2018届江西省南昌市高三摸底考试理科数学试题
江西省南昌市高三第二次模拟测试理数
江西省南昌市2018届高三第二次模拟测试数学(理科)本试卷分必考题和选做题两部分,满分150分,考试用时120分钟。
注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.写在本试卷上无效. 3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效. 4.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷(选择题部分 共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知全集为R ,集合{}2log 2A x x =<,{}2230B x x x =-->,则B A C R )(等于A .[)1,+∞B .[)4,+∞C .),3()1,(+∞--∞D .),4[)1,(+∞--∞ 2.若实数,x y 满足2i 1ixy +=++(i 为虚数单位),则i x y +在复平面内对应的点位于 A .第一象限 B .第二象限 C .第三象限 D .第四象限 3.已知,a b 为实数,则“2ab b >”是“0a b >>”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.已知一个几何体的三视图如图所示(图中网格小正方形的边长为1),则该几何体的体积为 A .82 B .32 C .162 D .16 5.执行如图的程序框图,若8a =,则输出的S =A .2B .12 C .0 D .-1 6.已知抛物线24y x =的焦点为F ,准线l 与x 轴的交点为K ,抛物线上一点P ,若5PF =,则PKF ∆的面积为A .4B .5C .8D .107.已知点(),P m n 在不等式组225025x y x y ⎧+≤⎨-≤-⎩表示的平面区域内,则实数m 的取值范围是A .52,52⎡⎤-⎣⎦B .52,5⎡⎤--⎣⎦C .52,1⎡⎤-⎣⎦D .[]5,1-8.如图,已知函数()()3cos f x x ωφ=+0,02πωφ⎛⎫>-<< ⎪⎝⎭的部分图象与x 轴的一个交点为,06A π⎛⎫- ⎪⎝⎭,与y 轴的交点为30,2B ⎛⎫⎪⎝⎭,那么函数()f x 图象上的弧线AB 与两坐标所围成图形的面积为A .34 B .32 C .334D .3 9.已知函数()21,021,0x x x f x x -⎧-≥⎪=⎨-<⎪⎩,设()()2g x kf x x x =++(k 为常数),若()102018g =,则()10g -等于A .1998B .2038C .-1818D .-2218 10.在《周易》中,长横“”表示阳爻,两个短横“”表示阴爻.有放回地取阳爻和阴爻三次合成一卦,共有328=种组合方法,这便是《系辞传》所说“太极生两仪,两仪生四象,四象生八卦”.有放回地取阳爻和阴爻一次有2种不同的情况,有放回地取阳爻和阴爻两次有四种情况,有放回地取阳爻和阴爻三次,八种情况.所谓的“算卦”,就是两个八卦的叠合,即共有放回地取阳爻和阴爻六次,得到六爻,然后对应不同的解析.在一次所谓“算卦”中得到六爻,这六爻恰好有三个阳爻三个阴爻的概率是 A .17 B .516 C .916 D .5811.在ABC ∆中,6A π=,ABC ∆的面积为2,则2sin sin sin 2sin sin C BC B C++的最小值为A .32 B .334 C .32 D .5312.已知双曲线()222210,0x y a b a b-=>>的左右焦点分别为12,F F ,过点2F 的直线:125240l x y --=交双曲线的右支于,A B 两点,若1AF B ∠的角平分线的方程为420x y -+=,则三角形1AF B 内切圆的标准方程为A .2221513288x y ⎛⎫⎛⎫⎛⎫-+-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭B .()22235144x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭C .()2223631452x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭ D .222155284x y ⎛⎫⎛⎫⎛⎫-+-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上) 13.从某企业的某种产品中抽取1000件,测量该种产品的一项质量指标值,由测量结果得到如图所示的频率分布直方图.假设这项指标值在[]185,215内,则这项指标合格,估计 该企业这种产品在这项指标上的合格率为 .14.已知正ABC ∆的边长为2,若CE AC 2=,则BE BA ⋅等于 .15.已知正三棱台111ABC A B C -的上下底边长分别为33,43,高为7,若该正三棱台的六个顶点均在球O 的球面上,且球心O 在正三棱台111ABC A B C -内,则球O 的表面积为 . 16.如图,有一块半径为20米,圆心角23AOB π∠=的扇形展示台,展示台分成了四个区域:三角形OCD ,弓形CMD ,扇形AOC 和扇形BOD (其中 AOC BOD ∠=∠).某次菊花展分别在这四个区域摆放:泥金香、紫龙卧雪、朱砂红霜、朱砂红霜.预计这三种菊花展示带来的日效益分别是:50元/米2,30元/米2,40元/米2. 为使预计日总效益最大,COD ∠的余弦值应等于 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.第17题-21题为必考题,每个试题考生都必须作答,第22-23题为选考题,考生根据要求作答。
江西省南昌市2018届高三第二次高考模拟考试理数试题(精编含解析)
江西省南昌市2018届高三第二次高考模拟考试数学(理)试题全解全析点睛:本题主要考查了复数的运算法则和复数相等的概念,及复数的表示,着重考查了推理与运算能力.3.B成立,反之:如B.点睛:本题主要考查了不等式的性质及必要不充分条件的判定,着重考查了推理与运算能力,属于基础题.4.D【解析】分析:由已知中的三视图,可得该几何体是一个三棱柱,分别求出它的底面面积和高,代入体积公式,即可求解.详解:由已知中的三视图,可得该几何体是一个三棱柱,如图所示,,,高为所以该三棱柱的体积为D.点睛:本题考查了几何体的三视图及组合体的表面积的计算,在由三视图还原为空间几何体的实际形状时,要从三个视图综合考虑,根据三视图的规则,空间几何体的可见轮廓线在三视图中为实线,不可见轮廓线在三视图中为虚线.在还原空间几何体实际形状时,一般是以正视图和俯视图为主,结合侧视图进行综合考虑.求解以三视图为载体的空间几何体的表面积与体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解.点睛:本题主要考查了循环结构的程序框图的计算与输出结果,当循环次数不多时或有规律时,常常采用模拟循环的方法求解,着重考查了分析问题和解答问题的能力,以及推理与运算能力.6.AA.点睛:本题主要考查了抛物线的定义及性质的应用,其中熟记抛物线的定义和性质是解答的关键,着重考查了学生的推理与运算能力.7.C,求得详解:作出约束条件所表示的平面区域,如图所示,在不等式组,故选C.点睛:本题主要考查了线性规划的应用,其中正确作出约束条件所表示的平面区域是解答的关键,着重考查了数形结合思想和推理与运算能力.的值,得到函数的解析式是解答的关键,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力.9.A【解析】分析:的值.点睛:本题主要考查了古典概型及其概率的计算问题,着重考查了分析问题和解答问题的能力,以及推理与运算能力.11.C【解析】分析:当且仅当时,等号是成立的,故选C.点睛:本题主要考查了利用均值不等式求最值,及正弦定理和三角形面积公式的应用,其中解答中利用正弦定理,构造乘积为定值,利用均值不等式求解是解答的关键,着重考查了推理与运算能力,以及构造思想的应用.12.A曲线的焦点坐标,设出圆心坐标,列式求出圆心坐标,进一步求得半径,即可求解圆的方程.详解:如图所示,的内切圆切,点睛:本题主要考查了双曲线定义及几何性质的应用,以及圆的标准方程的求解,其中解答中联立方程方程组,求得圆心的坐标是解答的关键,试题运算量较大,化简繁琐,属于中档试题,着重考查了分析问题和解答问题的能力,以及推理与运算能力.13.0.79产品在这项指标上的合格率.内的频率为点睛:本题主要考查了频率分布直方图的应用,其中对于用样本估计总体主要注意以下两个方面:1、用样本估计总体是统计的基本思想,而利用频率分布表和频率分布直方图来估计总体则是用样本的频率分布去估计总体分布的两种主要方法.分布表在数量表示上比较准确,直方图比较直观;2、频率分布表中的频数之和等于样本容量,各组中的频率之和等于1;在频率分布直方图中,各小长方形的面积表示相应各组的频率,所以,所有小长方形的面积的和等于1.14.1果.点睛:平面向量的计算问题,往往有两种形式,一是利用数量积的定义式,二是利用数量积的坐标运算公式,涉及几何图形的问题,先建立适当的平面直角坐标系,可起到化繁为简的妙用,利用向量夹角公式、模公式及向量垂直的充要条件,可将有关角度问题、线段长问题及垂直问题转化为向量的数量积来解决.点睛:本题考查了有关球的组合体问题,以及三棱锥的体积的求法,解答时要认真审题,注意球的性质的合理运用,求解球的组合体问题常用方法有(1)三条棱两两互相垂直时,可恢复为长方体,利用长方体的体对角线为外接球的直径,求出球的半径;(2)直棱柱的外接球可利用棱柱的上下底面平行,借助球的对称性,球心为上下底面外接圆的圆心连线的中点,再根据勾股定理求球的半径.点睛:本题主要考查了的实际应用问题,以及利用导数研究函数的单调性和利用导数求解函数的极值与最值,其中正确理解题意,列出函数关系式是解答的关键,着重考查了分析问题和解答问题的能力,以及推理与运算能力.17.(1(2【解析】分析:(1)利用已知条件,求得等比数列的首项与公比,即可求解数列的通项公式;(2)由(1详解:(1,解得,,解得所以数列的通项公式为(2所以所求数列的前100点睛:本题主要考查等差、等比数列的通项公式及求和公式、数列求和的“错位相减法”,此类题目是数列问题中的常见题型,对考生计算能力要求较高,解答中确定通项公式是基础,准确计算求和是关键,易错点是在“错位”之后求和时,弄错等比数列的项数.本题将数列与解析几何结合起来,适当增大了难度,能较好的考查考生的数形结合思想、逻辑思维能力及基本计算能力等.18.(1)见解析;(2点睛:本题考查了线面位置关系的判定及应用判定和二面角的求解问题,意在考查学生的空间想象能力和逻辑推理能力;解答本题关键在于能利用直线与直线、直线与平面、平面与平面关系的相互转化,通过严密推理,明确角的构成.同时对于立体几何中角的计算问题,往往可以利用空间向量法,通过求解平面的法向量,利用向量的夹角公式求解.19.(1)见解析;(2)见解析;(3)见解析【解析】分析:(1)根据平均分的计算公式,即可求解(2)对4和5号评委排名偏差平方和,即可作出判断.(3求解数学期望.详解:(1)依据评分规则:所以选手的均分及最终排名表如下:(2)对4号评委分析:4号评委评分分析表对5号评委分析:5号评委评分分析表点睛:本题主要考查样本估计总体的应用、及随机变量的分布列和数学期望,解答本题,首先要认真准确审题,利用统计的公式作出正确计算,确定随机变量的取值,求得相应的概率,求得分布列是解答的关键,本题属中等难度的题目,计算量不是很大,能很好的考查考生数学应用意识、基本运算求解能力等.20.(1(2得,又因为为长轴端点,此时点睛:本题主要考查椭圆的标准方程与几何性质、直线与圆锥曲线的位置关系的应用问题,解答此类题目,方程组,应用一元二次方程根与系数的关系,得到“目标函数”的解析式,确定函数的性质进行求解,此类问题易错点是复杂式子的变形能力不足,导致错漏百出,本题能较好的考查考生的逻辑思维能力、运算求解能力、分析问题解决问题的能力等.21.(1)6;(2)见解析,函数的图象有且只有一个交点,得.(2)由(1,,时,,即.点睛:本题主要考查导数在函数中的应用,以及不等式的证明,着重考查了转化与化归思想、逻辑推理能力与计算能力,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,求解曲线在某点处的切线方程;(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数;(3)利用导数求函数的最值(极值),解决函数的恒成立与有解问题,同时注意数形结合思想的应用.22.(1(2点睛:本题主要考查了极坐标与直角坐标的互化,直线参数方程的应用,熟记极坐标与直角坐标的互化公式是解答的关键,着重考查了推理与运算能力.23.(1(2点睛:本题主要考查了绝对值不等式问题,对于含绝对值不等式的解法有两个基本方法,一是运用零点分区间讨论,二是利用绝对值的几何意义求解.法一是运用分类讨论思想,法二是运用数形结合思想,将绝对值不等式与函数以及不等式恒成立交汇、渗透,解题时强化函数、数形结合与转化化归思想方法的灵活应用,这是命题的新动向.。
江西省南昌市2018届高三第一次模拟考试理数试题(考试版)
第1页 共4页 ◎ 第2页 共4页绝密★启用前江西省南昌市2018届高三第一次模拟考试数学(理)试题一、单选题 1.已知,,则A . B.C .D .2.已知复数为纯虚数,则 A .B .C . 或D . 3.设命题,则是 A .B .C .D .4.已知平面向量,则 A .B .C .D . 5.已知等比数列的各项均为正数,前项和为,若,则A .B .C .D .6.已知动点满足线性条件,定点,则直线斜率的最大值为A .B .C .D . 7.已知椭圆的左右焦点分别为,过且垂直于长轴的直线交椭圆于两点,则△内切圆的半径为A .B .C .D .8.已知函数,若将函数的图象向右平移个单位后关于轴对称,则下列结论中不正确...的是 A. B. 是图象的一个对称中心 C.D.是图象的一条对称轴9.若向区域内投点,则该点落在由直线与曲线围成区域内的概率为A .B .C .D .10.如图,网格纸上小正方形的边长为,粗线条画出的是一个三棱锥的三视图,则该三棱锥中最长棱的长度为A .B .C .D .11.已知双曲线的左、右焦点分别为,点在双曲线的右支上,且,则双曲线离心率的取值范围是 A .B .C .D .12.若关于的方程存在三个不等实根,则实数的取值范围是 A . B .C .D .二、填空题13.的展开式中含项的系数为___________.14.更相减损术是出自《九章算术》的一种算法.如图所示的程序框图是根据更相减损术写出的,若输入,则输出的值为_____.15.底面是正多边形,顶点在底面的射影是底面中心的棱锥叫正棱锥,已知同底的两个正三棱锥内接于同一个球.已知两个正三棱锥的底面边长为a ,球的半径为R , 设两个正三棱锥的侧面与底面所成的角分别为α,β,则t a n ()αβ+的值是 . 16.在数列中,,且对任意,成等差数列,其公差为,则 ________.第3页 共4页 ◎ 第4页 共4页三、解答题 17.在△中,内角的对边分别为,其面积.(1)求的值; (2) 设内角的平分线交于,,,求 .18.某种植园在芒果临近成熟时,随机从一些芒果树上摘下100个芒果,其质量分别在,,,,,(单位:克)中,经统计得频率分布直方图如图所示.(1)现按分层抽样从质量为,的芒果中随机抽取个,再从这个中随机抽取个,记随机变量表示质量在内的芒果个数,求的分布列及数学期望.(2)以各组数据的中间数代表这组数据的平均值,将频率视为概率,某经销商来收购芒果,该种植园中还未摘下的芒果大约还有个,经销商提出如下两种收购方案: A :所以芒果以元/千克收购;B :对质量低于克的芒果以元/个收购,高于或等于克的以元/个收购. 通过计算确定种植园选择哪种方案获利更多? 19.如图,在直四棱柱中,底面为等腰梯形,.(1)证明:;(2)设是线段上的动点,是否存在这样的点,使得二面角的余弦值为,如果存在,求出的长;如果不存在,请说明理由.20.已知直线过抛物线:的焦点,且垂直于抛物线的对称轴,与抛物线两交点间的距离为. (1)求抛物线的方程; (2)若点,过点的直线与抛物线相交于,两点,设直线与的斜率分别为和.求证:为定值,并求出此定值. 21.已知函数.(1)求证:函数有唯一零点;(2)若对任意,恒成立,求实数的取值范围.22.选修4—4:坐标系与参数方程选讲.已知曲线的参数方程为(为参数),以直角坐标系的原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求的普通方程和的直角坐标方程; (2)若过点的直线与交于,两点,与交于两点,求的取值范围.23.选修4—5:不等式选讲. 已知函数. (1)求的解集; (2) 若的最小值为,正数满足,求证:.。
江西省南昌市2018届高三数学第一次模拟考试试题理
江西省南昌市2018届高三数学第一次模拟考试试题 理一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{A x N y =∈,{}21,B x x n n Z ==+∈,则A B =( )A.(],4-∞B.{}1,3C.{}1,3,5D.[]1,32.欧拉公式cos sin ix e x i x =+(i 为虚数单位)是由瑞士著名数学家欧拉发现的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里非常重要,被誉为“数学中的天桥”。
根据欧拉公式可知,3x i e 表示的复数位于复平面中的( ) A.第一象限B.第二象限C.第三象限D.第四象限3.已知角α的终边经过点()sin 47,cos47P °°,则()sin 13α-=°( ) A.12C.12-D. 4.已知奇函数()'f x 是函数()()f x x R ∈是导函数,若0x >时()'0f x >,则( ) A.()()()320log 2log 3f f f >>- B.()()()32log 20log 3f f f >>- C.()()()23log 3log 20f f f ->>D.()()()23log 30log 2f f f ->>5.设不等式组3010350x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩表示的平面区域为M ,若直线y kx =经过区域M 内的点,则实数k 的取值范围为( )A.1,22⎛⎤ ⎥⎝⎦B.14,23⎡⎤⎢⎥⎣⎦C.1,22⎡⎤⎢⎥⎣⎦D.4,23⎡⎤⎢⎥⎣⎦6.平面内直角三角形两直角边长分别为,a b,直角顶点到斜边的距离为,空间中三棱锥的三条侧棱两两垂直,三个侧面的面积分别为123,,S S S ,类比推理可( )7.已知圆台和正三棱锥的组合体的正视图和俯视图如图所示,图中网格是单位正方形,那么组合体的侧视图的面积为( )A.6+B.152C.6D.88.执行如图程序框图,则输出的n 等于( )A.1B.2C.3D.49.函数()()()2sin xx e e x f x x e ππ-+=-≤≤的图象大致为( )ABCD10.已知具有线性相关的五个样本点()10,0A ,()22,2A ,()33,2A ,()44,2A ,()56,4A ,用最小二乘法得到回归直线方程1:l y bx a =+,过点1A ,2A 的直线方程2:l y mx n =+,那么下列4个命题中,①,m b a n >>;②直线1l 过点3A ;③()()552211i i i i i i y bx a y mx n ==--≥--∑∑④5511i i i i i i y bx a y mx n ==--≥--∑∑.(参考公式()()()1122211nni iii i i nniii i x ynxy xx y yb xnxxx====---==--∑∑∑∑,a y bx =-)正确命题的个数有( ) A.1个B.2个C.3个D.4个11.设函数()1,121,1x ax a f x x a x a -⎧⎛⎫<+⎪ ⎪=⎨⎝⎭⎪-+-≥+⎩,若()f x 的最大值不超过1,则实数a 的取值范围为( ) A.3,2⎡⎫-+∞⎪⎢⎣⎭B.3,2⎛⎫-+∞ ⎪⎝⎭C.5,04⎡⎫-⎪⎢⎣⎭D.35,24⎡⎫--⎪⎢⎣⎭12.已知椭圆22:12412x y E +=,O 为坐标原点,,A B 是椭圆上两点,,OA OB 的斜率存在并分别记为OA k 、OB k ,且12OA OB k k ⋅=-,则11OA OB +的最小值为( )B.13二、填空题(每题5分,满分20分,将答案填在答题纸上)13.()3121x x ⎛⎫+- ⎪⎝⎭展开式中的常数项为________________.14.平面向量()1,a m =,()4,b m =,若有()()20a ba b -+=,则实数m =________________.15.在圆224x y +=上任取一点,则该点到直线0x y +-的距离[]0,1d ∈的概率为________________.16.已知台风中心位于城市A 东偏北α(α为锐角)度的200公里处,若()24cos 25αβ-=,则v =__________.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.已知等比数列{}n a 的前n 项和为n S ,满足4421S a =-,3321S a =-. (1)求{}n a 的通项公式;(2)记()21log n n n b a a +=⋅,数列{}n b 的前n 项和为n T ,求证:121112nT T T +++<…. 18.某校为了推动数学教学方法的改革,学校将高一年级部分生源情况基本相同的学生分成甲、乙两个班,每班各40人,甲班按原有模式教学,乙班实施教学方法改革.经过一年的教学实验,将甲、乙两个班学生一年来的数学成绩取平均数,两个班学生的平均成绩均在[]50,100,按照区间[)50,60,[)60,70,[)70,80,[)80,90,[]90,100进行分组,绘制成如下频率分布直方图,规定不低于80分(百分制)为优秀.(1) 完成表格,并判断是否有90%以上的把握认为“数学成绩优秀与教学改革有关”;(2)从乙班[)70,80,[)80,90,[]90,100分数段中,按分层抽样随机抽取7名学生座谈,从中选三位同学发言,记来自[)80,90发言的人数为随机变量X ,求X 的分布列和期望.19.如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,ABCD 为直角梯形,AD BC ∥,AD AB ⊥,132AB BC AP AD ====,AC BD O =,过O 点作平面α平行于平面PAB ,平面α与棱BC ,AD ,PD ,PC 分别相交于点E ,F ,G ,H .