山东省新泰市2015届九年级上学期期末模拟考试数学试题
2015届九年级上期末考试数学试题
九年级期末质量监测一、选择题(本题有12小题,每小题4分,共48分)每小题只有一个答案是准确,请将准确答案的代号填入下面的表格里1.一元二次方程240x -=的解为( ) A .12x =,22x =-B .2x =-C . 2x =D .12x =,20x =2.抛物线1)3(22+-=x y 的顶点坐标是( )A.(3, 1)B.(3,-1)C.(-3, 1)D.(-3, -1) 3.点M (2,-3)关于原点对称的点N 的坐标是: ( ) A.(-2,-3) B.(-2, 3) C.(2, 3) D.(-3, 2) 4.已知圆的半径为3,一点到圆心的距离是5,则这点在( )A .圆内B .圆上C .圆外D .都有可能 5.用配方法解方程2420x x -+=,下列配方准确的是( ) A .2(2)6x -= B .2(2)2x +=C .2(2)2x -=-D .2(2)2x -=6.下列平面图形中,既是轴对称图形,又是中心对称图形的是 ( )7.抛物线23y x =向右平移1个单位,再向下平移2个单位,所得到的抛物线是( )A. 23(1)2y x =++ B. 23(1)2y x =+- C. 23(1)2y x =-- D. 23(1)2y x =-+8.某品牌服装原价173元,连续两次降价x%后售价为127元,下面所列方程中准确的是( )A . 173(1+x%)2=127 B .173(1-2x%)=127C . 127(1+x%)2=173D .173(1-x%)2=127 9.一个布袋里装有6个只有颜色不同的球,其中2个红球,4个白球.从布袋里任意摸出1个球,则摸出的球是白球的概率为( )A.21B.51 C. 31 D.3210.一个圆锥的母线长为10,侧面展开图是半圆,则圆锥的侧面积是( )A .10πB .20πC .50πD .100π11.三角形两边长分别为2和4,第三边是方程x 2-6x+8=0的解,•则这个三角形的周长是( ) A .10 B .8或10 C .8 D .8和1012.如图是二次函数y =ax 2+bx +c 图象的一部分,图象过点A (-3,0),对称轴为x =-1.给出四个结论:①b 2> 4ac ;②2a+b=0;③a-b +c=0;④5a < b .其中准确结论有( )A .1个B .2个C .3个D .4个二、填空题(本题有6小题,每小题4分,共分24分)13.二次函数2)1(2+-=x y 的最小值是 .14.已知关于x 方程x 2-3x +m =0的一个根是1,则它的另一个根是______.15.如图,A 、B 、C 为⊙O 上三点,且∠OAB=55°,则∠ACB 的度数是_______度.16.⊙O 的直径为10,弦AB=6,P 是弦AB 上一动点,则OP 的取值范围是 . 17.现有6张正面分别标有数字—1,0,1,2,3,4的不透明卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为a ,则使得关于x 的一元二次方程2220x x a -+-=有实数根,且关于x 的分式方程11222ax x x-+=--有解的概率为 .18.如图,△ABC 绕点A 顺时针旋转45°得到△AB′C′,若∠BAC=90°,AB=AC=22,则图中阴影部分的面积等于 . 三、解答题:19.解方程:02632=--x xBO AC15题图18题图20题图OPCBA20.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,ABC △的顶点都在格点上,点C 的坐标为(41)-,. (1)把ABC △向上平移5个单位后得到对应的111A B C △, 画出111A B C △,并写出1C 的坐标;(2)以原点O 为对称中心,再画出ABC △关于原点O 对称的222A B C △,并写出点2C 的坐标.21.先化简,再求值:)211(1222x x xx x ++÷--,其中3-=x22.如图,AC 是⊙O 的直径,BC 是⊙O 的弦,点P 是⊙O 外一点,连接PB 、AB ,PBA C ∠=∠. 求证:PB 是O ⊙的切线;23.已知点A (3,3)在抛物线21433y x x =-+的图象上,设点A 关于抛物线对称轴对称的点为B .(1)求点B 的坐标; (2)求AOB ∠度数.24.某商场服装部销售一种名牌衬衫,平均每天可售出40件,每件盈利50元.为了扩大销售,减少库存,商场决定降价销售,经调查,每件降价1元时,平均每天可多卖出2件. (1)若商场要求该服装部每天盈利2400元,尽量减少库存,每件衬衫应降价多少元? (2)试说明每件衬衫降价多少元时,商场服装部每天盈利最多.25.如图,抛物线y=-x 2+bx+c 与x 轴交于A (2,0),B (-4,0)两点. (1) 求该抛物线的解析式;(2) 若抛物线交y 轴于C 点,在该抛物线的对称轴上是否存在点Q ,使得△QAC 的周长最小?若存在,求出Q 点的坐标;若不存在,请说明理由.(3) 在抛物线的第二象限图像上是否存在一点P ,使得△PBC 的面积最大?,若存在,求出点P 的坐标及△PBC 的面积最大值;若不存,请说明理由.备用图九年级期末质量监测数 学 试 卷参考答案一、选择题(本题有12小题,每小题4分,共48分)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案AABCDBCDDCAB二、填空题(本题有6小题,每小题4分,共分24分)13、2 14、x=2 15、35 16、54≤≤OP 17、2118、424—三、解答题:(本大题共2个小题,每小题7分,共14分) 19、解: 3224366⨯+±=x -----------------------------3分61526±=3151±=----------------------------------7分 20、(1)图略,C 1(4, 4)------------------------------3分 (2)图略,C 2(-4,1)------------------------------7分四、解答题:(本大题共个4小题,每小题10分,共40分)21、解:原式=xx x x x x x 212)1()1)(1(2++÷--+-----------------3分=2)1(2)1()1)(1(+⋅--+x xx x x x --------------------5分=12+x ----------------------------------8分当3-=x 时,原式=—1------------------------10分22、(1) 20 ,图略----------------------------------2分(2) 126 ---------------------------------------4分(3)树状图或列表法略 ----------------------------8分21=p ------------------------------------10分 23、解:(1)设每件衬衫应降价x 元,由题意得:(50-x )(40+2x)=2400 解得:x 1=10 ,x 2=20因为尽量减少库存,x 1=10舍去答:每件衬衫应降价20元。
2015-2016学年九年级上学期数学期末检测试卷
word版数学⌒⌒D OBCE A 10题九年级上学期数学期末检测试卷时间:2小时满分:120分一、选择题,把各题正确答案的序号填在答题卡内(每题3分,共36分)序号 1 2 3 4 5 6 7 8 9 10 11 12 答案1.下列图形中既是轴对称图形,又是中心对称图形的是()A .等边三角形B.平行四边形C.正方形D.正五边形2.方程x2-2x=0的解为()A、x1=1,x2=2 B、x1=0,x2=1 C、x1=0,x2=2 D、x1=0.5,x2=23.用配方法解一元二次方程x2-4x=5的过程中,配方正确的是()A.(x+2)2=1 B.(x-2)2=1C.(x+2)2=9 D.(x-2)2=94.关于x的一元二次方程(a-5)x2-4x-1=0有实数根,则a满足( )A.a≥1B.a>1且a≠5C.a≥1且a≠5D.a≠55.已知二次函数y=-2(x﹣3)2 +1,下列说法:①其图象的开口向下;②其图象的对称轴为直线x=3;③其图象顶点坐标为(-3,1);④当x<3时,y随x 的增大而增大.则其中说法正确的有()A.1个B.2个 C.3个 D.4个6.将二次函数y=x²的图象向右平移2个单位,再向上平移1个单位,所得图象的表达式是()A.y=(x-2)² +1B.y=(x+2)² +1C.y=(x-2)² -1D.y=(x+2)² -17.已知二次函数y=ax2+bx+c的图象如图所示,对称轴是直线x=1.下列结论:①abc>O,②2a+b=O,③b2-4ac<O,④4a+2b+c>O,其中正确的是()A、①③B、只有②C、②④D、③④8.已知⊙O的半径为6,A为线段PO的中点,当OP=10时,点A与⊙O的位置关系为( )A.在圆上B.在圆外C.在圆内D.不确定9.如图,已知⊙O是△ABD的外接圆,AB是⊙O的直径,CD是⊙O的弦,∠ABD=58°,则∠BCD等于( )(第7题)(第9题)(第11题)10.如图,AB为⊙O的直径,弦CD⊥AB,垂足为E,下列结论中错误..的是()A.CE = DE B.AC=EDC.∠BAC=∠BAD D. BC=BD11.如图,△ABC内接于⊙O,AB=BC,∠ABC=120°,AD为⊙O的直径,AD=6,那么AB的值为()A、3B、C、D、212.在一个不透明的塑料袋中装有红色、白色球共40个,除颜色外其它都相同,小明通过多次摸球试验后发现,其中摸到红色球的频率稳定在15%左右,则口袋中红色球可能有()A、4个B、6个C、34个D、36个二、填空题(每题3分,共15分)13.若关于x的方程(m-2)x|m|+2x-1=0是一元二次方程,则m=________.14.已知点A(x1,y1)、B(x2,y2)在二次函数y=(x1)2+1的图象上,若x1>x2>1,则y1 y2(填“>”“=”或“<”)15.如图,△ABC是等腰直角三角形,BC是斜边,将△ABP绕点A逆时针旋转后,能与△ACP/ 重合,如果AP=3,那么PP/的长等于(第15题)16.已知点与点关于原点对称,则的值是_______.17.已知圆锥的母线长5,底面半径为3,则圆锥的侧面积为三、解答题(共69分)18.(本题8分)解方程:(1)x2-2x-2=0 (2)7x(5x-2)=3(5x-2)19.(本题5分)已知方程x 2-4x+m=0的一个根为-2,求方程的另一根及m 的值.20.(本题6分)“低碳生活,绿色出行”,自行车正逐渐成为人们喜爱的交通工具.某运动商城的自行车销售量自2014年起逐月增加,据统计,该商城1月份销售自行车64辆,3月份销售了100辆.若该商城前4个月的自行车销量的月平均增长率相同,问该商城4月份卖出多少辆自行车?21.(本题6分)“一方有难,八方支援”.非洲埃博拉病毒感染疫情牵动着中国人民的心,北京市某医院准备从甲、乙、丙三位医生和A、B两名护士中选取一位医生和一名护士支援非洲医疗工作.(1)若随机选一位医生和一名护士,用列表法表示所有可能出现的结果;(2)求恰好选中医生甲和护士A的概率.22.(本题6分)如图,点A 、B 的坐标分别为(0,0)、(4,0),将△ABC 绕点A 按逆时针方向旋转90º得到△AB ′C ′.(1)在所给的平面直角坐标系中画出旋转后的△AB ′C ′; (2)求点B 旋转到点B ′所经过的圆弧的长。
2015届山东省新泰市放城镇初级中学九年级上学期片区竞赛数学试卷(带解析)
试卷第1页,共9页绝密★启用前2015届山东省新泰市放城镇初级中学九年级上学期片区竞赛数学试卷(带解析)试卷副标题考试范围:xxx ;考试时间:143分钟;命题人:xxx学校:___________姓名:___________班级:___________考号:___________注意事项.1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、单选题(题型注释)1、若关于x 的一元二次方程有解,那么m 的取值范围是().A .B .C .且D .且二、选择题(题型注释)2、一渔船上的渔民在A 处看见灯塔M 在北偏东60°方向,这艘渔船以28km/时的速度向正东航行,半小时到B 处,在B 处看见灯塔M 在北偏东15°方向,此时,灯塔M 与试卷第2页,共9页渔船的距离是().A .B .C .D .3、△ABC 中,D 、E 、F 分别是在AB 、AC 、BC 上的点,DE ∥BC ,EF ∥AB ,那么下列各式正确的是( ).A.=B.=C.=D.=4、如图,直线l 和双曲线y =(k>0)交于A ,B 两点,P 是线段AB 上的点(不与A ,B重合),过点A ,B ,P 分别向x 轴作垂线,垂足分别是C ,D ,E ,连接OA ,OB ,OP ,设△AOC 面积是S 1,△BOD 面积是S 2,△POE 面积是S 3,则( ).A .S 1<S 2<S 3B .S 1>S 2>S 3C .S 1=S 2>S 3D .S 1=S 2<S 35、将一副三角板如图叠放,交点为O.则△AOB 与△COD 面积之比是( ).A .B .C .D .试卷第3页,共9页6、将抛物线y =x 2-6x +5向上平移2个单位长度,再向右平移1个单位长度后,得到的抛物线解析式是( ).A .y =(x -4)2-6B .y =(x -4)2-2C .y =(x -2)2-2D .y =(x -1)2-37、如图1,在正方形铁皮上剪下一个扇形和一个半径为1cm 的圆形,使之恰好围成图2所示的一个圆锥,则圆锥的高为().A .cm B .4cm C .cm D .cm8、由若干个同样大小的正方体堆积成一个实物,从不同侧面观察到如图所示的投影图,则构成该实物的小正方体个数为( ).A .6个B .7个C .8个D .9个9、准备两张大小一样,分别画有不同图案的正方形纸片,把每张纸都对折、剪开,将四张纸片放在盒子里,然后混合,随意抽出两张正好能拼成原图的概率是( ).A .B .C .D .10、下列说法中,①方程x(x -2)=x -2的解是x =1;②小明沿着坡度为1:2的山坡向上走了1000m ,则他升高了m ;③若直角三角形的两边长为3和4,则第三边的长为 5;④将抛物线向左平移2个单位后,得到的抛物线的解析式是,正确的命题有( ).A .0个B .1个C .2个D .3个试卷第4页,共9页11、某城市为了申办冬运会,决定改善城市容貌,绿化环境,计划用两年时间,使绿地面积增加44%,这两年平均每年绿地面积的增长率是( ). A .B .C .D .12、如图,AB 是半圆的直径,AB =2r ,C 、D 为半圆的三等分点,则图中阴影部分的面积是( ).A 、πr 2 B 、πr 2 C 、πr 2 D 、πr 213、如图,在平面直角坐标系中,点A 在第一象限,⊙A 与x 轴交于B (2,0)、C (8,0)两点,与y 轴相切于点D ,则点A 的坐标是( ).A .(3,5)B .(4,5)C .(5,3)D .(5,4)14、一个钢筋三角架三边长分别为20cm ,50cm ,60cm ,现要再做一个与其相似的钢筋三角架,而只有长为30cm 和50cm 的两根钢筋,要求以其中的一根为一边,从另一根截下两段(允许有余料)作为另两边,则不同的截法有( ). A .一种 B .两种 C .三种 D .四种15、如图,在直角坐标系中,矩形OABC 的顶点O 在坐标原点,边OA 在x 轴上,OC 在y 轴上,矩形OA′B′C′与矩形OABC 关于点O 位似,且矩形OA′B′C′的面积等于矩形OABC 面积的,那么点B′的坐标是 ( ).试卷第5页,共9页A .(2, )B .(-2,-)C .(2, )或(-2,)D .(2, )或(-2,-)16、下列函数:①;②;③;④,其中的值随值的增大而增大的函数有( ) .A .4个B .3个C .2个D .1个17、下列说法中正确的是 ( )A .等弦所对的弧相等B .等弧所对的弦相等C .圆心角相等,所对的弦相等D .弦相等,所对的圆心角相等18、直角三角形纸片的两直角边长分别为6,8,现将如图那样折叠,使点与点重合,折痕为,则的值是( ).A .B .C .D .19、已知反比例函数y =(a≠0)的图象,在每一象限内,y 的值随x 值的增大而减小,则一次函数y =-ax +a 的图象不经过( ).A .第一象限B .第二象限C .第三象限D .第四象限20、已知二次函数y=ax 2+bx+c (a≠0)的图象如图,且关于x 的一元二次方程ax 2+bx+c ﹣m=0没有实数根,有下列结论:①b 2﹣4ac >0;②abc <0;③m >2.其中,正确结论的个数是().试卷第6页,共9页A .0B .1C .2D .3试卷第7页,共9页第II 卷(非选择题)三、填空题(题型注释)21、把正方形ABCD 沿对角线AC 的方向移动到A 1B 1C 1D 1的位置,它们重叠部分的面积是正方形ABCD 的面积的一半,若AC=,则平移的距离是 .22、如图,直线AB 与半径为2的⊙O 相切于点C ,点D 、E 、F 是⊙O 上三个点,EF//AB ,若EF=2,则∠EDC 的度数为__________.23、y=自变量x 的取值范围是 .24、为解决停车难的问题,在如图一段长56米的路段开辟停车位,每个车位是长5米、宽2.2米的矩形,矩形的边与路的边缘成45°角,那么这个路段最多可以划出____个这样的停车位.(≈1.4)四、解答题(题型注释)试卷第8页,共9页25、(12分)如图,△OAB 是边长为2的等边三角形,过点A 的直线与x 轴交于点E .(1)求点E 的坐标;(2)求过 A 、O 、E 三点的抛物线解析式;(3)若点P 是(2)中求出的抛物线AE 段上一动点(不与A 、E 重合),设四边形OAPE 的面积为S ,求S 的最大值.26、(10分)如图,△ABC 是等腰三角形,AB=AC ,以AC 为直径的⊙O 与BC 交于点D ,DE ⊥AB ,垂足为E ,ED 的延长线与AC 的延长线交于点F.(1)求证:DE 是⊙O 的切线;(2)若⊙O 的半径为2,BE=1,求cosA 的值.27、(8分)如图,一次函数y=kx+b 的图象与坐标轴分别交于A ,B 两点,与反比例函数y=的图象在第二象限的交点为C ,CD ⊥x 轴,垂足为D ,若OB=2,OD=4,△AOB的面积为1.试卷第9页,共9页(1)求一次函数与反比例的解析式;(2)直接写出当x <0时,kx+b ﹣>0的解集.28、(8分)某商店经营一种小商品,进价为每件20元,据市场分析,在一个月内,售价定为25元时,可卖出105件,而售价每上涨1元,就少卖5件. (1)当售价定为30元时,一个月可获利多少元?(2)当售价定为每件多少元时,一个月的获利最大?最大利润是多少元?29、(10分)如图,四边形ABCD 中,AC 平分∠DAB ,∠ADC=∠ACB=90°,E 为AB 的中点,(1)求证:AC 2=AB•AD ; (2)求证:CE ∥AD ; (3)若AD=4,AB=6,求的值.参考答案1、D2、A.3、C.4、D.5、B.6、B.7、C.8、B.9、A.10、B.11、B.12、B.13、D.14、B.15、D.16、C.17、B18、C.19、C.20、D.21、.22、30°.23、.24、17.25、(1)(4,0);(2);(3)当时, .26、(1)详见解析;(2) .27、(1)y=﹣x﹣1;y=﹣;(2)x<﹣4.28、(1)800元;(2)当售价定为每件33元时,一个月的利润最大,最大利润是845元.29、(1)详见解析;(2)详见解析;(3).【解析】1、试题分析:∵关于x 的一元二次方程有解,∴判别式,m-20,解得:且.故选:D.考点:一元二次方程的判别式的应用.2、试题分析:由已知得,AB=×28=14海里,∠A=30°,∠ABM=105°.过点B作BN⊥AM于点N.∵在直角△ABN中,∠BAN=30°,∴BN= AB=7海里.在直角△BNM中,∠MBN=45°,则直角△BNM是等腰直角三角形.即BN=MN=7海里,∴BM= (海里).故选:A.考点:方位角.3、试题分析:根据题意画出图形,如图:∵DE∥BC,∴,故A、D错误;∵EF∥AB,∴△ABC≌△EFC,∴,故B错误;∵DE∥BC,EF∥AB,∴,∴,故C 正确;故选:C.考点:1、相似三角形的判定和性质;2、平行线分线段成比例定理.4、试题分析:根据双曲线的图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S= .结合题意可得:A、B都在双曲线y=上,则有S1=S2;而线段AB之间,直线在双曲线上方;故S1=S2<S3.故选:D.考点:反比例函数综合题.5、试题分析:∵直角三角板(含45°角的直角三角板ABC及含30°角的直角三角板DCB)按图示方式叠放,∴∠D=30°,∠A=45°,AB∥CD,∴∠A=∠OCD,∠D=∠OBA,∴△AOB∽△COD,设BC=a,∴CD=,∴S△AOB:S△COD=1:3.故选:B.考点:1、解直角三角形;2、相似三角形的性质.6、试题分析:抛物线y=x2-6x+5=,向上平移2个单位长度,即纵坐标加2,再向右平移1个单位长度,即横坐标减1,得到的抛物线解析式是,即y=(x-4)2-2.故选:B.考点:求抛物线的解析式.7、试题分析:∵半径为1cm的圆形,∴底面圆的半径为:1,周长为2π,扇形弧长为:2π=,∴R=4,即母线为4cm,∴圆锥的高为:(cm).故选:C.考点:圆锥的计算.8、试题分析:综合主视图,俯视图,左视图底面有4个正方体,第二层有2个正方体,第三层有个1正方体,所以搭成这个几何体所用的小立方块的个数是7.故选:B.考点:三视图.9、试题分析:设分成的四张纸片中,1和2为一张;3和4为一张;如图:那么共有12种情况,正好能拼成的占4种,概率是 .故选:A.考点:概率的求法.10、试题分析:①方程x(x-2)=x-2的解是x=1或x=2,故错误;②小明沿着坡度为1:2的山坡向上走了1000m,则他升高了200 m,故正确;③若直角三角形的两边长为3和4,则第三边的长为5或,故错误;④将抛物线y=-x2向左平移2个单位后,得到的抛物线的解析式是y=-(x+2)2,故错误;其中正确的命题有一个.故选:B.考点:命题与定理.11、试题分析:设这两年平均每年绿地面积的增长率是x,根据题意列方程得:,解得x=0.2=20%,x=-2.2舍去.故选:B.考点:一元二次方程的应用—增长率问题.12、试题分析:连接OC、OD.∵△COD和△CDA等底等高,∴S△COD=S△ACD.∵点C,D为半圆的三等分点,AB=2r,∴∠COD=180°÷3=60°,OA=r,∴阴影部分的面积=S扇形COD= .故选:B.考点:扇形面积的求法.13、试题分析:连接AD,AB,AC,再过点A作AE⊥OC于E,则ODAE是矩形,∵点A在第一象限,⊙A与x轴交于B(2,0)、C(8,0)两点,与y轴相切于点D,∴OB=2,OC=8,BC=6,∵⊙A与y轴相切于点D,∴AD⊥OD,∵由垂径定理可知:BE=EC=3,∴OE=AD=5,∴AB=AD=5,利用勾股定理知AE=4,∴A(5,4).故选:D.考点:1、垂径定理;2、勾股定理.14、试题分析:取30cm为一边,另两边设为xcm、ycm;(1)30cm与20cm对应,即,解得x=75,y=90;75+90>50,不可以.(2)30cm与50cm对应,即,解得x=12,y=36;12+36=48<50,可以.(3)30cm与60cm对应,即,解得x=10,y=25;10+25<50,可以.所以有两种不同的截法.故选:B.考点:相似三角形的性质.15、试题分析:根据位似图形的性质可知,当矩形OA′B′C′在第一象限时,, ,此时点B′的坐标为(2, );当矩形OA′B′C′在第四象限时,点B′的坐标为(-2,-).故选:D.考点:位似图形的性质.16、试题分析:①,y 随x 的增大而减小;②,y 随x 的增大而增大;③,在第二象限内,y 随x 的增大而增大;④,抛物线开口向下,在对称轴左侧,y 随x 的增大而增大,在对称轴右侧,y 随x 的增大而减小;所以满足条件的有两个.故选:C.考点:1、一次函数的增减性;2、反比例函数的增减性;3、二次函数的增减性.17、试题分析:A.一条弦可以对优弧,也可以对劣弧,故此项错误;B. 等弧所对的弦相等,这个命题是正确的;要强调在同圆或等园,相等的圆心角所对的弦才相等,相等的弦所对的圆心角也相等,故C 、D 错误.故选:B.考点:圆心角、弧、弦的关系.18、试题分析:根据题意,BE=AE .设BE=x ,则CE=8-x .在Rt △BCE 中,x 2=(8-x )2+62,解得x= ,故CE=8-= ,∴tan ∠CBE=.故选:C.考点:锐角三角函数.19、试题分析:根据反比例函数的性质可知,a >0,再根据一次函数的性质,y=-ax+a 与y 轴交于正半轴,-a <0,则直线y=-ax+a 随x 的增大而减小,所以图象经过第一、二、四象限,不经过第三象限.故选:C.考点:1、反比例函数的性质;2、一次函数的图象和性质.20、试题分析:①∵二次函数y=ax 2+bx+c 与x 轴有两个交点,∴b 2-4ac >0,故①正确; ②∵抛物线的开口向下,∴a <0,∵抛物线与y 轴交于正半轴,∴c >0,∵对称轴x=->0,∴ab<0,∵a<0,∴b>0,∴abc<0,故②正确;③∵一元二次方程ax2+bx+c-m=0没有实数根,∴y=ax2+bx+c和y=m没有交点,由图可得,m>2,故③正确.