2018年河南省安阳市高考数学一模试卷(理科)及答案

合集下载

2018年河南省高考数学一模试卷(理科)-(含解析)

2018年河南省高考数学一模试卷(理科)-(含解析)

2018年河南省高考数学一模试卷(理科)一、选择题1.已知集合,,则集合中元素的个数为A. 2B. 3C. 4D. 52.若复数i为虚数单位是纯虚数,则实数a的值为A. B. 13 C. D.3.已知,命题p:,,则A. p是假命题,¬:,B. p是假命题,¬:,C. p是真命题,¬:,D. p是真命题,¬:,4.已知程序框图如图,则输出i的值为A. 7B. 9C. 11D. 135.2018年元旦假期,高三的8名同学准备拼车去旅游,其中班、班,班、班每班各两名,分乘甲乙两辆汽车,每车限坐4名同学乘同一辆车的4名同学不考虑位置,其中班两位同学是孪生姐妹,需乘同一辆车,则乘坐甲车的4名同学中恰有2名同学是来自同一个班的乘坐方式共有A. 18种B. 24种C. 48种D. 36种6.《九章算术》是我国古代数学名著,在《九章算术》中将底面为矩形且有一侧棱垂直于底面的四棱锥称为“阳马”,若某阳马”的三视图如图所示,其中正视图和侧视图是腰长为1的两个全等的等腰直角三角形,则该“阳马”的表面积为A.B.C.D.7.设不等式组表示的平面区域为D,若圆C:不经过区域D上的点,则r的取值范围为A. B.C. D.8.若等边三角形ABC的边长为3,平面内一点M满足,则的值为A. B. C. 2 D.9.关于函数,下列命题正确的是A. 由可得是的整数倍B. 的表达式可改写成C. 的图象关于点对称D. 的图象关于直线对称10.设函数,若对于,恒成立,则实数m的取值范围为A. B. C. D.11.设双曲线的方程为,若双曲线的渐近线被圆M:所截得的两条弦长之和为12,已知的顶点A,B分别为双曲线的左、右焦点,顶点P在双曲线上,则的值等于A. B. C. D.12.已知定义在R上的函数和分别满足,,,则下列不等式恒成立的是A. B.C. D.13.设,则二项式的展开式中含项的系数为______.14.若函数为奇函数,则的值为______.15.已知三棱柱的底面是正三角形,侧棱底面ABC,若有一半径为2的球与三棱柱的各条棱均相切,则的长度为______.16.如图,OA,OB为扇形湖面OAB的湖岸,现欲利用渔网和湖岸在湖中隔出两个养殖区区域I和区域Ⅱ,点C在上,,,其中,半径OC 及线段CD需要用渔网制成若,,则所需渔网的最大长度为______.三、解答题17.已知为数列的前n项和,且,,,.求数列的通项公式;若对,,求数列的前2n项的和.18.如图所示,在四棱锥中,底面ABCD为直角梯形,,,,点E为AD的中点,,平面ABCD,且求证:;线段PC上是否存在一点F,使二面角的余弦值是?若存在,请找出点F的位置;若不存在,请说明理由.19.某地区为了解学生学业水平考试的状况,从参加学业水平考试的学生中抽出160名,其数学组成绩均为整数的频率分布直方图如图所示.估计这次考试数学成绩的平均分和众数;假设在段的学生中有3人得满分100分,有2人得99分,其余学生的数学成绩都不相同现从90分以上的学生中任取4人,不同分数的个数为,求的分布列及数学期望.20.已知椭圆:的离心率为,右焦点F是抛物线:的焦点,点在抛物线上求椭圆的方程;已知斜率为k的直线l交椭圆于A,B两点,,直线AM与BM的斜率乘积为,若在椭圆上存在点N,使,求的面积的最小值.21.已知函数,其导函数为当时,若函数在R上有且只有一个零点,求实数a的取值范围;设,点是曲线上的一个定点,是否存在实数使得成立?并证明你的结论.22.在直角坐标系xOy中,已知直线:为参数,:为参数,其中,以原点O为极点,x轴非负半轴为极轴,取相同长度单位建立极坐标系,曲线C的极坐标方程为.写出,的极坐标方程和曲线C的直角坐标方程;设,分别与曲线C交于点A,非坐标原点,求的值.23.设函数.当时,解不等式;已知的最小值为3,且,求的最小值.答案和解析【答案】1. C2. A3. C4. D5. B6. C7. A8. B9. D10. D11. C12. C13. 19214.15.16.17. 解:,.时,,化为:,,,时,,且,解得.数列是等差数列,首项为1,公差为3....数列的前2n项的和.18. 证明:,,,,E为AD的中点,,≌ ,,,,,又平面ABCD,平面ABCD,,又,且PH,平面PEC,平面PEC,又平面PEC,.解:由可知 ∽ ,由题意得,,,,,,,、EC、BD两两垂直,建立以H为坐标原点,HB、HC、HP所在直线分别为x,y,z轴的坐标系,0,,0,,4,,0,,0,,假设线段PC上存在一点F满足题意,与共线,存在唯一实数,,满足,解得,设向量y,为平面CPD的一个法向量,且,,,取,得,二面角的余弦值是,,由,解得,,,线段PC上存在一点F,当点F满足时,二面角的余弦值是.19. 解:分,众数为75分.分以上的人数为人.的可能取值为2,3,4,,,.的数学期望是.20. 解:点在抛物线上,,解得,椭圆的右焦点为,,椭圆:的离心率为,,,,椭圆的方程为,设直线l的方程为,设,,由,消y可得,,,,直线AM与BM的斜率乘积为,,解得,直线l的方程为,线段AB的中点为坐标原点,由弦长公式可得,,垂直平分线段AB,当时,设直线ON的方程为,同理可得,,当时,的面积也适合上式,令,,,则,当时,即时,的最小值为.21. 解:当时,,,,,由题意得,即,令,则,解得,当时,,单调弟增,当时,,单调递减,,当时,,当时,,由题意得当或时,在R上有且只有一个零点.由,得,假设存在,则有,即,,,即,,,令,则,两边同时除以,得,即,令,,令在上单调递增,且,对于恒成立,即对于恒成立,在上单调递增,,对于恒成立,不成立,同理,时,bngidnuu,不存在实数使得成立.22. 解:,的极坐标方程为,.曲线C的极坐标方程方程为即得,利用,得曲线C的直角坐标方程为.因为,,所以,所以的值为.23. 解:当时,,得,故,当时,,得,故,综上,不等式的解集是;的最小值是3,,故,,当且仅当即,时取“”.【解析】1. 解:,或;;1,2,.可先求出集合,或,然后进行交集、补集的运算即可.考查一元二次不等式的解法,以及描述法、列举法表示集合的概念,交集和补集的运算.2. 解:由复数是纯虚数,则,解得.故选:A.利用复数的除法运算化简为的形式,由实部等于0且虚部不等于求解a 的值.本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础的计算题.3. 解:,,当时,,命题p:,,是真命题,命题p:,,则¬:,.故选:C.利用特称值,判断特称命题的真假,利用命题的否定关系,特称命题的否定是全称命题写出结果.本题考查命题的否定,特称命题与全称命题的否定关系,基本知识的考查.4. 解:当时,不满足退出循环的条件,故,;当时,不满足退出循环的条件,故,;当时,不满足退出循环的条件,故,;当时,不满足退出循环的条件,故,;当时,不满足退出循环的条件,故,;当时,不满足退出循环的条件,故,;当时,满足退出循环的条件,故输出的,故选:D.由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量i的值,模拟程序的运行过程,可得答案.本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答.5. 解:由题意,第一类,一班的2名同学在甲车上,甲车上剩下两个要来自不同的班级,从三个班级中选两个为,然后分别从选择的班级中再选择一个学生为,故有种.第二类,一班的2名同学不在甲车上,则从剩下的3个班级中选择一个班级的两名同学在甲车上,为,然后再从剩下的两个班级中分别选择一人为,这时共有种,根据分类计数原理得,共有种不同的乘车方式,故选:B.分类讨论,第一类,一班的2名同学在甲车上;第二类,一班的2名同学不在甲车上,再利用组合知识,问题得以解决.本题考查计数原理的应用,考查组合知识,考查学生的计算能力,属于中档题.6. 解:由三视图知该几何体是侧棱垂直于底面的四棱锥,如图所示;正视图和侧视图是腰长为1的两个全等的等腰直角三角形,四棱锥的底面是正方形,且边长为1,其中一条侧棱底面ABCD,且侧棱,四棱锥的四个侧面都为直角三角形,且,四棱锥的表面积为.底面故选:C.由三视图知该几何体是侧棱垂直于底面的四棱锥,画出图形结合图形求出它的表面积.本题考查了利用空间几何体的三视图求几何体表面积的应用问题,是基础题.7. 解:作出不等式组表示的平面区域,得到如图的及其内部,其中,,圆C:表示以为圆心,半径为r的圆,由图可得,当半径满足或时,圆C不经过区域D上的点,,当或时,圆C不经过区域D上的点,故选:A.作出题中不等式组表示的平面区域,得到如图的及其内部,而圆C表示以为圆心且半径为r的圆观察图形,可得半径或时,圆C不经过区域D上的点,由此结合平面内两点之间的距离公式,即可得到r的取值范围.本题给出动圆不经过已知不等式组表示的平面区域,求半径r的取值范围着重考查了圆的标准方程、平面内两点间的距离公式、二元一次不等式组表示的平面区域等知识,属于中档题.8. 解:等边三角形ABC的边长为3;;;;,;.故选:B.根据条件可先求出,而由即可得出,这样即可用分别表示出,然后进行数量积的运算即可.考查向量数量积的运算及计算公式,以及向量的数乘运算,向量加法的几何意义.9. 解:函数,周期,对于A:由,可能与关于其中一条对称轴是对称的,此时不是的整数倍;不对.对于B:由诱导公式,不对.对于C:令,可得,不对,对于D:当时,可得,的图象关于直线对称.故选:D.根据函数,结合三角函数的性质即可判断各选项.本题主要考查利用的信息特征,判断各选项的正误,属于中档题.10. 解:由题意,,可得.当时,,不等式等价于.当时,的最小值为,若要不等式恒成立,则必须,因此,实数m的取值范围为,故选:D.利用分离参数法,再求出对应函数在上的最大值,即可求m的取值范围.本题考查恒成立问题,考查分离参数法的运用,解题的关键是分离参数,正确求最值,属于中档题.11. 解:双曲线的一条渐近线方程为,双曲线的渐近线被圆M:,即所截得的两条弦长之和为12,设圆心到直线的距离为d,则,,即,即,,,由正弦定理可得,,,,,故选:C.根据垂径定理求出圆心到直线的距离为,再根据点到直线的距离公式可得,得到,即可求出,根据正弦定理可得本题考查了双曲线的简单性质以及圆的有关性质和正弦定理,属于中档题12. 解:,令,则.,令,则,解得..,.令,,,函数在R上单调递减,,,可得:..故选:C.,令,则由,令,可得进而得出,,令,及其已知,可得,利用函数在R上单调递减,即可得出.本题考查了利用导数研究函数的单调性极值与最值、构造法、方程与不等式的解法,考查了推理能力与计算能力,属于难题.13. 解:由于,的通项公式为,令,求得,故含项的系数为.故答案为:192根据微积分基本定理首先求出a的值,然后再根据二项式的通项公式求出r的值,问题得以解决.本题主要考查定积分、二项式定理的应用,二项式展开式的通项公式,属于基础题.14. 解:函数为奇函数,故恒成立,故即,,,故答案为:.由已知中函数为奇函数,恒成立,可得a,b的值,进而可得的值.本题考查的知识点是分段函数的应用,函数的奇偶性,函数求值,难度中档.15. 解:由题意,的外接圆即为球的大圆,,设底面外接圆圆心G,即,从而正三角形ABC边长,设球心O,由题意,E、F在球面上,,F为DE中点,则,,在中,,,,,.故答案为:.由题意求出正三棱柱的高、底面边长,即可求出的长度.本题考查正三棱柱的内切球与正三棱柱的关系,通过二者的关系求出正三棱柱的体积,考查计算能力,逻辑推理能力.16. 解:由,,,得,,;在中,由正弦定理,得,,设渔网的长度为,可得,所以,因为,所以,令,得,所以,所以.所以故所需渔网长度的最大值为.确定,在中利用正弦定理求得CD的长度,根据所需渔网长度,即图中弧AC、半径OC和线段CD长度之和,确定函数的解析式,利用导数确定函数的最值,求得所需渔网长度的最大值.本题考查了正弦定理的应用问题,也考查了函数模型的构建与最值应用问题,是难题.17. ,时,,化为,由,可得,时,,且,解得利用等差数列的通项公式可得.利用分组求和即可得出.本题考查了数列递推关系、等差数列的定义通项公式与求和公式、分组求和方法,考查了推理能力与计算能力,属于中档题.18. 推导出 ≌ ,,从而,由平面ABCD,得,由此能证明平面PEC,从而.推导出PH、EC、BD两两垂直,建立以H为坐标原点,HB、HC、HP所在直线分别为x,y,z轴的坐标系,利用向量法能求出线段PC上存在一点F,当点F满足时,二面角的余弦值是.本题考查线线垂直垂直的证明,考查二面角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.19. 把组中值看作各小组的平均数,根据加权平均数公式计算;根据组合数公式计算各种情况的概率,得出分布列.本题考查了频率分布直方图,离散型随机变量的分布列和数学期望,属于中档题.20. 先求出p的值,即可求出c的值,根据离心率求出a的值,即可得到椭圆方程,设直线l的方程为,设,,由,根据直线AM与BM的斜率乘积为,求出,再根据弦长公式求出和,表示出三角形的面积来,再利用二次函数的性质即可求出最小值.本题考查椭圆的标准方程,直线与椭圆的位置关系,考查椭圆与二次函数函数的应用,考查计算能力,属于难题.21. 当时,,,,,由题意,令,则,解得,由此能求出当或时,在R上有且只有一个零点.由,得,假设存在,则,利用导数性质推导出不存在实数使得成立.本题考查利用导数研究函数的性质及实数的最值范围的求法、满足条件的实数是否存在的判断与证明,考查函数与方程思想、转化与化归思想,考查运算求解能力、推理论证能力,考查创新意识,是中档题.22. 考查直线,参数方程与极坐标方程的互化,曲线C的极坐标方程与直角坐标方程的互化重点都是消去参数t.利用,极坐标方程,结合余弦定理,计算出的长度.考查极坐标方程与参数方程,普通方程的互化记准互化公式和原则是关键,属于中档题目.23. 通过讨论x的范围,求出不等式的解集即可;根据绝对值不等式的性质求出a的值,结合基本不等式的性质求出的最小值即可.本题考查了解绝对值不等式问题,考查绝对值的性质以及基本不等式的性质,是一道中档题.。

2018届河南省安阳市高三第一次调研考试理科数学试题及答案

2018届河南省安阳市高三第一次调研考试理科数学试题及答案

安阳市2018届高三年级第一次调研考试理科数学试卷一、选择题:本大题共12小题,每小题5分。

在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数z=1ii-+2(i是虚数单位)在复平面上对应的点位于A.第一象限 B.第二象限 C.第三象限 D.第四象限2.已知集合M={y|y=2x,x>0},N={x|y=lg(2x-2x)},则M∩N为A.[2,+∞) B.(1,+∞) C.(1,2) D.[1,+∞)3.已知随机变量x,y的值如右表所示:如果y与x线性相关且回归直线方程为y=bx+72,则实数b=A.-12B.12C.-110D.1104.设a∈R,则“a=1”是“直线l1:ax+2y-1=0与直线l2:x+(a+1)y+4=0平行”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件5.如图是一个几何体的三视图,则这个几何体的体积是A.27B.36C.33D.306.执行右边的程序框图,如果输入a=4,那么输出的值为A.3 B.4C.5 D.67.设a,b是不同的直线,α,β是不同的平面,则下列命题:①若a⊥b,a⊥α,则b∥α;②若a∥α,α⊥β则a⊥β;③若a⊥β,α⊥β,则a∥α;④若a⊥b,a⊥α,b⊥β则a⊥β.其中正确命题的个数是A.0 B.1 C.2 D.38.在△ABC中,a,b,c分别为内角A,B,C的对边,已知b=5c,cosA=45,则sinB=x 2 3 4 y 5 4 6ABD9.231()x x+的展开式中的常数项为a ,则直线y =ax 与曲线y =2x 围成图形的面积为A .272 B .9 C .92D .274 10.已知△ABC 的外接圆半径为1,圆心为O ,且3OA +4OB +5OC =0,则OC ·AB 的值为 A .-15 B .15 C .-65 D .6511.抛物线2y =2px (p >0)的焦点为F ,已知点A ,B 为抛物线上的两个动点,且满足∠AFB =90°.过弦AB 的中点M 作抛物线准线的垂线MN ,垂足为N ,则MN AB ||||的最大值为 AB.1 D12.设函数f (x )=[],0,(0.x x x f x x ⎧⎨⎩-≥+1),<其中[x]表示不超过x 的最大整数,如[-1,1]=-2,[π]=3.若直线y =kx +k (k >0)与函数f (x )的图象恰好有3个不同的交点,则实数k 的取值范围是 A .(0,14) B .[14,13) C .(13,1) D .[14,1)第Ⅱ卷本卷包括,必考题和选考题两部分.第13题—第21题为必考题,每个试题考生都必须作答.第22题—第24题为选考题,考生根据要求作答. 二、填空题:本大题共4个小题.每小题5分.13.设等差数列{n a }的前n 项和为n S ,若2a ,4a 是方程2x -3x +2=0的两个实数根,则5S =______________.14.若对任意的正数x 使2x(x -a )≥1成立,则a 的取值范围是____________.15.已知变量x ,y 满足约束条件303010x x y ⎧⎪⎨⎪⎩+2y -≤+3y -≥-≤,若目标函数z =ax +y (其中a >0)仅在点(3,0)处取得最大值,则a 的取值范围为________________.16.已知函数f (x )=221x++sinx ,其导函数记为()f x ',则f (2018)+(2013)f '+ f (-2018)-(2013)f '-=______________. 三、解答题:解答应写出文字说明.证明过程或演算步骤. 17.(本小题满分12分)已知等差数列{n a }的前n 项和为n S ,公差d ≠0,且S 3+S 5=50,a 1,a 4,a 13成等比数 列.(Ⅰ)求数列{n a }的通项公式; (Ⅱ)设{nnb a }是首项为1,公比为3的等比数列,求数列{n b }的前n 项和n T . 18.(本小题满分12分)为了解今年某校高三毕业班准备报考飞行员学 生的体重情况,将所得的数据整理后,画出了频 率分布直方图(如图),已知图中从左到右的前3 个小组的频率之比为1 : 2 : 3,其中第2小组的频数为12.(Ⅰ)求该校报考飞行员的总人数;(Ⅱ)以这所学校的样本数据来估计全省的总体数据,若从全省报考飞行员的同学中(人数很 多)任选三人,设X 表示体重超过60公斤 的学生人数,求X 的分布列和数学期望.19.(本小题满分12分)如图,在四棱锥P -ABCD 中,平面PAD ⊥平面ABCD ,AB ∥DC ,△PAD 是等边三角形,已知BD =2AD =8,AB =2DC =5 (Ⅰ)设M 是PC 上的一点,证明:平面MBD ⊥平面PAD ; (Ⅱ)求二面角A -PB -D 的余弦值. 20.(12分)已知圆C 1: 2625(8x 2++y =,圆C 2: 261(8x 2+y =,动圆P 与已知两圆都外切. (Ⅰ)求动圆的圆心P 的轨迹E 的方程;(Ⅱ)直线l :y =kx +1与点P 的轨迹E 交于不同的两点A 、B ,AB 的中垂线与y 轴交于点N ,求点N 的纵坐标的取值范围.21.(12分)已知函数g (x )=ln xx,f (x )=g (x )-ax . (Ⅰ)求函数g (x )的单调区间;(Ⅱ)若函数f (x )在区间(1,+∞)上是减函数,求实数a 的最小值;(Ⅲ)若存在1x ,2x ∈[e ,2e ],(e =2.71828……是自然对数的底数)使f (1x )≤2()f x '+a ,求实数a 的取值范围.请考生在第22、23、24三题中任选一题做答,如果多做,则按所做的第一题记分.答时用2B 铅笔在答题卡上把所选题目的题号涂黑. 22.(本小题满分10分)选修4—1:平面几何选讲如图,点A 是以线段BC 为直径的圆O 上一点,AD ⊥BC 于点D ,过点B 作圆O 的切线,与CA 的延长线相交于点E ,点G 是AD 的中点,连结CG 并延长与BE 相交于点F ,延长AF 与CB 的延长线相交于点P . (Ⅰ)求证:BF =EF ;(Ⅱ)求证:PA 是圆O 的切线. 23.(本小题满分10分)选修4—4:坐标系与参数方程在直角坐标系xOy 中,曲线C 的参数方程为1x ty ⎧⎨⎩=2+=t +(t 为参数),以该直角坐标系的 原点O 为极点,x 轴的正半轴为极轴的极坐标系下,曲线P 方程为2ρ-4ρcos θ+3=0. (Ⅰ)求曲线C 的普通方程和曲线P 的直角坐标方程;(Ⅱ)设曲线C 和曲线P 的交点为A 、B ,求|AB |. 24.(本小题满分10分)选修4—5:不等式选讲已知函数f (x )=|2x -a |+5x ,其中实数a >0. (Ⅰ)当a =3时,求不等式f (x )≥5x +1的解集;(Ⅱ)若不等式f (x )≤0的解集为{x |≤-1},求a 的值.参考答案1 2 3 4 5 6 7 8 9 10 11 12 A C BADAAACAAB13.152 14(],1-∞- 15. 1,2⎛⎫+∞ ⎪⎝⎭ 16.2 三.解答题.17.(Ⅰ)依题意得⎪⎩⎪⎨⎧+=+=⨯++⨯+)12()3(5025452233112111d a a d a d a d a 解得⎩⎨⎧==231d a , 1212)1(23)1(1+=+=-+=-+=∴n a n n d n a a n n 即,.……6分(Ⅱ)13-=n nna b ,113)12(3--⋅+=⋅=n n n n n a b 123)12(37353-⋅+++⋅+⋅+=n n n T n n n n n T 3)12(3)12(3735333132⋅++⋅-++⋅+⋅+⋅=-2123232323(21)3n n n T n --=+⋅+⋅++⋅-+13(13)32(21)32313n n n n n --=+⋅-+=-⋅- ∴n n n T 3⋅= . ………12分18.解:(1)设报考飞行员的人数为n ,前三小组的频率分别为321,,p p p ,则由条件可得:⎪⎩⎪⎨⎧=⨯++++==15)013.0037.0(323211312p p p p p p p 解得375.0,25.0,125.0321===p p p 又因为np 1225.02==,故48=n ……………………6分(2) 由(1)可得,一个报考学生体重超过60公斤的概率为855)013.0037.0(3=⨯++=p p ………………8分所以x 服从二项分布,k k k C k x p -==33)83()85()(∴x0 1 2 3p 51227 512135 512225 512125则85123512251215120=⨯+⨯+⨯+⨯=Ex (或: 83=⨯=Ex )…12分 19.(1)证明:在ABD ∆中,由于4AD =,8BD =,45AB =∴222AD BD AB +=,故AD BD ⊥.又PAD ABCD ⊥平面平面,PAD ABCD AD =平面平面,BD ABCD ⊂平面,BD PAD ∴⊥平面,又BD MBD ⊂平面, 故平面MBD ⊥平面PAD …………5分(2)如图建立D xyz -空间直角坐标系,()0,0,0D ,()4,0,0A , (2,0,23,P ()0,8,0,B (2,8,23BP =-, ()4,8,0AB =-.设平面PAB 的法向量()111,,n x y z =,由1111148002800xy n AB x y n BP -+=⎧⎧⋅=⎪⎪⇒⎨⎨-+=⋅=⎪⎪⎩⎩令1111,2,3y x z ===则, n ⎛∴= ⎝⎭. 设平面PBD 的法向量()222,,m x y z =, ()0,8,0DB =由22228002800y m DB x y m BP =⎧⎧⋅=⎪⎪⇒⎨⎨-+=⋅=⎪⎪⎩⎩即2220x +=,令2x =()3,0,1m ∴=-219cos ,n m n m n m⋅==⋅∴二面角A-PB-D 12分20.解:(1)已知两圆的圆心半径分别为11:24C r =(-22:24C r =( 设动圆P 的半径为r,由题意知14PC r =+,24PC r =+则1212PC PC C C -=<=则点P 在以12,C C 为焦点的双曲线右支上,其中22a c ==21b =求得E 的方程为2221(0)x y x -=>…………5分(2)将直线1+=kx y 代入双曲线方程,并整理得022)2(22=++-kx x k 设1122(,),(,)A x y B x y ,AB 的中点为00(,)M x y 依题意,直线l 与双曲线的右支交于不同两点,故22212212220(2)8(2)0202202k k k k x x k x x k ⎧-≠⎪∆=-->⎪⎪⎨+=->-⎪⎪=>⎪-⎩22-<<-⇒k且022k x k -=-,002212y kx k -=+=-则AB 的中垂线方程为2221()22ky x k k k +=-+-- 令0x =得232N y k =-322Nk y -<<∴<-…………12分 21. 解:(1)由0ln 0x x >⎧⎨≠⎩得, 0x >且1x ≠,则函数()g x 的定义域为()()0,11,+∞,且()()2ln 1ln x g x x -'=,令()0g x '=,即ln 10x -=,解得x e = 当0x e <<且1x ≠时, ()0g x '<;当x e >时()0g x '>,∴函数()g x 的减区间是()()0,1,1,e ,增区间是(),e +∞………4分(2) 由题意得,函数()ln xf x ax x=-在()1,+∞上是减函数,∴()()2ln 10ln x f x a x -'=-≤在()1,+∞上恒成立,即()2ln 1ln x a x -≥在()1,+∞上恒成立, 令()()2ln 1ln x h x x -=,()1,x ∈+∞,因此()max a h x ≥即可由()22111111()ln ln ln 244h x x x x ⎛⎫=-+=--+≤ ⎪⎝⎭,当且仅当11ln 2x =,即2x e =时等号成立,∴()max 14h x =,因此14a ≥,故a 的最小值为14………8分(3)命题“若存在212,,x x e e ⎡⎤∈⎣⎦,使()()12f x f x a '≤+,”等价于 “当2,x e e ⎡⎤∈⎣⎦时,有()()min max f x f x a '≤+”, 由(2)得,当2,x e e ⎡⎤∈⎣⎦时,()max 14f x a '=-,则()max 14f x a '+=, 故问题等价于:“当2,x e e ⎡⎤∈⎣⎦时,有()min 14f x ≤”, ()()2ln 1ln x f x a x -'=-,由(2)知2ln 110,(ln )4x x -⎡⎤∈⎢⎥⎣⎦, (1) 当14a ≥时,()0f x '≤在2,e e ⎡⎤⎣⎦上恒成立,因此()f x 在2,e e ⎡⎤⎣⎦ 上为减函数,则()()222min 124e f x f e ae ==-≤,故21124a e≥-,(2)当0a ≤时, ()0f x '≥在2,e e ⎡⎤⎣⎦上恒成立,因此()f x 在2,e e ⎡⎤⎣⎦ 上为增函数,则()()min 14f x f e e ae e ==-≥>,不合题意 (3) 当104a <<时,由于()2211111()ln ln ln 24f x a a x x x ⎛⎫'=-+-=--+- ⎪⎝⎭ 在2,e e ⎡⎤⎣⎦ 上为增函数,故()f x ' 的值域为()()2,f e f e ⎡⎤''⎣⎦,即1,4a a ⎡⎤--⎢⎥⎣⎦. 由()f x '的单调性和值域知,存在唯一()20,x e e ∈,使()00f x '=,且满足:当()0,x e x ∈时,()0f x '<,()f x 减函数;当()20,x x e ∈时,()0f x '>,()f x 增函数;所以,()()000min 01ln 4x f x f x ax x ==-≤,()20,x e e ∈, 所以,22001111111ln 4ln 4244a x x e e ≥->->-=与104a <<矛盾,不合题意. 综上,得21124a e≥-.……12分22、 证明:(Ⅰ) BC ∵是圆O 的直径,BE 是圆O 的切线,EB BC ⊥∴.又AD BC ⊥∵, AD BE ∴∥.可以得知BFC DGC △∽△, FEC GAC △∽△.BF CF EF CF DG CG AG CG==∴,.BF EFDG AG =∴. G ∵是AD 的中点,DG AG =∴.BF EF =∴. (Ⅱ)连结AO AB ,.BC ∵是圆O 的直径,90BAC ∠=∴°.在Rt BAE △中,由(Ⅰ)得知F 是斜边BE 的中点, AF FB EF ==∴.FBA FAB ∠=∠∴.又OA OB =∵,ABO BAO ∠=∠∴.BE ∵是圆O 的切线,90EBO ∠=∴°90EBO FBA ABO FAB BAO FAO ∠=∠+∠=∠+∠=∠=∵°,PA ∴是圆O 的切线23(1)曲线C 的普通方程为01=--y x ,曲线P 的直角坐标方程为03422=+-+x y x .5分(2)曲线P 可化为1)2(22=+-y x ,表示圆心在)0,2(,半径=r 1的圆,则圆心到直线C 的距离为2221==d ,所以2222=-=d r AB .……10分 24、解:(1)当3a =时,()f x 51x ≥+可化为231x -≥,由此可得2x ≥或1x ≤.故不等式()f x 51x ≥+的解集为{}12x x x ≤≥或.………………5分 (2).法1:(从去绝对值角度讨论)由()0f x ≤,得250x a x -+≤,此不等式化为不等式组2250a x x a x ⎧≥⎪⎨⎪-+≤⎩或2(2)50a x x a x ⎧<⎪⎨⎪--+≤⎩,解得27a x a x ⎧≥⎪⎪⎨⎪≤⎪⎩或23a x a x ⎧<⎪⎪⎨⎪≤-⎪⎩,因为0a >,所以不等式组的解集为3a x x ⎧⎫≤-⎨⎬⎩⎭,由题设可得13a -=-,故3a =. 10分法2:(从等价转化角度考虑)由()0f x ≤,得25x a x -≤-,此不等式化等价于525x x a x ≤-≤-,即为不等式组5225x x a x a x ≤-⎧⎨-≤-⎩,解得37a x ax ⎧≤-⎪⎪⎨⎪≤⎪⎩,因为0a >,所以不等式组的解集为3a x x ⎧⎫≤-⎨⎬⎩⎭,由题设可得13a -=-,故3a =……10分法3:(从不等式与方程的关系角度突破)因为{}1x x ≤-是不等式()0f x ≤的解集,所以1x =-是方程()0f x =的根, 把1x =-代入250x a x -+=得37a a ==-或,因为0a >,所以3a =………10分。

河南省安阳市高考数学一模试卷(理科)

河南省安阳市高考数学一模试卷(理科)