(1)求GH 的长度;(2)求二面角B FH E --的余弦值.20.已知抛物线()2:20C y px p =>的焦点为F ,准线为l ,过焦点F 的直线交C 于()11,A x y ,()22,B x y 两点,124y y =-.(1)求抛物线方程;(2)点B 在准线l 上的投影为E ,D 是C 上一点,且AD EF ⊥,求ABD △面积的最小值及此时直线AD 的方程.21.已知函数()()ln f x ax bx =+在点()()1,1f 处的切线是0y =. (1)求函数()f x 的极值;(2)当()()210x mx e f x x m e e-≥+<恒成立时,求实数m 的取值范围(e 为自然对数的底数).22.在平面直角坐标系xOy 中,曲线C 的参数方程为2cos 2sin 2x y θθ=⎧⎨=+⎩(θ为参数),以坐标原点为极点,x 轴非负半轴为极轴建立极坐标系. (1)求C 的极坐标方程;(2)若直线12,l l 的极坐标方程分别为()6R πθρ=∈,()2=3R πθρ∈,设直线12,l l 与曲线C 的交点为O ,M ,N ,求OMN △的面积. 23.已知()223f x x a =+.(1)当0a =时,求不等式()23f x x +-≥的解集;(2)对于任意实数x ,不等式()212x f x a +-<成立,求实数a 的取值范围.参考答案一.选择题:本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.13.4 14. 2± 15.1316.100 三.解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或推演步骤. 17.【解析】(Ⅰ)设{}n a 的公比为q ,由434S S a -=得,43422a a a -=, 所以432a a =, 所以2q =. 又因为3321S a =-, 所以11112481a a a a ++=-, 所以11a =. 所以12n n a -=. (Ⅱ)由(Ⅰ)知1212log ()log (22)21n n n n n b a a n -+=⋅=⨯=-, 所以21(21)2n n T n n +-==, 所以22212111111111+++1121223(1)n T T T n n n+++=<++++创-11111111222231n n n=+-+-++-=-<-. 18.(Ⅰ)依题意得2240(12202820) 3.333 2.70640403248K ⨯⨯-⨯=≈>⨯⨯⨯ 有90%以上的把握认为“数学成绩优秀与教学改革有关”(Ⅱ)从乙班[70,80),[80,90),[90,100]分数段中抽人数分别为2,3,2 …依题意随机变量X 的所有可能取值为0123,,,xOB E2134343377418(0),(1),3535C C C P X P X C C ======1234333377121(2),(3)3535C C C P X P X C C ======所以18121459()123353535357E X =???= 19. 【解析】(Ⅰ)【法一】(Ⅰ)因为//a 平面PAB ,平面a平面ABCD EF =,O EF Î,平面PAB 平面ABCD AB =,所以//EF AB ,同理//,//EH BP FG AP ,因为BC ∥,6,3AD AD BC ==,所以BOC D ∽DOA D ,且12BC CO AD AO ==, 所以12EO OF =,11,23CE CB BE AF ====, 同理13CH EH CO PC PB CA ===, 连接HO ,则有HO ∥PA , 所以HO EO ⊥,1HO =,所以13EH PB ==,同理,223FG PA ==, 过点H 作HN ∥EF 交FG 于N ,则GH 【法二】因为//a 平面PAB ,平面a 平面ABCD EF =,O EF Î,平面PAB平面ABCD AB =,根据面面平行的性质定理,所以//EF AB ,同理//,//EH BP FG AP , 因为//,2BC AD AD BC =,所以BOC DOA ∽D D ,且12BC CO AD OA ==, 又因为COE D ∽AOF D ,AF BE =,所以2BE EC =, 同理2AF FD =,2PG GD =,123,233EF AB EH PB FG AP ====== 如图:作//,,//,HN BC HN PB N GM AD GMPA M ==,所以//,HN GM HN GM =,故四边形GMNH 为矩形,即GH MN =, 在PMN D 中,所以MN =GH =(Ⅱ)建立如图所示空间直角坐标系(3,0,0),(0,2,0),(3,2,0),(2,2,1)B F E H ,(1,2,1),(2,0,1)BH FH =-=, 设平面BFH 的法向量为(,,)n x y z =,2020n BHx y z n FHx z ìï?-++=ïíï?+=ïî,令2z =-,得3(1,,2)2n =-,因为平面//EFGH 平面PAB ,所以平面EFGH 的法向量(0,1,0)m =3cos ,29||||m nm n m n ×===,二面角B FH E -- 20. 【解析】(Ⅰ)依题意(,0)2pF , 当直线AB 的斜率不存在时,2||4,2AB p p =-=-= 当直线AB 的斜率存在时,设:()2pAB y k x =-由22()2y pxpy k x ⎧=⎪⎨=-⎪⎩,化简得2220p y y p k --= 由124y y =-得24p =,2p =,所以抛物线方程24y x =.(Ⅱ)设00(,)D x y ,2(,)4t B t ,则(1,)E t -,又由124y y =-,可得244(,)A t t -因为2EF t k =-,AD EF ⊥,所以2AD k t =,故直线2424:()AD y x t t t+=- 由2248240y xx ty t ⎧=⎪⎨---=⎪⎩, 化简得2216280y ty t ---=,所以10102162,8y y t y y t+==--.所以10|||AD y y =-==设点B 到直线AD 的距离为d,则22222816|4||8|t t t d ---++==所以1||162ABD S AD d ∆=⋅=≥,当且仅当416t =,即2t =± 2:30t AD x y =--=时,, 2:30t AD x y =-+-=时,.21. 【解析】(Ⅰ)因为()ln()f x ax bx =+,所以1()a f x b b ax x¢=+=+, 因为点(1,(1))f 处的切线是0y =,所以(1)10f b ¢=+=,且(1)ln 0f a b =+= 所以,1a e b ==-,即()ln 1f x x x =-+((0,)x ??)所以11()1xf x x x-¢=-=,所以在(0,1)上递增,在(1,)+?上递减 所以()f x 的极大值为(1)ln 10f e =-=,无极小值.(Ⅱ)当21()x mx ef x x e e-?(0)m <在(0,)x ??恒成立时, 由(Ⅰ)()ln 1f x x x =-+,即ln 112x mx x e x e+?+(0)m <在(0,)x ??恒成立, 【法一】设ln 11(),()2e e x mx x g x h x x +==+-,则(1)()e x m x g x -'=,2ln ()xh x x '=-,又因为0m <,所以当01x <<时,()0,()0g x h x ''<>;当1x >时,()0,()0g x h x ''><. 所以()g x 在(0,1)上单调递减,在(1,)+∞上单调递增,min ()(1)e mg x g ==; ()h x 在(0,1)上单调递增,在(1,)+∞上单调递减,max1()(1)1eh x h ==-.所以(),()g x h x 均在1x =处取得最值,所以要使()()g x h x ≥恒成立, 只需min max ()()g x h x ≥,即11e em ≥-,解得1e m ≥-,又0m <, 所以实数m 的取值范围是[10)e ,-. 【法二】设ln 11()2x x mx g x x e e +=--+((0,)x ??),则2ln (1)()xx m x g x x e --¢=+ 当01x << 时,ln 0x ->,10x -<,则2ln 0x x ->,(1)0xm x e->,即()0g x ¢>当1x > 时,ln 0x -<,10x ->,则2ln 0x x -<,(1)0xm x e-<,即()0g x ¢< 所以()g x 在(0,1)x Î上单调递增,在(1,)x ??上单调递减. 所以max 1()(1)120m g x g e e ==-+-?,即11m e e?,又0m < 所以实数m 的取值范围是[10)e ,-. 22. 【解析】(Ⅰ)由参数方程2cos 2sin x y θθ=⎧⎨=+⎩2,得普通方程22(2)4x y -+=,所以极坐标方程2222cos sin 4sin 0r q r q r q +-=,即4sin r q =.(Ⅱ)直线()1π:R 6l q r =?与曲线C 的交点为,O M ,得||4sin 26M OM pr ===,又直线()22π:R 3l q r =?与曲线C 的交点为,O N ,得2||4sin 3N ON pr ===且2MON π∠=,所以11||||222OMN S OM ON D ==创23. 【解析】(Ⅰ)当0a =时,()|2||2||2|3f x x x x +-=+-?,0223x x x ì<ïïíï-+-?ïî 得13x ?;02223x x x ì#ïïíï+-?ïî 得12x #;2223x x x ì>ïïíï+-?ïî 得2x >, 所以()|2|2f x x +-?的解集为1(,][1,)3-?+?. (Ⅱ)对于任意实数x ,不等式|21|()2x f x a +-<成立,即2|21||23|2x x a a +-+<恒成立,又因为222|21||23||2123||31|x x a xx a a +-+?--=-,要使原不等式恒成立,则只需2|31|2a a -<,当0a <时,无解;当03a#时,2132a a -<,解得133a <?;当3a >时,2312a a -<,解得13a <<. 所以实数a 的取值范围是1(,1)3.。
江西省南昌市2018届高三第二次高考模拟考试理数试题
江西省南昌市 2018 届高三第二次高考模拟考试数学(理)试题全解全析点睛:本题主要考查了复数的运算法则和复数相等的概念,及复数的表示,着重考查了推理与运算能力.3.B 【解析】分析:由,则成立,反之:如,即可判断关系.详解:由,则成立,反之:如,则不成立,所以“”是“”的必要不充分条件,故选 B .点睛:本题主要考查了不等式的性质及必要不充分条件的判定,着重考查了推理与运算能力,属于基础题.4.D 【解析】分析:由已知中的三视图,可得该几何体是一个三棱柱,分别求出它的底面面积和高,代入 体积公式,即可求解.详解:由已知中的三视图,可得该几何体是一个三棱柱,如图所示,其中底面面积为 所以该三棱柱的体积为,高为, ,故选 D .点睛:本题考查了几何体的三视图及组合体的表面积的计算,在由三视图还原为空间几何体的实际形状时,要从三个视图综合考虑,根据三视图的规则,空间几何体的可见轮廓线在三视图中为实线,不可见轮廓线在三视图中为虚线.在还原空间几何体实际形状时,一般是以正视图和俯视图为主,结合侧视图进行综合考虑.求解以三视图为载体的空间几何体的表面积与体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解.点睛:本题主要考查了循环结构的程序框图的计算与输出结果,当循环次数不多时或有规律时,常常采用模拟循环的方法求解,着重考查了分析问题和解答问题的能力,以及推理与运算能力.6.A【解析】分析:由抛物线的定义,求得点的坐标,进而求解三角形的面积.详解:由抛物线的方程,可得设,则,即不妨设在第一象限,则,,,准线方程为,所以,故选A.点睛:本题主要考查了抛物线的定义及性质的应用,其中熟记抛物线的定义和性质是解答的关键,着重考查了学生的推理与运算能力.7.C【解析】分析:作出约束条件所表示的平面区域,由详解:作出约束条件所表示的平面区域,如图所示,,求得点的坐标,即可得到结果.由又因为点,解得在不等式组,且点,的平面区域内,所以实数的取值范围是,故选C.点睛:本题主要考查了线性规划的应用,其中正确作出约束条件所表示的平面区域是解答的关键,着重考查了数形结合思想和推理与运算能力.点睛:本题主要考查了三角函数的部分图象求解函数的解析式,由特殊点的坐标求出的值,得到函数的解析式是解答的关键,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力.9.A【解析】分析:由题意可得函数的值.为偶函数,根据求解,进而求得点睛:本题主要考查了古典概型及其概率的计算问题,着重考查了分析问题和解答问题的能力,以及推理与运算能力.11.C【解析】分析:详解:由的面积为,所以,得,在中,由正弦定理得,当且仅当时,等号是成立的,故选C.点睛:本题主要考查了利用均值不等式求最值,及正弦定理和三角形面积公式的应用,其中解答中利用正弦定理,构造乘积为定值,利用均值不等式求解是解答的关键,着重考查了推理与运算能力,以及构造思想的应用.12.A【解析】分析:由题意画出图形,由双曲线的定义可得三角形的内切圆切于,再由已知求出双曲线的焦点坐标,设出圆心坐标,由圆心在直线步求得半径,即可求解圆的方程.详解:如图所示,上及圆的半径相等,列式求出圆心坐标,进一设三角形的内切圆切于点 ,且于 ,且于 ,点睛:本题主要考查了双曲线定义及几何性质的应用,以及圆的标准方程的求解,其中解答中联立方程方程组,求得圆心的坐标是解答的关键,试题运算量较大,化简繁琐,属于中档试题,着重考查了分析问题 和解答问题的能力,以及推理与运算能力.13.0.79【解析】分析:由频率分布直方图求出这种指标值在 产品在这项指标上的合格率.内的频率,由此能估计该企业这种详解:这种指标值在内,则这项指标合格,由频率分布直方图得这种指标值在内的频率为,所以估计该企业这种产品在这项指标上合格率为.点睛:本题主要考查了频率分布直方图的应用,其中对于用样本估计总体主要注意以下两个方面:1、用样本估计总体是统计的基本思想,而利用频率分布表和频率分布直方图来估计总体则是用样本的频率分布去估计总体分布的两种主要方法.分布表在数量表示上比较准确,直方图比较直观;2、频率分布表中的频数之和等于样本容量,各组中的频率之和等于1;在频率分布直方图中,各小长方形的面积表示相应各组的频 率,所以,所有小长方形的面积的和等于 1.14.1【解析】分析:根据题意,以向量 果.详解:由题意可知,则为平面的一个基底,利用向量的数量积的运算,即可求得结.点睛:平面向量的计算问题,往往有两种形式,一是利用数量积的定义式,二是利用数量积的坐标运算公式,涉及几何图形的问题,先建立适当的平面直角坐标系,可起到化繁为简的妙用,利用向量夹角公式、模公式及向量垂直的充要条件,可将有关角度问题、线段长问题及垂直问题转化为向量的数量积来解决.点睛:本题考查了有关球的组合体问题,以及三棱锥的体积的求法,解答时要认真审题,注意球的性质的合理运用,求解球的组合体问题常用方法有(1)三条棱两两互相垂直时,可恢复为长方体,利用长方体的体对角线为外接球的直径,求出球的半径;(2)直棱柱的外接球可利用棱柱的上下底面平行,借助球的对称性,球心为上下底面外接圆的圆心连线的中点,再根据勾股定理求球的半径.点睛:本题主要考查了的实际应用问题,以及利用导数研究函数的单调性和利用导数求解函数的极值与最值,其中正确理解题意,列出函数关系式是解答的关键,着重考查了分析问题和解答问题的能力,以及推理与运算能力.17.(1);(2)【解析】分析:(1)利用已知条件,求得等比数列的首项与公比,即可求解数列的通项公式;(2)由(1)得,利用乘公比错位相减法,即可求解数列的和.详解:(1)由成等差数列得:,设的公比为,则,解得或(舍去),所以所以数列,解得的通项公式为,.(2)由得,所以所求数列的前100项和,即,所以,两式相减得:所以,所以.点睛:本题主要考查等差、等比数列的通项公式及求和公式、数列求和的“错位相减法”,此类题目是数列问题中的常见题型,对考生计算能力要求较高,解答中确定通项公式是基础,准确计算求和是关键,易错点是在“错位”之后求和时,弄错等比数列的项数.本题将数列与解析几何结合起来,适当增大了难度,能较好的考查考生的数形结合思想、逻辑思维能力及基本计算能力等.18.(1)见解析;(2)又,所以.如图以点为坐标原点,所在直线分别为轴,轴,轴建立空间直角坐标系,点睛:本题考查了线面位置关系的判定及应用判定和二面角的求解问题,意在考查学生的空间想象能力和逻辑推理能力;解答本题关键在于能利用直线与直线、直线与平面、平面与平面关系的相互转化,通过严密推理,明确角的构成.同时对于立体几何中角的计算问题,往往可以利用空间向量法,通过求解平面的法 向量,利用向量的夹角公式求解.19.(1)见解析;(2)见解析;(3)见解析【解析】分析:(1)根据平均分的计算公式,即可求解 , ,即可填写表格.(2)对 4 和 5 号评委排名偏差平方和,即可作出判断.(3)由题意,得到随机变量 可能取值,求解取每个值的概率,即可得打分布列,利用期望的公式,即可 求解数学期望.详解:(1)依据评分规则:.所以选手的均分及最终排名表如下:,(2)对 4 号评委分析:4 号评委评分分析表排名偏差平方和为:对 5 号评委分析:5 号评委评分分析表.0 1 2 3所以数学期望.点睛:本题主要考查样本估计总体的应用、及随机变量的分布列和数学期望,解答本题,首先要认真准确审题,利用统计的公式作出正确计算,确定随机变量的取值,求得相应的概率,求得分布列是解答的关键,本题属中等难度的题目,计算量不是很大,能很好的考查考生数学应用意识、基本运算求解能力等.20.(1) ;(2)联立,得,由得,整理得.由韦达定理得,,②由①②,消去得,由,解得,又因为为长轴端点时,可求得点,此时,综上,或,又因为以为直径的圆面积,所以的取值范围是.点睛:本题主要考查椭圆的标准方程与几何性质、直线与圆锥曲线的位置关系的应用问题,解答此类题目,通常利用的关系,确定椭圆(圆锥曲线)方程是基础,通过联立直线方程与椭圆(圆锥曲线)方程的方程组,应用一元二次方程根与系数的关系,得到“目标函数”的解析式,确定函数的性质进行求解,此类问题易错点是复杂式子的变形能力不足,导致错漏百出,本题能较好的考查考生的逻辑思维能力、运算求解能力、分析问题解决问题的能力等.21.(1)6;(2)见解析当时,,且时,,时,,所以,化简得:记又,,,函数,与的图象有且只有一个交点,得,,所以在上单调递减,,所以,即.(2)由(1)得:当时,,只要证明:时,即,记,则记,图象为开口向上的抛物线,对称轴为,,且,所以当时,,即,所以即在区间上单调递增,从而成立,所以,成立.点睛:本题主要考查导数在函数中的应用,以及不等式的证明,着重考查了转化与化归思想、逻辑推理能力与计算能力,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,求解曲线在某点处的切线方程;(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数;(3)利用导数求函数的最值(极值),解决函数的恒成立与有解问题,同时注意数形结合思想的应用.22.(1),;(2)将的参数方程代入曲线的直角坐标方程得到:,整理得:,判别式,中点对应的参数为,所以线段中点到点距离为.点睛:本题主要考查了极坐标与直角坐标的互化,直线参数方程的应用,熟记极坐标与直角坐标的互化公式是解答的关键,着重考查了推理与运算能力.23.(1);(2)点睛:本题主要考查了绝对值不等式问题,对于含绝对值不等式的解法有两个基本方法,一是运用零点分区间讨论,二是利用绝对值的几何意义求解.法一是运用分类讨论思想,法二是运用数形结合思想,将绝对值不等式与函数以及不等式恒成立交汇、渗透,解题时强化函数、数形结合与转化化归思想方法的灵活应用,这是命题的新动向.。
2018届江西省南昌市高三第一次模拟考试理科数学试题(解析版)
2018届江西省南昌市高三第一次模拟考试理科数学试题(解析版)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,则( )A. B. C. D.【答案】B【解析】由题意可得:,,则:.本题选择B选项.2. 欧拉公式(为虚数单位)是由瑞士著名数学家欧拉发现的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里非常重要,被誉为“数学中的天桥”。