故选:D.考点:图象与二次函数的系数的关系.21、试题分析:∵重叠部分的面积是正方形ABCD面积的一半,即重叠部分与正方形的面积的比是1:2.则相似比是1:.∴C:AC=1:,∵AC=,∴A=AC-C=-1.故答案为:-1.考点:1、正方形的性质;2、相似三角形的性质.22、试题分析:连接OE、OC,设OC与EF的交点为M;∵AB切⊙O于C,∴OC⊥AB;∵EF∥AB,∴OC⊥EF,则EM=MF=;Rt△OEM中,EM=,OE=2;则sin∠EOM=,∴∠EOM=60°;∴∠EDC=∠EOM=30°.故答案为:30°.考点:1、切线的性质;2、解直角三角形.23、试题分析:要使函数有意义,则x-3≥0,x-4≠0,解得:x≥3且x≠4.故答案为:x≥3且x≠4.考点:函数自变量的取值范围.24、试题分析:如图,BC=2.2×sin45°=2.2×≈1.54米,CE=5×sin45°=5×≈3.5米,BE=BC+CE≈5.04米,EF=2.2÷sin45°=2.2÷≈3.1米,(56-5.04)÷3.1+1=50.96÷3.1+1≈16.4+1=17.4(个).故这个路段最多可以划出17个这样的停车位.故答案为:17.考点:特殊角的三角函数值.25、试题分析:(1)应用锐角三角函数求出点A的坐标,而后求出一次函数解析式,求出直线与x轴的交点E的坐标;(2)应用待定系数法列出方程组,求出a、b、c的值,得到二次函数解析式;(3)设点,根据用点P的坐标表示面积,整理得到S=,即当时, .试题解析:解:(1)作AF⊥x轴与F,∴OF=OAcos60°=1,AF=OFtan60°=,∴点A(1,),代入直线解析式,得,∴m=,∴,当y=0时,,得x=4,∴点E(4,0);(2)设过A、O、E三点抛物线的解析式为,∵抛物线过原点,∴c=0,∴,∴,∴抛物线的解析式为;(3)作PG⊥x轴于G,设,,,,,当时, .考点:1、一次函数的应用;2、二次函数综合题.26、试题分析:(1)证得OD⊥DE,根据切线的判定定理得到DE是⊙O的切线;(2)由OD//AE,得到,通过转换得到,解得FC的长,进而求得AF的长,应用锐角三角函数求出cosA的值.试题解析:解:(1)证明:连结AD、OD,∵AC是直径,∴AD⊥BC,∵AB=AC,∴D是BC的中点,又∵O是AC的中点∴OD//AB,∵DE⊥AB,∴OD⊥DE,∴DE是⊙O的切线;(2)由(1)知OD//AE,∴,∴,∴,解得FC=2,∴AF=6,∴cosA=.考点:1、切线的判定;2、平行线分线段成比例定理;3、锐角三角函数.27、试题分析:(1)根据△ABC的面积求出点A的坐标,把点A、B的坐标代入一次函数解析式求出k和b的值,即可得到一次函数的解析式;根据一次函数解析式求出点C的坐标,利用点C的坐标求出反比例函数解析式;(2)一次函数与反比例函数在第二象限的交点为C,根据点C的坐标得到kx+b﹣>0的解集.试题解析:解:(1)∵OB=2,△AOB的面积为1,∴B(﹣2,0),OA=1,∴A(0,﹣1),∴,解得:,∴y=﹣x﹣1,又∵OD=4,OD⊥x轴,∴C(﹣4,y),将x=﹣4代入y=﹣x﹣1得y=1,∴C(﹣4,1),∴1=,∴m=﹣4,∴y=﹣,答:一次函数解析式为y=﹣x﹣1,反比例函数解析式为y=﹣;(2)当x<0时,kx+b﹣>0的解集是x<﹣4.考点:1、待定系数法求解析式;2、一次函数与反比例函数的交点.28、试题分析:(1)首先表示每件的利润,再计算售价定为30元时一个月卖出的件数,每件的利润与一个月卖出的件数的积即为一个月的利润;(2)设售价为每件元时,一个月的获利为元,则每件的利润为(x-20)元,一个月卖出的件数为[105-5(x-25)]件,则y=(x-20)[105-5(x-25)],再求x为多少时,y有最大值,此时y的最大值是多少即可.试题解析:解:(1)获利:(30-20)[105-5(30-25)]="800" ,(2)设售价为每件元时,一个月的获利为元,由题意,得,当时,的最大值为845,故当售价定为每件33元时,一个月的利润最大,最大利润是845元.考点:二次函数的应用—利润问题.29、试题分析:(1)由相似三角形的判定证得△ADC∽△ACB,根据相似三角形的性质得AD:AC=AC:AB;(2)证得∠DAC=∠ECA,根据平行线的判定得CE∥AD;(3)由CE∥AD得到△AFD∽△CFE,应用相似三角形的性质得AD:CE=AF:CF,代入数值进行计算即可.试题解析:(1)证明:∵AC平分∠DAB,∴∠DAC=∠CAB,∵∠ADC=∠ACB=90°,∴△ADC∽△ACB,∴AD:AC=AC:AB,∴AC2=AB•AD;(2)证明:∵E为AB的中点,∴CE=AB=AE,∴∠EAC=∠ECA,∵∠DAC=∠CAB,∴∠DAC=∠ECA,∴CE∥AD;(3)解:∵CE∥AD,∴△AFD∽△CFE,∴AD:CE=AF:CF,∵CE=AB,∴CE=×6=3,∵AD=4,∴,∴.考点:相似三角形的判定和性质.。
2015年九年级学业水平模拟考试数学试题及答案
A .B .C .D .正面 2015年九年级学业水平模拟考试数 学 试 题本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷共2页,满分为45分;第Ⅱ卷共6页,满分为75分.本试题共8页,满分为120分.考试时间为120分钟.答卷前,请考生务必将自己的姓名、准考证号、座号、考试科目涂写在答题卡上,并同时将考点、姓名、准考证号、座号填写在试卷规定的位置.考试结束后,将本试卷和答题卡一并交回.本考试不允许使用计算器.第I 卷(选择题 共45分)注意事项:第Ⅰ卷为选择题,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案写在试卷上无效.一、选择题(本大题共15个小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.6-的绝对值是A .16B .16-C .6D .6-2.已知∠α=35°,则∠α的余角是A .35°B .55°C .65°D .145° 3.某反比例函数图象经过点(-1,6),则下列各点也在此函数图象上的是A .(-3,2)B .(3,2)C .(2,3)D .(6,1) 4.某红外线遥控器发出的红外线波长为0.000 000 94m ,用科学记数法表示这个数为 A .89.410-⨯mB. 89.410⨯mC. 79.410-⨯mD. 79.410⨯m5.如图所示,该几何体的俯视图是6.不等式组10420x x -≥⎧⎨->的解集在数轴上表示为7.把多项式34x x -分解因式所得的结果是A. 2(4)x x -B. (4)(4)x x x +-C. (2)(2)x x x +-D. (2)(2)x x +- 8.我市五月份连续五天的最高气温分别为23,20,20,21,26(单位: ℃ ),这组数据的中位数和众数分别是 A .22,26 B .21,20 C .21,26 D .22,20A. B.C. D.9.如图,半径为4cm 的定圆O 与直线l 相切,半径为2cm动圆P 在直线l 上滚动,当两圆相切时OP 的值是 A .4cmB .6cmC .2cmD .2cm 或6cm10.袋中装有编号为1,2,3的三个质地均匀、大小相同的球,从中随机取出一球记下编号后放入袋中搅匀,再从袋中随机取出一球,两次所取球的编号相同的概率为 A .91 B. 61 C. 31 D. 21 11.如图,直线l :y =x +2与y 轴交于点A ,将直线l 绕点A 逆时针旋转90º后,所得直线的解析式为A .y =-x +2B .y =x -2C .y =-x -2D .y =-2x -112.四边形ABCD 中,对角线AC ,BD 相交于点O ,给出下列四个条件:①AD ∥BC ;②AD =BC ;③OA =OC ;④OB =OD . 从中任选两个条件,能使四边形ABCD 为平行四边形的选法有 A .3种B .4种C .5种D .6种13.如图,正方形ABCD 中,AB =3,点E 在边CD 上,且CD =3DE .将△ADE 沿AE 对折至△AFE ,延长EF 交边BC 于点G ,连接AG , CF .下列结论:①点G 是BC 中点;②FG =FC ;③S △FGC =910. 其中正确的是A. ①B. ①③C. ②③D. ①②③14. 已知二次函数y =x 2+x +c 的图象与x 轴的一个交点为(1,0),则它与x 轴的另一个交点坐标是A .(1,0) B.(-1,0) C.(2,0) D.(-2,0)15.如图,△ABC 中,∠ABC =90°,AB =8,BC =6,点F ,D 是直线AC 上的两个动点,且FD =AC .点B 和点E 分别在直线AD 的两侧,AB =DE ,AB //DE ,当四边形BCEF 是菱形时AF 等于A. 75B. 145C. 5D. 4第Ⅱ卷(非选择题 共75分)注意事项:1.第Ⅱ卷为非选择题,请考生用蓝、黑色钢笔(签字笔)或圆珠笔直接在试卷上作答. l第9题图第11题图E 第13题图二、填空题(本大题共6个小题,每小题3分,共18分.把答案填在题中的横线上.)16260cos ︒=_____________. 17.计算:()233a -=____________.18.方程组27325x y x y +=⎧⎨-=⎩的解为______________.19.如图,在等腰直角三角形ABC 中,AB =AC =8,O 为BC 的中点,以O 为圆心作半圆,使它与AB ,AC 都相切,切点分别为D ,E ,则⊙O 的半径为_____________. 20.如图,已知一次函数y =kx +b 的图象经过点P (3,2),与反比例函数2y x=(x >0)的图象交于点Q (m ,n ).当一次函数y 的值随x 值的增大而增大时,m 的取值范围是___________.21.第1次从原点运动到点(1,1)3次接着运动到点(3,2),…,按这样的运动规律,经过第2015次运动后,动点P 的坐标是________________.三、解答题(本大题共7个小题,共57分.解答应写出文字说明、证明过程或演算步骤.)22.(本小题满分7分) 完成下列各题:(1)解方程:2430x x -+=.(1,1) (5,1) (9,1)(3,2)(7,2)(11,2)(2,0)(4,0)(6,0)(8,0) (10,0) (12,0)xyO…第21题图(2)计算:222111a a aa a -+--+.23.(本小题满分7分) 完成下列各题:(1)如图,点E ,F 在BC 上,BE =CF ,AB =DC ,∠B =∠C .求证:∠A =∠D .(2)如图,矩形ABCD 中,BC =8,对角线BD=10,求tan ∠ACB .24.(本小题满分8分)某校为了进一步开展“阳光体育”活动,分别用1200元购买了一批篮球和排球. 已知篮球单价是排球单价的1.5倍,且所购买的排球数比篮球数多10个. 篮球与排球的单价各多少元?A BCD第23(2)题图 第23(1)题图25.(本小题满分8分)某校为了解九年级学生体育测试情况,以九年级(1)班学生的体育测试成绩为样本,按A ,B ,C ,D 四个等级进行统计,并将统计结果绘制成如下的统计图,请你结合图中所给信息解答下 列问题:(说明:A 级:90分~100分;B 级:75分~89分;C 级:60分~74分;D 级:60分以下) (1)九年级(1)班体育测试的人数为_____________; (2)请把条形统计图补充完整;(3)扇形统计图中A 级所在的扇形的圆心角度数是_______________;(4)若该校九年级有500名学生,请你用此样本估计体育测试中A 级和B 级的学生人数约为_______________人.26.(本小题满分9分)如图1,菱形ABCD 中,30A ∠= ,边长AB =10cm ,在对称中心O 处有一钉子.动点P ,Q 同时从点A 出发,点P 沿A B C →→方向以每秒2cm 的速度运动,到点C 停止,点Q 沿A D →方向以每秒1cm 的速度运动,到点D 停止.P ,Q两点用一条可伸缩的细橡皮筋连接,设t 秒后橡皮筋扫过的面积为y cm 2. (1)当3t =时,求橡皮筋扫过的面积;(2)如图2,当橡皮筋刚好触及钉子时,求t 值; (3)求y 与t 之间的函数关系式.图2 图1 BC 24% DA等级527.(本小题满分9分)如图,在平面直角坐标系中,点A 的坐标为(2,0),点P是y 轴上一动点,以线段AP 为一边,在其一侧作等边三角形APQ ,当点P 运动到点O 时,点Q 记作点B .(1)求点B 的坐标;(2)当点P 在y 轴上运动(P 不与O 重合)时,请说明∠ABQ 的大小是定值; (3)是否存在点P ,使得以A ,O ,Q ,B 为顶点的四边形是梯形?若存在,请写出点P 的坐标;若不存在,请说明理由.28.(本小题满分9分)如图,在平面直角坐标系中,抛物线2(0)y ax bx c a =++≠经过 A (﹣1,0),B (3,0),C (0,3)三点,其顶点为D . 连接BD ,点P是线段BD 上一个动点(不与B ,D 重合),过点P 作y 轴的垂线,垂足为E ,连接BE . (1)求抛物线的解析式,并写出顶点D 的坐标;(2)如果点P 的坐标为(x ,y ),△PBE 的面积为S ,求S 与x 的函数关系式,并求出S的最大值;(3)在(2)的条件下,当S 取得最大值时,过点P 作x 轴的垂线,垂足为F ,连接EF ,把△PEF 沿直线EF 折叠,点P 的对应点为P ′,请求出点P ′ 的坐标.2015年九年级学业水平模拟考试数学试题参考答案一、选择题:16. 1 17. 9a 6 18. 32x y =⎧⎨=⎩, .19. 4 20. 1<m<3 21. (2015,2)三、解答题:22.(1)解法一:()()130x x --= ……………………………………1分10x -=或30x -= ……………………………………2分∴ 11x =,23x =. ……………………………………3分 解法二:移项,得243x x -=-配方,得24434x x -+=-+ ……………………………………1分()221x -=由此可得21x -=± ……………………………………2分 ∴ 11x =,23x = ……………………………………3分解法三:143a b c ==-=,,. ()224441340b ac -=--⨯⨯=>. ……………………………………1分21x ==±, ……………………………………2分等级5∴ 11x =,23x = ……………………………………3分(2)解:原式2(1)(1)(1)1a aa a a -=-+-+ ……………………………………1分111a aa a -=-++ ……………………………………2分 11a =-+ ……………………………………3分23.(1)证明:∵BE =CF ,∴BE +EF =CF +EF ,即BF =CE . ……………………………………1分 在△ABF 和△DCE 中,⎪⎩⎪⎨⎧=∠=∠=CE BF C B DC AB∴△ABF ≌△DCE , ……………………………………2分∴∠A =∠D . ……………………………………3分 (2)解:∵四边形ABCD 是矩形∴AC =BD =10, ……………………………………1分在Rt △ABC 中, AB6, ………………………………3分∴t an ∠ACB =6384AB BC ==. ……………………………………4分 24.解:设排球的单价为x 元,则篮球的单价为1.5x 元, ……………………………1分根据题意得12001200101.5x x-=. ……………………………4分 解方程得40x =. ……………………………6分 经检验,40x =是原分式方程的根. ……………………………7分 1.560x =.答:篮球单价为60元,排球单价为40元. …………………………8分 25.解:(1)50; ……………………………………2分 (2)条形图补充正确; ……………………………………4分 (3)72°; 分(4)330. 分26.解:(1)当3t =时,AP =6,AQ =3过P 作PM AD ⊥,则3PM = ……………………………………..2分11933222y PM AQ ∴=⋅⋅=⨯⨯= ……………………………………..3分(2)解法1:当橡皮筋刚好触及钉子时,12ABPQ ABCDS S =梯形菱形,. ………..4分 210BP t =-,AQ t =,()11210510522t t -+⨯=⨯⨯ …………………..5分 203t ∴=. …………………..6分 解法2:连结BD ,则△BOP ≌△DOQ∴BP =DQ ……..4 ∴21010t t -+= ……..5分 203t ∴=…….6分 (3)当05t ≤≤时,作PM ⊥AD 于M ,2AP t =,AQ t =,P M =t ,21122y AQ PM t == ………………….7分当2053t <≤时,10AB =,210PB t =-,AQ t =, 2101552522t t y t +-∴=⨯=- 当20103t <≤时, 如图3,作OE ∥AD .210BP t =-,AQ t =,5OE =,BEOP OEAQ y S S =+梯形梯形52105552222t t +-+=⨯+⨯154t =. …………..9分图2图327.解:(1)如图1,过点B 作BC ⊥OA ,垂足为C∵△OAB 为等边三角形,A 的坐标(2,0) ∴BO =OA =2,OC =1,∠BOC =60° ····················1分 ∴BC·······························2分 ∴B的坐标 ·····························3分 (2)∵△OAB 与△APQ 为等边三角形 ∴∠BAO =∠PAQ =60°∴∠BAQ =∠OAP ·······························4分 在△APO 和△AQB 中,∵AP =AQ ,∠PAO =∠QAB ,AO =AB∴△APO ≌△AQB (SAS ), ·······························5分 ∴∠ABQ =∠AOP =90°,∴当点P 在x 轴上运动(P 不与O 重合)时,∠ABQ 为定值90°; ····6分 (3)存在. ······························7分P 1 (0, ·······························8分P 2 ·······························9分 28. 解:(1)∵抛物线2(0)y ax bx c a =++≠经过A (﹣1,0)、B (3,0)、C (0,3)三点∴抛物线解析式为:223y x x =-++ ····························2分 ∴顶点D 的坐标为:(1,4) ····························3分 (2)设BD 的解析式为:(0)y kx b k =+≠,代入B ,D 的坐标∴BD 的解析式为:26y x =-+ ····························4分∴S =2111(26)3222PE OE xy x x x x ==-+=-+ ························5分 ∴S =239()24x --+∴当32x =时,S 取得最大值,最大值为94. ····························6分(3)如图,当S 取得最大值时32x =,点P 的坐标为(32,3) ∵PE ⊥y 轴,PF ⊥x 轴 ∴四边形PEOF 为矩形.作点P 关于EF 的对称点P ′,连接P ′E ,P ′F ;作P ′H ⊥y 轴于H ,P ′F 交y 轴于点M . 设MC =m ,则MF =m ,∴P ′M =3﹣m ,P ′E =32 ∴由勾股定理得:2223()(3)2m m +-=∴解得:m =158··························7分∵CM ·P ′H =P ′M ·P ′E ∴P ′H =910∵△EHP ′∽△HMP∴可得''EH EP EP EM =, EH =65 ········∴OH =69355-= ∴P ′坐标为(910-,95) ···························9分。
泰安市2015届九年级中考数学样题
试卷类型:A二○一五年初中学生学业考试模拟数学试题注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷4页为选择题,60分;第Ⅱ卷8页为非选择题,60分;共120分.考试时间120分钟.2.答第Ⅰ卷前务必将自己的姓名、考号、考试科目涂写在答题卡上.考试结束,试题和答题卡一并收回.3.第Ⅰ卷每题选出答案后,都必须用2B 铅笔把答题卡上对应题目的答案标号(ABCD )涂黑,如需改动,必须先用橡皮擦干净,再改涂其他答案,不能答在试卷上.第Ⅰ卷(选择题 共60分)一、选择题(本大题共20小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个,均记零分) 1.下列四个数中的负数是 A .﹣22B .C .(﹣2)2D .|﹣2|2.下列等式正确的是A .3232a a a a -÷=⋅ B. (a2)3= a 5C .22423a a a +=D .()222b a b a -=-3.下列图形,不是中心对称图形的为A B C D4.截至2015年3月底,某市人口总数已达到4 230 000人.将4 230 000用科学记数法表 示为A .0.423×107B .4.23×106C . 42.3×105D . 423×1045.下列几何体:圆柱 圆锥 球 正方体其中左视图是矩形的共有ABC DPR图(2)A BC D图(1)A . 1个 B. 2个 C . 3个 D.4个 6.图(1) 是四边形纸片ABCD ,其中∠B =120︒, ∠D =50︒.若将其右下角向内折出一∆PCR ,恰使CP//AB ,RC//AD ,如图(2)所示,则∠C 为 A .80︒ B .85︒ C .95︒ D .110︒7. 一渔船在海岛A 南偏东20°方向的B 处遇险,测得海岛A 与B 的距离为20海里,渔船将险情报告给位于A 处的救援船后,沿北偏西80°方向向海岛C 靠近,同时,从A 处出发的救援船沿南偏西10°方向匀速航行,20分钟后,救援船在海岛C 处恰好追上渔船,那么救援船航行的速度为 A . 10海里/小时 B .30海里/小时 C .20海里/小时 D . 30海里/小时第7题图 第8题图8.如图,Rt△ABC 中,∠C=90°,∠B=45°,AD 是∠CAB 的平分线,DE⊥AB 于E ,AB=a , CD=m , 则AC 的长为A . 2mB . a ﹣mC . aD . a+m9.某校九年级(1)班的60名同学为希望工程踊跃捐款.有15人每人捐30元、14人每人捐100元、10人每人捐70元、21人每人捐50元.在这次每人捐款的数值中,中位数是 A.30 B.40 C.50 D.6010、如图,在中,,∠BAD 的平分线交BC 于点E ,交DC 的延长线于点F ,BG ⊥AE ,垂足为G ,CEF 的周长为 A 、8 B 、9.5 C 、10 D 、11.5第11题图11.如图,平行四边形ABCD 的顶点B ,D 都在反比例函数y=(x >0)的图象上,点D 的坐标为(2,6),AB 平行于x 轴,点A 的坐标为(0,3),将这个平行四边形向左平移2个单位、再向下平移3个单位后点C 的坐标为A .(1,3)B . (4,3)C . (1,4)D . (2,4) 12.如图,二次函数c bx ax y ++=2(a ≠0)图象的一部分,对称轴为x =12,且经过点(2,0).下列结论:①ac <0,② 4a+2b+c <0, ③ a -b+c =0,④若(-2,y 1)(-3,y 2)是抛物线上的两点,则y 1<y 2. .其中正确结论的个数是 A .1 B .2 C .3 D .4第15题图13.如图,在△ABC 中,4BC =,以点A 为圆心,2为半径的⊙A 与BC 相切于点D ,交AB于点E ,交AC 于点F ,点P 是⊙A 上的一点,且∠EPF =45°,则图中阴影部分的面积为A . 8π+B .42π-C .4π-D .82π-14.在一个不透明的袋子中装有4个除颜色外完全相同的小球,其中白球1个,黄球1个,红球2个,摸出一个球不放回,再摸出一个球,两次都摸到红球的概率是A .12 B .13 C . 16 D .1815.如图,点O 是∠BAC 的边AC 上的一点,⊙O 与边AB 相切于点D ,与线段AO 相交于点E ,若点P 是⊙O 上一点,且∠EPD=35°,则∠BAC 的度数为A .20°B .35°C .55°D .70°16.如图,在矩形ABCD 中,AD AB >,将矩形ABCD 折叠,使点C 与点A 重合,折痕为MN ,连结CN .若BM=1,BC=5,则 MN 的长为A .2B .4 C.D.17.某工厂生产一种零件,计划在20天内完成,若每天多生产4个,则15天完成且还多生产10个.设原计划每天生产x 个,根据题意可列分式方程为 A . B .C .D .(第13题图)B (第16题图)18.如图,点P是▱ABCD边上一动点,沿A→D→C→B的路径移动,设P点经过的路径长为x,△BAP的面积是y,则下列能大致反映y与x的函数关系的图象是A.B.C. D .19. 若不等式组无解,则实数a的取值范围是A.a≥﹣1 B.a<﹣1 C.a≤1 D.a≤﹣120.