2018年河南省安阳市高考数学一模试卷(理科)一、选择题:本题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A={x|﹣2≤x≤2},B={y|y=3x﹣1,x∈R},则A∩B=()A.(﹣1,+∞)B.[﹣2,+∞)C.[﹣1,2]D.(﹣1,2]2.(5分)已知复数,则在复平面内所对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.(5分)已知函数f(x)满足:①对任意x1,x2∈(0,+∞)且x1≠x2,都有;②对定义域内任意x,都有f(x)=f(﹣x),则符合上述条件的函数是()A.f(x)=x2+|x|+1 B.C.f(x)=ln|x+1|D.f(x)=cosx 4.(5分)若,则cosα﹣2sinα=()A.﹣1 B.1 C.D.﹣1或5.(5分)已知等比数列{a n}中,a1=1,a3+a5=6,则a5+a7=()A.12 B.10 C.D.6.(5分)执行如图所示的程序框图,若输入p=0.99,则输出的n=()A.6 B.7 C.8 D.97.(5分)如图所示是一个几何体的三视图,则该几何体的体积是()A.4+2πB.C.4+πD.8.(5分)在边长为a的正三角形内任取一点P,则点P到三个顶点的距离均大于的概率是()A.B.C.D.9.(5分)已知{a n}为等差数列,S n为其前n项和,若a3+7=2a5,则S13=()A.49 B.91 C.98 D.18210.(5分)已知函数,要得到g(x)=cosx的图象,只需将函数y=f(x)的图象()A.向右平移个单位 B.向右平移个单位C.向左平移个单位D.向左平移个单位11.(5分)已知F1,F2分别是椭圆的左、右焦点,P为椭圆上一点,且(O为坐标原点),若,则椭圆的离心率为()A.B.C.D.12.(5分)已知函数,(e为自然对数的底数),则函数的零点个数为()A.8 B.6 C.4 D.3二、填空题:本题共4小题,每小题5分,共20分.13.(5分)展开式中的常数项为.14.(5分)已知向量=(2,3),=(x,y),且变量x,y满足,则z=•的最大值为.15.(5分)已知AB为圆C:x2+y2﹣2y=0的直径,点P为直线y=x﹣1上任意一点,则|PA|2+|PB|2的最小值为.16.(5分)在棱长为4的密封正方体容器内有一个半径为1的小球,晃动此正方体,则小球可以经过的空间的体积为.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17-21题为必考题,每个试题考生都必须作答.第22,23题为选考题,考生根据要求作答. 17.(12分)已知在△ABC中,内角A,B,C所对的边分别为a,b,c,且满足a+2acosB=c.(Ⅰ)求证:B=2A;(Ⅱ)若△ABC为锐角三角形,且c=2,求a的取值范围.18.(12分)某公司为了准确把握市场,做好产品计划,特对某产品做了市场调查:先销售该产品50天,统计发现每天的销售量x分布在[50,100)内,且销售量x的分布频率.(Ⅰ)求a的值并估计销售量的平均数;(Ⅱ)若销售量大于等于70,则称该日畅销,其余为滞销.在畅销日中用分层抽样的方法随机抽取8天,再从这8天中随机抽取3天进行统计,设这3天来自X个组,求随机变量X的分布列及数学期望(将频率视为概率).19.(12分)如图,在空间直角坐标系O﹣xyz中,正四面体(各条棱均相等的三棱锥)ABCD的顶点A,B,C分别在x轴,y轴,z轴上.(Ⅰ)求证:CD∥平面OAB;(Ⅱ)求二面角C﹣AB﹣D的余弦值.20.(12分)如图,在平面直角坐标系xOy中,直线l1:y=x与直线l2:y=﹣x之间的阴影部分记为W,区域W中动点P(x,y)到l1,l2的距离之积为1.(Ⅰ)求点P的轨迹C的方程;(Ⅱ)动直线l穿过区域W,分别交直线l1,l2于A,B两点,若直线l与轨迹C 有且只有一个公共点,求证:△OAB的面积恒为定值.21.(12分)已知函数,g(x)=3elnx,其中e为自然对数的底数.(Ⅰ)讨论函数f(x)的单调性.(Ⅱ)是否存在实数a,b,使f(x)≥ax+b≥g(x)对任意x∈(0,+∞)恒成立?若存在,试求出a,b的值;若不存在,请说明理由.(二)选考题:共10分.请考生在第22,23题中任选一题作答,如果多做,则按所做的第一题计分.【选修4-4:坐标系与参数方程】22.(10分)设直线l的参数方程为,(t为参数),若以直角坐标系xOy的原点O为极点,x轴的正半轴为极轴,选择相同的长度单位建立极坐标系,曲线C的极坐标方程为ρsin2θ=4cosθ.(Ⅰ)将曲线C的极坐标方程化为直角坐标方程,并指出曲线C是什么曲线;(Ⅱ)若直线l与曲线C交于A,B两点,求|AB|.【选修4-5:不等式选讲】23.已知函数f(x)=|x+1|+a|2x﹣1|.(Ⅰ)当时,若对任意x∈R恒成立,求m+n的最小值;(Ⅱ)若f(x)≥|x﹣2|的解集包含[﹣1,2],求实数a的取值范围.2018年河南省安阳市高考数学一模试卷(理科)参考答案与试题解析一、选择题:本题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A={x|﹣2≤x≤2},B={y|y=3x﹣1,x∈R},则A∩B=()A.(﹣1,+∞)B.[﹣2,+∞)C.[﹣1,2]D.(﹣1,2]【解答】解:∵集合A={x|﹣2≤x≤2},B={y|y=3x﹣1,x∈R}={y|y>﹣1},∴A∩B={x|﹣1<x≤2}=(﹣1,2].故选:D.2.(5分)已知复数,则在复平面内所对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:∵=,∴,则在复平面内所对应的点的坐标为(﹣,﹣),位于第三象限角.故选:C.3.(5分)已知函数f(x)满足:①对任意x1,x2∈(0,+∞)且x1≠x2,都有;②对定义域内任意x,都有f(x)=f(﹣x),则符合上述条件的函数是()A.f(x)=x2+|x|+1 B.C.f(x)=ln|x+1|D.f(x)=cosx【解答】解:由题意得:f(x)是偶函数,在(0,+∞)递增,对于A,f(﹣x)=f(x),是偶函数,且x>0时,f(x)=x2+x+1,f′(x)=2x+1>0,故f(x)在(0,+∞)递增,符合题意;对于B,函数f(x)是奇函数,不合题意;对于C,由x+1=0,解得:x≠﹣1,定义域不关于原点对称,故函数f(x)不是偶函数,不合题意;对于D,函数f(x)在(0,+∞)无单调性,不合题意;故选:A.4.(5分)若,则cosα﹣2sinα=()A.﹣1 B.1 C.D.﹣1或【解答】解:若,则1+cosα=3sinα,又sin2α+cos2α=1,∴s inα=,∴cosα=3sinα﹣1=,∴cosα﹣2sinα=﹣,故选:C.5.(5分)已知等比数列{a n}中,a1=1,a3+a5=6,则a5+a7=()A.12 B.10 C.D.【解答】解:∵,a1=1,a3+a5=6,∴a3+a5=q2+q4=6,得q4+q2﹣6=0,即(q2﹣2)(q2+3)=0,则q2=2,则a5+a7=q4+q6=22+23=4+8=12,故选:A6.(5分)执行如图所示的程序框图,若输入p=0.99,则输出的n=()A.6 B.7 C.8 D.9【解答】解:模拟程序的运行,可得程序框图的功能是计算S=+++…的值.由题意,S=+++…==1﹣≥0.99,可得:2k≥100,解得:k≥7,即当n=8时,S的值不满足条件,退出循环.故选:C.7.(5分)如图所示是一个几何体的三视图,则该几何体的体积是()A.4+2πB.C.4+πD.【解答】解:由几何体的三视图得:该几何体是一个长方体和一个半圆柱的组合体,其中长方体的长为4,宽为1,高为1,半圆柱的底面半径为r=1,高为h=1,如图,∴该几何体的体积:V=4×1×1+=4+.故选:D.8.(5分)在边长为a的正三角形内任取一点P,则点P到三个顶点的距离均大于的概率是()A.B.C.D.【解答】解:满足条件的正三角形ABC如下图所示:边长AB=a,=•a2•sin=a2;其中正三角形ABC的面积S三角形满足到正三角形ABC的顶点A、B、C的距离至少有一个小于1的平面区域,如图中阴影部分所示,其加起来是一个半径为的半圆,=•π•=,∴S阴影∴使取到的点到三个顶点A、B、C的距离都大于的概率是:P=1﹣=1﹣π.故选:B.9.(5分)已知{a n}为等差数列,S n为其前n项和,若a3+7=2a5,则S13=()A.49 B.91 C.98 D.182【解答】解:设等差数列{a n}的公差为d,∵a3+7=2a5,∴a1+2d+7=2(a1+4d),化为:a1+6d=7=a7.则S13==13a7=13×7=91.故选:B.10.(5分)已知函数,要得到g(x)=cosx的图象,只需将函数y=f(x)的图象()A.向右平移个单位 B.向右平移个单位C.向左平移个单位D.向左平移个单位【解答】解:将函数y=f(x)=sin(x﹣)的图象向左平移个单位,可得y=sin(x+﹣)=cosx的图象,故选:D.11.(5分)已知F1,F2分别是椭圆的左、右焦点,P为椭圆上一点,且(O为坐标原点),若,则椭圆的离心率为()A.B.C.D.【解答】解:如图,取PF1的中点A,连接OA,∴2=+,=,∴+=,∵,∴•=0,∴⊥,∵,不妨设|PF2|=m,则|PF1|=m,∵|PF2|+|PF1|=2a=m+m,∴m=a=2(﹣1)a,∵|F1F2|=2c,∴4c2=m2+2m2=3m2=3×4a2(3﹣2),∴=9﹣6=(﹣)2,∴e=﹣,故选:A12.(5分)已知函数,(e为自然对数的底数),则函数的零点个数为()A.8 B.6 C.4 D.3【解答】解:令f(x)=t可得f(t)=t+1.作出f(x)的函数图象如图所示:设直线y=kx+1与y=e x相切,切点为(x0,y0),则,解得x0=0,k=1.设直线y=kx+1与y=lnx相切,切点为(x1,y1),则,解得x1=e2,k=.∴直线y=t+1与f(t)的图象有4个交点,不妨设4个交点横坐标为t1,t2,t3,t4,且t1<t2<t3<t4,由图象可知t1<0,t2=0,0<t3<1,t4=e2.由f(x)的函数图象可知f(x)=t1无解,f(x)=t2有1解,f(x)=t3有3解,f (x)=t4有2解.∴F(x)有6个零点.故选:B.二、填空题:本题共4小题,每小题5分,共20分.13.(5分)展开式中的常数项为.【解答】解:二项式展开式的通项公式为T r+1=•x6﹣r•=••,令6﹣=0,解得r=4;∴展开式中的常数项为•=.故答案为:.14.(5分)已知向量=(2,3),=(x,y),且变量x,y满足,则z=•的最大值为.【解答】解:由约束条件作出可行域如图,联立,解得A(),∵=(2,3),=(x,y),∴z=•=2x+3y,化为y=,由图可知,当直线y=过A时,直线在y轴上的截距最大,z有最小值为.故答案为:.15.(5分)已知AB为圆C:x2+y2﹣2y=0的直径,点P为直线y=x﹣1上任意一点,则|PA|2+|PB|2的最小值为6.【解答】解:圆C:x2+y2﹣2y=0,转化为:x2+(y﹣1)2=1,则:圆心(0,1)到直线y=x﹣1的距离d=,由于AB为圆的直径,则:点A到直线的最小距离为:.点B到直线的距离为.则:|PA|2+|PB|2==6,故答案为:616.(5分)在棱长为4的密封正方体容器内有一个半径为1的小球,晃动此正方体,则小球可以经过的空间的体积为.【解答】解:∵在棱长为4的密封正方体容器内有一个半径为1的小球,晃动此正方体,∴小球可以经过的空间的体积:V==.故答案为:.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17-21题为必考题,每个试题考生都必须作答.第22,23题为选考题,考生根据要求作答. 17.(12分)已知在△ABC中,内角A,B,C所对的边分别为a,b,c,且满足a+2acosB=c.(Ⅰ)求证:B=2A;(Ⅱ)若△ABC为锐角三角形,且c=2,求a的取值范围.【解答】解:(Ⅰ)证明:根据题意,在△ABC中,a+2acosB=c,由正弦定理知sinA+2sinAcosB=sinC=sin(A+B)=sinAcosB+cosAsinB,即sinA=cosAsinB﹣sinAcosB=sin(B﹣A).因为A,B∈(0,π),所以B﹣A∈(﹣π,π),且A+(B﹣A)=B∈(0,π),所以A+(B﹣A)≠π,所以A=B﹣A,B=2A.(Ⅱ)由(Ⅰ)知,.由△ABC为锐角三角形得,得,则0<cosB<,由a+2acosB=2得,又由0<cosB<,则.18.(12分)某公司为了准确把握市场,做好产品计划,特对某产品做了市场调查:先销售该产品50天,统计发现每天的销售量x分布在[50,100)内,且销售量x的分布频率.(Ⅰ)求a的值并估计销售量的平均数;(Ⅱ)若销售量大于等于70,则称该日畅销,其余为滞销.在畅销日中用分层抽样的方法随机抽取8天,再从这8天中随机抽取3天进行统计,设这3天来自X个组,求随机变量X的分布列及数学期望(将频率视为概率).【解答】解:(Ⅰ)由题知,解得5≤n≤9n,n可取5,6,7,8,9,代入中,得,a=0.15.销售量在[50,60),[60,70),[70,80),[80,90),[90,100)内的频率分别是0.1,0.1,0.2,0.3,0.3,销售量的平均数为55×0.1+65×0.1+75×0.2+85×0.3+95×0.3=81.(Ⅱ)销售量在[70,80),[80,90),[90,100)内的频率之比为2:3:3,所以各组抽取的天数分别为2,3,3.X的所有可能值为1,2,3,,,.X的分布列为:X123P数学期望.19.(12分)如图,在空间直角坐标系O﹣xyz中,正四面体(各条棱均相等的三棱锥)ABCD的顶点A,B,C分别在x轴,y轴,z轴上.(Ⅰ)求证:CD∥平面OAB;(Ⅱ)求二面角C﹣AB﹣D的余弦值.【解答】(Ⅰ)证明:由AB=BC=CA,可得OA=OB=OC.设OA=a,则,A(a,0,0),B(0,a,0),C(0,0,a),设D点的坐标为(x,y,z),则由,可得(x﹣a)2+y2+z2=x2+(y﹣a)2+z2=x2+y2+(z﹣a)2=2a2,解得x=y=z=a,∴.又平面OAB的一个法向量为,∴,∴CD∥平面OAB;(Ⅱ)解:设F为AB的中点,连接CF,DF,则CF⊥AB,DF⊥AB,∠CFD为二面角C﹣AB﹣D的平面角.由(Ⅰ)知,在△CFD中,,,则由余弦定理知,即二面角C﹣AB﹣D的余弦值为.20.(12分)如图,在平面直角坐标系xOy中,直线l1:y=x与直线l2:y=﹣x之间的阴影部分记为W,区域W中动点P(x,y)到l1,l2的距离之积为1.(Ⅰ)求点P的轨迹C的方程;(Ⅱ)动直线l穿过区域W,分别交直线l1,l2于A,B两点,若直线l与轨迹C 有且只有一个公共点,求证:△OAB的面积恒为定值.【解答】解:(Ⅰ)由题意得,|(x+y)(x﹣y)|=2.因为点P在区域W内,所以x+y与x﹣y同号,得(x+y)(x﹣y)=x2﹣y2=2,即点P的轨迹C的方程为.(Ⅱ)设直线l与x轴相交于点D,当直线l的斜率不存在时,,,得.当直线l的斜率存在时,设其方程为y=kx+m,显然k≠0,则,把直线l的方程与C:x2﹣y2=2联立得(k2﹣1)x2﹣2kmx+m2+2=0,由直线l与轨迹C有且只有一个公共点,知△=4k2m2﹣4(k2﹣1)(m2+2)=0,得m2=2(k2﹣1)>0,得k>1或k<﹣1.设A(x1,y2),B(x2,y2),由得,同理,得.所以=.综上,△OAB的面积恒为定值2.21.(12分)已知函数,g(x)=3elnx,其中e为自然对数的底数.(Ⅰ)讨论函数f(x)的单调性.(Ⅱ)是否存在实数a,b,使f(x)≥ax+b≥g(x)对任意x∈(0,+∞)恒成立?若存在,试求出a,b的值;若不存在,请说明理由.【解答】解:(Ⅰ)根据题意,函数,,令f'(x)=0得.当且x≠0时,f'(x)<0;当时,f'(x)>0.所以f(x)在(﹣∞,0)上单调递减,在上单调递减,在上单调递增.(Ⅱ)根据题意,注意到f(e)=g(e)=3e,则ae+b=3e,b=3e﹣ae①.于是,ax+b≥g(x)即a(x﹣e)﹣3e(1﹣lnx)≥0,则记h(x)=a(x﹣e)+3e(1﹣lnx),,若a≤0,则h'(x)<0,得h(x)在(0,+∞)上单调递减,则当x>e时,有h(x)<h(e)=0,不合题意;若a>0,易知h(x)在上单调递减,在上单调递增,得h(x)在(0,+∞)上的最小值.记,则,得m(a)有最大值m(3)=0,即m(a)≤m(3)=0,又m(a)≥0,故a=3,代入①得b=0.当a=3,b=0时,f(x)≥ax+b即⇔2x3﹣3ex2+e3≥0.记φ(x)=2x3﹣3ex2+e3,则φ'(x)=6x(x﹣e),得φ(x)在(0,+∞)上有最小值φ(e)=0,即φ(x)≥0,符合题意.综上,存在a=3,b=0,使f(x)≥ax+b≥g(x)对任意x∈(0,+∞)恒成立.(二)选考题:共10分.请考生在第22,23题中任选一题作答,如果多做,则按所做的第一题计分.【选修4-4:坐标系与参数方程】22.(10分)设直线l的参数方程为,(t为参数),若以直角坐标系xOy的原点O为极点,x轴的正半轴为极轴,选择相同的长度单位建立极坐标系,曲线C的极坐标方程为ρsin2θ=4cosθ.(Ⅰ)将曲线C的极坐标方程化为直角坐标方程,并指出曲线C是什么曲线;(Ⅱ)若直线l与曲线C交于A,B两点,求|AB|.【解答】解:(Ⅰ)由于ρsin2θ=4cosθ,所以ρ2sin2θ=4ρcosθ,即y2=4x,因此曲线C表示顶点在原点,焦点在x轴上的抛物线.(Ⅱ),化为普通方程为y=2x﹣1,代入y2=4x,并整理得4x2﹣8x+1=0,所以,=,=.【选修4-5:不等式选讲】23.已知函数f(x)=|x+1|+a|2x﹣1|.(Ⅰ)当时,若对任意x∈R恒成立,求m+n的最小值;(Ⅱ)若f(x)≥|x﹣2|的解集包含[﹣1,2],求实数a的取值范围.【解答】解:(Ⅰ)当时,,∴,∴.∴,∴,当且仅当m=n时等号成立,∵m,n>0,解得,当且仅当m=n时等号成立,故m+n的最小值为.(Ⅱ)∵f(x)≥|x﹣2|的解集包含[﹣1,2],当x∈[﹣1,2]时,有x+1+a|2x﹣1|≥2﹣x,∴a|2x﹣1|≥1﹣2x对x∈[﹣1,2]恒成立,当时,a(1﹣2x)≥1﹣2x,∴a≥1;当时,a(2x﹣1)≥1﹣2x,∴a≥﹣1.综上:a≥1.故实数a的取值范围是[1,+∞).。

河南安阳2018届高考第二次模拟考试数学理试题 含答案 精品

河南安阳2018届高考第二次模拟考试数学理试题 含答案 精品

2018届高三毕业班第二次模拟考试数学(理科) 第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合2{|log }A x y x =={}|22B x x =-≤≤,则A B = ( ) A .[]12, B .(02], C .[]22-, D .(2]-∞,2.若复数1z i =-,z 为z 的共轭复数,则复数1izz -的虚部为( ) A .i B .i - C .1 D .1-3.如图所示的是一块儿童玩具积木的三视图,其中俯视图中的半曲线段为半圆,则该积木的表面积为( )A .26B .26π+C .26π-D .262π-4.已知命题p :0(0)x ∃∈-∞,,0023x x <,则p ⌝为( ) A .0[0)x ∃∈+∞,,0023x x < B .0(0)x ∃∈-∞,,0023x x ≥ C.0[0)x ∀∈+∞,,23x x < D .(0)x ∀∈-∞,,2x x ≥ 5.在某校连续5次考试成绩中,统计甲,乙两名同学的数学成绩得到如图所示的茎叶图.已知甲同学5次成绩的平均数为81,乙同学5次成绩的中位数为73,则x y +的值为( )A .3B .4 C.5 D .66.若执行如图所示的程序框图,其中[01]rand ,表示区间[01],上任意一个实数,则输出数对()x y ,的概率为( )A .12 B .6π C.4πD7.已知a ,b 表示两条不同的直线,α,β表示两个不同的平面,下列说法错误的是( ) A .若a α⊥,b β⊥,αβ∥,则a b ∥ B .若a α⊥,b β⊥,a b ⊥,则αβ⊥ C.若a α⊥,a b ⊥,αβ∥,则b β∥ D .若a αβ= ,a b ∥,则b a ∥或b β∥ 8.若实数x ,y 满足21000x y x y x -+⎧⎪+⎨⎪⎩≥≥≤,则z x y =-的最大值是( )A .0B .1 C.23 D .139.将3sin 4y x =的图象向左平移12π个单位长度,再向下平移3个单位长度得到()y f x =的图象,若()f m a =,则3f m π⎛⎫-= ⎪⎝⎭( )A .a -B .3a -- C.3a -+ D .6a --10.已知圆1C :2220x y kx y +-+=与圆2C :2240x y ky ++-=的公共弦所在直线恒过定点()P a b ,,且点P 在直线20mx ny --=上,则mn 的取值范围是( )A .104⎛⎫ ⎪⎝⎭,B .104⎛⎤ ⎥⎝⎦, C.14⎛⎫-∞ ⎪⎝⎭, D .14⎛⎤-∞ ⎥⎝⎦,11.已知在ABC △中,角A ,B ,C 所对的边分别为a ,b ,c ,cos b C a =,点M 在线段AB 上,且ACM BCM ∠=∠.若66b CM ==,则cos BCM ∠=( ) AB .34D12.设函数2()ln(1)()f x x a x x =++-,若()f x 在区间(0)+∞,上无零点,则实数a 的取值范围是( )A .[01],B .[10]-, C.[02], D .[11]-, 第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上) 13.已知1sin24α=,则22cos 4πα⎛⎫-= ⎪⎝⎭ .14.已知焦点在x 轴上的双曲线22184x y m m +=--,它的焦点F 到渐近线的距离的取值范围是 .15.已知在OAB △中,2OA OB ==,AB =P 位于线段AB 上,则当PA PO ⋅取最小值时,向量PA 与PO的夹角的余弦值为 .16.已知定义在R 上奇函数()f x 和偶函数()g x 满足211()()21x f x g x x --=+,若11(5)()1g x g g x g x x ⎛⎫⎛⎫++<+ ⎪ ⎪-⎝⎭⎝⎭,则x 的取值范围是 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. 设等差数列{}n a 的前n 项和为n S ,点()n n S ,在函数2()1f x x Bx C =++-(B C ∈R ,)的图象上,且1a C =.(1)求数列{}n a 的通项公式;(2)记数列12(1)n n n b a a -=+,求数列{}n b 的前n 项和n T .18. 如图,在直三棱柱111ABC A B C -中,底面ABC △是边长为2的等边三角形,D 为BC 的中点,侧棱13AA =,点E 在1BB 上,点F 在1CC 上,且1BE =,2CF =.(1)证明:平面CAE ⊥平面ADF ; (2)求二面角F AD E --的余弦值.19. 随着互联网技术的快速发展,人们更加关注如何高效地获取有价值的信息,网络知识付费近两年呈现出爆发式的增长,为了了解网民对网络知识付费的态度,某网站随机抽查了35岁及以上不足35岁的网民共90人,调查结果如下:(1)请完成上面的22⨯列联表,并判断在犯错误的概率不超过0.001的前提下,能否认为网民对网络知识付费的态度与年龄有关?(2)在上述样本中用分层抽样的方法,从支持和反对网络知识付费的两组网民中抽取9名,若在上述9名网民中随机选2人,设这2人中反对态度的人数为随机变量X ,求X 的分布列和数学期望.附:22()()()()()n ad bc K a b c d a c b d -=++++,n a b c d =+++.20. 已知椭圆2221x y a +=(1a >)的上顶点与抛物线22x py =(0p >)的焦点F 重合.(1)设椭圆和抛物线交于A ,B 两点,若AB =(2)设直线l 与抛物线和椭圆均相切,切点分别为P ,Q ,记PFQ △的面积为S ,求证:2S >. 21. 已知函数22()21x f x e kx x =---,e 为自然对数的底数. (1)若当0x ≥时,()0f x ≥恒成立,求k 的取值范围;(2)设0k =,若()2(1)1f x a x b -+-≥对x ∀∈R 恒成立,求ab 的最大值. 请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,已知直线l :x =,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,圆C 的极坐标方程为4sin ρθ=. (1)求直线l 的极坐标方程和圆C 的直角坐标方程; (2)射线OP :6πθ=与圆C 的交点为O ,A ,与直线l 的交点为B ,求线段AB 的长.23.选修4-5:不等式选讲 已知函数()1f x x a x =++-. (1)若1a =,解不等式()4f x <;(2)对任意满足1m n +=的正实数m ,n ,若总存在实数0x ,使得011()f x m n+≥成立,求实数a 的取值范围.2018届高三毕业班第二次模拟考试数学(理科)·答案一、选择题1-5:BCADA 6-10:CCBDD 11、12:BA 二、填空题 13.5414.(02),15. 16.{}|201x x x x >-≠≠且且三、解答题17.解:(1)设数列{}n a 的公差为d ,则211(1)222n n n d d S na d n a n -⎛⎫=+=+- ⎪⎝⎭,又21n S n Bn C =++-,两式对照得1210dC ⎧=⎪⎨⎪-=⎩121d a C =⎧⎨==⎩所以数列{}n a 的通项公式为21n a n =-. (2)1(21)(2211)(21)2n n n b n n -=-⋅-+=- 则21232(21)2n n T n =⨯+⨯++-⋅23121232(23)2(21)2n n n T n n +=⨯+⨯++-⋅+-⋅两式相减得12(21)22(22)2n n n T n +=-⋅-++-2112(12)(21)22212n n n -+-=-⋅---1(23)26n n +=-⋅+18.解:(1)∵ABC △是等边三角形,D 为BC 的中点, ∴AD BC ⊥,∴AD ⊥平面11BCC B ,得AD CE ⊥.① 在侧面11BCC B 中,1tan 2CD CFD CF ∠==,1tan 2BE BCE BC ∠==, ∴tan tan CFD BCE ∠=∠,CFD BCE ∠=∠∴90BCE FDC CFD FDC ∠+∠=∠+∠=︒,∴CE DF ⊥.② 结合①②,又∵AD DF D = ,∴CE ⊥平面ADF , 又∵CE ⊂平面CAE ,∴平面CAE ⊥平面ADF (2)解法一:如图建立空间直角坐标系D xyz -.则00)A ,,(012)F -,,,(011)E ,,.得00)DA = ,,(012)DF =- ,,,(011)DE =,,设平面ADF 的法向量()m x y z = ,,,则00m DA m DF ⎧⋅=⎪⎨⋅=⎪⎩即020y z =-+=⎪⎩得02x y z =⎧⎨=⎩取(021)m = ,,.同理可得,平面ADE 的法向量(011)n =-,,∴cos m n m n m n ⋅==, 则二面角F AD E --. 解法二:由(1)知AD ⊥平面11BCC B ,∴AD DE ⊥,AD DF ⊥. ∴EDF ∠即二面角F AD E --的平面角在平面11BCC B 中,易知45BDE ∠=︒,∴135CDE CDF EDF ∠=∠+∠=︒, 设tan EDF x ∠=,∵tan 2CDF ∠= ∴2tan tan()112xCDE CDF EDF x+∠=∠+∠==--,解得3x =. 即tan 3EDF ∠=,∴cos EDF ∠= 则二面角F AD E --. 19.解:(1)22⨯列联表如下:2290(3032208)14.57510.82850403852K ⨯⨯-⨯=≈>⨯⨯⨯所以在犯错误的概率不超过0.001的前提下,可以认为网民对网络知识付费的态度与年龄有关. (2)易知抽取的9人中,有5人支持,4人反对.X 的可能取值为0,1,2,且25295(0)18C P X C ===,1154295(1)9C C P X C ===,24291(2)6C P X C ===则X 的分布列为X 的数学期望5518()01218969E X =⨯+⨯+⨯= 20.解:(1)易知(01)F ,,则抛物线的方程为24x y =由AB =B x =代入24B B x y =,得1B y =,则1)B .21)1+=,得22a =, 所以椭圆的方程为2212x y +=.(2)设切点2(2)P m m ,,24x y =即214y x =,求导得2xy '=,则切线l 的斜率为m ,方程2(2)y m m x m -=-,即()y m x m =-,将之与椭圆2221x y a +=联立得2222324(1)2(1)0a m x a m x a m +-+-=,令判别式46222444(1)(1)0a m a a m m ∆=-+-=化简整理得2241a m m +=,4221m a m -=,此时23422311Q a m m x a m m -==+ 设直线l 与y 轴交于点2(0)R m -,,则 12PFR QFR P Q S S S FR x x =-=-△△42311(1)22m m m m -=+-243(1)(1)2m m m++=由基本不等式得2120m m +=≥≥,42120m m +=≥≥ 则232222m m S m⨯=≥,仅当1m =时取等号,但此时20a =,故等号无法取得,于是2S >.21.解:(1)由题意得(0)0f =,且2()222x f x e kx '=--,注意到(0)0f '= 设()()m x f x '=,则2()42x m x e k '=-,则()m x '为增函数,且(0)42m k '=-. 讨论如下:①若2k ≤,()(0)0m x m ''≥≥,得()f x '在[0)+∞,上单调递增,有()(0)0f x f ''=≥,得()f x 在[0)+∞,上单调递增,有()(0)0f x f =≥,合题意; ②若2k >,令()0m x '<,得1ln 22k x <,则当时,()0m x '<,得()f x '在10ln 22k ⎡⎫⎪⎢⎣⎭,上单调递减,有()(0)0f x f ''<=,得()f x 在10ln 22k ⎡⎫⎪⎢⎣⎭,上单调递减,有()(0)0f x f <=,舍去.综上,k 的取值范围(2]-∞,. (2)当0k =时,2()212(1)1x f x e x a x b =---+-≥,即22x e ax b -≥. 令2t x =,则原问题转化为t e at b -≥对R t ∀∈恒成立. 令()t g t e at =-,()t g t e a '=-.若0a <,则()0g t '>,得()g t 单调递增,当t →-∞时,()g t →-∞,()g t b ≥不可能恒成立,舍去;若0a =,则0ab =;若0a >,则易知()g t 在ln t a =处取得最小值(ln )ln g a a a a =-,所以ln b a a a -≤,2221(1ln )1ln 2ab a a a a ⎛⎫-=- ⎪⎝⎭≤,将2a 看做新的自变量x ,即求函数1()1ln 2h x x x ⎛⎫=- ⎪⎝⎭的最大值, 则11()ln 22h x x '=-,令()0h x '=,得x e =. 所以()h x 在(0)e ,上递增,在()e +∞,上递减,所以max ()()2eh x h e ==,即ab 的最大值为2e,此时ab =.22.解:(1)在x =cos x ρθ=,sin y ρθ=.得cos sin ρθθ=2sin 6πρθ⎛⎫+= ⎪⎝⎭.即为直线l 的极坐标方程.由4sin ρθ=得24sin ρρθ=,即224x y y +=. 22(2)4x y +-=,即为圆C 的直角坐标方程.(2)4sin26A πρ==52sin 66B ρ==+ ⎪⎝⎭所以3A B AB ρρ=-=. 23.解:(1)()11f x x x =++-当1x -≤时,由()24f x x =-<得2x >-,则21x -<-≤; 当11x -<≤时,()24f x =<恒成立;当1x >时,由()24f x x =<得2x <,则12x <<. 综上,不等式()4f x <的解集为{}|22x x -<< (2)由题意1111()114n mm n m n m n m n⎛⎫+=++=+++ ⎪⎝⎭≥, 由绝对值不等式得()11f x x a x a =++-+≥,当且仅当()(1)0x a x +-≤时取等号,故()f x 的最小值为1a +.由题意得41a +≥,解得53a -≤≤.。

2018年高考数学(理科)模拟试卷一含答案解析.doc

2018年高考数学(理科)模拟试卷一含答案解析.doc

2018年高考数学(理科)模拟试卷(一) (本试卷分第Ⅰ卷和第Ⅱ卷两部分.满分150分,考试时间120分钟)第Ⅰ卷(选择题满分60分)一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2016年四川)设集合A={x|1≤x≤5},Z为整数集,则集合A∩Z中元素的个数是() A.6 B.5C.4D.31.B解析:由题意,A∩Z={1,2,3,4,5},故其中的元素的个数为5.故选B.2.(2016年山东)若复数z满足2z+z=3-2i,其中i为虚数单位,则z=()A.1+2i B.1-2iC.-1+2i D.-1-2i2.B解析:设z=a+b i(a,b∈R),则2z+z=3a+b i=3-2i,故a=1,b=-2,则z=1-2i.故选B.3.(2015年北京)某四棱锥的三视图如图M1-1,该四棱锥最长棱的棱长为()图M1-1A.1 B.2 C.3D.23.C解析:四棱锥的直观图如图D188:由三视图可知,SC⊥平面ABCD,SA是四棱锥最长的棱,SA=SC2+AC2=SC2+AB2+BC2=3.故选C.图D1884.曲线y=x3-2x+4在点(1,3)处的切线的倾斜角为()A. B. C. D.4.C解析:f′(x)=3x2-2,f′(1)=1,所以切线的斜率是1,倾斜角为.进入循环体,a=-,否,k=1,a=-2,否,k=2,a=1,ππππ6342π4 5.设x∈R,[x]表示不超过x的最大整数.若存在实数t,使得[t]=1,[t2]=2,…,[t n]=n同时成立,则正整数n的最大值是() A.3B.4C.5D.65.B解析:因为[x]表示不超过x的最大整数.由[t]=1,得1≤t<2,由[t2]=2,得2≤t2<3.由[t3]=3,得3≤t3<4.由[t4]=4,得4≤t4<5.所以2≤t2<5.所以6≤t5<45.由[t5]=5,得5≤t5<6,与6≤t5<45矛盾,故正整数n的最大值是4.6.(2016年北京)执行如图M1-2所示的程序框图,若输入的a值为1,则输出的k值为()图M1-2A.1B.2C.3D.46.B解析:输入a=1,则k=0,b=1;12此时a=b=1,输出k,则k=2.故选B.7.某市重点中学奥数培训班共有14人,分为两个小组,在一次阶段考试中两个小组成绩的茎叶图如图M1-3,其中甲组学生成绩的平均数是88,乙组学生成绩的中位数是89,则m+n的值是()7.C解析:由题意,得=88,n=9.所以m+n=12.⎪⎩x≥0,图M1-3A.10B.11C.12D.1378+88+84+86+92+90+m+957故选C.8.(2015年陕西)某企业生产甲、乙两种产品均需用A,B两种原料.已知分别生产1吨甲、乙产品需原料及每天原料的可用限额如表所示,如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得最大利润为()项目A/吨B/吨甲31乙22原料限额128A.12万元B.16万元C.17万元D.18万元8.D解析:设该企业每天生产甲、乙两种产品分别为x吨、y吨,则利润z=3x+4y.⎧⎪3x+2y≤12,由题意可得⎨x+2y≤8,y≥0.其表示如图D189阴影部分区域:图D189当直线3x+4y-z=0过点A(2,3)时,z取得最大值,所以zmax=3×2+4×3=18.故选D.9.(2016年新课标Ⅲ)定义“规范01数列”{a n}如下:{a n}共有2m项,其中m项为0,m项为1,且对任意k≤2m,a1,a2,…,ak中0的个数不少于1的个数.若m=4,则不同的“规范01数列”共有() A.18个B.16个C.14个D.12个9.C解析:由题意,必有a1=0,a8=1,则具体的排法列表如下:10.(2016 年 天 津 )已知函数f(x)=sin 2ω x + sin ωx - (ω>0),x ∈ ⎛ 1⎤ ⎛ 1⎤ ⎡5 ⎫ A. 0, ⎥ B. 0, ⎥∪⎢ ,1⎪ ⎛5⎤ ⎛ 1⎤ ⎡1 5⎤ C. 0, ⎥ D. 0, ⎥∪⎢ , ⎥ 1-cos ω x sin ω x 1 2 ⎛ ⎛π ⎫ 10.D 解析:f(x)= + - = sin ω x - ⎪,f(x)=0⇒sin ω x - ⎪ k π +⎛1 1⎫ ⎛5 5⎫ ⎛9 9⎫ ⎛1 1⎫ ⎛5 ⎫ ⎛ 1⎤ ⎡1 5⎤因此 ω , ⎪∪ , ⎪∪ , ⎪∪…= , ⎪∪ ,+∞⎪⇒ω∈ 0, ⎥∪⎢ , ⎥.故选4 ⎭ A .3 B. C .23 D. ∥PA ,所以 OE ⊥底面 ABCD ,则 O 到四棱锥的所有顶点的距离相等,即 O 为球心, PC =1 1 4 ⎛1 ⎫ 243π 7 PA2+AC2= PA2+8,所以由球的体积可得 π PA2+8⎪3= ,解得 PA = .故选1 12 2 2R.若f(x)在区间(π,2π)内没有零点,则ω的取值范围是()⎝ 8⎦ ⎝ 4⎦ ⎣8 ⎭⎝ 8⎦ ⎝ 8⎦ ⎣4 8⎦2 2 2 2 ⎝ ⎝ 4 ⎭ =0,π4所以 x = (π,2π),(k ∈Z).ω⎝8 4⎭ ⎝8 4⎭ ⎝8 4⎭ ⎝8 4⎭ ⎝8 ⎭ ⎝ 8⎦ ⎣4 8⎦D.11.四棱锥P-ABCD 的底面ABCD 为正方形,PA底面ABCD ,AB =2,若该四棱锥的所有顶点都在体积为⊥243π 16的同一球面上,则P A =()729211.B 解析:如图 D190,连接 AC ,BD 交于点 E ,取 PC 的中点 O ,连接 OE ,则 OE122 23 ⎝2 ⎭ 16 2B.12.已知F 为抛物线y 2=x 的焦点,点A 、B 在该抛物线上且位于x 轴两侧,若 OA ·OBA .4 B. C. D. 10OA · OB =6,所以 x 1· x 2+y 1· y 2=6,从而(y 1· y 2)2+y 1· y 2-6=0,因为点 A ,B 位于 x 轴的两侧, 所以 y 1· y 2=-3,故 m =3,不妨令点 A 在 x 轴上方,则 y 1>0,又 F ,0⎪,所以 △S ABO +△S ⎝4⎭8 2 y1 2 8×3×(y 1-y 2)+ × y 1= y 1+,即 y 1= 时取等号,故其最小值为 .故选 B.|c|·|a| |c|·|b| 5a2 -y214.设F 是双曲线C :x2b图D190→→=6(O 为坐标原点△),则 ABO 与△AOF 面积之和的最小值为()3 1317 2 2412.B 解析:设直线 AB 的方程为 x =ty +m ,点 A(x 1,y 1),B(x 2,y 2),直线 AB 与 x轴的交点为 M (m,0),将直线方程与抛物线方程联立,可得 y 2-ty -m =0,根据韦达定理有 y 1· y 2=-m ,因为 →→⎛1 ⎫AFO 1 1 1 13 9 =2 2 4 8 2y1 ≥213 9 1 313 13y1 ·y1· · = ,当且仅当 =9 6 13 3 132y1 13 2第Ⅱ卷(非选择题 满分90分)本卷包括必考题和选考题两部分.第 13~21 题为必考题,每个试题考生必须作答.第22~23 题为选考题,考生根据要求作答.二、填空题:本大题共 4 小题,每小题 5 分.13.平面向量a =(1,2),b =(4,2),c =m a +b (m ∈R),且c 与a 的夹角等于c 与b 的夹角,则m =________.13.2 解析:a =(1,2),b =(4,2),则 c =m a +b =(m +4,2m +2),|a |= 5,|b |=2 5,c·a c·b 5m +8a · c =5m +8,· c =8m +20.∵c 与 a 的夹角等于 c 与b 的夹角,∴ = .∴8m +20 = .解得 m =2.2 5b2=1的一个焦点,若C 上存在点P ,使线段PF 的中点恰为其虚轴的一个端点,则C 的离心率为__________.16.在区间[0,π]上随机地取一个数x ,则事件“sin x ≤ ”发生的概率为________.⎛π ⎫ ⎛5π ⎫ 6⎝ 6 ⎭ 1-0 + π - ⎪ ⎪17.解:(1)设{a n }的公比为 q ,{b n }的公差为 d ,由题意知 q >0.由已知,有⎨c,2b )在双曲线上,有 - =1,则 e 2=5,e = 5. 11⎡ ⎤0,16.解析:由正弦函数的图象与性质知,当 x ∈⎢∪⎢ ,π ⎥时,sin x ≤ .⎥π 36 ⎦ ⎣ 6 ⎩14. 5 解析:根据双曲线的对称性,不妨设 F(c,0),虚轴端点为(0,b ),从而可知点(-c2 4b2a2 b215.(2016 年北京)在(1-2x)6的展开式中,x 2的系数为________.(用数字作答)15.60 解析:根据二项展开的通项公式 T r +1=C r6·(-2)r x r 可知,x 2 的系数为 C 26(-2)2=60,故填 60.123⎣ ⎦ 2⎭ ⎝ 所以所求概率为 = .三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分 )已知{a n }是各项均为正数的等比数列,{b n }是等差数列,且a 1=b 1=1,b 2+b 3=2a 3,a 5 -3b 2=7.(1)求{a n }和{b n }的通项公式;(2)设c n =a n b n ,n ∈N *,求数列{c n }的前n 项和.⎧⎪2q2-3d =2, ⎪q4-3d =10. 消去 d ,得 q 4-2q 2-8=0.解得 q =2,d =2.所以{a n }的通项公式为 a n =2n -1,n ∈N *, {b n }的通项公式为 b n =2n -1,n ∈N *.(2)由(1)有 c n =(2n -1)2n -1,设{c n }的前 n 项和为 S n , 则 S n =1×20+3×21+5×22+…+(2n -1)×2n -1, 2S n =1×21+3×22+5×23+…+(2n -1)×2n .两式相减,得-S n =1+22+23+…+2n -(2n -1)×2n =-(2n -3)×2n -3. 所以 S n =(2n -3)·2n +3,n ∈N *.18.( 本 小 题 满 分 12 分 )(2014 年 大纲 )设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6,0.5,0.5,0.4,各人 是否需使用设备相互独立.(1)求同一工作日至少3人需使用设备的概率;(2)X 表示同一工作日需使用设备的人数,求X 的数学期望.18.解:记 A 1 表示事件:同一工作日乙、丙中恰有 i 人需使用设备,i =0,1,2. B 表示事件:甲需使用设备. C 表示事件:丁需使用设备.D 表示事件:同一工作日至少 3 人需使用设备.(1)因为 P(B)=0.6,P(C)=0.4,P(A i )=C i2×0.52,i =0,1,2,∠P AB=90°,BC=CD=AD,E为边AD的中点,异面直线P A与CD所成的角为90°.所以P(D)=P(A1·B·C+A2·B+A2·B·C)=P(A1·B·C)+P(A2·B)+P(A2·B·C)=P(A1)P(B)P(C)+P(A2)P(B)+P(A2)P(B)P(C)=0.31.(2)X的可能取值为0,1,2,3,4,其分布列为P(X=0)=P(B·A·C)=P(B)P(A0)P(C)=(1-0.6)×0.52×(1-0.4)=0.06,P(X=1)=P(B·A·C+B·A·C+B·A1·C)=P(B)P(A)P(C)+P(B)P(A)P(C)+P(B)P(A1)P(C)=0.6×0.52×(1-0.4)+(1-0.6)×0.52×0.4+(1-0.6)×2×0.52×(1-0.4)=0.25,P(X=4)=P(A2·B·C)=P(A2)P(B)P(C)=0.52×0.6×0.4=0.06,P(X=3)=P(D)-P(X=4)=0.25,P(X=2)=1-P(X=0)-P(X=1)-P(X=3)-P(X=4)=1-0.06-0.25-0.25-0.06=0.38,所以E(X)=0×P(X=0)+1×P(X=1)+2×P(X=2)+3×P(X=3)+4×P(X=4)=0.25+2×0.38+3×0.25+4×0.06=2.19.(本小题满分12分)(2016年四川)如图M1-4,在四棱锥P-ABCD中,AD∥BC,∠ADC=12(1)在平面P AB内找一点M,使得直线CM∥平面PBE,并说明理由;(2)若二面角P-CD-A的大小为45°,求直线P A与平面PCE所成角的正弦值.图M1-419.解:(1)在梯形ABCD中,AB与CD不平行.延长AB,DC,相交于点M(M∈平面P AB),点M即为所求的一个点.理由如下:由已知,BC∥ED,且BC=ED,所以四边形BCDE是平行四边形.所以CD∥EB.从而CM∥EB.又EB平面PBE,CM平面PBE,所以CM∥平面PBE.(说明:延长AP至点N,使得AP=PN,则所找的点可以是直线MN上任意一点)(2)方法一,由已知,CD⊥P A,CD⊥AD,PA∩AD=A,所以CD⊥平面P AD.从而CD⊥PD.所以∠PDA是二面角P-CD-A的平面角.所以∠PDA=45°.所以AH=.在△Rt P AH中,PH=PA2+AH2=,所以sin∠APH==.作Ay⊥AD,以A为原点,以AD,AP的方向分别为x轴,z轴的正方向,建立如图D192所以PE=(1,0,-2),EC=(1,1,0),AP=(0,0,2)PEEC→则sinα==|n|·|AP|2×22+-+123所以直线PA与平面PCE所成角的正弦值为.设BC=1,则在Rt△P AD中,P A=AD=2.如图D191,过点A作AH⊥CE,交CE的延长线于点H,连接PH.易知P A⊥平面ABCD,从而P A⊥CE.于是CE⊥平面P AH.所以平面PCE⊥平面P AH.过A作AQ⊥PH于Q,则AQ⊥平面PCE.所以∠APH是PA与平面PCE所成的角.在△Rt AEH中,∠AEH=45°,AE=1,22322AH1PH3图D191图D192方法二,由已知,CD⊥P A,CD⊥AD,PA∩AD=A,所以CD⊥平面P AD.于是CD⊥PD.从而∠PDA是二面角P-CD-A的平面角.所以∠PDA=45°.由PA⊥AB,可得PA⊥平面ABCD.设BC=1,则在△Rt P AD中,P A=AD=2.→→所示的空间直角坐标系Axyz,则A(0,0,0),P(0,0,2),C(2,1,0),E(1,0,0),→→→设平面PCE的法向量为n=(x,y,z),⎧⎪n·→=0,由⎨⎪⎩n·→=0,⎧⎪x-2z=0,得⎨⎪⎩x+y=0.设x=2,解得n=(2,-2,1).设直线PA与平面PCE所成角为α,|n·AP|2→1=.1320.(本小题满分12分)(2016年新课标Ⅲ)设函数f(x)=ln x-x+1.(2)证明当x ∈(1,+∞)时,1< <x ;20.解:(1)由题设,f(x)的定义域为(0,+∞),f ′(x)= -1,令 f ′(x)=0,解得 x =1.故当 x ∈(1,+∞)时,ln x <x -1,ln < -1,即 1< <x.ln c 令 g ′(x)=0,解得 x 0= .21.解:(1)设椭圆 C 的方程为 + =1(a >b >0),因为点 B(2, 2)在椭圆 C 上,所以 + =1.②所以椭圆 C 的方程为 + =1.因为直线 y =kx(k ≠0)与椭圆 + =1 交于两点 E ,F ,(1)讨论f(x)的单调性;x -1ln x(3)设c >1,证明当x ∈(0,1)时,1+(c -1)x >c x .1x当 0<x <1 时,f ′(x)>0,f(x)单调递增; 当 x >1 时,f ′(x)<0,f(x)单调递减.(2)由(1)知,f(x)在 x =1 处取得最大值,最大值为 f(1)=0. 所以当 x ≠1 时,ln x <x -1.1 1 x -1x x ln x(3)由题设 c >1,设 g (x)=1+(c -1)x -c x , 则 g ′(x)=c -1-c x ln c.c -1 lnln c当 x <x 0 时,g ′(x)>0,g (x)单调递增; 当 x >x 0 时,g ′(x)<0,g (x)单调递减.c -1由(2)知,1<ln c <c ,故 0<x 0<1.又 g (0)=g (1)=0,故当 0<x <1 时,g (x)>0. 所以 x ∈(0,1)时,1+(c -1)x >c x .21.( 本 小 题 满 分 12 分 )(2016 年 广 东 广 州 综 合 测 试一)已知椭圆C 的中心在坐标原点,焦点在x 轴上,左顶点为A ,左焦点为F 1(-2,0),点B(2, 2 )在椭圆C 上,直线y =kx(k ≠0)与椭圆C 交于E ,F 两点,直线AE ,AF 分别与y 轴交于点M ,N .(1)求椭圆C 的方程;(2)以MN 为直径的圆是否经过定点?若经过,求出定点的坐标;若不经过,请说明理 由.x2 y2a2 b2因为椭圆的左焦点为 F 1(-2,0),所以 a 2-b 2=4.①4 2a2 b2由①②,解得 a =22,b =2. x2 y28 4(2)因为椭圆 C 的左顶点为 A ,则点 A 的坐标为(-2 2,0).x2 y28 4设点 E(x 0,y 0)(不妨设 x 0>0),则点 F(-x 0,-y 0).⎪⎩ 84 .所以 x 0= 2,则 y 0= .- ⎝ 2⎫2⎫2⎪ ,即 x 2+y 2+ y =4.⎛ 4π ⎫(2,π)、B 2, ⎪.⎛4π 4π ⎫ 22.解:(1)将 A 、B 化为直角坐标为 A(2cos π,2sin π),B 2cos ,2sin ⎪,即 A ,⎪⎨ d = =⎧⎪y =kx ,联立方程组⎨x2 y2+ =1消去 y ,得 x 2=81+2k22 1+2k2 2 2k 1+2k2k所以直线 AE 的方程为 y = (x +2 2).1+ 1+2k2因为直线 AE ,AF 分别与 y 轴交于点 M ,N ,2 2k ⎛ 2 2k ⎫令 x =0 得 y = ,即点 M 0, ⎪.1+ 1+2k2 ⎝ 1+ 1+2k2⎭ ⎛ 2 2k ⎫同理可得点 N 0, ⎪.⎝ 1- 1+2k2⎭⎪ 2 2k 2 2k ⎪ 2 所以|MN |=⎪ ⎪=⎪1+ 1+2k2 1- 1+2k2⎪⎛ 设 MN 的中点为 P ,则点 P 的坐标为 P 0,- ⎝+|k|2⎫⎪.k ⎭.⎛ ⎛ 则以 MN 为直径的圆的方程为 x 2+ y + ⎪ =k ⎭ ⎝+ |k| 2 2⎭ k令 y =0,得 x 2=4,即 x =2 或 x =-2.故以 MN 为直径的圆经过两定点 P 1(2,0),P 2(-2,0),请考生在第(22)(23)两题中任选一题作答.注意:只能作答在所选定的题目上.如果多做,则按所做的第一个题目计分.22.(本小题满分 10 分)选修4-4:极坐标与参数方程已知曲线C 的参数方程是⎧x =2cos θ , ⎪⎩y =sin θ(θ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,A 、B 的极坐标分别为A⎝ 3 ⎭(1)求直线AB 的直角坐标方程;(2)设M 为曲线C 上的动点,求点M 到直线AB 距离的最大值.⎝ 3 3 ⎭ B 的直角坐标分别为 A(-2,0),B(-1,- 3),k AB = - 3-0 -1+2=- 3,∴直线 AB 的方程为 y -0=- 3(x +2), 即直线 AB 的方程为 3x +y +2 3=0.(2)设 M (2cos θ,sin θ),它到直线 AB 的距离|2 3cos θ +sin θ +2 3| | 13 2θ +φ2+2 3|,2 ⎧⎪x≤ , ⎩ 解得 1<x ≤ ,或 <x < . ⎧⎪ ⎪ 5 所以原不等式的解集为⎨x ⎪1<x< ⎪⎩ ⎪∴d max =13+2 3 .23.(本小题满分 10 分)选修4-5:不等式选讲已知函数f(x)=|x -2|-|2x -a|,a ∈R .(1)当a =3时,解不等式f(x)>0;(2)当x ∈(-∞,2)时,f(x)<0恒成立,求a 的取值范围. 23.解:(1)当 a =3 时,f(x)>0,即|x -2|-|2x -3|>0, 3 等价于⎨ 2 ⎪⎩x -1>0, ⎧⎪3<x<2, 或⎨2 ⎪⎩-3x +5>0,⎧⎪x≥2, 或⎨ ⎪-x +1>0. 3 3 5 2 2 33 ⎫⎪ ⎬. ⎪⎭ (2)f(x)=2-x -|2x -a|,所以 f(x)<0 可化为|2x -a|>2-x , ①即 2x -a >2-x ,或 2x -a <x -2.①式恒成立等价于(3x -2)min >a 或(x +2)max <a , ∵x ∈(-∞,2),∴a ≥4.。