根据欧拉公式可知,表示的复数位于复平面中的( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】A【解析】由题意可得:,即表示的复数位于复平面中的第一象限.本题选择A选项.3. 已知角的终边经过点,则( )A. B. C. D.【答案】A【解析】由题意可得三角函数的定义可知:,,则:本题选择A选项.4. 已知奇函数是函数是导函数,若时,则( )A. B.C. D.【答案】C【解析】函数是奇函数,则,据此有:,即函数为偶函数,且当,,单调递增,综上可得:函数是区间上的偶函数,结合可得:,据此可得.本题选择C选项.5. 设不等式组表示的平面区域为,若直线经过区域内的点,则实数的取值范围为( )A. B. C. D.【答案】C【解析】绘制不等式组表示的平面区域如图所示,如图所示的虚线处为满足题意的临界值,当直线经过点时,取得最小值:,当直线经过点时,取得最小值:,据此可得则实数的取值范围为.本题选择C选项.6. 平面内直角三角形两直角边长分别为,则斜边长为,直角顶点到斜边的距离为,空间中三棱锥的三条侧棱两两垂直,三个侧面的面积分别为,类比推理可得底面积为,则三棱锥顶点到底面的距离为( )A. B.C. D.【答案】C【解析】设三棱锥两两垂直的三条侧棱长度为,三棱锥顶点到底面的距离为,由题意可得:,据此可得:,且,故:,则.本题选择C选项.点睛:在进行类比推理时,要尽量从本质上去类比,不要被表面现象所迷惑;否则只抓住一点表面现象甚至假象就去类比,就会犯机械类比的错误.7. 已知圆台和正三棱锥的组合体的正视图和俯视图如图所示,图中网格是单位正方形,那么组合体的侧视图的面积为( )A. B. C. D. 8【答案】B【解析】由题意可得,侧视图的上部分是一个三角形,其底为,高为2,面积,下部分是一个梯形,上底为2,下底为4,高为2,其面积,.本题选择B选项.8. 执行如图程序框图,则输出的等于( )A. 1B. 2C. 3D. 4【答案】C【解析】依据流程图可知,程序运行如下:首先初始化数据:,第一次循环:,执行:,第二次循环:,执行:,第三次循环:,执行:,第四次循环:,此时跳出循环,输出.本题选择C选项.点睛:此类问题的一般解法是严格按照程序框图设计的计算步骤逐步计算,逐次判断是否满足判断框内的条件,决定循环是否结束.要注意初始值的变化,分清计数变量与累加(乘)变量,掌握循环体等关键环节.9. 函数的图象大致为( )A. B.C. D.【答案】A【解析】由函数的解析式可得:,则函数的图像关于坐标原点对称,据此可排除B选项,考查函数,则,当时,单调递增,则,据此有:,据此可排除C选项;当时,,则,据此可排除D选项;本题选择A选项.点睛:函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的特征点,排除不合要求的图象.利用上述方法排除、筛选选项.10. 已知具有线性相关的五个样本点,,,,,用最小二乘法得到回归直线方程,过点,的直线方程,那么下列4个命题中,①;②直线过点;③④.(参考公式,)正确命题的个数有( )A. 1个B. 2个C. 3个D. 4个【答案】B【解析】由所给的数据计算可得:,回归方程为:,过点,的直线方程为逐一考查所给的结论:①该说法正确;②直线过点即回归方程过样本中心点,该说法正确;③=0.8,=9,说法③错误;④,,说法④错误;综上可得,正确命题的个数有2个.本题选择B选项.11. 设函数,若的最大值不超过1,则实数的取值范围为( )A. B. C. D.【答案】A【解析】当时,,绘制函数图象如图所示,观察可得函数的最大值为,满足题意,据此排除B选项;当时,,绘制函数图象如图所示,观察可得函数的最大值为,满足题意,据此排除CD选项;本题选择B选项.12. 已知椭圆,为坐标原点,是椭圆上两点,的斜率存在并分别记为、,且,则的最小值为( )A. B. C. D.【答案】C【解析】由均值不等式的结论有:,当且仅当,即时等号成立,结合椭圆的对称性可知,此时点关于轴对称,设直线的方程为,则直线的方程为,据此可得:,联立方程:可得:,则:,此时.本题选择C选项.点睛:在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误.二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 展开式中的常数项为________________.【答案】【解析】,据此可得,展开式中的常数项为:.14. 平面向量,,若有,则实数________________.【答案】【解析】由题意可得:,据此可得:,即:,求解关于实数的方程可得:.15. 在圆上任取一点,则该点到直线的距离的概率为________________.【答案】【解析】圆心到直线的距离为:,则直线与圆相切,设直线与直线的距离为1,则:或,如图所示,设直线与圆交于两点,由题意可得:,则,则为满足题意的点,由角度型几何概型公式可得满足题意的概率值:.点睛:解答几何概型问题的关键在于弄清题中的考察对象和对象的活动范围.当考察对象为点,点的活动范围在线段上时,用线段长度比计算;当考察对象为线时,一般用角度比计算,即当半径一定时,由于弧长之比等于其所对应的圆心角的度数之比,所以角度之比实际上是所对的弧长(曲线长)之比.16. 已知台风中心位于城市东偏北(为锐角)度的200公里处,若,则__________.【答案】【解析】如图所示,设台风在题中所叙述的过程中从B点运动到C点,则,,且,在△ABC中,由正弦定理有:,则:,结合题意可得:,求解方程组可得:,则,在中,,台风的速度公里/小时.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知等比数列的前项和为,满足,.(1)求的通项公式;(2)记,数列的前项和为,求证:.【答案】(1);(2)证明见解析.【解析】试题分析:(1)由题意可得,则,易得首项为.所以.(2)由(1)的结果可知,则,放缩之后裂项求和可得.试题解析:(1)设的公比为,由得,,所以,所以.又因为,所以,所以.所以.(2)由(1)知,所以,所以.点睛:使用裂项法求和时,要注意正负项相消时消去了哪些项,保留了哪些项,切不可漏写未被消去的项,未被消去的项有前后对称的特点,实质上造成正负相消是此法的根源与目的.18. 某校为了推动数学教学方法的改革,学校将高一年级部分生源情况基本相同的学生分成甲、乙两个班,每班各40人,甲班按原有模式教学,乙班实施教学方法改革.经过一年的教学实验,将甲、乙两个班学生一年来的数学成绩取平均数,两个班学生的平均成绩均在,按照区间,,,,进行分组,绘制成如下频率分布直方图,规定不低于80分(百分制)为优秀.完成表格,并判断是否有以上的把握认为“数学成绩优秀与教学改革有关”;(2)从乙班,,分数段中,按分层抽样随机抽取7名学生座谈,从中选三位同学发言,记来自发言的人数为随机变量,求的分布列和期望.【答案】(1)答案见解析;(2)答案见解析.【解析】试题分析:(1)依题意得,则有90%以上的把握认为“数学成绩优秀与教学改革有关”.(2)由题意可得随机变量的所有可能取值为且,据此可得分布列,计算数学期望.试题解析:(1)依题意得有90%以上的把握认为“数学成绩优秀与教学改革有关”(2)从乙班分数段中抽人数分别为2,3,2依题意随机变量的所有可能取值为,则分布列:所以19. 如图,四棱锥中,底面,为直角梯形,,,,,过点作平面平行于平面,平面与棱,,,分别相交于点,,,.(1)求的长度;(2)求二面角的余弦值.【答案】(1);(2).【解析】试题分析:(1)【法一】(Ⅰ)由面面平行的性质定理可得,,则∽,由相似三角形的性质计算可得【法二】由面面平行的性质定理可得,,则∽,由题意结合余弦定理可得.(2)建立空间直角坐标系,由题意可得平面的法向量为,平面的法向量则二面角的余弦值.试题解析:(1)【法一】(Ⅰ)因为平面,平面平面,,平面平面,所以,同理,因为∥,所以∽,且,所以,,同理,连接,则有∥,所以,,所以,同理,,过点作∥交于,则【法二】因为平面,平面平面,,平面平面,根据面面平行的性质定理,所以,同理,因为,所以,且,又因为∽,,所以,同理,,如图:作,所以,故四边形为矩形,即,在中,所以,所以.(2)建立如图所示空间直角坐标系,,设平面的法向量为,,令,得,因为平面平面,所以平面的法向量,二面角的余弦值为20. 已知抛物线的焦点为,准线为,过焦点的直线交于,两点,.(1)求抛物线方程;(2)点在准线上的投影为,是上一点,且,求面积的最小值及此时直线的方程.【答案】(1);(2)答案见解析.【解析】试题分析:(1)依题意,分类讨论直线斜率存在和斜率不存在两种情况可得抛物线方程.(2)设,,则,,直线联立直线方程与抛物线方程可得,点到直线的距离,则,当且仅当时等号成立,直线方程为或. 试题解析:(1)依题意,当直线的斜率不存在时,当直线的斜率存在时,设由,化简得由得,,所以抛物线方程.(2)设,,则,又由,可得因为,,所以,故直线由,化简得,所以.所以设点到直线的距离为,则所以,当且仅当,即,.点睛:(1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系;(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式|AB|=x1+x2+p,若不过焦点,则必须用一般弦长公式.21. 已知函数在点处的切线是.(1)求函数的极值;(2)当恒成立时,求实数的取值范围(为自然对数的底数).【答案】(1)答案见解析;(2).【解析】试题分析:(1)由题意可得函数的解析式(),则,的极大值为,无极小值.(2)原问题等价于在恒成立,【法一】设,由题意可得;.据此有,解得,故实数的取值范围是.学¥科¥网...学¥科¥网...学¥科¥网...学¥科¥网...学¥科¥网...学¥科¥网...学¥科¥网...学¥科¥网...【法二】设(),则,结合导函数的解析式可知在上单调递增,在上单调递减.所以,即,则实数的取值范围是.试题解析:(1)因为,所以,因为点处的切线是,所以,且所以,即()所以,所以在上递增,在上递减所以的极大值为,无极小值.(2)当在恒成立时,由(1),即在恒成立,【法一】设,则,,又因为,所以当时,;当时,.所以在上单调递减,在上单调递增,;在上单调递增,在上单调递减,.所以均在处取得最值,所以要使恒成立,只需,即,解得,又,所以实数的取值范围是.【法二】设(),则当时,,,则,,即当时,,,则,,即所以在上单调递增,在上单调递减.所以,即,又所以实数的取值范围是.22. 在平面直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,轴非负半轴为极轴建立极坐标系.(1)求的极坐标方程;(2)若直线的极坐标方程分别为,,设直线与曲线的交点为,,,求的面积.【答案】(1);(2).【解析】试题分析:(1)由题意可得C的普通方程,极坐标方程为.(2)由题意可得,,△OMN为直角三角形,则.试题解析:(1)由参数方程,得普通方程,所以极坐标方程,即.(2)直线与曲线的交点为,得,又直线与曲线的交点为,得,且,所以.23. 已知.(1)当时,求不等式的解集;(2)对于任意实数,不等式成立,求实数的取值范围.【答案】(1);(2).【解析】试题分析:(1)当时,不等式即,零点分段可得不等式的解集为.(2)原问题即恒成立,由绝对值三角不等式可得,原问题转化为,求解不等式可得实数的取值范围是.试题解析:(1)当时,,得;得;得,所以的解集为.(2)对于任意实数,不等式成立,即恒成立,又因为,要使原不等式恒成立,则只需,当时,无解;当时,,解得;当时,,解得.所以实数的取值范围是.、。
2018届江西省南昌市高三第一次模拟考试理科数学试题及答案
2018届南昌市高三第一次模拟考试理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至2页,第Ⅱ卷3至4页,共150分. 考生注意:1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上,考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致.2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.第Ⅱ卷用0.5毫米的黑色墨水签字笔在答题卡上作答.若在试题卷上作答,答案无效.3.考试结束,监考员将试题卷、答题卡一并收回.第Ⅰ卷一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的1.已知集合2{|20}A x x x =--≤,{|ln(1)}B x y x ==-,则A B =A .(1,2)B .[1,1)-C .(1,1)- D .(1,2][来2.若20(sin cos )2x a x dx π-=⎰,则实数a 等于A .1-B .1C .2-D .23.设,a b 为向量,则“||||||a b a b ⋅=”是“//a b ”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 4.下列命题:①若2()2cos 1,2x f x =-则()()f x f x π+=对x R ∈恒成立;②要得到函数sin()24xy π=-的图象,只需将sin 2x y =的图象向右平移4π个单位;③若锐角,αβ满足cos sin αβ>,则2παβ+<.其中是真命题的个数是 A .0 B .1C .2D .35.已知点P 是以12,F F 为焦点的椭圆22221(0)x y a b a b+=>>上一点,若12PF PF ⊥,21tan 2PF F ∠=,则椭圆的离心率e =A B C6A .1BC D7.若4821201212(3)(2)(2)(2),x x a a x a x a x +=+++++++ 则213511log ()a a a a ++++ 等于 A .27 B .28 C .7 D .88.在三棱锥C ABD -中(如图),ABD ∆与CBD ∆是全等的等腰直角三角形,O 为斜边BD 的中点,4AB =,二面角A BD C --的大小为 600,并给出下面结论:①AC ⊥BD ;②AD ⊥CO ;③△AOC 为正三角形;④cos ADC ∠=; ⑤四面体ABCD 的外接球面积为32π.其中真命题是 A .②③④ B .①③④ C .①④⑤ D .①③⑤ 9.若数列{}n a ,{}n b 的通项公式分别是2013(1)n n a a +=-⋅,2014(1)2n n b n+-=+,且n n a b <对任意*n N ∈恒成立,则常数a 的取值范围是 A .(2,1)- B .[2,1)- C .(2,1]- D .[2,1]-10.已知定义在区间[3,3]-上的函数()y f x =满足()()0f x f x -+=,对于函数()y f x =的图像上任意两点1122(,()),(,())x f x x f x 都有1212()[()()]0x x f x f x -⋅-<.若实数,a b 满足22(2)(2)0f a a f b b -+-≤,则点(,)a b 所在区域的面积为 A .8 B . 4 C . 2 D . 1二、选做题:请考生在下列两题中任选一题作答.若两题都做,则按做的第一题评阅计分,本题共5分.11. (1) (坐标系与参数方程选做题)已知直线l 的参数方程是(1x tt y t =⎧⎨=+⎩是参数),以原点为极点,x 轴的正半轴为极轴,圆C 的极坐标方程为6cos ρθ=-,则圆心C 到直线l 的距离为A .2BC .D .(2)(不等式选做题)已知函数a a x x f +-=|2|)(.若不等式6)(≤x f 的解集为{}32|≤≤-x x ,则实数a 的值为A .1B .2C .3D .4绝密★启用前2018届南昌市高三第三次模拟考试理科数学 第Ⅱ卷注意事项:第Ⅱ卷共2页,须用黑色墨水签字笔在答题卡上书写作答,若在试题上作答,答案无效.三.填空题:本大题共4小题,每小题5分,共20分.12.复数21ii+的模是 . 13.已知点P 是曲线2ln y x x =-上的一个动点,则点P 到直线:2l y x =-的距离的最小值为_______.14.在一次演讲比赛中,6位评委对一名选手打分的茎叶图如下所示,若去掉一个最高分和一个最低分,得到一组数据(14)i x i ≤≤,在如图所示的程序框图中,x 是这4个数据中的平均数,则输出的v 的值为_______.15.从装有1n +个球(其中n 个白球,1个黑球)的口袋中取出m 个球()0,,m n m n N <≤∈,共有1m n C +种取法。
(完整版)【省会检测】2018年江西省南昌市高考数学一模试卷(理科)
2018年江西省南昌市高考数学一模试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,B={x|x=2n+1,n∈Z},则A∩B=()A.(﹣∞,4]B.{1,3}C.{1,3,5}D.[1,3]2.欧拉公式e ix=cosx+isinx(i为虚数单位)是由瑞士著名数学家欧拉发现的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里非常重要,被誉为“数学中的天桥”,根据欧拉公式可知,表示的复数位于复平面中的()A.第一象限B.第二象限C.第三象限D.第四象限3.已知角α的终边经过点P(sin47°,cos47°),则sin(α﹣13°)=()A.B.C.D.4.已知奇函数f'(x)是函数f(x)(x∈R)是导函数,若x>0时f'(x)>0,则()A.f(0)>f(log32)>f(﹣log23)B.f(log32)>f(0)>f(﹣log23)C.f(﹣log23)>f(log32)>f(0)D.f(﹣log23)>f(0)>f(log32)5.设不等式组表示的平面区域为M,若直线y=kx经过区域M内的点,则实数k的取值范围为()A. B.C. D.6.平面内直角三角形两直角边长分别为a,b,则斜边长为,直角顶点到斜边的距离为,空间中三棱锥的三条侧棱两两垂直,三个侧面的面积分别为S1,S2,S3,类比推理可得底面积为,则三棱锥顶点到底面的距离为()A.B.C.D.7.已知圆台和正三棱锥的组合体的正视图和俯视图如图所示,图中网格是单位正方形,那么组合体的侧视图的面积为()A.6+B.C.D.88.执行如图程序框图,则输出的n等于()A.1 B.2 C.3 D.49.函数f(x)=(﹣π≤x≤π)的图象大致为()A.B. C.D.10.已知具有线性相关的五个样本点A1(0,0),A2(2,2),A3(3,2),A4(4,2),A5(6,4),用最小二乘法得到回归直线方程l1:y=bx+a,过点A1,A2的直线方程l2:y=mx+n,那么下列4个命题中,①m>b,a>n;②直线l1过点A3;③④.(参考公式,)正确命题的个数有()A.1个 B.2个 C.3个 D.4个11.设函数,若f(x)的最大值不超过1,则实数a 的取值范围为()A.B.C.D.12.已知椭圆,O为坐标原点,A,B是椭圆上两点,OA,OB的斜率存在并分别记为k OA、k OB,且,则的最小值为()A.B.C.D.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.展开式中的常数项为.14.平面向量,,若有,则实数m=.15.在圆x2+y2=4上任取一点,则该点到直线x+y﹣2=0的距离d∈[0,1]的概率为.16.已知台风中心位于城市A东偏北α(α为锐角)度的150公里处,以v公里/小时沿正西方向快速移动,2.5小时后到达距城市A西偏北β(β为锐角)度的200公里处,若,则v=.三、解答题(本大题共7小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12.00分)已知等比数列{a n}的前n项和为S n,满足S4=2a4﹣1,S3=2a3﹣1.(1)求{a n}的通项公式;(2)记b n=log2(a n•a n+1),数列{b n}的前n项和为T n,求证:.18.(12.00分)某校为了推动数学教学方法的改革,学校将高一年级部分生源情况基本相同的学生分成甲、乙两个班,每班各40人,甲班按原有模式教学,乙班实施教学方法改革.经过一年的教学实验,将甲、乙两个班学生一年来的数学成绩取平均数,两个班学生的平均成绩均在[50,100],按照区间[50,60),[60,70),[70,80),[80,90),[90,100]进行分组,绘制成如下频率分布直方图,规定不低于80分(百分制)为优秀.(1)完成表格,并判断是否有90%以上的把握认为“数学成绩优秀与教学改革有关”;甲班乙班总计大于等于80分的人数小于80分的人数总计(2)从乙班[70,80),[80,90),[90,100]分数段中,按分层抽样随机抽取7名学生座谈,从中选三位同学发言,记来自[80,90)发言的人数为随机变量X,求X的分布列和期望.附:K2=,P(K2≥k0)0.100.050.025k0 2.706 3.841 5.02419.(12.00分)如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,ABCD为直角梯形,AD∥BC,AD⊥AB,AB=BC=AP=AD=3,AC∩BD=O,过O点作平面α平行于平面PAB,平面α与棱BC,AD,PD,PC分别相交于点E,F,G,H.(1)求GH的长度;(2)求二面角B﹣FH﹣E的余弦值.20.(12.00分)已知抛物线C:y2=2px(p>0)的焦点为F,准线为l,过焦点F 的直线交C于A(x1,y1),B(x2,y2)两点,y1y2=﹣4.(1)求抛物线方程;(2)点B在准线l上的投影为E,D是C上一点,且AD⊥EF,求△ABD面积的最小值及此时直线AD的方程.21.(12.00分)已知函数f(x)=ln(ax)+bx在点(1,f(1))处的切线是y=0.(1)求函数f(x)的极值;(2)当恒成立时,求实数m的取值范围(e为自然对数的底数).22.(10.00分)在平面直角坐标系xOy中,曲线C的参数方程为(θ为参数),以坐标原点为极点,x轴非负半轴为极轴建立极坐标系.(1)求C的极坐标方程;(2)若直线l1,l2的极坐标方程分别为,,设直线l1,l2与曲线C的交点为O,M,N,求△OMN的面积.23.已知f(x)=|2x+3a2|.(1)当a=0时,求不等式f(x)+|x﹣2|≥3的解集;(2)对于任意实数x,不等式|2x+1|﹣f(x)<2a成立,求实数a的取值范围.2018年江西省南昌市高考数学一模试卷(理科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,B={x|x=2n+1,n∈Z},则A∩B=()A.(﹣∞,4]B.{1,3}C.{1,3,5}D.[1,3]【分析】先解出集合A={0,1,2,3,4},然后可判断1,3∈B,进行交集的运算即可求出A∩B.【解答】解:A={0,1,2,3,4};对于集合B:n=0时,x=1;n=1时,x=3;即1,3∈B;∴A∩B={1,3}.故选:B.【点评】考查描述法、列举法表示集合的概念,以及交集的运算.2.欧拉公式e ix=cosx+isinx(i为虚数单位)是由瑞士著名数学家欧拉发现的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里非常重要,被誉为“数学中的天桥”,根据欧拉公式可知,表示的复数位于复平面中的()A.第一象限B.第二象限C.第三象限D.第四象限【分析】直接由欧拉公式e ix=cosx+isinx,可得=cos=,则答案可求.【解答】解:由欧拉公式e ix=cosx+isinx,可得=cos=,∴表示的复数位于复平面中的第一象限.故选:A.【点评】本题考查复数的代数表示法及其几何意义,考查数学转化思想方法,是基础题.3.已知角α的终边经过点P(sin47°,cos47°),则sin(α﹣13°)=()A.B.C.D.【分析】根据三角函数的定义求出sinα和cosα,结合两角和差的正弦公式和余弦公式进行化简即可.【解答】解:∵r=|OP|==1,∴sinα==cos47°,cosα==sin47°,则sin(α﹣13°)=sinαcos13°﹣cosαsin13°=cos47°cos13°﹣sin47°sin13°=cos(47°+13°)=cos60°=,故选:A.【点评】本题主要考查三角函数的化简和求解,利用三角函数的定义结合两角和差的正弦公式是解决本题的关键.4.已知奇函数f'(x)是函数f(x)(x∈R)是导函数,若x>0时f'(x)>0,则()A.f(0)>f(log32)>f(﹣log23)B.f(log32)>f(0)>f(﹣log23)C.f(﹣log23)>f(log32)>f(0)D.f(﹣log23)>f(0)>f(log32)【分析】判断f(x)的单调性和奇偶性,再判断大小关系.