまとうさ目(め)を開(ひら)いて退屈(たいくつ)だけ過(す)ごしてきたより楽(たの)しいだろ?この世界(せかい)抜(ぬ)けられない手(て)遅(おく)れさ支配(しはい)されたホント本性(じぶん)冷(ひ)えた視線(しせん)感(かん)じたらギラリ光(ひか)り放(はな)つAh…inside Black堕(お)ちる速度上(そくどあ)げながら…孤独(こどく)を纏(まと)い闇(やみ)を往(い)け…闇(やみ)に放(はな)つ黒(くろ)い影(かげ) 自由(じゆう)になれホントの本性(じぶん)甘(あま)く苦(にが)い衝動(しょうどう)を奪(うば)い続(つづ)けるのさAh…inside Black「White light」歌:佐伯克哉(CV:平井達矢)潤(うるお)う瞳(ひとみ)の悲(かな)しみ果(は)てなく続(つづ)く夕暮(ゆうぐ)れの空映(そらうつ)すよ癒(いや)し切(きれ)ない寂(さび)しさを必要(ひつよう)ならばいつもここにいるもう大丈夫(だいじょうぶ)きっとそして守(まも)ってゆきたい…ほかの誰(だれ)かを傷(きず)つけても繋(つな)ぎ合(あ)わせた手(て)を離(はな)さない包(つつ)む…side of one's White light霞(かす)む背中(せなか)虚構(きょこう)は闇(やみ)まで深(ふか)くぼんやり照(て)らす三日月(みかづき)壊(こわ)れそうだね儚(はかな)げに差(さ)し伸(の)べたいよ大切(たいせつ)な君(きみ)へ恐(おそ)れるものはないさふたり感(かん)じでゆきたい…温(あたた)かな陽(よう)に包(つつ)まれて幸(しあわ)せを願(ねが)うよオレ(おれ)達(たち)のここが…side of one's White light永遠(とお)に守(まも)ってゆきたい…その痛(いた)みさえ取(と)り除(のぞ)き繋(つな)ぎ合(あ)わせた手(て)を離(はな)さない包(つつ)む…side of one's White light。

【最新推荐】河内由加利个人资料成就家庭背景_河内由加利主要漫画作品-word范文模板 (3页)

【最新推荐】河内由加利个人资料成就家庭背景_河内由加利主要漫画作品-word范文模板 (3页)

本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==河内由加利个人资料成就家庭背景_河内由加利主要漫画作品河内由加利18岁时在月刊《少女FRIEND》上发表《不屈少年物语》成为漫画家,此后长期在月刊《少女FRIEND》上发表作品,该杂志休刊后,转至讲谈社月刊《Dessert》上发表。

以下是小编为大家整理的河内由加利的个人资料成就背景,给大家作为参考,希望对你有帮助!河内由加利人物自白我是无意中画起漫画的。

在十三岁时,根本没想到自己会成为漫画家,人生真是不可预料。

连续投了三年稿,但却没什么成绩好几次都想干脆放弃算了。

这时突然通知我得奖了。

现在在此公开以前的作品,心情实在很复杂。

不过,投稿时代的回忆也很不错。

双亲一直反对,但我仍然不断坚持画到现在,主要是因为自己太喜欢漫画了。

从我十八岁出道以来,一直庆幸自己能在工作上一帆风顺,这全是编辑部的同仁及爱护我的读者朋友们赐给我的!我发觉很多的读者对“漫画家”的工作怀有许多憧憬,从前我也和大家抱持着相同的想法,做着美丽的梦想,但是实际上……唉!和想像中大大不同啊……好辛苦!当我第一次连载作品时,都激动得落泪来。

真的,唯有亲身去尝试,才知道这行的辛苦,不规律的生活、没有自由的时间,真是把所有青春都投注进去了。

“下次我一定要早点交稿,然后腾出更多的自由时间。

”我常这样激励自己,但……故事情节还没构思好,截稿日期却迫在眉睫,当然就会陷入苦恼当中。

所以哪,每到此时,我就先把下回内容构思好,然后才能连载下去。

河内由加利创作经历河内由加利18岁时在月刊《少女FRIEND》上发表《不屈少年物语》成为漫画家,此后长期在月刊《少女FRIEND》上发表作品,该杂志休刊后,转至讲谈社月刊《Dessert》上发表。

作品以恋爱题材居多,早期作品基本上是轻快明朗的喜剧风格,故事内容充满着奇幻色彩,代表作有《恋曲7200秒》、《奇幻爱丽丝》、《雪天使》、《倒数5秒》、《喵喵俏佳人》。

【免费下载】 西野加奈Best_Friend日文+罗马+中文版歌词

【免费下载】 西野加奈Best_Friend日文+罗马+中文版歌词

啊Best Friend作詞:西野カナ作曲:GIORGIO CANCEMI===============整理by:daemon737=====================【日文片假版】======ありがとう君(きみ)がいてくれて本當(ほんとう)よかったよどんな時(とき)だっていつも笑(わら)っていられる例(たと)えば、離(はな)れていても何(なん)年(ねん)経(た)ってもずっと変(か)わらないでしょ私(わたし)たちBest Friend好(す)きだよ、大好(だいす)きだよこんな遅(おそ)い時間(じかん)にゴメンね一人(ひとり)じゃせっぱつまってきたの君(きみ)の聲(こえ)少(すこ)し聞(き)けたらがんばれる何(なん)でも打ち明(うちあけ)けられるママにも言えないことも全部(ぜんぶ)誰(だれ)よりも分(わ)かってくれる嬉(うれ)しい時(とき)は自分(じぶん)の事(こと)みたいに喜(よろこ)んでくれてダメな時(とき)はちゃんと叱(しか)ってくれる存在(そんざい)ありがとう君(きみ)がいてくれて本当(ほんとう)よかったよどんな時(とき)だっていつも笑(わら)っていられる例(たと)えば、离(はな)れていても何(なん)年(ねん)経(た)ってもずっと変(か)わらないでしょ私(わたし)たちBest Friend好(す)きだよ、大好(だいす)きだよ強(つよ)がってもすぐにバレてるへこんでる时(とき)は真っ先(まっさき)にメールくれる優(やさ)しさにもう何(なん)度(ど)も救(すく)われて泣(な)きたい時(とき)はおもいっきり泣(な)けばいい侧(そば)にいるからって誰(だれ)よりも强(つよ)い味方(みかた)そんな君(きみ)に私(わたし)は何(なに)かしてあげられてるかな?何(なに)かあったらすぐに飛(と)んでくから、绝対(ぜったい)ありがとう君(きみ)がいてくれて本当(ほんとう)よかったよどんな時(とき)だっていつも笑(わら)っていられる例(たと)えば、离(はな)れていても何(なん)年(ねん)経(た)ってもずっと変(か)わらないでしょ私(わたし)たちBest Friend好(す)きだよ、大好(だいす)きだよどんな時(とき)も祈(いの)っているよ世界(せかい)で一番(いちばん)に幸(しあわ)せになってほしいありがとう君(きみ)がいてくれて本当(ほんとう)よかったよどんな时(とき)だっていつも笑(わら)っていられる例(たと)えば、离(はな)れていても何(なん)年(ねん)経(た)ってもずっと変(か)わらないでしょ私(わたし)たちBest Friend好(す)きだよ、大好(だいす)きだよ======【日文羅馬音版】======arigatoukimi ga ite kurete hontou yokatta yodonna toki datte itsumowaratte irarerutatoeba, hanarete itemo nannen tatte mozutto kawaranai deshouwatashitachi Best Friendsuki dayo, daisuki da yokonna osoi jikan ni gomen nehitori ja seppa tsumatte kita nokimi no koe sukoshi kike taraganbarerunande mo uchi ake rarerumama ni mo ienai koto mo zenbudare yori mo wakatte kureruureshii toki wa jibun no koto mitai ni yorokonde kurete dame na toki wa chanto shikatte kureru sonzaiarigatoukimi ga ite kurete hontou yokatta yodonna toki datte itsumowaratte irarerutatoeba, hanarete ite mo nannen tatte mozutto kawaranai deshouwatashitachi Best Friendsuki da yo, daisuki da yotsuyoga tte mo sugu ni bareteruhekonderu toki wamassaki ni meru kureru yasashi sanimou nando mo sukuwa retenaki tai toki wa omoikkiri nake baiisoba ni iru kara ttedare yorimo tsuyoi mikatasonna kimi ni watashi wa nanika shite agerareteru kana?nanika attarasuguni ton dekukara, zettaiarigatoukimi ga ite kurete hontou yokatta yodonna toki datte itsumowaratte irarerutatoeba, hanare teitemo nannen tatte mozutto kawaranai deshowatashitachi Best Friendsuki dayo, daisuki dayodonna toki mo inotte iru yosekai de ichiban ni shiawase ni natte hoshiiarigatoukimi ga ite kurete hontou yokatta yodonna toki datte itsumowaratte irarerutatoeba, hanare teitemo nannen tatte mozutto kawaranai deshowatashitachi Best Friendsuki dayo, daisuki dayo======【中文翻譯版】======謝謝有你在真好無論什麼時候都能令我微笑即使分離即使進過許多年我們都不會改變一直都是好朋友我愛你們最愛你們這麼晚打擾你真是對不起我一個人難受得不行想聽聽你的聲音這樣我就能振作起來我們無話不談即使是不能對媽媽說的事比誰都瞭解對方把對方的快樂當做自己的快樂由衷地高興著低落的時候也能相互鼓勵謝謝有你在真好無論什麼時候都能令我微笑即使分離即使進過許多年我們都不會改變一直都是好朋友我愛你們最愛你們一旦逞強你馬上就能發現難過的時候你總是最先發信息過來多少次溫柔地拯救了我說著「想哭的時候就盡情哭吧我會一直陪在你身邊」比誰都堅強的夥伴我能為那樣的你做些什麽呢?如果有什麽事的話我絕對會立刻飛去你那邊謝謝有你在真好無論什麼時候都能令我微笑即使分離即使進過許多年我們都不會改變一直都是好朋友我愛你們最愛你們我無時無刻不在祈禱希望你成為世界上最幸福的人謝謝有你在真好無論什麼時候都能令我微笑即使分離即使進過許多年我們都不會改變一直都是好朋友我愛你們最愛你們。