如图,动点P从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P第2015次碰到矩形的边时,点P的坐标为A.(6,4)B.(5,0)C.(1,4)D.(8,3)试卷类型:A(18题图)泰安市二○一五年初中学生学业考试数 学 试 题第Ⅱ卷(非选择题 共60分)注意事项:1.答卷前将密封线内的项目填写清楚.2.第Ⅱ卷共5页,用蓝黑钢笔或圆珠笔直接答在答题纸上.二、填空题(本大题共4小题,满分12分.只要求填写结果,每小题填对得3分)21. 二元一次方程组的解为 .22.若关于x 的方程ax 2+2(a+2)x+a=0有实数解,那么实数a 的取值范围是 . 23. 如图,边长分别为3和5的两个正方形ABCD 和CEFG 并排放在一起,连结BD 并延长 交EG 于点T ,交FG 于点P ,则ET 的长为__________.24. 如图,如果从半径为3的圆形纸片剪去13圆周的一个扇形,将留下的扇形围成一个三、解答题(本大题共5题,满分48分.解答要写出必要的文字说明、证明过程或推演步骤)25.(本小题满分8分)某工厂开发了一种新产品,欲尽快生产9600件投入市场,该厂有甲、乙两个生产车间,甲车间每天生产的数量是乙车间的1.4倍,甲、乙两车间共同完成一半后,甲车间出现故障停产,剩下全部由乙车间单独完成,结果前后共用20天完成,求甲、乙两车间每天分别能生产多少件该产品?(第24题图) 剪去26.((本小题满分8分)如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,A、C分别在坐标轴上,点B的坐标为(2,4),直线y=﹣2x+6交AB,BC分别于点M,N,反比例函数kyx的图象经过点M.(1)求反比例函数的解析式,并验证N点在该反比例函数图像上;(2)若点P在y轴上,且△OPM的面积与四边形BMON的面积相等,求点P的坐标.27.(本小题满分10分)已知,点P是直角三角形ABC斜边AB上一动点(不与A,B重合),分别过A,B向直线CP作垂线,垂足分别为E、F.(1)当点P为AB的中点时,如图1,连接AF、BE.证明:四边形AEBF是平行四边形;(2)当点P 不是AB的中点,如图2,Q是AB的中点.证明:△QEF为等腰三角形.28.(本小题满分11分)在□ABCD 中,点E 在BC 边上,点F 在BC 边的延长线上,且BE CF =. (1)求证:MA=MF ;(2)连接AF ,分别交DE 、CD 于M 、N ,若B AME ∠=∠, 求证:ND ME AD MN ⋅=⋅ADEFNM(第28题图)29.(本小题满分11分)如图,已知抛物线y=﹣x2+2x+3与x轴交于A,B两点(点A在点B的左边),与y轴交于点C,连接BC.(1)求过B,C两点的一次函数关系式;(2)若点P为线段BC上一点(不与B,C重合),过P做PM平行于y轴,交抛物线于点M,交x轴于点N,当△BCM的面积最大时,求N点的坐标;(3)在(2)的结论下,抛物线的对称轴上是否存在一点Q,使得NQ垂直于CN,若存在求点Q的坐标,若不存在说明理由.泰安市二○一五年初中学生学业考试模拟数学试题参考答案一、选择题二、填空题a≥﹣1 23、4221、22、24、三、解答题25、(本小题满分8分)解:设乙车间每天生产x 件,则甲车间每天生产1.4x 件,由题可知20x 48001.4x x 4800=++…………………………………………………..…………..4分解得:x=340…………………………………………6分 经检验知 x=340是方程的解此时甲车间每天生产340×1.4=476件答:甲车间每天生产476件,乙车间每天生产340件…………………8分26.(本小题满分8分) 解:(1)∵B (2,4),四边形OABC 是矩形,∴OA=BC=4, ……………………………1分 将y=4代入y=﹣2x+6得:x=1, ∴M (1,4),把M 的坐标代入ky x=得:k=4, ∴反比例函数的解析式是 4y x= …………………………………3分把x=2代入y=﹣2x+6得:y=2 ∴N (2,2), 把x=2代入4y x=得:y=2 ∴点N (2,2)在反比例函数的图像上………………………………………4分(2)∵S 四边形BMON =S 矩形OABC ﹣S △AOM ﹣S △CON =4, ……………………… 5分 由题意得:21OP ×AM=4, ∵AM=1,∴OP=8, ………………………………7分 ∴点P 的坐标是(0,8)或(0,﹣8) ………………………………8分27.(本小题满分10分) 证明:(1)如图1,∵Q 为AB 中点, ∴AQ=BQ ,∵BF ⊥CP ,AE ⊥CP ,∴BF ∥AE ,∠BFQ=∠AEQ , …………………………………2分 在△BFQ 和△AEQ 中∴△BFQ ≌△AEQ (AAS ), …………………………………4分 ∴QE=QF ,∴四边形NEBF是平行四边形………………………………5分(2)QE=QF,证明:如图2,延长FQ交AE于D,∵AE∥BF,∴∠QAD=∠FBQ,…………………………6分在△FBQ和△DAQ中∴△FBQ≌△DAQ(ASA),…………………………8分∴QF=QD,∵AE⊥CP,∴EQ是直角三角形DEF斜边上的中线,∴QE=QF=QD,即QE=QF∴△QEF是等腰三角形.……………………………………10分28、(本小题满分11分)证明:(1)∵ABCD是平行四边形,∴AD∥BC,AD=BC ……………………………………………1分又∵BE CF=,∴EF=BC= AD………………………………………… 3分∴四边形AEFD是平行四边形∴ME=MF ……………………………………………… 5分(2)∵ABCD是平行四边形,∴B ADC∠=∠∵B AME DMN∠=∠=∠………………………………………………7分∴ADC DMN∠=∠∴△ADN∽△DMN ……………………………………………… 9 分∴ND AD MN DM=∵DM ME=∴ND AD MN ME=∴ND ME AD MN⋅=⋅…………………………………………………… 11分29、(本小题满分11分)解(1)由抛物线的解析式y=﹣x2+2x+3,可求C(0,3),令y=0,﹣x2+2x+3=0,解得x=3或x=﹣1;∴A(﹣1,0),B(3,0)……………………………………… 1分设过B、C两点的一次函数关系式:y=kx+b,则有:,解得,∴直线BC的解析式为:y=﹣x+3.……………………………………… 3分(2)设P(x,﹣x+3),则M(x,﹣x2+2x+3),∴PM=(﹣x2+2x+3)﹣(﹣x+3)=﹣x2+3x.∴S△BCM=S△PMC+S△PMB=PM•(x P﹣x C)+PM•(x B﹣x P)=PM•(x B﹣x C)=PM.∴S△BCM=(﹣x2+3x)……………………………………… 5分=﹣(x﹣)2+.……………………………………… 6分∴当x=时,△BCM的面积最大.所以N(,0)……………………………………… 7分(3)∵y=﹣x2+2x+3=﹣(x﹣1)2+4∴抛物线的对称轴为直线x=1.……………………………………… 8分过点N作CN的垂线,交对称轴于点Q,交y轴于点F.易证Rt△NFO∽Rt△CNO,则=,即,解得OF=.∴F(0,﹣),又∵N(,0),……………………………………… 9分∴可求得直线FN的解析式为:y=x﹣.……………………………………… 10分当x=1时,y=﹣,∴Q(1,﹣).……………………………………… 11分。
2015九年级(上)期末数学试卷 附答案
九年级(上)期末数学试卷一、选择题(每小题3分,共30分.每小题只有一个选项是正确的)1.下列等式一定成立的是()A.B.=a﹣b C.D.=a+b2.已知x=﹣1是一元二次方程x2+mx+1=0的一个根,那么m的值是()A.0 B. 1 C. 2 D.﹣23.已知一圆锥的母线长为6cm,底面圆的半径为3cm,则此圆锥侧面展开图的面积为()A.18πcm2 B.36πcm2 C.12πcm2 D.8πcm24.若式子有意义,则x的取值范围为()A.x≥2 B.x≠3 C.x≥2或x≠3 D.x≥2且x≠35.关于x的一元二次方程kx2﹣6x+1=0有两个不相等的实数根,则k的取值范围是()A.k≥9 B.k<9 C.k≤9且k≠0 D.k<9且k≠06.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.7.如图,EF是圆O的直径,OE=5cm,弦MN=8cm,则E,F两点到直线MN距离的和等于()A.12cm B.6cm C.8cm D.3cm8.关于x的一元二次方程(a﹣1)x2+x+a2﹣1=0的一个根是0,则a的值是()A.﹣1 B.1 C.1或﹣1 D.﹣1或09.如图,AB为半圆O的直径,C为半圆上一点,且为半圆的.设扇形AOC、△COB、弓形BmC的面积分别为S1、S2、S3,则下列结论正确的是()A.S1<S2<S3 B.S2<S1<S3 C.S2<S3<S1 D.S3<S2<S110.如果a>0,c>0,那么二次函数y=ax2+bx+c的图象大致是()A.B.C.D.二、填空题:(每小题3分,共30分)11.两圆相内切,大圆的半径长为5cm,圆心矩为3cm,则小圆半径为cm.12.半径为6cm的圆,60°圆周角所对弧的弧长为cm.13.一元二次方程2x2+4x﹣1=0的二次项系数、一次项系数及常数项之和为.14.最简根式和是同类根式,则a=,b=.15.若将函数y=2x2的图象向右平行移动1个单位,再向上平移5个单位,可得到.16.△ABC内接于⊙O,∠ACB=36°,那么∠AOB的度数为.17.口袋中放有3只红球和11只黄球,这两种球除颜色外没有任何区别.随机从口袋中任取一只球,取到黄球的概率是.18.平面直角坐标系内一点P(3,﹣2)关于原点对称的点的坐标是.19.如图,在Rt△ABC中,∠C=90°,CA=CB=2.分别以A、B、C为圆心,以AC为半径画弧,三条弧与边AB所围成的阴影部分的面积是.(保留π)20.计算=.三、计算题(每小题10分,共20分)21.解方程:(1)(x﹣3)2=2x(3﹣x);(2)(x+3)(x﹣1)=5.22.计算:(1)(﹣)﹣2()(2)﹣.四、解答题(每题10分,共50分)23.已知a=8,求2a2•﹣﹣的值.24.已知关于x的方程x2+(4k+1)x+2k﹣1=0.(1)求证:此方程一定有两个不相等的实数根;(2)若x1,x2是方程的两个实数根,且(x1﹣2)(x2﹣2)=2k﹣3,求k的值.25.某商场今年2月份的营业额为400万元,3月份的营业额比2月份增加10%,5月份的营业额达到633.6万元.求3月份到5月份营业额的月平均增长率.26.如图,已知直角坐标系中一条圆弧经过正方形网格的格点A(0,4)、B(4,4)、C(6,2)(1)用直尺画出该圆弧所在圆的圆心M的位置,并标出M点的坐标;(2)若D点的坐标为(7,0),验证点D是否在经过点A、B、C的抛物线上;(3)若D点的坐标为(7,0),想一想直线CD与⊙M有怎样的位置关系,并证明你的猜想.27.有四张背面相同的纸牌A,B,C,D,其正面分别划有四个不同的稽核图形(如图).小华将这4张纸牌背面朝上洗匀后摸出一张,放回洗匀后再摸出一张.(1)用树状图(或列表法)表示两次模牌所有可能出现的结果(纸牌可用A、B、C、D表示);(2)求摸出两张牌面图形都是中心对称图形的纸牌的概率.五、证明题28.如图,在Rt△ABC中,∠B=90°,∠A的平分线交BC于D,E为AB上一点,DE=DC,以D为圆心,以DB的长为半径画圆.求证:(1)AC是⊙D的切线;(2)AB+EB=AC.六、阅读理解29.当抛物线的解析式中含有字母系数时,随着系数中字母取值的不同,抛物线的顶点坐标也将发生变化.例如:由抛物线y=x2﹣2mx+m2+2m﹣1 (1)得:y=(x﹣m)2+2m﹣1 (2)∴抛物线的顶点坐标为(m,2m﹣1),设顶点为P(x0,y0),则:当m的值变化时,顶点横、纵坐标x0,y0的值也随之变化,将(3)代入(4)得:y0=2x0﹣1. (5)可见,不论m取任何实数时,抛物线的顶点坐标都满足y=2x﹣1.(1)根据阅读材料提供的方法,确定抛物线y=x2﹣2mx+2m2﹣4m+3的顶点纵坐标y与横坐标x之间的函数关系式.(2)是否存在实数m,使抛物线y=x2﹣2mx+2m2﹣4m+3与x轴两交点A(x1,0)、B(x2,0)之间的距离为AB=4?若存在,求出m的值;若不存在,说明理由.参考答案与试题解析一、选择题(每小题3分,共30分.每小题只有一个选项是正确的)1.下列等式一定成立的是()A.B.=a﹣b C.D.=a+b考点:二次根式的混合运算.专题:计算题.分析:利用二次根式的性质计算合并.解答:解:A、不对,要先开方再相加;B、不对,这是平方差公式,不能直接开方;C、对,符合二次根式的乘法法则;D、不对,如果a+b小于0,则为它的相反数.故选C.点评:本题主要考查了根式的计算,注意根式的计算顺序.2.已知x=﹣1是一元二次方程x2+mx+1=0的一个根,那么m的值是()A.0 B.1 C. 2 D.﹣2考点:一元二次方程的解.专题:计算题.分析:一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值,再用这个数代替未知数所得式子仍然成立.解答:解:把x=﹣1代入方程可得1﹣m+1=0,∴m=2.故选C.点评:本题考查的是一元二次方程的根即方程的解的定义,是一道比较基础的题.3.已知一圆锥的母线长为6cm,底面圆的半径为3cm,则此圆锥侧面展开图的面积为()A.18πcm2 B.36πcm2 C.12πcm2 D.8πcm2考点:圆锥的计算.专题:压轴题.分析:圆锥的侧面积=底面周长×母线长÷2.解答:解:底面半径为3cm,则底面周长=6πcm,侧面面积=×6π×6=18πcm2.故选A.点评:本题利用了圆的周长公式和扇形面积公式求解.解题的关键是了解圆锥的有关元素与扇形的有关元素的对应.4.若式子有意义,则x的取值范围为()A.x≥2 B.x≠3 C.x≥2或x≠3 D.x≥2且x≠3考点:二次根式有意义的条件;分式有意义的条件.专题:计算题.分析:根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求解.解答:解:根据二次根式有意义,分式有意义得:x﹣2≥0且x﹣3≠0,解得:x≥2且x≠3.故选D.点评:本题考查了二次根式有意义的条件和分式的意义.考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.5.关于x的一元二次方程kx2﹣6x+1=0有两个不相等的实数根,则k的取值范围是()A.k≥9 B.k<9 C.k≤9且k≠0 D.k<9且k≠0考点:根的判别式;一元二次方程的定义.分析:在判断一元二次方程根的情况的问题中,必须满足下列条件:(1)二次项系数不为零;(2)在有不相等的实数根时,必须满足△=b2﹣4ac>0.解答:解:根据题意,得(﹣6)2﹣4k>0,且k≠0,解得k<9且k≠0.故选D.点评:本题考查了一元二次方程根的判别式的应用.切记不要忽略一元二次方程二次项系数不为零这一隐含条件.6.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.考点:轴对称图形;中心对称图形.分析:根据中心对称图形的定义:旋转180°后能够与原图形完全重合即是中心对称图形;轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,即可判断出答案.解答:解:A、此图形既不是中心对称图形,也不是轴对称图形,故A错误;B、此图形是轴对称图形,不是中心对称图形,故B错误;C、此图形不是轴对称图形,是中心对称图形,故C错误;D、此图形既是轴对称图形,也是中心对称图形,故D正确.故选:D.点评:此题主要考查了中心对称图形与轴对称的定义,解题关键是找出图形的对称中心与对称轴,属于基础题,比较容易解答.7.如图,EF是圆O的直径,OE=5cm,弦MN=8cm,则E,F两点到直线MN距离的和等于()A.12cm B.6cm C.8cm D.3cm考点:垂径定理;勾股定理;梯形中位线定理.分析:由图可以明显的看出OK∥EG∥FH,而O是EF的中点,因此OK是梯形EGHF的中位线,欲求EG+FH的值,需求出OK的长;在Rt△OMK中,由垂径定理易知MK的长度,即可根据勾股定理求出OK的值,由此得解.解答:解:∵EG⊥GH,OK⊥GH,FH⊥GH,∴EG∥OK∥FH;∵EO=OF,∴OK是梯形EGHF的中位线,即EG+FH=2OK;Rt△OKM中,MK=MN=4cm,OM=OE=5cm;由勾股定理,得:OK==3cm;∴EG+FH=2OK=6cm.故选B.点评:此题主要考查了垂径定理、勾股定理以及梯形中位线定理的综合应用.8.关于x的一元二次方程(a﹣1)x2+x+a2﹣1=0的一个根是0,则a的值是()A.﹣1 B.1 C.1或﹣1 D.﹣1或0考点:一元二次方程的解.分析:将x=0代入关于x的一元二次方程(a﹣1)x2+x+a2﹣1=0即可求得a的值.注意,二次项系数a﹣1≠0.解答:解:∵关于x的一元二次方程(a﹣1)x2+x+a2﹣1=0的一个根是0,∴(a﹣1)×0+0+a2﹣1=0,且a﹣1≠0,解得a=﹣1;故选A.点评:本题考查的是一元二次方程的根即方程的解的定义.一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.9.如图,AB为半圆O的直径,C为半圆上一点,且为半圆的.设扇形AOC、△COB、弓形BmC的面积分别为S1、S2、S3,则下列结论正确的是()A.S1<S2<S3 B.S2<S1<S3 C.S2<S3<S1 D.S3<S2<S1考点:扇形面积的计算.专题:压轴题.分析:首先根据△AOC的面积=△BOC的面积,得S2<S1.再根据题意,知S1占半圆面积的.所以S3大于半圆面积的.解答:解:根据△AOC的面积=△BOC的面积,得S2<S1,再根据题意,知S1占半圆面积的,所以S3大于半圆面积的.故选B.点评:此类题首先要比较有明显关系的两个图形的面积.10.如果a>0,c>0,那么二次函数y=ax2+bx+c的图象大致是()A.B.C.D.考点:二次函数图象与系数的关系.专题:数形结合.分析:由a>0可以判定二次函数的图象的开口方向;由已知条件“c>0”可以判定二次函数y=ax2+bx+c的图象与y轴的交点的大体位置.解答:解:∵a>0,∴二次函数y=ax2+bx+c的图象的开口向上;又∵c>0,∴二次函数y=ax2+bx+c的图象与y轴交于正半轴.故选A.点评:本题考查了二次函数图象与系数的关系.解答该题要弄清楚二次函数图象与二次函数y=ax2+bx+c的系数a、b、c的关系.二、填空题:(每小题3分,共30分)11.两圆相内切,大圆的半径长为5cm,圆心矩为3cm,则小圆半径为2cm.考点:圆与圆的位置关系.分析:根据两圆位置关系是内切,则圆心距=两圆半径之差,小圆半径=圆心距﹣大圆的半径.解答:解:∵两圆相内切,大圆的半径长为5cm,圆心矩为3cm,∴小圆半径为5﹣3=2cm.点评:本题用到的知识点为:两圆内切,圆心距=两圆半径之差.12.半径为6cm的圆,60°圆周角所对弧的弧长为4πcm.考点:弧长的计算.专题:压轴题.分析:根据弧长公式可得.解答:解:=4πcm.点评:注意圆周角要转化成圆心角.13.一元二次方程2x2+4x﹣1=0的二次项系数、一次项系数及常数项之和为5.考点:一元二次方程的定义.分析:一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,其中a,b,c分别叫二次项系数,一次项系数,常数项.确定二次项系数,一次项系数,常数项以后即可求解.解答:解:根据题意,可得一元二次方程2x2+4x﹣1=0的二次项系数为2,一次项系数为4,及常数项为﹣1;则其和为2+4﹣1=5;故答案为5.点评:求一元二次方程2x2+4x﹣1=0的二次项系数、一次项系数及常数项之和,就是求当x=1时,代数式2x2+4x﹣1的值.注意在说明二次项系数,一次项系数,常数项时,一定要带上前面的符号.14.最简根式和是同类根式,则a=1,b=1.考点:同类二次根式;解二元一次方程组.专题:计算题.分析:根据同类根式的根指数相同,且被开方数相同可得出关于a和b的方程组,解出即可得出a和b的值.解答:解:∵最简根式和是同类根式,∴,解得:.故答案为:1,1.点评:此题考查了同类根式的知识,解答本题的关键是掌握同类根式的根指数相同,且被开方数相同,属于基础题,难度一般.15.若将函数y=2x2的图象向右平行移动1个单位,再向上平移5个单位,可得到y=2(x ﹣1)2+5.考点:二次函数图象与几何变换.分析:根据向右平移横坐标加,向上平移纵坐标加求出平移后的抛物线的顶点坐标,然后利用顶点式解析式写出即可.解答:解:∵y=2x2的图象向右平行移动1个单位,向上平移5个单位,∴平移后的函数的顶点坐标为(1,5),∴所得抛物线的解析式为y=2(x﹣1)2+5.故答案为:y=2(x﹣1)2+5.点评:本题考查了二次函数图象与几何变换,利用顶点的变化确定函数解析式的变化更简便.16.△ABC内接于⊙O,∠ACB=36°,那么∠AOB的度数为72°.考点:圆周角定理.专题:推理填空题.分析:根据圆周角定理直接解答即可.解答:解:∵△ABC内接于⊙O,∴∠ACB是所对的圆周角,∠AOB是所对的圆心角,∴∠AOB=2∠ACB=2×36°=72°.故答案为:72°.点评:本题考查的是圆周角定理,即同弧所对的圆周角等于所对圆心角的一半.17.口袋中放有3只红球和11只黄球,这两种球除颜色外没有任何区别.随机从口袋中任取一只球,取到黄球的概率是.考点:概率公式.分析:由于口袋中放有3只红球和11只黄球,所以随机从口袋中任取一只球,取到黄球的概率是=.解答:解:P(摸到黄球)=.故本题答案为:.点评:本题考查的是概率的定义:P(A)=,n表示该试验中所有可能出现的基本结果的总数目,m表示事件A包含的试验基本结果数.这种定义概率的方法称为概率的古典定义.18.平面直角坐标系内一点P(3,﹣2)关于原点对称的点的坐标是(﹣3,2).考点:关于原点对称的点的坐标.专题:应用题.分析:平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),从而可得出答案.解答:解:根据中心对称的性质,得点P(3,﹣2)关于原点对称点P′的坐标是(﹣3,2),故答案为:(﹣3,2).点评:本题主要考查关于原点对称的点坐标的关系,是需要识记的基本问题.记忆方法是结合平面直角坐标系的图形记忆.19.如图,在Rt△ABC中,∠C=90°,CA=CB=2.分别以A、B、C为圆心,以AC为半径画弧,三条弧与边AB所围成的阴影部分的面积是.(保留π)考点:扇形面积的计算.专题:压轴题.分析:三条弧与边AB所围成的阴影部分的面积=三角形的面积﹣三个小扇形的面积.解答:解:2×2÷2﹣﹣=2﹣.点评:本题的关键是理解阴影部分的面积=三角形的面积﹣三个小扇形的面积.20.计算=+.考点:二次根式的乘除法.专题:计算题.分析:先将原式变形(+)2009(+),再根据同底数幂乘法的逆运算即可.解答:解:原式=(+)2009(+)=[(+)(﹣)]2009(+)=(+).故答案为(+).点评:本题考查了二根式的乘除法,是基础知识要熟练掌握.三、计算题(每小题10分,共20分)21.解方程:(1)(x﹣3)2=2x(3﹣x);(2)(x+3)(x﹣1)=5.考点:解一元二次方程-因式分解法.分析:(1)先移项,再用因式分解法求解即可;(2)先展开后化为一元二次方程的一般形式,再根据因式分解法求出其解即可.解答:解:(1)移项,得(3﹣x)2﹣2x(3﹣x)=0,(3﹣x)(3﹣x﹣2x)=0,∴3﹣x=0或3﹣3x=0,∴x1=3,x2=1;(2)原方程变形为x2+2x﹣3﹣5=0,x2+2x﹣8=0,∴(x+4)(x﹣2)=0,∴x1=﹣4,x2=2.点评:本题考查了因式分解法解一元二次方程的运用,整式乘法的运用,解答时运用因式分解法求解是关键.22.计算:(1)(﹣)﹣2()(2)﹣.考点:二次根式的混合运算.专题:计算题.分析:(1)先把各二次根式化为最简二次根式,然后去括号合并即可;(2)直接分母有理化和把化为最简二次根式即可,如果合并即可.解答:解:(1)原式=2﹣﹣﹣2=﹣;(2)原式=2(2+)﹣2.=4+2﹣2=4.点评:本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.四、解答题(每题10分,共50分)23.已知a=8,求2a2•﹣﹣的值.考点:二次根式的化简求值.分析:由a=8>0,首先把原式子通过开方运算、分母有理化进行化简,合并同类二次根式,然后把a的值代入求值即可.解答:解:∵a=8>0,∴原式=2a2•﹣a﹣=2a﹣a﹣===16.点评:本题主要考查二次根式的意义、二次根式的化简求值,关键在于根据a的取值范围把二次根式进行化简,然后再代入求值就容易多了.24.已知关于x的方程x2+(4k+1)x+2k﹣1=0.(1)求证:此方程一定有两个不相等的实数根;(2)若x1,x2是方程的两个实数根,且(x1﹣2)(x2﹣2)=2k﹣3,求k的值.考点:根与系数的关系;根的判别式.专题:计算题;证明题.分析:(1)需证得根的判别式恒为正值.(2)(x1﹣2)(x2﹣2)=2k﹣3,即x1x2﹣2(x1+x2)+4=2k﹣3,依据根与系数的关系,列出关于k的方程求解则可.