【解答】解:∵f′(x)是奇函数,且x>0时f'(x)>0,∴当x<0时,f′(x)<0,∴f(x)在(﹣∞,0)上单调递减,在(0,+∞)上单调递增,∵﹣f′(﹣x)=f′(x),∴f(﹣x)=f(x),∴f(x)是偶函数.∵log23>log32>0,∴f(﹣log23)=f(log23)>f(log32)>f(0).故选:C.【点评】本题考查了函数单调性与奇偶性的判断与应用,属于中档题.5.设不等式组表示的平面区域为M,若直线y=kx经过区域M内的点,则实数k的取值范围为()A. B.C. D.【分析】画出不等式组对应的可行域,由于函数y=kx的图象是过点O(0,0),斜率为k的直线l,故由图即可得出其范围.【解答】解:由不等式组,作出可行域如图,如图.因为函数y=kx的图象是过点O(0,0),且斜率为k的直线l,由图知,当直线l过点A(1,2)时,k取最大值:2,当直线l过点B(2,1)时,k取最小值:,故实数k的取值范围是[,2].故选:C.【点评】本题考查简单线性规划,利用线性规划的知识用图象法求出斜率的最大值与最小值.这是一道灵活的线性规划问题,还考查了数形结合的思想,属中档题.6.平面内直角三角形两直角边长分别为a,b,则斜边长为,直角顶点到斜边的距离为,空间中三棱锥的三条侧棱两两垂直,三个侧面的面积分别为S1,S2,S3,类比推理可得底面积为,则三棱锥顶点到底面的距离为()A.B.C.D.【分析】三棱锥P﹣ABC,PA,PB,PC两两垂直,P在底面的射影为H,设PA=a,PB=b,PC=c,运用三棱锥的体积公式和等积法,计算可得所求距离.【解答】解:如图三棱锥P﹣ABC,PA,PB,PC两两垂直,P在底面的射影为H,设PA=a,PB=b,PC=c,可得S1=ab,S2=bc,S3=ca,可得abc=2,由题意可得底面积为,由等积法可得×abc=PH•,可得PH==,故选:C.【点评】本题考查类比推理的应用,注意平面与空间的区别和联系,考查等积法的运用,属于中档题.7.已知圆台和正三棱锥的组合体的正视图和俯视图如图所示,图中网格是单位正方形,那么组合体的侧视图的面积为()A.6+B.C.D.8【分析】几何体为圆台和三棱锥的组合体,根据三视图的对应关系计算侧视图面积.【解答】解:由正视图和俯视图可知几何体为下部为圆台,上部为三棱锥,其中圆台的上下底面半径分别为1,2,高为2,三棱锥的高为2,底面为等腰三角形,由俯视图可知底面等腰三角形底边的高为,故侧视图下部分为上下底分别为2,4,高为2的梯形,上部分为底边为,高为2的三角形,∴侧视图的面积为×(2+4)×2+=.故选:B.【点评】本题考查了简单组合体的结构特征与三视图,属于中档题.8.执行如图程序框图,则输出的n等于()A.1 B.2 C.3 D.4【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量n的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:模拟程序的运行,可得n=0,x=,a=﹣sin,不满足条件a=,执行循环体,n=1,x=π,a=sinπ=0,不满足条件a=,执行循环体,n=2,x=,a=sin=,不满足条件a=,执行循环体,n=3,x=,a=sin=,满足条件a=,退出循环,输出n的值为3.故选:C.【点评】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.9.函数f(x)=(﹣π≤x≤π)的图象大致为()A.B. C.D.【分析】利用函数的奇偶性排除选项B,通过特殊点的位置排除选项D,利用特殊值的大小,判断选项即可.【解答】解:函数是奇函数,排除选项B;x=时,y=>0,排除选项D,x=时,y=,∵>,所以排除选项C.故选:A.【点评】本题考查函数的图象的判断,函数的奇偶性以及特殊点的位置,是判断函数的图象的常用方法.10.已知具有线性相关的五个样本点A1(0,0),A2(2,2),A3(3,2),A4(4,2),A5(6,4),用最小二乘法得到回归直线方程l1:y=bx+a,过点A1,A2的直线方程l2:y=mx+n,那么下列4个命题中,①m>b,a>n;②直线l1过点A3;③④.(参考公式,)正确命题的个数有()A.1个 B.2个 C.3个 D.4个【分析】首先求得a,b,m,n的值,然后结合所给的数据验证所给的算式是否成立即可.【解答】解:由题意可得:,则:,线性回归方程l1为:,直线l2的方程为:y=x,故:b=0.6,a=0.2,m=1,n=0,说法①正确;3×0.6+0.2=2,则直线l1过A3,说法②正确;,,说法③错误;,,说法④错误;综上可得:正确命题的个数有2个.故选:B.【点评】本题考查线性回归方程及其应用,重点考查学生对基础概念的理解和计算能力,属于中等题.11.设函数,若f(x)的最大值不超过1,则实数a 的取值范围为()A.B.C.D.【分析】讨论x<a+1时,x≥a+1时,由指数函数、绝对值函数的单调性,可得最大值,解不等式即可得到所求范围.【解答】解:当x<a+1时,f(x)=()|x﹣a|在(﹣∞,a)递增,[a,a+1)递减,可得x=a处取得最大值,且为1;当x≥a+1时,f(x)=﹣a﹣|x+1|,当a+1≥﹣1,即a≥﹣2时,f(x)递减,可得﹣a﹣|a+2|≤1,解得a≥﹣;当a+1<﹣1,即a<﹣2时,f(x)在x=﹣1处取得最大值,且为﹣a≤1,则a∈∅.综上可得a的范围是[﹣,+∞).故选:A.【点评】本题考查分段函数的最值的求法,注意运用分类讨论思想方法,以及指数函数和绝对值函数的单调性,考查运算能力,属于中档题.12.已知椭圆,O为坐标原点,A,B是椭圆上两点,OA,OB的斜率存在并分别记为k OA、k OB,且,则的最小值为()A.B.C.D.【分析】设椭圆的参数方程,根据直线的斜率公式,求得α=+β,利用两点之间的距离公式,求得|OA|2+|OB|2=36,根据基本不等式求得即可求得的最小值.【解答】解:设A(2cosα,2sinα),B(2cosβ,2sinβ),α∈[0,2π),β∈[0,2π),由k OA•k OB==﹣,整理得:cosαsinβ+sinαsinβ=0,即cos (α﹣β)=0,则α﹣β=,α=+β,则A(2cos(+β),2sin(+β)),即A(﹣2sinβ,2cosβ),∴|OA|2=24sin2β+12cos2β=12(1+sin2β),|OB|2=12(1+cos2β),则|OA|2+|OB|2=36,|OA|•|OB|≤=18,当且仅当|OA|=|OB|,即sinβ=±,β=或β=,≥≥=,当且仅当|OA|=|OB|,即sinβ=±,β=或β=,综上可知:的最小值,故选:C.【点评】本题考查椭圆的参数方程,直线的斜率公式,基本不等式的应用,考查转化思想,属于难题.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.展开式中的常数项为4.【分析】分别求出(x+2)3的展开式中含x的项及常数项,再由多项式乘多项式求解.【解答】解:(x+2)3的通项公式为=.取3﹣r=1,得r=2.∴(x+2)3的展开式中含x的项为12x,取3﹣r=0,得r=3.∴(x+2)3的展开式中常数项为8,∴展开式中的常数项为12﹣8=4.故答案为:4.【点评】本题考查二项式系数的性质,关键是熟记二项展开式的通项,是基础题.14.平面向量,,若有,则实数m=±2.【分析】根据平面向量的模长公式与数乘向量,列方程求出m的值.【解答】解:向量,,若,则(2﹣)•(5,2m)=,∴2﹣=0,化简得m2=4,解得m=±2.故答案为:±2.【点评】本题考查了平面向量的模长公式与数乘向量应用问题,是基础题.15.在圆x2+y2=4上任取一点,则该点到直线x+y﹣2=0的距离d∈[0,1]的概率为.【分析】由题意画出图形,由弧长公式求出在圆x2+y2=4上任取一点,该点到直线x+y﹣2=0的距离d∈[0,1]的弧的长度,再由测度比为长度比得答案.【解答】解:如图,直线x+y﹣2=0与圆x2+y2=4相切于D,且OD=2,作与直线x+y﹣2=0平行的直线交圆于AB,由O到直线AB的距离OC=1,半径OA=2,可得,∴劣弧的长度为,而圆的周长为4π,∴在圆x2+y2=4上任取一点,则该点到直线x+y﹣2=0的距离d∈[0,1]的概率为.故答案为:.【点评】本题考查几何概型,考查直线与圆位置关系的应用,体现了数形结合的解题思想方法,是中档题.16.已知台风中心位于城市A东偏北α(α为锐角)度的150公里处,以v公里/小时沿正西方向快速移动,2.5小时后到达距城市A西偏北β(β为锐角)度的200公里处,若,则v=100.【分析】如图所示:AB=150,AC=200,B=α,C=β,根据解三角形可得3sinα=4sinβ,①,又cosα=cosβ,②,求出cosβ=,cosα=,求出BC的距离,即可求出速度【解答】解:如图所示:AB=150,AC=200,B=α,C=β,在Rt△ADB中,AD=ABsinα=150sinα,BD=ABcosα在Rt△ADC中,AD=ACsinα=200sinβ,CD=ACcosβ∴150sinα=200sinβ,即3sinα=4sinβ,①,又cosα=cosβ,②,由①②解得sinβ=,cosβ=,sinα=,cosα=∴BD=ABcosα=150×=90,CD=ACcosβ=200×=160,∴BC=BD+CD=90+160=250,∴v==100,故答案为:100.【点评】本题考查了解三角形的问题,以及三角函数的关系,属于基础题三、解答题(本大题共7小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12.00分)已知等比数列{a n}的前n项和为S n,满足S4=2a4﹣1,S3=2a3﹣1.(1)求{a n}的通项公式;(2)记b n=log2(a n•a n+1),数列{b n}的前n项和为T n,求证:.【分析】(1)设{a n}的公比为q,由S4﹣S3=a4得,2a4﹣2a3=a4,从而q=2.由S3=2a3﹣1,求出a1=1.由此{a n}的通项公式.(2)由,得,由.【解答】解:(1)设{a n}的公比为q,由S4﹣S3=a4得,2a4﹣2a3=a4,所以,所以q=2.又因为S3=2a3﹣1,所以a1+2a1+4a1=8a1﹣1,所以a1=1.所以.证明:(2)由(1)知,所以,所以=.【点评】本题主要考查数列通项公式和前n项和的求解,利用裂项求和法是解决本题的关键.18.(12.00分)某校为了推动数学教学方法的改革,学校将高一年级部分生源情况基本相同的学生分成甲、乙两个班,每班各40人,甲班按原有模式教学,乙班实施教学方法改革.经过一年的教学实验,将甲、乙两个班学生一年来的数学成绩取平均数,两个班学生的平均成绩均在[50,100],按照区间[50,60),[60,70),[70,80),[80,90),[90,100]进行分组,绘制成如下频率分布直方图,规定不低于80分(百分制)为优秀.(1)完成表格,并判断是否有90%以上的把握认为“数学成绩优秀与教学改革有关”;甲班乙班总计大于等于80分的人数小于80分的人数总计(2)从乙班[70,80),[80,90),[90,100]分数段中,按分层抽样随机抽取7名学生座谈,从中选三位同学发言,记来自[80,90)发言的人数为随机变量X,求X的分布列和期望.附:K2=,P(K2≥k0)0.100.050.025k0 2.706 3.841 5.024【分析】(1)依题意求出K2≈3.333>2.706,从而有90%以上的把握认为“数学成绩优秀与教学改革有关”.(2)从乙班[70,80),[80,90),[90,100]分数段中抽人数分别为2,3,2,依题意随机变量X的所有可能取值为0,1,2,3,分别求出相应的概率,由此能求出X的分布列和数学期望.【解答】解:(1)依题意得,有90%以上的把握认为“数学成绩优秀与教学改革有关”.(2)从乙班[70,80),[80,90),[90,100]分数段中抽人数分别为2,3,2,依题意随机变量X的所有可能取值为0,1,2,3,,,∴X的分布列为:X0123P∴.【点评】本题考查独立性检验的应用,考查离散型随机变量的分布列、数学期望等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.19.(12.00分)如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,ABCD为直角梯形,AD∥BC,AD⊥AB,AB=BC=AP=AD=3,AC∩BD=O,过O点作平面α平行于平面PAB,平面α与棱BC,AD,PD,PC分别相交于点E,F,G,H.(1)求GH的长度;(2)求二面角B﹣FH﹣E的余弦值.【分析】(1)法一:推导出EF∥AB,EH∥BP,FG∥AP,从而△BOC∽△DOA,且,连接HO,则有HO∥PA,过点H作HN∥EF交FG于N,由此能求出GH.法二:由面面平行的性质定理,得EF∥AB,EH∥BP,FG∥AP,作HN∥BC,HN ∩PB=N,GM∥AD,HN∥GM,HN=GM,故四边形GMNH为矩形,即GH=MN,由此能求出GH.(2)以A为原点,AB为x轴,AD为y轴,AP为z轴,建立如图所示空间直角坐标系,利用向量法能求出二面角B﹣FH﹣E的余弦值.【解答】解:(1)解法一:因为α∥平面PAB,平面α∩平面ABCD=EF,O∈EF,平面PAB∩平面ABCD=AB,所以EF∥AB,同理EH∥BP,FG∥AP,因为BC∥AD,AD=6,BC=3,所以△BOC∽△DOA,且,所以,,同理,连接HO,则有HO∥PA,所以HO⊥EO,HO=1,所以,同理,,过点H作HN∥EF交FG于N,则解法二:因为α∥平面PAB,平面α∩平面ABCD=EF,O∈EF,平面PAB∩平面ABCD=AB,根据面面平行的性质定理,所以EF∥AB,同理EH∥BP,FG∥AP,因为BC∥AD,AD=2BC,所以△BOC∽△DOA,且,又因为△COE∽△AOF,AF=BE,所以BE=2EC,同理2AF=FD,2PG=GD,如图:作HN∥BC,HN∩PB=N,GM∥AD,GM∩PA=M,所以HN∥GM,HN=GM,故四边形GMNH为矩形,即GH=MN,在△PMN中,所以,所以.解:(2)以A为原点,AB为x轴,AD为y轴,AP为z轴,建立如图所示空间直角坐标系,B(3,0,0),F(0,2,0),E(3,2,0),H(2,2,1),,设平面BFH的法向量为,,令z=﹣2,得,因为平面EFGH∥平面PAB,所以平面EFGH的法向量,,故二面角B﹣FH﹣E的余弦值为.【点评】本题考查线段长的求法,考查二面角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.20.(12.00分)已知抛物线C:y2=2px(p>0)的焦点为F,准线为l,过焦点F 的直线交C于A(x1,y1),B(x2,y2)两点,y1y2=﹣4.(1)求抛物线方程;(2)点B在准线l上的投影为E,D是C上一点,且AD⊥EF,求△ABD面积的最小值及此时直线AD的方程.【分析】(1)根据题意,分直线的斜率是否存在两种情况讨论,求出p的值,综合即可得答案;(2)根据题意,设D(x0,y0),,分析可得E、A的坐标,进而可得直线AD的方程,结合三角形面积公式可以用t表示△ABD面积,利用基本不等式的性质分析可得答案.【解答】解:(Ⅰ)依题意,当直线AB的斜率不存在时,|AB|=﹣p2=﹣4,p=2当直线AB的斜率存在时,设由,化简得由y1y2=﹣4得p2=4,p=2,所以抛物线方程y2=4x.(Ⅱ)设D(x0,y0),,则E(﹣1,t),又由y1y2=﹣4,可得因为,AD⊥EF,所以,故直线由,化简得,所以.所以设点B到直线AD的距离为d,则所以,当且仅当t4=16,即t=±2,当t=2时,AD:x﹣y﹣3=0,当t=﹣2时,AD:x+y﹣3=0.【点评】本题考查抛物线的几何性质,涉及直线与抛物线的位置关系,(1)中注意直线的斜率是否存在.21.(12.00分)已知函数f(x)=ln(ax)+bx在点(1,f(1))处的切线是y=0.(1)求函数f(x)的极值;(2)当恒成立时,求实数m的取值范围(e为自然对数的底数).【分析】(Ⅰ)求出,由导数的几何意义得f(x)=lnx﹣x+1(x∈(0,+∞)),由此能示出f(x)的极值.(Ⅱ)当(m<0)在x∈(0,+∞)恒成立时,(m<0)在x∈(0,+∞)恒成立,法一:设,则,,g (x)在(0,1)上单调递减,在(1,+∞)上单调递增,;.g(x),h(x)均在x=1处取得最值,要使g(x)≥h(x)恒成立,只需g(x)min≥h(x)max,由此能求出实数m的取值范围.法二:设(x∈(0,+∞)),则,,由此能求出实数m的取值范围.【解答】解:(Ⅰ)因为f(x)=ln(ax)+bx,所以,因为点(1,f(1))处的切线是y=0,所以f'(1)=1+b=0,且f(1)=lna+b=0所以a=e,b=﹣1,即f(x)=lnx﹣x+1(x∈(0,+∞))所以,所以在(0,1)上递增,在(1,+∞)上递减所以f(x)的极大值为f(1)=lne﹣1=0,无极小值.(Ⅱ)当(m<0)在x∈(0,+∞)恒成立时,由(Ⅰ)f(x)=lnx﹣x+1,即(m<0)在x∈(0,+∞)恒成立,解法一:设,则,,又因为m<0,所以当0<x<1时,g'(x)<0,h'(x)>0;当x>1时,g'(x)>0,h'(x)<0.所以g(x)在(0,1)上单调递减,在(1,+∞)上单调递增,;h(x)在(0,1)上单调递增,在(1,+∞)上单调递减,.所以g(x),h(x)均在x=1处取得最值,所以要使g(x)≥h(x)恒成立,只需g(x)min≥h(x)max,即,解得m≥1﹣e,又m<0,所以实数m的取值范围是[1﹣e,0).解法二:设(x∈(0,+∞)),则当0<x<1时,﹣lnx>0,x﹣1<0,则,,即g'(x)>0当x>1时,﹣lnx<0,x﹣1>0,则,,即g'(x)<0所以g(x)在x∈(0,1)上单调递增,在x∈(1,+∞)上单调递减.所以,即,又m<0所以实数m的取值范围是[1﹣e,0).【点评】本题考查函数的极值的求法,考查实数的取值范围的求法,考查函数性质、导数性质、导数的几何意义等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.22.(10.00分)在平面直角坐标系xOy中,曲线C的参数方程为(θ为参数),以坐标原点为极点,x轴非负半轴为极轴建立极坐标系.(1)求C的极坐标方程;(2)若直线l1,l2的极坐标方程分别为,,设直线l1,l2与曲线C的交点为O,M,N,求△OMN的面积.【分析】(1)直接利用转换关系把参数方程和极坐标方程与直角坐标方程进行转化.(2)利用方程组求出极径的长,最后求出三角形的面积.【解答】解:(1)由参数方程,得普通方程(x﹣2)2+y2=4,所以极坐标方程ρ2cos2θ+ρ2sin2θ﹣4ρsinθ=0,即ρ=4sinθ.(2)直线与曲线C的交点为O,M,得,又直线与曲线C的交点为O,N,得,且,所以.【点评】本题考查的知识要点:参数方程和极坐标方程与直角坐标方程的转化,极径的应用.23.已知f(x)=|2x+3a2|.(1)当a=0时,求不等式f(x)+|x﹣2|≥3的解集;(2)对于任意实数x,不等式|2x+1|﹣f(x)<2a成立,求实数a的取值范围.【分析】(1)当a=0时,不等式f(x)+|x﹣2|≥3变成|2x|+|x﹣2|≥3,讨论x 取值,去绝对值号即可解出该不等式;(2)由不等式|2x+1|﹣f(x)<2a即可得出|2x+1|﹣|2x+3a2|<2a,而|2x+1|﹣|2x+3a2|≤|3a2﹣1|,从而得到不等式|3a2﹣1|<2a,解该不等式即可得出实数a的取值范围.【解答】解:(1)当a=0时,f(x)+|x﹣2|=|2x|+|x﹣2|≥3;∴,得;,得1≤x≤2;,得x>2;∴f(x)+|x﹣2|≥2的解集为;(2)对于任意实数x,不等式|2x+1|﹣f(x)<2a成立,即|2x+1|﹣|2x+3a2|<2a恒成立;又因为|2x+1|﹣|2x+3a2|≤|2x+1﹣2x﹣3a2|=|3a2﹣1|;所以原不等式恒成立只需|3a2﹣1|<2a;当a<0时,无解;当时,1﹣3a2<2a,解得;当时,3a2﹣1<2a,解得;所以实数a的取值范围是.【点评】考查含绝对值不等式的解法:讨论x去绝对值号,以及不等式|x+a|﹣|x+b|≤|a﹣b|的应用.。
江西省南昌市2018届高三第三次模拟考试数学(理)试卷及答案