日本姓氏大全

日本姓氏大全

日本姓氏大全(转)AAbe 阿部。

安部。

安倍。

阿倍。

Abei 安倍井。

Abigo 安孙子。

Abigo 安孙子。

安彦。

吾孙子。

Abiru 安蒜。

阿比留。

Abo 安保。

阿保。

Abumiya 镫家。

Aburai 油井。

Aburatani 油谷。

Aburaya 油谷。

Acha 阿茶。

Adachi 足立。

安达。

安立。

足达。

阿达。

Adegawa 阿出川。

Aeba 飨庭。

Afuso 安富祖。

Agata 县。

悬。

Agatainukai 县犬养。

Agatsuma 我妻。

Agawa 阿川。

Ageishi 上石。

Agemaki 总角。

Agoin 安居院。

Agune 阿具根。

Ai 安居。

阿井。

Aiba 相场。

飨庭。

相羽。

相叶。

相庭。

飨场。

Aibara 栗饭原。

Aichi 爱知。

Aida 会田。

相田。

间。

Aihara 相原。

栗饭原。

蓝原。

Aiiso 相叽。

Aijima 相岛。

Aikiwa 相川。

Aiko 爱甲。

Aimi 相见。

Aino 爱野。

Aioi 相生。

Aita 合田。

Aiyama 相山。

Aizawa 相泽。

会泽。

蓝泽。

逢泽。

爱泽。

合泽。

Aizu 爱洲。

会津。

Ajiki 安食。

Ajima 安岛。

Ajiro 网代。

足代。

Aka 丹。

Akabane 赤羽。

Akabashi 赤桥。

Akabori 赤堀。

Akaboshi 赤星。

Akada 赤田。

Akagaki 赤垣。

Akagawa 赤川。

Akagi 赤木。

赤城。

Akahane 赤羽根。

Akahashi 赤桥。

Akahira 赤平。

Akahito 赤人。

Akaho 赤穗。

Akahoshi 赤星。

Akai 赤井。

Akaike 赤池。

Akaishi 赤石。

Akaiwa 赤岩。

Akakabe 赤壁。

Akama 赤间。

Akamatsu 赤松。

Akamine 赤岭。

Akamoto 赤元。

Akane 赤根。

Akanuma 赤沼。

Akao 赤尾。

Akaogi 赤荻。

Akaoka 赤冈。

赤兀。

西野加奈Best_Friend日文+罗马+中文版歌词

西野加奈Best_Friend日文+罗马+中文版歌词

啊啊啊Best Friend作詞:西野カナ作曲:GIORGIO CANCEMI===============整理by:daemon737=====================【日文片假版】======ありがとう君(きみ)がいてくれて本當(ほんとう)よかったよどんな時(とき)だっていつも笑(わら)っていられる例(たと)えば、離(はな)れていても何(なん)年(ねん)経(た)ってもずっと変(か)わらないでしょ私(わたし)たちBest Friend好(す)きだよ、大好(だいす)きだよこんな遅(おそ)い時間(じかん)にゴメンね一人(ひとり)じゃせっぱつまってきたの君(きみ)の聲(こえ)少(すこ)し聞(き)けたらがんばれる何(なん)でも打ち明(うちあけ)けられるママにも言えないことも全部(ぜんぶ)誰(だれ)よりも分(わ)かってくれる嬉(うれ)しい時(とき)は自分(じぶん)の事(こと)みたいに喜(よろこ)んでくれてダメな時(とき)はちゃんと叱(しか)ってくれる存在(そんざい)ありがとう君(きみ)がいてくれて本当(ほんとう)よかったよどんな時(とき)だっていつも笑(わら)っていられる例(たと)えば、离(はな)れていても何(なん)年(ねん)経(た)ってもずっと変(か)わらないでしょ私(わたし)たちBest Friend好(す)きだよ、大好(だいす)きだよ強(つよ)がってもすぐにバレてるへこんでる时(とき)は真っ先(まっさき)にメールくれる優(やさ)しさにもう何(なん)度(ど)も救(すく)われて泣(な)きたい時(とき)はおもいっきり泣(な)けばいい侧(そば)にいるからって誰(だれ)よりも强(つよ)い味方(みかた)そんな君(きみ)に私(わたし)は何(なに)かしてあげられてるかな?何(なに)かあったらすぐに飛(と)んでくから、绝対(ぜったい)ありがとう君(きみ)がいてくれて本当(ほんとう)よかったよどんな時(とき)だっていつも笑(わら)っていられる例(たと)えば、离(はな)れていても何(なん)年(ねん)経(た)ってもずっと変(か)わらないでしょ私(わたし)たちBest Friend好(す)きだよ、大好(だいす)きだよどんな時(とき)も祈(いの)っているよ世界(せかい)で一番(いちばん)に幸(しあわ)せになってほしいありがとう君(きみ)がいてくれて本当(ほんとう)よかったよどんな时(とき)だっていつも笑(わら)っていられる例(たと)えば、离(はな)れていても何(なん)年(ねん)経(た)ってもずっと変(か)わらないでしょ私(わたし)たちBest Friend好(す)きだよ、大好(だいす)きだよ======【日文羅馬音版】======arigatoukimi ga ite kurete hontou yokatta yodonna toki datte itsumowaratte irarerutatoeba, hanarete itemo nannen tatte mozutto kawaranai deshouwatashitachi Best Friendsuki dayo, daisuki da yokonna osoi jikan ni gomen nehitori ja seppa tsumatte kita nokimi no koe sukoshi kike taraganbarerunande mo uchi ake rarerumama ni mo ienai koto mo zenbudare yori mo wakatte kureruureshii toki wa jibun no koto mitai ni yorokonde kurete dame na toki wa chanto shikatte kureru sonzaiarigatoukimi ga ite kurete hontou yokatta yodonna toki datte itsumowaratte irarerutatoeba, hanarete ite mo nannen tatte mozutto kawaranai deshouwatashitachi Best Friendsuki da yo, daisuki da yotsuyoga tte mo sugu ni bareteruhekonderu toki wamassaki ni meru kureru yasashi sanimou nando mo sukuwa retenaki tai toki wa omoikkiri nake baiisoba ni iru kara ttedare yorimo tsuyoi mikatasonna kimi ni watashi wa nanika shite agerareteru kana?nanika attarasuguni ton dekukara, zettaiarigatoukimi ga ite kurete hontou yokatta yodonna toki datte itsumowaratte irarerutatoeba, hanare teitemo nannen tatte mozutto kawaranai deshowatashitachi Best Friendsuki dayo, daisuki dayodonna toki mo inotte iru yosekai de ichiban ni shiawase ni natte hoshiiarigatoukimi ga ite kurete hontou yokatta yodonna toki datte itsumowaratte irarerutatoeba, hanare teitemo nannen tatte mozutto kawaranai deshowatashitachi Best Friendsuki dayo, daisuki dayo======【中文翻譯版】======謝謝有你在真好無論什麼時候都能令我微笑即使分離即使進過許多年我們都不會改變一直都是好朋友我愛你們最愛你們這麼晚打擾你真是對不起我一個人難受得不行想聽聽你的聲音這樣我就能振作起來我們無話不談即使是不能對媽媽說的事比誰都瞭解對方把對方的快樂當做自己的快樂由衷地高興著低落的時候也能相互鼓勵謝謝有你在真好無論什麼時候都能令我微笑即使分離即使進過許多年我們都不會改變一直都是好朋友我愛你們最愛你們一旦逞強你馬上就能發現難過的時候你總是最先發信息過來多少次溫柔地拯救了我說著「想哭的時候就盡情哭吧我會一直陪在你身邊」比誰都堅強的夥伴我能為那樣的你做些什麽呢?如果有什麽事的話我絕對會立刻飛去你那邊謝謝有你在真好無論什麼時候都能令我微笑即使分離即使進過許多年我們都不會改變一直都是好朋友我愛你們最愛你們我無時無刻不在祈禱希望你成為世界上最幸福的人謝謝有你在真好無論什麼時候都能令我微笑即使分離即使進過許多年我們都不會改變一直都是好朋友我愛你們最愛你們。