2018年河南省六市高考数学一模试卷(理科)

2018年河南省六市高考数学一模试卷(理科)

2018年河南省六市高考数学一模试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合A={x|lg(x−2)<1},集合B={x|x2−2x−3<0},则A∪B等于()A.(2, 12)B.(−1, 3)C.(−1, 12)D.(2, 3)2. 已知i为虚数单位,若复数1+i1−i=a+bi(a, b∈R),则a+b=()A.−iB.iC.−1D.13. 现有5人参加抽奖活动,每人依次从装有5张奖票(其中3张为中奖票)的箱子中不放回地随机抽取一张,直到3张中奖票都被抽出时活动结束,则活动恰好在第4人抽完结束的概率为()A.1 10B.15C.310D.254. 汽车以v=(3t+2)m/s作变速运动时,在第1s至2s之间的1s内经过的路程是()A.5mB.112m C.6m D.132m5. 为考察A、B两种药物预防某疾病的效果,进行动物试验,分别得到如下等高条形图,如图所示.根据图中信息,在下列各项中,说法最佳的一项是()A.药物B的预防效果优于药物A的预防效果B.药物A的预防效果优于药物B的预防效果C.药物A、B对该疾病均有显著的预防效果D.药物A、B对该疾病均没有预防效果6. 一个几何体的三视图如图所示,该几何体的各个表面中,最大面的面积为()A.2√15B.√15C.2D.47. 已知数列{a n}满足a n+1+(−1)n+1a n=2,则其前100项和为()8. 已知锐角三角形ABC,角A、B、C的对边分别为a、b、c,若b2=a(a+c),则sin2Asin(B−A)的取值范围是()A.(0, 1)B.(12,√22) C.(0,√22) D.(12,1)9. 设a1,a2,…,a2017是数列1,2,…,2017的一个排列,观察如图所示的程序框图,则输出的F的值为()A.2015B.2016C.2017D.201810. 在三棱锥S−ABC中,SB⊥BC,SA⊥AC,SB=BC,SA=AC,AB=12SC,且三棱锥S−ABC的体积为9√32,则该三棱锥的外接球的半径为()A.1B.2C.3D.411. 椭圆x2a2+y2b2=1(a>b>0)与函数y=√x的图象交于点P,若函数y=√x的图象在点P处的切线过椭圆的左焦点F(−1, 0),则椭圆的离心率是( )A.√3−12B.√5−12C.√3−√22D.√5−√2212. 若关于x的方程xe +e xx−e+m=0有3个不相等的实数解x1,x2,x3,且x1<0<x2<x3,其中m∈R,e=2.71828……,则(x1e x1−1)2(x2e x2−1)(x3e x3−1)的值为()A.1B.1−mC.1+mD.e二、填空题(每题5分,满分20分,将答案填在答题纸上)→→→→已知二项式(x 2+1x )n 的展开式的二项式系数之和为32,则展开式中含x 项的系数是________(用数字作答).已知P 是双曲线C:x 22−y 2=1右支上一点,直线l 是双曲线的一条渐近线,P 在l 上的射影为Q ,F 1是双曲线的左焦点,则|PF 1|+|PQ|的最小值是________.已知动点P(x, y)满足{2x +y ≤4,x ≥1,(x +√x 2+1)(√y 2+1−y)≤1,则x 2+y 2−6x 的最小值是________.三、解答题(本大题共6题,共70分.解答应写出文字说明、证明过程或演算步骤.)已知数列{a n }中,a 1=1,其前n 项的和为S n ,且满足a n =2S n 22S n −1(n ≥2).(1)求证:数列{1S n}是等差数列;(2)证明:当n ≥2时,S 1+12S 2+13S 3+⋯+1n S n <32.我们国家正处于老龄化社会中,老有所依也是政府的民生工程.某市共有户籍人口400万,其中老人(年龄60岁及以上)人数约有66万,为了了解老人们的健康状况,政府从老人中随机抽取600人并委托医疗机构免费为他们进行健康评估,健康状况共分为不能自理、不健康尚能自理、基本健康、健康四个等级,并以80岁为界限分成两个群体进行统计,样本分布制作成如图:(1)若采用分层抽样的方法从样本中的不能自理的老人中抽取8人进一步了解他们的生活状况,则两个群体中各应抽取多少人?(2)估算该市80岁及以上长者占全市户籍人口的百分比;(3)据统计该市大约有五分之一的户籍老人无固定收入,政府计划为这部分老人每月发放生活补贴,标准如下:①80岁及以上长者每人每月发放生活补贴200元; ②80岁以下老人每人每月发放生活补贴120元;③不能自理的老人每人每月额外发放生活补贴100元.小数)如图,在四棱锥P −ABCD 中,PD ⊥平面ABCD ,底面ABCD 是菱形,∠BAD =60∘,O 为AC 与BD 的交点,E 为PB 上任意一点.(1)证明:平面EAC ⊥平面PBD ;(2)若PD // 平面EAC ,并且二面角B −AE −C 的大小为45∘,求PD:AD 的值.已知抛物线C:x 2=2py(p >0)的焦点为F ,过F 的直线l 交抛物线C 于点A ,B ,当直线l 的倾斜角是45∘时,AB 的中垂线交y 轴于点Q(0, 5). (1)求p 的值;(2)以AB 为直径的圆交x 轴于点M ,N ,记劣弧MN ^的长度为S ,当直线l 绕F 旋转时,求S|AB|的最大值.已知函数f(x)=lnx +12x 2−2kx(k ∈R). (1)讨论f(x)的单调性;(2)若f(x)有两个极值点x 1,x 2,且x 1<x 2,证明:f(x 2)<−32. [选修4-4:坐标系与参数方程]以平面直角坐标系xOy 的原点为极点,x 轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同长度单位,直线l 的参数方程为{x =2+ty =1+t (t 为参数),圆C 的极坐标方程为ρ=4√2sin(θ+π4).(1)求直线l 的普通方程与圆C 的直角坐标方程;[选修4-5:不等式选讲]已知关于x的不等式|2x|+|2x−1|≤m有解.(I)求实数m的取值范围;(II)已知a>0,b>0,a+b=m,证明:a2a+2b +b22a+b≥13.参考答案与试题解析2018年河南省六市高考数学一模试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.【答案】 C【考点】 并集及其运算 【解析】解不等式化简集合A 、B ,根据并集的定义写出A ∪B . 【解答】集合A ={x|lg(x −2)<1}={x|0<x −2<10}={x|2<x <12}, 集合B ={x|x 2−2x −3<0}={x|−1<x <3}, 则A ∪B ={x|−1<x <12}=(−1, 12). 2.【答案】 D【考点】虚数单位i 及其性质 复数的运算 复数的模复数的基本概念 【解析】利用复数的运算法则和复数相等即可得出. 【解答】∵ a +bi =1+i1−i =(1+i)2(1−i)(1+i)=2i 2=i ,∴ a =0,b =1. ∴ a +b =1. 3.【答案】 C【考点】古典概型及其概率计算公式 【解析】本题考查了排列数公式及应用. 【解答】解:将5张奖票不放回地依次取出共有A 55A 33⋅A 22=10种不同的情形,若恰好在第四次抽奖结束,则前三次共抽到两张中奖票,第四次抽的最后一张奖票,共有3种情形,所以概率为P =310. 故选C .【答案】D【考点】微积分基本定理定积分【解析】此题暂无解析【解答】解:在第1s至2s之间的1s内经过的路程为s=∫(213t+2)dt=(3t22+2t)|12=6+4−3 2−2=132.故选D.5.【答案】B【考点】进行简单的合情推理【解析】此题暂无解析【解答】解:由图表可知,药物A服用之后,患病人数与未患病人数对比明显,故药物A的预防效果优于药物B的预防效果.故选B.6.【答案】B【考点】由三视图求体积【解析】由已知中的三视图可得:该几何体是一个以俯视图为底面的三棱锥,分别求出各个面的面积,可得答案.【解答】由已知中的三视图可得:该几何体是一个三棱锥:AD=DC=BD=2,∠ADC=120∘,BD⊥平面ADC,其直观图如图所示:AB=BC=2√2,AC=2√3,底面△BCD的面积为:12×2×2=2,侧面△ABD的面积为:12×2×2=2,侧面△ADC的面积为:12×2×2×√32=√3,侧面△ACB是腰长为2√2,底长2√3的等腰三角形,故底边上的高为√8−3=√5,其面积为:12×2 √3×√5=√15,综上可知,最大的面的面积为√15,7.【答案】D【考点】数列的求和【解析】此题暂无解析【解答】解:由题意知n=2k−1(k∈N∗)时,a2k+a2k−1=2.∴S100=(a1+a2)+(a3+a4)+...+(a99+a100)=2×50=100.故选D.8.【答案】B【考点】正弦定理【解析】由b2=a(a+c)利用余弦定理,可得c−a=2acosB,正弦定理边化角,在消去C,可得sin(B−A)=sinA,利用三角形ABC是锐角三角形,结合三角函数的有界限,可得sin2Asin(B−A)的取值范围.【解答】由b2=a(a+c),利用余弦定理,可得:c−a=2acosB,利用正弦定理边化角,得:sinC−sinA=2sinAcosB,∵A+B+C=π,∴sin(B+A)−sinA=2sinAcosB,∴sin(B−A)=sinA,∵ABC是锐角三角形,∴B−A=A,即B=2A.∵0<B<π2,π2<A+B<π,那么:π6<A<π4,则sin 2Asin(B−A)=sinA∈(12, √22).9.【考点】程序框图【解析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量F的值,模拟程序的运行过程,可得答案.【解答】解:此题的程序框图的功能就是先求这2 017个数的最大值,然后进行计算F=b+sin bπ2;因为b=max{1, 2, ..., 2 017}=2 017,所以F=2 017+sin20172π=2 018.故选D.10.【答案】C【考点】球内接多面体【解析】此题暂无解析【解答】解:取SC的中点O,∵SB⊥BC,SA⊥SC,SB=BC,SA=AC,∴OB⊥SC,OA⊥SC,OB=12SC,OA=12SC,∴SC⊥平面OAB,且OA=OB=OC=OS,即点O为三棱锥的外接球的球心,SC为球O的直径,设球O得半径为R,则AB=12SC=R,∴△AOB为正三角形,∴∠BOA=60∘,∴VS−ABC =V S−OAB+V C−OAB=2×12R2sin60∘×13×R=9√32,解得R=3.故选C.11.【答案】B椭圆的离心率椭圆的定义【解析】设P点坐标,根据斜率公式求得直线PF的斜率,根据导数的几何意义,即可求得P点坐标,根据椭圆的定义及离心率公式,即可求得答案.【解答】解:由题意,左焦点F为(−1, 0),设P(t, √t),k PF=√tt+1,由y=√x,求导y′=2√x,则k PF=2√t ,即√tt+1=2√t,解得t=1,即P(1, 1),设椭圆M的右焦点为F2(1, 0),则2a=|PF1|+|PF2|=1+√5,∴椭圆M的离心率为e=ca =1+√5=√5−12,故选B.12.【答案】A【考点】函数与方程的综合运用【解析】此题暂无解析【解答】解:令t=xe x −1,则方程xe x+e xx−e x+m=0有3个不相等的实数解,即转化为方程t2+(m+1)t+1=0有2个不等的实数根t1,t2,且t1t2=1,由于x1<0,则x1e x1−1<0−1=−1,则至少有1个跟小于0,而t1t2=1,故t1<0且t2<0,由于x3>x2>0,则x2 e x2−1>0−1=−1,x3e x3−1>0−1=−1,由于3个不等的x值只对应2个t值,侧设t1<−1,−1<t2<0,则有t1=x1e x1−1,t2=x2e x2−1=x3e x3−1,∴(x1e1−1)2(x2e2−1)(x3e3−1)=t12t22=1.故选A.二、填空题(每题5分,满分20分,将答案填在答题纸上)【答案】5【考点】向量的概念与向量的模【解析】【解答】解:∵b→=(a+b)−a=(0,2)−(3,−2)=(−3,4),∴|b→|=√(−3)2+42=5.故答案为:5.【答案】10【考点】二项式定理的应用【解析】此题暂无解析【解答】解:由题意可得2n=32,即n=5,所以二项式(x2+1x )5的通项为T r+1=C5r(x2)5−r(1x )r=C5r x10−3r.令10−3r=1,得r=3,所以展开式中含x项的系数是C53=10.故答案为:10.【答案】1+2√2【考点】双曲线的特性【解析】此题暂无解析【解答】解:设双曲线C的右焦点为F2,则|PF1|−|PF2|=2a=2√2,∴|PF1|=|PF2|+2√2,∴|PF1|+|PQ|=|PF2|+2√2+|PQ|,当且仅当Q,P,F2三点共线,且P在F2,Q之间时,|PF2|+|PQ|最小,且最小值为F2到l的距离,易知渐近线l的方程为y=√2F2(√3,0),则F2到l的距离d=√3|√3=1,|PQ|+|PF1|的最小值为2√2+1.故答案为:1+2√2.【答案】−40 9【考点】简单线性规划【解析】此题暂无解析【解答】解:∵(x+√x2+1)(√y2+1−y)≤1,√y2+1−y>|y|−y≥0,∴ x+√x2+1≤2≤√y2+1+y,∵函数f(x)=√x2+1+x是增函数,∴ x≤y,∴原不等式组化简为{2x+y≤4, x≥1,x≤y该不等式组表示的平面区域如图所示,因此可行域为△ABC及其内部,其中A(43,43),B(1,1),C(1,2),令z=x2+y2−6x=(x−3)2+y2−9,表示动点P(x,y)到(3,0)的距离的平方减去9,由图知点A(43,43)到(3,0)的距离的最小,故z min=(4 3−3)2+(43)2−9=−409.故答案为:−409.三、解答题(本大题共6题,共70分.解答应写出文字说明、证明过程或演算步骤.)【答案】当n≥2时,S n−S n−1=2S n22S n−1,S n−1−S n=2S n S n−11 S n −1S n−1=2,从而{1Sn}构成以1为首项,2为公差的等差数列.由(1)可知,1S n =1S1+(n−1)×2=2n−1,∴S n=12n−1,∴当n≥2时,1n S n=1n(2n−1)<1n(2n−2)=12(1n−1−1n),从而S1+12S2+13S3+⋯+1nS n<1+12(1−12+12−13+⋯+1n−1−1n)<32−12n<32.【考点】数列与不等式的综合数列递推式【解析】(1)利用已知条件推出S n−1−S n=2S n S n−1,转化求解数列{1Sn}是等差数列;(2)求出数列的前n项和,利用裂项消项法求解即可.【解答】当n≥2时,S n−S n−1=2S n22S n−1,S n−1−S n=2S n S n−11 S n −1S n−1=2,从而{1Sn}构成以1为首项,2为公差的等差数列.由(1)可知,1S n =1S1+(n−1)×2=2n−1,∴S n=12n−1,∴当n≥2时,1n S n=1n(2n−1)<1n(2n−2)=12(1n−1−1n),从而S1+12S2+13S3+⋯+1nS n<1+12(1−12+12−13+⋯+1n−1−1n)<32−12n<32.【答案】数据整理如下表:从图表中知采用分层抽样的方法从样本中的不能自理的老人中抽取8人进一步了解他们的生活状况,80岁及以上应抽取:8×1515+25=3人,80岁以下应抽取:8×2515+25=5人在600人中80岁及以上长者在老人中占比为:15+20+45+20600=16用样本估计总体,80岁及以上长者为:66×16=11万,80岁及以上长者占户籍人口的百分比为11400×100%=2.75%.用样本估计总体,设任一户籍老人每月享受的生活补助为X元,X的可能取值为0,120,200,220,300,P(X=0)=45,P(X=120)=15×475600=95600,P(X=200)=15×85600=17600,P(X=220)=15×25600=5600,P(X=300)=15×15600=3600,则随机变量X的分布列为:EX=0+120×95+200×17+220×5+300×3600=28,全市老人的总预算为28×12×66×104=2.2176×108元政府执行此计划的年度预算约为2.22亿元.【考点】分层抽样方法【解析】(1)先把数据整理列表,采用分层抽样的方法从样本中的不能自理的老人中抽取8人进一步了解他们的生活状况,利用列举法能求出80岁及以上和80岁以下应抽取人数.(2)在600人中80岁及以上长者在老人中占比为16,由此能估算80岁及以上长者占户籍人口的百分比.(3)用样本估计总体,设任一户籍老人每月享受的生活补助为X元,则X的可能取值为0,120,200,220,300,分别求出相应的概率,由此能求出随机变量X的分布列,从而估计政府执行此计划的年度预算约为2.22亿元.【解答】数据整理如下表:从图表中知采用分层抽样的方法从样本中的不能自理的老人中抽取8人进一步了解他们的生活状况,80岁及以上应抽取:8×1515+25=3人,80岁以下应抽取:8×2515+25=5人在600人中80岁及以上长者在老人中占比为:15+20+45+20600=16用样本估计总体,80岁及以上长者为:66×16=11万,80岁及以上长者占户籍人口的百分比为11400×100%=2.75%.用样本估计总体,设任一户籍老人每月享受的生活补助为X元,X的可能取值为0,120,200,220,300,P(X=0)=45,P(X=120)=15×475600=95600,P(X=200)=15×85600=17600,P(X=220)=15×25600=5600,P(X=300)=15×15600=3600,则随机变量X的分布列为:EX =0+120×95+200×17+220×5+300×3600=28,全市老人的总预算为28×12×66×104=2.2176×108元 政府执行此计划的年度预算约为2.22亿元. 【答案】(1)证明:∵ PD ⊥平面ABCD , ∴ PD ⊥AC ,又∵ 四边形ABCD 是菱形, ∴ BD ⊥AC ,又∵ PD ∩BD =D ,故AC ⊥平面PBD , 又AC ⊂平面EAC ,∴ 平面EAC ⊥平面PBD .(2)解:连结OE ,∵ PD//平面EAC ,PD ⊥平面ABCD , ∴ PD//OE,OE ⊥平面ABCD ,此时OA,OB,OE 两两垂直,又∵ O 是BD 的中点,故E 为PB 的中点,以O 为坐标原点,射线OA,OB,OE 分别为x 轴,y 轴,z 轴建立空间直角坐标系,如图所示. 设OB =m,OE =ℎ,则OA =√3m , ∴ A(√3m,0,0),B(0,m,0),E(0,0,ℎ),则AB →=(−√3m,m,0),BE →=(0,−m,ℎ),易知向量n →1=(0,1,0)为平面AEC 的一个法向量, 设平面ABE 的一个法向量为n →2=(x,y,z),则n 2→⋅AB →=0,且n 2→⋅BE →=0, 即−√3mx +my =0且my −ℎz =0, 取x =1,则y =√3,z =√3m ℎ,n 2→=(1,√3,√3mℎ),∴ |cos45∘=cos ⟨n 1→,n 2⟩|=|n 1→⋅n 2→||n 1→|⋅|n 2→|=√3√1+3+3m2ℎ2=√22,解得ℎm=√62,故PD:AD =2ℎ:2m =ℎ:m =√6:2.【考点】平面与平面垂直二面角的平面角及求法 【解析】 此题暂无解析 【解答】(1)证明:∵ PD ⊥平面ABCD , ∴ PD ⊥AC ,又∵ 四边形ABCD 是菱形, ∴ BD ⊥AC ,又∵ PD ∩BD =D ,故AC ⊥平面PBD , 又AC ⊂平面EAC ,∴ 平面EAC ⊥平面PBD .(2)解:连结OE ,∵ PD//平面EAC ,PD ⊥平面ABCD , ∴ PD//OE,OE ⊥平面ABCD ,此时OA,OB,OE 两两垂直,又∵ O 是BD 的中点,故E 为PB 的中点,以O 为坐标原点,射线OA,OB,OE 分别为x 轴,y 轴,z 轴建立空间直角坐标系,如图所示. 设OB =m,OE =ℎ,则OA =√3m , ∴ A(√3m,0,0),B(0,m,0),E(0,0,ℎ),则AB →=(−√3m,m,0),BE →=(0,−m,ℎ),易知向量n →1=(0,1,0)为平面AEC 的一个法向量, 设平面ABE 的一个法向量为n →2=(x,y,z),则n 2→⋅AB →=0,且n 2→⋅BE →=0, 即−√3mx +my =0且my −ℎz =0, 取x =1,则y =√3,z =√3m ℎ,n 2→=(1,√3,√3mℎ),∴ |cos45∘=cos ⟨n 1→,n 2⟩|=|n 1→⋅n 2→||n 1→|⋅|n 2→|=√3√1+3+2ℎ2=√22,解得ℎm=√62,故PD:AD =2ℎ:2m =ℎ:m =√6:2.【答案】抛物线C:x 2=2py(p >0)的焦点为F ,F(0,p2), 当l 的倾斜角为45∘时,l 的方程为y =x +p2 设A(x 1, y 1),B(x 2, y 2),由{y =x +p2x 2=2py,得x 2−2px −p 2=0, x 1+x 2=2p ,y 1+y 2=x 1+x 2+p =3p ,得AB 中点为D(p,32p) AB 中垂线为y −32p =−(x −p),x =0代入得y =52p =5.∴ p =2设l 的方程为y =kx +1,代入x 2=4y 得x 2−4kx −4=0, |AB|=y 1+y 2+2=k(x 1+x 2)+4=4k 2+4, AB 中点为D(2k, 2k 2+1)令∠MDN =2α,S =2α∗12|AB|=α∗|AB|, ∴ S|AB|=αD 到x 轴的距离|DE|=2k 2+1, cosα=|DE|12|AB|=2k 2+12k 2+2 当k 2=0时cosα取最小值12,α的最大值为π3. 故S |AB|的最大值为π3. 【考点】直线与圆的位置关系直线与椭圆结合的最值问题 【解析】(1)求出l 的方程为y =x +p2,设A(x 1, y 1),B(x 2, y 2),联立直线与抛物线方程,利用韦达定理求出AB 中点坐标,推出中垂线方程,结合AB 的中垂线交y 轴于点Q(0, 5).求出p 即可.(2)设l 的方程为y =kx +1,代入x 2=4y ,求出AB 的距离以及AB 中点为D(2k, 2k 2+1),令∠MDN =2α,求出S 的表达式,推出关系式S|AB|=α,利用D 到x 轴的距离|DE|=2k 2+1,求出cosα=|DE|12|AB|=2k 2+12k 2+2,然后求解S|AB|的最大值.【解答】抛物线C:x 2=2py(p >0)的焦点为F ,F(0,p2), 当l 的倾斜角为45∘时,l 的方程为y =x +p2 设A(x 1, y 1),B(x 2, y 2),由{y =x +p2x 2=2py,得x 2−2px −p 2=0, x 1+x 2=2p ,y 1+y 2=x 1+x 2+p =3p ,得AB 中点为D(p,32p) AB 中垂线为y −32p =−(x −p), x =0代入得y =52p =5.∴ p =2设l 的方程为y =kx +1,代入x 2=4y 得x 2−4kx −4=0, |AB|=y 1+y 2+2=k(x 1+x 2)+4=4k 2+4,AB 中点为D(2k, 2k 2+1)令∠MDN =2α,S =2α∗12|AB|=α∗|AB|, ∴ S|AB|=αD 到x 轴的距离|DE|=2k 2+1, cosα=|DE|12|AB|=2k 2+12k 2+2 当k 2=0时cosα取最小值12,α的最大值为π3. 故S|AB|的最大值为π3. 【答案】f(x)=lnx +12x 2−2kx ,x ∈(0, +∞) 所以f ′(x)=1x+x −2k =x 2−2kx+1x①当k ≤0时,f ′(x)>0,所以f(x)在(0, +∞)上单调递增 ②当k >0时,令t(x)=x 2−2kx +1,当△=4k 2−4≤0即0<k ≤1时,t(x)≥0恒成立,即f ′(x)≥0恒成立 所以f(x)在(0, +∞)上单调递增当△=4k 2−4>0,即k >1时,x 2−2kx +1=0,两根x 1,2=k ±√k 2−1所以x ∈(0,k −√k 2−1),f ′(x)>0x ∈(k −√k 2−1,k +√k 2−1),f ′(x)<0x ∈(k +√k 2−1,+∞),f ′(x)>0故当k ∈(−∞, 1)时,f(x)在(0, +∞)上单调递增当k ∈(1, +∞)时,f(x)在(0,k −√k 2−1)和(k +√k 2−1,+∞)上单调递增f(x)在(k −√k 2−1,k +√k 2−1)上单调递减.证明:f(x)=lnx +12x 2−2kx(x >0),f ′(x)=1x +x −2k , 由(1)知k ≤1时,f(x)(0, +∞)上单调递增,此时f(x)无极值 当k >1时,f ′(x)=1x+x −2k =x 2−2kx+1x由f ′(x)=0得x 2−2kx +1=0,△=4k 2−4>0,设两根x 1,x 2,则x 1+x 2=2k ,x 1⋅x 2=1其中0<x 1=k −√k 2−1<1<x 2=k +√k 2−1f(x)在(0, x 1)上递增,在(x 1, x 2)上递减,在(x 2, +∞)上递增,=lnx 2+12x 22−(x 1+x 2)x 2=lnx 2−12x 22−1.令t(x)=lnx −12x 2−1(x >1)t ′(x)=1x −x <0,所以t(x)在(1, +∞)上单调递减,且t(1)=−32 故f(x 2)<−32. 【考点】利用导数研究函数的极值利用导数研究函数的单调性 【解析】(1)求出函数的导数,通过k 与0,1的大小比较,判断导函数的符号,推出函数的单调区间即可.(2)求出函数的导数,利用(1)的结果,通过极值点的大小以及韦达定理,结合函数的单调性区间即可. 【解答】f(x)=lnx +12x 2−2kx ,x ∈(0, +∞) 所以f ′(x)=1x+x −2k =x 2−2kx+1x①当k ≤0时,f ′(x)>0,所以f(x)在(0, +∞)上单调递增 ②当k >0时,令t(x)=x 2−2kx +1,当△=4k 2−4≤0即0<k ≤1时,t(x)≥0恒成立,即f ′(x)≥0恒成立 所以f(x)在(0, +∞)上单调递增当△=4k 2−4>0,即k >1时,x 2−2kx +1=0,两根x 1,2=k ±√k 2−1所以x ∈(0,k −√k 2−1),f ′(x)>0x ∈(k −√k 2−1,k +√k 2−1),f ′(x)<0x ∈(k +√k 2−1,+∞),f ′(x)>0故当k ∈(−∞, 1)时,f(x)在(0, +∞)上单调递增当k ∈(1, +∞)时,f(x)在(0,k −√k 2−1)和(k +√k 2−1,+∞)上单调递增f(x)在(k −√k 2−1,k +√k 2−1)上单调递减.证明:f(x)=lnx +12x 2−2kx(x >0),f ′(x)=1x +x −2k , 由(1)知k ≤1时,f(x)(0, +∞)上单调递增,此时f(x)无极值 当k >1时,f ′(x)=1x +x −2k =x 2−2kx+1x由f ′(x)=0得x 2−2kx +1=0,△=4k 2−4>0,设两根x 1,x 2,则x 1+x 2=2k ,x 1⋅x 2=1其中0<x 1=k −√k 2−1<1<x 2=k +√k 2−1f(x)在(0, x 1)上递增,在(x 1, x 2)上递减,在(x 2, +∞)上递增,=lnx 2+12x 22−(x 1+x 2)x 2=lnx 2−12x 22−1.令t(x)=lnx −12x 2−1(x >1)t ′(x)=1x −x <0,所以t(x)在(1, +∞)上单调递减,且t(1)=−32故f(x 2)<−32.[选修4-4:坐标系与参数方程] 【答案】解:(1)∵ 直线l 的参数方程为{x =2+ty =1+t (t 为参数),∴ 直线l 的普通方程为y =x −1,∵ 圆C 的极坐标方程为ρ=4√2sin(θ+π4)=4sinθ+4cosθ, ∴ ρ2=4ρsinθ+4ρcosθ∴ 圆C 的直角坐标方程为x 2+y 2−4x −4y =0. (2)点P(2, 1)在直线l 上,且在圆C 内,由已知直线l 的参数方程是{x =2+√22ty =1+√22t(t 为参数) 代入x 2+y 2−4x −4y =0,得t 2−√2t −7=0,设两个实根为t 1,t 2, 则t 1+t 2=√2,t 1t 2=−7<0,即t 1,t 2异号所以||PA|−|PB||=||t 1|−|t 2||=|t 1+t 2|=√2. 【考点】参数方程与普通方程的互化 圆的极坐标方程 【解析】(1)直线l 的参数方程消去参数,能求出直线l 的普通方程;圆C 的极坐标方程转化为ρ2=4ρsinθ+4ρcosθ,由此能求出圆C 的直角坐标方程.(2)点P(2, 1)在直线l 上,且在圆C 内,直线l 的参数方程是{x =2+√22ty =1+√22t (t 为参数)代入x 2+y 2−4x −4y =0,得t 2−√2t −7=0,由此能求出||PA|−|PB||的值. 【解答】解:(1)∵ 直线l 的参数方程为{x =2+ty =1+t (t 为参数),∴ 直线l 的普通方程为y =x −1,∵ 圆C 的极坐标方程为ρ=4√2sin(θ+π4)=4sinθ+4cosθ, ∴ ρ2=4ρsinθ+4ρcosθ∴ 圆C 的直角坐标方程为x 2+y 2−4x −4y =0. (2)点P(2, 1)在直线l 上,且在圆C 内,由已知直线l 的参数方程是{x =2+√22ty =1+√22t (t 为参数) 代入x 2+y 2−4x −4y =0,得t 2−√2t −7=0,设两个实根为t 1,t 2, 则t 1+t 2=√2,t 1t 2=−7<0,即t 1,t 2异号所以||PA|−|PB||=||t 1|−|t 2||=|t 1+t 2|=√2. [选修4-5:不等式选讲]【答案】(本小题满分1(Ⅰ)|2x|+|2x −1|≥|2x −(2x −1)|=1,故m ≥1; (Ⅱ)∵ a >0,b >0,∴ a +2b >0,2a +b >0故(a 2a+2b+b 22a+b )[(a +2b)+(2a +b)brack =a 2+b 2+a 2(2a+b)a+2b+b 2(a+2b)2a+b≥a 2+b 2+2√a 2(2a+b)a+2bb 2(a+2b)2a+b=a 2+b 2+2ab =(a +b)2,即(a 2a+2b+b 22a+b )∗3(a +b)≥(a +b)2由(Ⅰ)知a +b =m ≥1,∴a 2a+2b+b 22a+b ≥13(a +b)≥13.【考点】绝对值三角不等式【解析】(Ⅰ)绝对值三角不等式的运用:如果a,b是实数,则|a+b|≤|a|+|b|,当且仅当ab≥0时,等号成立.(Ⅱ)均值不等式使用条件:一正二定三相等、不等式有解问题【解答】(本小题满分1(Ⅰ)|2x|+|2x−1|≥|2x−(2x−1)|=1,故m≥1;(Ⅱ)∵a>0,b>0,∴a+2b>0,2a+b>0故(a2a+2b +b22a+b)[(a+2b)+(2a+b)brack=a2+b2+a2(2a+b)a+2b +b2(a+2b)2a+b≥a2+b2+2√a2(2a+b)a+2b b2(a+2b)2a+b=a2+b2+2ab=(a+b)2,即(a2a+2b+b22a+b)∗3(a+b)≥(a+b)2由(Ⅰ)知a+b=m≥1,∴a2a+2b +b22a+b≥13(a+b)≥13.试卷第21页,总21页。