2018届江西省南昌市高三第三次理科数学模拟试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}3,2a M =,{},N a b =,若{}1M N ⋂=,则M N ⋃=( ) A .{}1,2,3 B .{}0,2,3 C .{}0,1,2 D .{}0,1,32.已知a R ∈,i 是虚数单位,若z ai =,4z z ⋅=,则a 为( ) A .1或 1- B .1 C .1- D .不存在的实数3.“3m >x 的方程sin x m =有解”的( )A .充分不必要条件B .必要不充分条件C .充要条件 D.既不充分也不必要条件4. 下列有关统计知识的四个命题正确的是( )A .衡量两变量之间线性相关关系的相关系数r 越接近1,说明两变量间线性关系越密切B .在回归分析中,可以用卡方2x 来刻画回归的效果,2x 越大,模型的拟合效果越差 C.线性回归方程对应的直线y bx a =+至少经过其样本数据点中的一个点 D .线性回归方程0.51y x =+中,变量x 每增加一个单位时,变量y 平均增加1个单位5.在平面直角坐标系中,已知双曲线C 与双曲线2213y x -=有公共的渐近线,且经过点(P -,则双曲线C 的焦距为( )A ..6.执行如图所示的程序框图,若输出的57S =,则判断框内应填入的条件是( )A .4k >B .5k > C.6k > D .7k >7.已知13241(),b log 3,c log 72a ===,则,,abc 的大小关系为( )A .a b c <<B .b a c << C.c a b << D .a c b <<8.某几何的三视图如图所示,其中主视图由矩形和等腰直角三角形组成,左视图由半个圆和等腰直角三角形组成,俯视图的实线部分为正方形,则该几何体的表面积为( )A .342π+B .4(21)π+ C.4(2)π+ D .4(1)π+ 9.将函数()2sin(2)6f x x π=-的图象向左平移6π个单位,再向上平移1个单位,得到()g x 图象,若12()()6g x g x +=,且[]12,2,2x x ππ∈-,则12x x -的最大值为( ) A .π B .2π C.3π D .4π10.为培养学生分组合作能力,现将某班分成,,A B C 三个小组,甲、乙、丙三人分到不同组,某次数学建模考试中三人成绩情况如下:在B 组中的那位的成绩与甲不一样,在A 组中的那位的成绩比丙低,在B 组中的那位成绩比乙低.若甲、乙、丙三人按数学建模考试成绩由高到低排序,则排序正确的是( )A .甲、丙、乙B .乙、甲、丙 C. 乙、丙、甲 D .丙、乙、甲11.“在两条相交直线的一对对顶角内,到这两条直线的距离的积为正常数的点的轨迹是双曲线,其中这两条直线称之为双曲线的渐近线”.已知对勾函数4y x x=+是双曲线,它到两渐近线距离的积是根据此判定定理,可推断此双曲线的渐近线方程是( )A .0x =与y x =B .0x =与2y x = C.0x =与0y = D .y x =与2y x = 12.已知函数21()ln 2f x a x x =+,对任意不等实数12,(0,)x x ∈+∞,不等式1212()()3f x a f x a x x +-+>-恒成立,则实数a 的取值范围为( )A .[)2,+∞B .(2,)+∞ C.9,4⎡⎫+∞⎪⎢⎣⎭D .9(,)4+∞第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知函数()(1)()f x x x b =-+为偶函数,则(3)0f x -<的解集为 .14.已知6260126(2)(1)(1)...(1)x a a x a x a x +=+++++++,则3a .15.已知,m n u r r是两个非零向量,且1,23m m n =+=u r u r r ,则m n n ++u r r r 的最大值为 .16.如图,直线AB 与单位圆相切于点O ,射线OP 从OA 出发,绕着点O 逆时针旋转,在旋转分入过程中,记(0)AOP x x π∠=<<,OP 经过的单位圆O 内区域(阴影部分)的面积为S ,记()S f x =,对函数()f x 有如下四个判断:①当34x π=时,3142S π=+;②(0,)x π∈时,()f x 为减函数; ③对任意(0,)2x π∈,都有()()22f x f x πππ-++=;④对任意(0,)2x π∈,都有()()22f x f x ππ+=+ 其中判断正确的序号是 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知数列{}n a 的各项均为正数,且2*2(21)0,n n a na n n N --+=∈.(1)求数列{}n a 的通项公式;(2)若1(1)n n n b a -=-,求数列{}n b 的前n 项和n T .18. 如图,多面体ABCDEF 中,ABCD 为正方形,2,3,5AB AE DE ===,,二面角E AD C --的余弦值为55,且//EF BD . (1)证明:平面ABCD ⊥平面EDC ;(2)求平面AEF 与平面EDC 所成锐二面角的余弦值.19.质检部门对某工厂甲、乙两个车间生产的12个零件质量进行检测.甲、乙两个车间的零件质量(单位:克)分布的茎叶图如图所示.零件质量不超过20克的为合格.(1)质检部门从甲车间8个零件中随机抽取4件进行检测,若至少2件合格,检测即可通过,若至少3件合格,检测即为良好,求甲车间在这次检测通过的条件下,获得检测良好的概率;(2)若从甲、乙两车间12个零件中随机抽取2个零件,用X 表示乙车间的零件个数,求X 的分布列与数学期望.20.已知椭圆2222:1(0)x y C a b a b+=>>33(1,A 在椭圆C 上. (1)求椭圆C 的方程;(2)已知不经过A 点的直线3:2l y x t =+与椭圆C 交于,P Q 两点,P 关于原点对称点为R (与点A 不重合),直线,AQ AR 与y 轴分别交于两点,M N ,证明: AM AN = 21.已知函数2()()()xf x ax x a e a R -=++∈. (1)若0a ≥,函数()f x 的极大值为3e,求实数a 的值; (2)若对任意的0a ≤,()ln(1)f x b x ≤+在[)0,x ∈+∞上恒成立,求实数b 的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,曲线1C 的参数方程为:cos sin x y θθ=⎧⎨=⎩(θ为参数,[]0,θπ∈)将曲线1C 经过伸缩变换:''3x xy y=⎧⎪⎨=⎪⎩得到曲线2C .(1)以原点为极点,x 轴的正半轴为极轴建立坐标系,求2C 的极坐标方程; (2)若直线cos :sin x t l y t αα=⎧⎨=⎩(t 为参数)与1C ,2C 相交于,A B 两点,且21AB -,求α的值.23.选修4-5:不等式选讲 已知函数()1f x x =+.(1)求不等式()211f x x <+-的解集M ; 设,a b M ∈,证明:(ab)()()f f a f b >--试卷答案一、选择题1-5:DADAD 6-10:ADACC 11、12:AA二、填空题13.(2,4) 14.20①③三、解答题17.解:(1)由22(21)0n n a na n --+=得[](21)(1)0n n a n a -+⋅+=,所以21n a n =+或1n a =-,又因为数列{}n a 的各项均为正数,负值舍去所以*21,n a n n N =+∈.(2)因为11(1)(1)(21)n n n n b a n --=-⋅=-⋅+,所以13579...(1)(21)n n T n -=-+-+-⋅+ 由13579...(1)(21)n n T n -=-+-+-⋅+①1(1)3579...(1)(21)(1)(21)n n n T n n --=-+-++-⋅++-⋅+②由①-②得:1232119...(1)(1)(21)n nn T n -⎡⎤=--++---⋅+⎣⎦1111(1)322(1)(1)(21)2(1)(22)1(1)n n n n n n ---⎡⎤--⎣⎦=-=+---⋅+=+-+--∴11(1)(1)n n T n -=+-+18.解:(1)证明:∵2,3,5AB AE DE ===,由勾股定理得:ADDE ⊥ 又正方形ABCD 中AD DC ⊥,且DE DC D ⋂= ∴AD ⊥平面EDC ,又∵AD ⊂面ABCD , ∴平面ABCD ⊥平面EDC(2)由(1)知EDC ∠是二面角E AD C --的平面角 作OE CD ⊥于O ,则cos 1,2OD DE EDC OE =⋅∠==且由平面ABCD ⊥平面EDC ,平面ABCD ⋂平面EDC CD =,OE ⊂面EDC 所以,OE ⊥面ABCD取AB 中点M ,连结OM ,则OM CD ⊥,如图,建立空间直角坐标系,则(2,1,0)B(2,1,0)D(0,1,0)E(0,0,2)A --、、、 ∴(2,1,2),(2,2,0)AE BD =-=--u u u r u u u r 又//EF BD ,知EF 的一个方向向量(2,2,0)设面AEF 法向量(,,)n x y z =r ,则220220n AE x y z n DB x y ⎧⋅=-++=⎪⎨⋅=+=⎪⎩r u u u rr u u u r取2x =-,得(2,2,3)n =-r又面EDC 一个法向量为(1,0,0)m =u r :∴217cos ,17n m n m n m ⋅==-⋅r u rr u r r u r设平面AEF 与平面EDC 所成锐二面角为θ,则217cos cos ,n m θ==r u r19.解:(1)设事件A 表示“2件合格,2件不合格”;事件B 表示“3件合格,1件不合格”;事件C 表示“4件全合格”;事件D 表示“检测通过”;事件E 表示“检测良好”.∴223144444444488853()()()()70C C C C C PD P A P B P C C C C =++=++= ∴()()17()()()53P C P B PE D P D P D =+=.故所求概率为1753. (2)X 可能取值为0,1,22112848422212121214161(0),(1),(2)333311C C C C P X P X P X C C C =========分布列为所以,14()012=3333113E X =⨯+⨯+⨯20.解(1)c e a ==224,3(0)a m c m m ==>,则2b m = 所以2214x y m m +=,将点(1,A 代入得1m =,即所求椭圆方程为2214x y +=. (2)设1122(,),(,)P x yQ x y ,则11(,)R x y --,且121222,11ARAQy y k k x x -+==--- 由22142x y y x t ⎧+=⎪⎪⎨⎪=+⎪⎩,消去y化简得:2210x t ++-= ∴21212,1x x x x t +==-∴1212121212(1)(1)(222211(1)(1)AR AQy y y x x y k k x x x x --+-+--+=+=------1221211212())2(1)(1)x y x y y y x x x x ++--+=+-分子12212112))))x x t x t x x x x =++++-+-22112()1)()0x t x x t t =++=-+=即0AR AQ k k +=,又,M N 分别为直线,AQ AR 与y 轴焦点,得AMN ANM ∠=∠ 所以AM AN =得证.21.解(1)由题意,2'()(21)()xx f x ax eax x a e --=+-++2(12)1(1)(1)x xe ax a x a e x ax a --⎡⎤=-+-+-=--+-⎣⎦(i )当0a =时,'()(1)xf x e x -=--,令'()0f x >,得1x <;'()0f x <,得1x >;所以()f x 在(,1)-∞单调递增,(1,)+∞单调递减,所以()f x 的极大值为13(1)f e e=≠,不合题意. (ii )当0a >时,111a -<,令'()0f x >,得111x a -<<;'()0f x <,得11x a <-或1x >;所以()f x 在1(1,1)a -单调递增,1(,1),(1,)a-∞-+∞单调递减,所以()f x 的极大值为213(1)a f e e+==,得1a =.综上所述:1a =(2)令(]2()(1),,0x xg a e x a xe a --=++∈-∞,当[)0,x ∈+∞时,2(1)0xe x -+≥,则()ln(1)g a b x ≤+对(],0a ∀∈-∞恒成立等价于()(0)ln(1)g a g b x ≤≤+, 即ln(1)xxeb x -≤+,对[)0,x ∈+∞恒成立.(i )当0b ≤时,(0,),bln(x 1)0,xe0xx -∀∈+∞+<>此时ln(1)x xe b x ->+,不合题意.(ii )当0b >时,令[)()ln(1),0,xh x b x xe x -=+-∈+∞则21'()()1(1)x x x b be x h x e xe x x --+-=--=++,其中[)(1)0,0,xx e x +>∀∈+∞令[)2()1,0,xp x be x x =+-∈+∞,则()p x 在区间[)0,+∞上单调递增,①1b ≥时,()(0)10p x p b ≥=-≥,所以对[)0,x ∀∈+∞,'()0h x ≥,从而()h x 在[)0,+∞上单调递增,所以对[)0,x ∈+∞,()(0)0h x h ≥=,即不等式ln(1)xb x xe-+≥在[)0,+∞上恒成立.②01b <<时,由(0)10,(1)0p b p be =-<=>及(0)p 在区间[)0,+∞上单调递增, 所以存在唯一的0(0,1)x ∈使得0()0p x =,且0(0,)x x ∈时,0()0p x < 从而0(0,)x x ∈时,'()0h x <,所以()h x 在区间0(0,)x 上单调递减, 则0(0,)x x ∈时,()(0)0h x h <=,即ln(1)xb x xe -+<,不符合题意.综上所述,1b ≥.22.解:(1)1C 的普通方程为221(0)x y y +=≥,把','x x y ==代入上述方程得,'2'2'1(3)3y x y +=≥, ∴2C 的方程为221(0)3y x y +=≥,令cos ,sin x y ρθρθ== 所以2C 的极坐标方程为[]222233(0,)3cos sin 2cos 1ρθπθθθ==∈++;(2)在(1)中建立的极坐标系中,直线l 的极坐标方程为()R θαρ=∈,由1ρθα=⎧⎨=⎩,得1A ρ=,由2232cos 1ρθθα⎧=⎪+⎨⎪=⎩,得B ρ=,11=,∴1cos 2α=±,而[]0,απ∈,∴3πα=或23π. 23.解:(1)(i )当1x ≤-时,原不等式可化为122x x --<--,解得1x <-,此时1x <-; (ii )当112x -<<-时,原不等式可化为122x x +<--,解得1x <-,此时无解; (iii )当12x ≥-时,原不等式可化为12x x +<,解得1x >,此时1x >; 综上,{1M x x =<-或}1x >(2)因为()()(ab)11111f ab ab b b ab b b b a b =+=++-≥+--=+-- 因为,a b M ∈,所以1,10b a >+>, 所以(ab)11f a b >+--,即(ab)()()f f a f b >--。
2018届江西省南昌市高三上学期摸底数学(理)试题
2018届江西省南昌市高三上学期摸底数学(理)试题一、单选题1.已知复数z 满足()1i 2z +=,则复数z 的虚部为 A. 1 B. 1- C. i D. i - 【答案】B 【解析】设,,z a bi a b R =+∈() ,由()1i 22z z i z +=⇒=--()2a bi i a bi ⇒+=--() ,2a bi b a i ⇒+=-+-(),{ 2a b b a =-⇒=-1b ⇒=-,故选B.2.设集合{}|21A x x =-≤≤,(){}22|log 23B x y x x ==--,则A B ⋂=A. [)2,1-B. (]1,1-C. [)2,1--D. [)1,1- 【答案】C【解析】()()()22210y=log 2323130{30x x x x x x x x +>--⇒--=+->⇒->或10{30x x +<-<{}[)|132,1B x x x A B ⇒=-⇒⋂=--或 ,故选C.3.已知1sin 3θ=,,2πθπ⎛⎫∈ ⎪⎝⎭,则tan θ= A. 2-B.C. 4-D. 8- 【答案】C【解析】∵1sin 3θ=,,2πθπ⎛⎫∈ ⎪⎝⎭,∴cos 3θ=-,则1sin tan cos 43θθθ===-,故选C. 4.执行如图所示的程序框图,输出的n 为A. 1B. 2C. 3D. 4 【答案】C【解析】当1n =时,()1f x =,满足()()f x f x =-,不满足()0f x =有解,故2n =;当2n =时,()2f x x =,不满足()()f x f x =-,故3n =;当3n =时,()23f x x =,满足()()f x f x =-,满足()0f x =有解,故输出的n 为3,故选C.点睛:本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题;由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量n 的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.5.设变量,x y 满足约束条件10{220 220x y x y x y +-≥-+≥--≤,则32z x y =-的最大值为 A. 2- B. 2 C. 3 D. 4 【答案】C 【解析】解:根据题意画出上图, ABC ∆区域为满足不等式组的所有点的集合.由32z x y =-⇒3122y x z =-,平移直线3122y x z =-,由图象可知当直线3122y x z =-经过点A 时,直线3122y x z =-的截距最小,此时z 最大.由101{ { 2200x y x x y y +-⇒--====,即10A (,),将10A (,)的坐标代入323z x y z =-⇒=,即32z x y =-的最大值为3.故选C..6.已知m ,n 为两个非零向量,则“m 与n 共线”是“m n m n ⋅=⋅”的A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】D【解析】当m 与n夹角为180︒时,满足向量共线,但m n m n ⋅=-⋅ ,m n m n ⋅=⋅,|此时m n m n ⋅=⋅ 不成立,即充分性不成立,若m n m n ⋅=⋅,则c o s c o s m n m n m n m n m n ⋅=⋅⋅=⋅⋅ ,则cos cos m n m n ⋅=⋅,则cos 0m n ⋅≥ ,即090m n ≤⋅≤,此时m与n不一定共线,即必要性不成立,则“m与n共线”是“m n m n ⋅=⋅”的既不充分也不必要条件,故选D.7.如图,网格纸上小正方形的边长为1,粗实线及粗虚线画出的是某多面体的三视图,则该多面体的体积为A. 43B. 23C. 83D. 4【答案】B【解析】由已知可得该几何体为红色部分的三棱锥,故其体积为112212323V =⨯⨯⨯⨯=,故选B.8.函数sin 26x y π⎛⎫=+ ⎪⎝⎭的图像可以由函数cos 2x y =的图像经过A. 向右平移3π个单位长度得到 B. 向右平移23π个单位长度得到C. 向左平移3π个单位长度得到 D. 向左平移23π个单位长度得到【答案】B【解析】把函数cossin 222x x y π⎛⎫==+ ⎪⎝⎭的图象向右平移23π个单位长度,可得函数sin sin 23226x x y πππ⎛⎫⎛⎫=-+=+ ⎪ ⎪⎝⎭⎝⎭的图象,故选B.9.某校毕业典礼由6个节目组成,考虑整体效果,对节目演出顺序有如下要求:节目甲必须排在前三位,且节目丙、丁必须排在一起,则该校毕业典礼节目演出顺序的编排方案共有A. 120种B. 156种C. 188种D. 240种 【答案】A 【解析】根据题意,由于节目甲必须排在前三位,分3种情况讨论:①、甲排在第一位,节目丙、丁必须排在一起,则乙丙相邻的位置有4个,考虑两者的顺序,有2种情况,将剩下的3个节目全排列,安排在其他三个位置,有336A =种安排方法,则此时有42648⨯⨯=种编排方法;②、甲排在第二位,节目丙、丁必须排在一起,则乙丙相邻的位置有3个,考虑两者的顺序,有2种情况,将剩下的3个节目全排列,安排在其他三个位置,有336A =种安排方法,则此时有32636⨯⨯=种编排方法;③、甲排在第三位,节目丙、丁必须排在一起,则乙丙相邻的位置有3个,考虑两者的顺序,有2种情况,将剩下的3个节目全排列,安排在其他三个位置,有336A =种安排方法,则此时有32636⨯⨯=种编排方法;则符合题意要求的编排方法有363648120++=种;故选A .点睛:本题考查排列、组合的应用,注意题目限制条件比较多,需要优先分析受到限制的元素;根据题意,由于节目甲必须排在前三位,对甲的位置分三种情况讨论,依次分析乙丙的位置以及其他三个节目的安排方法,由分步计数原理可得每种情况的编排方案数目,由加法原理计算可得答案.10.已知三棱锥P ABC -的所有顶点都在球O 的球面上,ABC ∆满足,90A B A C B =∠= ,PA 为球O 的直径且4PA =,则点P 到底面ABC 的距离为A.B. C. D. 【答案】B【解析】∵三棱锥P ABC -的所有顶点都在球O 的球面上,PA 为球O 的直径且4PA =,∴球心O 是PA 的中点,球半径122R OC PA ===,过O 作OD ⊥平面ABC ,垂足是D ,∵ABC 满足AB =90ACB ∠= ,∴D 是AB 中点,且AD BD CD ===OD ==P 到底面ABC的距离为2d OD ==B .11.已知动直线l 与圆22:4O x y +=相交于,A B 两点,且满足2AB =,点C 为直线l 上一点,且满足52CB CA =,若M 是线段AB 的中点,则OC OM ⋅ 的值为A. 3B. C. 2 D. 3- 【答案】A【解析】动直线l 与圆O :224x y +=相交于A ,B 两点,且满足2AB =,则OAB为等边三角形,于是可设动直线l为2y =+,根据题意可得()2,0B -,(A -,∵M 是线段AB 的中点,∴32M ⎛- ⎝⎭,设(),C x y ,∵52CB CA = ,∴()()52,12x y x y ---=--,∴())5212{ 52x x y y--=---=,解得13{x y =-=,∴13C ⎛- ⎝⎭,∴131533222OC OM ⎛⎛⋅=-⋅-=+= ⎝⎭⎝⎭,故选A .12.已知双曲线2222:1(0,0)x y C a b a b-=>>的左右焦点分别为12,F F ,P 为双曲线C上第二象限内一点,若直线by x a=恰为线段2PF 的垂直平分线,则双曲线C 的离心率为 ( )A.B. C. D. 【答案】C【解析】设()2,0F c ,渐近线方程为b y x a =,对称点为(),P m n ,即有n a m c b=--,且()1122b m c n a +⋅=⋅,解得222,a b abm n c c -==,将222,a b ab P c c ⎛⎫- ⎪⎝⎭,即2222,a c ab c c ⎛⎫- ⎪⎝⎭,代入双曲线的方程可得()222222222241a c a b a c c b--=,化简可得2241c a-=,即有e 2=5,解得e =C . 点睛:本题考查双曲线的离心率的求法,注意运用中点坐标公式和两直线垂直的条件:斜率之积为1﹣,以及点满足双曲线的方程,考查化简整理的运算能力,属于中档题;设出2F 的坐标,渐近线方程为by x a=,对称点为(),P m n ,运用中点坐标公式和两直线垂直的条件:斜率之积为1﹣,求出对称点的坐标,代入双曲线的方程,由离心率公式计算即可得到所求值.二、填空题13.高三(2)班现有64名学生,随机编号为0,1,2, ,63,依编号顺序平均分成8组,组号依次为1,2,3, ,8.现用系统抽样方法抽取一个容量为8的样本,若在第一组中随机抽取的号码为5,则在第6组中抽取的号码为________.【答案】45【解析】第6组中抽取的号码为58545⨯+= .14.在二项式的展开式中,含的项系数等于 【答案】-5【解析】略15.已知ABC ∆的面积为,,A B C 所对的边长分别为,,a b c ,3A π=,则a 的最小值为_________.【答案】【解析】由已知得11sin 22ABC S bc A bc ∆===8bc =;根据余弦定理得22212cos 2281688;2a b c bc A bc a =+-≥-⨯⨯=-=∴≥【点睛】本题考查三角形的面积公式、正余弦定理、基本不等式,涉及函数与方程思想、数形结合思想和转化化归思想,考查逻辑思维能力、等价转化能力、运算求解能力,具有一定的综合性,属于中档题型.