Chase the world - May'n中日文歌词、罗马音

Chase the world - May'n中日文歌词、罗马音

Chase the world - May'n中日文歌词、罗马音作词:井上秋绪作曲·编曲:浅仓大介歌:May'n(中林芽依)この瞳(ひとみ)は鲜(あざ)やかに舞(ま)うキミしか知覚(し)らないkonohitomi ha azayakani ma u kimishikashiranai【眼波炫舞只目视你的存在】踏(ふ)み込(こ)んで覚醒(め)ざめるセカイへfu mi konde me zamerusekai he【步入觉醒的世界勇往直前】Chase the world俯(うつむ)き过(す)ぎて小(ちい)さい仆(ぼく)だけの景色(けしき)がutsumukisugitechiisaibokudakenokeshikiga【过于卑微我的视界如此渺小】组(く)み立(た)てたジオラマの嘘(うそ)だとku mi ta tetajiorama no usodato【虽只是拼凑成透视画的谎言】合(あ)わせ辛(つら)い视点(してん)に気付(きづ)いているa wasetsuraishitennikiduiteiru【也会察觉到难以汇聚的焦点】駆(か)け出(だ)してゆく未来(みらい)は美(うつく)しさを手(て)にkake da shiteyukumirai ha utsukushisawoteni【离弦的未来将美丽攥在手心】それぞれが翔(と)べる场所(ばしょ)を问(と)い挂(か)けてくsorezorega to berubashowo to ikaketeku【声询着各自将飞去的目的地】この瞳(ひとみ)は鲜(あざ)やかに舞(ま)うキミしか知覚(し)らないkonohitomi ha azayakani ma u kimishikashiranai【眼波炫舞只目视你的存在】加速(かそく)して初(はじ)めて往(む)ける仆(ぼく)は仆の先(さき)へkasoku shite haji mete yukeruboku ha boku no saki e【从加速起我飞往我的前方】もっと昂(たか)くもっと强(つよ)くキミに届(とど)きたいmotto taka ku motto tsuyokukiminitodokitai【更高更强我只想传达给你】踏(ふ)み込(こ)んで覚醒(め)ざめるchasin’ the worldfu mi ko n de me zameruChasin' the world【步入觉醒的世界Chasing the world】何度(なんど)もなぞり続(つづ)けて擦(す)り切(き)れてしまったnandomonazoritsuduketesurikireteshimatta【不断的挫折磨平了所有锋芒】「谛(あきら)めてしまえ」と云(い)う文字(もんじ)が(akirameteshimae) to i u mojiga【说什么干脆放弃吧这种话】筑(きず)かせた壁(かべ)を壊(こわ)したがっていいるkizukasetakabewokowashitagatteiru【就是在毁掉自己亲筑的高楼】直向(ひたむ)きに祈(いの)る声(こえ)も暗(やみ)に割(わ)れる夜(よる) hitamukiniinorukoemoyaminiwareruyoru【黑夜将虔诚的祈愿之声割裂】叶(かな)わない残酷(ざんこく)さを潜(ひそ)ませてもkana wanaizankokusawohisomasetemo【即使被无法实现的残酷淹没】この翼(つばさ)で想(おも)うよりも遥(はる)かに羽(は)ばたくkonotsubasa de omouyorimoharukanihanehabataku【展翅飞去超越想象的远方】抑(おさ)えない鼓动(こどう)が运命(うんめい)を进(すす)ませるならosaenaikodougaunmeiwosusumaserunara【难抑心跳若能够推进命运】愿(ねが)う前(まえ)に戻(もど)る前にキミを抱(だ)き缔(し)めてnega u maenimodorumaenikimiwo da kishi mete【祈愿和回头之前将你抱紧】彼方(かなた)へと跳(と)び立(た)つchangi ng’ your world kanataheto to bi ta tsu Changing' your world【向远方起飞改变你的世界】この瞳(ひとみ)は鲜(あざ)やかに舞(ま)うキミしか知覚(し)らないkonohitomi ha azayakani ma u kimishikashiranai【眼波炫舞只目视你的存在】加速(かそく)して初(はじ)めて往(む)ける仆(ぼく)は仆の先(さき)へkasoku shite haji mete yukeruboku ha boku no saki e【从加速起我飞往我的前方】この翼(つばさ)で想(おも)うよりも遥(はる)かに羽(は)ばたくkonotsubasa de omouyorimoharukanihanehabataku【展翅飞去超越想象的远方】抑(おさ)えない鼓动(こどう)が运命(うんめい)を进(すす)ませるならosaenaikodougaunmeiwosusumaserunara【难抑心跳若能够推进命运】もっと昂(たか)くもっと强(つよ)くキミに届(とど)きたいmotto taka ku motto tsuyokukiminitodokitai【更高更强我只想传达给你】踏(ふ)み込(こ)んで覚醒(め)ざめるセカイへfu mi konde me zamerusekai he【步入觉醒的世界勇往直前】。

欲于辉夜之城起舞歌词

欲于辉夜之城起舞歌词

おいで! おいで! 诱惑のDance againおいでよおいで! 辉夜(かぐや)の城へ出逢いがあやつるミステリー危険なペルソナ(助けて~)踊ろう! 踊ろう! 终わらない踊ろうよ踊ろう! 辉夜の城で夜空を切りとるレーザービーム私と见てよ?(にゃー?)まばゆい星が照らす想い今宵の梦よ永远(とわ)に明日(あす)のことは忘れたいの(にこ~)私は红い蔷薇の姫よ优しくさらわれたいそっと嗫いて意味ありげに目をそらすあなたは白い月の骑士(ナイト) 触れた手がまだ热いのがさずに抱きしめてこの奇迹を恋と呼ぶのねおいで! おいで! 情热でDance againおいでよおいで! 辉夜の城へ迷いを饮みこむエナジー眠らぬパッショネイト(でしょ?)踊ろう! 踊ろう! 止まらない踊ろうよ踊ろう! 辉夜の城で星座が织りなすディスコティーク私も混ぜて?(ぷしゅっ)きらめく星に誓う心儚い梦でいいわ明日は明日の风が吹くの(だよねっ)私は黒い蔷薇の姫よ激しくさらわれたいだから微笑んで追いかけてと目が诱うあなたも黒い月の骑士瞳の奥は热いつかまえて抱きしめてこの奇迹は恋を呼ぶのね【凛】「一绪に行こ?」【穂乃果】「きついでよぉ」【ことり】「他の人を见ちゃいや」【花阳】「私だけを见て!」【絵里】「後悔……するわよ?」【希】「楽しもっ」【真姫】「早くしなさいよ」【海未】「钝いのですね……」【にこ】「いいの?」私は红い蔷薇の姫よ优しくさらわれたいそっと嗫いて意味ありげに目をそらすあなたは白い月の骑士(ナイト) 触れた手がまだ热いのがさずに抱きしめてこの奇迹を恋と呼ぶのね(fi-ba-!)(ha! haha!)(ha!)oide! oide! yuuwaku no Dance againoide yo oide! kaguya no shiro edeai ga ayatsuru misuteri-kikenna perusona (tasukete!)odorou! odorou! owaranai Dance beat(ha!)odorou yo odorou! kaguya no shiro de(ha!)yozora wo kiritoru re-za-bi-muwatashi to mite yo? (nya!)mabayui hoshi ga terasu omoikoyoi no yume yo towa niasu no koto wa wasuretai no (niko!)watashi wa (ha!) akai (ha!) bara no hime yo (haha!) yasashiku sarawaretai(ha!)sotto sasayaite imiarige ni me wo sorasu anata wa (ha!) shiroi (ha!) tsuki no naito (fu ffu-!) fureta te ga mada atsui(fu-!fu-!fu-!fu-!)nogasazu ni dakishimetekono kiseki wo koi to (haha!) yobu no ne (ha-i!) (ha! haha!)oide! oide! jounetsu de Dance againoide yo oide! kaguya no shiro emayoi wo nomikomu enaji-nemuranu passhoneito (deshou?)odorou! odorou! tomaranai Dance beat(ha!)odorou yo odorou! kaguya no shiro de(ha!)seiza ga orinasu disukoti-kuwatashi mo mazete? (pushu!)kirameku hoshi ni chikau kokorohakanai yume de ii waasu wa asu no kaze ga fuku no (dayone!)watashi wa (ha!) kuroi (ha!) bara no hime yo (haha!) hageshiku sarawaretai(ha!)dakara hohoende oikakete to me ga sasouanata mo kuroi tsuki no naito (fuffu-!)hitomi no oku wa atsui(fu-!fu-!fu-!fu-!)tsukamaete dakishimetekono kiseki wa koi wo (haha!) yobu no ne(ha! haha!)(issho ni ikou?)(kidzuite yo-)(ha!)(hoka no hito wo micha iya!)(ha!ha!ha!ha!)(watashi dake wo mite!)(ha!)(koukai suruwayo?)(tanoshimou!)(haha!)(hayaku shinasaiyo-)(ha!)(nibui no desu ne)(ii no?)(ha!ha!ha!)watashi wa akai bara no hime yoyasashiku sarawaretaisotto sasayaite imiarige ni me wo sorasu anata wa (ha!) shiroi (ha!) tsuki no naito (fuffu!) fureta te ga mada atsui (fu-!fu-!fu-!fu-!) nogasazu ni dakishimetekono kiseki (haha!) wo koi to yobu no ne (aan) (ha! haha! ha! haha!) (ufun)。

Masayume Chasing Chasing

Masayume Chasing Chasing
燃やせ胸の火を
抜け出すには (Go gonna go now)
目を覚ます力
まぶしい朝日浴びて 目をこらす先に
あの日にみた未来が 手を広げてる
Wow oh
Masayume Chasing Chasing
超えろもっと 自分史上最高の
时 を Chasing Chasing
そう描いた 自分になって
燃やせ胸の火を
na na na na na na na Oh
na na na na na Hey Hey
na na na na na na na Oh
駆け抜けろHero
na na na na na na na Oh
na na na na na Hey Hey
na na na (Hey) na na na na (Oh)
na na na (Hey) na na na na (Oh)
燃やせ胸の火を
(My Life... Yeah)
目を闭じて 耳澄ませば 微かに呼ぶ声
谁もいないはずの森で 见上げた空の青
ここへは戻らない(Good bye)
孤独という名の猛毒の
甘く香る花
咲き夸る世界に
Sayonara Changing Chasing
超えろもっと 自分史上最高の
笑颜 Changing Chasing
そう愿いは 叶うわきっと
照らせ胸の火を
na na na na na na na Oh
na na na na na Hey Hey
na na na na na na na Oh
駆け抜けろHero
na na na n森の奥