解答:(1)证明:△=b2﹣4ac=(4k+1)2﹣4(2k﹣1)=16k2+8k+1﹣8k+4=16k2+5,∵k2≥0,∴16k2≥0,∴16k2+5>0,∴此方程有两个不相等的实数根.(2)解:根据题意,得x1+x2=﹣(4k+1),x1x2=2k﹣1,∴(x1﹣2)(x2﹣2)=x1x2﹣2(x1+x2)+4=(2k﹣1)+2(4k+1)+4=2k﹣1+8k+2+4=10k+5即10k+5=2k﹣3,∴k=﹣1.点评:本题考查了一元二次方程根与系数的关系及根的判别式,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.25.某商场今年2月份的营业额为400万元,3月份的营业额比2月份增加10%,5月份的营业额达到633.6万元.求3月份到5月份营业额的月平均增长率.考点:一元二次方程的应用.专题:增长率问题;压轴题.分析:本题是平均增长率问题,一般形式为a(1+x)2=b,a为起始时间的有关数量,b为终止时间的有关数量.如果设平均增长率为x,那么结合到本题中a就是400×(1+10%),即3月份的营业额,b就是633.6万元即5月份的营业额.由此可求出x的值.解答:解:设3月份到5月份营业额的月平均增长率为x,根据题意得,400×(1+10%)(1+x)2=633.6,解得,x1=0.2=20%,x2=﹣2.2(不合题意舍去).答:3月份到5月份营业额的月平均增长率为20%.点评:本题考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b(当增长时中间的“±”号选“+”,当降低时中间的“±”号选“﹣”).26.如图,已知直角坐标系中一条圆弧经过正方形网格的格点A(0,4)、B(4,4)、C(6,2)(1)用直尺画出该圆弧所在圆的圆心M的位置,并标出M点的坐标;(2)若D点的坐标为(7,0),验证点D是否在经过点A、B、C的抛物线上;(3)若D点的坐标为(7,0),想一想直线CD与⊙M有怎样的位置关系,并证明你的猜想.考点:垂径定理;二次函数图象上点的坐标特征;勾股定理;直线与圆的位置关系.专题:代数几何综合题.分析:(1)题利用“两弦垂直平分线的交点为圆心”可确定圆心位置;(2)先根据A、B、C三点坐标,用待定系数法求出抛物线的解析式,然后将D点坐标代入抛物线的解析式中,即可判断出点D是否在抛物线的图象上;(3)由于C在⊙M上,如果CD与⊙M相切,那么C点必为切点;因此可连接MC,证MC是否与CD垂直即可.可根据C、M、D三点坐标,分别表示出△CMD三边的长,然后用勾股定理来判断∠MCD是否为直角.解答:解:(1)如图1,点M就是要找的圆心.正确即可(2)由A(0,4),可得小正方形的边长为1.设经过点A、B、C的抛物线的解析式为y=ax2+bx+4,依题意有,解得,;所以经过点A、B、C的抛物线的解析式为y=﹣x2+x+4,把点D(7,0)的横坐标x=7代入上述解析式,得y=﹣×49+×7+4=≠0,所以点D不在经过A、B、C的抛物线上;(3)证明:由A(0,4),可得小正方形的边长为1.如图2,设过C点与x轴垂直的直线与x轴的交点为E,连接MC,作直线CD,∴CE=2,ME=4,ED=1,MD=5,在Rt△CEM中,∠CEM=90°,∴MC2=ME2+CE2=42+22=20,在Rt△CED中,∠CED=90°,∴CD2=ED2+CE2=12+22=5,∴MD2=MC2+CD2,∴∠MCD=90°,又∵MC为半径,∴直线CD是⊙M的切线.点评:本题为综合题,涉及圆、平面直角坐标系、二次函数等知识,需灵活运用相关知识解决问题.本题考查二次函数、圆的切线的判定等初中数学的中的重点知识,试题本身就比较富有创新,在网格和坐标系中巧妙地将二次函数与圆的几何证明有机结合,很不错的一道题,令人耳目一新.27.有四张背面相同的纸牌A,B,C,D,其正面分别划有四个不同的稽核图形(如图).小华将这4张纸牌背面朝上洗匀后摸出一张,放回洗匀后再摸出一张.(1)用树状图(或列表法)表示两次模牌所有可能出现的结果(纸牌可用A、B、C、D表示);(2)求摸出两张牌面图形都是中心对称图形的纸牌的概率.考点:列表法与树状图法;中心对称图形.专题:阅读型.分析:(1)画出树状图分析数据、列出可能的情况.(2)根据中心对称图形的概念可知,当摸出圆和平行四边形时为中心对称图形,除以总情况数即可.解答:解:(1)A B C DA (A,A)(A,B)(A,C)(A,D)B (B,A)(B,B)(B,C)(B,D)C (C,A)(C,B)(C,C)(C,D)D (D,A)(D,B)(D,C)(D,D)共产生16种结果,每种结果出现的可能性相同,即:(A,A)(A,B)(A,C)(A,D)(B,A)(B,B)(B,C)(B,D)(C,A)(C,B)(C,C)(C,D)(D,A)(D,B)(D,C)(D,D);(2)其中两张牌都是中心对称图形的有4种,即(B,B)(B,C)(C,B)(C,C)∴P(两张都是中心对称图形)==.点评:正确利用树状图分析两次摸牌所有可能结果是关键,区分中心对称图形是要点.用到的知识点为:概率=所求情况数与总情况数之比.五、证明题28.如图,在Rt△ABC中,∠B=90°,∠A的平分线交BC于D,E为AB上一点,DE=DC,以D为圆心,以DB的长为半径画圆.求证:(1)AC是⊙D的切线;(2)AB+EB=AC.考点:切线的判定;直角三角形全等的判定.专题:证明题.分析:(1)过点D作DF⊥AC于F,求出BD=DF等于半径,得出AC是⊙D的切线.(2)先证明△BDE≌△FCD(HL),根据全等三角形对应边相等及切线的性质的AB=AF,得出AB+EB=AC.解答:证明:(1)过点D作DF⊥AC于F;∵AB为⊙D的切线,AD平分∠BAC,∴BD=DF,∴AC为⊙D的切线.(2)∵AC为⊙D的切线,∴∠DFC=∠B=90°,在Rt△BDE和Rt△FCD中;∵BD=DF,DE=DC,∴Rt△BDE≌Rt△FCD(HL),∴EB=FC.∵AB=AF,∴AB+EB=AF+FC,即AB+EB=AC.点评:本题考查的是切线的判定:经过半径的外端且垂直于这条半径的直线是圆的切线;及全等三角形的判断,全等三角形的对应边相等.六、阅读理解29.当抛物线的解析式中含有字母系数时,随着系数中字母取值的不同,抛物线的顶点坐标也将发生变化.例如:由抛物线y=x2﹣2mx+m2+2m﹣1 (1)得:y=(x﹣m)2+2m﹣1 (2)∴抛物线的顶点坐标为(m,2m﹣1),设顶点为P(x0,y0),则:当m的值变化时,顶点横、纵坐标x0,y0的值也随之变化,将(3)代入(4)得:y0=2x0﹣1. (5)可见,不论m取任何实数时,抛物线的顶点坐标都满足y=2x﹣1.(1)根据阅读材料提供的方法,确定抛物线y=x2﹣2mx+2m2﹣4m+3的顶点纵坐标y与横坐标x之间的函数关系式.(2)是否存在实数m,使抛物线y=x2﹣2mx+2m2﹣4m+3与x轴两交点A(x1,0)、B(x2,0)之间的距离为AB=4?若存在,求出m的值;若不存在,说明理由.考点:二次函数综合题.分析:(1)根据材料给的方法:先配成y=(x﹣m)2+2m2﹣4m+2,得到顶点坐标,然后消去m,得到y与x的关系式;(2)先根据根与系数的关系得到x1+x2=2m,x1•x2=2m2﹣4m+3,然后利用AB=|x1﹣x2|,通过变形得到AB=,即可得到AB的最大值为2,由此得到不存在实数m,使AB=4.解答:解:(1)∵y=x2﹣2mx+2m2﹣4m+3=(x﹣m)2+2m2﹣4m+2,∴抛物线的顶点坐标为(m,2m2﹣4m+2),设顶点为P(x0,y0),则:,当m的值变化时,顶点横、纵坐标x0,y0的值也随之变化,∴y0=2x02﹣4x0+2,可见,不论m取任何实数时,抛物线的顶点坐标都满足y=2x2﹣4x+2;(2)不存在.理由如下:∵抛物线y=x2﹣2mx+2m2﹣4m+3与x轴两交点A(x1,0)、B(x2,0),∴x2﹣2mx+2m2﹣4m+3=0的两个根为x1、x2,∴x1+x2=2m,x1•x2=2m2﹣4m+3,∴AB=|x1﹣x2|===,∴AB的最大值为2,∴不存在实数m,使AB=4.点评:本题考查了二次函数综合题:抛物线的顶点式y=a(x﹣h)2+k(a≠0),则顶点坐标为(h,k);抛物线与x轴两交点的距离.也考查了代数式的变形能力.。
2015九年级(上)期末数学试卷附答案
2015九年级(上)期末数学试卷一、选择题:(本大题共10小题,每小题3分,共30分,在每小题给出四个选项中,只有一项是符合题目要求的,请把每小题的答案填题后的在括号中)1.下列各组二次根式中是同类二次根式的是()A.B.C.D.2.下列运算正确的是()A.3﹣2=1 B.=C.2=2D.÷3=3.关于x的一元二次方程(m﹣2)x2+x+m2﹣4=0有一个根为0,则m的值应为()A.2 B.﹣2 C.2或﹣2 D. 14.若关于x的一元二次方程mx2﹣2x+1=0无实数根,则一次函数y=(m﹣1)x﹣m图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限5.在下列四个图案中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.6.已知线段AB=7cm,现以点A为圆心,2cm为半径画⊙A;再以点B为圆心,3cm为半径画⊙B,则⊙A和⊙B的位置关系()A.内含B.相交C.外切D.外离7.如图,△ABC中,∠B=90°,∠C=30°,AB=1,将△ABC绕顶点A旋转180°,点C落在C′处,则CC′的长为()A.4B. 4 C.2D.28.如图,AB是半圆O的直径,∠BAC=60°,D是半圆上任意一点,那么∠D的度数是()A.30° B.45° C.60° D.90°9.下列事件属于随机事件的有()①当室外温度低于﹣10℃时,将一碗清水放在室外会结冰;②经过城市中某有交通信号灯的路口,遇到红灯;③今年春节会下雪;④5,4,9的三根木条组成三角形.A.② B.②④ C.②③ D.①④10.在拼图游戏中,从图1的四张纸片中,任取两张纸片,能拼成“小房子”(如图2)的概率等于()A.B.C.D.二、填空题(本大题共8小题,每小题3分,共24分)11.使有意义,则x的取值范围是.12.一个正多边形,它的一个外角等于与它相邻内角的,则这个多边形是.13.已知代数式x2﹣4x﹣2的值为3,则代数式2x2﹣8x﹣5的值为.14.直径分别为4和8的两圆相切,那么两圆的圆心距为.15.如图,把△ABC绕点C顺时针旋转25°,得到△A′B′C,A′B′交AC于点D,若∠A′DC=90°,则∠A=.16.如图,随机闭合开关S1,S2,S3中的两个,能够让灯泡发光的概率为.17.用一张半径为24cm的扇形纸片做一个如图所示的圆锥形小丑帽子侧面(接缝忽略不计),如果做成的圆锥形小丑帽子的底面半径为10cm,那么这张扇形纸片的面积是cm2.18.一个口袋里有25个球,其中红球、黑球、黄球若干个,从口袋中随机摸出一球记下其颜色,再把它放回口袋中摇匀,重复上述过程,共试验200次,其中有120次摸到黄球,由此估计袋中的黄球有个.三.解答题(本大题共8小题,共66分,解答应写出文字说明,演算步骤或证明过程)19.计算(1);(2).20.解下列方程(1)x2+2x﹣3=0(2)x(2x﹣5)=2x﹣5.21.如图,利用关于原点对称的点的坐标特点,画出△ABC关于原点O对称的△A1B1C1,并写出点A1、B1、C1的坐标.22.已知电流在一定时间内正常通过电子元件的概率为0.5,分别求在一定时间内A、B之间电流通过的概率.(要求:解答分两步:第一步用列举法写出各种可能的结果;第二步,求A、B之间电流通过的概率.)23.如图,⊙O是△ABC的外接圆,AB是⊙O的直径,D为⊙O上一点,OD⊥AC,垂足为E,连接BD.(1)求证:BD平分∠ABC;(2)当∠ODB=30°,BC=,求⊙O的半径.24.如图,某中学准备在校园里利用围墙的一段,再砌三面墙,围成一个矩形花园ABCD (围墙MN最长可利用25m),现在已备足可以砌50m长的墙的材料,试设计一种砌法,使矩形花园的面积为300m2.25.在4张完全相同的卡片正面分别写上数字1,2,3,3,现将它们的背面朝上洗均匀.(1)随机抽出一张卡片,求抽到数字“3”的概率;(2)若随机抽出一张卡片记下数字后放回并洗均匀,再随机抽出一张卡片,求两次都是抽到数字“3”的概率;(要求画树状图或列表求解)(3)如果再增加若干张写有数字“3”的同样卡片,洗均匀后,使得随机抽出一张卡片是数字“3”的概率为,问增加了多少张卡片?26.如图,点P在y轴上,⊙P交x轴于A、B两点,连结BP并延长交⊙P于C,过点C 的直线y=2x+b交x轴于D,且⊙P的半径为,AB=4.(1)求点B、P、C的坐标;(2)求证:CD是⊙P的切线.参考答案与试题解析一、选择题:(本大题共10小题,每小题3分,共30分,在每小题给出四个选项中,只有一项是符合题目要求的,请把每小题的答案填题后的在括号中)1.下列各组二次根式中是同类二次根式的是()A.B.C.D.考点:同类二次根式.分析:化简各选项后根据同类二次根式的定义判断.解答:解:A、=2与被开方数不同,故不是同类二次根式,故A选项错误;B、与被开方数不同,故不是同类二次根式,故B选项错误;C、与被开方数相同,是同类二次根式,故C选项正确;D、与被开方数不同,故不是同类二次根式,故D选项错误.故选:C.点评:本题考查了同类二次根式的定义:化成最简二次根式后,被开方数相同,这样的二次根式叫做同类二次根式.2.下列运算正确的是()A.3﹣2=1 B.=C.2=2D.÷3=考点:二次根式的混合运算.专题:计算题.分析:根据合并同类二次根式对A、B进行判断;根据二次根式的乘法法则对C进行判断;根据二次根式的除法对D进行判断.解答:解:A、3﹣2=,所以A选项错误;B、与不能合并,所以B选项错误;C、2×2=4,所以C选项错误;D、÷3=3÷3=,所以D选项正确.故选D.点评:本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,在进行二次根式的乘除运算,然后合并同类二次根式.3.关于x的一元二次方程(m﹣2)x2+x+m2﹣4=0有一个根为0,则m的值应为()A.2 B.﹣2 C.2或﹣2 D. 1考点:一元二次方程的解;一元二次方程的定义.分析:把x=0代入已知方程,列出关于m的新方程,通过解新方程可以求得m的值.解答:解:∵关于x的一元二次方程(m﹣2)x2+x+m2﹣4=0有一个根为0,∴m2﹣4=0且m﹣2≠0,解得,m=﹣2.故选:B.点评:本题考查了一元二次方程的解的定义和一元二次方程的定义.解题时,注意一元二次方程的二次项系数一定不能等于零.4.若关于x的一元二次方程mx2﹣2x+1=0无实数根,则一次函数y=(m﹣1)x﹣m图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限考点:根的判别式;一次函数图象与系数的关系.专题:计算题.分析:根据判别式的意义得到m≠0且△=(﹣2)2﹣4m<0,解得m>1,然后根据一次函数的性质可得到一次函数y=(m﹣1)x﹣m图象经过第一、三象限,且与y轴的交点在x 轴下方.解答:解:根据题意得m≠0且△=(﹣2)2﹣4m<0,解得m>1,∵m﹣1>0,﹣m<0,∴一次函数y=(m﹣1)x﹣m图象经过第一、三、四象限.故选B.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一次函数图象与系数的关系.5.在下列四个图案中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.考点:中心对称图形;轴对称图形.分析:根据轴对称图形与中心对称图形的概念求解.解答:解:A、既是轴对称图形,又是中心对称图形,故本选项正确;B、是轴对称图形,不是中心对称图形,故本选项错误;C、不是轴对称图形,是中心对称图形,故本选项错误;D、既是轴对称图形,不是中心对称图形,故本选项错误.故选A.点评:本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.6.已知线段AB=7cm,现以点A为圆心,2cm为半径画⊙A;再以点B为圆心,3cm为半径画⊙B,则⊙A和⊙B的位置关系()A.内含B.相交C.外切D.外离考点:圆与圆的位置关系.分析:针对两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系得出两圆位置关系.解答:解:依题意,线段AB=7cm,现以点A为圆心,2cm为半径画⊙A;再以点B为圆心,3cm为半径画⊙B,∴R+r=3+2=5,d=7,所以两圆外离.故选D.点评:此题主要考查了圆与圆的位置关系,圆与圆的位置关系与数量关系间的联系.此类题为中考热点,需重点掌握.7.如图,△ABC中,∠B=90°,∠C=30°,AB=1,将△ABC绕顶点A旋转180°,点C落在C′处,则CC′的长为()A.4B. 4 C.2D.2考点:解直角三角形;旋转的性质.专题:计算题.分析:因为在△ABC中,∠B=90°,∠C=30°,AB=1,由此得到AC=2,又根据旋转可以推出AC′=AC,即可求出CC′.解答:解:∵在△ABC中,∠B=90°,∠C=30°,AB=1,∴AC=2.∵将△ABC绕顶点A旋转180°,点C落在C′处,AC′=AC=2,∴CC′=4.故选B.点评:此题主要考查学生对旋转的性质及综合解直角三角形的运用能力.8.如图,AB是半圆O的直径,∠BAC=60°,D是半圆上任意一点,那么∠D的度数是()A.30° B.45° C.60° D.90°考点:圆周角定理;等边三角形的判定与性质.分析:首先连接BC,由AB是半圆的直径,根据直径所对的圆周角是直角即可求得∠D的度数.解答:解:连接BC,∵AB是半圆的直径∴∠ACB=90°∵∠BAC=60°,∴∠ABC=90°﹣∠BAC=30°,∴∠D=∠ABC=30°.故选A.点评:本题题考查了圆周角定理此题比较简单,注意掌握辅助线的作法,注意数形结合思想的应用.9.下列事件属于随机事件的有()①当室外温度低于﹣10℃时,将一碗清水放在室外会结冰;②经过城市中某有交通信号灯的路口,遇到红灯;③今年春节会下雪;④5,4,9的三根木条组成三角形.A.② B.②④ C.②③ D.①④考点:随机事件.分析:根据不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件,对各小题分析判断即可得解.解答:解:①当室外温度低于﹣10℃时,将一碗清水放在室外会结冰,是必然事件;②经过城市中某有交通信号灯的路口,遇到红灯,是随机事件;③今年春节会下雪,是随机事件;④5,4,9的三根木条组成三角形,是不可能事件,所以,属于随机事件的是②③.故选C.点评:本题考查了随机事件,关键在于正确理解必然事件、不可能事件、随机事件的概念.用到的知识点为:确定事件包括必然事件和不可能事件.必然事件指在一定条件下一定发生的事件不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.10.在拼图游戏中,从图1的四张纸片中,任取两张纸片,能拼成“小房子”(如图2)的概率等于()A.B.C.D.考点:列表法与树状图法.分析:先用列举法求出两张纸片的所有组合情况,再根据概率公式解答.解答:解:任取两张纸片,能拼成“小房子”(如图2)的概率等于,即.故选D.点评:用到的知识点为:概率=所求情况数与总情况数之比.二、填空题(本大题共8小题,每小题3分,共24分)11.使有意义,则x的取值范围是x≥﹣且x≠0.考点:二次根式有意义的条件;分式有意义的条件.分析:根据被开方数大于等于0,分母不等于0列式求解即可.解答:解:根据题意得,3x+2≥0且x≠0,解得x≥﹣且x≠0.故答案为:x≥﹣且x≠0.点评:本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.12.一个正多边形,它的一个外角等于与它相邻内角的,则这个多边形是正十边形.考点:多边形内角与外角.专题:应用题.分析:外角等于与它不相邻的内角的四分之一可知该多边形内角为144°,外角36°,根据正多边形外角和=360°,利用360÷36即可解决问题.解答:解:∵一个正多边形它的一个外角等于与它相邻的内角的,∴它的每一个外角=180÷5=36°,∴它的边数=360÷36=10.故答案为正十边形.点评:本题主要考查了多边形的外角和等于360度,难度适中.13.已知代数式x2﹣4x﹣2的值为3,则代数式2x2﹣8x﹣5的值为5.考点:代数式求值.专题:计算题.分析:根据题意求出x2﹣4x的值,原式前两项提取2变形后,将x2﹣4x的值代入计算即可求出值.解答:解:∵x2﹣4x﹣2=3,即x2﹣4x=5,∴原式=2(x2﹣4x)﹣5=10﹣5=5.故答案为:5.点评:此题考查了代数式求值,利用了整体代入的思想,熟练掌握运算法则是解本题的关键.14.直径分别为4和8的两圆相切,那么两圆的圆心距为2或6.考点:圆与圆的位置关系.分析:两圆相切,则两圆外切或内切.当两圆外切时,圆心距等于两圆半径之和;当两圆内切时,圆心距等于两圆半径之差.解答:解:当两圆外切时,则圆心距等于4÷2+8÷2=6;当两圆内切时,则圆心距等于8÷2﹣4÷2=2.故答案为:2或6.点评:此题考查了两圆的位置关系与数量之间的联系.注意:两圆相切,则两圆内切或外切.15.如图,把△ABC绕点C顺时针旋转25°,得到△A′B′C,A′B′交AC于点D,若∠A′DC=90°,则∠A=65°.考点:旋转的性质.专题:计算题.分析:根据旋转的性质对应点与旋转中心的连线段的夹角等于旋转角得到∠ACA′=25°,而∠A′DC=90°,则∠A′=90°﹣25°=65°,然后再根据旋转的性质即可得到∠A=65°.解答:解:∵△ABC绕点C顺时针旋转25°,得到△A′B′C,∴∠ACA′=25°,又∵∠A′DC=90°,∴∠A′=90°﹣25°=65°,∴∠A=65°.故答案为65°.点评:本题考查了旋转的性质:旋转前后两图形全等,即对应角相等,对应边相等,对应点与旋转中心的连线段的夹角等于旋转角.16.如图,随机闭合开关S1,S2,S3中的两个,能够让灯泡发光的概率为.考点:概率公式.专题:跨学科.分析:根据题意可得:随机闭合开关S1,S2,S3中的两个,有3种方法,其中有两种能够让灯泡发光,故其概率为.解答:解:P(灯泡发光)=.故本题答案为:.点评:本题考查的是概率的求法.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.17.用一张半径为24cm的扇形纸片做一个如图所示的圆锥形小丑帽子侧面(接缝忽略不计),如果做成的圆锥形小丑帽子的底面半径为10cm,那么这张扇形纸片的面积是240πcm2.考点:圆锥的计算.专题:压轴题;数形结合.分析:易得圆锥的底面周长,利用侧面积公式可得扇形纸片的面积.解答:解:∵圆锥的底面周长为20π,∴扇形纸片的面积=×20π×24=240πcm2.故答案为240π.点评:考查圆锥的计算,用到的知识点为:圆锥的底面周长=侧面展开图的弧长;圆锥的侧面积=LR.18.一个口袋里有25个球,其中红球、黑球、黄球若干个,从口袋中随机摸出一球记下其颜色,再把它放回口袋中摇匀,重复上述过程,共试验200次,其中有120次摸到黄球,由此估计袋中的黄球有15个.考点:利用频率估计概率.分析:先求出试验200次摸到黄球的频率,再乘以总球的个数即可.解答:解:∵口袋里有25个球,试验200次,其中有120次摸到黄球,∴摸到黄球的频率为:=,∴袋中的黄球有25×=15个.故估计袋中的黄球有15个.点评:用到的知识点为:部分的具体数目=总体数目×相应频率.三.解答题(本大题共8小题,共66分,解答应写出文字说明,演算步骤或证明过程)19.计算(1);(2).考点:二次根式的混合运算.专题:计算题.分析:(1)先把各二次根式化为最简二次根式,然后合并即可;(2)根二次根式的乘除法则进行计算.解答:解:(1)原式=2+﹣2=;(2)原式=2×××=.点评:本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,在进行二次根式的乘除运算,然后合并同类二次根式.20.解下列方程(1)x2+2x﹣3=0(2)x(2x﹣5)=2x﹣5.考点:解一元二次方程-因式分解法.专题:计算题.分析:(1)利用因式分解法解方程;(2)先移项得到x(2x﹣5)﹣(2x﹣5)=0,再利用因式分解法解方程.解答:解:(1)(x﹣1)(x+3)=0,x﹣1=0或x+3=0,所以x1=1,x2=﹣3;(2)x(2x﹣5)﹣(2x﹣5)=0,(2x﹣5)(x﹣1)=0,2x﹣5=0或x﹣1=0,所以x1=,x2=1.点评:本题考查了解一元二次方程﹣因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).21.如图,利用关于原点对称的点的坐标特点,画出△ABC关于原点O对称的△A1B1C1,并写出点A1、B1、C1的坐标.考点:作图-旋转变换.专题:作图题.分析:根据平面直角坐标系找出点A、B、C关于原点对称的A1、B1、C1的位置,然后顺次连接即可,再根据关于原点对称的点的横坐标与纵坐标写出A1、B1、C1的坐标.解答:解:△A1B1C1如图所示;A1(3,﹣2),B1(2,1),C1(﹣2,﹣3).点评:本题考查了利用旋转变换作图,根据平面直角坐标系准确找出对应点的位置是解题的关键.22.已知电流在一定时间内正常通过电子元件的概率为0.5,分别求在一定时间内A、B之间电流通过的概率.(要求:解答分两步:第一步用列举法写出各种可能的结果;第二步,求A、B之间电流通过的概率.)