2018年河南全省 含所有市 高考数学一模试卷 汇总

2018年河南全省 含所有市 高考数学一模试卷 汇总

精品“正版”资料系列,由本公司独创。

旨在将“人教版”、”苏教版“、”北师大版“、”华师大版“等涵盖几乎所有版本的教材教案、课件、导学案及同步练习和检测题分享给需要的朋友。

本资源创作于2020年12月,是当前最新版本的教材资源。

包含本课对应内容,是您备课、上课、课后练习以及寒暑假预习的最佳选择。

通过我们的努力,能够为您解决问题,这是我们的宗旨,欢迎您下载使用!(8套)2018年河南全省含所有市高考数学一模试卷汇总2018年河南省安阳市高考数学一模试卷(理科)一、选择题:本题共12个小题, 每小题5分, 共60分.在每小题给出的四个选项中, 只有一项是符合题目要求的.1.(5分)设集合A={x|﹣2≤x≤2}, B={y|y=3x﹣1, x∈R}, 则A∩B=()A.(﹣1, +∞)B.[﹣2, +∞)C.[﹣1, 2] D.(﹣1, 2]2.(5分)已知复数, 则在复平面内所对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.(5分)已知函数f(x)满足:①对任意x1, x2∈(0, +∞)且x1≠x2, 都有;②对定义域内任意x, 都有f(x)=f(﹣x), 则符合上述条件的函数是()A.f(x)=x2+|x|+1 B.C.f(x)=ln|x+1|D.f(x)=cosx4.(5分)若, 则cosα﹣2sinα=()A.﹣1 B.1 C.D.﹣1或5.(5分)已知等比数列{a n}中, a1=1, a3+a5=6, 则a5+a7=()A.12 B.10 C.D.6.(5分)执行如图所示的程序框图, 若输入p=0.99, 则输出的n=()A.6 B.7 C.8 D.97.(5分)如图所示是一个几何体的三视图, 则该几何体的体积是()A.4+2πB.C.4+πD.8.(5分)在边长为a的正三角形内任取一点P, 则点P到三个顶点的距离均大于的概率是()A.B.C.D.9.(5分)已知{a n}为等差数列, S n为其前n项和, 若a3+7=2a5, 则S13=()A.49 B.91 C.98 D.18210.(5分)已知函数, 要得到g(x)=cosx的图象, 只需将函数y=f(x)的图象()A.向右平移个单位 B.向右平移个单位C.向左平移个单位D.向左平移个单位11.(5分)已知F1, F2分别是椭圆的左、右焦点, P为椭圆上一点, 且(O为坐标原点), 若, 则椭圆的离心率为()A.B.C.D.12.(5分)已知函数, (e为自然对数的底数), 则函数的零点个数为()A.8 B.6 C.4 D.3二、填空题:本题共4小题, 每小题5分, 共20分.13.(5分)展开式中的常数项为.14.(5分)已知向量=(2, 3), =(x, y), 且变量x, y满足, 则z=•的最大值为.15.(5分)已知AB为圆C:x2+y2﹣2y=0的直径, 点P为直线y=x﹣1上任意一点, 则|PA|2+|PB|2的最小值为.16.(5分)在棱长为4的密封正方体容器内有一个半径为1的小球, 晃动此正方体, 则小球可以经过的空间的体积为.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17-21题为必考题, 每个试题考生都必须作答.第22, 23题为选考题, 考生根据要求作答. 17.(12分)已知在△ABC中, 内角A, B, C所对的边分别为a, b, c, 且满足a+2acosB=c.(Ⅰ)求证:B=2A;(Ⅱ)若△ABC为锐角三角形, 且c=2, 求a的取值范围.18.(12分)某公司为了准确把握市场, 做好产品计划, 特对某产品做了市场调查:先销售该产品50天, 统计发现每天的销售量x分布在[50, 100)内, 且销售量x的分布频率.(Ⅰ)求a的值并估计销售量的平均数;(Ⅱ)若销售量大于等于70, 则称该日畅销, 其余为滞销.在畅销日中用分层抽样的方法随机抽取8天, 再从这8天中随机抽取3天进行统计, 设这3天来自X 个组, 求随机变量X的分布列及数学期望(将频率视为概率).19.(12分)如图, 在空间直角坐标系O﹣xyz中, 正四面体(各条棱均相等的三棱锥)ABCD的顶点A, B, C分别在x轴, y轴, z轴上.(Ⅰ)求证:CD∥平面OAB;(Ⅱ)求二面角C﹣AB﹣D的余弦值.20.(12分)如图, 在平面直角坐标系xOy中, 直线l1:y=x与直线l2:y=﹣x之间的阴影部分记为W, 区域W中动点P(x, y)到l1, l2的距离之积为1.(Ⅰ)求点P的轨迹C的方程;(Ⅱ)动直线l穿过区域W, 分别交直线l1, l2于A, B两点, 若直线l与轨迹C有且只有一个公共点, 求证:△OAB的面积恒为定值.21.(12分)已知函数, g(x)=3elnx, 其中e为自然对数的底数.(Ⅰ)讨论函数f(x)的单调性.(Ⅱ)是否存在实数a, b, 使f(x)≥ax+b≥g(x)对任意x∈(0, +∞)恒成立?若存在, 试求出a, b的值;若不存在, 请说明理由.(二)选考题:共10分.请考生在第22, 23题中任选一题作答, 如果多做, 则按所做的第一题计分.【选修4-4:坐标系与参数方程】22.(10分)设直线l的参数方程为, (t为参数), 若以直角坐标系xOy的原点O为极点, x轴的正半轴为极轴, 选择相同的长度单位建立极坐标系, 曲线C的极坐标方程为ρsin2θ=4cosθ.(Ⅰ)将曲线C的极坐标方程化为直角坐标方程, 并指出曲线C是什么曲线;(Ⅱ)若直线l与曲线C交于A, B两点, 求|AB|.【选修4-5:不等式选讲】23.已知函数f(x)=|x+1|+a|2x﹣1|.(Ⅰ)当时, 若对任意x∈R恒成立, 求m+n的最小值;(Ⅱ)若f(x)≥|x﹣2|的解集包含[﹣1, 2], 求实数a的取值范围.2018年河南省安阳市高考数学一模试卷(理科)参考答案与试题解析一、选择题:本题共12个小题, 每小题5分, 共60分.在每小题给出的四个选项中, 只有一项是符合题目要求的.1.(5分)设集合A={x|﹣2≤x≤2}, B={y|y=3x﹣1, x∈R}, 则A∩B=()A.(﹣1, +∞)B.[﹣2, +∞)C.[﹣1, 2] D.(﹣1, 2]【解答】解:∵集合A={x|﹣2≤x≤2},B={y|y=3x﹣1, x∈R}={y|y>﹣1},∴A∩B={x|﹣1<x≤2}=(﹣1, 2].故选:D.2.(5分)已知复数, 则在复平面内所对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:∵=,∴,则在复平面内所对应的点的坐标为(﹣, ﹣), 位于第三象限角.故选:C.3.(5分)已知函数f(x)满足:①对任意x1, x2∈(0, +∞)且x1≠x2, 都有;②对定义域内任意x, 都有f(x)=f(﹣x), 则符合上述条件的函数是()A.f(x)=x2+|x|+1 B.C.f(x)=ln|x+1|D.f(x)=cosx【解答】解:由题意得:f(x)是偶函数, 在(0, +∞)递增,对于A, f(﹣x)=f(x), 是偶函数, 且x>0时, f(x)=x2+x+1, f′(x)=2x+1>0,故f(x)在(0, +∞)递增, 符合题意;对于B, 函数f(x)是奇函数, 不合题意;对于C, 由x+1=0, 解得:x≠﹣1, 定义域不关于原点对称,故函数f(x)不是偶函数, 不合题意;对于D, 函数f(x)在(0, +∞)无单调性, 不合题意;故选:A.4.(5分)若, 则cosα﹣2sinα=()A.﹣1 B.1 C.D.﹣1或【解答】解:若, 则1+cosα=3sinα, 又sin2α+cos2α=1,∴sinα=, ∴cosα=3sinα﹣1=, ∴cosα﹣2sinα=﹣,故选:C.5.(5分)已知等比数列{a n}中, a1=1, a3+a5=6, 则a5+a7=()A.12 B.10 C.D.【解答】解:∵, a1=1, a3+a5=6,∴a3+a5=q2+q4=6,得q4+q2﹣6=0,即(q2﹣2)(q2+3)=0,则q2=2,则a5+a7=q4+q6=22+23=4+8=12,故选:A6.(5分)执行如图所示的程序框图, 若输入p=0.99, 则输出的n=()A.6 B.7 C.8 D.9【解答】解:模拟程序的运行, 可得程序框图的功能是计算S=+++…的值.由题意, S=+++…==1﹣≥0.99, 可得:2k≥100, 解得:k≥7,即当n=8时, S的值不满足条件, 退出循环.故选:C.7.(5分)如图所示是一个几何体的三视图, 则该几何体的体积是()A.4+2πB.C.4+πD.【解答】解:由几何体的三视图得:该几何体是一个长方体和一个半圆柱的组合体,其中长方体的长为4, 宽为1, 高为1,半圆柱的底面半径为r=1, 高为h=1, 如图,∴该几何体的体积:V=4×1×1+=4+.故选:D.8.(5分)在边长为a的正三角形内任取一点P, 则点P到三个顶点的距离均大于的概率是()A.B.C.D.【解答】解:满足条件的正三角形ABC如下图所示:边长AB=a,=•a2•sin=a2;其中正三角形ABC的面积S三角形满足到正三角形ABC的顶点A、B、C的距离至少有一个小于1的平面区域,如图中阴影部分所示, 其加起来是一个半径为的半圆,=•π•=,∴S阴影∴使取到的点到三个顶点A、B、C的距离都大于的概率是:P=1﹣=1﹣π.故选:B.9.(5分)已知{a n}为等差数列, S n为其前n项和, 若a3+7=2a5, 则S13=()A.49 B.91 C.98 D.182【解答】解:设等差数列{a n}的公差为d, ∵a3+7=2a5,∴a1+2d+7=2(a1+4d), 化为:a1+6d=7=a7.则S13==13a7=13×7=91.故选:B.10.(5分)已知函数, 要得到g(x)=cosx的图象, 只需将函数y=f(x)的图象()A.向右平移个单位 B.向右平移个单位C.向左平移个单位D.向左平移个单位【解答】解:将函数y=f(x)=sin(x﹣)的图象向左平移个单位,可得y=sin(x+﹣)=cosx的图象,故选:D.11.(5分)已知F1, F2分别是椭圆的左、右焦点, P为椭圆上一点, 且(O为坐标原点), 若, 则椭圆的离心率为()A.B.C.D.【解答】解:如图, 取PF1的中点A, 连接OA,∴2=+, =,∴+=,∵,∴•=0,∴⊥,∵,不妨设|PF2|=m, 则|PF1|=m,∵|PF2|+|PF1|=2a=m+m,∴m=a=2(﹣1)a,∵|F1F2|=2c,∴4c2=m2+2m2=3m2=3×4a2(3﹣2),∴=9﹣6=(﹣)2,∴e=﹣,故选:A12.(5分)已知函数, (e为自然对数的底数), 则函数的零点个数为()A.8 B.6 C.4 D.3【解答】解:令f(x)=t可得f(t)=t+1.作出f(x)的函数图象如图所示:设直线y=kx+1与y=e x相切, 切点为(x0, y0), 则,解得x0=0, k=1.设直线y=kx+1与y=lnx相切, 切点为(x1, y1), 则,解得x1=e2, k=.∴直线y=t+1与f(t)的图象有4个交点,不妨设4个交点横坐标为t1, t2, t3, t4, 且t1<t2<t3<t4,由图象可知t1<0, t2=0, 0<t3<1, t4=e2.由f(x)的函数图象可知f(x)=t1无解, f(x)=t2有1解, f(x)=t3有3解, f(x)=t4有2解.∴F(x)有6个零点.故选:B.二、填空题:本题共4小题, 每小题5分, 共20分.13.(5分)展开式中的常数项为.【解答】解:二项式展开式的通项公式为T r+1=•x6﹣r•=••,令6﹣=0, 解得r=4;∴展开式中的常数项为•=.故答案为:.14.(5分)已知向量=(2, 3), =(x, y), 且变量x, y满足, 则z=•的最大值为.【解答】解:由约束条件作出可行域如图,联立, 解得A(),∵=(2, 3), =(x, y),∴z=•=2x+3y, 化为y=, 由图可知, 当直线y=过A时,直线在y轴上的截距最大, z有最小值为.故答案为:.15.(5分)已知AB为圆C:x2+y2﹣2y=0的直径, 点P为直线y=x﹣1上任意一点, 则|PA|2+|PB|2的最小值为6.【解答】解:圆C:x2+y2﹣2y=0,转化为:x2+(y﹣1)2=1,则:圆心(0, 1)到直线y=x﹣1的距离d=,由于AB为圆的直径,则:点A到直线的最小距离为:.点B到直线的距离为.则:|PA|2+|PB|2==6,故答案为:616.(5分)在棱长为4的密封正方体容器内有一个半径为1的小球, 晃动此正方体, 则小球可以经过的空间的体积为.【解答】解:∵在棱长为4的密封正方体容器内有一个半径为1的小球, 晃动此正方体,∴小球可以经过的空间的体积:V==.故答案为:.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17-21题为必考题, 每个试题考生都必须作答.第22, 23题为选考题, 考生根据要求作答. 17.(12分)已知在△ABC中, 内角A, B, C所对的边分别为a, b, c, 且满足a+2acosB=c.(Ⅰ)求证:B=2A;(Ⅱ)若△ABC为锐角三角形, 且c=2, 求a的取值范围.【解答】解:(Ⅰ)证明:根据题意, 在△ABC中, a+2acosB=c,由正弦定理知sinA+2sinAcosB=sinC=sin(A+B)=sinAcosB+cosAsinB,即sinA=cosAsinB﹣sinAcosB=sin(B﹣A).因为A, B∈(0, π),所以B﹣A∈(﹣π, π), 且A+(B﹣A)=B∈(0, π), 所以A+(B﹣A)≠π,所以A=B﹣A, B=2A.(Ⅱ)由(Ⅰ)知, .由△ABC为锐角三角形得,得, 则0<cosB<,由a+2acosB=2得,又由0<cosB<,则.18.(12分)某公司为了准确把握市场, 做好产品计划, 特对某产品做了市场调查:先销售该产品50天, 统计发现每天的销售量x分布在[50, 100)内, 且销售量x的分布频率.(Ⅰ)求a的值并估计销售量的平均数;(Ⅱ)若销售量大于等于70, 则称该日畅销, 其余为滞销.在畅销日中用分层抽样的方法随机抽取8天, 再从这8天中随机抽取3天进行统计, 设这3天来自X 个组, 求随机变量X的分布列及数学期望(将频率视为概率).【解答】解:(Ⅰ)由题知, 解得5≤n≤9n, n可取5, 6, 7, 8, 9, 代入中,得, a=0.15.销售量在[50, 60), [60, 70), [70, 80), [80, 90), [90, 100)内的频率分别是0.1, 0.1, 0.2, 0.3, 0.3,销售量的平均数为55×0.1+65×0.1+75×0.2+85×0.3+95×0.3=81.(Ⅱ)销售量在[70, 80), [80, 90), [90, 100)内的频率之比为2:3:3,所以各组抽取的天数分别为2, 3, 3.X的所有可能值为1, 2, 3,,,.X的分布列为:X123P数学期望.19.(12分)如图, 在空间直角坐标系O﹣xyz中, 正四面体(各条棱均相等的三棱锥)ABCD的顶点A, B, C分别在x轴, y轴, z轴上.(Ⅰ)求证:CD∥平面OAB;(Ⅱ)求二面角C﹣AB﹣D的余弦值.【解答】(Ⅰ)证明:由AB=BC=CA, 可得OA=OB=OC.设OA=a, 则, A(a, 0, 0), B(0, a, 0), C(0, 0, a),设D点的坐标为(x, y, z), 则由,可得(x﹣a)2+y2+z2=x2+(y﹣a)2+z2=x2+y2+(z﹣a)2=2a2,解得x=y=z=a,∴.又平面OAB的一个法向量为,∴,∴CD∥平面OAB;(Ⅱ)解:设F为AB的中点, 连接CF, DF,则CF⊥AB, DF⊥AB, ∠CFD为二面角C﹣AB﹣D的平面角.由(Ⅰ)知, 在△CFD中, , ,则由余弦定理知,即二面角C﹣AB﹣D的余弦值为.20.(12分)如图, 在平面直角坐标系xOy中, 直线l1:y=x与直线l2:y=﹣x之间的阴影部分记为W, 区域W中动点P(x, y)到l1, l2的距离之积为1.(Ⅰ)求点P的轨迹C的方程;(Ⅱ)动直线l穿过区域W, 分别交直线l1, l2于A, B两点, 若直线l与轨迹C有且只有一个公共点, 求证:△OAB的面积恒为定值.【解答】解:(Ⅰ)由题意得, |(x+y)(x﹣y)|=2.因为点P在区域W内, 所以x+y与x﹣y同号, 得(x+y)(x﹣y)=x2﹣y2=2,即点P的轨迹C的方程为.(Ⅱ)设直线l与x轴相交于点D, 当直线l的斜率不存在时, , , 得.当直线l的斜率存在时, 设其方程为y=kx+m, 显然k≠0, 则,把直线l的方程与C:x2﹣y2=2联立得(k2﹣1)x2﹣2kmx+m2+2=0,由直线l与轨迹C有且只有一个公共点, 知△=4k2m2﹣4(k2﹣1)(m2+2)=0,得m2=2(k2﹣1)>0, 得k>1或k<﹣1.设A(x1, y2), B(x2, y2), 由得, 同理, 得.所以=.综上, △OAB的面积恒为定值2.21.(12分)已知函数, g(x)=3elnx, 其中e为自然对数的底数.(Ⅰ)讨论函数f(x)的单调性.(Ⅱ)是否存在实数a, b, 使f(x)≥ax+b≥g(x)对任意x∈(0, +∞)恒成立?若存在, 试求出a, b的值;若不存在, 请说明理由.【解答】解:(Ⅰ)根据题意, 函数,,令f'(x)=0得.当且x≠0时, f'(x)<0;当时, f'(x)>0.所以f(x)在(﹣∞, 0)上单调递减, 在上单调递减, 在上单调递增.(Ⅱ)根据题意, 注意到f(e)=g(e)=3e, 则ae+b=3e, b=3e﹣ae①.于是, ax+b≥g(x)即a(x﹣e)﹣3e(1﹣lnx)≥0,则记h(x)=a(x﹣e)+3e(1﹣lnx), ,若a≤0, 则h'(x)<0, 得h(x)在(0, +∞)上单调递减, 则当x>e时, 有h (x)<h(e)=0, 不合题意;若a>0, 易知h(x)在上单调递减, 在上单调递增,得h(x)在(0, +∞)上的最小值.记, 则, 得m(a)有最大值m(3)=0, 即m (a)≤m(3)=0,又m(a)≥0, 故a=3, 代入①得b=0.当a=3, b=0时, f(x)≥ax+b即⇔2x3﹣3ex2+e3≥0.记φ(x)=2x3﹣3ex2+e3, 则φ'(x)=6x(x﹣e), 得φ(x)在(0, +∞)上有最小值φ(e)=0, 即φ(x)≥0, 符合题意.综上, 存在a=3, b=0, 使f(x)≥ax+b≥g(x)对任意x∈(0, +∞)恒成立.(二)选考题:共10分.请考生在第22, 23题中任选一题作答, 如果多做, 则按所做的第一题计分.【选修4-4:坐标系与参数方程】22.(10分)设直线l的参数方程为, (t为参数), 若以直角坐标系xOy的原点O为极点, x轴的正半轴为极轴, 选择相同的长度单位建立极坐标系, 曲线C的极坐标方程为ρsin2θ=4cosθ.(Ⅰ)将曲线C的极坐标方程化为直角坐标方程, 并指出曲线C是什么曲线;(Ⅱ)若直线l与曲线C交于A, B两点, 求|AB|.【解答】解:(Ⅰ)由于ρsin2θ=4cosθ,所以ρ2sin2θ=4ρcosθ, 即y2=4x,因此曲线C表示顶点在原点, 焦点在x轴上的抛物线.(Ⅱ), 化为普通方程为y=2x﹣1,代入y2=4x,并整理得4x2﹣8x+1=0,所以,=,=.【选修4-5:不等式选讲】23.已知函数f(x)=|x+1|+a|2x﹣1|.(Ⅰ)当时, 若对任意x∈R恒成立, 求m+n的最小值;(Ⅱ)若f(x)≥|x﹣2|的解集包含[﹣1, 2], 求实数a的取值范围.【解答】解:(Ⅰ)当时, ,∴, ∴.∴,∴, 当且仅当m=n时等号成立,∵m, n>0, 解得, 当且仅当m=n时等号成立,故m+n的最小值为.(Ⅱ)∵f(x)≥|x﹣2|的解集包含[﹣1, 2],当x∈[﹣1, 2]时, 有x+1+a|2x﹣1|≥2﹣x,∴a|2x﹣1|≥1﹣2x对x∈[﹣1, 2]恒成立,当时, a(1﹣2x)≥1﹣2x, ∴a≥1;当时, a(2x﹣1)≥1﹣2x, ∴a≥﹣1.综上:a≥1.故实数a的取值范围是[1, +∞).2018年河南省安阳市高考数学一模试卷(文科)一、选择题:本大题共12个小题, 每小题5分, 共60分.在每小题给出的四个选项中, 只有一项是符合题目要求的.1.(5分)在复平面内, 复数所对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限2.(5分)设集合A={x|﹣2≤x≤2}, B={y|y=3x﹣1, x∈R}, 则A∩B=()A.(﹣1, +∞)B.[﹣2, +∞)C.[﹣1, 2] D.(﹣1, 2]3.(5分)已知函数f(x)满足:①对任意x1, x2∈(0, +∞)且x1≠x2, 都有;②对定义域内任意x, 都有f(x)=f(﹣x), 则符合上述条件的函数是()A.f(x)=x2+|x|+1 B.C.f(x)=ln|x+1| D.f(x)=cosx4.(5分)若, 则cosα﹣2sinα=()A.﹣1 B.1 C.D.﹣1或5.(5分)已知等比数列{an}中, a1=1, a3+a5=6, 则a5+a7=()A.12 B.10 C.D.6.(5分)执行如图所示的程序框图, 若输入p=0.8, 则输出的n=()A.3 B.4 C.5 D.67.(5分)如图所示是一个几何体的三视图, 则该几何体的体积是()A.4+2πB.C.4+πD.8.(5分)在边长为a的正三角形内任取一点P, 则点P到三个顶点的距离均大于的概率是()A.B. C.D.9.(5分)已知{an}为等差数列, Sn为其前n项和, 若a3+7=2a5, 则S13=()A.49 B.91 C.98 D.18210.(5分)已知函数, 要得到g(x)=cosx的图象, 只需将函数y=f(x)的图象()A.向右平移个单位B.向右平移个单位C.向左平移个单位D.向左平移个单位11.(5分)已知函数与g(x)=6x+a的图象有3个不同的交点, 则a的取值范围是()A. B. C. D.12.(5分)已知F1, F2分别是椭圆的左、右焦点, P为椭圆上一点, 且(O为坐标原点), 若, 则椭圆的离心率为()A.B.C.D.二、填空题:本题共4小题, 每小题5分, 共20分13.(5分)命题“∀x∈R, 都有x2+|x|≥0”的否定是.14.(5分)长、宽、高分别为1, 2, 3的长方体的顶点都在同一球面上, 则该球的表面积为.15.(5分)已知向量=(2, 3), =(x, y), 且变量x, y满足, 则z=•的最大值为.16.(5分)在平面直角坐标系xOy中, 点A(0, ﹣3), 若圆C:(x﹣a)2+(y﹣a+2)2=1上存在一点M满足|MA|=2|MO|, 则实数a的取值范围是.三、解答题:共70分.解答应写出文字说明, 证明过程或演算步骤.第17-21题为必考题, 每个试题考生都必须作答.第22, 23题为选考题, 考生根据要求作答.(一)必考题:共60分.17.(12分)已知在△ABC中, 内角A, B, C所对的边分别为a, b, c, 且满足a+2acosB=c.(Ⅰ)求证:B=2A;(Ⅱ)若△ABC为锐角三角形, 且c=2, 求a的取值范围.18.(12分)某公司为了准确把握市场, 做好产品计划, 特对某产品做了市场调查:先销售该产品50天, 统计发现每天的销售量x分布在[50, 100]内, 且销售量x的分布频率.(Ⅰ)求a的值.(Ⅱ)若销售量大于等于80, 则称该日畅销, 其余为滞销, 根据是否畅销从这50天中用分层抽样的方法随机抽取5天, 再从这5天中随机抽取2天, 求这2天中恰有1天是畅销日的概率(将频率视为概率).19.(12分)如图, 已知在四棱锥P﹣ABCD中, 平面PAD⊥平面ABCD, 且PA⊥PD, PA=PD, AD=4, BC∥AD, AB=BC=CD=2, E为PD的中点.(Ⅰ)证明:CE∥平面PAB;(Ⅱ)求三棱锥E﹣PBC的体积.20.(12分)如图, 在平面直角坐标系xOy中, 直线l1:y=x与直线l2:y=﹣x之间的阴影部分记为W, 区域W中动点P(x, y)到l1, l2的距离之积为1.(Ⅰ)求点P的轨迹C的方程;(Ⅱ)动直线l穿过区域W, 分别交直线l1, l2于A, B两点, 若直线l与轨迹C有且只有一个公共点, 求证:△OAB的面积恒为定值.21.(12分)已知函数, g(x)=3elnx, 其中e为自然对数的底数.(Ⅰ)讨论函数f(x)的单调性.(Ⅱ)试判断曲线y=f(x)与y=g(x)是否存在公共点并且在公共点处有公切线.若存在, 求出公切线l的方程;若不存在, 请说明理由.(二)选考题:共10分.请考生在22, 23题中任选一题作答, 如果多做, 则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.(10分)设直线l的参数方程为, (t为参数), 若以直角坐标系xOy的原点O为极点, x轴的正半轴为极轴, 选择相同的长度单位建立极坐标系, 曲线C的极坐标方程为ρsin2θ=4cosθ.(Ⅰ)将曲线C的极坐标方程化为直角坐标方程, 并指出曲线C是什么曲线;(Ⅱ)若直线l与曲线C交于A, B两点, 求|AB|.[选修4-5:不等式选讲]23.已知函数f(x)=|x+1|+a|2x﹣1|.(Ⅰ)当时, 若对任意x∈R恒成立, 求m+n的最小值;(Ⅱ)若f(x)≥|x﹣2|的解集包含[﹣1, 2], 求实数a的取值范围.2018年河南省安阳市高考数学一模试卷(文科)参考答案与试题解析一、选择题:本大题共12个小题, 每小题5分, 共60分.在每小题给出的四个选项中, 只有一项是符合题目要求的.1.(5分)在复平面内, 复数所对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:∵=,∴复数所对应的点的坐标为(), 位于第二象限.故选:B.2.(5分)设集合A={x|﹣2≤x≤2}, B={y|y=3x﹣1, x∈R}, 则A∩B=()A.(﹣1, +∞)B.[﹣2, +∞)C.[﹣1, 2] D.(﹣1, 2]【解答】解:∵集合A={x|﹣2≤x≤2},B={y|y=3x﹣1, x∈R}={y|y>﹣1},∴A∩B={x|﹣1<x≤2}=(﹣1, 2].故选:D.3.(5分)已知函数f(x)满足:①对任意x1, x2∈(0, +∞)且x1≠x2, 都有;②对定义域内任意x, 都有f(x)=f(﹣x), 则符合上述条件的函数是()A.f(x)=x2+|x|+1 B.C.f(x)=ln|x+1| D.f(x)=cosx【解答】解:由题意得:f(x)是偶函数, 在(0, +∞)递增,对于A, f(﹣x)=f(x), 是偶函数, 且x>0时, f(x)=x2+x+1, f′(x)=2x+1>0,故f(x)在(0, +∞)递增, 符合题意;对于B, 函数f(x)是奇函数, 不合题意;对于C, 由x+1=0, 解得:x≠﹣1, 定义域不关于原点对称,故函数f(x)不是偶函数, 不合题意;对于D, 函数f(x)在(0, +∞)无单调性, 不合题意;故选:A.4.(5分)若, 则cosα﹣2sinα=()A.﹣1 B.1 C.D.﹣1或【解答】解:若, 则1+cosα=3sinα, 又sin2α+cos2α=1,∴sinα=, ∴cosα=3sinα﹣1=, ∴cosα﹣2sinα=﹣,故选:C.5.(5分)已知等比数列{an}中, a1=1, a3+a5=6, 则a5+a7=()A.12 B.10 C.D.【解答】解:∵, a1=1, a3+a5=6,∴a3+a5=q2+q4=6,得q4+q2﹣6=0,即(q2﹣2)(q2+3)=0,则q2=2,则a5+a7=q4+q6=22+23=4+8=12,故选:A6.(5分)执行如图所示的程序框图, 若输入p=0.8, 则输出的n=()A.3 B.4 C.5 D.6【解答】解:第一次运行n=1, s=0, 满足条件s<0.8, s==0.5, n=2,第二次运行n=2, s=0.5, 满足条件s<0.8, s=+=0.75, n=3,第三次运行n=3, s=0.75, 满足条件s<0.8, s=0.75+=0.75+0.125=0.875, n=4, 此时s=0.875不满足条件s<0.8输出, n=4,故选:B.7.(5分)如图所示是一个几何体的三视图, 则该几何体的体积是()A.4+2πB.C.4+πD.【解答】解:由几何体的三视图得:该几何体是一个长方体和一个半圆柱的组合体,其中长方体的长为4, 宽为1, 高为1,半圆柱的底面半径为r=1, 高为h=1, 如图,∴该几何体的体积:V=4×1×1+=4+.故选:D.8.(5分)在边长为a的正三角形内任取一点P, 则点P到三个顶点的距离均大于的概率是()A.B. C.D.【解答】解:满足条件的正三角形ABC如下图所示:边长AB=a,其中正三角形ABC的面积S三角形=•a2•sin=a2;满足到正三角形ABC的顶点A、B、C的距离至少有一个小于1的平面区域,如图中阴影部分所示, 其加起来是一个半径为的半圆,∴S阴影=•π•=,∴使取到的点到三个顶点A、B、C的距离都大于的概率是:P=1﹣=1﹣π.故选:B.9.(5分)已知{an}为等差数列, Sn为其前n项和, 若a3+7=2a5, 则S13=()A.49 B.91 C.98 D.182【解答】解:设等差数列{an}的公差为d, ∵a3+7=2a5,∴a1+2d+7=2(a1+4d), 化为:a1+6d=7=a7.则S13==13a7=13×7=91.故选:B.10.(5分)已知函数, 要得到g(x)=cosx的图象, 只需将函数y=f(x)的图象()A.向右平移个单位B.向右平移个单位C.向左平移个单位D.向左平移个单位【解答】解:将函数y=f(x)=sin(x﹣)的图象向左平移个单位,可得y=sin(x+﹣)=cosx的图象,故选:D.11.(5分)已知函数与g(x)=6x+a的图象有3个不同的交点, 则a的取值范围是()A. B. C. D.【解答】解:函数与g(x)=6x+a的图象有3个不同的交点⇔方程a=有3个不同的实根,即函数y=a, g(x)=的图象有3个不同的交点.g′(x)=x2+x﹣6=(x+3)(x﹣2)x∈(﹣∞, ﹣3), (2, +∞)时, g(x)递增, x∈(﹣3, 2)递减,函数g(x)图如下, 结合图象, 只需g(2)<a<g(﹣3)即可,即﹣<<,故选:B.12.(5分)已知F1, F2分别是椭圆的左、右焦点, P为椭圆上一点, 且(O为坐标原点), 若, 则椭圆的离心率为()A.B.C.D.【解答】解:如图, 取PF1的中点A, 连接OA,∴2=+, =,∴+=,∵,∴•=0,∴⊥,∵,不妨设|PF2|=m, 则|PF1|=m,∵|PF2|+|PF1|=2a=m+m,∴m=a=2(﹣1)a,∵|F1F2|=2c,∴4c2=m2+2m2=3m2=3×4a2(3﹣2),∴=9﹣6=(﹣)2,∴e=﹣,故选:A二、填空题:本题共4小题, 每小题5分, 共20分13.(5分)命题“∀x∈R, 都有x2+|x|≥0”的否定是∃x0∈R, 使得.【解答】解:由全称命题的否定为特称命题, 可得命题“∀x∈R, 都有x2+|x|≥0”的否定是“∃x0∈R, 使得”.故答案为:∃x0∈R, 使得.14.(5分)长、宽、高分别为1, 2, 3的长方体的顶点都在同一球面上, 则该球的表面积为14π.【解答】解:∵长、宽、高分别为1, 2, 3的长方体的顶点都在同一球面上,∴球半径R==,∴该球的表面积为S=4π×R2=4=14π.故答案为:14π.15.(5分)已知向量=(2, 3), =(x, y), 且变量x, y满足, 则z=•的最大值为.【解答】解:由约束条件作出可行域如图,联立, 解得A(),∵=(2, 3), =(x, y),∴z=•=2x+3y, 化为y=, 由图可知, 当直线y=过A时,直线在y轴上的截距最大, z有最小值为.故答案为:.16.(5分)在平面直角坐标系xOy中, 点A(0, ﹣3), 若圆C:(x﹣a)2+(y﹣a+2)2=1上存在一点M满足|MA|=2|MO|, 则实数a的取值范围是[0, 3].【解答】解:设点M(x, y), 由|MA|=2|MO|,得到:,整理得:x2+y2﹣2y﹣3=0,∴点M在圆心为D(0, 1), 半径为2的圆上.又点M在圆C上, ∴圆C与圆D有公共点,∴1≤|CD|≤3,∴1≤≤3,解得0≤a≤3.即实数a的取值范围是[0, 3].故答案为:[0, 3].三、解答题:共70分.解答应写出文字说明, 证明过程或演算步骤.第17-21题为必考题, 每个试题考生都必须作答.第22, 23题为选考题, 考生根据要求作答.(一)必考题:共60分. 17.(12分)已知在△ABC中, 内角A, B, C所对的边分别为a, b, c, 且满足a+2acosB=c.(Ⅰ)求证:B=2A;(Ⅱ)若△ABC为锐角三角形, 且c=2, 求a的取值范围.【解答】解:(Ⅰ)证明:根据题意, 在△ABC中, a+2acosB=c,由正弦定理知sinA+2sinAcosB=sinC=sin(A+B)=sinAcosB+cosAsinB,即sinA=cosAsinB﹣sinAcosB=sin(B﹣A).因为A, B∈(0, π),所以B﹣A∈(﹣π, π), 且A+(B﹣A)=B∈(0, π), 所以A+(B﹣A)≠π,所以A=B﹣A, B=2A.(Ⅱ)由(Ⅰ)知, .由△ABC为锐角三角形得,得, 则0<cosB<,由a+2acosB=2得,又由0<cosB<,则.18.(12分)某公司为了准确把握市场, 做好产品计划, 特对某产品做了市场调查:先销售该产品50天, 统计发现每天的销售量x分布在[50, 100]内, 且销售量x的分布频率.(Ⅰ)求a的值.(Ⅱ)若销售量大于等于80, 则称该日畅销, 其余为滞销, 根据是否畅销从这50天中用分层抽样的方法随机抽取5天, 再从这5天中随机抽取2天, 求这2天中恰有1天是畅销日的概率(将频率视为概率).【解答】解:(Ⅰ)由题知, 解得5≤n≤9, n可取5, 6, 7, 8, 9,代入中,得,解得a=0.15.(Ⅱ)滞销日与畅销日的频率之比为(0.1+0.1+0.2):(0.3+0.3)=2:3,则抽取的5天中, 滞销日有2天, 记为a, b, 畅销日有3天, 记为C, D, E,再从这5天中抽出2天, 基本事件有ab, aC, aD, aE, bC, bD, bE, CD, CE, DE, 共10个,2天中恰有1天为畅销日的事件有aC, aD, aE, bC, bD, bE, 共6个,则这2天中恰有1天是畅销日的概率为p=.19.(12分)如图, 已知在四棱锥P﹣ABCD中, 平面PAD⊥平面ABCD, 且PA⊥PD, PA=PD, AD=4, BC∥AD, AB=BC=CD=2, E为PD的中点.(Ⅰ)证明:CE∥平面PAB;(Ⅱ)求三棱锥E﹣PBC的体积.【解答】证明:(Ⅰ)取PA的中点F, 连接BF, EF.在△PAD中, EF为中位线,则, 又, 故,则四边形BCEF为平行四边形, 得CE∥BF,又BF⊂平面PAB, CE⊄平面PAB,故CE∥平面PAB.解:(Ⅱ)由E为PD的中点, 知点D到平面PBC的距离是点E到平面PBC的距离的两倍, 则.由题意知, 四边形ABCD为等腰梯形, 且AB=BC=CD=2, AD=4, 其高为,则.取AD的中点O, 在等腰直角△PAD中, 有, PO⊥AD,又平面PAD⊥平面ABCD, 故PO⊥平面ABCD,则点P到平面ABCD的距离即为PO=2.,故三棱锥E﹣PBC的体积.20.(12分)如图, 在平面直角坐标系xOy中, 直线l1:y=x与直线l2:y=﹣x之间的阴影部分记为W, 区域W中动点P(x, y)到l1, l2的距离之积为1.(Ⅰ)求点P的轨迹C的方程;(Ⅱ)动直线l穿过区域W, 分别交直线l1, l2于A, B两点, 若直线l与轨迹C有且只有一个公共点, 求证:△OAB的面积恒为定值.【解答】解:(Ⅰ)由题意得, |(x+y)(x﹣y)|=2.因为点P在区域W内, 所以x+y与x﹣y同号, 得(x+y)(x﹣y)=x2﹣y2=2,即点P的轨迹C的方程为.(Ⅱ)设直线l与x轴相交于点D, 当直线l的斜率不存在时, , , 得.当直线l的斜率存在时, 设其方程为y=kx+m, 显然k≠0, 则,把直线l的方程与C:x2﹣y2=2联立得(k2﹣1)x2﹣2kmx+m2+2=0,由直线l与轨迹C有且只有一个公共点, 知△=4k2m2﹣4(k2﹣1)(m2+2)=0,得m2=2(k2﹣1)>0, 得k>1或k<﹣1.设A(x1, y2), B(x2, y2), 由得, 同理, 得.所以=.综上, △OAB的面积恒为定值2.21.(12分)已知函数, g(x)=3elnx, 其中e为自然对数的底数.(Ⅰ)讨论函数f(x)的单调性.(Ⅱ)试判断曲线y=f(x)与y=g(x)是否存在公共点并且在公共点处有公切线.若存在, 求出公切线l的方程;若不存在, 请说明理由.【解答】解:(Ⅰ)由, 得,令f′(x)=0, 得.当且x≠0时, f′(x)<0;当时, f′(x)>0.∴f(x)在(﹣∞, 0)上单调递减, 在上单调递减, 在上单调递增;(Ⅱ)假设曲线y=f(x)与y=g(x)存在公共点且在公共点处有公切线, 且切点横坐标为x0>0,则, 即, 其中(2)式即.记h(x)=4x3﹣3e2x﹣e3, x∈(0, +∞), 则h'(x)=3(2x+e)(2x﹣e),得h(x)在上单调递减, 在上单调递增,又h(0)=﹣e3, , h(e)=0,故方程h(x0)=0在(0, +∞)上有唯一实数根x0=e, 经验证也满足(1)式.于是, f(x0)=g(x0)=3e, f′(x0)=g'(x0)=3,曲线y=g(x)与y=g(x)的公切线l的方程为y﹣3e=3(x﹣e),即y=3x.(二)选考题:共10分.请考生在22, 23题中任选一题作答, 如果多做, 则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.(10分)设直线l的参数方程为, (t为参数), 若以直角坐标系xOy的原点O为极点, x轴的正半轴为极轴, 选择相同的长度单位建立极坐标系, 曲线C的极坐标方程为ρsin2θ=4cosθ.(Ⅰ)将曲线C的极坐标方程化为直角坐标方程, 并指出曲线C是什么曲线;(Ⅱ)若直线l与曲线C交于A, B两点, 求|AB|.【解答】解:(Ⅰ)由于ρsin2θ=4cosθ,所以ρ2sin2θ=4ρcosθ, 即y2=4x,因此曲线C表示顶点在原点, 焦点在x轴上的抛物线.(Ⅱ), 化为普通方程为y=2x﹣1,代入y2=4x,并整理得4x2﹣8x+1=0,所以,=,=.[选修4-5:不等式选讲]23.已知函数f(x)=|x+1|+a|2x﹣1|.(Ⅰ)当时, 若对任意x∈R恒成立, 求m+n的最小值;(Ⅱ)若f(x)≥|x﹣2|的解集包含[﹣1, 2], 求实数a的取值范围.【解答】解:(Ⅰ)当时, ,∴, ∴.∴,∴, 当且仅当m=n时等号成立,∵m, n>0, 解得, 当且仅当m=n时等号成立,故m+n的最小值为.(Ⅱ)∵f(x)≥|x﹣2|的解集包含[﹣1, 2],当x∈[﹣1, 2]时, 有x+1+a|2x﹣1|≥2﹣x,∴a|2x﹣1|≥1﹣2x对x∈[﹣1, 2]恒成立,当时, a(1﹣2x)≥1﹣2x, ∴a≥1;当时, a(2x﹣1)≥1﹣2x, ∴a≥﹣1.综上:a≥1.故实数a的取值范围是[1, +∞).2018年河南省高考数学一诊试卷(理科)一、选择题:本大题共12个小题, 每小题5分, 共60分.在每小题给出的四个选项中, 只有一项是符合题目要求的.1.(5分)已知a∈R, 复数z=, 若=z, 则a=()A.1 B.﹣1 C.2 D.﹣22.(5分)已知集合M={x|≤0}, N={x|y=log3(﹣6x2+11x﹣4)}, 则M∩N=()A.[1, ] B.(, 3] C.(1, )D.(, 2)3.(5分)某城市收集并整理了该市2017年1月份至10月份各月最低气温与最高气温(单位:℃)的数据, 绘制了下面的折线图.已知该市的各月最低气温与最高气温具有较好的线性关系, 则根据该折线图, 下列结论错误的是()A.最低气温与最高气温为正相关B.10月的最高气温不低于5月的最高气温C.月温差(最高气温减最低气温)的最大值出现在1月D.最低气温低于0℃的月份有4个4.(5分)在等比数列{an}中, 若a2=, a3=, 则=()A.B.C.D.25.(5分)《九章算术》是我国古代内容极为丰富的数学名著, 书中有如下问题:“今有阳马, 广五尺, 褒七尺, 高八尺, 问积几何?”其意思为:“今有底面为矩形, 一侧棱垂直于底面的四棱锥, 它的底面长, 宽分别为7尺和5尺, 高为8尺, 问它的体积是多少?”若以上条件不变,。