幸村精市(永井幸子) - last game

幸村精市(永井幸子) - last game

教えようか 体で感じるから
解き放てば 永遠のラリーで
楽しめるさ 言葉など要らない二人
本当の意味の強さ 抱きしめて
時が止まればいい 愛しいモノたちよ
今が終わっても まだ最後じゃない
誰もが皆 ほんとは同じ孤独
抱えながら それでも耐え続け
探し出せる 誰もが見つけられるのさ
本当の意味の強さ ラストゲームで
last game
作詞:永井幸子
作曲:中畑丈治
編曲:中畑丈治
歌:幸村精市(永井幸子)、越前(皆川純子)
專輯:ラストソングス(last songs)
發行日:2009.3.5
※日文歌詞
青く流れる時
息をとめて 狙い定める
遠く意識の果て
君の音を 奪い消し去る
大切な何かを ひきかえにしてでも
求めるのは強さ もう迷いは無い
誰もが皆 未だ辿り着けない
白い翼 見つけにゆくだけの
戦うなら 孤独に立ち向かう二人
本当の意味の強さ 追いかけて
決して許されない
勝たなければ 意味が無いのさ
やがて巡る記憶
高鳴る胸 握るラケット
大切な何かは 全部ここにあるよ
確かな想いで 今 開く扉
daremogaminna madatadoritsukenai
shiroitsubasa mitsukeniyuku dakeno
tatakaunara kodokutachimukaufutari
hondounoiminotsuyosa oikakete
keshite yurusarenai
katanakereba imiganainosa

日本著名偶像组合kat-tun 《love yourself 》歌词

日本著名偶像组合kat-tun  《love yourself 》歌词

It’s love, your love LOVE YOURSELF
It’s love, your love LOVE YOURSELF
It’s love, your love LOVE YOURSELF
It’s love, your love LOVE YOURSELF
RAP
Mawari wa dou demo ii
渐行渐远 在我的心里
Tooku tooku hora kono mune ni
I’m singin’ my love for you so that u would teel me
that u wanna be with me and I feel like… ah ah
my love your le yourself Mou muri shinaide
心のまま 君のまま
心怎样 你就怎样
Kokoro no mama kimi no mama
辉ける 爱届けて
能发光 爱就会到达
Kagayakeru ai todokete
君が嫌いな君が好き
我喜欢讨厌自己的你
你的目光我收起
君が嫌いな君が好き
我喜欢讨厌自己的你
Kimi ga kirai na kimi ga suki
不器用な君でいい
そんなのどうでもいい
那有什么关系
Sonna no dou demo ii
ただ君がそばにいればいい
只要你能在身边就可以
Tada kimi ga soba ni ireba ii
love yourself そう响きあう
love yourself 的交响

只有神知道的世界ED歌词罗马音

只有神知道的世界ED歌词罗马音

TVアニメ「神のみぞ知るセカイ」EDコイノシルシ作詞:漆野淳哉作曲:須田悦弘編曲:前口渉コイノシルシ君の瞳(め)に見つけたのあの日在你的眼中发现爱情的印记那天Koinoshirushikimi no menimitsuketanoanohi気づいた時胸の磁石回りだした发现的时候心中的指南针已经开始旋转kizuitatokimunenojishakumawaridashita探していたときめきにやっと出逢えたの终于与寻找已久的那份心跳相逢sagashiteitatokimekiniyattodeaetanoどこにいても見つけ出すよもう2度と迷わない无论身在何处我都会不再犹豫将你找到dokoniitemomitsukedasuyomounidotomayowanaiきっとふたりは運命だよ何億もの人がいて我们两个人一定是命中注定在茫茫人海中kittofutariwaunmeidayonanokumonohigaite出逢うのはコンピュータでも無理这份邂逅即使在电脑上也无法实现deaunowaKonpyuuta demo muri平凡すぎる毎日にピリオドを打ったの将太过平凡的每一天划上一个完美的句号heibonsugirumainichiniPiriodo o uttanoため息卒業できるのやっと终于可以从叹息中毕业tameikisotsugyoudekirunoyatto青空が眩しい君がいる風景は蓝天如此耀眼有你的风景aozoragamabushiikimigairufuukeiwa幸せのオーラ溢れ出すの止まらないよ幸福感就会不断溢出无法停止shiawase no Ooraafuredasunotomaranaiyo駅前の噴水虹を作っているよ车站前的喷泉架起一道彩虹ekimaeno fun sui nijiotsukutteiruyo君を待つ時間さえもかけがえないプレシャスな時连等你的时间也是无法代替的珍贵时间kimi o matsujikansaemokakegaenaiPureshasunatokiコイノシルシ私にも見つけてくれたね连我也找到了爱情的印记Koinoshirushiwatashinimomitsuketekuretane同じ気持同じかけら分け合ってる互相分享同一种心情同一种碎片onajikimochionajikakera wake atteruはぐれそうな時だって大丈夫だよね?如同错过的时光没问题吗?haguresounatokidattedaijoubudayone?どこにいても見つけ出してそう私ここにいる无论身在何处我都会找出来没错我就在这里dokoniitemomitsukedashite sou watashikokoniiru手を繋いだら未来のドアずっと開いた気がするの感觉到只要手牵着手未来之门就会一直敞开teotsunaidaramirainoDoasuttohiraitakigasurunoもう何も恐いものないから因为我已经不再害怕mounanimokowaimononaikara新しい夢膨らんで毎日がMerry-go-round新的梦想不断膨胀每天都是在坐旋转木马atarashiiyumefukurandemainichiga Merry-go-round逢えない時にはせつないけど虽然无法见面的时候会让我无法呼吸aenaitokiniwasetsunaikedo雨の日も好きだよ君の傘温かい我也喜欢下雨天因为你的伞很温暖amenohimosukidayokiminokasaatataonkai愛しさ永遠なくならない信じてるよ我坚信这份爱永远都不会消失itoshisaeiennakunaranaishinjiteruyo雨上がりの空に虹を見上げてふたり两个人仰望雨后天空中出现的彩虹ameagarinosoraninijiomiagetefutari何時までも手を繋いで歩きたいよ光の中を无论何时都想手牵手的走在光芒之中itsumademoteotsunaidearukitaiyohikari no nakao青空が眩しい君がいる風景は蓝天如此耀眼有你的风景aozoragamabushiikimigairufuukeiwa幸せのオーラ溢れ出すの止まらないよ幸福感就会不断溢出无法停止shiawase no Ooraafuredasunotomaranaiyo駅前の噴水虹を作っているよ车站前的喷泉架起一道彩虹ekimaeno fun sui nijiotsukutteiruyo君を待つ時間さえもかけがえないプレシャスな時连等你的时间也是无法代替的珍贵时间kimi o matsujikansaemokakegaenaiPureshasunatoki雨の日も好きだよ君の傘温かい我也喜欢下雨天因为你的伞很温暖amenohimosukidayokiminokasaatatakai愛しさ永遠なくならない信じてるよ我坚信这份爱永远都不会消失itoshisaeiennakunaranaishinjiteruyo雨上がりの空に虹を見上げてふたり两个人仰望雨后天空中出现的彩虹ameagarinosoraniniji o miagetefutari何時までも手を繋いで歩きたいよ光の中を无论何时都想手牵手的走在光芒之中itsumademoteotsunaidearukitaiyohikari no nakaoラララ啦啦啦Ra RaRa编排:酥骨酱鸡肉。

太宰治-思ひ出

太宰治-思ひ出

思ひ出太宰治一章黄昏のころ私は叔母と並んで門口に立つてゐた。

叔母は誰かをおんぶしてゐるらしく、ねんねこを着て居た。

その時の、ほのぐらい街路の靜けさを私は忘れずにゐる。

叔母は、てんしさまがお隱れになつたのだ、と私に教へて、生(い)き神樣(がみさま)、と言ひ添へた。

いきがみさま、と私も興深げに呟いたやうな氣がする。

それから、私は何か不敬なことを言つたらしい。

叔母は、そんなことを言ふものでない、お隱れになつたと言へ、と私をたしなめた。

どこへお隱れになつたのだらう、と私は知つてゐながら、わざとさう尋ねて叔母を笑はせたのを思ひ出す。

私は明治四十二年の夏の生れであるから、此の大帝崩御のときは數へどしの四つをすこし越えてゐた。

多分おなじ頃の事であつたらうと思ふが、私は叔母とふたりで私の村から二里ほどはなれた或る村の親類の家へ行き、そこで見た瀧を忘れない。

瀧は村にちかい山の中にあつた。

青々と苔の生えた崖から幅の廣い瀧がしろく落ちてゐた。

知らない男の人の肩車に乘つて私はそれを眺めた。

何かの社(やしろ)が傍にあつて、その男の人が私にそこのさまざまな繪馬を見せたが私は段々とさびしくなつて、がちや、がちや、と泣いた。

私は叔母をがちやと呼んでゐたのである。

叔母は親類のひとたちと遠くの窪地に毛氈を敷いて騷いでゐたが、私の泣き聲を聞いて、いそいで立ち上つた。

そのとき毛氈が足にひつかかつたらしく、お辭儀でもするやうにからだを深くよろめかした。

他のひとたちはそれを見て、醉つた、醉つたと叔母をはやしたてた。

私は遙かはなれてこれを見おろし、口惜(くや)しくて口惜(くや)しくて、いよいよ大聲を立てて泣き喚いた。

またある夜、叔母が私を捨てて家を出て行く夢を見た。

叔母の胸は玄關のくぐり戸いつぱいにふさがつてゐた。

その赤くふくれた大きい胸から、つぶつぶの汗がしたたつてゐた。

叔母は、お前がいやになつた、とあらあらしく呟くのである。

私は叔母のその乳房に頬をよせて、さうしないでけんせ、と願ひつつしきりに涙を流した。

日本组合S.E.N.S.资料简介

日本组合S.E.N.S.资料简介

日本组合S.E.N.S.资料简介S.E.N.S.(中文:神思者、日文:センス)是日本擅长电子音乐的二人团体,两位成员分别是深浦昭彦和胜木由佳里。

乐队成立于1984年。

下面是小编为大家整理的日本组合S.E.N.S.资料简介,希望大家喜欢! S.E.N.S.资料简介中文名:神思者外文名: S.E.N.S.别名: Sensitivity Project国籍:日本出生日期: 1959年5月13日、1956年4月1日职业:电子音乐的二人团体代表作品《故宫三部曲》、《海上丝路》配乐三部曲成员:深浦昭彦、胜木由佳里作为日本New Age音乐三巨头之一,擅长写心灵音乐的“神思者”S.E.N.S.,是由Akihiko Fukaura(深浦昭彦)和Yukari Katsuki(腾木由加莉)两人成立于1984年的电子键盘乐团。