首先由11sin 22ABC S bc A bc ∆===解得8bc =;根据余弦定理得22212cos 22816882a b c bc A bc a =+-≥-⨯⨯=-=≥,解得 ,故答案为16.已知函数()21,0,()={3,0ln x x f x x x x +>-+≤,若不等式()20f x mx -+≥恒成立,则实数m 的取值范围为__________.【答案】3⎡⎤--⎣⎦【解析】不等式即:()2mx f x ≤+恒成立,作出函数()2y f x =+的图象,则正比例函数y mx =恒在函数()2y f x =+的图象下方,考查函数:232y x x =+﹣经过坐标原点的切线,易求得切线的斜率为3k =--m的取值范围为3⎡⎤--⎣⎦,故答案为3⎡⎤--⎣⎦. 51()x x -3x三、解答题17.已知数列{}n a 的前n 项和122n n S +=-,记()*n n n b a S n N =∈. (1)求数列{}n a 的通项公式; (2)求数列{}n b 的前n 项和n T . 【答案】(1)2n n a =;(2)12244233n n ++⋅-+ 【解析】试题分析:(1)利用11,1{,2n n n S n a S S n -==-≥,同时验证1n =时也满足,可得通项公式;(2)利用分组求和及等比数列前n 项和公式可求得结果.试题解析:(1)∵122n n S +=-,∴当1n =时,∴1111222a S +==-=;当2n ≥时,11222n n n n n n a S S +-=-=-=,又12a =,∴2n n a =(2)由(1)知,1242n n n n n b a S +=⋅=⋅-,∴()()12231122444222n n n n T b b b +=+++=+++-+++ ()()1241441224242141233n nn n ++--=⨯-=⋅-+--. 点睛:解题中,在利用1n n n a S S -=-的同时一定要注意1n =和2n ≥两种情况,否则容易出错;常见的数列求和的方法有公式法即等差等比数列求和公式,分组求和类似于n n n c a b =+,其中{}n a 和{}n b 分别为特殊数列,裂项相消法类似于()11n a n n =+,错位相减法类似于n n n c a b =⋅,其中{}n a 为等差数列,{}n b 为等比数列等.18.微信已成为人们常用的社交软件,“微信运动”是微信里由腾讯开发的一个类似计步数据库的公众账号.手机用户可以通过关注“微信运动”公众号查看自己每天行走的步数,同时也可以和好友进行运动量的PK 或点赞.现从小明的微信朋友圈内随机选取若某人一天的走路步数超过8000步被系统评定为“积极型”,否则被系统评定为“懈怠型”. (1)利用样本估计总体的思想,试估计小明的所有微信好友中每日走路步数超过10000步的概率; (2)根据题意完成下面的22⨯列联表,并据此判断能否有90%的把握认为“评定类型”与“性别”有关?附:()()()()()22n ad bc K a b c d a c b d -=++++2.706【答案】(1)概率80.240P == (2)没有90%的把握认为“评定类型”与“性别”有关【解析】试题分析:(1)利用样本估计总体的思想,可得所求概率8:0.240P ==;(2)根据题意求得列联表,再根据二联表的数据可得22.5 2.706K ≈<,从而可知没有90%的把握认为“评定类型”与“性别”有关. 试题解析:(1)根据表中数据可知,40位好友中走路步数超过10000步的有8人, ∴利用样本估计总体的思想,估计小明的所有微信好友中每日走路步数超过10000步 的概率80.240P ==.22⨯∴()2240131278 2.5 2.70620202119K ⨯⨯-⨯=≈<⨯⨯⨯,∴没有90%的把握认为“评定类型”与“性别”有关.19.如图,在四棱锥P ABCD -中,90ABC ACD ∠=∠= ,BAC ∠60CAD =∠= ,PA ⊥平面ABCD ,2,1PA AB ==.设,M N 分别为,PD AD 的中点.(1)求证:平面CMN ∥平面PAB ;(2)求二面角N PC A --的平面角的余弦值.【答案】(1)见解析;(2【解析】试题分析:(1)证明//MN PA ,推出//MN 平面PAB ,证明//CN AB ,即可证明//CN 平面PAB ,然后证明平面//CMN 平面PAB ;(2)以点A 为原点,AC 为x 轴,AP 为z 轴建立空间直角坐标系,求出平面PCN 的法向量,平面PAC 的法向量,利用空间向量的数量积求解面角NPC A ﹣﹣的平面角的余弦值. 试题解析:(1)证明:∵M 、N 分别为PD ,AD 的中点, 则//MN PA .又∵MN ⊄平面PAB ,PA ⊂平面PAB ,∴//MN 平面PAB .在Rt A C D 中,60CAD ∠=︒,CN AN =,∴60ACN ∠=︒,又∵60BAC ∠=︒,∴//CN AB .∵CN ⊄平面PAB ,AB ⊂平面PAB ,∴//CN 平面PAB ,又∵CN MN N ⋂=,∴平面//CMN 平面PAB . (2)∵PA ⊥平面ABCD ,∴平面PAC ⊥平面ACD ,又∵DC AC ⊥,平面PAC ⋂平面ACD AC =,∴DC ⊥平面PAC ,如图,以点A 为原点,AC 为x 轴,AP 为z 轴建立空间直角坐标系,∴()0,0,0A ,()2,0,0C ,()0,0,2P,()D,()N∴()(),2CN PN =-=- ,设(),,n x y z =是平面P C N 的法向量,则0{ 0n CN n PN ⋅=⋅=,即0{20x x z -=-=,可取n =,又平面PAC的法向量为()CD =,∴cos ,7CD n CD n CD n ⋅===⋅,由图可知,二面角N PC A ﹣﹣的平面角为锐角,∴二面角N PC A ﹣﹣. 20.已知椭圆2222:1(0)x y C a b a b +=>>2.(1)求椭圆C 的标准方程;(2)设直线:l y kx m =+与椭圆C 交于,M N 两点,O 为坐标原点,若54OM ON k k ⋅=,求原点O 到直线l 的距离的取值范围.【答案】(1)2214x y +=;(2)0,7⎡⎢⎣⎦【解析】试题分析:(1)由已知求得b ,再由椭圆离心率及隐含条件求得a ,则椭圆方程可求;(2)联立直线方程与椭圆方程,化为关于x 的一元二次方程,由判别式大于0求得2241m k <+,再由54OM ONk k ⋅=,可得2254m k =,从而求得k 的范围,再由点到直线的距离公式求出原点O 到直线l 的距离,则取值范围可求. 试题解析:(1)设焦距为2c ,由已知c e a ==,22b =,∴1b =,又221a c =+,解得2a =,∴椭圆C 的标准方程为2214x y +=;(2)设()11,M x y ,()22,N x y ,联立22{14y kx mx y =++=得()222418440kx kmx m +++-=,依题意,()()()2228441440km k m =-+-> ,化简得2241m k <+,①,122841kmx x k +=-+,21224441m x x k -=+,()()()2212121212y y kx m kx m k x x km x x m =++=+++,若54O M O Nk k⋅=,则121254y y x x =,即12145y y x x =,∴()221212124445k x x km x x m x x +++=,∴()()22222418454404141m km kkm m k k -⎛⎫-⋅+-+= ⎪++⎝⎭,即()()()2222245184km k m m --++=﹣,化简得2254m k +=,②,由①②得2605m ≤<,215204k <≤,∵原点O 到直线l 的距离d =,∴()22222259411141k m d k k k-===-++++,又∵215204k <≤,∴2807d ≤<,∴原点O 到直线l的距离的取值范围是⎡⎢⎣⎭21.设函数()()2ln 2,.f x x mx n m n R =--∈讨论()f x 的单调性;若()f x 有最大值-ln2,求m+n 的最小值.【答案】(1) ()f x 在⎛⎝⎭上单调递增;在⎫+∞⎪⎪⎝⎭上单调递减;(2) ()min 11ln222h m h ⎛⎫== ⎪⎝⎭.【解析】试题分析:(1)函数f (x )的定义域为(0,+∞),()2114'4mx f x mx x x-=-=,对m 分类讨论即可得出.(2)由(1)利用单调性知道0m >,函数先增后减,可以求得函数的最大值()max f x f =⎝⎭,再求出1ln 2m n m m +=--,将函数变为一个变量,求出范围.(1)函数()f x 定义域为()0,+∞,()2114'4mx f x mx x x-=-=当0m ≤时,()'0f x >,∴()f x 在()0,+∞上单调递增; 当0m >时,()'0f x >得0x <<,∴()f x 在⎛ ⎝⎭上单调递增;在⎫+∞⎪⎪⎝⎭上单调递减.(2)由(1)知,当0m >时,()f x 在⎛ ⎝⎭上单调递增;在⎫+∞⎪⎪⎝⎭上单调递减.∴()max1112ln2ln ln2422f x f m n m n m ==-⋅-=----=-⎝⎭∴1ln 2n m =--, ∴1ln 2m n m m +=-- 令()1ln 2h m m m =-- 则()121'122m h m m m-=-=∴()h m 在10,2⎛⎫ ⎪⎝⎭上单调递减,在1,2⎛⎫+∞ ⎪⎝⎭上单调递增, ∴()min 11ln222h m h ⎛⎫==⎪⎝⎭. 点睛:讨论函数的单调性即讨论导函数的正负,导函数中有参数m ,需要对m 进行讨论,来判断正负;第二问已知函数最值可以求得两个变量的关系,1ln 2n m =--,最终将m n +转化成一个变量的表达式,1ln 2m m --,根据m 的范围来求出函数式子的范围即可.22.在平面直角坐标系xOy 中,曲线1C 的参数方程为2{22x cos y sin αα==+(α为参数),直线2C 的方程为y x =,以O 为极点,以x 轴的非负半轴为极轴建立极坐标系. (1)求曲线1C 和直线2C 的极坐标方程;(2)若直线2C 与曲线1C 交于,P Q 两点,求OP OQ ⋅的值.【答案】(1)2cos 4sin 30ρθθθ--+=,(),6R πθρ=∈;(2)3【解析】试题分析:(1)首先把圆的参数方程转化为普通方程,进一步转化为极坐标方程,再把直线方程转化为极坐标方程;(2)根据(1)所得到的结果代入到极坐标方程中,利用几何意义12OP OQ ρρ⋅=可得结果.试题解析:(1)曲线C 1的参数方程为2{22x cos y sin αα==+(α为参数),转化为普通方程:(()2224x y +-=,即22430x y y +--+=,则1C 的极坐标方程为2cos 4sin 30ρθρθ--+=,∵直线2C 的方程为3y x =,∴直线2C 的极坐标方程()6R πθρ=∈.(2)设()11,P ρθ,()22,Q ρθ,将()6R πθρ=∈代入23c o s 4s i n30ρρθρθ--+=,得:2530ρρ-+=,∴123ρρ⋅=,∴123OP OQ ρρ⋅==.23.[选修4—5:不等式选讲] 设函数()23f x x =-.(1)求不等式()52f x x >-+的解集;(2)若()()()g x f x m f x m =++-的最小值为4,求实数m 的值. 【答案】(1)解集为()(),02,-∞⋃+∞ (2)1m =±【解析】试题分析:(1)原不等式可化为2325x x -++>⇒∴当32x ≥时,原不等式化为()()232522x x x x -++>>>;当322x -<<时,原不等式化为()()3225020x x x x -++><-<<;当2x ≤-时,原不等式化为()()4322523x x x x --+><-≤-.综上,原不等式的解集为()(),02,-∞⋃+∞;(2)()()()2232232232234441g x x m x m x m x m m m m =+-+--≥+----===±.试题解析:(1)∵()52f x x >-+可化为2325x x -++>,∴当32x ≥时,原不等式化为()()2325x x -++>,解得2x >,∴2x >; 当322x -<<时,原不等式化为()()3225x x -++>,解得0x <,∴20x -<<;当2x ≤-时,原不等式化为()()3225x x --+>,解得43x <-,∴2x ≤-.综上,不等式()52f x x >-+的解集为()(),02,-∞⋃+∞. (2)∵()23f x x =-,∴()()()223223g x f x m f x m x m x m =++-=+-+-- ()()2232234x m x m m ≥+----=,∴依题设有44m =,解得1m =±.。
江西省南昌市2018届高三第一次模拟数学(理)试卷(附答案)
江西省南昌市2018届高三第一次模拟数学(理)试卷(附答案)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{A x y =∈=N ,{}21,B x x n n ==+∈Z ,则A B =( )A .(],4-∞B .{}1,3C .{}1,3,5D .[]1,32.欧拉公式i e cos isin x x x =+(i 为虚数单位)是由瑞士著名数学家欧拉发现的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里非常重要,被誉为“数学中的天桥”。
根据欧拉公式可知,i 3e x 表示的复数位于复平面中的( ) A .第一象限B .第二象限C .第三象限D .第四象限3.已知角α的终边经过点()sin 47,cos47P °°,则()sin 13α-=°( )A .12B C .12-D . 4.已知奇函数()'f x 是函数()()f x x ∈R 是导函数,若0x >时()'0f x >,则( )A .()()()320log 2log 3f f f >>-B .()()()32log 20log 3f f f >>-C .()()()23log 3log 20f f f ->>D .()()()23log 30log 2f f f ->>5.设不等式组3010350x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩表示的平面区域为M ,若直线y kx =经过区域M 内的点,则实数k 的取值范围为( )A .1,22⎛⎤⎥⎝⎦B .14,23⎡⎤⎢⎥⎣⎦C .1,22⎡⎤⎢⎥⎣⎦D .4,23⎡⎤⎢⎥⎣⎦6.平面内直角三角形两直角边长分别为,a b,直角顶点到斜边的距离为,空间中三棱锥的三条侧棱两两垂直,三个侧面的面积分别为1S ,2S ,3S ,类比推理可得底,则三棱锥顶点到底面的距离为( ) ABCD7.已知圆台和正三棱锥的组合体的正视图和俯视图如图所示,图中网格是单位正方形,那么组合体的侧视图的面积为( )A.6+B .152C.6D .88.执行如图程序框图,则输出的n 等于( )A .1B .2C .3D .49.函数()()()2e e sin ππe xx x f x x -+=-≤≤的图象大致为( )ABCD10.已知具有线性相关的五个样本点()10,0A ,()22,2A ,()33,2A ,()44,2A ,()56,4A ,用最小二乘法得到回归直线方程1:l y bx a =+,过点1A ,2A 的直线方程2:l y mx n =+,那么下列4个命题中, ①,m b a n >>;②直线1l 过点3A ;③()()552211i i i i i i y bx a y mx n ==--≥--∑∑④5511i i i i i i y bx a y mx n ==--≥--∑∑.(参考公式()()()1122211nni iii i i nniii i x ynxy xx y yb xnxxx====---==--∑∑∑∑,a y bx =-)正确命题的个数有( ) A .1个B .2个C .3个D .4个11.设函数()1,121,1x a x a f x x a x a -⎧⎛⎫<+⎪ ⎪=⎨⎝⎭⎪-+-≥+⎩,若()f x 的最大值不超过1,则实数a 的取值范围为( )A .3,2⎡⎫-+∞⎪⎢⎣⎭B .3,2⎛⎫-+∞ ⎪⎝⎭C .5,04⎡⎫-⎪⎢⎣⎭D .35,24⎡⎫--⎪⎢⎣⎭12.已知椭圆22:12412x y E +=,O 为坐标原点,,A B 是椭圆上两点,,OA OB 的斜率存在并分别记为OA k 、OB k ,且12OA OB k k ⋅=-,则11OA OB +的最小值为( ) AB .13CD二、填空题(每题5分,满分20分,将答案填在答题纸上) 13.()3121x x ⎛⎫+- ⎪⎝⎭展开式中的常数项为________.14.平面向量()1,m =a ,()4,m =b ,若有()()2-+=0a b a b ,则实数m =_______.15.在圆224x y +=上任取一点,则该点到直线0x y +-=的距离[]0,1d ∈的概率为______. 16.已知台风中心位于城市A 东偏北α(α为锐角)度的200公里处,若()24cos 25αβ-=, 则v =______.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)(一)必考题:共60分.17.(12分)已知等比数列{}n a 的前n 项和为n S ,满足4421S a =-,3321S a =-. (1)求{}n a 的通项公式;(2)记()21log n n n b a a +=⋅,数列{}n b 的前n 项和为n T ,求证:121112nT T T +++<….18.(12分)某校为了推动数学教学方法的改革,学校将高一年级部分生源情况基本相同的学生分成甲、乙两个班,每班各40人,甲班按原有模式教学,乙班实施教学方法改革.经过一年的教学实验,将甲、乙两个班学生一年来的数学成绩取平均数,两个班学生的平均成绩均在[]50,100,按照区间[)80,90,[]70,80,[)90,100进行分组,绘制成如下频率分布直方图,规定不低50,60,[)60,70,[)于80分(百分制)为优秀.(1)完成表格,并判断是否有90%以上的把握认为“数学成绩优秀与教学改革有关”;(2)从乙班[)90,100分数段中,按分层抽样随机抽取7名学生座谈,从中选三位80,90,[]70,80,[)同学发言,记来自[)80,90发言的人数为随机变量X,求X的分布列和期望.19.(12分)如图,四棱锥P ABCD-中,PA⊥底面ABCD,ABCD为直角梯形,AD BC∥,AD AB⊥,132AB BC AP AD====,AC BD O=,过O点作平面α平行于平面PAB,平面α与棱BC,AD,PD,PC分别相交于点E,F,G,H.(1)求GH的长度;(2)求二面角B FH E--的余弦值.20.(12分)已知抛物线()2:20C y px p =>的焦点为F ,准线为l ,过焦点F 的直线交C 于()11,A x y ,()22,B x y 两点,124y y =-.(1)求抛物线方程;(2)点B 在准线l 上的投影为E ,D 是C 上一点,且AD EF ⊥,求ABD △面积的最小值及此时直线AD 的方程.21.(12分)已知函数()()ln f x ax bx =+在点()()1,1f 处的切线是0y =. (1)求函数()f x 的极值;(2)当()()21e0e ex mx f x x m -≥+<恒成立时,求实数m 的取值范围(e 为自然对数的底数).(二)选考题:共10分,请考生在第(22)、(23)两题中任选一题作答,如果多做,则按所做的第一题记分,作答时用2B 铅笔在答题卡上把所选题目的题号涂黑,把答案填在答题卡上。
2017-2018学年江西省南昌市高三(上)摸底数学试卷(理科)