考点:列表法与树状图法.专题:计算题.分析:画树状图得出所有等可能的情况数,找出通电的情况,即可求出所求概率.解答:解:画树状图,如图所示:,得出所有等可能的情况有4种,其中通电的占3种,则P(通电)=.点评:此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.23.如图,⊙O是△ABC的外接圆,AB是⊙O的直径,D为⊙O上一点,OD⊥AC,垂足为E,连接BD.(1)求证:BD平分∠ABC;(2)当∠ODB=30°,BC=,求⊙O的半径.考点:圆周角定理;勾股定理;垂径定理.专题:证明题.分析:(1)根据垂径定理得到弧CD=弧AD,然后根据圆周角定理得∠CBD=∠DBA;(2)由于∠OBD=∠ODB=30°,则∠ABC=60°,再根据半圆(或直径)所对的圆周角是直角得到∠ACB=90°,然后根据含30度的直角三角形三边的关系.可得到直径AB的长,则即可得到圆的半径.解答:(1)证明:∵OD⊥AC,∴弧CD=弧AD,∴∠CBD=∠DBA,∴BD平分∠ABC;(2)解:∵OD=OB,∴∠OBD=∠ODB=30°,∴∠ABC=60°,∵AB是⊙O的直径,∴∠ACB=90°,在Rt△ABC中,∠A=30°,BC=,∴AB=2BC=2,∴⊙O的半径为.点评:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了垂径定理和含30度的直角三角形三边的关系.24.如图,某中学准备在校园里利用围墙的一段,再砌三面墙,围成一个矩形花园ABCD (围墙MN最长可利用25m),现在已备足可以砌50m长的墙的材料,试设计一种砌法,使矩形花园的面积为300m2.考点:一元二次方程的应用.分析:根据可以砌50m长的墙的材料,即总长度是50米,AB=x米,则BC=(50﹣2x)米,再根据矩形的面积公式列方程,解一元二次方程即可.解答:解:设AB=x米,则BC=(50﹣2x)米.根据题意可得,x(50﹣2x)=300,解得:x1=10,x2=15,当x=10,BC=50﹣10﹣10=30>25,故x1=10(不合题意舍去),当x=15时,BC=50﹣2×15=20(米).答:可以围成AB的长为15米,BC为20米的矩形.点评:本题考查了一元二次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系求解,注意围墙MN最长可利用25m,舍掉不符合题意的数据.25.在4张完全相同的卡片正面分别写上数字1,2,3,3,现将它们的背面朝上洗均匀.(1)随机抽出一张卡片,求抽到数字“3”的概率;(2)若随机抽出一张卡片记下数字后放回并洗均匀,再随机抽出一张卡片,求两次都是抽到数字“3”的概率;(要求画树状图或列表求解)(3)如果再增加若干张写有数字“3”的同样卡片,洗均匀后,使得随机抽出一张卡片是数字“3”的概率为,问增加了多少张卡片?考点:列表法与树状图法;概率公式.分析:(1)由有4张完全相同的卡片正面分别写上数字1,2,3,3,抽到数字“3”的有2种情况,利用概率公式求解即可求得答案;(2)首先根据题意列出表格,然后由表格求得所有等可能的结果与两次都是抽到数字“3”的情况,再利用概率公式求解即可求得答案;(3)首先设增加了x张卡片,即可得方程:=,解此方程即可求得答案.解答:解:(1)∵有4张完全相同的卡片正面分别写上数字1,2,3,3,抽到数字“3”的有2种情况,∴随机抽出一张卡片,抽到数字“3”的概率为:=;(2)列表得:第二张第一张1 2 3 31 (1,1)(1,2)(1,3)(1,3)2 (2,1)(2,2)(2,3)(2,3)3 (3,1)(3,2)(3,3)(3,3)3 (3,1)(3,2)(3,3)(3,3)∵共有16种等可能的结果,两次都是抽到数字“3”的有4种情况,∴P(两次都是抽到数字“3”)==;(3)设增加了x张卡片,则有:=,解得:x=4,∴增加了4张卡片.点评:此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.26.如图,点P在y轴上,⊙P交x轴于A、B两点,连结BP并延长交⊙P于C,过点C 的直线y=2x+b交x轴于D,且⊙P的半径为,AB=4.(1)求点B、P、C的坐标;(2)求证:CD是⊙P的切线.考点:切线的判定;一次函数图象上点的坐标特征;全等三角形的判定与性质.分析:(1)连结AC,由于BC是圆P的直径,那么∠CAB=90°.解Rt△ABC,得出AC==2,由垂径定理得出OB=OA=2,根据三角形中位线定理得出OP=AC=1,从而求出点B、P、C的坐标;(2)将C(﹣2,2)代入y=2x+b,利用待定系数法求出过点C的直线解析式为y=2x+6,得到D(﹣3,0),AD=1.再利用SAS证明△ADC≌△OPB,得出∠DCA=∠B,然后证明∠BCD=90°,根据切线的判定定理证明CD是⊙P的切线.解答:(1)解:连结AC.∵BC是⊙P的直径,∴∠CAB=90°.在Rt△ABC中,∵∠CAB=90°,BC=2,AB=4,∴AC==2,∵OP⊥AB,∴OB=OA=2,∴OP=AC=1,∴P(0,1),B(2,0),C(﹣2,2);(2)证明:将C(﹣2,2)代入y=2x+b,得﹣4+b=2,解得b=6∴y=2x+6,当y=0时,则x=﹣3,∴D(﹣3,0),∴AD=1.在△ADC和△OPB中,,∴△ADC≌△OPB(SAS),∴∠DCA=∠B.∵∠B+∠ACB=90°,∴∠DCA+∠ACB=90°,即∠BCD=90°,∴CD是⊙P的切线.点评:本题考查了切线的判定,垂径定理,勾股定理,全等三角形的判定与性质等知识点.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.。
2015年第一学期九年级数学期末考试卷(定稿)
九年级数学期末试题卷—1 (共4页)2015学年第一学期期末考试九年级数学试题卷温馨提示:1.本试卷分试题卷和答题卷两部分,考试时间120分钟,满分120分.2.答题前,请在答题卷的相应区域内填写学校、班级、姓名、考场号、座位号、以及填涂学生检测号等. 3.不能使用计算器.4.所有答案都必须做在答题卷规定的位置上,注意试题序号与答题序号相对应. 一、仔细选一选(本大题有10小题,每小题3分,共30分。
请选出各题中一个符合题意的正确选项,不选、多选、错选,均不得分)1.“a 是实数,||0a ≥”这一事件是……………………………………………………( ▲ )A. 必然事件B. 不确定事件C. 不可能事件D. 随机事件2.把抛物线2y x =向右平移1个单位,所得抛物线的函数表达式为………………( ▲ )A. 21y x =+B. 2(1)y x =+ C. 21y x =- D. 2(1)y x =-3.如图所示的三视图表示的几何体是…………………………………………………( ▲ )4.将量角器按如图所示的方式放置在三角形纸板上,使点 C 在半圆上. 点A 、B 的读数分别为86°、30°,则∠ACB的度数为…………………………………………( ▲ )A. 15°B. 28°C. 29°D. 34°5.若23a b b -=,则a b =……………………………( ▲ ) A. 13 B. 23 C. 43 D. 536.如图,△ABC 的三个顶点分别在正方形网格的格点上, 则tan A ∠的值是…………………………………( ▲ )主视图 左视图 A B C D 俯视图 A CB第4题图第6题图九年级数学期末试题卷—2 (共4页)A.65 B. 56C. 3D. 207.在一个布袋中装着只有颜色不同,其它都相同的红、黄、黑三种小球各一个,从中任意摸出一个球,记下颜色后放回并搅匀,再摸出一个球,则摸出的两个球中,一个是红球,一个是黑球的概率是…………………………………………………………………………( ▲ )A. 19B. 29C. 13D.498.已知二次函数c bx ax y ++=2 的图象如图所示,那么下列判断不正确...的是……( ▲ ) A. ac <0 B. c b a +->0 C. a b 4-= D. 关于x 的方程 02=++c bx ax 的根是11-=x ,52=x9.美是一种感觉,当人体下半身长与身高的比值越接近0.618时,越给人一种美感.如图,某女士身高165cm ;下半身长x 与身高l 的比值是0.60,为尽可能达到好的效果,她应穿的高跟鞋的高度大约为………………………………………………………………( ▲ ) A .3cm B .6cm C .8cm D .10cm 10.如图,圆锥的底面半径为5,母线长为20,一只蜘蛛从底面圆周上一点A 出发沿圆锥的侧面爬行一周后回到点A 的最短路程是……………………………………………( ▲ ) A. 8B. C.D. 二、认真填一填(本题有6小题,每小题4分,共24分)11.比较三角函数值的大小:sin30° ▲ tan30°(填入“>”或“<”).12.某厂生产了1200件衬衫,根据以往经验其合格率为0.95左右,则这1200件衬衫中次品(不合格)的件数大约为 ▲ . 13.已知二次函数42++=bx x y 顶点在x 轴上,则b= ▲ . 14.如图,已知AB 是⊙O 的直径,CD 是⊙O 的切线,C 为切点,且∠BAC =50°,则∠ACD = ▲ °.15.一个比例为1:10000的矩形草坪示意图的长、宽分别为5cm ,2cm ,则此矩形草坪的实际面积为 ▲ 2m .16.P 是正方形ABCD 的BC 边上一点,连结AP ,AB =8,BP =3,Q 是线段AP 上一动点,连结BQ 并延长交四边形ABCD 的一边于点R ,若点Q 是BR 的三等分点,则AR 的长为 ▲ .三、解答题(本大题有8小题,共66分)第14题图x第8题图第9题图第10题图A九年级数学期末试题卷—3 (共4页)17.(本题6分)计算:00200230sin 230cos 845tan 60sin 4+-+ 18.(本题6分)已知线段AB ,把线段AB 五等分.(不要求写出作法)19.(本题6分)如图所示,AD ,BE 是钝角△ABC 的边BC ,AC 上的高,求证:AD BE =ACBC.20.(本题8分)如图,AB 是⊙O 的直径,C 是⊙O 上一点,CD ⊥AB 于D ,且AB =8,DB =2. (1)求证:△ABC ∽△ACD ; (2)求图中阴影部分的面积.21.(本题8分)已知二次函数y=2x 2-x -3.(1)求函数图象的顶点坐标,与坐标轴交点坐标,并画出函数大致图象;(2)根据图象直接回答:当x 为何值时,y <0?当x 为何值时y >-3?BC ADE第19题图第20题图第21题图九年级数学期末试题卷—4 (共422.(本题10分)已知如图在△ABC 中,∠B =45°,∠BCA =30°,过点A 、 B 、C 三点作⊙O ,过点C 作⊙O 的切线交BA 延长线 于点D ,连结OA 交BC 于E . (1)求证:OA //CD ;(2)求证△ABE ∽△DCA ; (3)若OA =2,求BC 的长.23.(本题10分)已知在平面直角坐标系XOY 中,抛物线)0(21≠+=a bx ax y ,与x 轴正半轴交于点1A (2,0),顶点为1P ,△11A OP 为正三角形,现将抛物线)0(21≠+=a bx ax y 沿射线1OP 平移,把过点1A 时的抛物线记为抛物线2y ,记抛物线2y 与x 轴的另一交点为2A ;把抛物线2y 继续沿射线1OP 平移,把过点2A 时的抛物线记为抛物线3y ,记抛物线3y 与x 轴的另一交点为3A ;….;把抛物线2015y 继续沿射线1OP 平移,把过点2015A 时的抛物线记为抛物线2016y ,记抛物线2016y 与x 轴的另一交点为2016A ,顶点为2016P .若这2016条抛物线的顶点都在射线1OP 上.(1)①求△OP 1A 1的面积;②求b a ,的值; (2)求抛物线2y 的解析式;(3)请直接写出....点2016A 以及点2016P 坐标.24.(本题12分)已知如图,圆P 经过点A (-4,0),点B (6,0), 交y 轴于点C ,∠ACB =45°,连结AP 、BP . (1)求圆P 的半径; (2)求OC 长;(3)在圆P 上是否存在点D ,使△BCD 的面积等于△ABC 的面积,若存在求出点D 坐标,若不存 在说明理由.第22题图第23题图。
2015-2016学年度第一学期期末考试九年级数学试题附答案
2015-2016学年度第一学期期末考试九年级数学试题本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷共2页,满分为36分;第Ⅱ卷共4页,满分为84分.本试题共6页,满分为120分.考试时间为120分钟.答卷前,考生务必用0.5毫米黑色墨水签字笔将自己的考点、姓名、准考证号、座号填写在答题卡上和试卷规定的位置上.考试结束后,将本试卷和答题卡一并交回.本考试不允许使用计算器.第I 卷(选择题 共36分)注意事项:第Ⅰ卷为选择题,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案写在试卷上无效.一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.一元二次方程x 2﹣9=0的解是( )A . x=3B . x=﹣3C . x 1=3,x 2=﹣3D . x 1=9,x 2=﹣9 2.如图,下列几何体的左视图不是矩形的是( )3.下列函数中,图象经过点(2,﹣3)的反比例函数关系式是 ( )A.3y x =- B.2y x = C.6y x = D.6y x=-4.如图,四边形ABCD 内接于⊙O ,已知∠A BC =35°,则∠AOC 的大小是( ) A.80° B.70° C. 60° D.50°5.在正方形网格中,ABC △的位置如图所示,则cos B ∠的值为( )A .12B .22C .32D .336.下列命题正确的是( )A .对角线互相垂直的四边形是菱形B .一组对边相等,另一组对边平形的四边形是平行四边形C .对角线相等的四边形是矩形D .对角线互相垂直平分且相等的四边形是正方形7.三角形两边长分别为3和6,第三边是方程x 2-13x+36=0的根,则三角形的周长为( ) A .13 B .15 C .18 D .13或188.如图,点P 在△ABC 的边AC 上,要判断△ABP ∽△ACB ,添加一个条件,不正确的是( )A .∠ABP =∠CB .∠APB =∠ABC C .AP AB AB AC = D .AB ACBP CB=9. 二次函数y= -x 2+2x+4的最大值为( )A .3B .4C .5D .610.经过某十字路口的汽车,可能直行,也可能左转或者右转。
山东省新泰市2015年秋九年级学科学习能力成果展示竞赛数学试题(含答案)
九年级学科学习能力成果展示数 学 试 题(考试时间120分钟,满分150分)真情提示:亲爱的同学,欢迎你参加本次考试,祝你答题成功! 一、选择题(本大题共14题,每题3分,满分42分)1.已知∠A = 65°,则∠A 的余角等于( )A .115°B .55°C .35°D .25°2.下列说法中,错误的是( )A .平行四边形的对角线互相平分B .对角线互相平分的四边形是平行四边形C .菱形的对角线互相垂直D .对角线互相垂直的四边形是菱形 3. 下列图形中,不是轴对称图形的是( )A .B .C .D .4. 在实数π、31、2、tan 60°中,无理数的个数为( ) A .1 B .2 C .3 D .4 5.下列运算中,正确的是( )A .-(m +n )=n -mB .(m 3n 2)3=m 6n 5C .m 3•m 2=m 5D .n 3÷n 3=n6. 如果22)(-x =2−x ,那么x 取值范围是( )A .x ≤2B .x <2C .x ≥2D .x >27.分式112+-x x 的值为0,则( )A .x =-1B . x =1C .x =±1D .x =08.如图,已知AB ∥CD ,E 是AB 上一点,DE 平分∠BEC 交CD 于D ,∠C =80°,则∠D 的度数是( )A .40°B .45°C .50°D .55°9.小明乘出租车去体育场,有两条路线可供选择:路线一的全程是25千米 ,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达.若设走路线一时的平均速度为x 千米/小时,根据题意得:( )学校_______________ 班级__________________ 姓名________________密 封 线A .253010(180%)60x x -=+ B .253010(180%)x x -=+C .302510(180%)60x x -=+D .302510(180%)x x-=+10.已知关于x 的方程01)2(=-+x b a 无解,那么b a 的值是( )A .负数B .正数C .非负数D .非正数11.在平面直角坐标系中有两点A (-1,2),B (3,2),若点C 是坐标轴上的一点,且△ABC 是直角三角形,则满足条件的点C 的个数为( )A.3B.4C.5D.612.如图,在Rt △ABC 中,∠C =90°,AC =BC =6cm ,点P 从点A 出发,沿AB 方向以每秒cm 的速度向终点B 运动;同时,动点Q 从点B 出发沿BC 方向以每秒1cm 的速度向终点C 运动,将△PQC 沿QC 翻折,点P 的对应点为点P ′.设点Q 运动的时间为t 秒,若四边形QPCP ′为菱形,则t 的值为( ) A .2B .2C .22D .313.已知在平面直角坐标系中放置了5个如图所示的正方形(用阴影表示),点B 1在y 轴上,点C 1、E 1、E 2、C 2、E 3、E 4、C 3在x 轴上.若正方形A 1B 1C 1D 1的边长为1,∠B 1C 1O =60°,B 1C 1∥B 2C 2∥B 3C 3,则点A 3到x 轴的距离是( )A .B .C .D .14.若函数221(100196|100196|)2y x x x x =-++-+,则当自变量x 取1、2、3、…、100这100个自然数时,函数值的和是( )。
2015年初三一模数学试卷及答案
2015年高级中等学校招生模拟考试(一)数 学 试 卷 2015.5考生须知 1.本试卷共6页,共五道大题,页,共五道大题,2929道小题,满分120分.考试时间120分钟。
分钟。
2.在试卷和答题卡上准确填写学校名称、姓名和准考证号。
.在试卷和答题卡上准确填写学校名称、姓名和准考证号。
3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
4. 在答题卡上,选择题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。
铅笔作答,其他试题用黑色字迹签字笔作答。
5. 考试结束,请将本试卷、答题卡一并交回。
考试结束,请将本试卷、答题卡一并交回。
一、选择题(本题共30分,每小题3分)下列各题均有四个选项,其中只有一个..是符合题意的.是符合题意的. 1.把8000用科学计数法表示是A .28010´ B .3810´ C .40.810´ D .4810´ 2.数轴上有A ,B ,C ,D 四个点,其中绝对值相等的点是四个点,其中绝对值相等的点是 A.A.点点A 与点D B. 点A 与点C C. 点B 与点CD. 点B 与点D 3.下列手机软件图标中,既是轴对称图形又是中心对称图形的是.下列手机软件图标中,既是轴对称图形又是中心对称图形的是A B C D 4. 小华的老师让他在无法看到袋子里小球的情形下,从袋子里模出一个小球从袋子里模出一个小球. . 袋子里各种颜色小球的数量统计如表所示所示..小华模到褐色小球的概率为小华模到褐色小球的概率为 A .101 B .51C .41D .21 5. 如图,如图,AD AD 是∠EAC 的平分线,AD∥BC,∠B=30°,的平分线,AD∥BC,∠B=30°,则∠C 为A .30°.30°B B .60°.60°C C .80°.80°D D .120°.120°6.如图,已知⊙O 的半径为1010,弦,弦AB 长为1616,则点,则点O 到AB 的距离是的距离是 A. 3 B. 4 C. 5 D. 67.某校在“中国梦.我的梦”演讲比赛中,有11名学生参加决赛,他们决赛的最终成绩各不相同.其颜色颜色 红色红色 橙色橙色 黄色黄色 绿色绿色 蓝色蓝色 紫色紫色 褐色褐色 数量数量 6433225xD CB A 123–1–2–3O中的一名学生想要知道自己能否进入前6名,不仅要了解自己的成绩,还要了解这11名学生成绩的绩的A .平均数.平均数B .众数.众数C .中位数.中位数D .方差.方差 8.如图,已知正方形ABCD 中,中,G G 、P 分别是DC DC、、BC 上的点,上的点,E E 、F 分别分别 是AP AP、、GP 的中点,当P 在BC 上从B 向C 移动而G 不动时,不动时, 下列结论成立的是下列结论成立的是A .线段.线段EF 的长逐渐增大的长逐渐增大B B .线段EF 的长逐渐减小的长逐渐减小C .线段.线段EF 的长不改变的长不改变D D .线段EF 的长不能确定的长不能确定 9.如图,函数y=2x 和y=ax+4的图象相交于点A (m ,3),), 则不等式2x≥ax+4的解集为的解集为 A .x≥B. x≤3x≤3C . x ≤D .x ≥3≥310.如图1,在等边△ABC 中,点E 、D 分别是AC ,BC 边的中点,点P 为AB 边上的一个动点,连接PE ,PD ,PC ,DE .设AP =x ,图1中某条线段的长为y ,若表示y 与x 的函数关系的图象大致如图2所示,则这条线段可能是图1中的中的A .线段PDB .线段PC C .线段PED .线段DE 二、填空题(本题共18分,每小题3分) 1111.函数.函数y=1x-3中自变量x 的取值范围是的取值范围是___________________________________________________.. 1212.请写出一个过一、三象限的反比例函数的表达式.请写出一个过一、三象限的反比例函数的表达式.请写出一个过一、三象限的反比例函数的表达式___________________________________________________.. 1313.下面有五个图形,与其它图形众不同的是第.下面有五个图形,与其它图形众不同的是第.下面有五个图形,与其它图形众不同的是第 个.GFEPDCBA①②③④ ⑤xy图2OPEDCBA图11414..如图,在矩形ABCD 中,=,以点B 为圆心,BC 长为半径画弧,交边AD 于点E .若AE •ED =16=16,,则矩形ABCD 的面积为的面积为. 15.当三角形中一个内角α是另一个内角β的一半时,的一半时,我们称此三角形为“半角三角形”,其中α称为“半角”. 如果一个“半角三角形”的“半角”为20°,那么这个,那么这个“半角三角形”的最大内角的度数为__________.16.2014年5月1日开始,北京市开始实施居民用水阶梯水价.具体方案如下:户年用水量180立方米立方米(含)(含)(含)内,内,内,每立方米每立方米5元;181立方米至260立方米(含)内,每立方米7元;260立方米以上,每立方米9元.阶梯水价以日历年(每年1月1日到12月31日)为周期计算. 小王家2014年4月30日抄表示数550立方米,立方米,55月1日起实施阶梯水价,日起实施阶梯水价,66月抄表时因用户家中无人未见表,家中无人未见表,88月12日抄表示数706立方米,那么小王家本期用水量为立方米,那么小王家本期用水量为 立方米,本期用水天数104天,日均用水量为日均用水量为 立方米立方米. . 如果按这样每日用水量计算,如果按这样每日用水量计算,小李家今小李家今后每年的水费将达到后每年的水费将达到 元(一年按365天计算)天计算). . 三、解答题(本题共30分,每小题5分)1717.如图,点.如图,点C ,D 在线段BF 上,AB DE ∥,AB DF =,A F Ð=Ð.求证:BC DE =.18. 计算:011(20152014)82cos 45()2--+-°+1919.解不等式组:.解不等式组:240,3(1) 2.x x x -<ìí+³+î2020.已知.已知32a b =,求代数式2243(3)9a ba b a b ++-的值的值. .21.列方程或方程组解应用题:为了培育和践行社会主义核心价值观,引导学生广泛阅读古今文学名著,传承优秀传统文化传承优秀传统文化,,我区某校决定为初三学生购进相同数量的名著《三国演义》和《红岩》其中《三国演义》的单价比《红岩》的单价多比《红岩》的单价多282828元元.若学校购买《三国演义》用了若学校购买《三国演义》用了120012001200元,购买《红岩》用了元,购买《红岩》用了元,购买《红岩》用了400400400元,求《三元,求《三国演义》和《红岩》的单价各多少元国演义》和《红岩》的单价各多少元. .FEDCB A2222.已知.已知.已知::关于x 的一元二次方程2(41)330kx k x k -+++=(k 是整数).(1)求证:方程有两个不相等的实数根;方程有两个不相等的实数根; (2)若方程的两个实数根都是整数,求k 的值. 四、解答题(本题共20分,每小题5分)23. 如图,如图,BD 是△ABC 的角平分线,点E ,F 分别在BC ,AB 上,且DE ∥AB ,BE =AF . (1)求证:四边形ADEF 是平行四边形;是平行四边形;(2)若∠ABC =60°,BD =4=4,求平行四边形,求平行四边形ADEF 的面积.