乐队原名“Sensitivity Project”,后为了让乐迷们能够藉着《海上丝路》配乐三部曲(分别为《海神》、《伽罗》、《茶之圆舞曲》),加深对他们的印象,更名为有“Sense”(感性)和“Cense”(焚香)两种意义的“S.E.N.S”。

步入千禧年以后,“S.E.N.S”的创作理念,延伸到“Sound、Earth、Nature、Spirit”的层次。

作品广受欢迎的“神思者”,多年来保持著精致脱俗的乐风质感,巧妙地融合电子合成乐器与钢琴,以抒情浪漫的氛围搭配上舒缓高雅的节拍,再搭配上东方神秘感以及静谧的哲思,营造出专属于神思者的格调。

对于活在都市的现代人来说,神思者的旋律是释放压力的彩笔;其音乐氛围则是诱发想像的触媒,聆听他们的音乐就好像接近一位淡泊的君子,有著高瞻远瞩的视野、不汲汲于名利,长久浸淫其中心灵不自觉地被潜移默化,有著如神一般的清晰思维。

S.E.N.S.的音乐道路1988年,“神思者”因在日本NHK公共电视制播的纪录片“丝路系列”的《海上丝路》中,担任作曲、编曲与演奏的工作而声名大噪。

魔性的天使

魔性的天使

魔性の天使Mashou no Tenshi歌:三桥加奈子(奇牙) Sung by Mitsuhashi Kanako (Killua)..日文..机械仕挂けの笼の鸟梦の渊Kikai- jikake no kago no tori, yume no uchi时の记忆が夜に抱かれるtoki no kioku ga yoru ni dakareru.羽をもがれて笑っている青い蝶Hane o mogarete waratteru aoi choo镇魂歌(レクイエム)でも用意しようかrekuiemu demo yooi shiyouka.そんな目で见られたら见透かされそうSonna me de miraretara misukasaresou.死臭で冷えた体暖められてくShishuu de hieta karada atatamerareteku.*魔性の天使乾いた肌に沁み込んでゆくざわめきMashou no tenshi kawaita hada ni shimikondeyuku zawameki.魔性の天使不协和音の果てしない狂気眠らせてMashou no tenshi fukyoowaon no hateshinai kyooki nemurasete.光る水泡(みなわ)に暗闇が溶けるならこのまま君と笑っていたいHikaru minawa ni kurayami ga tokerunara konomama kimi to waratteitai.预言者が语りだす树海(もり)の寓话(ぐうわ)が幻梦(まぼろし)に変わるなら神话が生まれるYogensha ga kataridasu: "Mori no guuwa ga maboroshi ni kawaru nara shinwa ga umareru".魔性の天使カルマが踊るその眼间(まなかい)つぶやくMashou no tenshi karuma ga odoru sono managai de tsubuyaku.魔性の天使不协和音の果てしない狂気眠らせてMashou no tenshi fukyoowaon no hateshinai kyooki nemurasete.そんな眼(め)で见られたら见透かされそうSonna me de miraretara misukasaresou.死臭で冷えた体暖められてくShishuu de hieta karada atatamerareteku.魔性の天使乾いた肌に沁み込んでゆくざわめきMashou no tenshi kawaita hada ni shimikondeyuku zawameki.魔性の天使不协和音の果てしない狂気眠らせてMashou no tenshi fukyoowaon no hateshinai kyooki nemurasete.中文..机械装置的笼中鸟梦的边缘在夜里怀抱着时间的记忆羽翼挣扎着却仍笑着蓝色的蝴蝶连安魂曲也准备了吧或许会被这样的双眼看穿死臭冰冷的躯体也变得温暖魔性的天使从干枯的肌肤里缓缓渗入魔性的天使不协和音的无尽狂气沈沈睡去如果发光的水泡能将黑暗溶解这瞬间希望能与你一同欢笑预言者说着森林的寓言如幻梦般变化创造出神话魔性的天使跳著舞在『眼间』呢喃魔性的天使不协和音的无尽狂气沈沈睡去或许会被这样的双眼看穿死臭冰冷的躯体也变得温暖魔性的天使从干枯的肌肤里缓缓渗入魔性的天使不协和音的无尽狂气沈沈睡去魔性の天使Mashou no Tenshi 歌:三桥加奈子(奇犽) Sung by Mitsuhashi Kanako (Killua) 机械仕挂けの笼の鸟梦の渊 机械装置的笼中鸟梦的边缘 ki ka i ji ka ke no ka go no to ri yu me no u chi. 时の记忆が夜に抱かれる 在夜里怀抱着时间的记忆 to ki no ki o ku ga yo ru ni da ka re ru. 羽をもがれて笑っている青い蝶 羽翼挣扎着却仍笑着蓝色的蝴蝶 ha ne o mo ga re te wa ra tte ru a o i cho o. 镇魂歌(レクイエム)でも用意しようか 连安魂曲也准备了吧 re ku i e mu de mo yo o i shi yo u ka. そんな目で见られたら见透かされそう 或许会被这样的双眼看穿 so n na me de mi ra re ta ra mi su ka sa re so u. 死臭で冷えた体暖められてく 死臭冰冷的躯体也变得温暖 shi shu u de hi e ta ka ra da a ta ta me ra re te ku. 魔性の天使乾いた肌に沁み込んでゆくざわめき 魔性的天使从干枯的肌肤里缓缓渗入 ma sho u no te n shi ka wa i ta ha da ni shi mi ko n de yu ku za wa me ki. 魔性の天使不协和音の果てしない狂気眠らせて 魔性的天使不协和音的无尽狂气沉沉睡去 ma sho u no te n shi fu kyo o wa o n no ha te shi na i kyo o ki ne mu ra se te. 光る水泡(みなわ)に暗闇が溶けるならこのまま君と笑っていたい 如果发光的水泡能将黑暗溶解这瞬间希望能与你一同欢笑 hi ka ru mi na wa ni ku ra ya mi ga to ke ru na ra ko no ma ma ki mi to wa ra tte i ta i. 预言者が语りだす树海(もり)の寓话(ぐうわ)が幻梦(まぼろし)に変わるなら 神话が生まれる 预言者说着森林的寓言如幻梦般变化创造出神话 yo ge n sha ga ka ta ri da su: "mo ri no gu u wa ga ma bo ro shi ni ka wa ru na ra shi n wa ga u ma re ru". 魔性の天使カルマが踊るその眼间(まなかい)つぶやく 魔性的天使跳着舞在『眼间』呢喃 ma sho u no te n shi ka ru ma ga o do ru so no ma na ga i de tsu bu ya ku. 魔性の天使不协和音の果てしない狂気眠らせて 魔性的天使不协和音的无尽狂气沉沉睡去 ma sho u no te n shi fu kyo o wa o n no ha te shi na i kyo o ki ne mu ra se te. そんな眼(め)で见られたら见透かされそう 或许会被这样的双眼看穿 so n na me de mi ra re ta ra mi su ka sa re so u. 死臭で冷えた体暖められてく 死臭冰冷的躯体也变得温暖 shi shu u dehi e ta ka ra da a ta ta me ra re te ku. 魔性の天使乾いた肌に沁み込んでゆくざわめき 魔性的天使从干枯的肌肤里缓缓渗入 ma sho u no te n shi ka wa i ta ha da ni shi mi ko n de yu ku za wa me ki. 魔性の天使不协和音の果てしない狂気眠らせて 魔性的天使不协和音的无尽狂气沉沉睡去 ma sho u no te n shi fu kyo o wa o n no ha te shi na i kyo o ki ne mu ra sete 编曲佐桥俊彦 中文《魔性的天使》,日文《魔性の天使》,《Hunter X Hunter》中奇犽的角色歌,由全职猎人1999年日本ANIMATION公司制作动画声优三桥加奈子演唱。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