2017-2018学年江西省南昌市高三(上)摸底数学试卷(理科)一.选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知复数z满足(1+i)z=2,则复数z的虚部为()A.1 B.﹣1 C.i D.﹣i2.(5分)设集合A={x|﹣2≤x≤1},,则A∩B=()A.[﹣2,1)B.(﹣1,1]C.[﹣2,﹣1)D.[﹣1,1)3.(5分)已知,,则tanθ=()A.﹣2 B.C.D.4.(5分)执行如图所示的程序框图,输出的n为()A.1 B.2 C.3 D.45.(5分)设变量x,y满足约束条件,则z=3x﹣2y的最大值为()A.﹣2 B.2 C.3 D.46.(5分)已知,为两个非零向量,则“与共线”是“•=|•|”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件7.(5分)如图,网格纸上小正方形的边长为1,粗实线及粗虚线画出的是某多面体的三视图,则该多面体的体积为()A.B.C.2 D.8.(5分)函数的图象可以由函数的图象经过()A.向右平移个单位长度得到B.向右平移个单位长度得到C.向左平移个单位长度得到D.向左平移个单位长度得到9.(5分)某校毕业典礼由6个节目组成,考虑整体效果,对节目演出顺序有如下要求:节目甲必须排在前三位,且节目丙、丁必须排在一起,则该校毕业典礼节目演出顺序的编排方案共有()A.120种B.156种C.188种D.240种10.(5分)已知三棱锥P﹣ABC的所有顶点都在球O的球面上,△ABC满足,PA为球O的直径且PA=4,则点P到底面ABC的距离为()A.B.C.D.11.(5分)已知动直线l与圆O:x2+y2=4相交于A,B两点,且满足|AB|=2,点C为直线l上一点,且满足,若M是线段AB的中点,则的值为()A.3 B.C.2 D.﹣312.(5分)已知双曲线的左右焦点分别为F1,F2,P为双曲线C上第二象限内一点,若直线恰为线段PF2的垂直平分线,则双曲线C的离心率为()A.B.C.D.二.填空题:本题共4小题,每小题5分,共20分.13.(5分)高三(2)班现有64名学生,随机编号为0,1,2,…,63,依编号顺序平均分成8组,组号依次为1,2,3,…,8.现用系统抽样方法抽取一个容量为8的样本,若在第一组中随机抽取的号码为5,则在第6组中抽取的号码为.14.(5分)的展开式中含x3的系数为.(用数字填写答案)15.(5分)已知△ABC的面积为,角A,B,C所对的边长分别为a,b,c,,则a的最小值为.16.(5分)已知函数,若不等式|f(x)|﹣mx+2≥0恒成立,则实数m的取值范围为.三.解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答;第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)已知数列{a n}的前n项和,记b n=a n S n(n∈N*).(1)求数列{a n}的通项公式;(2)求数列{b n}的前n项和T n.18.(12分)微信已成为人们常用的社交软件,“微信运动”是微信里由腾讯开发的一个类似计步数据库的公众账号.手机用户可以通过关注“微信运动”公众号查看自己每天行走的步数,同时也可以和好友进行运动量的PK或点赞.现从小明的微信朋友圈内随机选取了40人(男、女各20人),记录了他们某一天的走路步数,并将数据整理如表:(1)若某人一天的走路步数超过8000步被系统评定为“积极型”,否则评定为“懈怠型”,根据题意完成下面的2×2列联表,并据此判断能否有90%的把握认为“评定类型”与“性别”有关?(2)如果从小明这40位好友内该天走路步数超过10000步的人中随机抽取3人,设抽取的女性有X人,求X的分布列及数学期望E(X).附:K2=19.(12分)如图,在四棱锥P﹣ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,PA=2,AB=1.设M,N分别为PD,AD的中点.(1)求证:平面CMN∥平面PAB;(2)求二面角N﹣PC﹣A的平面角的余弦值.20.(12分)已知椭圆的离心率为,短轴长为2.(1)求椭圆C的标准方程;(2)设直线l:y=kx+m与椭圆C交于M,N两点,O为坐标原点,若,求原点O到直线l的距离的取值范围.21.(12分)设函数f(x)=lnx﹣2mx2﹣n(m,n∈R).(1)讨论f(x)的单调性;(2)若f(x)有最大值﹣ln2,求m+n的最小值.选考题:请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.(10分)在平面直角坐标系xOy中,曲线C1的参数方程为(α为参数),直线C2的方程为,以O为极点,以x轴非负半轴为极轴建立极坐标系.(1)求曲线C1和直线C2的极坐标方程;(2)若直线C2与曲线C2交于P,Q两点,求|OP|•|OQ|的值.[选修4-5:不等式选讲](10分)23.设函数f(x)=|2x﹣3|.(1)求不等式f(x)>5﹣|x+2|的解集;(2)若g(x)=f(x+m)+f(x﹣m)的最小值为4,求实数m的值.2017-2018学年江西省南昌市高三(上)摸底数学试卷(理科)参考答案与试题解析一.选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知复数z满足(1+i)z=2,则复数z的虚部为()A.1 B.﹣1 C.i D.﹣i【解答】解:(1+i)z=2,∴z===1﹣i.则复数z的虚部为﹣1.故选:B.2.(5分)设集合A={x|﹣2≤x≤1},,则A∩B=()A.[﹣2,1)B.(﹣1,1]C.[﹣2,﹣1)D.[﹣1,1)【解答】解:由B可得:x2﹣2x﹣3>0,即(x﹣3)(x+1)>0,解得x<﹣1或x>3,即B=(﹣∞,﹣1)∪(3,+∞),∵集合A={x|﹣2≤x≤1}=[﹣2,1]∴A∩B=[﹣2,﹣1)故选:C.3.(5分)已知,,则tanθ=()A.﹣2 B.C.D.【解答】解:∵已知,,∴cosθ=﹣=﹣,则tanθ==﹣,故选:C.4.(5分)执行如图所示的程序框图,输出的n为()A.1 B.2 C.3 D.4【解答】解:当n=1时,f(x)=1,满足f(x)=f(﹣x),不满足f(x)=0有解,故n=2;当n=2时,f(x)=2x,不满足f(x)=f(﹣x),故n=3;当n=3时,f(x)=3x2,满足f(x)=f(﹣x),满足f(x)=0有解,故输出的n为3,故选:C5.(5分)设变量x,y满足约束条件,则z=3x﹣2y的最大值为()A.﹣2 B.2 C.3 D.4【解答】解:作出约束条件,对应的平面区域如图:由z=3x﹣2y得y=x﹣,平移直线y=x,经过点A时,直线y=x﹣的截距最小,此时z最大.由,解得A(1,0),此时z max=3×1﹣0=3,故选:C6.(5分)已知,为两个非零向量,则“与共线”是“•=|•|”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件【解答】解:当与夹角为180°时,满足向量共线,但•=﹣||•||,|•|=||•|,|此时•=|•|不成立,即充分性不成立,若•=|•|,则•=||•||cos<,>=|||||cos<,>|,则|cos<,>|=cos<,>,则cos<,>≥0,即0°≤<,>≤90°,此时与不一定共线,即必要性不成立,则“与共线”是“•=|•|”的既不充分也不必要条件.故选:D7.(5分)如图,网格纸上小正方形的边长为1,粗实线及粗虚线画出的是某多面体的三视图,则该多面体的体积为()A.B.C.2 D.【解答】解:由已知中的三视图可得该几何体是一个三棱锥,其直观图如下图所示:故其体积V==,故选:A8.(5分)函数的图象可以由函数的图象经过()A.向右平移个单位长度得到B.向右平移个单位长度得到C.向左平移个单位长度得到D.向左平移个单位长度得到【解答】解:把函数=sin(+)的图象向右平移个单位长度,可得函数y=sin(﹣+)=sin(+)的图象,故选:B.9.(5分)某校毕业典礼由6个节目组成,考虑整体效果,对节目演出顺序有如下要求:节目甲必须排在前三位,且节目丙、丁必须排在一起,则该校毕业典礼节目演出顺序的编排方案共有()A.120种B.156种C.188种D.240种【解答】解:根据题意,由于节目甲必须排在前三位,分3种情况讨论:①、甲排在第一位,节目丙、丁必须排在一起,则乙丙相邻的位置有4个,考虑两者的顺序,有2种情况,将剩下的3个节目全排列,安排在其他三个位置,有A33=6种安排方法,则此时有4×2×6=48种编排方法;②、甲排在第二位,节目丙、丁必须排在一起,则乙丙相邻的位置有3个,考虑两者的顺序,有2种情况,将剩下的3个节目全排列,安排在其他三个位置,有A33=6种安排方法,则此时有3×2×6=36种编排方法;③、甲排在第三位,节目丙、丁必须排在一起,则乙丙相邻的位置有3个,考虑两者的顺序,有2种情况,将剩下的3个节目全排列,安排在其他三个位置,有A33=6种安排方法,则此时有3×2×6=36种编排方法;则符合题意要求的编排方法有36+36+48=120种;故选:A.10.(5分)已知三棱锥P﹣ABC的所有顶点都在球O的球面上,△ABC满足,PA为球O的直径且PA=4,则点P到底面ABC的距离为()A.B.C.D.【解答】解:∵三棱锥P﹣ABC的所有顶点都在球O的球面上,PA为球O的直径且PA=4,∴球心O是PA的中点,球半径R=OC=,过O作OD⊥平面ABC,垂足是D,∵△ABC满足,∴D是AB中点,且AD=BD=CD=,∴OD==,∴点P到底面ABC的距离为d=2OD=2.故选:B.11.(5分)已知动直线l与圆O:x2+y2=4相交于A,B两点,且满足|AB|=2,点C为直线l上一点,且满足,若M是线段AB的中点,则的值为()A.3 B.C.2 D.﹣3【解答】解:动直线l与圆O:x2+y2=4相交于A,B两点,且满足|AB|=2,则△OAB为等边三角形,于是可设动直线l为y=(x+2),根据题意可得B(﹣2,0),A(﹣1,),∵M是线段AB的中点,∴M(﹣,)设C(x,y),∵,∴(﹣2﹣x,﹣y)=(﹣1﹣x,﹣y),∴,解得,∴C(﹣,),∴=(﹣,)•(﹣,)=+=3,故选:A.12.(5分)已知双曲线的左右焦点分别为F1,F2,P为双曲线C上第二象限内一点,若直线恰为线段PF2的垂直平分线,则双曲线C的离心率为()A.B.C.D.【解答】解:设F2(c,0),渐近线方程为y=x,对称点为P(m,n),即有=﹣,且•n=•,解得m=,n=,将P(,),即(,),代入双曲线的方程可得﹣=1,化简可得﹣4=1,即有e2=5,解得e=.故选:C.二.填空题:本题共4小题,每小题5分,共20分.13.(5分)高三(2)班现有64名学生,随机编号为0,1,2,…,63,依编号顺序平均分成8组,组号依次为1,2,3,…,8.现用系统抽样方法抽取一个容量为8的样本,若在第一组中随机抽取的号码为5,则在第6组中抽取的号码为45.【解答】解:高三(2)班现有64名学生,随机编号为0,1,2, (63)依编号顺序平均分成8组,组号依次为1,2,3, (8)分组间隔为,∵在第一组中随机抽取的号码为5,∴在第6组中抽取的号码为:5+5×8=45.故答案为:45.14.(5分)的展开式中含x3的系数为﹣10.(用数字填写答案)【解答】解:展开式的通项公式为,令5﹣2r=3,解得r=1,所以展开式中含x3的系数为.故答案为:﹣10.15.(5分)已知△ABC的面积为,角A,B,C所对的边长分别为a,b,c,,则a的最小值为2.【解答】解:由三角形面积公式得:S=bcsinA=bc=2,即bc=8,根据余弦定理得:a2=b2+c2﹣2bccosA=b2+c2﹣bc≥2bc﹣bc=bc=8,则a≥2,即a的最小值为2,故答案为:2.16.(5分)已知函数,若不等式|f(x)|﹣mx+2≥0恒成立,则实数m的取值范围为.【解答】解:不等式即:mx≤|f(x)|+2恒成立,绘制函数|f(x)|+2的图象,则正比例函数y=mx恒在函数|f(x)|+2的图象下方,考查函数:y=x2﹣3x+2 经过坐标原点的切线,易求得切线的斜率为,据此可得:实数m的取值范围为.故答案为:.三.解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答;第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)已知数列{a n}的前n项和,记b n=a n S n(n∈N*).(1)求数列{a n}的通项公式;(2)求数列{b n}的前n项和T n.【解答】解:(1)∵,∴当n=1时,;当n≥2时,,又∵,∴.…(6分)(2)由(1)知,,∴=.…(12分)18.(12分)微信已成为人们常用的社交软件,“微信运动”是微信里由腾讯开发的一个类似计步数据库的公众账号.手机用户可以通过关注“微信运动”公众号查看自己每天行走的步数,同时也可以和好友进行运动量的PK或点赞.现从小明的微信朋友圈内随机选取了40人(男、女各20人),记录了他们某一天的走路步数,并将数据整理如表:(1)若某人一天的走路步数超过8000步被系统评定为“积极型”,否则评定为“懈怠型”,根据题意完成下面的2×2列联表,并据此判断能否有90%的把握认为“评定类型”与“性别”有关?(2)如果从小明这40位好友内该天走路步数超过10000步的人中随机抽取3人,设抽取的女性有X人,求X的分布列及数学期望E(X).附:K2=【解答】解:(1)根据题意完成2×2列联表如下:由表中数据计算,∴没有90%的把握认为“评定类型”与“性别”有关;…(6分)(2)由(1)知,从小明这40位好友内该天走路步数超过10000步的人中男性6人,女性2人,现从中抽取3人,抽取的女性人数X服从超几何分布,X的所有可能取值为0,1,2;且,,,…(9分)∴X的分布列如下:数学期望为.19.(12分)如图,在四棱锥P﹣ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,PA=2,AB=1.设M,N分别为PD,AD的中点.(1)求证:平面CMN∥平面PAB;(2)求二面角N﹣PC﹣A的平面角的余弦值.【解答】解:(1)证明:∵M,N分别为PD,AD的中点,…(12分)则MN∥PA.又∵MN⊄平面PAB,PA⊂平面PAB,∴MN∥平面PAB.在Rt△ACD中,∠CAD=60°,CN=AN,∴∠ACN=60°.又∵∠BAC=60°,∴CN∥AB.∵CN⊄平面PAB,AB⊂平面PAB,∴CN∥平面PAB.…(4分)又∵CN∩MN=N,∴平面CMN∥平面PAB.…(6分)(2)∵PA⊥平面ABCD,∴平面PAC⊥平面ACD,又∵DC⊥AC,平面PAC∩平面ACD=AC,∴DC⊥平面PAC,如图,以点A为原点,AC为x轴,AP为z轴建立空间直角坐标系,∴,,∴,设=(x,y,z)是平面PCN的法向量,则,即,可取,又平面PAC的法向量为,∴===,由图可知,二面角N﹣PC﹣A的平面角为锐角,∴二面角N﹣PC﹣A的平面角的余弦值为.…(12分)20.(12分)已知椭圆的离心率为,短轴长为2.(1)求椭圆C的标准方程;(2)设直线l:y=kx+m与椭圆C交于M,N两点,O为坐标原点,若,求原点O到直线l的距离的取值范围.【解答】解:(1)设焦距为2c,由已知,2b=2,∴b=1,又a2=1+c2,解得a=2,∴椭圆C的标准方程为;(2)设M(x1,y1),N(x2,y2),联立得(4k2+1)x2+8kmx+4m2﹣4=0,依题意,△=(8km)2﹣4(4k2+1)(4m2﹣4)>0,化简得m2<4k2+1,①,,若,则,即4y1y2=5x1x2,∴,∴,即(4k2﹣5)(m2﹣1)﹣8k2m2+m2(4k2+1)=0,化简得,②由①②得,∵原点O到直线l的距离,∴,又∵,∴,∴原点O到直线l的距离的取值范围是.21.(12分)设函数f(x)=lnx﹣2mx2﹣n(m,n∈R).(1)讨论f(x)的单调性;(2)若f(x)有最大值﹣ln2,求m+n的最小值.【解答】解:(1)函数f(x)的定义域为(0,+∞),,当m≤0时,f'(x)>0,∴f(x)在(0,+∞)上单调递增;当m>0时,解f'(x)>0得,∴f(x)在上单调递增,在上单调递减.(2)由(1)知,当m>0时,f(x)在上单调递增,在上单调递减.∴,∴,∴,令,则,∴h(m)在上单调递减,在上单调递增,∴,∴m+n的最小值为.选考题:请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.(10分)在平面直角坐标系xOy中,曲线C1的参数方程为(α为参数),直线C2的方程为,以O为极点,以x轴非负半轴为极轴建立极坐标系.(1)求曲线C1和直线C2的极坐标方程;(2)若直线C2与曲线C2交于P,Q两点,求|OP|•|OQ|的值.【解答】解:(1)曲线C1的参数方程为(α为参数),转化为普通方程:,即,则C1的极坐标方程为,…(3分)∵直线C2的方程为,∴直线C2的极坐标方程.…(5分)(2)设P(ρ1,θ1),Q(ρ2,θ2),将代入,得:ρ2﹣5ρ+3=0,∴ρ1•ρ2=3,∴|OP|•|OQ|=ρ1ρ2=3.…(10分)[选修4-5:不等式选讲](10分)23.设函数f(x)=|2x﹣3|.(1)求不等式f(x)>5﹣|x+2|的解集;(2)若g(x)=f(x+m)+f(x﹣m)的最小值为4,求实数m的值.【解答】解:(1)∵f(x)>5﹣|x+2|可化为|2x﹣3|+|x+2|>5,∴当时,原不等式化为(2x﹣3)+(x+2)>5,解得x>2,∴x>2;当时,原不等式化为(3﹣2x)+(x+2)>5,解得x<0,∴﹣2<x<0;当x≤﹣2时,原不等式化为(3﹣2x)﹣(x+2)>5,解得,∴x≤﹣2.综上,不等式f(x)>5﹣|x+2|的解集为(﹣∞,0)∪(2,+∞).…(5分)(2)∵f(x)=|2x﹣3|,∴g(x)=f(x+m)+f(x﹣m)=|2x+2m﹣3|+|2x﹣2m﹣3|≥|(2x+2m﹣3)﹣(2x﹣2m﹣3)|=|4m|,∴依题设有4|m|=4,解得m=±1.…(10分)。
江西省南昌市2018届高三数学摸底考试试题 理(扫描版)
江西省南昌市2018届高三数学摸底考试试题理(扫描版)2018届ncs0607摸底调研考试理科数学参考答案及评分标准一、选择题:本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项13.45 14. 10- 15. 16. [3--三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或推演步骤.17.【解析】(1)∵122nnS +=-,∴当1n=时,1111222a S+==-=;当2n≥时,11222n n nn n na S S+-=-=-=,又∵1122a==,∴2nna=. ………………6分(2)由(1)知,1242n nn n nb a S+==⋅-,∴1232311232(4444)(222)n nn nT b b b b+=++++=++++-+++124(14)4(12)24242141233n nn n++--=⨯-=⋅-+--. ………………12分18.∴240(131278)2.5 2.70620202119K⨯⨯-⨯=≈<⨯⨯⨯,∴没有90%的把握认为“评定类型”与“性别”有关. ………………6分(2)由(1)知,从小明这40位好友内该天走路步数超过10000步的人中男性6人,女性2人,现从中抽取3人,抽取的女性人数X服从超几何分布,X的所有可能取值为0,1,2,363820(0)56CP XC===,12263830(1)56C CP XC===,12623186(2)56C CP XC===,…………9分∴X的分布列如下:∴2030()012.5656564E X=⨯+⨯+⨯=19.【解析】(1)证明:∵,M N分别为,PD AD的中点,………………12分则MN∥PA.又∵MN⊄平面PAB,PA⊂平面PAB,∴MN∥平面PAB.在Rt ACD∆中,60,CAD CN AN∠==o,∴60ACN∠=o.又∵60BAC ∠=o, ∴CN ∥AB .∵CN ⊄平面PAB ,AB ⊂平面PAB ,∴CN ∥平面PAB . ………………4分 又∵CN MN N =I , ∴平面CMN ∥平面PAB . ………………6分(2)∵PA ⊥平面ABCD ,∴平面PAC ⊥平面ACD ,又∵DC AC ⊥,平面PAC I 平面ACD AC =,∴DC ⊥平面PAC ,如图,以点A 为原点,AC 为x 轴,AP 为z 轴建立空间直角坐标系,∴(0,0,0),(2,0,0),(0,0,2),(2,23,0)A C P D , N ,∴(1,3,0),(1,3,2)CN PN =-=-, 设(,,)x y z =n 是平面PCN 的法向量,则00CN PN ⎧⋅=⎪⎨⋅=⎪⎩nn ,即020xx z ⎧-=⎪⎨-=⎪⎩,可取=n,又平面PAC的法向量为(0,CD =, ∴cos ,|||CD CD CD ⋅===n n n |, 由图可知,二面角NPC A --的平面角为锐角,∴二面角N PC A --. …………12分20.【解析】(1)设焦距为2c ,由已知2c e a ==,22b =,∴1b =,2a =, ∴椭圆C 的标准方程为2214x y +=. ………………4分 (2)设1122(,),(,)M x y N x y ,联立2214y kx m x y =+⎧⎪⎨+=⎪⎩得222(41)8440k x kmx m +++-=, 依题意,222(8)4(41)(44)0km k m ∆=-+->,化简得2241m k <+,①2121222844,4141km m x x x x k k -+=-=++, ………………6分 2212121212()()()y y kx m kx m k x x km x x m =++=+++,若54OM ON k k ⋅=,则121254y y x x =, 即121245y y x x =, ∴2212121244()45k x x km x x m x x +++=,∴222224(1)8(45)4()404141m km k km m k k --⋅+⋅-+=++, 即222222(45)(1)8(41)0k m k m m k ---++=,化简得2254m k +=,②………………9分 由①②得226150,5204m k ≤<<≤, ………………10分 ∵原点O 到直线l 的距离d =∴2222225941114(1)k m d k k k -===-++++, 又∵215204k <≤, ∴2807d ≤<, ∴原点O 到直线l的距离的取值范围是[0,7. ………………12分 21.【解析】(1)函数()f x 的定义域为(0,)+∞,2114()4mx f x mx x x -'=-=, 当0m ≤时,()0f x '>, ∴()f x 在(0,)+∞上单调递增;当0m >时,解()0f x '>得0x <<, ∴()f x在上单调递增,在)+∞上单调递减. ………………6分 (2)由(1)知,当0m >时,()f x在上单调递增,在)+∞上单调递减.∴max 111()ln 2ln 2ln ln 2422f x f m n m n m ==-⋅-=----=-, ∴11ln 22n m =--, ∴11ln 22m n m m +=--, 令11()ln 22h m m m =--,则121()122m h m m m-'=-=, ∴()h m 在1(0,)2上单调递减,在1(,)2+∞上单调递增, ∴min 11()()ln 222h m h ==, ∴m n +的最小值为1ln 22. ……………………12分 22.【解析】(1)曲线1C的普通方程为22((2)4x y -+-=,即22430x y y +--+=,则1C的极坐标方程为2cos 4sin 30ρθρθ--+=, …………………3分∵直线2C的方程为3y x =, ∴直线2C 的极坐标方程()6R πθρ=∈. …………………5分(2)设1122(,),(,)P Q ρθρθ, 将()6R πθρ=∈代入2cos 4sin 30ρθρθ--+=得,2530ρρ-+=, ∴123ρρ⋅=, ∴12|||| 3.OP OQ ρρ⋅== …………………10分23.【解析】(1)∵()5|2|f x x >-+可化为|23||2|5x x -++>, ∴当32x ≥时,原不等式化为(23)(2)5x x -++>,解得2x >,∴2x >;当322x -<<时,原不等式化为(32)(2)5x x -++>,解得0x <,∴20x -<<; 当2x ≤-时,原不等式化为(32)(2)5x x --+>,解得43x <-,∴2x ≤-. 综上,不等式()5|2|f x x >-+的解集为(,0)(2,)-∞+∞. …………………5分(2)∵()|23|f x x =-,∴()()()|223||223|g x f x m f x m x m x m =++-=+-+--|(223)(223)||4|x m x m m ≥+----=, ∴依题设有4||4m =,解得1m =±.…………………10分。
江西省南昌市2018届高三第三次理科数学模拟试题(含答案)