的面积.24.某公司有5个股东,每个股东的利润相同,有100名工人,每名工人的工资相同.2015年第一个季度工人的工资总额与公司个季度工人的工资总额与公司 的股东总利润情况见右表:的股东总利润情况见右表: 该公司老板根据表中数据,该公司老板根据表中数据,作出了图作出了图1,并声称股东利润和工人工资同步增长,并声称股东利润和工人工资同步增长,公司和工人做到了公司和工人做到了“有福同享”.针对老板的说法,解决下列问题:针对老板的说法,解决下列问题: (1)这三个月工人个人的月收入分别是)这三个月工人个人的月收入分别是 万元;万元;(2)在图2中,已经做出这三个月每个股东利润统计图,请你补出这三个月工人个人月收入的统计图;图; (3)通过完成第(1),(2)问和对图2的观察,你如何看待老板的说法?(用一两句话概括)的观察,你如何看待老板的说法?(用一两句话概括)月份月份 工人工资总额(万元)工人工资总额(万元) 股东总利润(万元)股东总利润(万元) 1 28 14 2 30 16 33218股东利润工人工资40302010月份(万元)总额1234O 图11231234股东月份(万元)个人收入O 图225. 如图,如图,AB AB 是⊙是⊙O O 的直径,的直径,C C 是弧AB 的中点,的中点,D D 是⊙是⊙O O 的 切线CN 上一点,上一点,BD BD 交AC 于点E ,且BA= BD . (1)求证:∠)求证:∠ACD=45ACD=45ACD=45°;°;°; (2)若OB=2OB=2,求,求DC 的长.的长.2626.阅读下面材料:.阅读下面材料:.阅读下面材料:小聪遇到这样一个有关角平分线的问题:如图1,在△,在△ABC ABC 中,中,∠A ∠A=2=2=2∠B,∠B,∠B,CD CD 平分∠A 平分∠ACB CB CB,,AD=2.2AD=2.2,,AC=3.6求BC 的长的长. .小聪思考:因为CD 平分∠A 平分∠ACB CB CB,所以可在,所以可在BC 边上取点E ,使EC=AC EC=AC,连接,连接DE. 这样很容易得到△DEC ≌△DAC ,经过推理能使问题得到解决(如图2). 请回答:(1)△)△BDE BDE 是__________________三角形三角形三角形. .(2)BC 的长为的长为__________. __________. 参考小聪思考问题的方法,解决问题:参考小聪思考问题的方法,解决问题:如图3,已知△,已知△ABC ABC 中,中,AB=AC, AB=AC, ∠A ∠A=20=20=20°,°,°, BD 平分∠平分∠ABC,BD=ABC,BD=2.3,BC=2.求AD 的长的长. . 五、解答题(本题共22分,第27题7分,第28题7分,第29题8分)2727.在平面直角坐标系.在平面直角坐标系xOy 中,二次函数y=y=((a-1a-1))x 2+2x+1与x 轴有交点,轴有交点,a a 为正整数为正整数. . (1)求a 的值的值. . (2)将二次函数y=y=((a-1a-1))x 2+2x+1的图象向右平移m 个单位,个单位,向下平移m 2+1个单位,当个单位,当 -2 -2≤x ≤1时,二次函数有最小值时,二次函数有最小值-3-3-3,, 求实数m 的值的值. .A B C D图1 ED C B A图2 ABC D图3 NED CBA Oyx11O27题图题图2828..在等边△在等边△ABC ABC 外侧作直线AP ,点B 关于直线AP 的对称点为D ,连接BD,CD BD,CD,,其中CD 交直线AP 于点E .(1)依题意补全图1; (2)若∠)若∠PAB=30PAB=30PAB=30°,求∠°,求∠°,求∠ACE ACE 的度数;的度数;(3)如图2,若6060°°<∠PAB <120<120°,判断由线段°,判断由线段AB,CE,ED 可以构成一个含有多少度角的三角形,并证明形,并证明. .29. 对某种几何图形给出如下定义:对某种几何图形给出如下定义:符合一定条件的动点所形成的图形,叫做符合这个条件的点的轨迹的轨迹..例如例如,,平面内到定点的距离等于定长的点的轨迹平面内到定点的距离等于定长的点的轨迹,,是以定点为圆心是以定点为圆心,,定长为半径的圆定长为半径的圆. . (1)如图1,在△,在△ABC ABC 中,中,AB=AC AB=AC AB=AC,∠,∠,∠BAC=9BAC=9BAC=90°,0°,0°,A(0A(0A(0,,2)2),,B 是x 轴上一动点,当点B 在x 轴上运动时,点C 在坐标系中运动,点C 运动形成的轨迹是直线DE DE,且,且DE DE⊥⊥x 轴于点G. G. 则直线DE 的表达式是的表达式是 . .(2)当△)当△ABC ABC 是等边三角形时,在(是等边三角形时,在(11)的条件下,动点C 形成的轨迹也是一条直线形成的轨迹也是一条直线. . .①当点B 运动到如图2的位置时,的位置时,AC AC AC∥∥x 轴,则C 点的坐标是点的坐标是 . .②在备用图中画出动点C 形成直线的示意图,并求出这条直线的表达式形成直线的示意图,并求出这条直线的表达式. .③设②中这条直线分别与x,y 轴交于E,F 两点,当点C 在线段EF 上运动时,点H 在线段OF 上运动,(不与O 、F 重合),且CH=CE,CH=CE,则则CE 的取值范围是的取值范围是 . .xy AOxyA O图1AB CP AB CP图2 图2xy A C BO图1xy GDE CBAO数学试卷答案及评分参考一、选择题(本题共30分,每小题3分) 题 号12345 6 7 8 9 10 答 案 BC B B ADCCAC二、填空题(本题共18分,每小题3分)题号题号 1111 12121313 14 15 1616答案答案x ≠3k ›0即可即可不唯一不唯一60120o156,1.5,4047.5三、解答题(本题共30分,每小题5分) 17.(本小题满分5分)分) 证明:∵ AB ∥DE∴ ∠B = ∠EDF ; 在△ABC 和△和△F F DE 中A F AB DF B EDF Ð=Ðìï=íïÐ=Ðî…………………………3分∴△ABC ≌△FDE (ASA)(ASA),…………………,…………………4分 ∴BC=DE. …………………………………5分18.18.解:原式解:原式解:原式=1+=1+22-2222´+……………………………………4分=1+22-2+2 =3+2…………………………………………………………5分 19. 解①得:x<2,…………………………………………………………2分 解②得:解②得:x x ≥1-2,……………………………………………………4分 所以不等式组的解集为:1-2≤x<2. ……………………………5分2020..解:2243(3)9a ba b a b ++-43(3)(3)(3)a b a b a b a b +=++- 433a ba b+=-……………………………………………3分∵32a b =,∴23a b =. ………………………………………………4分 ∴原式=662aa a=--.……………………………………5分21.解:设《红岩》的单价为x 元,则《三国演义》的单价为(x+28)元. ……………1分.由题意,得120040028x x=+……………………………………3分. 解得x=14.x=14.……………………………………4分. 经检验,经检验,x=14x=14x=14是原方程的解,且符合题意是原方程的解,且符合题意是原方程的解,且符合题意. . ∴x+28=42.答:《红岩》的单价为14元,《三国演义》的单价为42元. ……………………5分.2222..(1)证明:△2(41)4(33)k k k =+-+ 2(21)k =-·………………………………………1分.∵2(41)330kx k x k -+++=是一元二次方程,∴k ≠0, ∵k 是整数是整数∴12k ¹即210k -¹. ∴△2(21)0k =->∴方程有两个不相等的实数根∴方程有两个不相等的实数根..………………………………………2分(2)解方程得:2(41)(21)2k k x k+±-=……………………………………3分.∴3x =或11x k=+………………………………………4分∵k 是整数,方程的根都是整数,∴k =1或-1…………………………………5分.四、解答题(本题共20分,每小题5分)23. (1)证明:∵BD 是△ABC 的角平分线,的角平分线, ∴∠ABD =∠DBE ,∵DE ∥AB , ∴∠ABD =∠BDE , ∴∠DBE =∠BDE ,∴,∴BE=DE; BE=DE; ∵BE =AF ,∴AF=DE;∴四边形ADEF 是平行四边形是平行四边形. .………………………………………2分(2)解:过点D 作DG ⊥AB 于点G ,过点E 作EH ⊥BD 于点H , ∵∠ABC =60°,BD 是∠ABC 的平分线,的平分线, ∴∠ABD =∠EBD =30°,=30°,∴DG =BD =×4=24=2,………………………………………,………………………………………3分∵BE =DE ,∴BH =DH =2=2,, ∴BE ==433,∴DE =433,………………………………………4分 ∴四边形ADEF 的面积为:DE •DG =833.………………………………………5分24. 解:(1)0,28,0.3,0.32. ……………………………3分(2)补图如右图:………………………………4分 (3)答案不唯一)答案不唯一..…………………………………5分25. (1)证明:∵)证明:∵C C 是弧AB 的中点,∴弧AC=AC=弧弧BC,∴AC=BC. ∵AB 是⊙是⊙O O 的直径,的直径, ∴∠∴∠ACB=90ACB=90ACB=90°°,∴∠∴∠BAC=BAC=BAC=∠∠CBA=45CBA=45°°, 连接OC, ∵OC=OA, ∴∠∴∠AC0=45AC0=45AC0=45°°. ∵CN 是⊙是⊙O O 切线,∴∠切线,∴∠OCD=90OCD=90OCD=90°°,∴∠∴∠ACD=45ACD=45ACD=45°°.………………………………2分. (2) 解:作BH BH⊥⊥DC 于H 点,…………………………3分. ∵∠∵∠ACD=45ACD=45ACD=45°°,∴∠∴∠DCB=135DCB=135DCB=135°°, ∴∠∴∠BCH=45BCH=45BCH=45°°, ∵OB=2OB=2,∴,∴,∴BA= BD=4,AC= BC=BA= BD=4,AC= BC=22. ∵BC=22,∴BH= CH=2, 设DC=x,DC=x,在在Rt Rt△△DBH 中,中,利用勾股定理:2222)24x ++=(,………4分解得:解得:x=x=223-±(舍负的),∴,∴x=x=223-+, ∴DC 的长为:223-+……………………………5分.2626.解:.解:(1)△)△BDE BDE 是等腰三角形………………………1分 (2)BC 的长为5.8.5.8.………………………………………………………………2分. ∵△∵△ABC ABC 中,中,AB=AC, AB=AC, ∠A ∠A=20=20=20°,°,°, ∴∠A ∴∠ABC=BC=BC=∠∠C= 80°,∵°,∵°,∵BD BD 平分∠平分∠B. B. ∴∠∴∠1=1=1=∠∠2= 40°,∠°,∠°,∠BDC= 60BDC= 60°,°,.在BA 边上取点E ,使BE=BC=2BE=BC=2,连接,连接DE DE,,. ………………………3分 则△DEB ≌△DBC ,∴∠,∴∠BED=BED=BED=∠∠C= 80°,°,°, ∴∠∴∠4=604=604=60°,∴∠°,∴∠°,∴∠3=603=603=60°,°,°,在DA 边上取点F ,使DF=DB DF=DB,连接,连接FE FE,…………………………,…………………………4分 则△BDE ≌△FDE ,∴∠,∴∠5=5=5=∠∠1= 40°,°,°,BE=EF=2, BE=EF=2, ∵∠A ∵∠A=20=20=20°,∴∠°,∴∠°,∴∠6=206=206=20°,∴°,∴°,∴AF=EF=2, AF=EF=2, ∵BD=DF=2.3, ∴AD = BD+BC=4.3.…………………………5分.654321F EDC BAHOABCDEN 1231234个人收入(万)月份工人股东O图2五、解答题(本题共22分,第27题7分,第28题7分,第29题8分)27.27.解:解:(1)∵二次函数y=y=((a-1a-1))x 2+2x+1与x 轴有交点,轴有交点,令y=0y=0,则(,则(,则(a-1a-1a-1))x 2+2x+1=0+2x+1=0,, ∴=4-4(a-1)0D ³,解得a ≤2.2. …………………………………1分.∵a 为正整数为正整数..∴a=1、2 又∵又∵y=y=y=((a-1a-1))x 2+2x+1是二次函数,∴是二次函数,∴a-1a-1a-1≠≠0,∴,∴a a ≠1,∴a 的值为2.2.………………………………………2分 (2)∵a=2,∴二次函数表达式为y=x 2+2x+1+2x+1,,将二次函数y=x 2+2x+1化成顶点式y=y=((x+1x+1))2二次函数图象向右平移m 个单位,向下平移m 2+1个单位个单位后的表达式为y=y=((x+1-m x+1-m))2-(m 2+1+1)). 此时函数的顶点坐标为(此时函数的顶点坐标为(m-1, -m m-1, -m 2-1-1)).…………………………………4分当m-1m-1<<-2,即m <-1时,时, x=-2时,二次函数有最小值时,二次函数有最小值-3-3-3,, ∴-3=(-1-m -1-m))2-(m 2+1+1)),解得32m =-且符合题目要求且符合题目要求.. ………………………………5分当 -2≤m-1m-1≤≤1,1,即即-1-1≤≤m ≤2,2,时,当时,当时,当 x= m-1时,二次函数有最小值时,二次函数有最小值-m -m 2-1=-3-1=-3,, 解得2m =±.∵-2m =不符合不符合-1-1-1≤≤m ≤2的条件,舍去的条件,舍去.. ∴2m =.……………………………………6分当m-1m-1>>1,即m >2时,当时,当 x=1时,二次函数有最小值时,二次函数有最小值-3-3-3,,∴-3=(2-m 2-m))2-(m 2+1+1)),解得32m =,不符合m >2的条件舍去的条件舍去..综上所述,m 的值为32-或2 ……………………………………7分 2828.解:.解:(1)补全图形,如图1所示所示. .……………………………1分 (2)连接AD AD,如图,如图2.2.∵点∵点D 与点B 关于直线AP 对称,∴对称,∴AD=AB AD=AB AD=AB,∠,∠DAP =∠BAP =30°. ∵AB=AC, ∠BAC =60°. ∴AD=AC, ∠DAC =120°.∴2∠ACE+60°+60°=180°∴∠ACE =30°……………………………3分PEDCBA 图1PEDCBA图2(3)线段AB,CE,ED 可以构成一个含有60°角的三角形°角的三角形..…………………………… 4分证明:连接AD ,EB ,如图3.∵点D 与点B 关于直线AP 对称,对称, ∴AD=AB AD=AB,,DE=BE DE=BE,, 可证得∠EDA = ∠E BA .∵AB=AC,AB=AD.AB=AC,AB=AD. ∴AD=AC, ∴∠ADE = ∠ACE. ∴∠ABE = ∠ACE.ACE.设设AC AC,,BE 交于点F, 又∵∠AFB = ∠CFE.CFE.∴∠∴∠∴∠B B AC =∠BEC=60°. ∴线段AB,CE,ED 可以构成一个含有60°角的三角形°角的三角形..………7分29. 解:(1)x=2.x=2.…………………………1分. (2)①)①C C 点坐标为点坐标为: :43,23()…………………………3分.②由①②由①C C 点坐标为点坐标为: :43,23()再求得其它一个点C 的坐标,如(3,1),或(,或(00,-2-2)等)等)等代入表达式y=kx+b y=kx+b,解得,解得b=-23k ìïí=ïî. ∴直线的表达式是32y x =-.………………………5分.动点C 运动形成直线如图所示运动形成直线如图所示..……………6分.③423393EC £<.…………………………8分.图3FP CBADExy FAEO。
2015-2016九年级数学第一学期期末考试
2015-2016学年度第一学期期末网上阅卷适应性测试九年级数学试卷(满分:150分 测试时间:120分钟)一、选择题(本大题共8小题,每小题3分,共24分,每小题仅有一个答案正确,请在答题卡上填涂)1.下列方程中,是一元二次方程的是( )A .x=2y ﹣3B .2(x+1)=3C .x 2+3x ﹣1=x 2+1D .x 2=9 2. 下列说法正确的是( )A .三点确定一个圆B .一个三角形只有一个外接圆C .和半径垂直的直线是圆的切线D .三角形的内心到三角形三个顶点距离相等 3.如图,小正方形的边长均为1,则下列图形中的三角形(阴影部分)与△ABC 相似的是( )A .B .C .D .(第3题图)4.一个布袋内只装有1个黑球和2个白球,这些球除颜色外其余都相同,随机摸出一个球后放回并搅匀,再随机摸出一个球,则两次摸出的球都是黑球的概率是( ) A .B .C .D .5. “双十一”即指每年的11月11日,是指由电子商务为代表的,在全中国范围内兴起的大型购物促销狂欢日。
2013年双十一淘宝销售额达到350亿元,2015年11月12日,第七个天猫双11全球狂欢节落下帷幕,全天交易额达912.17亿元,设2013年到2015年年平均增长率为x ,则下列方程正确的是( ) A .350(1+x )=912.17 B .350(1+2x )=912.17C .350(1+x )2=912.17D .350(1+x )+350(1+x )2=912.17 6.如图,线段CD 两个端点的坐标分别为C (1,2)、D (2,0),以原点为位似中心,将线段CD 放大得到线段AB ,若点B 坐标为(5,0),则点A 的坐标为( ) A .(2,5) B .(2.5,5) C .(3,5) D .(3,6) 7. 如图,AB 是⊙O 的直径,D 、C 在⊙O 上,AD ∥OC ,∠DAB=60°,连接AC ,则∠DAC 等于( )A .15°B .30°C .45°D .60° 8. 如图,分别过点P i (i ,0)(i=1、2、…、n )作x 轴的垂线,交221x y =的图象于点A i ,交直线x y 21-=于点B i .则nn B A B A B A 1112211 ++的值为( )A .12+n nB .2C .()12+n nD .12+n(第6题图) (第7题图) (第8题图)二.填空题(本大题共10小题,每小题3分,共30分.请将答案填在答题卡上)9.方程x 2=2的解是 .10.s 2:(根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择 11. 关于x 的方程x 2+2x ﹣m=0有两个相等的实数根,则m= .12.一个圆锥的侧面展开图是半径为6,圆心角为120°的扇形,那么这个圆锥的底面圆的半径为13把二次函数y=2x 2的图象向左平移1个单位长度,再向下平移2个单位长度,平移后抛物线的解析式为 ..14. 如图,在△ABC 中,点G 是重心,那么ABCABGS S ∆∆= .(第14题图) (第15题图) (第17题图) (第18题图) 15. 如图,⊙O 中,∠AOB=110°,点C 、D 是上任两点,则∠C+∠D 的度数是 °.16. 2值,则这个错误的数值是17.如图,为了估算河的宽度,小明采用的办法是:在河的对岸选取一点A ,在近岸取点D ,B ,使得A ,D ,B 在一条直线上,且与河的边沿垂直,测得BD=10m ,然后又在垂直AB 的直线上取点C ,并量得BC=30m .如果DE=20m ,则河宽AD 为 m18.如图,在矩形ABCD 中,AB=4,AD=5,AD ,AB ,BC 分别与⊙O 相切于E ,F ,G 三点,过点D 作⊙O 的切线交BC 于点M ,切点为N ,则DM 的长为 三.解答题(本大题共10小题,共96分.请在答题卡上作答) 19. (本题共8分)解下列方程:(1)()812=-x (2)03-2x x 2=-20. (本题共8分)已知关于x 的方程x 2+2x+a ﹣2=0.(1)若该方程有两个不相等的实数根,求实数a 的取值范围; (2)当该方程的一个根为1时,求a 的值及方程的另一根.21. (本题共8分) 在全运会射击比赛的选拔赛中,运动员甲10次射击成绩的统计表(表1)和扇形统计图如下:(2)已知乙运动员10次射击的平均成绩为9环,方差为1.2,如果只能选一人参加比赛,你认为应该派谁去?并说明理由.22. (本题共8分)王老师获得一张2016宝应春节联欢晚会的门票,想奖给班级学习优秀的同学,通过考察,小明和小刚脱颖而出,但问题是只有一张门票,小明和小刚想通过抽取扑克牌的游戏来决定谁去看晚会,他们各自提出了一个方案: (1)小明的方案:将红桃2、3、4、5四张牌背面向上,小明先抽一张,记下牌面数字后放回,小刚再从中抽一张,若两张牌上的数字之和是奇数,则小明看晚会,否则小刚看晚会.你认为小明的方案公平吗?请用列表或画树状图的方法说明; (2)小刚将小明的方案修改为只用红桃2、3、4三张牌,抽取方式及规则不变,小刚的方案公平吗?(只回答,不说明理由)23. (本题共10分)宝应运河大桥横跨京杭大运河,是连接宝应县城区与运西的重要通道,该桥原先坐落于扬州,全长约175米,桥面宽10米,行车道宽7米。
山东省泰安市新泰市金斗中学九年级数学上学期期末模拟试卷(含解析)新人教版
九年级(上)期末数学模拟试卷、选择题(本大题共18小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个,均记零分)1.A.一厶的绝对值是(1 _ 1< B - C 2 D.2.F列计算正确的是(A. 2 2 4 2.、a +a =2a B. (- a b)6, 3 2 3 6a b C. a ?a =a D.3.某市6月某周内每天的最高气温数据如下(单位:C)24 26 29 26 29 32 29则这组数据的众数和中位数分别是(A. 29, 29B. 26, 26C. 26,29D. 29, 324•如图所示,该几何体的主视图是(D.O FG平分/ EFD则/ FGB的度数等于(6.已知不等式组*A.C.\-3>0i i1 2 3116°D.97°其解集在数轴上表示正确的是(C.-二丫7.V 亍:;茶::'D. -1 07•小亮的妈妈用28元钱买了甲、乙两种水果,甲种水果每千克4元,乙种水果每千克6元,且乙种水果比甲种水果少买了2千克,求小亮妈妈两种水果各买了多少千克?设小亮妈妈买了甲种水果x千克,乙种水果y千克,则可列方程组为()Sa,- 41&化简:(a+ ) ( 1a - 3的结果等于a - 2a-3A.a 2 B . a+2 C. D .日」3a一23>2x-6A 1 B. 2 C. 3 D. 4个条件,不能使四边形DBCE成为矩形的是()A. AB=BE B . BE! DC C. / ADB=90 D. CE! DE12 .要将抛物线y=x2+2x+3平移后得到抛物线y=x2,下列平移方法正确的是(A. 向左平移1个单位,再向上平移2个单位B. 向左平移1个单位,再向下平移2个单位C. 向右平移1个单位,再向上平移2个单位A (4x+6y=28x=y+2f4x+6y=28C jx=y-2Df4y+6x=28B・4 x=y+2D x=y - 210.不等式组11.如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD 连接EB, EC, DB添加一的整数解的个数为(D. 向右平移1个单位,再向下平移2个单位13.在平面直角坐标系中,直线y= - x+2与反比例函数y=.的图象有唯一公共点,若直线A. b > 2 B . - 2v b v 2 C. b> 2 或b v- 2 D. b v- 214.在同一坐标系中,一次函数y= - mx+rn与二次函数y=x2+m的图象可能是( )15•将下列多项式因式分解,结果中不含有因式a+1的是( )A. a2- 1B. a2+aC. a2+a- 2D.( a+2) 2- 2 (a+2) +116.如图,在平面直角坐标系中,O M与x轴相切于点A(8, 0),与y轴分别交于点B( 0,_9 _9 2 2 1 1A. mvB. mv ..且m^.C. m>-計D. m>- 且m^-订18. 如图,在Rt△ ABC中,/ A=30°, BC=2 :,以直角边AC为直径作O O交AB于点b的取值范围是(D,则2个公共点,则m的取值范围是(二、填空题(本大题共4小题,满分12分,只要求填写最后结果,每小题填对得3分)19. 计算:二(二=)=_.p20. 已知反比例函数y=—(k丰0)的图象经过(3,- 1),则当1 v y v 3时,自变量x的3C “取值范围是21. _____________________________________ 已知/ AOB=60,点P是/ AOB的平分线OC上的动点,点M在边OA上,且OM=4则点P到点M与到边OA的距离之和的最小值是 .22. 