2018届全国数学高考全真模拟卷1(理科)答案

2018届全国数学高考全真模拟卷1(理科)答案

2018年数学(理科)试题参考答案说明:1.参考答案与评分标准指出了每道题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力比照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分. 一、选择题:本大题主要考查基本知识和基本运算.共12小题,每小题5分,满分60分.6.【解析】∵OA →+13AB →+13AC →=0,∴OA →+13(OB →-OA →)+13(OC →-OA →)=0,∴OA →+OB →+OC →=0,所以O 为△ABC 的重心,又O 为△ABC 的外心,所以△ABC 为正三角形.设△ABC 的边长为a ,则23×32a =4,∴a =4 3.所以CA →在CB →上的投影为43cos π3=23,故答案选A .8.易失分提示:误将展开式各项系数012,,,...,n a a a a 与二项式系数012,,,...,nn n n n C C C C 概念分销,从而导致解题错误.[解析]令1x =,可得展开式各项系数和为4n,又二项式系数和为2n ,所以64642,62n n n ==∴=,故选C9.【解析】由已知的三视图可得:该几何体是一个底面为直角边为2的等腰直角三角形,高为1的三棱锥,故该几何体的体积为V =23,故答案为C.11.【解析】由三角形PF 1F 2三边关系可知⎩⎨⎧>>+cc c 2101022,∴52<c<5,∴e 1e 2+1=2c 10+2c ·2c10-2c+1=c 225-c 2+1=2525-c 2>43,因此e 1e 2+1的取值范围是4(,)3+∞,故答案选B . 12.【解析】设F ()x =f ()x -12x ,F ′(x )=f ′(x )-12,∵f ′(x )>12.∴F ′(x )=f ′(x )-12>0,即函数F (x )在R 上单调递增.∵f (x 2)>x 22+12,∴f (x 2)-x 22>f (1)-12,∴F (x 2)>F (1).而函数F (x )在R 上单调递增,x 2>1,∴x>1或x <-1,故答案选C.二、填空题:本大题主要考查基本知识和基本运算.共4小题,每小题5分,满分20分. 13.521033+ 14.72 15.5% 16.(4,2017)14.[解析] 方法一:(以位置为主考虑)第一步涂①,有4种方法,第二步涂②,有3种方法,第三步涂③,有2种方法, 第四步涂④时分两类:第一类用余下的颜色,有1种方法,第五步涂⑤,有1种方法; 第二类与区域②同色,有1种方法,第五步涂⑤,有2种方法, 所以共有 432(1112)72⨯⨯⨯⨯+⨯= 种 方法二:(以颜色为主考虑)分两类:(1)取4色:将②④或③⑤视为一个位置计四个位置,着色方法有44248A =种; (2)取3色:将② ④ ,③ ⑤ 看成两个元素,着色方法有3424A =种.所以共有着色方法482472+=种.16.【解析】作出函数f (x )的图象,令直线y =t 与f (x )的图象交于四个点,其横坐标由左到右依次为a ,b ,c ,d ,则由图象可得,b +c =2,log 2015(d -1)=a)21(-1=t ,由于0<t <1,则得到-1<a <0,2<d <2016,则2<a +d <2015,即有4<a +b +c +d <2017,故答案为:(4,2017).三、解答题:本大题共5小题,满分60分.解答须写出文字说明、证明过程和演算步骤. 17.(本小题满分12分)解:(Ⅰ)当13a =时,不合题意;当110a =时,不合题意.当12a =时,当且仅当236,18a a ==时,符合题意; 因此1232,6,18,a a a === 3q ∴=故1*23,n n a n N -=⋅∈(Ⅱ)因为(1)ln n n n n b a a =+-1123(1)ln(23)n n n --=⋅+-⋅1123(1)[ln 2(1)ln 3]23(1)(ln 2ln 3)(1)ln 3,n n n n n n n --=⋅+-+-=⋅+--+- 2122n n S b b b ∴=+++ 2122(133)[111(1)](ln 2ln 3)n n -=++++-+-++--2[123(1)2]ln 3n n +-+-++-22132ln 33ln 3 1.13nn n n -=⨯+=+--18.(本小题满分12分)(综合法)证明:(Ⅰ)方法一:计算1,2SD AD SA ===,于是222SA SD AD +=,利用勾股定理,可知SD SA ⊥同理,可证SD SB ⊥ 又SA SB S = 因此,SD ⊥平面SAB 方法二:取AB 的中点E ,连接DE ,则四边形BCDE 为矩形,2DE CB ==.连接SE ,则,SE AB SE ⊥=又1SD =,故222ED SE SD =+,所以090DSE ∠=,即SD SE ⊥.由,,AB DE AB SE DE SE E ⊥⊥=,得AB ⊥平面SDE ,所以AB SD ⊥. 又AB SE E =所以SD ⊥平面SAB(Ⅱ)由AB ⊥平面SDE 知,平面ABCD ⊥平面SDE .作SF DE ⊥,垂足为F ,则SF ⊥平面ABCD,2SD SE SF DE ⨯==. 作FG ⊥BC ,垂足为G ,则FG =DC =1.连接SG ,则SG ⊥BC .又BC ⊥FG ,SG ∩FG =G ,故BC ⊥平面SFG ,平面SBC ⊥平面SFG .作FH ⊥SG ,H 为垂足,则FH ⊥平面SBC .FH =SF ×FG SG =37,即F 到平面SBC 的距离为217.由于ED ∥BC ,所以ED ∥平面SBC ,E 到平面SBC 的距离d 也为217. 设AB 与平面SBC 所成的角为α,则sin α=d EB=217. 点评:求AB 与平面SBC 所成角,如果要找出AB 在平面SBC 上的射影,有点难。

2018年河南省高考数学一诊试卷(理科)

2018年河南省高考数学一诊试卷(理科)

2018年河南省高考数学一诊试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知a ∈R ,复数z =(a−i)(1+i)i,若z =z ,则a =( )A.1B.−1C.2D.−22. 已知集合M ={x|x−3x−1≤0},N ={x|y =log 3(−6x 2+11x −4)},则M ∩N =( ) A.[1, 43]B.(12, 3]C.(1, 43)D.(43, 2)3. 某城市收集并整理了该市2017年1月份至10月份各月最低气温与最高气温(单位:∘C )的数据,绘制了下面的折线图.已知该市的各月最低气温与最高气温具有较好的线性关系,则根据该折线图,下列结论错误的是( )A.最低气温与最高气温为正相关B.10月的最高气温不低于5月的最高气温C.月温差(最高气温减最低气温)的最大值出现在1月D.最低气温低于0∘C 的月份有4个4. 在等比数列{a n }中,若a 2=√22,a 3=√43,则a 1+a 15a 7+a 21=( )A.23B.12C.32D.25. 《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有阳马,广五尺,袤七尺,高八尺,问积几何?”其意思为:“今有底面为矩形,一侧棱垂直于底面的四棱锥,它的底面长、宽分别为7尺和5尺,高为8尺,问它的体积是多少?”若以上条件不变,则这个四棱锥的外接球的表面积为( ) A.128π平方尺 B.138π平方尺 C.140π平方尺 D.142π平方尺6. 定义[x]表示不超过x 的最大整数,(x)=x −[x],例如[2.1]=2,(2.1)=0.1,执行如图所示的程序框图,若输入的x =5.8,则输出的z =( )A.−1.4B.−2.6C.−4.6D.−2.87. 若对于任意x ∈R 都有f(x)+2f(−x)=3cosx −sinx ,则函数f(2x)图象的对称中心为( )A.(kπ−π4,0)(k ∈Z) B.(kπ−π8,0)(k ∈Z) C.(kπ2−π4,0)(k ∈Z)D.(kπ2−π8,0)(k ∈Z)8. 设x ,y 满足约束条件{2x −y ≥0x +13y ≤1y ≥0,若z =−ax +y 取得最大值的最优解不唯一,则实数a 的值为( )A.2或−3B.3或−2C.−13或12D.−13或29. 函数f(x)=x(e −x −e x )4x 2−1的部分图像大致是( )A.B.C.D.10. 已知某几何体的三视图如图所示,则该几何体的表面积为()A.20+12√2+2√14B.20+6√2+2√14C.20+6√2+2√34D.20+12√2+2√3411. 设椭圆E:x2a2+y2b2=1(a>b>0)的一个焦点为F(1, 0),点A(−1, 1)为椭圆E内一点,若椭圆E上存在一点P,使得|PA|+|PF|=9,则椭圆E的离心率的取值范围是()A.[12,1) B.[13,12] C.[15,14] D.[12,23]12. 已知函数f(x)=lnx+(2e2−a)x−b2,其中e是自然对数的底数,若不等式f(x)≤0恒成立,则ba的最小值为()A.−1e2B.−2e2C.−1eD.−2e二、填空题(每题5分,满分20分,将答案填在答题纸上)在△ABC中,|AB→+AC→|=|AB→−AC→|,|AB→|=2,则AB→⋅BC→=________已知(1+x)(a−x)6=a0+a1x+a2x2+...+a7x7,a∈R,若a0+a1+a2+...+a6+ a7=0,则a3=________.已知S n为数列{a n}的前n项和,a1=1,当n≥2时,恒有ka n=a n S n−S n2成立,若设F1,F2分别是双曲线x2a2−y2b2=1(a>0,b>0)的左、右焦点,过F1的直线l与双曲线分别交于点A,B,且A(m, 18)在第一象限,若△ABF2为等边三角形,则双曲线的实轴长为________.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)如图,在△ABC中,内角A,B,C的对边分别为a,b,c,已知c=4,b=2,2ccosC=b,D,E分别为线段BC上的点,且BD=CD,∠BAE=∠CAE.(1)求线段AD的长;(2)求△ADE的面积.某班为了活跃元旦气氛,主持人请12位同学做一个游戏,第一轮游戏中,主持人将标有数字1到12的十二张相同的卡片放入一个不透明的盒子中,每人依次从中取出一张卡片,取得标有数字7到12的卡片的同学留下,其余的淘汰;第二轮将标有数字1到6的六张相同的卡片放入一个不透明的盒子中,每人依次从中取出一张卡片,取到标有数字4到6的卡片的同学留下,其余的淘汰;第三轮将标有数字1,2,3的三张相同的卡片放入一个不透明的盒子中,每人依次从中取得一张卡片,取到标有数字2,3的卡片的同学留下,其余的淘汰;第四轮用同样的办法淘汰一位同学,最后留下的这位同学获得一个奖品.已知同学甲参加了该游戏.(1)求甲获得奖品的概率;(2)设X为甲参加游戏的轮数,求X的分布列和数学期望.如图,在三棱台ABC−A1B1C1中,D,E分别是AB,AC的中点,B1E⊥平面ABC,△AB1C是等边三角形,AB=2A1B1,AC=2BC,∠ACB=90∘.(1)证明:B1C // 平面A1DE;(2)求二面角A−BB1−C的正弦值.已知抛物线E:y2=2px(p>0),斜率为k且过点M(3, 0)的直线l与E交于A,B两点,(1)求抛物线E 的方程;(2)设点N(−3, 0),记直线AN ,BN 的斜率分别为k 1,k 2,证明:1k 12+1k 22−2k 2为定值.已知函数f(x)=(x +1)e ax (a ≠0),且x =2a 是它的极值点.(1)求a 的值;(2)求f(x)在[t −1, t +1]上的最大值;(3)设g(x)=f(x)+2x +3xlnx ,证明:对任意x 1,x 2∈(0, 1),都有|g(x 1)−g(x 2)|<2e 3+3e +1.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]在平面直角坐标系xOy 中,直线l 1的参数方程为{x =t −√3y =kt (t 为参数),直线l 2的参数方程为{x =√3−my =m 3k (m 为参数),设直线l 1与l 2的交点为P ,当k 变化时,P 的轨迹为曲线C 1.(1)求出曲线C 1的普通方程;(2)以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,直线C 2的极坐标方程为ρsin(θ+π4)=4√2,点Q 为曲线C 1的动点,求点Q 到直线C 2的距离的最小值.[选修4-5:不等式选讲]已知f(x)=|x +a|(a ∈R).(1)若f(x)≥|2x +3|的解集为[−3, −1],求a 的值;(2)若∀x ∈R ,不等式f(x)+|x −a|≥a 2−2a 恒成立,求实数a 的取值范围.参考答案与试题解析2018年河南省高考数学一诊试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【答案】B【考点】复数的运算【解析】根据复数的基本运算进行化简,结合z=z,进行求解即可.【解答】解:z=(a−i)(1+i)i =a+1+(a−1)ii=a+1i+a−1=(a−1)−(a+1)i,则z=(a−1)+(a+1)i,∵z=z,∴a+1=0,得a=−1,故选B.2.【答案】C【考点】交集及其运算【解析】求解分式不等式化简集合M,求解一元二次不等式化简集合N,再由交集运算性质得答案.【解答】∵集合M={x|x−3x−1≤0}={x|1<x≤3},N={x|y=log3(−6x2+11x−4)}={x|−6x2+11x−4>0}={x|12<x<43},∴M∩N={x|1<x≤3}∩{x|12<x<43}=(1, 43).3.【答案】D【考点】频率分布折线图、密度曲线由该市2017年1月份至10月份各月最低气温与最高气温(单位:∘C)的数据的折线图,得最低气温低于0∘C的月份有3个.【解答】由该市2017年1月份至10月份各月最低气温与最高气温(单位:∘C)的数据的折线图,得:在A中,最低气温与最高气温为正相关,故A正确;在B中,10月的最高气温不低于5月的最高气温,故B正确;在C中,月温差(最高气温减最低气温)的最大值出现在1月,故C正确;在D中,最低气温低于0∘C的月份有3个,故D错误.4.【答案】B【考点】等比数列的通项公式【解析】利用等比数列通项公式先求出公比q=a3a2=√43√2=216,再由a1+a15a7+a21=a1+a15q6(a1+a15)=1q6,能求出结果.【解答】∵在等比数列{a n}中,若a2=√2,a3=√43,∴公比q=a3a2=√43√2=216,∴a1=a2q =√2216=213,∴a1+a15a7+a21=a1+a15q6(a1+a15)=1q6=12.5.【答案】B【考点】球内接多面体球的体积和表面积【解析】构造一个长方体,其长、宽、高分别为7尺、5尺、8尺,则这个这个四棱锥的外接球就是这个长方体的外接球,由此能求出这个四棱锥的外接球的表面积.【解答】解:∵今有底面为矩形,一侧棱垂直于底面的四棱锥,它的底面长,宽分别为7尺和5尺,高为8尺,∴构造一个长方体,其长、宽、高分别为7尺、5尺、8尺,则这个四棱锥的外接球就是这个长方体的外接球,∴这个四棱锥的外接球的半径R=√72+52+822=√1382(尺),∴这个四棱锥的外接球的表面积S=4π×R2=4π×1384=138π(平方尺).6.【答案】C【考点】程序框图【解析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量z的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】模拟程序的运行,可得x=5.8y=5−1.6=3.4x=5−1=4满足条件x≥0,执行循环体,x=1.7,y=1−1.4=−0.4,x=1−1=0满足条件x≥0,执行循环体,x=−0.2,y=−1−1.6=−2.6,x=−1−1=−2不满足条件x≥0,退出循环,z=−2+(−2.6)=−4.6.输出z的值为−4.6.7.【答案】D【考点】正弦函数的图象【解析】根据题意求出函数f(x)的解析式,再化f(x)为正弦型函数,可得函数f(2x)的解析式,根据正弦函数的对称性,求出f(2x)图象的对称中心.【解答】∵对任意x∈R,都有f(x)+2f(−x)=3cosx−sinx①,用−x代替x,得f(−x)+2f(x)=3cos(−x)−sin(−x)②,即f(−x)+2f(−x)=3cosx+sinx②;由①②组成方程组,解得f(x)=sinx+cosx,∴f(x)=√2sin(x+π4),∴f(2x)=√2sin(2x+π4).令2x+π4=kπ,k∈Z,求得x=kπ2−π8,故函数f(2x)图象的对称中心为(kπ2−π8, 0),k∈Z,8.【答案】A【考点】含参线性规划问题简单线性规划【解析】作出不等式组对应的平面区域,利用目标函数的几何意义,得到直线y=ax+z斜率的变化,从而求出a的取值.解:作出不等式组对应的平面区域如图:(阴影部分OAB),由z=y−ax得y=ax+z,即直线的截距最大,z也最大.若a=0,此时y=z,此时,目标函数只在A处取得最大值,不满足条件,若a>0,目标函数y=ax+z的斜率k=a>0,要使z=y−ax取得最大值的最优解不唯一,则直线y=ax+z与直线2x−y=0平行,此时a=2,若a<0,目标函数y=ax+z的斜率k=a<0,要使z=y−ax取得最大值的最优解不唯一,则直线y=ax+z与直线x+13y=1平行,此时a=−3,综上a=−3或a=2.故选A.9.【答案】B【考点】函数的图象变化【解析】此题暂无解析【解答】解:∵函数f(x)的定义域为{x|x≠±12},关于原点对称,f(−x)=−x(e x−e−x) 4x2−1=x(e−x−e x)4x2−1=f(x),∴f(x)为偶函数,其图像关于y轴对称,故排除选项A.令f(x)=0,即x(e −x−e x)4x2−1=0,解得x=0,∴函数f(x)只有一个零点,故排除选项D.当x=1时,f(1)=1e−e3<0,故排除选项C.故选B.10.【答案】D【考点】由三视图求体积【解析】【解答】由三视图可知该几何体为侧放的四棱柱,棱锥的底面为矩形ABCD,底面与一个侧面PBC垂直,PB=PC=4,AB=3.S ABCD=3×4√2=12√2,S△PBC=12×4×4=8,S△PCD=S△PBA=12×3×4=6,△PAD中AP=PD=5,AD=4√2,∴AD边上的高为√25−8=√17,∴S△PAD=12×4√2×√17=2√34,则该几何体的表面积为12√2+8+6+6+2√34=12√2+20+2√34,11.【答案】C【考点】椭圆的离心率【解析】通过记椭圆的左焦点为F1(−1, 0),则|AF1|=1,利用|PF1|≤|PA|+|AF1|可知a≤5;利用|PF1|≥|PA|−|AF1|可知a≥4,进而可得结论4≤a≤5.【解答】记椭圆的左焦点为F1(−1, 0),则|AF1|=1,∵|PF1|≤|PA|+|AF1|,∴2a=|PF1|+|PF|≤|PA|+|AF1|+|PF|≤1+9=10,即a≤5;∵|PF1|≥|PA|−|AF1|,∴2a=|PF1|+|PF|≥|PA|−|AF1|+|PF|≥9−1=8,即a≥4,∴4≤a≤5,∴ca ∈[15,14]12.【答案】B【考点】利用导数研究函数的单调性导数求函数的最值【解析】求得f(x)的导数,讨论a≤2e2时,不恒成立;a>2e2时,求得f(x)的最大值,12b≥−1−ln(a−2e2),可得12⋅ba≥−1−ln(a−2e2)a(a>2e2),令F(x)=−1−ln(x−2e2)x,x>2e2,求得导数和单调区间,可得F(x)的最小值,即可得到所求最小值.【解答】∵函数f(x)=lnx+(2e2−a)x−b2,其中e为自然对数的底数,∴f′(x)=1x+(2e2−a),x>0,当a≤2e2时,f′(x)>0,∴ f(x)≤0不可能恒成立, 当a >2e 2时,由f′(x)=0,得x =1a−2e 2,∵ 不等式f(x)≤0恒成立,∴ f(x)的最大值为0, 当x ∈(0, 1a−2e 2)时,f′(x)>0,f(x)单调递增, 当x ∈(1a−2e 2, +∞)时,f′(x)<0,f(x)单调递减, ∴ 当x =1a−2e 2时,f(x)取最大值, f(1a−2e 2)=−ln(a −2e 2)−12b −1≤0,∴ ln(a −2e 2)+12b +1≥0, ∴ 12b ≥−1−ln(a −2e 2), ∴ 12⋅ba ≥−1−ln(a−2e 2)a(a >2e 2),令F(x)=−1−ln(x−2e 2)x,x >2e 2,F′(x)=−xx−2e 2+1+ln(x−2e 2)x 2=(x−2e 2)ln(x−2e 2)−2e 2(x−2e 2)x 2,令H(x)=(x −2e 2)ln(x −2e 2)−2e 2, H′(x)=ln(x −2e 2)+1, 由H′(x)=0,得x =2e 2+1e ,当x ∈(2e 2+1e , +∞)时,H′(x)>0,H(x)是增函数, x ∈(2e 2, 2e 2+1e )时,H′(x)<0,H(x)是减函数,∴ 当x =2e 2+1e 时,H(x)取最小值H(2e 2+1e )=−2e 2−1e , ∵ x →2e 2时,H(x)→0,x >3e 2时,H(x)>0,H(3e 2)=0, ∴ 当x ∈(2e 2, 3e 2)时,F′(x)<0,F(x)是减函数, 当x ∈(3e 2, +∞)时,F′(x)>0,F(x)是增函数, ∴ x =3e 2时,F(x)取最小值,F(3e 2)=−1−23e 2=−1e2,∴ 12⋅ba 的最小值为−1e 2,即有ba 的最小值为−2e 2.二、填空题(每题5分,满分20分,将答案填在答题纸上) 【答案】 −4【考点】【解析】运用向量的平方即为模的平方,对等式两边平方,可得A 为直角,再由向量数量积的定义和解直角三角形,即可得到所求值. 【解答】在△ABC 中,|AB →+AC →|=|AB →−AC →|, 可得|AB →+AC →|2=|AB →−AC →|2,即有AB →2+AC →2+2AB →⋅AC →=AB →2+AC →2−2AB →⋅AC →, 即为AB →⋅AC →=0,则△ABC 为直角三角形,A 为直角, 则AB →⋅BC →=−BA →⋅BC →=−|BA →|⋅|BC →|⋅cosB =−|BA →|2=−4.【答案】 −5【考点】二项式定理的应用 【解析】在二项式展开式中,令x =1得a 0+a 1+...+a 7的值,从而求得a 的值,再由a 3表示x 3的系数求得a 3的值. 【解答】(1+x)(a −x)6=a 0+a 1x +a 2x 2+...+a 7x 7中, 令x =1得,a 0+a 1+...+a 7=2⋅(a −1)6=0, 解得a =1,而a 3表示x 3的系数,所以a 3=C 63⋅(−1)3+C 62⋅(−1)2=−5. 【答案】 2【考点】 数列的求和 【解析】由题意可得(k −S n )(S n −S n−1)=−Sn 2,化为1S n−1Sn−1=1k ,再利用等差数列的通项公式即可得出k 的值. 【解答】当n ≥2时,恒有ka n =a n S n −S n 2成立, 即为(k −S n )(S n −S n−1)=−S n 2, 化为1S n−1Sn−1=1k ,可得1S n=1+n−1k,由S99=150,可得150=kk+98,解得k=2.【答案】2√21【考点】双曲线的离心率【解析】根据双曲线的定义算出△AF1F2中,|AF1|=2a,|AF2|=4a,由△ABF2是等边三角形得∠F1AF2=120∘,利用余弦定理算出c2=7a2,b2=6a2,结合双曲线的第二定义,可得m,A在双曲线上,代入双曲线的方程,即可得出a,即有实轴长.【解答】根据双曲线的定义,可得|AF1|−|AF2|=2a,∵△ABF2是等边三角形,即|AF2|=|AB|,∴|BF1|=2a,又∵|BF2|−|BF1|=2a,∴|BF2|=|BF1|+2a=4a,∵△BF1F2中,|BF1|=2a,|BF2|=4a,∠F1BF2=120∘,∴|F1F2|2=|BF1|2+|BF2|2−2|BF1|⋅|BF2|cos120∘,即4c2=4a2+16a2−2×2a×4a×(−12)=28a2,解得c2=7a2,b2=6a2,由双曲线的第二定义可得ca =|AF2|m−a2c=4am−a√7=√7,则m=√7,由A在双曲线上,可得257−1826a2=1,解得a=√21,则2a=2√21.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)【答案】根据题意,b=2,c=4,2ccosC=b,则cosC=b2c =14;又由cosC=a2+b2−c22ab =4+a2−162×2×a=14,解可得a=4,即BC=4,则CD=2,在△ACD中,由余弦定理得:AD2=AC2+CD2−2AC⋅CDcosC=6,则AD=√6;根据题意,AE平分∠BAC,则CEBE =ACAB=12,cosC =14,则sinC =√1−(14)2=√154,S △ADE =S △ACD −S △ACE =12×2×2×√154−12×2×43×√154=√156. 【考点】 余弦定理 【解析】(1)在△ABC 中,利用余弦定理计算BC ,再在△ACD 中利用余弦定理计算AD ; (2)根据角平分线的性质得出CE ,于是S △ADE =S △ACD −S △ACE . 【解答】根据题意,b =2,c =4,2ccosC =b ,则cosC =b2c =14; 又由cosC =a 2+b 2−c 22ab=4+a 2−162×2×a=14,解可得a =4,即BC =4,则CD =2, 在△ACD 中,由余弦定理得:AD 2=AC 2+CD 2−2AC ⋅CDcosC =6, 则AD =√6;根据题意,AE 平分∠BAC , 则CEBE =ACAB =12,变形可得:CE =13BC =43,cosC =14,则sinC =√1−(14)2=√154,S △ADE =S △ACD −S △ACE =12×2×2×√154−12×2×43×√154=√156. 【答案】解:(1)设甲获得奖品为事件A ,在每轮游戏中, 甲留下的概率与他摸卡片的顺序无关, 则P(A)=612×36×23×12=112.(2)随机变量X 的取值可以为1,2,3,4. P(X =1)=612=12, P(X =2)=612×36=14, P(X =3)=612×36×13=112, P(X =4)=612×36×23=16. 随机变量X 的概率分布列为:所以数学期望E(X)=1×12+2×14+3×112+4×16=2312.【考点】离散型随机变量的期望与方差离散型随机变量及其分布列古典概型及其概率计算公式【解析】(1)甲获得奖品的事件为A,在每一轮游戏中,甲留下的概率和他摸卡片的顺序无关,由此利用相互独立事件概率乘法公式能求出甲拿到礼物的概率.(2)随机变量X的所有可能取值是1,2,3,4,分别求出相应的概率,由此能求出随机变量X的概率分布列及数学期望.【解答】解:(1)设甲获得奖品为事件A,在每轮游戏中,甲留下的概率与他摸卡片的顺序无关,则P(A)=612×36×23×12=112.(2)随机变量X的取值可以为1,2,3,4.P(X=1)=612=12,P(X=2)=612×36=14,P(X=3)=612×36×13=112,P(X=4)=612×36×23=16.随机变量X的概率分布列为:所以数学期望E(X)=1×12+2×14+3×112+4×16=2312.【答案】因为A1B1 // AB,AB=2A1B1,D为棱AB的中点,所以A1B1 // BD,A1B1=BD,所以四边形A1B1BD为平行四边形,从而BB1 // A1D.又BB1平面A1DE,A1D⊂平面A1DE,所以B1B // 平面A1DE,因为DE是△ABC的中位线,所以DE // BC,同理可证,BC // 平面A1DE.因为BB1∩BC=B,所以平面B1BC // 平面A1DE,又B1C⊂平面B1BC,所以B1C // 平面A1DE.以ED,EC,EB1所在直线分别为x轴,y轴,z轴,建立如图所示的空间直角坐标系E−设平面ABB 1的一个法向量m =(x 1,y 1,z 1), 则{m →⋅AB 1→=0m →⋅AB →=0 ,即{ay 1+√3az 1=0ax 1+2ay 1=0, 取z 1=1,得m →=(2√3,−√3,1).同理,设平面BB 1C 的一个法向量n →=(x,y,z), 又CB 1→=(0,−a,√3a),BC →=(−a,0,0), 由{n →⋅BC →=0n →⋅CB 1→=0 ,得{−ax =0−ay +√3az =0 , 取z =−1,得n →=(0,−√3,−1), 所以cos <m →,n →>=m →⋅n→|m →|⋅|n →|=14,故二面角A −BB 1−C 的正弦值为:√1−(14)2=√154.【考点】直线与平面平行二面角的平面角及求法 【解析】(1)推导出四边形A 1B 1BD 为平行四边形,从而BB 1 // A 1D ,进而B 1B // 平面A 1DE ,由DE 是△ABC 的中位线,得DE // BC ,从而BC // 平面A 1DE .进而平面B 1BC // 平面A 1DE ,由此能证明B 1C // 平面A 1DE .(2)以ED ,EC ,EB 1所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系E −xyz ,利用向量法能求出二面角A −BB 1−C 的正弦值. 【解答】因为A 1B 1 // AB ,AB =2A 1B 1,D 为棱AB 的中点, 所以A 1B 1 // BD ,A 1B 1=BD ,所以四边形A 1B 1BD 为平行四边形,从而BB 1 // A 1D . 又BB 1平面A 1DE ,A 1D ⊂平面A 1DE , 所以B 1B // 平面A 1DE ,因为DE 是△ABC 的中位线,所以DE // BC , 同理可证,BC // 平面A 1DE .因为BB 1∩BC =B ,所以平面B 1BC // 平面A 1DE , 又B 1C ⊂平面B 1BC ,所以B 1C // 平面A 1DE .以ED ,EC ,EB 1所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系E −xyz ,设平面ABB 1的一个法向量m =(x 1,y 1,z 1), 则{m →⋅AB 1→=0m →⋅AB →=0 ,即{ay 1+√3az 1=0ax 1+2ay 1=0, 取z 1=1,得m →=(2√3,−√3,1).同理,设平面BB 1C 的一个法向量n →=(x,y,z), 又CB 1→=(0,−a,√3a),BC →=(−a,0,0), 由{n →⋅BC →=0n →⋅CB 1→=0 ,得{−ax =0−ay +√3az =0 , 取z =−1,得n →=(0,−√3,−1), 所以cos <m →,n →>=m →⋅n→|m →|⋅|n →|=14,故二面角A −BB 1−C 的正弦值为:√1−(14)2=√154.【答案】根据题意,设直线l 的方程为y =k(x −3),联立方程组{y 2=2pxy =k(x −3)得y 2−2p k y −6p =0, 设A(x 1, y 1),B(x 2, y 2), 所以y 1+y 2=2p k,y 1y 2=−6p ,又OA →∗OB →=x 1x 2+y 1y 2=(y 1y 2)24p 2+y 1y 2=9−6p =−3,所以p =2,从而抛物线E 的方程为y 2=4x .证明:因为k 1=y1x 1+3=y1y 1k+6,k 2=y2x 2+3=y2y 2k+6,所以1k 1=1k +6y 1,1k 2=1k +6y 2,因此1k 12+1k 22−2k 2=(1k +6y 1)2+(1k +6y 2)2−2k 2=2k 2+12k∗(1y 1+1y 2)+36(1y 12+1y 22)−2k 2=12k∗y 1+y 2y 1y 2+36×(y 1+y 2)2−2y 1y 2y 12y 22,又y 1+y 2=2p k=4k ,y 1y 2=−6p =−12,16即1k 12+1k 22−2k 为定值.【考点】直线与抛物线的位置关系 【解析】(1)根据题意,设直线l 的方程为y =k(x −3),联立直线与抛物线的方程,得y 2−2p ky −6p =0,设A(x 1, y 1),B(x 2, y 2),利用根与系数的关系分析用p 表示OA →∗OB →+3=0,解可得p 的值,即可得抛物线的标准方程;(2)根据题意,由两点间连线的斜率公式可得k 1、k 2的值,将其值代入1k 12+1k 22−2k 2中,结合抛物线的焦点弦公式分析可得结论. 【解答】根据题意,设直线l 的方程为y =k(x −3),联立方程组{y 2=2pxy =k(x −3)得y 2−2p k y −6p =0, 设A(x 1, y 1),B(x 2, y 2), 所以y 1+y 2=2p k,y 1y 2=−6p ,又OA →∗OB →=x 1x 2+y 1y 2=(y 1y 2)24p 2+y 1y 2=9−6p =−3,所以p =2,从而抛物线E 的方程为y 2=4x .证明:因为k 1=y 1x 1+3=y 1y 1k+6,k 2=y 2x 2+3=y2y 2k+6,所以1k 1=1k +6y 1,1k 2=1k +6y 2,因此1k 12+1k 22−2k 2=(1k +6y 1)2+(1k +6y 2)2−2k 2=2k 2+12k∗(1y 1+1y 2)+36(1y 12+1y 22)−2k 2=12k∗y 1+y 2y 1y 2+36×(y 1+y 2)2−2y 1y 2y 12y 22,又y 1+y 2=2p k=4k ,y 1y 2=−6p =−12,所以1k 12+1k 22−2k 2=12k×(−1)3k+36×16k 2+24144=6,即1k 12+1k 22−2k 2为定值.【答案】f(x)=(x +1)e ax (a ≠0)的导数f′(x)=e ax +a(x +1)e ax =(ax +a +1)e ax , 因为x =2a 是f(x)的一个极值点, 所以f ′(2a )=(a +3)e 2=0,所以a =−3.由(1)知f(x)=(x +1)e −3x ,f′(x)=(−3x −2)e −3x ,当t −1≥−23,即t ≥13时,f(x)在[t −1, t +1]上递减,f(x)max =f(t −1)=te −3(t−1);当t −1<−23<t +1,即−53<t <13时,f(x)max =f(−23)=e 23.证明:g(x)=(x +1)e −3x +2x +3xlnx , 设g(x)=m 1(x)+m 2(x),x ∈(0, 1),其中m 1(x)=(x +1)e −3x +2x ,m 2(x)=3xlnx ,则m 1′(x)=(−3x −2)e −3x +2,设ℎ(x)=(−3x −2)e −3x +2,则ℎ′(x)=(9x +3)e −3x >0,可知m 1′(x)在(0, 1)上是增函数, 所以m 1′(x)>m 1′(0)=0,即m 1(x)在(0, 1)上是增函数, 所以1<m 1(x)<2+2e 3.又m 2′(x)=3(1+lnx),由m 2′(x)>0,得x >1e ;由m 2′(x)<0,得0<x <1e , 所以m 2(x)在(0,1e )上递减,在(1e ,1)上递增,所以−3e ≤m 2(x)<0,从而1−3e <m 1(x)+m 2(x)<2+2e 3.所以,对任意x 1,x 2∈(0, 1),|g(x 1)−g(x 2)|<(2+2e 3)−(1−3e )=2e 3+3e +1. 【考点】利用导数研究函数的极值 利用导数研究函数的最值 【解析】(1)求得f(x)的导数,可得f′(2a )=0,解方程可得a 的值;(2)由(1)可得极值点,讨论区间与极值点的关系,结合单调性,即可得到所求最大值;(3)g(x)=(x +1)e −3x +2x +3xlnx ,设g(x)=m 1(x)+m 2(x),x ∈(0, 1),其中m 1(x)=(x +1)e −3x +2x ,m 2(x)=3xlnx ,分别求得导数和单调性,可得它们的取值范围, 即可得证. 【解答】f(x)=(x +1)e ax (a ≠0)的导数f′(x)=e ax +a(x +1)e ax =(ax +a +1)e ax , 因为x =2a 是f(x)的一个极值点, 所以f ′(2a )=(a +3)e 2=0,所以a =−3.由(1)知f(x)=(x +1)e −3x ,f′(x)=(−3x −2)e −3x ,当t −1≥−23,即t ≥13时,f(x)在[t −1, t +1]上递减,f(x)max =f(t −1)=te −3(t−1);当t −1<−23<t +1,即−53<t <13时,f(x)max =f(−23)=e 23.证明:g(x)=(x +1)e −3x +2x +3xlnx , 设g(x)=m 1(x)+m 2(x),x ∈(0, 1),其中m 1(x)=(x +1)e −3x +2x ,m 2(x)=3xlnx ,则m 1′(x)=(−3x −2)e −3x +2,设ℎ(x)=(−3x −2)e −3x +2,则ℎ′(x)=(9x +3)e −3x >0,可知m 1′(x)在(0, 1)上是增函数, 所以m 1′(x)>m 1′(0)=0,即m 1(x)在(0, 1)上是增函数, 所以1<m 1(x)<2+2e 3.又m 2′(x)=3(1+lnx),由m 2′(x)>0,得x >1e ;由m 2′(x)<0,得0<x <1e , 所以m 2(x)在(0,1e )上递减,在(1e ,1)上递增,所以−3e ≤m 2(x)<0,从而1−3e <m 1(x)+m 2(x)<2+2e 3.所以,对任意x 1,x 2∈(0, 1),|g(x 1)−g(x 2)|<(2+2e 3)−(1−3e )=2e 3+3e +1. 请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程] 【答案】∵ 直线l 1的参数方程为{x =t −√3y =kt (t 为参数),∴ 直线l 1的普通方程为y =k(x +√3),①∵ 直线l 2的参数方程为{x =√3−my =m 3k (m 为参数),∴ 直线l 2的普通方程为y =13k (√3−x),② ①×②,消k ,得:x 23+y 2=1.∵ k ≠0,∴ y ≠0,∴ 曲线C 1的普通方程为x 23+y 2=1(y ≠0).∵ 直线C 2的极坐标方程为ρsin(θ+π4)=4√2, ∴ 直线C 2的直角坐标方程为x +y −8=0, 由(1)知曲线C 1与直线C 2无公共点,∵ 曲线C 1的参数方程为{x =√3cosαy =sinα ,(α为参数,α≠kπ,k ∈Z),∴ 曲线C 1上的点Q(√3cosα, sinα)到直线的距离为: π∴ 当sin(α+π3)=1时,d 取最小值3√2.【考点】参数方程与普通方程的互化【解析】(1)求出直线l 1的普通方程为y =k(x +√3),①,直线l 2的普通方程为y =13k (√3−x),②,①×②,消k ,能求出曲线C 1的普通方程. (2)直线C 2的直角坐标方程为x +y −8=0,曲线C 1上的点Q(√3cosα, sinα)到直线的距离为:d =√3cosα+sinα−8|√2=|2sin(α+π3)−8|√2,当sin(α+π3)=1时,d 取最小值3√2. 【解答】∵ 直线l 1的参数方程为{x =t −√3y =kt(t 为参数), ∴ 直线l 1的普通方程为y =k(x +√3),①∵ 直线l 2的参数方程为{x =√3−m y =m 3k(m 为参数), ∴ 直线l 2的普通方程为y =13k (√3−x),②①×②,消k ,得:x 23+y 2=1.∵ k ≠0,∴ y ≠0,∴ 曲线C 1的普通方程为x 23+y 2=1(y ≠0). ∵ 直线C 2的极坐标方程为ρsin(θ+π4)=4√2,∴ 直线C 2的直角坐标方程为x +y −8=0,由(1)知曲线C 1与直线C 2无公共点,∵ 曲线C 1的参数方程为{x =√3cosαy =sinα,(α为参数,α≠kπ,k ∈Z), ∴ 曲线C 1上的点Q(√3cosα, sinα)到直线的距离为: d =√3cosα+sinα−8|√2=|2sin(α+π3)−8|√2, ∴ 当sin(α+π3)=1时,d 取最小值3√2.[选修4-5:不等式选讲]【答案】f(x)≥|2x +3|即|x +a|≥|2x +3|,平方整理得:3x 2+(12−2a)x +9−a 2≤0,所以−3,−1是方程 3x 2+(12−2a)x +9−a 2=0的两根,…2分由根与系数的关系得到{12−2a −3=−49−a 23=3 ...4分解得a =0...5分因为f(x)+|x −a|≥|(x +a)−(x −a)|=2|a|...7分 所以要不等式f(x)+|x −a|≥a 2−2a 恒成立只需2|a|≥a 2−2a...8分 当a ≥0时,2a ≥a 2−2a 解得0≤a ≤4,当a <0时,−2a ≥a 2−2a 此时满足条件的a 不存在,综上可得实数a 的范围是0≤a ≤4...10分【考点】绝对值三角不等式【解析】(1)根据二次函数的性质得到关于a 的方程组,解出即可; (2)问题转化为2|a|≥a 2−2a ,通过讨论a 的范围,得到关于a 的不等式,解出即可.【解答】f(x)≥|2x +3|即|x +a|≥|2x +3|,平方整理得:3x 2+(12−2a)x +9−a 2≤0,所以−3,−1是方程 3x 2+(12−2a)x +9−a 2=0的两根,…2分由根与系数的关系得到{12−2a −3=−49−a 23=3 ...4分解得a =0...5分因为f(x)+|x −a|≥|(x +a)−(x −a)|=2|a|...7分 所以要不等式f(x)+|x −a|≥a 2−2a 恒成立只需2|a|≥a 2−2a...8分 当a ≥0时,2a ≥a 2−2a 解得0≤a ≤4,当a <0时,−2a ≥a 2−2a 此时满足条件的a 不存在, 综上可得实数a 的范围是0≤a ≤4...10分。