INVITED SURVEY PAPER Special Issue on Algorithm Engineering:SurveysWhat Structural Features Make Graph Problems to Have Efficient Parallel Algorithms?—Using Outerplanar Graphs,Trapezoid Graphs and In-Tournament Graphsas Examples—Shigeru MASUYAMA†and Shin-ichi NAKAYAMA††,MembersSUMMARY This paper analyzes what structural features of graph problems allow efficient parallel algorithms.We survey some parallel algorithms for typical problems on three kinds of graphs,outerplanar graphs,trapezoid graphs and in-tournament graphs.Our results on the shortest path problem,the longest path problem and the maximumflow problem on outerplanar graphs,the minimum-weight connected dominating set problem and the coloring problem on trapezoid graphs and Hamiltonian path and Hamiltonian cycle problem on in-tournament graphs are adopted as working examples.key words:parallel graph algorithms,structure and complexity, outerplanar graph,trapezoid graph,in-tournament graph1.IntroductionDespite recent drastic increase of computing power available due to the development of computer technolo-gies,a number of computationally intensive applica-tions such as computer graphics,image processing,sim-ulations on the global environment,etc.,require much more computing power,which strongly motivates the research on parallel computation.A parallel algorithm is used in parallel computation executed on a paral-lel computer having multiple processors.It is known that an efficient parallel algorithm can be designed for a problem if it is decomposable into independently solv-able subproblems,i.e.,if divide-and-conquer is appli-cable.Moreover,some parallel algorithm design tech-niques have been devised like pointer jumping,prefix computation,balanced binary tree,Euler tour tech-nique and tree contraction,etc.(see e.g.,[14],[19], [36]).However,we still do not have enough knowledge to develop efficient parallel algorithms for a variety of problems encountered in the real world.Thus it is de-sired that structural features of problems which enable us to develop efficient parallel algorithms are clarified.As an attempt to contribute to this purpose,this Manuscript received July13,1999.Manuscript revised November24,1999.†The author is with the Department of Knowledge-Based Information Engineering,Toyohashi University of Technology,Toyohashi-shi,441–8580Japan.††The author is with the Department of Mathematical Sciences,Faculty of Integral Arts and Sciences,The Uni-versity of Tokushima,Tokushima-shi,770–8502Japan.paper analyzes what structural features make graph problems to have efficient parallel algorithms.We con-sider,as working examples,three kinds of graphs,out-erplanar graphs,trapezoid graphs and in-tournament graphs,which are known to allow efficient parallel al-gorithms for a number of graph problems.We sur-vey some parallel algorithms for typical problems on these three kinds of graphs including our results,e.g., the shortest path problem,the longest path problem and the maximumflow problem on outerplanar graphs, the minimum-weight connected dominating set prob-lem and the coloring problem on trapezoid graphs and Hamiltonian path and Hamiltonian cycle problem on in-tournament graphs.By doing this we try to elucidate structural features to allow efficient parallel algorithms so that useful insight to develop efficient parallel graph algorithms is obtained.PRAM(Parallel Random Access Machine,see e.g., [14],[19])is adopted as a parallel computation model throughout this paper,which is a kind of SIMD(Single Instruction Stream,Multiple Data Stream,see e.g., [14],[19])consisting of multiple processors with shared memory(see Fig.1).PRAMs are classified into the fol-lowing four classes with respect to access control on the shared memory:CRCW-PRAM,CREW-PRAM, ERCW-PRAMand EREW-PRAM,where C,E,R de-notes concurrent,exclusive,read and write,respec-tively(see e.g.,[14]).Theoretical computer scientistsFig.1PRAM.prefer PRAMfor design and analysis of parallel algo-rithms as,by this model,we can concentrate on the intrinsic parallelism in the problem under considera-tion without much worry about communication aspectamong processors which depends on the adopted par-allel architecture.In other words,we adopt divide-and-conquer strategy and concentrate,in this paper,on nonarchitectural aspects of the parallel computation.General background for developing parallel algo-rithms are found in e.g.,Refs.[14],[19],[36]and the reader may refer to e.g.,Refs.[3],[5],[18]on terminol-ogy on graph theory.2.Parallel Algorithms on Outerplanar Graphs The class of outerplanar graphs is a subclass of that of series-parallel graphs,a subclass of planar graphs. More efficient parallel algorithms than those for series-parallel graphs can often be obtained on outerplanar graphs by utilizing their structural features.An out-erplanar graph is an undirected graph where each bi-connected component can be embedded into the planeso that its peripheral(a cycle)has no diagonals which mutually intersect(see Fig.2).A graph has page num-ber one,i.e.,there exists a linear arrangement of ver-tices so that no pair of edges are crossing when they are drawn on the same side of the linear arrangementof vertices(see e.g.,[4],[7],[37]).Note that this prop-erty has application to VLSI design(see e.g.,[37]).The structural feature which allows outerplanar graphs to have efficient algorithms is the followingtree structure among faces,in addition to the trivial tree structure of bi-connected components,where bi-connected components sharing some vertex is consid-ered to be adjacent:For each bi-connected component G i,let T i=(V i,E i)where V i is the set of vertices each of which corresponds to a face and(u,v)in E i if and only if faces corresponding to u,v share someedge.Then T i is a tree(see e.g.,[14]).This makes divide-and-conquer applicable for developing parallelFig.2Outerplanar graph.algorithms,i.e.,first a local solution is constructed for each face and then a solution for T i is constructed in a bottom-up fashion from leaves to the root of T i by applying some standard parallel algorithm design tech-nique,e.g.,tree contraction.Finally,by also utilizing the aforementioned tree structure representing the rela-tion among bi-connected components,the solution for the given outerplanar graph is constructed in a manner similar to the case for each bi-connected component.Note that a number of efficient parallel algorithms customized for series-parallel graphs have a restriction so that two terminals,denoted by s,t,arefixed to those of series-parallel graphs.However,parallel algorithms may be devised on outerplanar graphs without such a restriction.The peripheral of a bi-connected component of an outerplanar graph can be obtained by using st number-ing[25],where st numbering is a one-to-one mapping from V to the set of integers{1,2,...,n}satisfying the following conditions[25](see Fig.3).(1)f(s)=1,f(t)=n.(2)For each vertex v∈V−{s,t},v is adjacent to some vertices v1,v2satisfying f(v1)<f(v)<f(v2).A graph G has an st numbering if and only if G is bi-connected[25].st numbering is a very useful tool for developing efficient parallel algorithms for a number of problems on bi-connected graphs,e.g.,centering prob-lem[31],which asks to construct a spanning tree T of a graph where the center,i.e.,the vertex from which the farthest vertex is the shortest,comes to the given vertex r.Note that st numbering can be obtained in O(log n)time using O(nα(m,n)/log n)processors on an ARBITRARY CRCW-PRAM[13].Hereα(m,n)de-notes the inverse of Ackermann function.This function increases very slowly with respect to m and n.It is obvious that a Hamiltonian cycle always exists in a bi-connected outerplanar graph as the peripheral of a bi-connected outerplanar graph is a Hamiltonian cycle.In addition to this,it is known that a bi-connected outer-planar graph having at least three vertices has a vertex with degree two[27].Consequently,for a bi-connected outerplanar graph,let a vertex with degree two be s and let a vertex adjacent to s be t,and execute st number-Fig.3st-numbering.MASUYAMA and NAKAYAMA:WHAT STRUCTURAL FEATURES MAKE GRAPH PROBLEMS543Fig.4A parallel algorithm for the shortest path on outerpla-nar graph.ing from1to n,we can prove that an edge{i,i+1} exists for each i,0≤i≤n−1,where vertex numbers are assigned by st numbering.Thus,if G is outerpla-nar,edge{i,i+1},i=1,···,n−1and{n,1},where vertex numbers are assigned by st numbering,exist and constructs Hamiltonian cycle C,which becomes the pe-ripheral.A parallel algorithm for obtaining the shortest path between any pair of vertices s,t in outerplanar graphs was proposed in[29]which runs in O(log n) time with O(n log log n/log n)processors on a CRCW PRAM.Outline of the algorithm is as follows(see Fig.4). Algorithm Shortest-Path1.Find the peripheral C of G by st numbering.2.Construct a circular list consisting ofvertexFig.5Rake operation.numbers1,2,...,n by generating a pointer for each edge{i,i+1},i=1,...,n−1and{n,1}constructing Hamiltonian cycle C in order to assign vertex number1 to vertex s.Vertices1,2,...,n are arranged clockwise on C and edges except those on C exist inside of C.3.Obtain array LEN(j),which shows the distance from s to j,to compute the distance between each pair of vertices on the peripheral by using prefix computa-tion on the list L i where the length of each edge{i−1,i} is stored.4.Construct directed cycles C1,...,C k by using numbers assigned to vertices as follows:Construct a di-rected graph G =(V ,E ),from G by orienting edges on C from i to i+1,i=1,...,n,where n+1is consid-ered to be1and adding two directed edges(j,k)and (k,j)for each diagonal{i,j}(see Fig.4(a)).C1,...,C k are directed cycles each of which corresponds to a face in C and each edge is an edge of G =(V ,E ).5.Construct tree T G whose vertices are directed cycles C1,...,C k of G,each of which corresponds to a face(see Fig.4(b)).6.Obtain the main line and branches of T G.Here main line is the set of edges on path c1,...,c from root c1of T G to c where c corresponds to a cycle C having an edge entering t in G .Other edges in T G are branches,and vertices on path c1,...,c are main vertices.7.Let T∗i,i=1,...,k−1,k be a subtrees corre-sponding to a branch obtained by removing main ver-tex and edges incident to them from T pute the shortest distance between vertices a i,b i shared by subgraph G∗i of G corresponding to T∗i and a cycle cor-responding to a vertex on the main line.Here G∗i is a subgraph of G consisting of an undirected cycle corre-sponding to T∗i.Tree contraction which uses the rake operation[19]illustrated in Fig.5is used for computing the shortest distance(see e.g.,Fig.6).pute LEN (j)for obtaining the distance between each pair of vertices on the peripheral of G∗where G∗consists of two paths P1and P2from s to t on the peripheral and diagonals connecting them(see Fig.4(d)).9.By combining shortest paths for G∗i’s,obtain the shortest path in G∗and we have the shortest path in G.