在平面直角坐标系中,直线I : y=x - 1与x轴交于点A,如图所示依次作正方形ABCO 正方形A2B2C2C、…、正方形AB nCiCi-1,使得点A、A2、A3、…在直线I上,点C、C2、C3、…三、解答题(本大题共5小题,满分48分,解答应写出必要的文字说明、证明过程或推演步骤)23. (8分)旅游公司在景区内配置了50辆观光车供游客租赁使用,假定每辆观光车一天内最多只能出租一次,且每辆车的日租金x (元)是5的倍数•发现每天的营运规律如下:当x不超过100元时,观光车能全部租出;当x超过100元时,每辆车的日租金每增加5元,租出去的观光车就会减少1辆•已知所有观光车每天的管理费是1100元.A.15^3~2717图中阴影部分的面积是(1)优惠活动期间,为使观光车全部租出且每天的净收入为正,则每辆车的日租金至少应为多少元?(注:净收入=租车收入-管理费)(2 )当每辆车的日租金为多少元时,每天的净收入最多?m24. (8分)一次函数y=kx+b与反比例函数y=.的图象相交于A (- 1, 4), B (2, n)两点,直线AB交x轴于点D.(1 )求一次函数与反比例函数的表达式;(2)过点B作BC丄y轴,垂足为C,连接AC交x轴于点丘,求厶AED的面积S.25. (10分)如图,A, P, B, C是圆上的四个点,/ APC=/ CPB=60 , AP, CB的延长线相交于点D.(1)求证:△ ABC是等边三角形;(2)若/ PAC=90 , AB=2 :,求PD的长.26. (10 分)如图,在菱形ABCD中, AB=2,Z BAD=60,过点D作DEI AB于点E, DF丄BC 于点F.(1)如图1,连接AC分别交DE DF于点M N,求证:MN丙AC;(2)如图2,将厶EDF以点D为旋转中心旋转,其两边DE、DF'分别与直线AB BC相交于点G P,连接GP当厶DGP的面积等于3讥时,求旋转角的大小并指明旋转方向.27. ( 12分)如图,已知抛物线 y~x 2+bx+c 经过△ ABC 的三个顶点,其中点 A (0, 1), 点B (- 9, 10), AC// x 轴,点P 是直线AC 下方抛物线上的动点. (1) 求抛物线的解析式;(2) 过点P 且与y 轴平行的直线I 与直线AB AC 分别交于点E 、F ,当四边形AECP 勺面积 最大时,求点P 的坐标;(3) 当点P 为抛物线的顶点时,在直线 AC 上是否存在点Q,使得以C P 、Q 为顶点的三角参考答案与试题解析、选择题(本大题共 18小题,在每小题给出的四个选项中,只有一个是正确的,请把正 确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个,均记零分)11. 一=的绝对值是(1A•:【考点】绝对值.【分析】根据负数的绝对值等于它的相反数解答. 【解答】解:-三的绝对值是 可.形与△ ABCt 目似,若存在,求出点Q 的坐标,若不存在,请说明理由.) D.- 21B.C. 2故选:A.【点评】本题考查了绝对值,一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2. 下列计算正确的是()A. a2+a2=2a4B. (- a2b)3= - a6b3C. a2?a3=a6D. a8+ a2=a4【考点】同底数幕的除法;合并同类项;同底数幕的乘法;幕的乘方与积的乘方.【分析】根据同底数幕的乘除法、合并同类项以及积的乘方和幕的乘方进行计算即可.【解答】解:A、a2+a2=2a2B,故A错误;B ( - a2b)3=- a6b3,故B 正确;C a2?a3=a5,故 C 错误;D a8* a2=a6,故D错误;故选B.【点评】本题考查了同底数幕的乘除法、合并同类项以及积的乘方和幕的乘方,是基础知识要熟练掌握.3. 某市6月某周内每天的最高气温数据如下(单位:C):24 26 29 26 29 32 29则这组数据的众数和中位数分别是()A. 29, 29B. 26, 26C. 26, 29D. 29, 32【考点】众数;中位数.【分析】根据中位数和众数的定义求解:众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【解答】解:将这组数据从小到大的顺序排列24, 26, 26, 29 , 29, 29, 32,在这一组数据中29是出现次数最多的,故众数是29C.处于中间位置的那个数是29,那么由中位数的定义可知,这组数据的中位数是29C;故选A.【点评】本题为统计题,考查中位数与众数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.4•如图所示,该几何体的主视图是()【考点】简单几何体的三视图.【分析】从前往后看到一个矩形,后面的轮廓线用虚线表示.【解答】解:该几何体为三棱柱,它的主视图是由1个矩形,中间的轮廓线用虚线表示.故选D.【点评】本题考查了简单几何体的三视图:画物体的主视图的口诀为:主、俯:长对正;主、左:高平齐;俯、左:宽相等•掌握常见的几何体的三视图的画法.5.如图,AB// CD / 1=58°, FG平分/ EFD则/ FGB的度数等于()A. 122°B. 151°C. 116°D. 97°【考点】平行线的性质.【分析】根据两直线平行,同位角相等求出/ EFD,再根据角平分线的定义求出/ GFD然后根据两直线平行,同旁内角互补解答.【解答】解:I AB//CD / 1=58°, •••/ EFD=/ 仁58°,•/ FG 平分/ EFD,•••/ GFD= / EFD= X 58° =29。
山东省新泰市青云街道第一初级中学九年级数学上学期期
1山东省新泰市青云街道第一初级中学2015届九年级数学上学期期末模拟考试试题1.下列关于x 的一元二次方程中,有两个不相等的实数根的方程是( )A .240x +=B .24410x x -+=C .230x x ++=D .2210x x +-=2.实数x 满足方程(x 2+x )2-(x 2+x )-2=0,则x 2+x 的值等于( )A .2B .1-C .2或1-D .1或2-3.生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了182件.如果全组有x 名学生,则根据题意列出的方程是( )A.(1)182x x +=B.(1)182x x -=C.2(1)182x x +=D.(1)1822x x -=⨯4.关于x 的方程0232=+-x ax 是一元二次方程,则( )A.a <0 B 、a ≥0 C 、0≠a D 、1=a5.下列函数是反比例函数的是( )A .y x =B .1y kx -=C .8y x -= D .28y x= 6.在同一直角坐标系中,函数y=xk 与y=kx+3的图像大致是( )7.一个布袋里装有5个球,其中3个红球,2个白球,每个球除颜色外其他完全相同,从中任意摸出一个球,是红球的概率是( )A.61B.51C.52D.538.如图,AB 、AC 都是圆O 的弦,OM ⊥AB ,ON ⊥AC ,垂足分别为M 、N ,如果MN =3,那么BC =( ).A .4 B.5 C .6 D.79.⊙O 的半径为5cm ,弦AB//CD ,且AB=8cm,CD=6cm,则AB 与CD 之间的距离为( )A 、1 cmB 、7cmC 、3 cm 或4 cmD 、1cm 或7cm10.下列四个命题:①圆既是轴对称图形又是中心对称图形;②平分弦的直径垂直平分弦并且平分弦所对的两条弧;③相等的圆心角所对的弧相等;④只有在同圆或等圆中,才会存在等弧.其中真命题的是( )A .①②B .②③C .①③D .①④11.如图,A 、B 、C 是⊙O 上的三点,已知∠O=60°,则∠C=( )2A 、20°B 、25°C 、30°D 、45°12.如图,AB 是⊙O 的直径,点D 、E 是半圆的三等分点,AE ,BD 的延长线交于点C 。
2015-2016年山东省泰安市新泰市初三上学期期末数学试卷及参考答案
2015-2016学年山东省泰安市新泰市初三上学期期末数学试卷一、选择题:本大题共20小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个,均记零分1.(3分)一元二次方程x2+px﹣2=0的一个根为2,则p的值为()A.1B.2C.﹣1D.﹣22.(3分)已知在Rt△ABC中,∠C=90°,sinA=,则tanB的值为()A.B.C.D.3.(3分)用配方法解方程:x2﹣4x+2=0,下列配方正确的是()A.(x﹣2)2=2B.(x+2)2=2C.(x﹣2)2=﹣2D.(x﹣2)2=6 4.(3分)下列四个命题:真命题有()(1)在同圆或等圆中,相等的圆心角所对的弦相等;(2)经过三个点一定可以作圆;(3)相等的圆周角所对的弧相等;(4)三角形的内心到三角形各顶点的距离相等.A.1个B.2个C.3个D.4个5.(3分)下面四个图案:不等边三角形、等边三角形、正方形和矩形,其中每个图案花边的宽度都相同,那么每个图形中花边的内外边缘所围成的几何图形不相似的个数有()A.4个B.3个C.2个D.1个6.(3分)如图,在△ABC中,DE∥BC,DF∥AB,那么下列比例式中正确的是()A.B.C.D.7.(3分)在△ABC中,若|sinA﹣|+(﹣cosB)2=0,则∠C的度数是()A.45°B.75°C.105°D.120°8.(3分)如图,已知等边△ABC的边上为2,DE是它的中位线,则下面四个结论:①DE=1;②△CDE∽△CAB;③BC边上的高为;④△CDE的面积与四边形ADEB的面积之比为1:3,其中正确的有()A.1个B.2个C.3个D.4个9.(3分)已知两点A(7,4),B(5,2),先将线段AB向左平移一个单位,再以原点O为位似中心,在第一象限内将其缩小为原来的得到线段CD,则点A的对应点C的坐标为()A.(2,3)B.(3,2)C.(2,1)D.(3,3)10.(3分)边长为6的正三角形的外接圆的面积为()A.36πB.4πC.12πD.16π11.(3分)在半径为2的⊙O内有长为2的弦AB,这条弦所对的圆周角的度数是()A.120°或60°B.120°C.60°D.75°12.(3分)已知A(﹣1,y1),B(2,y2)两点在双曲线y=上,且y1>y2,则m的取值范围是()A.m<0B.m>0C.m>﹣D.m<﹣13.(3分)已知关于x的一元二次方程x2+2x﹣a=0有两个相等的实数根,则a 的值是()A.1B.﹣1C.D.﹣14.(3分)如图,以点O为圆心的两个圆中,大圆的弦AB切小圆于点C,OA交小圆于点D,若OD=2,tan∠OAB=,则AB的长是()A.4B.2C.8D.415.(3分)如果关于x的方程(m﹣1)x2+x+1=0有实数根,那么m的取值范围是()A.B.且m≠1C.D.且m≠1 16.(3分)某机械厂七月份生产零件50万个,第三季度生产零件196万个.设该厂八、九月份平均每月的增长率为x,那么x满足的方程是()A.50(1+x2)=196B.50+50(1+x2)=196C.50+50(1+x)+50(1+x)2=196D.50+50(1+x)+50(1+2x)=19617.(3分)如图,在直角坐标系中,正方形的中心在原点O,且正方形的一组对边与x轴平行,点P(4a,a)是反比例函数y=(k>0)的图象上与正方形的一个交点,若图中阴影部分的面积等于16,则k的值为()A.16B.1C.4D.﹣16 18.(3分)已知一次函数y=3x﹣4与反比例函数y=﹣,那么它们在同一坐标系中的图象可能是()A.B.C.D.19.(3分)正方形网格中,∠AOB如图放置,则tan∠AOB的值为()A.B.1C.D.20.(3分)如图,六边形ABCDEF为⊙O的内接正六边形,若⊙O的半径为2,则阴影部分的面积为()A.﹣3B.﹣C.﹣D.﹣2二、填空:本大题共4个小题,满分12分,只要求填写最后结果,每小题填对得3分21.(3分)如图,矩形EFGH内接于△ABC,且边FG落在BC上,若BC=5,AD=4,EF=EH,那么EH的长为.22.(3分)如图,在某监测点B处望见一艘正在作业的渔船在南偏西15°方向的A处,若渔船沿北偏西75°方向以60海里/小时的速度航行,航行半小时后到达C处,在C处观测到B在C的北偏东60°方向上,则B、C之间的距离为海里.23.(3分)若x1,x2是一元二次方程x2﹣5x+6=0的两个根,则x1•x2=.24.(3分)如图,在平面直角坐标系中,⊙P与x轴相切于原点O,平行于y轴的直线交⊙P于E,F两点,若点E的坐标是(﹣3,﹣1),则点F的坐标是.三、解答题:本大题共5小题,满分48分,解答应写出必要的文字说明、证明过程或推演步骤25.(8分)如图,在一次军事演习中,蓝方在一条东西走向的公路上的A处朝正南方向撤退,红方在公路上的B处沿南偏西60°方向前进实施拦截,红方行驶1000米到达C处后,因前方无法通行,红方决定调整方向,再朝南偏西45°方向前进了相同的距离,刚好在D处成功拦截蓝方,求拦截点D处到公路的距离(结果不取近似值).26.(10分)如图,一次函数y=kx+b的图象与反比例函数y=﹣交于A(﹣1,m)、B(n,﹣1)两点.(1)求一次函数解析式;(2)求△AOB的面积;(3)利用图象直接写出当一次函数大于反比例函数时自变量x的取值范围.27.(9分)已知,如图,在四边形ABCD中,∠ADB=∠ACB,延长AD、BC相交于点E.求证:(1)△ACE∽△BDE;(2)BE•DC=AB•DE.28.(10分)为丰富学生的学习生活,某校九年级组织学生参加“人文之旅”泰山两日旅游行活动,所联系的旅行社收费标准如下:活动结束后,该班共支付该旅行社活动费用3520元,请问该班共有多少人参加这次旅行活动?29.(11分)已知,如图,△ABC为等边三角形,以边BC为直径作⊙O,⊙O分别与其它两边交于点D、点E,过点E作EF⊥AC于点F.(1)求证:EF为⊙O的切线;(2)若等边三角形ABC的边长为6,求EF的长;(3)在第(2)小题的情形下,求图中阴影部分的面积.2015-2016学年山东省泰安市新泰市初三上学期期末数学试卷参考答案与试题解析一、选择题:本大题共20小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个,均记零分1.(3分)一元二次方程x2+px﹣2=0的一个根为2,则p的值为()A.1B.2C.﹣1D.﹣2【解答】解:∵一元二次方程x2+px﹣2=0的一个根为2,∴22+2p﹣2=0,解得p=﹣1.故选:C.2.(3分)已知在Rt△ABC中,∠C=90°,sinA=,则tanB的值为()A.B.C.D.【解答】解:解法1:利用三角函数的定义及勾股定理求解.∵在Rt△ABC中,∠C=90°,∴sinA=,tanB=和a2+b2=c2.∵sinA=,设a=3x,则c=5x,结合a2+b2=c2得b=4x.∴tanB=.故选A.解法2:利用同角、互为余角的三角函数关系式求解.∵A、B互为余角,∴cosB=sin(90°﹣B)=sinA=.又∵sin2B+cos2B=1,∴sinB==,∴tanB===.故选:A.3.(3分)用配方法解方程:x2﹣4x+2=0,下列配方正确的是()A.(x﹣2)2=2B.(x+2)2=2C.(x﹣2)2=﹣2D.(x﹣2)2=6【解答】解:把方程x2﹣4x+2=0的常数项移到等号的右边,得到x2﹣4x=﹣2,方程两边同时加上一次项系数一半的平方,得到x2﹣4x+4=﹣2+4,配方得(x﹣2)2=2.故选:A.4.(3分)下列四个命题:真命题有()(1)在同圆或等圆中,相等的圆心角所对的弦相等;(2)经过三个点一定可以作圆;(3)相等的圆周角所对的弧相等;(4)三角形的内心到三角形各顶点的距离相等.A.1个B.2个C.3个D.4个【解答】解:(1)符合圆心角、弧、弦的关系,故是真命题;(2)经过不在同一直线上的三个点一定可以作圆,故原命题是假命题;(3)在同圆或等圆中,相等的圆周角所对的弧相等,故原命题是假命题;(4)三角形的内心到三角形各顶点的距离不一定相等,故原命题是假命题.故选:A.5.(3分)下面四个图案:不等边三角形、等边三角形、正方形和矩形,其中每个图案花边的宽度都相同,那么每个图形中花边的内外边缘所围成的几何图形不相似的个数有()A.4个B.3个C.2个D.1个【解答】解:两个不等边三角形形状相同,符合相似形的定义,故A选项不符合要求;两个等边三角形形状相同,符合相似形的定义,故B选项不符合要求;两个正方形形状相同,符合相似形的定义,故C选项不符合要求;两个矩形,虽然四个角对应相等,但对应边不成比例,故D选项符合要求;故选:D.6.(3分)如图,在△ABC中,DE∥BC,DF∥AB,那么下列比例式中正确的是()A.B.C.D.【解答】解:∵DE∥BC,∴=,∵DF∥AB,∴=,∴=,所以A选项正确,B选项错误;∵DE∥BC,∴=,所以C选项错误;∵DF∥AB,∴=,∴+=1,所以D选项错误.故选:A.7.(3分)在△ABC中,若|sinA﹣|+(﹣cosB)2=0,则∠C的度数是()A.45°B.75°C.105°D.120°【解答】解:由题意得,sinA﹣=0,﹣cosB=0,即sinA=,=cosB,解得,∠A=30°,∠B=45°,∴∠C=180°﹣∠A﹣∠B=105°,故选:C.8.(3分)如图,已知等边△ABC的边上为2,DE是它的中位线,则下面四个结论:①DE=1;②△CDE∽△CAB;③BC边上的高为;④△CDE的面积与四边形ADEB的面积之比为1:3,其中正确的有()A.1个B.2个C.3个D.4个【解答】解:∵DE是它的中位线,∴DE=AB=1,故①正确,∴DE∥AB,∴△CDE∽△CAB,故(3)正确,∴S△CDE :S△CAB=DE2:AB2=1:4,故(4)正确,∵等边三角形的高=边长×sin60°=2×=,故(2)正确.故选:D.9.(3分)已知两点A(7,4),B(5,2),先将线段AB向左平移一个单位,再以原点O为位似中心,在第一象限内将其缩小为原来的得到线段CD,则点A的对应点C的坐标为()A.(2,3)B.(3,2)C.(2,1)D.(3,3)【解答】解:将线段AB向左平移一个单位,则点A(7,4)变为(6,4),以原点O为位似中心,在第一象限内将其缩小为原来的,则点A的对应点C的坐标为(6×,4×),即(3,2),故选:B.10.(3分)边长为6的正三角形的外接圆的面积为()A.36πB.4πC.12πD.16π【解答】解:如图所示,连接OB、OC,过O作OD⊥BC于D,∵△ABC是边长为6的等边三角形,BC=6,∴∠BOC==120°,∠BOD=∠BOC=60°,BD=3,∴OB===2,∴外接圆的面积=π•(2)2=12π;故选:C.11.(3分)在半径为2的⊙O内有长为2的弦AB,这条弦所对的圆周角的度数是()A.120°或60°B.120°C.60°D.75°【解答】解:如图,AB是直径,BC=2,∴∠ACB=90°,∵⊙O的半径为2,∴AB=4,∴sin∠BAC==,∴∠BAC=60°,∴∠BDC=180°﹣∠BAC=120°,∴这条弦所对的圆周角的度数是:120°或60°.故选:A.12.(3分)已知A(﹣1,y1),B(2,y2)两点在双曲线y=上,且y1>y2,则m的取值范围是()A.m<0B.m>0C.m>﹣D.m<﹣【解答】解:∵﹣1<2,y1>y2,∴3+2m<0,解得m<﹣.故选:D.13.(3分)已知关于x的一元二次方程x2+2x﹣a=0有两个相等的实数根,则a 的值是()A.1B.﹣1C.D.﹣【解答】解:∵关于x的一元二次方程x2+2x﹣a=0有两个相等的实数根,∴△=22+4a=0,解得a=﹣1.故选:B.14.(3分)如图,以点O为圆心的两个圆中,大圆的弦AB切小圆于点C,OA 交小圆于点D,若OD=2,tan∠OAB=,则AB的长是()A.4B.2C.8D.4【解答】解:连接OC,∵大圆的弦AB切小圆于点C,∴OC⊥AB,∴AB=2AC,∵OD=2,∴OC=2,∵tan∠OAB=,∴AC=4,∴AB=8,故选:C.15.(3分)如果关于x的方程(m﹣1)x2+x+1=0有实数根,那么m的取值范围是()A.B.且m≠1C.D.且m≠1【解答】解:当m﹣1=0时,x+1=0,解得x=﹣1;当m﹣1≠0时,△=12﹣4×(m﹣1)×1≥0,解得m≤且m≠1,所以m的取值范围为m≤.故选:C.16.(3分)某机械厂七月份生产零件50万个,第三季度生产零件196万个.设该厂八、九月份平均每月的增长率为x,那么x满足的方程是()A.50(1+x2)=196B.50+50(1+x2)=196C.50+50(1+x)+50(1+x)2=196D.50+50(1+x)+50(1+2x)=196【解答】解:依题意得八、九月份的产量为50(1+x)、50(1+x)2,∴50+50(1+x)+50(1+x)2=196.故选:C.17.(3分)如图,在直角坐标系中,正方形的中心在原点O,且正方形的一组对边与x轴平行,点P(4a,a)是反比例函数y=(k>0)的图象上与正方形的一个交点,若图中阴影部分的面积等于16,则k的值为()A.16B.1C.4D.﹣16【解答】解:∵图中阴影部分的面积等于16,∴正方形OABC的面积=16,∵P点坐标为(4a,a),∴4a×4a=16,∴a=1(a=﹣1舍去),∴P点坐标为(4,1),把P(4,1)代入y=,得k=4×1=4.故选:C.18.(3分)已知一次函数y=3x﹣4与反比例函数y=﹣,那么它们在同一坐标系中的图象可能是()A.B.C.D.【解答】解:一次函数y=3x﹣4经过第一、三、四象限,反比例函数y=﹣的图象分布在第二、四象限.故选:D.19.(3分)正方形网格中,∠AOB如图放置,则tan∠AOB的值为()A.B.1C.D.【解答】解:如图,AC==,OC==,OC==,∵AC2+OC2=20=OC2,∴△OAC为直角三角形,∵AC=OC,∴△OAC为等腰直角三角形,∴tan∠AOB=tan45°=1.故选:B.20.(3分)如图,六边形ABCDEF为⊙O的内接正六边形,若⊙O的半径为2,则阴影部分的面积为()A.﹣3B.﹣C.﹣D.﹣2【解答】解:∵⊙O的半径为2,∴⊙O的面积为π×22=4π,∵空白正六边形为六个边长为2的正三角形,∴每个三角形面积为×2×2×sin60°=,∴正六边形面积为6,∴阴影面积为(4π﹣6)×=π﹣,故选:B.二、填空:本大题共4个小题,满分12分,只要求填写最后结果,每小题填对得3分21.(3分)如图,矩形EFGH内接于△ABC,且边FG落在BC上,若BC=5,AD=4,EF=EH,那么EH的长为.【解答】解:∵四边形EFGH是矩形,∴EH∥BC,∴△AEH∽△ABC,∵AM⊥EH,AD⊥BC,∴,设EH=3x,则有EF=2x,AM=AD﹣EF=4﹣2x,∴=,解得:x=,则EH=.故答案为:.22.(3分)如图,在某监测点B处望见一艘正在作业的渔船在南偏西15°方向的A处,若渔船沿北偏西75°方向以60海里/小时的速度航行,航行半小时后到达C处,在C处观测到B在C的北偏东60°方向上,则B、C之间的距离为30海里.【解答】解:由题意得,AC=60×0.5=30海里,∵CD∥BF,∴∠CBF=∠DCB=60°,又∠ABF=15°,∴∠ABC=45°,∵AE∥BF,∴∠EAB=∠FBA=15°,又∠EAC=75°,∴∠CAB=90°,∴BC=AC=30海里,故答案为:30.23.(3分)若x1,x2是一元二次方程x2﹣5x+6=0的两个根,则x1•x2=6.【解答】解:∵x1,x2是一元二次方程x2﹣5x+6=0的两个根,∴x1•x2=6.故答案为:6.24.(3分)如图,在平面直角坐标系中,⊙P与x轴相切于原点O,平行于y轴的直线交⊙P于E,F两点,若点E的坐标是(﹣3,﹣1),则点F的坐标是(﹣3,﹣9).【解答】解:过点P作AP⊥EF交EF于点A,连接PE,设OP=x,∵⊙P与x轴相切于原点O,∴OP⊥OE,∵平行于y轴的直线交⊙P于E,F两点,∴四边形APOB是矩形,∴AB=OP=x,∵点E的坐标是(﹣3,﹣1),∴AP=OB=3,AE=AB﹣BE=x﹣1,在Rt△ABE中,32+(x﹣1)2=x2,解得x=5,∴AE=4,∵AF=AE,∴EF=8,∴BF=EF+BE=9,∴点F的坐标是(﹣3,﹣9).故答案为(﹣3,﹣9).三、解答题:本大题共5小题,满分48分,解答应写出必要的文字说明、证明过程或推演步骤25.(8分)如图,在一次军事演习中,蓝方在一条东西走向的公路上的A处朝正南方向撤退,红方在公路上的B处沿南偏西60°方向前进实施拦截,红方行驶1000米到达C处后,因前方无法通行,红方决定调整方向,再朝南偏西45°方向前进了相同的距离,刚好在D处成功拦截蓝方,求拦截点D处到公路的距离(结果不取近似值).【解答】解:如图,过B作AB的垂线,过C作AB的平行线,两线交于点E;过C作AB的垂线,过D作AB的平行线,两线交于点F,则∠E=∠F=90°,拦截点D处到公路的距离DA=BE+CF.在Rt△BCE中,∵∠E=90°,∠CBE=60°,∴∠BCE=30°,∴BE=BC=×1000=500米;在Rt△CDF中,∵∠F=90°,∠DCF=45°,CD=BC=1000米,∴CF=CD=500米,∴DA=BE+CF=(500+500)米,故拦截点D处到公路的距离是(500+500)米.26.(10分)如图,一次函数y=kx+b的图象与反比例函数y=﹣交于A(﹣1,m)、B(n,﹣1)两点.(1)求一次函数解析式;(2)求△AOB的面积;(3)利用图象直接写出当一次函数大于反比例函数时自变量x的取值范围.【解答】解:(1)把A(﹣1,m)、B(n,﹣1)代入y=﹣得﹣m=﹣5,﹣n=﹣5,解得m=5,n=4,则A(﹣1,5),B(5,﹣1),把A(﹣1,5),B(5,﹣1)代入y=kx+b得,解得,所以一次函数解析式为y=﹣x+4;(2)设直线y=﹣x+4与y轴的交点为C,则C(0,4),所以S=S△AOC+S△BOC=×4×1+×4×5=12;△AOB(3)x<﹣1或0<x<5.27.(9分)已知,如图,在四边形ABCD中,∠ADB=∠ACB,延长AD、BC相交于点E.求证:(1)△ACE∽△BDE;(2)BE•DC=AB•DE.【解答】证明:(1)∵∠ADB=∠ACB,∴∠BDE=∠ACE,∴△ACE∽△BDE;(2)∵△ACE∽△BDE,∴,∵∠E=∠E,∴△ECD∽△EAB,∴,∴,∴BE•DC=AB•DE.28.(10分)为丰富学生的学习生活,某校九年级组织学生参加“人文之旅”泰山两日旅游行活动,所联系的旅行社收费标准如下:活动结束后,该班共支付该旅行社活动费用3520元,请问该班共有多少人参加这次旅行活动?【解答】解:∵24人的费用为2880元<3520元,∴参加这次春游活动的人数超过24人,设该班参加这次春游活动的人数为x名.根据题意,得[120﹣2(x﹣24)]x=3520,整理,得x2﹣84x+1760=0,解得:x1=44,x2=40,x1=44时,120﹣2(x﹣24)=80<85,不合题意,舍去;x2=40时,120﹣2(x﹣24)=88>85.答:该班共有40人参加这次春游活动.29.(11分)已知,如图,△ABC为等边三角形,以边BC为直径作⊙O,⊙O分别与其它两边交于点D、点E,过点E作EF⊥AC于点F.(1)求证:EF为⊙O的切线;(2)若等边三角形ABC的边长为6,求EF的长;(3)在第(2)小题的情形下,求图中阴影部分的面积.【解答】(1)证明:连接EO,∵△ABC是等边三角形,∴∠A=∠B=60°,∵OA=OE,∴△OBE是等边三角形,∴∠BEO=60°,∵EF⊥AC,∴∠AEF=90°﹣∠A=30°,∴∠FEO=180°﹣∠BEO﹣∠AEF=90°,∴EF为⊙O的切线;(2)解:∵△OBE是等边三角形,∴BE=BO=BC=3,∴AE=AB﹣BE=3,Rt△AEF中,∵∠AEF=30°,∴EF=AE=;(3)解:连接OD,由(2)同理可知AD=3,∴AF=DF=,∴S直角梯形FDOE=(DF+OE)•EF=×(+3)×=,∴S扇形OED==,∴S阴影=S直角梯形FDOE﹣S扇形OED=﹣.。