河南省高考数学一模试卷理科含解析

河南省高考数学一模试卷理科含解析

2018年河南省高考数学一模试卷(理科)一、选择题1.已知集合A={x|x2−2x−3>0},B=N,则集合(∁R A)∩B中元素的个数为()A. 2B. 3C. 4D. 52.若复数a+3i1+2i(a∈R,i为虚数单位)是纯虚数,则实数a的值为()A. −6B. 13C. 32D. √133.已知f(x)=sinx−tanx,命题p:∃x0∈(0,π2),f(x0)<0,则()A. p是假命题,¬p:∀x∈(0,π2),f(x)≥0B. p是假命题,¬p:∃x0∈(0,π2),f(x0)≥0C. p是真命题,¬p:∀x∈(0,π2),f(x)≥0D. p是真命题,¬p:∃x0∈(0,π2),f(x0)≥04.已知程序框图如图,则输出i的值为()A. 7B. 9C. 11D. 135.2018年元旦假期,高三的8名同学准备拼车去旅游,其中(1)班、(2)班,(3)班、(4)班每班各两名,分乘甲乙两辆汽车,每车限坐4名同学(乘同一辆车的4名同学不考虑位置),其中(1)班两位同学是孪生姐妹,需乘同一辆车,则乘坐甲车的4名同学中恰有2名同学是来自同一个班的乘坐方式共有()A. 18种B. 24种C. 48种D. 36种1 / 16. 《九章算术》是我国古代数学名著,在《九章算术》中将底面为矩形且有一侧棱垂直于底面的四棱锥称为“阳马”,若某阳马”的三视图如图所示,其中正视图和侧视图是腰长为1的两个全等的等腰直角三角形,则该“阳马”的表面积为( ) A. 1+√2 B. 1+2√2 C. 2+√2 D. 2+2√27. 设不等式组{x +y ≤4y −x ≥0x −1≥0表示的平面区域为D ,若圆C :(x +1)2+y 2=r 2(r >0)不经过区域D 上的点,则r 的取值范围为( ) A. (0,√5)∪(√13,+∞) B. (√13,+∞) C. (0,√5) D. [√5,√13]8. 若等边三角形ABC 的边长为3,平面内一点M 满足6CM ⃗⃗⃗⃗⃗⃗ −3CA ⃗⃗⃗⃗⃗ =2CB ⃗⃗⃗⃗⃗ ,则AM ⃗⃗⃗⃗⃗⃗ ⋅BM⃗⃗⃗⃗⃗⃗ 的值为( )A. −152B. −2C. 2D. 1529. 关于函数f(x)=3sin(2x −π3)+1(x ∈R),下列命题正确的是( )A. 由f(x 1)=f(x 2)=1可得x 1−x 2是π的整数倍B. y =f(x)的表达式可改写成f(x)=3cos(2x +π6)+1 C. y =f(x)的图象关于点(3π4,1)对称 D. y =f(x)的图象关于直线x =−π12对称10. 设函数f(x)=mx 2−mx −1,若对于x ∈[1,3],f(x)<−m +4恒成立,则实数m的取值范围为( )A. (−∞,0]B. [0,57)C. (−∞,0)∪(0,57)D. (−∞,57)11. 设双曲线的方程为x 2a2−y 2b 2=1(a >0,b >0),若双曲线的渐近线被圆M :x 2+y 2−10x =0所截得的两条弦长之和为12,已知△ABP 的顶点A ,B 分别为双曲线的左、右焦点,顶点P 在双曲线上,则|sinP||sinA−sinB|的值等于( )A. 35B. √73C. 53D. √712. 已知定义在R 上的函数f(x)和g(x)分别满足f(x)=f′(1)2,e 2x−2+x 2−2f(0)⋅x ,g′(x)+2g(x)<0,则下列不等式恒成立的是( ) A. g(2016)<f(2)⋅g(2018) B. f(2)⋅g(2016)<g(2018) C. g(2016)>f(2)⋅g(2018) D. f(2)⋅g(2016)>g(2018) 二、填空题1 / 113. 设a =∫(π0cosx −sinx)dx ,则二项式(a √x −√x )6的展开式中含x 2项的系数为______.14. 若函数f(x)={ax(x +2),x <0x(x−b),x≥0(a,b ∈R)为奇函数,则f(a +b)的值为______. 15. 已知三棱柱ABC −A 1B 1C 1的底面是正三角形,侧棱AA 1⊥底面ABC ,若有一半径为2的球与三棱柱的各条棱均相切,则AA 1的长度为______.16. 如图,OA ,OB 为扇形湖面OAB 的湖岸,现欲利用渔网和湖岸在湖中隔出两个养殖区−区域I 和区域Ⅱ,点C 在AB ⌢上,∠COA =θ,CD//OA ,其中AC ⌢,半径OC 及线段CD 需要用渔网制成.若∠AOB =π3,OA =1,则所需渔网的最大长度为______.三、解答题17. 已知S n 为数列{a n }的前n 项和,且a 1<2,a n >0,6S n =a n 2+3a n +2,n ∈N ∗.(1)求数列{a n }的通项公式;(2)若对∀n ∈N ∗,b n =(−1)n a n 2,求数列{b n }的前2n 项的和T 2n .18. 如图所示,在四棱锥P −ABCD 中,底面ABCD 为直角梯形,AB//CD ,∠BAD =90∘,DC =DA =2AB =2√5,点E 为AD 的中点,BD ∩CE =H ,PH ⊥平面ABCD ,且PH =4. (1)求证:PC ⊥BD ;(2)线段PC 上是否存在一点F ,使二面角B −DF −C的余弦值是√1515?若存在,请找出点F 的位置;若不存在,请说明理由.19.某地区为了解学生学业水平考试的状况,从参加学业水平考试的学生中抽出160名,其数学组成绩(均为整数)的频率分布直方图如图所示.(1)估计这次考试数学成绩的平均分和众数;(2)假设在(90,100]段的学生中有3人得满分100分,有2人得99分,其余学生的数学成绩都不相同.现从90分以上的学生中任取4人,不同分数的个数为ξ,求ξ的分布列及数学期望E(ξ).20.已知椭圆C1:x2a2+y2b2=1(a>b>0)的离心率为√22,右焦点F是抛物线C2:y2=2px(p>0)的焦点,点(2,4)在抛物线C2上.(1)求椭圆C1的方程;(2)已知斜率为k的直线l交椭圆C1于A,B两点,M(0,2),直线AM与BM的斜率乘积为−12,若在椭圆上存在点N,使|AN|=|BN,求△ABN的面积的最小值.21.已知函数f(x)=ae x+x2−bx(a,b∈R),其导函数为y=f′(x).(1)当b=2时,若函数y=f′(x)在R上有且只有一个零点,求实数a的取值范围;(2)设a≠0,点P(m,n)(m,n∈R)是曲线y=f(x)上的一个定点,是否存在实数x0(x0≠m)使得f(x0)−n=f′(x0+m2)(x0−m)成立?并证明你的结论.1 / 122. 在直角坐标系xOy 中,已知直线l 1:{y =tsinαx=tcosα(t 为参数),l 2:{x =tcos(α+π4)y =tsin(α+π4)(t为参数),其中α∈(0,3π4),以原点O 为极点,x 轴非负半轴为极轴,取相同长度单位建立极坐标系,曲线C 的极坐标方程为ρ−4cosθ=0. (1)写出l 1,l 2的极坐标方程和曲线C 的直角坐标方程;(2)设l 1,l 2分别与曲线C 交于点A ,B(非坐标原点),求|AB|的值.23. 设函数f(x)=|x −a|(a >0).(1)当a =2时,解不等式f(x)≥1−2x ; (2)已知f(x)+|x −1的最小值为3,且m 2n =a(m >0,n >0),求m +n 的最小值.答案和解析【答案】 1. C 2. A 3. C 4. D 5. B 6. C7. A8. B 9. D 10. D 11. C 12. C13. 192 14. −1 15. 2√316. π+6+2√3617. 解:(1)6S n =a n2+3a n +2,n ∈N ∗. n ≥2时,6a n =6S n −6S n−1=a n 2+3a n +2−(a n−12+3a n−1+2),化为:(a n +a n−1)(a n −a n−1−3)=0, ∵a n >0,∴a n −a n−1=3,n =1时,6a 1=a 12+3a 1+2,且a 1<2,解得a 1=1.∴数列{a n }是等差数列,首项为1,公差为3. ∴a n =1+3(n −1)=3n −2.(2)b n =(−1)n a n 2=(−1)n (3n −2)2.∴b 2n−1+b 2n =−(6n −5)2+(6n −2)2=3(12n −7)=36n −21.∴数列{b n }的前2n 项的和T 2n =36(1+2+⋯…+n)−21n =36×n(n+1)2−21n =18n 2−3n .18. 证明:(1)∵AB//CD ,∠BAD =90∘,∴∠EDC =∠BAD =90∘,∵DC =DA =2AB ,E 为AD 的中点,∴AB =ED , ∴△BAD≌△EDC ,∴∠DBA =∠DEH ,∵∠DBA +∠ADB =90∘,∴∠DEH +∠ADB =90∘,∴BD ⊥EC ,又∵PH ⊥平面ABCD ,BD ⊂平面ABCD ,∴BD ⊥PH , 又∵PH ∩EC =H ,且PH ,EC ⊄平面PEC ,∴BD ⊥平面PEC ,又∵PC ⊂平面PEC ,∴PC ⊥BD . 解:(2)由(1)可知△DHE∽△DAB ,由题意得BD =EC =5,AB =DE =√5, ∴DH DA=EH BA=DE DB,∴EH =1,HC =4,DH =2,HB =3, ∵PH 、EC 、BD 两两垂直,建立以H 为坐标原点,HB 、HC 、HP 所在直线分别为x ,y ,z 轴的坐标系, H(0,0,0),B(3,0,0),C(0,4,0),D(−2,0,0),P(0,0,4), 假设线段PC 上存在一点F 满足题意, ∵CF ⃗⃗⃗⃗⃗ 与CP ⃗⃗⃗⃗⃗ 共线,∴存在唯一实数λ,(0≤λ≤1),满足CF ⃗⃗⃗⃗⃗ =λCP ⃗⃗⃗⃗⃗ , 解得F(0,4−4λ,4λ),设向量n ⃗ =(x,y ,z)为平面CPD 的一个法向量,且CP ⃗⃗⃗⃗⃗ =(0,−4,4),CD ⃗⃗⃗⃗⃗ =(−2,−4,0),∴{n ⃗ ⋅CP ⃗⃗⃗⃗⃗ =−4y +4z =0n⃗ ⋅CD ⃗⃗⃗⃗⃗ =−x −2y =0,取x =2,得n⃗ =(2,−1,−1), 同理得平面CPD 的一个法向量m⃗⃗⃗ =(0,λ,λ−1),1 / 1∵二面角B −DF −C 的余弦值是√1515,∴|cos <n ⃗ ,m ⃗⃗⃗ >|=|n ⃗⃗ ⋅m ⃗⃗⃗ ||n ⃗⃗ |⋅|m ⃗⃗⃗ |=√6⋅√2λ2−2λ+1=√1515, 由0≤λ≤1,解得λ=34, ∴CF ⃗⃗⃗⃗⃗ =34CP⃗⃗⃗⃗⃗ , ∵CP =4√2,∴线段PC 上存在一点F ,当点F 满足CF =3√2时,二面角B −DF −C 的余弦值是√1515.19. 解:(1)x =45×0.005×10+55×0.015×10+65×0.02×10+75×0.03×10+85×0.025×10+95×0.005×10=72(分), 众数为75分.(2)90分以上的人数为160×0.005×10=8人. ∴ξ的可能取值为2,3,4, P(ξ=2)=C 33⋅C 51+C 32⋅C 22C 84=435,P(ξ=3)=C 32⋅C 21⋅C 31+C 31⋅C 22⋅C 31+C 32⋅C 32+C 22⋅C 32C 84=3970,P(ξ=4)=C 32⋅C 31⋅C 21+C 33⋅C 51C 84=2370.∴ξ的数学期望是E(ξ)=2×435+3×3970+4×2370=4514.20. 解:(1)∵点(2,4)在抛物线y 2=2px 上,∴16=4p ,解得p =4,∴椭圆的右焦点为F(2,0), ∴c =2, ∵椭圆C 1:x 2a2+y 2b 2=1(a >b >0)的离心率为√22,∴ca =√22, ∴a =2√2,∴b 2=a 2−c 2=8−4=4, ∴椭圆C 1的方程为x 28+y 24=1,(2)设直线l 的方程为y =kx +m ,设A(x 1,y 1),B(x 2,y 2), 由{x 2+2y 2=8y=kx+m,消y 可得(1+2k 2)x 2+4kmx +2m 2−8=0, ∴x 1+x 2=−4km1+2k 2,x 1x 2=2m 2−81+2k 2,∴y 1+y 2=k(x 1+x 2)+2m =2m1+2k 2,y 1y 2=k 2x 1x 2+km(x 1+x 2)+m 2=m 2−8k 21+2k 2∵M(0,2),直线AM与BM的斜率乘积为−12,∴k1⋅k2=y1−2x1⋅y2−2x2=y1y2−2(y1+y2)+4x1x2=m−22(m+2)=−12,解得m=0,∴直线l的方程为y=kx,线段AB的中点为坐标原点,由弦长公式可得|AB|=√1+k2√(x1+x2)2−4x1x2=√32(k2+1)1+2k2,∵|AN|=|BN|,∴ON垂直平分线段AB,当k≠0时,设直线ON的方程为y=−1kx,同理可得|ON|=12√32(1k2+1)2×1k2+1=12√32(k2+1)k2+2,∴S△ABN=12|ON|⋅|AB|=8√(k2+1)2(k2+2)(2k2+1),当k=0时,△ABN的面积也适合上式,令t=k2+1,t≥1,0<1t≤1,则S△ABN=8√t2(t+1)(2t−1)=8√1−1t2+1t+2=8√1−(1t−12)2+94,∴当1t =2时,即k=±1时,S△ABN的最小值为163.21. 解:(1)当b=2时,f(x)=ae x+x2−2x,(a∈R),f′(x)=ae x+2x−2,(a∈R),由题意得ae x+2x−2=0,即a=2−2xe x,令ℎ(x)=2−2xe x ,则ℎ′(x)=2x−4e x=0,解得x=2,当x<2时,ℎ′(x)<0,ℎ(x)单调弟增,当x>2时,ℎ′(x)>0,ℎ(x)单调递减,∴ℎ(x)min=ℎ(2)=−2e2,∵当x=−1时,ℎ(−1)=4e>0,当x>2时,ℎ(x)=2−2xe x<0,由题意得当a=−2e2或a∈[0,+∞)时,f′(x)在R上有且只有一个零点.(2)由f(x)=ae x+x2−bx,得f′(x)=ae x+2x−b,假设存在x0,则有f(x0)=f′(x0+m2)(x0−m)+n=f′(x0+m2)(x0−m)+f(m),即f(x0)−f(m)x0−m =f′(x0+m2),(x0≠m),∵f′(x0+m2)=ae x0+m2+2⋅x0+m2−b,f(x0)−f(m)x0−m =a(e x0−e m)+(x02−m2)−b(x0−m)x0−m=a(e x0−e m)x0−m+(x0+m)−b,∴ae x0+m2+2⋅x0+m2−b=a(e x0−e m)x0−m+(x0+m)−b,即ae x0+m2=a(e x0−e m)x0−m,∵a≠0,∴ex0+m2=e x0−e mx0−m,令t=x0−m>0,则e t2−m=e t+m−e mt,两边同时除以e m,得e t2=e t−1t,即te t2=e t−1,令g(t)=e t−te t2−1,∴g′(t)=e t−(e t2+t2e t2)=e t2(e t2−t2−1),令ℎ(t)=e t2−t2−1在(0,+∞)上单调递增,且ℎ(0)=0,∴ℎ(t)>0对于t∈(0,+∞)恒成立,即g′(t)>0对于t∈(0,+∞)恒成立,∴g(e)在(0,+∞)上单调递增,g(0)=0,∴g(t)>0对于t∈(0,+∞)恒成立,∴ae x0+m2=a(e x0−e m)x0−m不成立,同理,t=x0−m<0时,bngidnuu,∴不存在实数x0(x0≠m)使得f(x0)−n=f′(x0+m2)(x0−m)成立.22. 解:(1)l1,l2的极坐标方程为θ1=α(ρ∈R),θ2=α+π4(ρ∈R).曲线C的极坐标方程方程为ρ−4cosθ=0.即得ρ2−4ρcosθ=0,利用ρ2=x2+y2,x=ρcosθ得曲线C的直角坐标方程为(x−2)2+y2=4.(2)因为ρ1=4cosα,ρ2=4cos(α+π4),所以|AB|2=ρ12+ρ22−2ρ1.ρ2cosπ4=16[cos2α+cos2(α+π4)−√2cosαcos(α+π4)]=16[cos2α+12(cosα−sinα)2−cosα(cosα−sinα)]=8,所以|AB|的值为2√2.23. 解:(1)当x≥2时,x−2≥1−2x,得x≥1,故x≥2,当x<2时,2−x≥1−2x,得x≥−1,故−1≤x<2,综上,不等式的解集是{x|x≥−1};(2)∵f(x)+|x−1|的最小值是3,∴f(x)+|x−1|≥|x−a−(x−1)|=|a−1|=3,故a=4,∵m+n=m2+m2+n≥33m2⋅m2⋅n=3,当且仅当m2=n即m=2,n=1时取“=”.【解析】1. 解:A={x|x<−1,或x>3};∴∁R A={x|−1≤x≤3};∴(∁R A)∩B={0,1,2,3}.故选:C.1 / 1可先求出集合A ={x|x <−1,或x >3},然后进行交集、补集的运算即可. 考查一元二次不等式的解法,以及描述法、列举法表示集合的概念,交集和补集的运算.2. 解:由复数a+3i 1+2i =(a+3i)(1−2i)(1+2i)(1−2i)=(a+6)+(3−2a)i5=a+65+3−2a 5i 是纯虚数,则{a+65=03−2a5≠0,解得a =−6.故选:A .利用复数的除法运算化简为a +bi(a,b ∈R)的形式,由实部等于0且虚部不等于求解a 的值.本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础的计算题.3. 解:f(x)=sinx −tanx ,x ∈(0,π2),当x =π4时,∴f(x)=√22−1<0,命题p :∃x 0∈(0,π2),f(x 0)<0,是真命题,命题p :∃x 0∈(0,π2),f(x 0)<0,则¬p :∀x ∈(0,π2),f(x)≥0.故选:C .利用特称值,判断特称命题的真假,利用命题的否定关系,特称命题的否定是全称命题写出结果.本题考查命题的否定,特称命题与全称命题的否定关系,基本知识的考查. 4. 解:当S =1时,不满足退出循环的条件,故S =1,i =3; 当S =1时,不满足退出循环的条件,故S =3,i =5; 当S =3时,不满足退出循环的条件,故S =15,i =7; 当S =15时,不满足退出循环的条件,故S =105,i =9; 当S =105时,不满足退出循环的条件,故S =945,i =11; 当S =945时,不满足退出循环的条件,故S =10395,i =13; 当S =10395时,满足退出循环的条件, 故输出的i =13, 故选:D .由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量i 的值,模拟程序的运行过程,可得答案.本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答.5. 解:由题意,第一类,一班的2名同学在甲车上,甲车上剩下两个要来自不同的班级,从三个班级中选两个为C 32=3,然后分别从选择的班级中再选择一个学生为C 21C 21=4,故有3×4=12种.第二类,一班的2名同学不在甲车上,则从剩下的3个班级中选择一个班级的两名同学在甲车上,为C 31=3,然后再从剩下的两个班级中分别选择一人为C 21C 21=4,这时共有3×4=12种,根据分类计数原理得,共有12+12=24种不同的乘车方式, 故选:B .分类讨论,第一类,一班的2名同学在甲车上;第二类,一班的2名同学不在甲车上,再利用组合知识,问题得以解决.本题考查计数原理的应用,考查组合知识,考查学生的计算能力,属于中档题.1 / 16. 解:由三视图知该几何体是侧棱垂直于底面的四棱锥,如图所示;正视图和侧视图是腰长为1的两个全等的等腰直角三角形, ∴四棱锥的底面是正方形,且边长为1,其中一条侧棱PD ⊥底面ABCD ,且侧棱AD =1,∴四棱锥的四个侧面都为直角三角形,且PA =PC =√2, ∴四棱锥的表面积为S =S 底面ABCD +2S △SAD +2S △SAB =1+2×12×1×1+2×12×1×√2=2+√2. 故选:C .由三视图知该几何体是侧棱垂直于底面的四棱锥, 画出图形结合图形求出它的表面积.本题考查了利用空间几何体的三视图求几何体表面积的应用问题,是基础题. 7. 解:作出不等式组{x +y ≤4y −x ≥0x −1≥0表示的平面区域, 得到如图的△MNP 及其内部,其中M(1,1),N(2,2),P(1,3)∵圆C :(x +1)2+(y +1)2=r 2(r >0)表示以C(−1,−1)为圆心,半径为r 的圆,∴由图可得,当半径满足r <CM 或r >CP 时,圆C 不经过区域D 上的点,∵CM =√(1+1)2+(1+1)2=2√2,CP =√(1+1)2+(3+1)2=2√5∴当0<r <2√2或r >2√5时,圆C 不经过区域D 上的点, 故选:A .作出题中不等式组表示的平面区域,得到如图的△MNP 及其内部,而圆C 表示以(−1,−1)为圆心且半径为r 的圆.观察图形,可得半径r <CM 或r >CP 时,圆C 不经过区域D 上的点,由此结合平面内两点之间的距离公式,即可得到r 的取值范围. 本题给出动圆不经过已知不等式组表示的平面区域,求半径r 的取值范围.着重考查了圆的标准方程、平面内两点间的距离公式、二元一次不等式组表示的平面区域等知识,属于中档题.8. 解:等边三角形ABC 的边长为3; ∴CA⃗⃗⃗⃗⃗ ⋅CB ⃗⃗⃗⃗⃗ =|CA ⃗⃗⃗⃗⃗ ||CB ⃗⃗⃗⃗⃗ |cos60∘=92; 6CM ⃗⃗⃗⃗⃗⃗ −3CA ⃗⃗⃗⃗⃗ =2CB ⃗⃗⃗⃗⃗ ; ∴CM ⃗⃗⃗⃗⃗⃗ =12CA ⃗⃗⃗⃗⃗ +13CB⃗⃗⃗⃗⃗ ; ∴AM ⃗⃗⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗ +CM ⃗⃗⃗⃗⃗⃗ =−CA ⃗⃗⃗⃗⃗ +12CA ⃗⃗⃗⃗⃗ +13CB⃗⃗⃗⃗⃗=−12CA ⃗⃗⃗⃗⃗ +13CB ⃗⃗⃗⃗⃗ ,BM ⃗⃗⃗⃗⃗⃗ =BC ⃗⃗⃗⃗⃗ +CM ⃗⃗⃗⃗⃗⃗ =−CB ⃗⃗⃗⃗⃗ +12CA ⃗⃗⃗⃗⃗ +13CB ⃗⃗⃗⃗⃗ =12CA ⃗⃗⃗⃗⃗ −23CB ⃗⃗⃗⃗⃗ ; ∴AM ⃗⃗⃗⃗⃗⃗ ⋅BM ⃗⃗⃗⃗⃗⃗ =(−12CA ⃗⃗⃗⃗⃗ +13CB ⃗⃗⃗⃗⃗ )⋅(12CA ⃗⃗⃗⃗⃗ −23CB ⃗⃗⃗⃗⃗ ) =−14CA ⃗⃗⃗⃗⃗ 2+12CA ⃗⃗⃗⃗⃗ ⋅CB ⃗⃗⃗⃗⃗ −29CB ⃗⃗⃗⃗⃗ 2=−94+94−2=−2. 故选:B .根据条件可先求出CA ⃗⃗⃗⃗⃗ ⋅CB ⃗⃗⃗⃗⃗ =92,而由6CM ⃗⃗⃗⃗⃗⃗ −3CA ⃗⃗⃗⃗⃗ =2CB ⃗⃗⃗⃗⃗ 即可得出CM ⃗⃗⃗⃗⃗⃗ =12CA ⃗⃗⃗⃗⃗ +13CB ⃗⃗⃗⃗⃗ ,这样即可用CA ⃗⃗⃗⃗⃗ ,CB ⃗⃗⃗⃗⃗ 分别表示出AM ⃗⃗⃗⃗⃗⃗ ,BM⃗⃗⃗⃗⃗⃗ ,然后进行数量积的运算即可. 考查向量数量积的运算及计算公式,以及向量的数乘运算,向量加法的几何意义.9. 解:函数f(x)=3sin(2x −π3)+1(x ∈R),周期T =2π2=π,对于A :由f(x 1)=f(x 2)=1,可能x 1与x 2关于其中一条对称轴是对称的,此时x 1−x 2不是π的整数倍;∴A 不对. 对于B :由诱导公式,3sin(2x −π3)+1=3cos[π2−(2x −π3)]+1=3cos(2x −5π6)+1.∴B 不对. 对于C :令x =3π4,可得f(3π4)=3sin(2×3π4−π3)+1=3×(−12)−1=−52,∴C 不对, 对于D :当x =−π12时,可得f(−π12)=3sin(−π6−π3)+1=−1×3+1=−2, f(x)的图象关于直线x =−π12对称. 故选:D .根据函数f(x)=3sin(2x −π3)+1(x ∈R),结合三角函数的性质即可判断各选项. 本题主要考查利用y =Asin(ωx +φ)的信息特征,判断各选项的正误,属于中档题.10. 解:由题意,f(x)<−m +4,可得m(x 2−x +1)<5. ∵当x ∈[1,3]时,x 2−x +1∈[1,7], ∴不等式f(x)<0等价于m <5x 2−x+1. ∵当x =3时,5x 2−x+1的最小值为57, ∴若要不等式m <5x 2−x+1恒成立, 则必须m <57,因此,实数m 的取值范围为(−∞,57),故选:D .利用分离参数法,再求出对应函数在x ∈[1,3]上的最大值,即可求m 的取值范围.本题考查恒成立问题,考查分离参数法的运用,解题的关键是分离参数,正确求最值,属于中档题.11. 解:双曲线的一条渐近线方程为y=bax,双曲线的渐近线被圆M:x2+y2−10x=0,即(x−5)2+y2=25所截得的两条弦长之和为12,设圆心到直线的距离为d,则d=√25−9=4,∴√a2+b2=4,即5b=4c,即b=45c∵a2=c2−b2=925c2,∴a=35c,∴|AP−BP|=2a,由正弦定理可得APsinB =PBsinA=ABsinP=2R,∴sinB=AP2R ,sinA=BP2R,sinP=2c2R,∴|sinP||sinA−sinB|=2c2R|BP2R−AP2R|=2c2a=53,故选:C.根据垂径定理求出圆心到直线的距离为d=4,再根据点到直线的距离公式可得5b√a2+b2=4,得到5b=4c,即可求出a=35c,根据正弦定理可得|sinP||sinA−sinB|=2c2R|BP2R−AP2R|=2c2a=53本题考查了双曲线的简单性质以及圆的有关性质和正弦定理,属于中档题12. 解:f(x)=f′(1)2e2x−2+x2−2f(0)⋅x,令x=0,则f(0)=f′(1)2e2.∵f′(x)=f′(1)⋅e2x−2+2x−2f(0),令x=1,则f′(1)=f′(1)+2−2f(0),解得f(0)=1.∴f′(1)=2e2.∴f(x)=e2x+x2−2x,∴f(2)=e4.令ℎ(x)=e2x g(x),∵g′(x)+2g(x)<0,∴ℎ′(x)=e2x g′(x)+2e2x g(x)=e2x[g′(x)+2g(x)]<0,∴函数ℎ(x)在R上单调递减,∴ℎ(2016)>ℎ(2018),∴e2016×2g(2016)>e2018×2g(2018),可得:g(2016)>e4g(2018).∴g(2016)>f(2)g(2018).故选:C.1 / 1f(x)=f′(1)2e 2x−2+x 2−2f(0)⋅x ,令x =0,则f(0)=f ′(1)2e 2.由f′(x)=f′(1)⋅e 2x−2+2x −2f(0),令x =1,可得f(0).进而得出f′(1),f(x),f(2).令ℎ(x)=e 2x g(x),及其已知g′(x)+2g(x)<0,可得ℎ′(x)=e 2x [g′(x)+2g(x)]<0,利用函数ℎ(x)在R 上单调递减,即可得出.本题考查了利用导数研究函数的单调性极值与最值、构造法、方程与不等式的解法,考查了推理能力与计算能力,属于难题.13. 解:由于a =∫(π0cosx −sinx)dx =(sinx +cosx)| 0π=−1−1=−2,∴(−2√x −1√x)6=(2√x +1√x)6的通项公式为T r+1=26−r C 6r⋅x 3−r ,令3−r =2,求得r =1,故含x 2项的系数为26−1C 61=192. 故答案为:192根据微积分基本定理首先求出a 的值,然后再根据二项式的通项公式求出r 的值,问题得以解决.本题主要考查定积分、二项式定理的应用,二项式展开式的通项公式,属于基础题.14. 解:∵函数f(x)={ax(x +2),x <0x(x−b),x≥0={ax 2+2ax,x <0x 2−bx,x≥0为奇函数,故f(−x)=−f(x)恒成立, 故{−b =2a a=−1.即{b =2a=−1, ∴f(x)={−x 2−2x,x <0x 2−2x,x≥0,∴f(a +b)=f(1)=1−2=−1, 故答案为:−1.由已知中函数f(x)为奇函数,f(−x)=−f(x)恒成立,可得a ,b 的值,进而可得f(a +b)的值.本题考查的知识点是分段函数的应用,函数的奇偶性,函数求值,难度中档. 15. 解:由题意,△ABC 的外接圆即为球的大圆,r =2, 设底面△ABC 外接圆圆心G ,即GA =GB =GC =2,从而正三角形ABC 边长2√3, 设球心O ,由题意,E 、F 在球面上,OE =OD =2, F 为DE 中点,则OF ⊥DE ,OF =GD =12GC =1,在Rt △OEF 中,OE =2,OF =1,∴EF =√3, ∴DE =2√3, ∴AA 1=2√3. 故答案为:2√3.由题意求出正三棱柱的高、底面边长,即可求出AA 1的长度.本题考查正三棱柱的内切球与正三棱柱的关系,通过二者的关系求出正三棱柱的体积,考查计算能力,逻辑推理能力.16. 解:由CD//OA ,∠AOB =π3,∠AOC =θ,得∠OCD =θ,∠ODC =2π3,∠COD =π3−θ; 在△OCD 中,由正弦定理,得CD =√3sin(π3−θ),θ∈(0,π3), 设渔网的长度为f(θ),可得f(θ)=θ+1+√3sin(π3−θ),1 / 1所以f′(θ)=1−√3cos(π3−θ),因为θ∈(0,π3), 所以π3−θ∈(0,π3),令f′(θ)=0,得cos(π3−θ)=3,所以π3−θ=π6,所以θ=π6.所以f(θ)∈(2,π+6+2√36]. 故所需渔网长度的最大值为π+6+2√36. 确定∠COD ,在△OCD 中利用正弦定理求得CD 的长度,根据所需渔网长度,即图中弧AC 、半径OC 和线段CD 长度之和,确定函数的解析式,利用导数确定函数的最值,求得所需渔网长度的最大值.本题考查了正弦定理的应用问题,也考查了函数模型的构建与最值应用问题,是难题.17. (1)6S n =a n2+3a n +2,n ∈N ∗.n ≥2时,6a n =6S n −6S n−1,化为(a n +a n−1)(a n −a n−1−3)=0,由a n >0,可得a n −a n−1=3,n =1时,6a 1=a 12+3a 1+2,且a 1<2,解得a 1.利用等差数列的通项公式可得a n .(2)b n =(−1)n a n 2=(−1)n (3n −2)2.b 2n−1+b 2n =−(6n −5)2+(6n −2)2=3(12n −7)=36n −21.利用分组求和即可得出.本题考查了数列递推关系、等差数列的定义通项公式与求和公式、分组求和方法,考查了推理能力与计算能力,属于中档题.18. (1)推导出△BAD≌△EDC ,∠DBA =∠DEH ,从而BD ⊥EC ,由PH ⊥平面ABCD ,得BD ⊥PH ,由此能证明BD ⊥平面PEC ,从而PC ⊥BD .(2)推导出PH 、EC 、BD 两两垂直,建立以H 为坐标原点,HB 、HC 、HP 所在直线分别为x ,y ,z 轴的坐标系,利用向量法能求出线段PC 上存在一点F ,当点F 满足CF =3√2时,二面角B −DF −C 的余弦值是√1515.本题考查线线垂直垂直的证明,考查二面角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查函数与方程思想,是中档题. 19. (1)把组中值看作各小组的平均数,根据加权平均数公式计算; (2)根据组合数公式计算各种情况的概率,得出分布列.本题考查了频率分布直方图,离散型随机变量的分布列和数学期望,属于中档题.20. (1)先求出p 的值,即可求出c 的值,根据离心率求出a 的值,即可得到椭圆方程, (2)设直线l 的方程为y =kx +m ,设A(x 1,y 1),B(x 2,y 2),由{x 2+2y 2=8y=kx+m,根据直线AM 与BM 的斜率乘积为−12,求出m =0,再根据弦长公式求出|AB|和|ON|,表示出三角形的面积来,再利用二次函数的性质即可求出最小值.本题考查椭圆的标准方程,直线与椭圆的位置关系,考查椭圆与二次函数函数的应用,考查计算能力,属于难题.21. (1)当b =2时,f(x)=ae x +x 2−2x ,(a ∈R),f′(x)=ae x +2x −2,(a ∈R),由题意a =2−2x e x,令ℎ(x)=2−2x e x,则ℎ′(x)=2x−4e x=0,解得x =2,由此能求出当a =−2e 2或a∈[0,+∞)时,f′(x)在R上有且只有一个零点.= (2)由f(x)=ae x+x2−bx,得f′(x)=ae x+2x−b,假设存在x0,则f(x0)−f(m)x0−m ),(x0≠m),利用导数性质推导出不存在实数x0(x0≠m)使得f(x0)−n=f′(x0+m2f′(x0+m)(x0−m)成立.2本题考查利用导数研究函数的性质及实数的最值范围的求法、满足条件的实数是否存在的判断与证明,考查函数与方程思想、转化与化归思想,考查运算求解能力、推理论证能力,考查创新意识,是中档题.22. (1)考查直线l1,l2参数方程与极坐标方程的互化,曲线C的极坐标方程与直角坐标方程的互化.重点都是消去参数t.(2)利用l1,l2极坐标方程,结合余弦定理,计算出|AB|的长度.考查极坐标方程与参数方程,普通方程的互化.记准互化公式和原则是关键,属于中档题目.23. (1)通过讨论x的范围,求出不等式的解集即可;(2)根据绝对值不等式的性质求出a的值,结合基本不等式的性质求出m+n的最小值即可.本题考查了解绝对值不等式问题,考查绝对值的性质以及基本不等式的性质,是一道中档题.。