✷Nakayama et al.[28]proposed a parallel algorithm544IEICE TRANS.INF.&SYST.,VOL.E83–D,NO.3MARCH2000Fig.6Computation of shortest distance using rake operationof tree contraction.for obtaining the longest path between arbitrary ver-tices s,t in an outerplanar graph G which runs inO(log n)time with O(n3/log2n+M(n))processors on a CRCW-PRAM.Throughout this paper,M(n)denotes the number of processors needed to compute the product of two n×n matrices in O(log n)time. Note that the currently-known upper bound is M(n)= O(n2.396)[21].Then,we can embed G in the plane so that the peripheral comes outside and diagonals con-nects some vertices on the peripheral without intersec-tion.Hence we have two vertex-disjoint paths connect-ing s,t.Then we construct acyclic digraph G∗having the longest path with the same length as that of G(see e.g.,Figs.7,8which illustrate how to construct G∗). Finally,we apply the parallel algorithm[21]for obtain-ing the longest path in acyclic digraphs.An O(log n)time parallel maximumflow al-gorithm with O(n2/log n)processors on a CREW-PRAMis proposed by Ref.[30].We briefly sketch the algorithm assuming that G(Fig.9)is bi-connected. It is straightforward to combine results for each bi-connected component to have the globalflow in G[30]. Algorithm Max-Flow1.Obtain the peripheral of G by st numbering ina manner similar to Algorithm Shortest-Path.Assign serial numbers1,2,...,n to vertices of G by starting from s.If G has no diagonal,then go to6.2.Assign the direction to each edge on the periph-eral C of G from vertex having smaller number to that Fig.7Outerplanar graph G and a cyclic digraph G∗corre-sponding to G.Fig.8The construction of acyclic digraph G∗. having the larger number.Replace each diagonal with two directed edges having converse directions.And we have a directed graph(a digraph,for short)G .G is an Euler graph as each vertex has the equal in-degree and out-degree.Construct cycles C1,...,C k of G accord-ing to vertex numbers in a manner similar to Algorithm Shortest-Path.MASUYAMA and NAKAYAMA:WHAT STRUCTURAL FEATURES MAKE GRAPH PROBLEMS545 Fig.9Outerplanar graph G.Fig.10T G whose vertices corresponds to C1,...,C k.Fig.11˜G.3.Construct tree T G whose vertices corresponds toC1,...,C k(Figure10illustrates T G constructed fromG in Fig.9).4.Obtain the main line of T G connecting the cyclecontaining s and the cycle containing t,and branchesobtained by deleting the main line in a manner similarto Algorithm Shortest-Path.Let subgraph of G consisting of the face corre-sponding to the main line of T G be˜G(see Fig.11).If there is no branch,then go to6.5.Let subtrees of T G corresponding to branchesbe T1,...,T k obtained by removing main vertices andedges incident to them.for all i,1≤i≤k in parallel doObtain the maximumflow from x i to y i which arevertices shared by the subgraph G i corresponding to T iand˜G.Minimum x i-y i cuts are obtained in parallel as fol-lows:Construct T∗i by appending the following verticesand edges:vertex v∗r,n vertices v∗1 ,...,v∗n where nFig.12The modified dual graph˜G∗.is the number of edges on the peripheral of G i.Edges(v∗i,r i)where r i is the root of T i and(v j,v k)wherev j in T i corresponds to face˜C j and v k corresponds toperipheral edge ekof˜C j.By Euler tour technique,the distance from v∗r toeach leaf of T∗i is obtained(see Fig.13(b)).6.Obtain the modified dual graph˜G∗of˜G(seeFig.12).(Note that the maximumflow of the pri-mal graph corresponds to the shortest path of the dualgraph.)Here˜G∗is obtained as follows:First constructdual graph˜G d of˜G.Then remove vertex v∗of˜G d cor-responding to the infinite face of G and add verticesv∗up,v∗down instead,and connect them to each vertexadjacent to v∗on upper(and lower)peripheral of G dwhich corresponds to the forward-side(and rear-side,respectively,)edge of˜G(,respectively).7.Let the length (i∗,j∗)of each edge(i∗,j∗)of˜G∗be the capacity c(i,j)of the edge(i,j)of˜G corre-sponding to (i∗,j∗),and obtain the shortest path fromv∗up to v∗down in˜G∗.✷Isomorphism of outerplanar graphs as well as treescan be tested in O(log n)time with n/log n proces-sors on a CRCW-PRAMand in O(log2n)time withn/log2n processors on an EREW-PRAM[22],This es-tablishes thefirst optimal parallel algorithm for graphisomorphism for a nontrivial class of graphs.A gen-eral optimal and very simple parallel algorithm of tree546IEICE TRANS.INF.&SYST.,VOL.E83–D,NO.3MARCH 2000compression which is useful for other problems is also proposed therein.Gibbons et al.[15]showed that minimum edge coloring on outerplanar graphs is in NC .Minimum edge coloring in outerplanar graphs is used in [6]as a subproblem for solving edge coloring on series-parallel graphs.Chrobak et al.[8]considered the problem ofori-Fig.13(a)Construction of T ∗i ,(b)directed Eulerian circuit obtained from T ∗i .Fig.14Trapezoid diagram.enting the edges of a graph in such a way that the out-degree of each vertex is minimized.An orientation is called d -bounded if for each vertex in the graph the out-degree is at most d .The subgraph isomorphism problem for two-connected outerplanar graphs is shown to be in NC 3,a subclass of NC ([24]).Whether a given graph is outerplanar or not can be decided in O (log n )time with O (nα( ,n )/log n )pro-cessors on a CRCW P RAM using st numbering [32].Here α( ,n )denotes the inverse of Ackermann function.This algorithm is near optimum in the sense that the product of time complexity and space complexity is al-most linear,i.e.,O (nα( ,n ))which outperforms that of [26].By combining algorithms in [10],[13]and [21]we can also decide if a given graph is outerplanar or not in parallel by the same time complexity.However,the algorithm in [32]is much more simpler.3.Parallel Algorithms on Trapezoid GraphsA trapezoid diagram consists of two horizontal lines called the top channel and the bottom channel,respec-tively,and n trapezoids where each trapezoid T has two corners having x coordinates a (T )and b (T ),re-spectively,on the top channel and two corners having x coordinates c (T )and d (T ),respectively,on the bot-tom channel,respectively(see Fig.14).The trapezoid graph G =(V,E )is a graph where there exists a trape-zoid diagram and each vertex corresponds one-to-one to a trapezoid in the diagram and there is an edge (v,w )if and only if trapezoids corresponding to v and w inter-sect in the diagram [9](see Fig.15).This class of graphs was first introduced by Dagan et al.[9].Trapezoid graphs are a generalization of permuta-tion graphs in that each line corresponding to a vertex of a permutation graph can be regarded as a trapezoid both of whose upper bottom and lower bottom have length 0.Moreover,trapezoid graphs can also be re-garded as a generalization of interval graphs in that an interval corresponding to a vertex can be regarded as a trapezoid of height 0where upper and lower bottoms coincide.Thus there is a possibility that some efficient algorithm may be obtained for a problem in trapezoidMASUYAMA and NAKAYAMA:WHAT STRUCTURAL FEATURES MAKE GRAPH PROBLEMS547Fig.15Trapezoid graph.graphs if it has some efficient algorithms in such graphs.One of the outstanding structural feature of atrapezoid graph is its co-comparability[9],where agraph G is co-comparable if and only if its comple-mentary graph G c has an antisymmetric and transitiveorientation F[16].This structural feature allows trape-zoid to have efficient parallel algorithms for a numberof graph problems.Note that minimum coloring of a trapezoid graph arises in a channel routing problem in VLSI design[12]. Given some labeled terminals on the upper and lower side of a two-sided channel,terminals with the same label will be connected in a common net.Such a net may be modeled by a trapezoid connecting the right-most resp.leftmost terminals with the same s then may be routed without intersection if and only if the corresponding trapezoids do not intersect,i.e.,if and only if they are independent.The number of col-ors needed to color the trapezoid graph is the number of layers needed to route the nets without intersection[12].In Ref.[34],we developed a parallel algorithm for solving minimum coloring which runs O(log2n)time with O(n3/log n)CREW-PRAMprocessors.This al-gorithm is based on the fact that minimum coloring on a graph G is equivalent to the decomposition prob-lem into cliques on the complementary graph of G.In particular,a clique corresponds to a path in the com-plementary graph with an orientation of a trapezoid graph by the aforementioned co-comparability.Conse-quently,minimum coloring is reduced to minimum path cover.In order to solve minimum path cover in the complementary graph with an orientation,let a point r i=(a(T i),c(T i))corresponding to a left-side edge of trapezoid T i be red,while let a point w i=(b(T i),d(T i)) corresponding to a right-side edge of trapezoid T i be white,and draw them in the plane.Then,trapezoids T i and T j do not intersect if and only if red point r j corresponding to trapezoid T i dominates white point w i corresponding to trapezoid T j(see Fig.16),where point p=(x,y)dominates point q=(z,u)if and only if z<x and y<u.Let r∈R can be matched with w∈W if and only if r dominates w and obtain the maximum matching, where R(W)is the set of red points(white points, respectively).Minimum coloring is obtained from the result.Nakayama et al.