NCS20180607 项目第三次模拟测试卷理科数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}3,2a M =,{},N a b =,若{}1M N ⋂=,则M N ⋃=( ) A .{}1,2,3 B .{}0,2,3 C .{}0,1,2 D .{}0,1,3 2.已知a R ∈,i 是虚数单位,若3z ai =+,4z z ⋅=,则a 为( ) A .1或 1- B .1 C .1- D .不存在的实数 3.“33m m >”是“关于x 的方程sin x m =有解”的( )A .充分不必要条件B .必要不充分条件C .充要条件 D.既不充分也不必要条件 4. 下列有关统计知识的四个命题正确的是( )A .衡量两变量之间线性相关关系的相关系数r 越接近1,说明两变量间线性关系越密切B .在回归分析中,可以用卡方2x 来刻画回归的效果,2x 越大,模型的拟合效果越差 C.线性回归方程对应的直线y bx a =+至少经过其样本数据点中的一个点 D .线性回归方程0.51y x =+中,变量x 每增加一个单位时,变量y 平均增加1个单位5.在平面直角坐标系中,已知双曲线C 与双曲线2213y x -=有公共的渐近线,且经过点(2,3)P -,则双曲线C 的焦距为( )A .3B .23 C.33 D .436.执行如图所示的程序框图,若输出的57S =,则判断框内应填入的条件是( )A .4k >B .5k > C.6k > D .7k >7.已知13241(),b log 3,c log 72a ===,则,,abc 的大小关系为( )A .a b c <<B .b a c << C.c a b << D .a c b <<8.某几何的三视图如图所示,其中主视图由矩形和等腰直角三角形组成,左视图由半个圆和等腰直角三角形组成,俯视图的实线部分为正方形,则该几何体的表面积为( )A .342π+B .4(21)π++ C.4(2)π+ D .4(1)π+ 9.将函数()2sin(2)6f x x π=-的图象向左平移6π个单位,再向上平移1个单位,得到()g x 图象,若12()()6g x g x +=,且[]12,2,2x x ππ∈-,则12x x -的最大值为( )A .πB .2π C.3π D .4π10.为培养学生分组合作能力,现将某班分成,,A B C 三个小组,甲、乙、丙三人分到不同组,某次数学建模考试中三人成绩情况如下:在B 组中的那位的成绩与甲不一样,在A 组中的那位的成绩比丙低,在B 组中的那位成绩比乙低.若甲、乙、丙三人按数学建模考试成绩由高到低排序,则排序正确的是( ) A .甲、丙、乙 B .乙、甲、丙 C. 乙、丙、甲 D .丙、乙、甲11.“在两条相交直线的一对对顶角内,到这两条直线的距离的积为正常数的点的轨迹是双曲线,其中这两条直线称之为双曲线的渐近线”.已知对勾函数4y x x=+是双曲线,它到两渐近线距离的积是22,根据此判定定理,可推断此双曲线的渐近线方程是( )A .0x =与y x =B .0x =与2y x = C.0x =与0y = D .y x =与2y x = 12.已知函数21()ln 2f x a x x =+,对任意不等实数12,(0,)x x ∈+∞,不等式1212()()3f x a f x a x x +-+>-恒成立,则实数a 的取值范围为( )A .[)2,+∞B .(2,)+∞ C.9,4⎡⎫+∞⎪⎢⎣⎭D .9(,)4+∞第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知函数()(1)()f x x x b =-+为偶函数,则(3)0f x -<的解集为 .14.已知6260126(2)(1)(1)...(1)x a a x a x a x +=+++++++,则3a .15.已知,m n 是两个非零向量,且1,23m m n =+=,则m n n ++的最大值为 .16.如图,直线AB 与单位圆相切于点O ,射线OP 从OA 出发,绕着点O 逆时针旋转,在旋转分入过程中,记(0)AOP x x π∠=<<,OP 经过的单位圆O 内区域(阴影部分)的面积为S ,记()S f x =,对函数()f x 有如下四个判断: ①当34x π=时,3142S π=+;②(0,)x π∈时,()f x 为减函数; ③对任意(0,)2x π∈,都有()()22f x f x πππ-++=;④对任意(0,)2x π∈,都有()()22f x f xππ+=+ 其中判断正确的序号是 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知数列{}n a 的各项均为正数,且2*2(21)0,n n a na n n N --+=∈.(1)求数列{}n a 的通项公式;(2)若1(1)n n n b a -=-,求数列{}n b 的前n 项和n T .18. 如图,多面体ABCDEF 中,ABCD 为正方形,2,3,5AB AE DE ===,,二面角E AD C --的余弦值为55,且//EF BD . (1)证明:平面ABCD ⊥平面EDC ;(2)求平面AEF 与平面EDC 所成锐二面角的余弦值.19.质检部门对某工厂甲、乙两个车间生产的12个零件质量进行检测.甲、乙两个车间的零件质量(单位:克)分布的茎叶图如图所示.零件质量不超过20克的为合格.(1)质检部门从甲车间8个零件中随机抽取4件进行检测,若至少2件合格,检测即可通过,若至少3件合格,检测即为良好,求甲车间在这次检测通过的条件下,获得检测良好的概率;(2)若从甲、乙两车间12个零件中随机抽取2个零件,用X 表示乙车间的零件个数,求X 的分布列与数学期望.20.已知椭圆2222:1(0)x y C a b a b+=>>的离心率为32,且点3(1,)2A -在椭圆C 上. (1)求椭圆C 的方程;(2)已知不经过A 点的直线3:2l y x t =+与椭圆C 交于,P Q 两点,P 关于原点对称点为R (与点A 不重合),直线,AQ AR 与y 轴分别交于两点,M N ,证明: AM AN = 21.已知函数2()()()xf x ax x a e a R -=++∈. (1)若0a ≥,函数()f x 的极大值为3e,求实数a 的值; (2)若对任意的0a ≤,()ln(1)f x b x ≤+在[)0,x ∈+∞上恒成立,求实数b 的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,曲线1C 的参数方程为:cos sin x y θθ=⎧⎨=⎩(θ为参数,[]0,θπ∈)将曲线1C 经过伸缩变换:''3x xy y=⎧⎪⎨=⎪⎩得到曲线2C . (1)以原点为极点,x 轴的正半轴为极轴建立坐标系,求2C 的极坐标方程; (2)若直线cos :sin x t l y t αα=⎧⎨=⎩(t 为参数)与1C ,2C 相交于,A B 两点,且21AB =-,求α的值.23.选修4-5:不等式选讲 已知函数()1f x x =+.(1)求不等式()211f x x <+-的解集M ; 设,a b M ∈,证明:(ab)()()f f a f b >--试卷答案一、选择题1-5:DADAD 6-10:ADACC 11、12:AA二、填空题13.(2,4) 14.20 15.10 16.①③三、解答题17.解:(1)由22(21)0n n a na n --+=得[](21)(1)0n n a n a -+⋅+=,所以21n a n =+或1n a =-,又因为数列{}n a 的各项均为正数,负值舍去所以*21,n a n n N =+∈.(2)因为11(1)(1)(21)n n n n b a n --=-⋅=-⋅+,所以13579...(1)(21)n n T n -=-+-+-⋅+ 由13579...(1)(21)n n T n -=-+-+-⋅+①1(1)3579...(1)(21)(1)(21)n n n T n n --=-+-++-⋅++-⋅+②由①-②得:1232119...(1)(1)(21)n nn T n -⎡⎤=--++---⋅+⎣⎦1111(1)322(1)(1)(21)2(1)(22)1(1)n n n n n n ---⎡⎤--⎣⎦=-=+---⋅+=+-+--∴11(1)(1)n n T n -=+-+18.解:(1)证明:∵2,3,5AB AE DE ===,由勾股定理得:AD DE ⊥ 又正方形ABCD 中AD DC ⊥,且DE DC D ⋂= ∴AD ⊥平面EDC ,又∵AD ⊂面ABCD , ∴平面ABCD ⊥平面EDC(2)由(1)知EDC ∠是二面角E AD C --的平面角 作OE CD ⊥于O ,则cos 1,2OD DE EDC OE =⋅∠==且由平面ABCD ⊥平面EDC ,平面ABCD ⋂平面EDC CD =,OE ⊂面EDC 所以,OE ⊥面ABCD取AB 中点M ,连结OM ,则OM CD ⊥,如图,建立空间直角坐标系,则(2,1,0)B(2,1,0)D(0,1,0)E(0,0,2)A --、、、 ∴(2,1,2),(2,2,0)AE BD =-=--又//EF BD ,知EF 的一个方向向量(2,2,0)设面AEF 法向量(,,)n x y z =,则220220n AE x y z n DB x y ⎧⋅=-++=⎪⎨⋅=+=⎪⎩取2x =-,得(2,2,3)n =-又面EDC 一个法向量为(1,0,0)m =:∴217cos ,17n m n m n m⋅==-⋅ 设平面AEF 与平面EDC 所成锐二面角为θ,则217cos cos ,17n m θ==19.解:(1)设事件A 表示“2件合格,2件不合格”;事件B 表示“3件合格,1件不合格”;事件C 表示“4件全合格”;事件D 表示“检测通过”;事件E 表示“检测良好”.∴223144444444488853()()()()70C C C C C PD P A P B P C C C C =++=++=∴()()17()()()53P C P B P E D P D P D =+=.故所求概率为1753. (2)X 可能取值为0,1,22112848422212121214161(0),(1),(2)333311C C C C P X P X P X C C C =========分布列为X 012P14331633111所以,141612()012=3333113E X =⨯+⨯+⨯ 20.解(1)32c e a ==,不妨设224,3(0)a m c m m ==>,则2b m = 所以2214x y m m +=,将点3(1,)2A -代入得1m =,即所求椭圆方程为2214x y +=.(2)设1122(,),(,)P x y Q x y ,则11(,)R x y --,且12123322,11ARAQy y k k x x -++==--- 由221432x y y x t ⎧+=⎪⎪⎨⎪=+⎪⎩,消去y 化简得:22310x tx t ++-= ∴212123,1x x t x x t +=-=-∴12121212123333()(1)(1)()222211(1)(1)AR AQy y y x x y k k x x x x -++-+-+--++=+=------ 12212112123()()32(1)(1)x y x y y y x x x x ++-+-+=+-分子122121123333()()()()32222x x t x x t x x x x =++++-+-+ 221123()33(1)(3)30x x t x x t t t =+++=-+-+=即0AR AQ k k +=,又,M N 分别为直线,AQ AR 与y 轴焦点,得AMN ANM ∠=∠ 所以AM AN =得证.21.解(1)由题意,2'()(21)()xx f x ax eax x a e --=+-++2(12)1(1)(1)x xe ax a x a e x ax a --⎡⎤=-+-+-=--+-⎣⎦(i )当0a =时,'()(1)xf x e x -=--,令'()0f x >,得1x <;'()0f x <,得1x >;所以()f x 在(,1)-∞单调递增,(1,)+∞单调递减,所以()f x 的极大值为13(1)f e e=≠,不合题意. (ii )当0a >时,111a -<,令'()0f x >,得111x a -<<;'()0f x <,得11x a <-或1x >;所以()f x 在1(1,1)a -单调递增,1(,1),(1,)a-∞-+∞单调递减,所以()f x 的极大值为213(1)a f e e+==,得1a =. 综上所述:1a =(2)令(]2()(1),,0x xg a e x a xe a --=++∈-∞,当[)0,x ∈+∞时,2(1)0xe x -+≥,则()ln(1)g a b x ≤+对(],0a ∀∈-∞恒成立等价于()(0)ln(1)g a g b x ≤≤+, 即ln(1)xxeb x -≤+,对[)0,x ∈+∞恒成立.(i )当0b ≤时,(0,),bln(x 1)0,xe0xx -∀∈+∞+<>此时ln(1)x xe b x ->+,不合题意.(ii )当0b >时,令[)()ln(1),0,x h x b x xe x -=+-∈+∞则21'()()1(1)x x xb be x h x e xe x x --+-=--=++,其中[)(1)0,0,x x e x +>∀∈+∞ 令[)2()1,0,x p x be x x =+-∈+∞,则()p x 在区间[)0,+∞上单调递增,①1b ≥时,()(0)10p x p b ≥=-≥,所以对[)0,x ∀∈+∞,'()0h x ≥,从而()h x 在[)0,+∞上单调递增,所以对[)0,x ∈+∞,()(0)0h x h ≥=,即不等式ln(1)x b x xe -+≥在[)0,+∞上恒成立.②01b <<时,由(0)10,(1)0p b p be =-<=>及(0)p 在区间[)0,+∞上单调递增, 所以存在唯一的0(0,1)x ∈使得0()0p x =,且0(0,)x x ∈时,0()0p x < 从而0(0,)x x ∈时,'()0h x <,所以()h x 在区间0(0,)x 上单调递减, 则0(0,)x x ∈时,()(0)0h x h <=,即ln(1)xb x xe -+<,不符合题意.综上所述,1b ≥.22.解:(1)1C 的普通方程为221(0)x y y +=≥,把','3x x y y ==代入上述方程得,'2'2'1(3)3y x y +=≥, ∴2C 的方程为221(0)3y x y +=≥,令cos ,sin x y ρθρθ== 所以2C 的极坐标方程为[]222233(0,)3cos sin 2cos 1ρθπθθθ==∈++;(2)在(1)中建立的极坐标系中,直线l 的极坐标方程为()R θαρ=∈,由1ρθα=⎧⎨=⎩,得1A ρ=,由2232cos 1ρθθα⎧=⎪+⎨⎪=⎩,得232cos 1B ρα=+, 而231212cos 1α-=-+,∴1cos 2α=±,而[]0,απ∈,∴3πα=或23π.23.解:(1)(i )当1x ≤-时,原不等式可化为122x x --<--,解得1x <-,此时1x <-; (ii )当112x -<<-时,原不等式可化为122x x +<--,解得1x <-,此时无解; (iii )当12x ≥-时,原不等式可化为12x x +<,解得1x >,此时1x >; 综上,{1M x x =<-或}1x >(2)因为()()(ab)11111f ab ab b b ab b b b a b =+=++-≥+--=+-- 因为,a b M ∈,所以1,10b a >+>,所以(ab)11f a b >+--,即(ab)()()f f a f b >--。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018届ncs0607摸底调研考试
理科数学参考答案及评分标准
一、选择题:本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只
13.4514. 10
-15. 16. [3--
三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或推演步骤.
17.【解析】(1)∵1
22
n
n
S+
=-,∴当1
n=时,11
11
222
a S+
==-=;
当2
n≥时,1
1
222
n n n
n n n
a S S+
-
=-=-=,
又∵1
1
22
a==,∴2n
n
a=. ………………6分
(2)由(1)知,1
242
n n
n n n
b a S+
==⋅-,
∴123231
123
2(4444)(222)
n n n n
T b b b b+ =++++=++++-+++
12
4(14)4(12)24
242
141233
n n
n n
++
--
=⨯-=⋅-+
--
. ………………12分
18.
∴2
40(131278)
2.5 2.706
20202119
K
⨯⨯-⨯
=≈<
⨯⨯⨯
,
∴没有90%的把握认为“评定类型”与“性别”有关. ………………6分
(2)由(1)知,从小明这40位好友内该天走路步数超过10000步的人中男性6人,女性2人,
现从中抽取
3人,抽取的女性人数X服从超几何分布,
X的所有可能取值为0,1,2,
3
6
3
8
20
(0)
56
C
P X
C
===,
12
26
3
8
30
(1)
56
C C
P X
C
===,
12
62
3
18
6
(2)
56
C C
P X
C
===, (9)
分
∴X的分布列如下:
∴
20
()012.
5656564
E X=⨯+⨯+⨯=
19.【解析】(1)证明:∵,
M N分别为,
PD AD的中点,………………12分
则MN∥PA.又∵MN⊄平面PAB,PA⊂平面PAB,
∴MN∥平面PAB.
在Rt ACD ∆中,60,CAD CN AN ∠==o , ∴60ACN ∠=o
.
又∵60BAC ∠=o , ∴CN ∥AB .
∵CN ⊄平面PAB ,AB ⊂平面PAB ,∴CN ∥平面PAB . ………………4分 又∵CN MN N =I , ∴平面CMN ∥平面PAB . ………………6分 (2)∵PA ⊥平面ABCD ,∴平面PAC ⊥平面ACD ,
又∵DC AC ⊥,平面PAC I 平面ACD AC =,∴DC ⊥平面PAC , 如图,以点A 为原点,AC 为x 轴,
AP 为z 轴建立空间直角坐标系, ∴(0,0,0),(2,0,0),(0,0,2),
A C P D ,
(1
N ,∴(1(12)CN PN =-=-
,
设(,,)x y z =n 是平面PCN 的法向量,则0
CN PN ⎧⋅=⎪⎨⋅=⎪⎩
n n ,
即020x x z ⎧-=⎪
⎨-=⎪
⎩
,可取
=n , 又平面PAC 的法向量为CD = ,
∴cos ,|||CD CD CD ⋅===
n n n |, 由图可知,二面角N PC A --的平面角为锐角,
∴二面角N
PC A --. …………12分
20.【解析】
(1)设焦距为2c ,由已知2
c e a =
=
,22b =,∴1b =,2a =, ∴椭圆C 的标准方程为2
214
x y +=. ………………4分 (2)设1122(,),(,)M x y N x y ,联立22
14
y kx m x y =+⎧⎪⎨+=⎪⎩得222
(41)8440k x kmx m +++-=, 依题意,222(8)4(41)(44)0km k m ∆=-+->,化简得22
41m k <+,① 2121222
844
,4141
km m x x x x k k -+=-=++, ………………6分 2212121212()()()y y kx m kx m k x x km x x m =++=+++,
若54OM ON k k ⋅=,则12125
4
y y x x =, 即121245y y x x =,
∴
22121212
44()45k x x km x x m x x +++=,
∴22
222
4(1)8(45)4()404141
m km
k km m k k --⋅+⋅-+=++, 即222222
(45)(1)8(41)0k m k m m k ---++=,化简得2
2
5
4
m k +=
,②………………9分
由①②得2
2615
0,5204
m k ≤<<≤, ………………10分
∵原点O 到直线l
的距离d =
,
∴2
2
22225941114(1)k m d k k k -===-++++, 又∵215204
k <≤, ∴2
807d ≤<, ∴原点O 到直线l
的距离的取值范围是[0,7
. (12)
分
21.【解析】(1)函数()f x 的定义域为(0,)+∞,2
114()4mx f x mx x x
-'=-=,
当0m ≤时,()0f x '>, ∴()f x 在(0,)+∞上单调递增;
当0m >时,解()0f x '>
得0x <<,
∴()f x
在
上单调递增,在)+∞上单调递减. ………………6分 (2)由(1)知,当0m >时,()f x
在
上单调递增,在)+∞上单调递减.
∴max 111
()2ln 2ln ln 2422
f x f m n m n m ==⋅-=----=-,
∴11ln 22n m =--, ∴11
ln 22
m n m m +=--,
令11()ln 22h m m m =--,则121
()122m h m m m -'=-=,
∴()h m 在1(0,)2上单调递减,在1
(,)2+∞上单调递增,
∴min 11()()ln 222h m h ==, ∴m n +的最小值为1
ln 22
. ……………………12分
22.【解析】(1)曲线1C
的普通方程为22((2)4x y +-=,
即22430x y y +--+=,
则1C
的极坐标方程为2cos 4sin 30ρθρθ--+=, …………………3分
∵直线2C
的方程为y x =
, ∴直线2C 的极坐标方程()6R π
θρ=∈. …………………5分
(2)设1122(,),(,)P Q ρθρθ,
将()6
R πθρ=∈
代入2cos 4sin 30ρθρθ--+=得,2
530ρρ-+=,
∴123ρρ⋅=, ∴12|||| 3.OP OQ ρρ⋅== …………………10分
23.【解析】(1)∵()5|2|f x x >-+可化为|23||2|5x x -++>,
∴当3
2x ≥
时,原不等式化为(23)(2)5x x -++>,解得2x >,∴2x >; 当3
22
x -<<时,原不等式化为(32)(2)5x x -++>,解得0x <,∴20x -<<;
当2x ≤-时,原不等式化为(32)(2)5x x --+>,解得4
3
x <-,∴2x ≤-.
综上,不等式()5|2|f x x >-+的解集为(,0)(2,)-∞+∞ . …………………5分 (2)∵()|23|f x x =-,
∴()()()|223||223|g x f x m f x m x m x m =++-=+-+-- |(223)(223)||4|x m x m m ≥+----=,
∴依题设有4||4m =,解得1m =±. …………………10分。