河南安阳2018届高三第二次模拟考试理科数学试题(解析版)

河南安阳2018届高三第二次模拟考试理科数学试题(解析版)

2018届高三毕业班第二次模拟考试数学(理科)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,则()A. B. C. D.【答案】B【解析】,所以,选B.2.若复数,为的共轭复数,则复数的虚部为()A. B. C. D.【答案】C【解析】,所以虚部为1,选C.3.如图所示的是一块儿童玩具积木的三视图,其中俯视图中的半曲线段为半圆,则该积木的表面积为()A. B. C. D.【答案】A【解析】该积木为一个柱体,前面为两个正方形加半个圆柱侧面积,后面为矩形,上下为一个矩形去掉半圆,左右为矩形,因此表面积为,选A.点睛:空间几何体表面积的求法(1)以三视图为载体的几何体的表面积问题,关键是分析三视图确定几何体中各元素之间的位置关系及数量.(2)多面体的表面积是各个面的面积之和;组合体的表面积注意衔接部分的处理.(3)旋转体的表面积问题注意其侧面展开图的应用.4.已知命题:,,则为()A. ,B. ,C. ,D. ,【答案】D【解析】因为命题:,,所以为:,,选D.5.在某校连续次考试成绩中,统计甲,乙两名同学的数学成绩得到如图所示的茎叶图.已知甲同学次成绩的平均数为,乙同学次成绩的中位数为,则的值为()A. B. C. D.【答案】A【解析】因为乙同学次成绩的中位数为,所以选A.6.若执行如图所示的程序框图,其中表示区间上任意一个实数,则输出数对的概率为()A. B. C. D.【答案】C【解析】概率为几何概型,测度为面积,概率为选C.点睛:(1)当试验的结果构成的区域为长度、面积、体积等时,应考虑使用几何概型求解.(2)利用几何概型求概率时,关键是试验的全部结果构成的区域和事件发生的区域的寻找,有时需要设出变量,在坐标系中表示所需要的区域.(3)几何概型有两个特点:一是无限性,二是等可能性.基本事件可以抽象为点,尽管这些点是无限的,但它们所占据的区域都是有限的,因此可用“比例解法”求解几何概型的概率.7.已知,表示两条不同的直线,,表示两个不同的平面,下列说法错误的是()A. 若,,,则B. 若,,,则C. 若,,,则D. 若,,则或【答案】C【解析】若,,则;若,则,,;若,,则而,则或;若,,则由线面平行判定定理得或;因此选C.8.若实数,满足,则的最大值是()A. B. C. D.【答案】B【解析】作可行域如图,则,所以直线过点A(0,1)时取最大值1,选B.点睛:线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得.9.将的图象向左平移个单位长度,再向下平移个单位长度得到的图象,若,则()A. B. C. D.【答案】D【解析】因为,所以,因此,选D.点睛:三角函数的图象变换,提倡“先平移,后伸缩”,但“先伸缩,后平移”也常出现在题目中,所以也必须熟练掌握.无论是哪种变形,切记每一个变换总是对字母而言.10.已知圆:与圆:的公共弦所在直线恒过定点,且点在直线上,则的取值范围是()A. B. C. D.【答案】D【解析】与,相减得公共弦所在直线方程:,即,所以由得,即,因此,选D.点睛:在利用基本不等式求最值或值域时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.11.已知在中,角,,所对的边分别为,,,,点在线段上,且.若,则()A. B. C. D.【答案】B【解析】设,则由面积关系得所以,选B.12.设函数,若在区间上无零点,则实数的取值范围是()A. B. C. D.【答案】A【解析】当时,,所以在上至少有一个零点;舍去B,D;当时,,所以在上至少有一个零点;舍去C;因此选A.点睛:判断函数零点(方程的根)所在区间的方法(1)解方程法:当对应方程易解时,可通过解方程确定方程是否有根落在给定区间上.(2)定理法:利用零点存在性定理进行判断.(3)数形结合法:画出相应的函数图象,通过观察图象与x轴在给定区间上是否有交点来判断,或者转化为两个函数图象在给定区间上是否有交点来判断.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知,则__________.【答案】【解析】14.已知焦点在轴上的双曲线,它的焦点到渐近线的距离的取值范围是__________.【答案】【解析】由题意得,焦点到渐近线的距离为.点睛:1.已知双曲线方程求渐近线:2.已知渐近线设双曲线标准方程3,双曲线焦点到渐近线距离为,垂足为对应准线与渐近线的交点.15.已知在中,,,动点位于线段上,则当取最小值时,向量与的夹角的余弦值为__________.【答案】【解析】因为,,所以,所以当且仅当时取等号,因此,所以向量与的夹角的余弦值为16.已知定义在上奇函数和偶函数满足,若,则的取值范围是__________.【答案】【解析】因为,所以,即,因此因为,所以由,得,结合分母不为零得的取值范围是点睛:(1)已知函数的奇偶性求参数,一般采用待定系数法求解,根据得到关于待求参数的恒等式,由系数的对等性得参数的值或方程(组),进而得出参数的值;(2)已知函数的奇偶性求函数值或解析式,首先抓住奇偶性讨论函数在各个区间上的解析式,或充分利用奇偶性得出关于的方程,从而可得的值或解析式.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.设等差数列的前项和为,点在函数()的图象上,且.(1)求数列的通项公式;(2)记数列,求数列的前项和.【答案】(1) (2)【解析】试题分析:(1)先根据函数关系得和项关系式,再根据等差数列和项特征求首项与公差,最后代入等差数列通项公式;(2)因为为等差与等比乘积,所以利用错位相减法求和.试题解析:(1)设数列的公差为,则,又,两式对照得所以数列的通项公式为.(2)则两式相减得点睛:用错位相减法求和应注意的问题(1)要善于识别题目类型,特别是等比数列公比为负数的情形;(2)在写出“”与“”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“”的表达式;(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.18.如图,在直三棱柱中,底面是边长为的等边三角形,为的中点,侧棱,点在上,点在上,且,.(1)证明:平面平面;(2)求二面角的余弦值.【答案】(1)见解析(2)【解析】试题分析:(1)根据平几知识得,由线面垂直得,最后根据线面垂直判定定理以及面面垂直判定定理得结论,(2)先根据条件建立空间直角坐标系,设立各点坐标,根据方程组解各面法向量,根据向量数量积求向量夹角,最后根据二面角与向量夹角相等或互补关系确定二面角的余弦值.试题解析:(1)∵是等边三角形,为的中点,∴,∴平面,得.①在侧面中,,,∴,∴,∴.②结合①②,又∵,∴平面,又∵平面,∴平面平面(2)解法一:如图建立空间直角坐标系.则,,.得,,设平面的法向量,则即得取.同理可得,平面的法向量∴则二面角的余弦值为.解法二:由(1)知平面,∴,.∴即二面角的平面角在平面中,易知,∴,设,∵∴,解得.即,∴则二面角的余弦值为.19.随着互联网技术的快速发展,人们更加关注如何高效地获取有价值的信息,网络知识付费近两年呈现出爆发式的增长,为了了解网民对网络知识付费的态度,某网站随机抽查了岁及以上不足岁的网民共人,调查结果如下:(1)请完成上面的列联表,并判断在犯错误的概率不超过的前提下,能否认为网民对网络知识付费的态度与年龄有关?(2)在上述样本中用分层抽样的方法,从支持和反对网络知识付费的两组网民中抽取名,若在上述名网民中随机选人,设这人中反对态度的人数为随机变量,求的分布列和数学期望.附:,.【答案】(1) 在犯错误的概率不超过的前提下,可以认为网民对网络知识付费的态度与年龄有关.(2)【解析】试题分析:(1)先根据数据填表,再代入卡方公式求,最后与参考数据比较作判断,(2)先根据分层抽样确定人数,确定随机变量取法,再利用组合数计算对应概率,列表可得分布列,最后根据数学期望公式求期望.试题解析:(1)列联表如下:不足岁及以上所以在犯错误的概率不超过的前提下,可以认为网民对网络知识付费的态度与年龄有关.(2)易知抽取的人中,有人支持,人反对.的可能取值为,,,且,,则的分布列为的数学期望20.已知椭圆()的上顶点与抛物线()的焦点重合.(1)设椭圆和抛物线交于,两点,若,求椭圆的方程;(2)设直线与抛物线和椭圆均相切,切点分别为,,记的面积为,求证:.【答案】(1) (2)见解析【解析】试题分析:(1)根据椭圆几何性质得p,再根据对称性得A坐标,代人椭圆方程可得a,(2)先根据导数几何意义得抛物线切线方程,再与椭圆方程联立,根据判别式为零确定切点,根据三角形面积公式表示面积,最后根据基本不等式求最值,证得结论.试题解析:(1)易知,则抛物线的方程为由及图形的对称性,不妨设,代入,得,则.将之代入椭圆方程得,得,所以椭圆的方程为.(2)设切点,即,求导得,则切线的斜率为,方程,即,将之与椭圆联立得,令判别式化简整理得,,此时设直线与轴交于点,则由基本不等式得,则,仅当时取等号,但此时,故等号无法取得,于是.21.已知函数,为自然对数的底数.(1)若当时,恒成立,求的取值范围;(2)设,若对恒成立,求的最大值.【答案】(1) (2) 的最大值为,此时,【解析】试题分析:(1)因为,所以恒成立,由于,所以设,则恒成立,根据一次函数单调性即得的取值范围;(2)令,则原问题转化为对恒成立.根据二次求导可得,,即得,再利用导数求函数最大值,即得的最大值.试题解析:(1)由题意得,且,注意到设,则,则为增函数,且.讨论如下:①若,,得在上单调递增,有,得在上单调递增,有,合题意;②若,令,得,则当时,,得在上单调递减,有,得在上单调递减,有,舍去.综上,的取值范围.(2)当时,,即.令,则原问题转化为对恒成立.令,.若,则,得单调递增,当时,,不可能恒成立,舍去;若,则;若,则易知在处取得最小值,所以,,将看做新的自变量,即求函数的最大值,则,令,得.所以在上递增,在上递减,所以,即的最大值为,此时,.点睛:利用导数研究不等式恒成立或存在型问题,首先要构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造函数,直接把问题转化为函数的最值问题. 请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在平面直角坐标系中,已知直线:,以原点为极点,轴的正半轴为极轴建立极坐标系,圆的极坐标方程为.(1)求直线的极坐标方程和圆的直角坐标方程;(2)射线:与圆的交点为,,与直线的交点为,求线段的长.【答案】(1) (2)【解析】试题分析:(1)根据,得直线的极坐标方程以及圆的直角坐标方程;(2)将代入得,,再根据求线段的长.试题解析:(1)在中,令,.得,化简得.即为直线的极坐标方程.由得,即.,即为圆的直角坐标方程.(2)所以.23.选修4-5:不等式选讲已知函数.(1)若,解不等式;(2)对任意满足的正实数,,若总存在实数,使得成立,求实数的取值范围.【答案】(1) (2)【解析】试题分析:(1)根据绝对值定义将不等式化为三个不等式组,分别求解,最后求并集,(2)先利用1的代换求最小值,再根据绝对值三角不等式求的最小值,最后解不等式可得实数的取值范围.试题解析:(1)当时,由得,则;当时,恒成立;当时,由得,则.综上,不等式的解集为(2)由题意,由绝对值不等式得,当且仅当时取等号,故的最小值为.由题意得,解得.点睛:含绝对值不等式的解法有两个基本方法,一是运用零点分区间讨论,二是利用绝对值的几何意义求解.法一是运用分类讨论思想,法二是运用数形结合思想,将绝对值不等式与函数以及不等式恒成立交汇、渗透,解题时强化函数、数形结合与转化化归思想方法的灵活应用,这是命题的新动向.。

2018年河南省六市高考一模数学试卷(理科)【解析版】

2018年河南省六市高考一模数学试卷(理科)【解析版】

2018年河南省六市高考数学一模试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|lg(x﹣2)<1},集合B={x|x2﹣2x﹣3<0},则A∪B 等于()A.(2,12)B.(﹣1,3)C.(﹣1,12)D.(2,3)2.(5分)已知i为虚数单位,若复数=a+bi(a,b∈R),则a+b=()A.﹣i B.i C.﹣1D.13.(5分)现有5人参加抽奖活动,每人依次从装有5张奖票(其中3张为中奖票)的箱子中不放回地随机抽取一张,直到3张中奖票都被抽出时活动结束,则活动恰好在第4人抽完结束的概率为()A.B.C.D.4.(5分)汽车以v=(3t+2)m/s作变速运动时,在第1s至2s之间的1s内经过的路程是()A.5m B.C.6m D.5.(5分)为考察A、B两种药物预防某疾病的效果,进行动物试验,分别得到如下等高条形图:根据图中信息,在下列各项中,说法最佳的一项是()A.药物B的预防效果优于药物A的预防效果B.药物A的预防效果优于药物B的预防效果C.药物A、B对该疾病均有显著的预防效果D.药物A、B对该疾病均没有预防效果6.(5分)一个几何体的三视图如图所示,该几何体的各个表面中,最大面的面积为()A.B.C.2D.47.(5分)已知数列{a n}满足=2,则其前100项和为()A.250B.200C.150D.1008.(5分)已知锐角三角形ABC,角A、B、C的对边分别为a、b、c,若b2=a(a+c),则的取值范围是()A.(0,1)B.C.D.9.(5分)设a1,a2,…,a2017是数列1,2,…,2017的一个排列,观察如图所示的程序框图,则输出的F的值为()A.2015B.2016C.2017D.201810.(5分)在三棱锥S﹣ABC中,SB⊥BC,SA⊥AC,SB=BC,SA=AC,AB =SC,且三棱锥S﹣ABC的体积为,则该三棱锥的外接球的半径为()A.1B.2C.3D.411.(5分)椭圆+=1(a>b>0)与函数y=的图象交于点P,若函数y=的图象在P处的切线过椭圆的左焦点F(﹣1,0),则椭圆的离心率是()A.B.C.D.12.(5分)若关于x的方程有3个不相等的实数解x1,x2,x3,且x1<0<x2<x3,其中m∈R,e=2.71828……,则的值为()A.1B.1﹣m C.1+m D.e二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)已知,,则=.14.(5分)已知二项式(x2+)n的展开式的二项式系数之和为32,则展开式中含x项的系数是15.(5分)已知P是双曲线C:右支上一点,直线l是双曲线的一条渐近线,P在l上的射影为Q,F1是双曲线的左焦点,则|PF1|+|PQ|的最小值是.16.(5分)已知动点P(x,y)满足,则x2+y2﹣6x的最小值是.三、解答题(本大题共6题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(10分)已知数列{a n}中,a1=1,其前n项的和为S n,且满足.(1)求证:数列是等差数列;(2)证明:当n≥2时,.18.(10分)我们国家正处于老龄化社会中,老有所依也是政府的民生工程.某市共有户籍人口400万,其中老人(年龄60岁及以上)人数约有66万,为了了解老人们的健康状况,政府从老人中随机抽取600人并委托医疗机构免费为他们进行健康评估,健康状况共分为不能自理、不健康尚能自理、基本健康、健康四个等级,并以80岁为界限分成两个群体进行统计,样本分布制作成如图:(1)若采用分层抽样的方法从样本中的不能自理的老人中抽取8人进一步了解他们的生活状况,则两个群体中各应抽取多少人?(2)估算该市80岁及以上长者占全市户籍人口的百分比;(3)据统计该市大约有五分之一的户籍老人无固定收入,政府计划为这部分老人每月发放生活补贴,标准如下:①80岁及以上长者每人每月发放生活补贴200元;②80岁以下老人每人每月发放生活补贴120元;③不能自理的老人每人每月额外发放生活补贴100元.利用样本估计总体,试估计政府执行此计划的年度预算.(单位:亿元,结果保留两位小数)19.(10分)如图,在四棱锥P﹣ABCD中,PD⊥平面ABCD,底面ABCD是菱形,∠BAD=60°,O为AC与BD的交点,E为PB上任意一点.(I)证明:平面EAC⊥平面PBD;(II)若PD∥平面EAC,并且二面角B﹣AE﹣C的大小为45°,求PD:AD的值.20.(10分)已知抛物线C:x2=2py(p>0)的焦点为F,过F的直线l交抛物线C于点A,B,当直线l的倾斜角是45°时,AB的中垂线交y轴于点Q(0,5).(1)求p的值;(2)以AB为直径的圆交x轴于点M,N,记劣弧的长度为S,当直线l绕F旋转时,求的最大值.21.(10分)已知函数.(1)讨论f(x)的单调性;(2)若f(x)有两个极值点x1,x2,且x1<x2,证明:.[选修4-4:坐标系与参数方程]22.(10分)以平面直角坐标系xOy的原点为极点,x轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位,直线l的参数方程为(t 为参数),圆C的极坐标方程为.(1)求直线l的普通方程与圆C的执直角坐标方程;(2)设曲线C与直线L交于A,B两点,若P点的直角坐标为(2,1),求||P A|﹣|PB||的值.[选修4-5:不等式选讲]23.(10分)已知关于x的不等式|2x|+|2x﹣1|≤m有解.(I)求实数m的取值范围;(II)已知a>0,b>0,a+b=m,证明:.2018年河南省六市高考数学一模试卷(理科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|lg(x﹣2)<1},集合B={x|x2﹣2x﹣3<0},则A∪B 等于()A.(2,12)B.(﹣1,3)C.(﹣1,12)D.(2,3)【解答】解:集合A={x|lg(x﹣2)<1}={x|0<x﹣2<10}={x|2<x<12},集合B={x|x2﹣2x﹣3<0}={x|﹣1<x<3},则A∪B={x|﹣1<x<12}=(﹣1,12).故选:C.2.(5分)已知i为虚数单位,若复数=a+bi(a,b∈R),则a+b=()A.﹣i B.i C.﹣1D.1【解答】解:∵a+bi====i,∴a=0,b=1.∴a+b=1.故选:D.3.(5分)现有5人参加抽奖活动,每人依次从装有5张奖票(其中3张为中奖票)的箱子中不放回地随机抽取一张,直到3张中奖票都被抽出时活动结束,则活动恰好在第4人抽完结束的概率为()A.B.C.D.【解答】解:将5张奖票不放回地依次取出共有A=120种不同的取法,若活动恰好在第四次抽奖结束,则前三次共抽到2张中奖票,第四次抽到最后一张中奖票.共有3A A=36种取法,∴P==.故选:C.4.(5分)汽车以v=(3t+2)m/s作变速运动时,在第1s至2s之间的1s内经过的路程是()A.5m B.C.6m D.【解答】解:根据题意,汽车以v=(3t+2)m/s作变速运动时,则汽车在第1s至2s之间的1s内经过的路程S=(3t+2)dt=(+2t)=;故选:D.5.(5分)为考察A、B两种药物预防某疾病的效果,进行动物试验,分别得到如下等高条形图:根据图中信息,在下列各项中,说法最佳的一项是()A.药物B的预防效果优于药物A的预防效果B.药物A的预防效果优于药物B的预防效果C.药物A、B对该疾病均有显著的预防效果D.药物A、B对该疾病均没有预防效果【解答】解:由A、B两种药物预防某疾病的效果,进行动物试验,分别得到的等高条形图,知:药物A的预防效果优于药物B的预防效果.故选:B.6.(5分)一个几何体的三视图如图所示,该几何体的各个表面中,最大面的面积为()A.B.C.2D.4【解答】解:由已知中的三视图可得:该几何体是一个三棱锥:AD=DC=BD =2,∠ADC=120°,BD⊥平面ADC,其直观图如图所示:AB=BC=2,AC=2,底面△BCD的面积为:×2×2=2,侧面△ABD的面积为:×2×2=2,侧面△ADC的面积为:×2×2×=,侧面△ACB是腰长为2,底长2的等腰三角形,故底边上的高为=,其面积为:×2 ×=,综上可知,最大的面的面积为,故选:B.7.(5分)已知数列{a n}满足=2,则其前100项和为()A.250B.200C.150D.100【解答】解;n=2k﹣1(k∈N*)时,a2k+a2k﹣1=2.∴其前100项和=(a1+a2)+(a3+a4)+…+(a99+a100)=2×50=100.故选:D.8.(5分)已知锐角三角形ABC,角A、B、C的对边分别为a、b、c,若b2=a(a+c),则的取值范围是()A.(0,1)B.C.D.【解答】解:由b2=a(a+c),利用余弦定理,可得:c﹣a=2a cos B,利用正弦定理边化角,得:sin C﹣sin A=2sin A cos B,∵A+B+C=π,∴sin(B+A)﹣sin A=2sin A cos B,∴sin(B﹣A)=sin A,∵ABC是锐角三角形,∴B﹣A=A,即B=2A.∵0<B<,<A+B<π,那么:<A<,则=sin A∈(,).故选:B.9.(5分)设a1,a2,…,a2017是数列1,2,…,2017的一个排列,观察如图所示的程序框图,则输出的F的值为()A.2015B.2016C.2017D.2018【解答】解:分析题中程序框图的功能是先求这2 017个数的最大值,然后进行计算F=b+sin;因为b=max{1,2,…,2 017}=2 017,所以F=2 017+sin=2 018.故选:D.10.(5分)在三棱锥S﹣ABC中,SB⊥BC,SA⊥AC,SB=BC,SA=AC,AB =SC,且三棱锥S﹣ABC的体积为,则该三棱锥的外接球的半径为()A.1B.2C.3D.4【解答】解:如图,取SC的中点O,连接OB,OA,∵SB⊥BC,SA⊥AC,SB=BC,SA=AC,∴OB⊥SC,OA⊥SC,OB=SC,OA=SC,∴SC⊥平面OAB,O为三棱锥的外接球的球心,SC为球O的直径,设球O得半径为R,则AB=SC=R,∴△AOB为正三角形,则∠BOA=60°,∴V S﹣ABC =V S﹣OAB+V C﹣OAB=,解得R=3.故选:C.11.(5分)椭圆+=1(a>b>0)与函数y=的图象交于点P,若函数y=的图象在P处的切线过椭圆的左焦点F(﹣1,0),则椭圆的离心率是()A.B.C.D.【解答】解:由题意,左焦点F为(﹣1,0),设P(t,),k PF=,由y=,求导y′=,则k PF=,即=,解得t=1,即P(1,1),设椭圆M的右焦点为F2(1,0),则2a=|PF1|+|PF2|=1+,∴椭圆M的离心率为e===,故选:B.12.(5分)若关于x的方程有3个不相等的实数解x1,x2,x3,且x1<0<x2<x3,其中m∈R,e=2.71828……,则的值为()A.1B.1﹣m C.1+m D.e【解答】解:由方程⇒,令,则有t++m=0.⇒t2+(m﹣1)t+1′﹣m=0,令函数g(x)=,,∴g(x)在(﹣∞,1)递增,在(1,+∞)递减,其图象如下,要使关于x的方程有3个不相等的实数解x1,x2,x3,且x1<0<x2<x3结合图象可得关于t的方程t2+(m﹣1)t+1′﹣m=0一定有两个实根t1,t2,(t1<0<t2)且,∴=[(t1﹣1)(t2﹣1)]2.(t1﹣1)(t2﹣1)=t1t2﹣(t1+t2)+1=(1﹣m)﹣(1﹣m)+1=1.∴=[(t1﹣1)(t2﹣1)]2=1.故选:A.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)已知,,则=5.【解答】解:∵,,∴==(﹣3,4),∴.故答案为:5.14.(5分)已知二项式(x2+)n的展开式的二项式系数之和为32,则展开式中含x项的系数是10【解答】解:由题意可得2n=32,n=5,展开式的通项公式为T r+1=•x10﹣2r•x ﹣r=•x10﹣3r.令10﹣3r=1,r=3,故展开式中含x项的系数是=10,故答案为10.15.(5分)已知P是双曲线C:右支上一点,直线l是双曲线的一条渐近线,P在l上的射影为Q,F1是双曲线的左焦点,则|PF1|+|PQ|的最小值是.【解答】解:设右焦点分别为F2,∵∴|PF1|﹣|PF2|=2,∴|PF1|=|PF2|+2,∴|PF1|+|PQ|=|PF2|+2+|PQ|,当且仅当Q、P、F2三点共线,且P在F2,Q之间时,|PF2|+|PQ|最小,且最小值为F2到l的距离,可得l的方程为y=±x,F2(,0),F2到l的距离d=1∴|PQ|+|PF1|的最小值为2+1.故答案为:1+2.16.(5分)已知动点P(x,y)满足,则x2+y2﹣6x的最小值是﹣.【解答】解:动点P(x,y)满足,x≥1时,x+≥1+;∴要使(x+)(﹣y)≤1,只要﹣y≤,﹣y≤﹣x(*),设f(x)=﹣x,x∈R,则f(x)是单调减函数,(*)可化为y≥x;∴动点P满足,该不等式组表示的平面区域如图所示:又x2+y2﹣6x=(x﹣3)2+y2﹣9,由两点间的距离公式可得,M(3,0)到区域中A的距离最小,由,解得A(,);∴x2+y2﹣6x=(x﹣3)2+y2﹣9≥|AM|2﹣9=+﹣9=﹣.故答案为:﹣.三、解答题(本大题共6题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(10分)已知数列{a n}中,a1=1,其前n项的和为S n,且满足.(1)求证:数列是等差数列;(2)证明:当n≥2时,.【解答】证明:(1)当n≥2时,,S n﹣1﹣S n=2S n S n﹣1,从而构成以1为首项,2为公差的等差数列.(2)由(1)可知,,∴,∴当n≥2时,,从而.18.(10分)我们国家正处于老龄化社会中,老有所依也是政府的民生工程.某市共有户籍人口400万,其中老人(年龄60岁及以上)人数约有66万,为了了解老人们的健康状况,政府从老人中随机抽取600人并委托医疗机构免费为他们进行健康评估,健康状况共分为不能自理、不健康尚能自理、基本健康、健康四个等级,并以80岁为界限分成两个群体进行统计,样本分布制作成如图:(1)若采用分层抽样的方法从样本中的不能自理的老人中抽取8人进一步了解他们的生活状况,则两个群体中各应抽取多少人?(2)估算该市80岁及以上长者占全市户籍人口的百分比;(3)据统计该市大约有五分之一的户籍老人无固定收入,政府计划为这部分老:人每月发放生活补贴,标准如下①80岁及以上长者每人每月发放生活补贴200元;②80岁以下老人每人每月发放生活补贴120元;③不能自理的老人每人每月额外发放生活补贴100元.利用样本估计总体,试估计政府执行此计划的年度预算.(单位:亿元,结果保留两位小数)【解答】解:(1)数据整理如下表:从图表中知采用分层抽样的方法从样本中的不能自理的老人中抽取8人进一步了解他们的生活状况,80岁及以上应抽取:人,80岁以下应抽取:人(2)在600人中80岁及以上长者在老人中占比为:用样本估计总体,80岁及以上长者为:万,80岁及以上长者占户籍人口的百分比为.(3)用样本估计总体,设任一户籍老人每月享受的生活补助为X元,X的可能取值为0,120,200,220,300,,,,,,则随机变量X的分布列为:,全市老人的总预算为28×12×66×104=2.2176×108元政府执行此计划的年度预算约为2.22亿元.19.(10分)如图,在四棱锥P﹣ABCD中,PD⊥平面ABCD,底面ABCD是菱形,∠BAD=60°,O为AC与BD的交点,E为PB上任意一点.(I)证明:平面EAC⊥平面PBD;(II)若PD∥平面EAC,并且二面角B﹣AE﹣C的大小为45°,求PD:AD的值.【解答】解:(I)∵PD⊥平面ABCD,AC⊂平面ABCD,∴AC⊥PD∵菱形ABCD中,AC⊥BD,PD∩BD=D∴AC⊥平面PBD又∵AC⊂平面EAC,平面EAC⊥平面PBD;(II)连接OE,∵PD∥平面EAC,平面EAC∩平面PBD=OE,PD⊂平面PBD∴PD∥OE,结合O为BD的中点,可得E为PB的中点∵PD⊥平面ABCD,∴OE⊥平面ABCD,又∵OE⊂平面EAC,∴平面EAC⊥平面ABCD,∵平面EAC∩平面ABCD=AC,BO⊂平面ABCD,BO⊥AC∴BO⊥平面EAC,可得BO⊥AE过点O作OF⊥AE于点F,连接OF,则∵AE⊥BO,BO、OF是平面BOF内的相交直线,∴AE⊥平面BOF,可得AE⊥BF因此,∠BFO为二面角B﹣AE﹣C的平面角,即∠BFO=45°设AD=BD=a,则OB=a,OA=a,在Rt△BOF中,tan∠BFO=,可得OF=Rt△AOE中利用等积关系,可得OA•OE=OF•AE即a•OE=a•,解之得OE=∴PD=2OE=,可得PD:AD=:2即PD:AD的值为.20.(10分)已知抛物线C:x2=2py(p>0)的焦点为F,过F的直线l交抛物线C于点A,B,当直线l的倾斜角是45°时,AB的中垂线交y轴于点Q(0,5).(1)求p的值;(2)以AB为直径的圆交x轴于点M,N,记劣弧的长度为S,当直线l绕F旋转时,求的最大值.【解答】解:(1)抛物线C:x2=2py(p>0)的焦点为F,,当l的倾斜角为45°时,l的方程为设A(x1,y1),B(x2,y2),由,得x2﹣2px﹣p2=0,x1+x2=2p,y1+y2=x1+x2+p=3p,得AB中点为…(3分)AB中垂线为,x=0代入得.∴p=2…(6分)(2)设l的方程为y=kx+1,代入x2=4y得x2﹣4kx﹣4=0,,AB中点为D(2k,2k2+1)令∠MDN=2α,,∴…(8分)D到x轴的距离|DE|=2k2+1,…(10分)当k2=0时cosα取最小值,α的最大值为.故的最大值为.…(12分)21.(10分)已知函数.(1)讨论f(x)的单调性;(2)若f(x)有两个极值点x1,x2,且x1<x2,证明:.【解答】解:(1),x∈(0,+∞)所以①当k≤0时,f'(x)>0,所以f(x)在(0,+∞)上单调递增②当k>0时,令t(x)=x2﹣2kx+1,当△=4k2﹣4≤0即0<k≤1时,t(x)≥0恒成立,即f'(x)≥0恒成立所以f(x)在(0,+∞)上单调递增当△=4k2﹣4>0,即k>1时,x2﹣2kx+1=0,两根所以,f'(x)>0,f'(x)<0,f'(x)>0故当k∈(﹣∞,1)时,f(x)在(0,+∞)上单调递增当k∈(1,+∞)时,f(x)在和上单调递增f (x)在上单调递减.(2)证明:,,由(1)知k≤1时,f(x)(0,+∞)上单调递增,此时f(x)无极值当k>1时,由f'(x)=0得x2﹣2kx+1=0,△=4k2﹣4>0,设两根x1,x2,则x1+x2=2k,x1•x2=1其中f(x)在(0,x1)上递增,在(x1,x2)上递减,在(x2,+∞)上递增,==.令,所以t(x)在(1,+∞)上单调递减,且故.[选修4-4:坐标系与参数方程]22.(10分)以平面直角坐标系xOy的原点为极点,x轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位,直线l的参数方程为(t 为参数),圆C的极坐标方程为.(1)求直线l的普通方程与圆C的执直角坐标方程;(2)设曲线C与直线L交于A,B两点,若P点的直角坐标为(2,1),求||P A|﹣|PB||的值.【解答】解:(1)∵直线l的参数方程为(t为参数),∴直线l的普通方程为y=x﹣1,∵圆C的极坐标方程为:,∴ρ2=4ρsinθ+4ρcosθ∴圆C的直角坐标方程为x2+y2﹣4x﹣4y=0.(2)点P(2,1)在直线l上,且在圆C内,由已知直线l的参数方程是(t为参数)代入x2+y2﹣4x﹣4y=0,得,设两个实根为t1,t2,则,即t 1,t2异号所以.[选修4-5:不等式选讲]23.(10分)已知关于x的不等式|2x|+|2x﹣1|≤m有解.(I)求实数m的取值范围;(II)已知a>0,b>0,a+b=m,证明:.【解答】(本小题满分10分)解:(Ⅰ)|2x|+|2x﹣1|≥|2x﹣(2x﹣1)|=1,故m≥1;…(5分)(Ⅱ)∵a>0,b>0,∴a+2b>0,2a+b>0故==a2+b2+2ab=(a+b)2,即由(Ⅰ)知a+b=m≥1,∴.…(10分)。