山东省新泰市学九级上期末模拟考试数学试题有答案
数学试题一、选择题(每小题3分,共60分)1、下列说法“①位似图形都相似;②位似图形都是平移后再放大(或缩小)得到;③直角三角形斜边上的中线与斜边的比为1∶2;④两个相似多边形的面积比为4∶9,则周长的比为16∶81.”中,正确的有( )A 、1个B 、2个C 、3个D 、4个2.如图,在平面直角坐标系中,已知点A (―3,6)、B (―9,一3),以原点O 为位似中心,相似比为13,把△ABO 缩小,则点A 的对应点A ′的坐标是( )A .(―1,2)B .(―9,18)C .(―9,18)或(9,―18)D .(―1,2)或(1,―2) 3. 利用反证法证明“直角三角形至少有一个锐角不小于45°”,应先假设( )A .直角三角形的每个锐角都小于45°B .直角三角形有一个锐角大于45°C .直角三角形的每个锐角都大于45°D .直角三角形有一个锐角小于45°4. 如图,点A 为∠α边上的任意一点,作AC ⊥BC 于点C ,CD ⊥AB 于点D ,下列用线段比表示cos α的值,错误的是( ) A . B . C .D .5.用配方法解一元二次方程x 2﹣4x=5时,此方程可变形为( )A .(x+2)2=1B .(x ﹣2)2=1C .(x+2)2=9D .(x ﹣2)2=96. 如图,D 、E 分别是△ABC 的边AB 、BC 上的点,且DE ∥AC ,AE 、CD 相交于点O ,若S △DOE :S △COA =1:25,则S △BDE 与S △CDE的比是( )A .1:3B .1:4C .1:5D .1:25 7.在△ABC 中,若角A ,B 满足|cosA ﹣|+(1﹣tanB )2=0,则∠C 的大小是( )A .45° B .60° C .75° D .105° xy(-9,-3)(-3,6)第8题图B A O8. 若点(1x ,1y ),(2x ,2y ),(3x ,3y )都是反比例函数y =1x-图象上的点,并且1y <0<2y <3y ,则下列各式中正确的是 ·························································· ( ) A .1x <2x <3xB .1x <3x <2xC .2x <1x <3xD .2x <3x <1x9. 关于x 的一元二次方程0122=-+x kx 有两个不相等实数根,则k 的取值范围是 (A )1->k (B )1-≥k (C )0≠k (D )1->k 且0≠k 10.若x=﹣2是关于x 的一元二次方程x 2+ax ﹣a 2=0的一个根,则a 的值为( ) A .﹣1或4 B .﹣1或﹣4 C .1或﹣4 D .1或411. 如图,⊙O 是△ABC 的外接圆,∠B=60°,⊙O 的半径为4,则AC 的长等于( )A .43B .63C .23D .812. 将一副三角板如下图摆放在一起,连接AD ,则∠ADB 的正切值为( ) A .B .C .D .13. (2015•牡丹江)在△ABC 中,AB=12,AC=13,cos ∠B=,则BC 边长为( )A . 7B . 8C . 8或17D . 7或17 14.有x 支球队参加篮球比赛,共比赛了45场,每两队之间都比赛一场,则下列方程中符合题意的是( ) A .x (x ﹣1)=45 B .x (x+1)=45 C .x (x ﹣1)=45 D .x (x+1)=4515.如图,⊙O 内切于△ABC ,切点为D ,E ,F .已知∠B=50°,∠C=60°,•连结OE ,OF ,DE ,DF ,那么∠EDF 等于( )A .40°B .55°C .65°D .70°16.有3个正方形如图所示放置,阴影部分的面积依次记为S 1,S 2,则S 1:S 2等于( )A .1:B .1:2C .2:3D .4:917.如图,△ABC 内接于⊙O ,AB 是⊙O 的直径,∠B=30°,CE 平分∠ACB 交⊙O 于E ,交AB 于点D ,连接AE ,则S △ADE :S △CDB 的值等于( )A .1:B .1:C .1:2D .2:318. 股票每天的涨、跌幅均不能超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停.已知一只股票某天跌停,之后两天时间又涨回到原价.若这两天此股票股价的平均增长率为x ,则x 满足的方程是( ) A .(1+x )2= B .(1+x )2= C .1+2x= D .1+2x=19.如图,⊙O 的半径为R ,以圆内接正方形ABCD 的顶点B 为圆心,AB 为半径.画弧AC ,则阴影部分的面积是( )A .(π﹣1)R 2B .R 2C .(π﹣2)R 2D .20.(2016·山东省东营市·3分)如图,在矩形ABCD 中,E 是AD 边的中点,BE ⊥AC ,垂足为点F ,连接DF ,分析下列四个结论:①△AEF ∽△CAB ;②CF =2AF ;③DF =DC ;④tan ∠CAD =2.其中正确的结论有( )A.4个 B .3个 C .2个 D .1个第10题图FEDB A二、填空题(每小题3分,共12分)21.如图,过y 轴上任意一点P ,作x 轴的平行线,分别与反比例函数x y 4-=和xy 2=的图象交于A 点和B 点,若C 为x 轴上任意一点,连接AC ,BC ,则△ABC 的面积为 . 22.如图,6个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点.已知菱形的一个角(∠O )为60°,A ,B ,C 都在格点上,则tan ∠ABC 的值是 .23.如图,(1)是某公司的图标,它是由一个扇环形和圆组成,其设计方法如图(2)所示,ABCD 是正方形,⊙O 是该正方形的内切圆,E 为切点,以B 为圆心,分别以BA 、BE 为半径画扇形,得到如图所示的扇环形,图(1)中的圆与扇环的面积比为 。
山东省泰安新泰市青云街道第一初级中学九年级数学上学期期末模拟考试试题(无答案)
山东省新泰市青云街道第一初级中学2015届九年级数学上学期期末模拟考试试题一、选择题(每小题3分,共60分;每小题的四个选项中只有一项是正确的) 1.下列运算结果等于1的是( ) A .)3()3(-+-B .)3()3(---C .)3(3-⨯-D .)3()3(-÷-2.下列图形中,是中心对称图形但不是轴对称图形的是()3.若1=x ,21=y ,则2244y xy x ++的值是( ). A.2 B.4 C.23 D.214.反比例函数)0(1>-=x xy 的图象如图1所示,随着x 值的增大,y 值( )A .增大B .减小C.不变 D.先增大后减小 5.在Rt △ABC 中,∠C=90°,sinA=54,则cos B 的值等于( ) A .53 B. 54 C. 43D. 556.函数21-=x y 中,自变量x 的取值范围是( )A .2>xB .2≥xC .2≠xD .2≤x7.如图2,在菱形ABCD 中,对角线AC=4,∠BAD=120°,则菱形A BCD 的周长为( )A .20B .18C .16D .158.某同学五天内每天完成家庭作业的时间(单位:小时)分别为2、2、3、2、1,则这组数据的众数和中位数分别为( )A .2、2B .2、3C .2、1D .3、1 9.长方体的主视图、俯视图如图3所示(单位:m ),则其左视图面积是( )A .42mB .122m C .12m D .32m10.若01x <<,则1-x 、x 、2x 的大小关系是( )图1图3A .B .C .D .A .21x x x<<-B .12-<<x x xC .12-<<x x xD .x xx <<-1211.下列运算正确的是( )A .1331-÷= B .2a a =C .3.14 3.14ππ-=-D .326211()24a b a b = 12.化简:211()(3)31x x x x +-•---的结果是( ) A .2 B .21x - C .23x - D .41x x --13.在△ABC 中,∠C =90°,sinA =45,则tanB = ( )A .43B .34C .35D .4514.若函数22(2)2x x y x ⎧+=⎨⎩ ≤ (x>2),则当函数值y =8时,自变量x 的值是( )A .±6B .4C .±6或4D .4或-615.如图,过边长为1的等边△ABC 的边AB 上一点P ,作PE ⊥AC 于E ,Q 为BC 延长线上一点,当PA =CQ 时,连PQ 交AC 边于D ,则DE 的长为( ) A .13 B .12 C .23D .不能确定第15题图16.已知四条直线y =k x -3,y =-1,y =3和x =1所围成的四边形的面积是12,则k 的值为( )A .1或-2B .2或-1C .3D .4 17.下列四个图中,是三棱锥的表面展开图的是18.已知方程2520x x -+=的两个解分别为1x 、2x ,则1212x x x x +-⋅的值为DBAyxO C 60°30°D CBA ……图③图②图①C B AO A .7- B .3- C .7 D .319.某洗衣机在洗涤衣服时经历了注水、清洗、排水三个连续过程(工作前洗衣机内无水),在这三个过程中洗衣机内水量y (升)与时间x (分)之间的函数关系对应的图象大致为20.如图,已知双曲线(0)ky k x=<经过直角三角形OAB 斜 边OA 的中点D ,且与直角边AB 相交于点C .若点A 的 坐标为(6-,4),则△AOC 的面积为A .12B .9C .6D .4第Ⅱ卷(非选择题 共60分)二、填空题:本大题共4个小题,每个小题3分,共12分.将正确答案直接填在题中横线上.21.某班一个小组七名同学在为地震灾区“爱心捐助”活动中,捐款数额分别为10,30,40,50,15,20,50(单位:元).这组数 据的中位数是__________(元).22.如图,∠A 是⊙O 的圆周角,∠A =40°,则∠OBC 的度数为_______.23.如图,将第一个图(图①)所示的正三角形连结各边中点进行分割,得到第二个图(图②);再将第二个图中最中间的小正三角形按同样的方式进行分割,得到第三个图(图③);再将第三个图中最中间的小正三角形按同样的方式进行分割,……,则得到的第五个图中,共有________个正三角形.24.如图,已知梯形ABCD 中,AD ∥BC ,∠B =30°,∠C =60°,AD =4,AB =33BC 的长为 __________.三、解答题.(本大题共5题,满分48分。
山东省新泰市九年级数学第二次模拟考试试题
新泰市2015年初中学业第二次模拟考试数学试题(满分120分时限120分钟)一、选择题(本大题共20小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个,均记零分)1、-2-2的倒数等于()A. - 4B. 4C. -41D.412、下列计算正确的是().A、a2·a3=a6B、y3÷y3=yC、3m+3n=6mnD、(x3)2=x63、右图中几何体的左视图是()4、据统计,2015年5月1日黄金周的第一天,泰山门票收益达到24万元,这个数据用科学计数法表示为()万元。
A. 41024⨯ B. 5104.2⨯ C. 610240⨯⋅ D.2.4×105、如图,在△ABC中,∠A=90°,点D在AC边上,DE//BC,若∠1=155°,则∠B的度数为。
A 45°B 55°C 65°D 75°6、下列图形中,只有两条对称轴的图形是A.B. C.D.7、如图,为安全起见,某游乐园拟加长滑梯,将其倾斜角由45°降至30°.已知滑梯AB 的长为3m,点D、B、C在同一水平地面上,那么加长后的滑梯AD的长是()A.2B.2C.3D.3m8、把一个半径为12,圆心角为150°的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的高是()A.13 B.5 C.129D.1199、如图所示,FE∠=∠,B C∠=∠,AE AF=,以下结论:①FAN EAM∠=∠;②EM FN=;③ACN ABM△≌△;④CD DN=.其中正确的有()A.1个 B.2个 C.3个 D.4个10、下列条件中,可以确定△ABC和△A′B′C′全等的是()A. BC=BA ,B′C′=B′A′,∠B=∠B′B. ∠A=∠B′,AC=A′B′,AB=B′C′C. ∠A=∠A′,AB=B′C′,AC=A′C′D. BC=B′C′,AC=A′B′,∠B=∠C′11、在一个不透明的盒子中装有8个白球,若干个黄球,它们除颜色不同外,其余均相同.第5题图第7题图第9题图若从中随机摸出一个球,它是白球的概率为23,则黄球的个数为( ) A.4 B. 6 C.12 D.16 12、如图,在矩形ABCD 中,AB=2,BC=4,对角线AC 的垂直平分线分别交AD 、AC 于点E 、O ,连接CE ,则CE 的长为( )A .3B .3.5C .2.5D .2.813、青云超市某服装专柜在销售中发现:进货价为每件50元,销售价为每件90元的某品牌童装平均每天可售出20件.为了迎接“六一”,商场决定采取适当的降价措施,扩大销售量,增加盈利.经调查发现:如果每件童装降价1元,那么平均每天就可多售出2件,要想平均每天销售这种童装盈利1200元,同时又要使顾客得到较多的实惠,设降价x 元,根据题意列方程得( ).A .1200)220)(40(=+-x xB .1200)20)(40(=+-x xC .1200)220)(50(=+-x xD .1200)220)(90(=+-x x14、如图,直角梯形AOCD 的边OC 在x 轴上,O 为坐标原点,CD 垂直于x 轴,D (5,4),AD=2.若动点E 、F 同时从点O 出发,E 点沿折线OA→AD→DC 运动,到达C 点时停止;F 点沿OC 运动,到达C 点是停止,它们运动的速度都是每秒1个单位长度.设E 运动秒x 时,△EOF 的面积为y (平方单位),则y 关于x 的函数图象大致为( )15、关于x 的不等式组23324x x x a <⎧⎪⎨+>+⎪⎩(x-3)+1有四个整数解,则a 的取值范围是( ) A .-<a≤- B .-≤a<- C .-≤a≤- D .-<a <-16、一个正方形和两个等边三角形的位置如图所示,若∠3=50°,则∠1+∠2=( )A .90°B .100°C .130°D .180°17、如图,同心圆O 中,大圆半径OA 、OB 分别交小圆于D 、C ,OA ⊥OB,若四边形ABCD 的面积为50,则图中阴影部分的面积为( )14题图A. 75B. 50πC. 75πD. 752 18、已知:如图,在正方形ABCD 外取一点E ,连接AE 、BE 、DE .过点A 作AE 的垂线交DE 于点P .若AE=AP=1,PB=.下列结论:①△APD≌△AEB; ②点B 到直线AE 的距离为;③EB⊥ED; ④S △APD +S △APB =1+;⑤S正方形ABCD =4+.其中正确结论的序号是( )A . ①③④B . ①②⑤C . ③④⑤D . ①③⑤19、二次函数y=ax 2+bx+c (a≠0)的图象如图所示,则函数y=与y=bx+c 在同一直角坐标系内的大致图象是( )A .B .C .D . 20、二次函数c bx ax y ++=2的图象如图所示.有下列结论:①0a b c -+=;②4a+b=0;③当y=2时,x 等于0.④42-=++c bx ax 有两个不相等的实数根。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015年九年级数学中考模拟试卷
一、选择题(每小题3分,共60分)
1.二次函数
2)1(2--=x y 图象的顶点坐标是( ) A.(-1,-2) B.(-1,2) C.(1,-2) D.(1,2)
2.抛物线2245y x x =---经过平移得到22y x =-,平移方法是( )
A .向左平移1个单位,再向下平移3个单位
B .向左平移1个单位,再向上平移3个单位
C .向右平移1个单位,再向下平移3个单位
D .向右平移1个单位,再向上平移3个单位
3.如图,已知二次函数y=ax 2+bx+c 的部分图象,由图象可知关于x 的一元二次方程ax 2+bx+c=0的两个根分别是x 1=1.6,x 2=( )
A .﹣1.6
B .3.2
C .4.4
D .以上都不对
4.二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,则下列结论中,正确的是( )
A .ab c <0
B .a+c <b
C .b >2a
D .4a >2b ﹣c
5.直线y 1=x+1与抛物线y 2=﹣x 2+3的图象如图,当y 1>y 2时,x 的取值范围为( )
A .x <﹣2
B .x >1
C .﹣2<x <1
D .x <﹣2或x >1
6.如图,在直角坐标系中,一次函数y=mx+n (m ≠0)和二次函数y=ax 2+bx+c (a ≠0)的图象交于A (﹣3,0)和B 两点,抛物线与x 轴交于A 、C 两点,且C 的横坐标在0到1之间(不含端点),下列结论正确的是( )
A .abc <0
B .3a ﹣b >0
C .2a ﹣b+m <0
D .a ﹣b >2m ﹣2
7.如图所示的两个转盘,每个转盘均被分成四个相同的扇形,转动转盘时指针落在每一个扇形内的机会均等,同时转动两个转盘,则两个指针同时落在标有奇数扇形内的概率为( )
A .
21 B .31 C .41 D .81 8.下列四张正方形硬纸片,剪去阴影部分后,如果沿虚线折叠,可以围成一个封闭的长方形包装盒的是
【 】 A . B . C . D .
9.如图,在△ABC 中,∠C =90°,M 是AB 的中点,动点P 从点A 出发,沿AC 方向匀速运动到终点C ,动点Q 从点C 出发,沿CB 方向匀速运动到终点B.已知P ,Q 两点同时出发,并同时到达终点.连结MP ,MQ ,PQ.在整个运动过程中,△MPQ 的面积大小变化情况是( )
A .一直增大
B .一直减小
C .先减小后增大
D .先增大后减小
10.矩形ABCD 中,AD =8 cm ,AB =6 cm.动点E 从点C 开始沿边CB 向点B 以2 cm/s 的速度运动至点B 停止,动点F 从点C 同时出发沿边CD 向点D 以1 cm/s 的速度运动至点D 停止.如图可得到矩形CFHE ,设运
动时间为x(单位:s),此时矩形ABCD 去掉矩形CF HE 后剩余部分的面积为y(单位:cm 2),则y 与x 之间的
函数关系用图象表示大致是下图中的( )
11.如图,直角梯形AOCD 的边OC 在x 轴上,O 为坐标原点,CD 垂直于x 轴,D (5,4),AD=2.若动点E 、
F 同时从点O 出发,E 点沿折线OA→AD→DC 运动,到达C 点时停止;F 点沿OC 运动,到达C 点是停止,它们运动的速度都是每秒1个单位长度.设E 运动秒x 时,△EOF 的面积为y (平方单位),则y 关于x 的函数图象大致为( )
12.如右图所示,点A ,B ,C 在圆O 上,∠A=64°,则∠BOC 的度数是( )
A.26°
B.116°
C.128°
D.154°
13.一个圆锥的底面半径为
52
,母线长为6,则此圆锥的侧面展开图的圆心角是( ) A .180° B .150° C .120° D .90°
14.三角形两边的长分别是8和6,第三边的长是一元二次方程060162=+-x x 的一个实数根,则该三
角形的面积是( ) A .24 B .24或58 C .48 D .58
15.如图,△ABC 的顶点A 、B 、C 均在⊙O 上,若∠ABC+∠AOC=90°,则∠AOC 的大小是( )
A .90°
B .45°
C .60°
D .70°
16. 方程29180x x -+=的两个根是等腰三角形的底和腰,则这个三角形的周长为( )
A. 12或15
B. 12
C. 15
D. 以上全错。
17.如图是三角尺在灯泡O 的照射下在墙上形成的影子.现测得20OA cm =,'50OA cm =,则这个三角尺的周长与它在墙上形成的影子的周长之比是( )
A. 25
B. 35
C. 23
D. 34
18.如图,直角梯形AOCD 的边OC 在x 轴上,O 为坐标原点,CD 垂直于x 轴,D (5,4),AD=2.若动点E 、
F 同时从点O 出发,E 点沿折线OA→AD→DC 运动,到达C 点时停止;F 点沿OC 运动,到达C 点是停止,它们运动的速度都是每秒1个单位长度.设E 运动秒x 时,△EOF 的面积为y (平方单位),则y 关于x 的函数图象大致为( )
221x y =
经过平移得到抛物线x x y 2212-=,其对称轴与两段抛 ) y x
O .16
+bx+c (a≠0)的图象如图所示,给出以下结论:①b 2>4ac ;②abc >0;③2a ﹣b=0;
)个。
.3个 C .4个 D .5个
二、填空题(每小题3分,共12分)
21.ADE ∆中,AD AE =,C 为DE 延长线上一点,B 为ED 延长线上一点,40DAE ∠=,当BAC ∠= °时,BDA ∆∽AEC ∆.
22.已知抛物线y =ax 2-4ax +c 经过点A (0,2),顶点B 的纵坐标为3.将直线AB 向下平移,与x 轴、y
轴分别交于点C 、D ,与抛物线的一个交点为P ,若D 是线段CP 的中点,则点P 的坐标为_________.
23.如图,已知动点A 在函数y =12x
(x>0)的图象上,AB⊥x 轴于点B ,AC⊥y 轴于点C ,延长CA 至点D ,使AD =AB ,延长BA 至点E ,使AE =AC.直线DE 分别交x 轴、y 轴于点P ,Q.当QE∶DP=4∶9时,图中阴影部分的面积等于 .
24.如图,半径为6cm 的⊙O 中,C ,D 为直径AB 的三等分点,点E ,F 分别在AB 两侧的半圆上,∠BCE=∠
BDF=60°,连结AE ,BF ,则图中两个阴影部分的面积为 cm 2
三、解答题
25.某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价一元,日销售量将减少20千克。
⑴现要保证每天盈利6000元,同时又要让顾客得到实惠,那么每千克应涨价多少元?
②若该商场单纯从经济角度看,那么每千克应涨价多少元,能使商场获利最多。
2
26.如图所示,某渔船上的渔民在A处观测到灯塔M在北偏东60°方向处,这艘渔船以每小时28海里的速度向正东方向航行,半小时后到达B处,在B处观测到灯塔M在北偏东30°方向处,问B处到灯塔M的距离是多少海里?
27.(10分)如图,矩形OABC的顶点A、C分别在x轴和y轴上,点B的坐标为(2,3).双曲线
k
y
x
=(0
x>)
的图象经过BC的中点D,且与AB交于点E,连接DE.
(1)求k的值及点E的坐标;
(2)若点F是OC边上一点,且△FBC∽△DEB,求直线FB的解析式.
28.(本题8分)如图AB为⊙O的直径,CD是弦,且AB⊥CD于点E.连结AC、OC、BC.
(1)求证:∠ACO=∠BCD;
(2)若EB=2cm,CD=8m,求⊙O的直径.
29.如图①,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(2,0)和点B(-6,0),与y轴交于点C.
(1)求抛物线的解析式;
(2)设抛物线的对称轴与x轴交于点M ,在对称轴上存在点P,使△CMP为等腰三角形,请直接写出所有符合条件的点P的坐标.
最大时,求出Q点的坐标.
(3)设点Q是抛物线对称轴上的一个动点,当点Q满足QB QC
(4)如图②,若点E为第二象限抛物线上一动点,连接BE、CE,求四边形BOCE面积的最大值,并求此时E点的坐标。