[33]proposed an O(log2n)time algorithm for solving minimum connected dominating Fig.16The geometric representation of the trapezoid graph in the plane.set using O(n3)processors on a CREW PRAMon weighted trapezoid graphs,i.e.,trapezoid graphs where each vertex has a weight.We utilize the fact that each path connecting an edge corresponding to the source pair and that corresponding to sink pair cor-responds to a connected dominating set,and we obtain the minimum connected dominating set by computing the shortest path among them.Parallel algorithms for minimum connected domi-nating set as well as independent dominating set,total dominating set on unweighted trapezoid graphs were proposed by Liang[23].They run in O(log2n)time on an EREW-PRAMwith O(max{n3/log2n,n2.376})pro-cessors for the independent domination problem,and O(max{nm2/log2n,m2.376})processors for the other domination problems,where m is the number of edges in a trapezoid graph of n vertices.4.Parallel Algorithms on In-TournamentA tournament graph(a tournament,for short)is a directed graph obtained by assigning orientation to each edge of a complete graph(see Fig.17).An in-tournament,a super class of a tournament,is a directed graph where if both(x,z)and(y,z)exists,then ex-actly one of(x,y)or(y,x)exists which always holds for tournaments.This structural feature makes some path problems including Hamiltonian path to have ef-ficient parallel algorithms.We developed,on an EREW-PRAM,an O(log2n) time algorithm using M(n)processors for deciding if a Hamiltonian path exists or not on in-tournament and construct it if it exists,and an O(log n)time Hamilto-nian cycle detection algorithm,which also construct it if it exits,using O(n+m)processors when a Hamilto-nian path is given as an input[35].Our algorithm is based on the following lemma.548IEICE TRANS.INF.&SYST.,VOL.E83–D,NO.3MARCH2000Fig.17In-tournament.Lemma1[2]:Connected in-tournament D has a Hamiltonian path if and only if D has an in-branching as a subgraph.Here in-branching is a directed graph where each vertex except root r has out-degree1,hav-ing no cycle,r can be reached by a directed path from any vertex.✷We only outline the aforementioned parallel Hamil-tonian path detection and construction algorithm as follows.Algorithm Hamiltonian-Path1.Construct an acyclic graph by making a vertex for each strongly connected component.2.Let a vertex with out-degree0be root r,re-verse the direction of each edge and execute breadth-first search to have an in-branching.3.Decompose the in-branching into subgraphs D1,D2,...,D s each of which consists of two merging paths.4.For each D i in parallel,obtain Hamiltonian pathH i.5.Merge H1,H2,...,H s to construct a Hamilto-nian path.✷Based on the Hamiltonian path x1,x2,···,x n con-structed by the above algorithm,a Hamiltonian cycle is constructed as follows:By replacing pair of backward edges(x j,x i),x i< x j with path x1,x2,···,x n,a path from x n to x1is constructed,andfinally a Hamiltonian path x1,···,x n,···,x1is constructed.5.ConclusionSome other special cases of graphs including chordal graphs(see e.g.,[20]),partial k-trees(see e.g.,[38]), e.t.c.,may allow a number of graph problems to have efficient parallel algorithms.In particular,it may be interesting to consider efficient parallel algorithms in k-trapezoid and circle trapezoid graphs[12],which are extensions of trapezoid graphs.Currently,design of parallel algorithms is still not at the stage of technology but that of art.Thus refining the theory so that parallel algorithm can be designed more easily and systematically remains for future re-search.AcknowledgementThe authors are grateful to anonymous referees whose comments were greatly beneficial to improving this pa-per.This work was partially supported by the Grant-in-Aid by the Ministry of Education,Science,Sports and Culture of Japan.References[1] E.Bampis,Y.Manoussakis,and is,“NC algorithmsfor antidirected Hamiltonian paths and cycles in tour-naments,”put.,vol.21, pp.223–234,1996.[2]J.Bang-Jensen,J.Huang,and E.Prisner,“In-tournamentdigraphs,”binatorial Theory,Series B.,vol.59, pp.267–287,1993.[3] C.Berge,Graphes et Hypergraphes,Dunod,1970.[4] F.Bernalt and P.C.Kainen,“The book thickness of agraph,”binatorial TheorySer B,vol.27,pp.320–331, 1979.[5]J.A.Bondy and Murty,Graph Theory with Applications,MacMillan,1976.[6]Y.Caspi and E.Dekel,“Edge coloring series parallelgraphs,”J.Algorithms18,no.2,pp.296–321,1995.[7] F.R.K.Chung,F.T.Leighton,and A.L.Rosenberg,“Em-bedding graphs in books:A graph layout problem with applications to VLSI design,”SIAM J.Algebraic Discrete Methods,vol.8,pp.33–58,1987.[8]M.Chrobak and D.Eppstein,“Planar orientations with lowout-degree and compaction of adjacency matrices,”put.Sci.86,no.2,243–266,1991.[9]I.Dagan,M.C.Golumbic,and R.Y.Pinter,“Trapezoidgraphs and their coloring,”Discrete Applied Mathematics, vol.21,pp.35–46,1988.[10]K.Dicks,T.Hagerup,and W.Wrytter,“Optimal paral-lel algorithms for the recognition and coloring outerplanar graphs,”LNCS379,Springer,1989.[11]K.S.Easwarakumar,C.P.Rangan,and G.A.Cheston,“Alinear algorithm for centering a spanning tree of a bi-connected graph,”Information Processing Letters,vol.51, pp.121–124,1994.[12]S.Felsner,R.Muller,and L.Wernisch,“Trapezoid graphsand generalizations,geometry,and algorithms,”Discrete Applied Mathematics,vol.74,pp.13–32,1997.[13] D.Fussel,V.Ramachandran,and R.Thurimala,“Findingtriconnencted components by local replacement,”SIAM J.Compt.,vol.22,pp.587–616,1993.[14] A.Gibbons and W.Rytter,Efficient Parallel Algorithms,Cambridge University Press,1988.[15] A.Gibbons and W.Rytter,“Optimally edge-colouring out-erplanar graphs is in NC,”put.Sci.,vol.71, no.3,pp.401–411,1990.[16]M.C.Golumbic,Algorithmic Graph Theory and PerfectGraphs,Academic Press,1980.[17] D.J.Haglin and M.J.Wolf,“On convex subsets in tour-naments,”SIAM J.Discrete Math.,vol.9,no.1,pp.63–70, 1996.[18] F.Harary,Graph Theory,Addison-Wesley,1968.[19]J.J´a J´a,An Introduction to Parallel Algorithms,Addison-Wesley,1992.[20]P.N.Klein,“Efficient parallel algorithms for chordalMASUYAMA and NAKAYAMA:WHAT STRUCTURAL FEATURES MAKE GRAPH PROBLEMS549graphs,”SIAM put.vol.25,no.4,pp.797–827,1996.[21]Jan van Leewen,ed.,Handbook of Theoretical ComputerScience vol.A:Algorithms and Complexity,Elsevier,1990.[22] C.Levcopoulos, A.Lingas,O.Petersson,and W.Ryt-ter,“Optimal parallel algorithms for testing isomorphism of trees and outerplanar graphs,”Foundations of Software Technology and Theoretical Computer Science,pp.204–214, Lecture Notes in Comput.Sci.,vol.472,Springer,Berlin, 1990.[23]Y.D.Liang,“Parallel algorithms for the domination prob-lems in trapezoid graphs,”Discrete Appl.Math.vol.74, no.3,pp.241–249,1997.[24] A.Lingas and A.Proskurowski,“On parallel complexityof the subgraph homeomorphism and the subgraph isomor-phism problem for classes of planar graphs,”-put.Sci.,vol.68,no.2,pp.155–173,1989.[25]Y.Maon,B.Schieber,and U.Vishkin,“Parallel ear decom-position search(EDS)and st-numbering ib graphs,”Theo-retical Computer Science,vol.47,pp.277–298,1986. [26]S.Masuyama and S.Naito,“Deciding whether graph Ghas page number one is in NC,”Information Processing Letters,vol.44,pp.7–10,1992.[27]S.L.Mitchell,“Linear algorithms to recognize outerplanarand maximal outerplanar graphs,”Inf.Processing Lett., vol.9,pp.229–232,1979.[28]S.Nakayama and S.Masuyama,“A parallel algorithm forsolving the longest path problem in outerplanar graphs,”IEICE Trans.,vol.J78-D-I,no.6,pp.563–568,June1995. [29]S.Nakayama and S.Masuyama,“A parallel algorithm forfinding an st-shortest path in outerplanar graphs,”IEICE Trans.,vol.J78-D-I,no.11,pp.867–877,Nov.1995.[30]S.Nakayama and S.Masuyama,“A parallel algorithm forfinding the maximumflow in outerplanar graphs,”IEICE Trans.,vol.J79-D-I,no.5,pp.226–236,May1996.[31]S.Nakayama and S.Masuyama,“A parallel algorithm forcentering a spanning tree of a biconnencted graph,”IEICE Trans.,vol.J79-D-I,no.5,pp.299–302,May1996.[32]S.Nakayama and S.Masuyama,“A simple near optimalparallel algorithm for recognizing outerplanar graphs,”J.Math.Tokushima University,vol.30,pp.71–80,1996. [33]S.Nakayama and S.Masuyama,“A parallel algorithm forfinding a minimum-weight connected dominating set on trapezoid graphs,”Mathematica Japonica,vol.45,no.1, pp.165–171,1997.[34]S.Nakayama and S.Masuyama,“A parallel algorithm forsolving the coloring problem on trapezoid graphs,”Infor-mation Processing Letters62,pp.323–427,1997.[35]S.Nakayama and S.Masuyama,“Parallel algorithms forfinding a Hamiltonian path and a Hamiltonian cycle in an in-tournament graph,”IEICE Trans.Fundamentals, vol.E81-A,no.5,pp.757–767,May1998.[36]J.H.Reif,ed.,Synthesis of Parallel Algorithms,MorganKaufmann,1993.[37]M.Yanakakis,“Embedding planar graphs in four pages,”put.System Sci.,vol.38,pp.36–67,1989.[38]X.Zhou,S.Nakano,and T.Nishizeki,“Edge-coloring Par-tial k-trees,”J.Algorithms,vol.21,pp.598–617,1996.Shigeru Masuyama is a Professorat the Department of Knowledge-BasedInformation Engineering,Toyohashi Uni-versity of Technology.He received theB.E.,M.E.and D.E.degrees in Engineer-ing(Applied Mathematics and Physics)from Kyoto University,in1977,1979and1983,respectively.He was with the De-partment of Applied Mathematics andPhysics,Faculty of Engineering,KyotoUniversity from1984to1989.He joined the Department of Knowledge-Based Information Engineering, Toyohashi University of Technology in1989.His research in-terest includes computational graph theory,combinatorial opti-mization,parallel algorithms and natural language processing. Dr.Masuyama is a member of the OR society of Japan,the In-formation Processing Society of Japan,the Institute of Systems, Control,Information Engineers of Japan and the Association for Natural Language Processing ofJapan.Shin-ichi Nakayama is a Lecturerat the Department of Mathematical Sci-ences,the University of Tokushima.Hereceived B.E.,M.E.and Dr.of Engineer-ing from Toyohashi University of Technol-ogy,in1991,1993and1996,respectively.His research interests include graph the-ory,network theory and parallel algo-rithms.。

相关文档
最新文档