2018年河南省安阳市高考数学一模试卷及答案(理科)

2018年河南省安阳市高考数学一模试卷及答案(理科)

2018年河南省安阳市高考数学一模试卷(理科)一、选择题:本题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A={x|﹣2≤x≤2},B={y|y=3x﹣1,x∈R},则A∩B=()A.(﹣1,+∞)B.[﹣2,+∞)C.[﹣1,2]D.(﹣1,2]2.(5分)已知复数,则在复平面内所对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.(5分)已知函数f(x)满足:①对任意x1,x2∈(0,+∞)且x1≠x2,都有;②对定义域内任意x,都有f(x)=f(﹣x),则符合上述条件的函数是()A.f(x)=x2+|x|+1 B.C.f(x)=ln|x+1|D.f(x)=cosx 4.(5分)若,则cosα﹣2sinα=()A.﹣1 B.1 C.D.﹣1或5.(5分)已知等比数列{a n}中,a1=1,a3+a5=6,则a5+a7=()A.12 B.10 C.D.6.(5分)执行如图所示的程序框图,若输入p=0.99,则输出的n=()A.6 B.7 C.8 D.97.(5分)如图所示是一个几何体的三视图,则该几何体的体积是()A.4+2πB.C.4+πD.8.(5分)在边长为a的正三角形内任取一点P,则点P到三个顶点的距离均大于的概率是()A.B.C.D.9.(5分)已知{a n}为等差数列,S n为其前n项和,若a3+7=2a5,则S13=()A.49 B.91 C.98 D.18210.(5分)已知函数,要得到g(x)=cosx的图象,只需将函数y=f(x)的图象()A.向右平移个单位 B.向右平移个单位C.向左平移个单位D.向左平移个单位11.(5分)已知F1,F2分别是椭圆的左、右焦点,P为椭圆上一点,且(O为坐标原点),若,则椭圆的离心率为()A.B.C.D.12.(5分)已知函数,(e为自然对数的底数),则函数的零点个数为()A.8 B.6 C.4 D.3二、填空题:本题共4小题,每小题5分,共20分.13.(5分)展开式中的常数项为.14.(5分)已知向量=(2,3),=(x,y),且变量x,y满足,则z=•的最大值为.15.(5分)已知AB为圆C:x2+y2﹣2y=0的直径,点P为直线y=x﹣1上任意一点,则|PA|2+|PB|2的最小值为.16.(5分)在棱长为4的密封正方体容器内有一个半径为1的小球,晃动此正方体,则小球可以经过的空间的体积为.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17-21题为必考题,每个试题考生都必须作答.第22,23题为选考题,考生根据要求作答. 17.(12分)已知在△ABC中,内角A,B,C所对的边分别为a,b,c,且满足a+2acosB=c.(Ⅰ)求证:B=2A;(Ⅱ)若△ABC为锐角三角形,且c=2,求a的取值范围.18.(12分)某公司为了准确把握市场,做好产品计划,特对某产品做了市场调查:先销售该产品50天,统计发现每天的销售量x分布在[50,100)内,且销售量x的分布频率.(Ⅰ)求a的值并估计销售量的平均数;(Ⅱ)若销售量大于等于70,则称该日畅销,其余为滞销.在畅销日中用分层抽样的方法随机抽取8天,再从这8天中随机抽取3天进行统计,设这3天来自X个组,求随机变量X的分布列及数学期望(将频率视为概率).19.(12分)如图,在空间直角坐标系O﹣xyz中,正四面体(各条棱均相等的三棱锥)ABCD的顶点A,B,C分别在x轴,y轴,z轴上.(Ⅰ)求证:CD∥平面OAB;(Ⅱ)求二面角C﹣AB﹣D的余弦值.20.(12分)如图,在平面直角坐标系xOy中,直线l1:y=x与直线l2:y=﹣x之间的阴影部分记为W,区域W中动点P(x,y)到l1,l2的距离之积为1.(Ⅰ)求点P的轨迹C的方程;(Ⅱ)动直线l穿过区域W,分别交直线l1,l2于A,B两点,若直线l与轨迹C 有且只有一个公共点,求证:△OAB的面积恒为定值.21.(12分)已知函数,g(x)=3elnx,其中e为自然对数的底数.(Ⅰ)讨论函数f(x)的单调性.(Ⅱ)是否存在实数a,b,使f(x)≥ax+b≥g(x)对任意x∈(0,+∞)恒成立?若存在,试求出a,b的值;若不存在,请说明理由.(二)选考题:共10分.请考生在第22,23题中任选一题作答,如果多做,则按所做的第一题计分.【选修4-4:坐标系与参数方程】22.(10分)设直线l的参数方程为,(t为参数),若以直角坐标系xOy的原点O为极点,x轴的正半轴为极轴,选择相同的长度单位建立极坐标系,曲线C的极坐标方程为ρsin2θ=4cosθ.(Ⅰ)将曲线C的极坐标方程化为直角坐标方程,并指出曲线C是什么曲线;(Ⅱ)若直线l与曲线C交于A,B两点,求|AB|.【选修4-5:不等式选讲】23.已知函数f(x)=|x+1|+a|2x﹣1|.(Ⅰ)当时,若对任意x∈R恒成立,求m+n的最小值;(Ⅱ)若f(x)≥|x﹣2|的解集包含[﹣1,2],求实数a的取值范围.2018年河南省安阳市高考数学一模试卷(理科)参考答案与试题解析一、选择题:本题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A={x|﹣2≤x≤2},B={y|y=3x﹣1,x∈R},则A∩B=()A.(﹣1,+∞)B.[﹣2,+∞)C.[﹣1,2]D.(﹣1,2]【解答】解:∵集合A={x|﹣2≤x≤2},B={y|y=3x﹣1,x∈R}={y|y>﹣1},∴A∩B={x|﹣1<x≤2}=(﹣1,2].故选:D.2.(5分)已知复数,则在复平面内所对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:∵=,∴,则在复平面内所对应的点的坐标为(﹣,﹣),位于第三象限角.故选:C.3.(5分)已知函数f(x)满足:①对任意x1,x2∈(0,+∞)且x1≠x2,都有;②对定义域内任意x,都有f(x)=f(﹣x),则符合上述条件的函数是()A.f(x)=x2+|x|+1 B.C.f(x)=ln|x+1|D.f(x)=cosx【解答】解:由题意得:f(x)是偶函数,在(0,+∞)递增,对于A,f(﹣x)=f(x),是偶函数,且x>0时,f(x)=x2+x+1,f′(x)=2x+1>0,故f(x)在(0,+∞)递增,符合题意;对于B,函数f(x)是奇函数,不合题意;对于C,由x+1=0,解得:x≠﹣1,定义域不关于原点对称,故函数f(x)不是偶函数,不合题意;对于D,函数f(x)在(0,+∞)无单调性,不合题意;故选:A.4.(5分)若,则cosα﹣2sinα=()A.﹣1 B.1 C.D.﹣1或【解答】解:若,则1+c osα=3sinα,又sin2α+cos2α=1,∴sinα=,∴cosα=3sinα﹣1=,∴cosα﹣2sinα=﹣,故选:C.5.(5分)已知等比数列{a n}中,a1=1,a3+a5=6,则a5+a7=()A.12 B.10 C.D.【解答】解:∵,a1=1,a3+a5=6,∴a3+a5=q2+q4=6,得q4+q2﹣6=0,即(q2﹣2)(q2+3)=0,则q2=2,则a5+a7=q4+q6=22+23=4+8=12,故选:A6.(5分)执行如图所示的程序框图,若输入p=0.99,则输出的n=()A.6 B.7 C.8 D.9【解答】解:模拟程序的运行,可得程序框图的功能是计算S=+++…的值.由题意,S=+++…==1﹣≥0.99,可得:2k≥100,解得:k≥7,即当n=8时,S的值不满足条件,退出循环.故选:C.7.(5分)如图所示是一个几何体的三视图,则该几何体的体积是()A.4+2πB.C.4+πD.【解答】解:由几何体的三视图得:该几何体是一个长方体和一个半圆柱的组合体,其中长方体的长为4,宽为1,高为1,半圆柱的底面半径为r=1,高为h=1,如图,∴该几何体的体积:V=4×1×1+=4+.故选:D.8.(5分)在边长为a的正三角形内任取一点P,则点P到三个顶点的距离均大于的概率是()A.B.C.D.【解答】解:满足条件的正三角形ABC如下图所示:边长AB=a,=•a2•sin=a2;其中正三角形ABC的面积S三角形满足到正三角形ABC的顶点A、B、C的距离至少有一个小于1的平面区域,如图中阴影部分所示,其加起来是一个半径为的半圆,=•π•=,∴S阴影∴使取到的点到三个顶点A、B、C的距离都大于的概率是:P=1﹣=1﹣π.故选:B.9.(5分)已知{a n}为等差数列,S n为其前n项和,若a3+7=2a5,则S13=()A.49 B.91 C.98 D.182【解答】解:设等差数列{a n}的公差为d,∵a3+7=2a5,∴a1+2d+7=2(a1+4d),化为:a1+6d=7=a7.则S13==13a7=13×7=91.故选:B.10.(5分)已知函数,要得到g(x)=cosx的图象,只需将函数y=f(x)的图象()A.向右平移个单位 B.向右平移个单位C.向左平移个单位D.向左平移个单位【解答】解:将函数y=f(x)=sin(x﹣)的图象向左平移个单位,可得y=sin(x+﹣)=cosx的图象,故选:D.11.(5分)已知F1,F2分别是椭圆的左、右焦点,P为椭圆上一点,且(O为坐标原点),若,则椭圆的离心率为()A.B.C.D.【解答】解:如图,取PF1的中点A,连接OA,∴2=+,=,∴+=,∵,∴•=0,∴⊥,∵,不妨设|PF2|=m,则|PF1|=m,∵|PF2|+|PF1|=2a=m+m,∴m=a=2(﹣1)a,∵|F1F2|=2c,∴4c2=m2+2m2=3m2=3×4a2(3﹣2),∴=9﹣6=(﹣)2,∴e=﹣,故选:A12.(5分)已知函数,(e为自然对数的底数),则函数的零点个数为()A.8 B.6 C.4 D.3【解答】解:令f(x)=t可得f(t)=t+1.作出f(x)的函数图象如图所示:设直线y=kx+1与y=e x相切,切点为(x0,y0),则,解得x0=0,k=1.设直线y=kx+1与y=lnx相切,切点为(x1,y1),则,解得x1=e2,k=.∴直线y=t+1与f(t)的图象有4个交点,不妨设4个交点横坐标为t1,t2,t3,t4,且t1<t2<t3<t4,由图象可知t1<0,t2=0,0<t3<1,t4=e2.由f(x)的函数图象可知f(x)=t1无解,f(x)=t2有1解,f(x)=t3有3解,f(x)=t4有2解.∴F(x)有6个零点.故选:B.二、填空题:本题共4小题,每小题5分,共20分.13.(5分)展开式中的常数项为.【解答】解:二项式展开式的通项公式为T r+1=•x6﹣r•=••,令6﹣=0,解得r=4;∴展开式中的常数项为•=.故答案为:.14.(5分)已知向量=(2,3),=(x,y),且变量x,y满足,则z=•的最大值为.【解答】解:由约束条件作出可行域如图,联立,解得A(),∵=(2,3),=(x,y),∴z=•=2x+3y,化为y=,由图可知,当直线y=过A时,直线在y轴上的截距最大,z有最小值为.故答案为:.15.(5分)已知AB为圆C:x2+y2﹣2y=0的直径,点P为直线y=x﹣1上任意一点,则|PA|2+|PB|2的最小值为6.【解答】解:圆C:x2+y2﹣2y=0,转化为:x2+(y﹣1)2=1,则:圆心(0,1)到直线y=x﹣1的距离d=,由于AB为圆的直径,则:点A到直线的最小距离为:.点B到直线的距离为.则:|PA|2+|PB|2==6,故答案为:616.(5分)在棱长为4的密封正方体容器内有一个半径为1的小球,晃动此正方体,则小球可以经过的空间的体积为.【解答】解:∵在棱长为4的密封正方体容器内有一个半径为1的小球,晃动此正方体,∴小球可以经过的空间的体积:V==.故答案为:.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17-21题为必考题,每个试题考生都必须作答.第22,23题为选考题,考生根据要求作答. 17.(12分)已知在△ABC中,内角A,B,C所对的边分别为a,b,c,且满足a+2acosB=c.(Ⅰ)求证:B=2A;(Ⅱ)若△ABC为锐角三角形,且c=2,求a的取值范围.【解答】解:(Ⅰ)证明:根据题意,在△ABC中,a+2acosB=c,由正弦定理知sinA+2sinAcosB=sinC=sin(A+B)=sinAcosB+cosAsinB,即sinA=cosAsinB﹣sinAcosB=sin(B﹣A).因为A,B∈(0,π),所以B﹣A∈(﹣π,π),且A+(B﹣A)=B∈(0,π),所以A+(B﹣A)≠π,所以A=B﹣A,B=2A.(Ⅱ)由(Ⅰ)知,.由△ABC为锐角三角形得,得,则0<cosB<,由a+2acosB=2得,又由0<cosB<,则.18.(12分)某公司为了准确把握市场,做好产品计划,特对某产品做了市场调查:先销售该产品50天,统计发现每天的销售量x分布在[50,100)内,且销售量x的分布频率.(Ⅰ)求a的值并估计销售量的平均数;(Ⅱ)若销售量大于等于70,则称该日畅销,其余为滞销.在畅销日中用分层抽样的方法随机抽取8天,再从这8天中随机抽取3天进行统计,设这3天来自X个组,求随机变量X的分布列及数学期望(将频率视为概率).【解答】解:(Ⅰ)由题知,解得5≤n≤9n,n可取5,6,7,8,9,代入中,得,a=0.15.销售量在[50,60),[60,70),[70,80),[80,90),[90,100)内的频率分别是0.1,0.1,0.2,0.3,0.3,销售量的平均数为55×0.1+65×0.1+75×0.2+85×0.3+95×0.3=81.(Ⅱ)销售量在[70,80),[80,90),[90,100)内的频率之比为2:3:3,所以各组抽取的天数分别为2,3,3.X的所有可能值为1,2,3,,,.X的分布列为:数学期望.19.(12分)如图,在空间直角坐标系O﹣xyz中,正四面体(各条棱均相等的三棱锥)ABCD的顶点A,B,C分别在x轴,y轴,z轴上.(Ⅰ)求证:CD∥平面OAB;(Ⅱ)求二面角C﹣AB﹣D的余弦值.【解答】(Ⅰ)证明:由AB=BC=CA,可得OA=OB=OC.设OA=a,则,A(a,0,0),B(0,a,0),C(0,0,a),设D点的坐标为(x,y,z),则由,可得(x﹣a)2+y2+z2=x2+(y﹣a)2+z2=x2+y2+(z﹣a)2=2a2,解得x=y=z=a,∴.又平面OAB的一个法向量为,∴,∴CD∥平面OAB;(Ⅱ)解:设F为AB的中点,连接CF,DF,则CF⊥AB,DF⊥AB,∠CFD为二面角C﹣AB﹣D的平面角.由(Ⅰ)知,在△CFD中,,,则由余弦定理知,即二面角C﹣AB﹣D的余弦值为.20.(12分)如图,在平面直角坐标系xOy中,直线l1:y=x与直线l2:y=﹣x之间的阴影部分记为W,区域W中动点P(x,y)到l1,l2的距离之积为1.(Ⅰ)求点P的轨迹C的方程;(Ⅱ)动直线l穿过区域W,分别交直线l1,l2于A,B两点,若直线l与轨迹C 有且只有一个公共点,求证:△OAB的面积恒为定值.【解答】解:(Ⅰ)由题意得,|(x+y)(x﹣y)|=2.因为点P在区域W内,所以x+y与x﹣y同号,得(x+y)(x﹣y)=x2﹣y2=2,即点P的轨迹C的方程为.(Ⅱ)设直线l与x轴相交于点D,当直线l的斜率不存在时,,,得.当直线l的斜率存在时,设其方程为y=kx+m,显然k≠0,则,把直线l的方程与C:x2﹣y2=2联立得(k2﹣1)x2﹣2kmx+m2+2=0,由直线l与轨迹C有且只有一个公共点,知△=4k2m2﹣4(k2﹣1)(m2+2)=0,得m2=2(k2﹣1)>0,得k>1或k<﹣1.设A(x1,y2),B(x2,y2),由得,同理,得.所以=.综上,△OAB的面积恒为定值2.21.(12分)已知函数,g(x)=3elnx,其中e为自然对数的底数.(Ⅰ)讨论函数f(x)的单调性.(Ⅱ)是否存在实数a,b,使f(x)≥ax+b≥g(x)对任意x∈(0,+∞)恒成立?若存在,试求出a,b的值;若不存在,请说明理由.【解答】解:(Ⅰ)根据题意,函数,,令f'(x)=0得.当且x≠0时,f'(x)<0;当时,f'(x)>0.所以f(x)在(﹣∞,0)上单调递减,在上单调递减,在上单调递增.(Ⅱ)根据题意,注意到f(e)=g(e)=3e,则ae+b=3e,b=3e﹣ae①.于是,ax+b≥g(x)即a(x﹣e)﹣3e(1﹣lnx)≥0,则记h(x)=a(x﹣e)+3e(1﹣lnx),,若a≤0,则h'(x)<0,得h(x)在(0,+∞)上单调递减,则当x>e时,有h(x)<h(e)=0,不合题意;若a>0,易知h(x)在上单调递减,在上单调递增,得h(x)在(0,+∞)上的最小值.记,则,得m(a)有最大值m(3)=0,即m(a)≤m(3)=0,又m(a)≥0,故a=3,代入①得b=0.当a=3,b=0时,f(x)≥ax+b即⇔2x3﹣3ex2+e3≥0.记φ(x)=2x3﹣3ex2+e3,则φ'(x)=6x(x﹣e),得φ(x)在(0,+∞)上有最小值φ(e)=0,即φ(x)≥0,符合题意.综上,存在a=3,b=0,使f(x)≥ax+b≥g(x)对任意x∈(0,+∞)恒成立.(二)选考题:共10分.请考生在第22,23题中任选一题作答,如果多做,则按所做的第一题计分.【选修4-4:坐标系与参数方程】22.(10分)设直线l的参数方程为,(t为参数),若以直角坐标系xOy的原点O为极点,x轴的正半轴为极轴,选择相同的长度单位建立极坐标系,曲线C的极坐标方程为ρsin2θ=4cosθ.(Ⅰ)将曲线C的极坐标方程化为直角坐标方程,并指出曲线C是什么曲线;(Ⅱ)若直线l与曲线C交于A,B两点,求|AB|.【解答】解:(Ⅰ)由于ρsin2θ=4cosθ,所以ρ2sin2θ=4ρcosθ,即y2=4x,因此曲线C表示顶点在原点,焦点在x轴上的抛物线.(Ⅱ),化为普通方程为y=2x﹣1,代入y2=4x,并整理得4x2﹣8x+1=0,所以,=,=.【选修4-5:不等式选讲】23.已知函数f(x)=|x+1|+a|2x﹣1|.(Ⅰ)当时,若对任意x∈R恒成立,求m+n的最小值;(Ⅱ)若f(x)≥|x﹣2|的解集包含[﹣1,2],求实数a的取值范围.【解答】解:(Ⅰ)当时,,∴,∴.∴,∴,当且仅当m=n时等号成立,∵m,n>0,解得,当且仅当m=n时等号成立,故m+n的最小值为.(Ⅱ)∵f(x)≥|x﹣2|的解集包含[﹣1,2],当x∈[﹣1,2]时,有x+1+a|2x﹣1|≥2﹣x,∴a|2x﹣1|≥1﹣2x对x∈[﹣1,2]恒成立,当时,a(1﹣2x)≥1﹣2x,∴a≥1;当时,a(2x﹣1)≥1﹣2x,∴a≥﹣1.综上:a≥1.故实数a的取值范围是[1,+∞).。

河南安阳2018届高三第二次模拟考试理科数学试题(精编含解析)

河南安阳2018届高三第二次模拟考试理科数学试题(精编含解析)

2018届高三毕业班第二次模拟考试数学(理科)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,则()A. B. C. D.【答案】B【解析】,所以,选B.2.若复数,为的共轭复数,则复数的虚部为()A. B. C. D.【答案】C【解析】,所以虚部为1,选C.3.如图所示的是一块儿童玩具积木的三视图,其中俯视图中的半曲线段为半圆,则该积木的表面积为()A. B. C. D.【答案】A【解析】该积木为一个柱体,前面为两个正方形加半个圆柱侧面积,后面为矩形,上下为一个矩形去掉半圆,左右为矩形,因此表面积为,选A.点睛:空间几何体表面积的求法(1)以三视图为载体的几何体的表面积问题,关键是分析三视图确定几何体中各元素之间的位置关系及数量.(2)多面体的表面积是各个面的面积之和;组合体的表面积注意衔接部分的处理.(3)旋转体的表面积问题注意其侧面展开图的应用.4.已知命题:,,则为()A. ,B. ,C. ,D. ,【答案】D【解析】因为命题:,,所以为:,,选D.5.在某校连续次考试成绩中,统计甲,乙两名同学的数学成绩得到如图所示的茎叶图.已知甲同学次成绩的平均数为,乙同学次成绩的中位数为,则的值为()A. B. C. D.【答案】A【解析】因为乙同学次成绩的中位数为,所以选A.6.若执行如图所示的程序框图,其中表示区间上任意一个实数,则输出数对的概率为()A. B. C. D.【答案】C【解析】概率为几何概型,测度为面积,概率为选C.点睛:(1)当试验的结果构成的区域为长度、面积、体积等时,应考虑使用几何概型求解.(2)利用几何概型求概率时,关键是试验的全部结果构成的区域和事件发生的区域的寻找,有时需要设出变量,在坐标系中表示所需要的区域.(3)几何概型有两个特点:一是无限性,二是等可能性.基本事件可以抽象为点,尽管这些点是无限的,但它们所占据的区域都是有限的,因此可用“比例解法”求解几何概型的概率.7.已知,表示两条不同的直线,,表示两个不同的平面,下列说法错误的是()A. 若,,,则B. 若,,,则C. 若,,,则D. 若,,则或【答案】C【解析】若,,则;若,则,,;若,,则而,则或;若,,则由线面平行判定定理得或;因此选C.8.若实数,满足,则的最大值是()A. B. C. D.【答案】B【解析】作可行域如图,则,所以直线过点A(0,1)时取最大值1,选B.点睛:线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得.9.将的图象向左平移个单位长度,再向下平移个单位长度得到的图象,若,则()A. B. C. D.【答案】D【解析】因为,所以,因此,选D.点睛:三角函数的图象变换,提倡“先平移,后伸缩”,但“先伸缩,后平移”也常出现在题目中,所以也必须熟练掌握.无论是哪种变形,切记每一个变换总是对字母而言.10.已知圆:与圆:的公共弦所在直线恒过定点,且点在直线上,则的取值范围是()A. B. C. D.【答案】D【解析】与,相减得公共弦所在直线方程:,即,所以由得,即,因此,选D.点睛:在利用基本不等式求最值或值域时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.11.已知在中,角,,所对的边分别为,,,,点在线段上,且.若,则()A. B. C. D.【答案】B【解析】设,则由面积关系得所以,选B.12.设函数,若在区间上无零点,则实数的取值范围是()A. B. C. D.【答案】A【解析】当时,,所以在上至少有一个零点;舍去B,D;当时,,所以在上至少有一个零点;舍去C;因此选A.点睛:判断函数零点(方程的根)所在区间的方法(1)解方程法:当对应方程易解时,可通过解方程确定方程是否有根落在给定区间上.(2)定理法:利用零点存在性定理进行判断.(3)数形结合法:画出相应的函数图象,通过观察图象与x轴在给定区间上是否有交点来判断,或者转化为两个函数图象在给定区间上是否有交点来判断.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知,则__________.【答案】【解析】14.已知焦点在轴上的双曲线,它的焦点到渐近线的距离的取值范围是__________.【答案】【解析】由题意得,焦点到渐近线的距离为.点睛:1.已知双曲线方程求渐近线:2.已知渐近线设双曲线标准方程3,双曲线焦点到渐近线距离为,垂足为对应准线与渐近线的交点.15.已知在中,,,动点位于线段上,则当取最小值时,向量与的夹角的余弦值为__________.【答案】【解析】因为,,所以,所以当且仅当时取等号,因此,所以向量与的夹角的余弦值为16.已知定义在上奇函数和偶函数满足,若,则的取值范围是__________.【答案】【解析】因为,所以,即,因此因为,所以由,得,结合分母不为零得的取值范围是点睛:(1)已知函数的奇偶性求参数,一般采用待定系数法求解,根据得到关于待求参数的恒等式,由系数的对等性得参数的值或方程(组),进而得出参数的值;(2)已知函数的奇偶性求函数值或解析式,首先抓住奇偶性讨论函数在各个区间上的解析式,或充分利用奇偶性得出关于的方程,从而可得的值或解析式.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.设等差数列的前项和为,点在函数()的图象上,且.(1)求数列的通项公式;(2)记数列,求数列的前项和.【答案】(1) (2)【解析】试题分析:(1)先根据函数关系得和项关系式,再根据等差数列和项特征求首项与公差,最后代入等差数列通项公式;(2)因为为等差与等比乘积,所以利用错位相减法求和.试题解析:(1)设数列的公差为,则,又,两式对照得所以数列的通项公式为.(2)则两式相减得点睛:用错位相减法求和应注意的问题(1)要善于识别题目类型,特别是等比数列公比为负数的情形;(2)在写出“”与“”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“”的表达式;(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.18.如图,在直三棱柱中,底面是边长为的等边三角形,为的中点,侧棱,点在上,点在上,且,.(1)证明:平面平面;(2)求二面角的余弦值.【答案】(1)见解析(2)【解析】试题分析:(1)根据平几知识得,由线面垂直得,最后根据线面垂直判定定理以及面面垂直判定定理得结论,(2)先根据条件建立空间直角坐标系,设立各点坐标,根据方程组解各面法向量,根据向量数量积求向量夹角,最后根据二面角与向量夹角相等或互补关系确定二面角的余弦值.试题解析:(1)∵是等边三角形,为的中点,∴,∴平面,得.①在侧面中,,,∴,∴,∴.②结合①②,又∵,∴平面,又∵平面,∴平面平面(2)解法一:如图建立空间直角坐标系.则,,.得,,设平面的法向量,则即得取.同理可得,平面的法向量∴则二面角的余弦值为.解法二:由(1)知平面,∴,.∴即二面角的平面角在平面中,易知,∴,设,∵∴,解得.即,∴则二面角的余弦值为.19.随着互联网技术的快速发展,人们更加关注如何高效地获取有价值的信息,网络知识付费近两年呈现出爆发式的增长,为了了解网民对网络知识付费的态度,某网站随机抽查了岁及以上不足岁的网民共人,调查结果如下:(1)请完成上面的列联表,并判断在犯错误的概率不超过的前提下,能否认为网民对网络知识付费的态度与年龄有关?(2)在上述样本中用分层抽样的方法,从支持和反对网络知识付费的两组网民中抽取名,若在上述名网民中随机选人,设这人中反对态度的人数为随机变量,求的分布列和数学期望.附:,.【答案】(1)在犯错误的概率不超过的前提下,可以认为网民对网络知识付费的态度与年龄有关.(2)【解析】试题分析:(1)先根据数据填表,再代入卡方公式求,最后与参考数据比较作判断,(2)先根据分层抽样确定人数,确定随机变量取法,再利用组合数计算对应概率,列表可得分布列,最后根据数学期望公式求期望.试题解析:(1)列联表如下:支持反对合计不足岁岁及以上合计所以在犯错误的概率不超过的前提下,可以认为网民对网络知识付费的态度与年龄有关.(2)易知抽取的人中,有人支持,人反对.的可能取值为,,,且,,则的分布列为的数学期望20.已知椭圆()的上顶点与抛物线()的焦点重合.(1)设椭圆和抛物线交于,两点,若,求椭圆的方程;(2)设直线与抛物线和椭圆均相切,切点分别为,,记的面积为,求证:.【答案】(1) (2)见解析【解析】试题分析:(1)根据椭圆几何性质得p,再根据对称性得A坐标,代人椭圆方程可得a,(2)先根据导数几何意义得抛物线切线方程,再与椭圆方程联立,根据判别式为零确定切点,根据三角形面积公式表示面积,最后根据基本不等式求最值,证得结论.试题解析:(1)易知,则抛物线的方程为由及图形的对称性,不妨设,代入,得,则.将之代入椭圆方程得,得,所以椭圆的方程为.(2)设切点,即,求导得,则切线的斜率为,方程,即,将之与椭圆联立得,令判别式化简整理得,,此时设直线与轴交于点,则由基本不等式得,则,仅当时取等号,但此时,故等号无法取得,于是.21.已知函数,为自然对数的底数.(1)若当时,恒成立,求的取值范围;(2)设,若对恒成立,求的最大值.【答案】(1) (2) 的最大值为,此时,【解析】试题分析:(1)因为,所以恒成立,由于,所以设,则恒成立,根据一次函数单调性即得的取值范围;(2)令,则原问题转化为对恒成立.根据二次求导可得,,即得,再利用导数求函数最大值,即得的最大值.试题解析:(1)由题意得,且,注意到设,则,则为增函数,且.讨论如下:①若,,得在上单调递增,有,得在上单调递增,有,合题意;②若,令,得,则当时,,得在上单调递减,有,得在上单调递减,有,舍去.综上,的取值范围.(2)当时,,即.令,则原问题转化为对恒成立.令,.若,则,得单调递增,当时,,不可能恒成立,舍去;若,则;若,则易知在处取得最小值,所以,,将看做新的自变量,即求函数的最大值,则,令,得.所以在上递增,在上递减,所以,即的最大值为,此时,.点睛:利用导数研究不等式恒成立或存在型问题,首先要构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造函数,直接把问题转化为函数的最值问题.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在平面直角坐标系中,已知直线:,以原点为极点,轴的正半轴为极轴建立极坐标系,圆的极坐标方程为.(1)求直线的极坐标方程和圆的直角坐标方程;(2)射线:与圆的交点为,,与直线的交点为,求线段的长.【答案】(1) (2)【解析】试题分析:(1)根据,得直线的极坐标方程以及圆的直角坐标方程;(2)将代入得,,再根据求线段的长.试题解析:(1)在中,令,.得,化简得.即为直线的极坐标方程.由得,即.,即为圆的直角坐标方程.(2)所以.23.选修4-5:不等式选讲已知函数.(1)若,解不等式;(2)对任意满足的正实数,,若总存在实数,使得成立,求实数的取值范围.【答案】(1) (2)【解析】试题分析:(1)根据绝对值定义将不等式化为三个不等式组,分别求解,最后求并集,(2)先利用1的代换求最小值,再根据绝对值三角不等式求的最小值,最后解不等式可得实数的取值范围.试题解析:(1)当时,由得,则;当时,恒成立;当时,由得,则.综上,不等式的解集为(2)由题意,由绝对值不等式得,当且仅当时取等号,故的最小值为.由题意得,解得.点睛:含绝对值不等式的解法有两个基本方法,一是运用零点分区间讨论,二是利用绝对值的几何意义求解.法一是运用分类讨论思想,法二是运用数形结合思想,将绝对值不等式与函数以及不等式恒成立交汇、渗透,解题时强化函数、数形结合与转化化归思想方法的灵活应用,这是命题的新动向.。

2018年河南省安阳市高考数学一模试卷(理科)

2018年河南省安阳市高考数学一模试卷(理科)

2018年河南省安阳市高考数学一模试卷(理科)一、选择题:本题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A={x|﹣2≤x≤2},B={y|y=3x﹣1,x∈R},则A∩B=()A.(﹣1,+∞)B.[﹣2,+∞)C.[﹣1,2]D.(﹣1,2]2.(5分)已知复数,则在复平面内所对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.(5分)已知函数f(x)满足:①对任意x1,x2∈(0,+∞)且x1≠x2,都有;②对定义域内任意x,都有f(x)=f(﹣x),则符合上述条件的函数是()A.f(x)=x2+|x|+1 B.C.f(x)=ln|x+1|D.f(x)=cosx4.(5分)若,则cosα﹣2sinα=()A.﹣1 B.1 C.D.﹣1或5.(5分)已知等比数列{a n}中,a1=1,a3+a5=6,则a5+a7=()A.12 B.10 C.D.6.(5分)执行如图所示的程序框图,若输入p=0.99,则输出的n=()A.6 B.7 C.8 D.97.(5分)如图所示是一个几何体的三视图,则该几何体的体积是()A.4+2πB.C.4+πD.8.(5分)在边长为a的正三角形内任取一点P,则点P到三个顶点的距离均大于的概率是()A.B.C.D.9.(5分)已知{a n}为等差数列,S n为其前n项和,若a3+7=2a5,则S13=()A.49 B.91 C.98 D.18210.(5分)已知函数,要得到g(x)=cosx的图象,只需将函数y=f(x)的图象()A.向右平移个单位 B.向右平移个单位C.向左平移个单位D.向左平移个单位11.(5分)已知F1,F2分别是椭圆的左、右焦点,P为椭圆上一点,且(O为坐标原点),若,则椭圆的离心率为()A.B.C.D.12.(5分)已知函数,(e为自然对数的底数),则函数的零点个数为()A.8 B.6 C.4 D.3二、填空题:本题共4小题,每小题5分,共20分.13.(5分)展开式中的常数项为.14.(5分)已知向量=(2,3),=(x,y),且变量x,y满足,则z=•的最大值为.15.(5分)已知AB为圆C:x2+y2﹣2y=0的直径,点P为直线y=x﹣1上任意一点,则|PA|2+|PB|2的最小值为.16.(5分)在棱长为4的密封正方体容器内有一个半径为1的小球,晃动此正方体,则小球可以经过的空间的体积为.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17-21题为必考题,每个试题考生都必须作答.第22,23题为选考题,考生根据要求作答.17.(12分)已知在△ABC中,内角A,B,C所对的边分别为a,b,c,且满足a+2acosB=c.(Ⅰ)求证:B=2A;(Ⅱ)若△ABC为锐角三角形,且c=2,求a的取值范围.18.(12分)某公司为了准确把握市场,做好产品计划,特对某产品做了市场调查:先销售该产品50天,统计发现每天的销售量x分布在[50,100)内,且销售量x的分布频率.(Ⅰ)求a的值并估计销售量的平均数;(Ⅱ)若销售量大于等于70,则称该日畅销,其余为滞销.在畅销日中用分层抽样的方法随机抽取8天,再从这8天中随机抽取3天进行统计,设这3天来自X个组,求随机变量X的分布列及数学期望(将频率视为概率).19.(12分)如图,在空间直角坐标系O﹣xyz中,正四面体(各条棱均相等的三棱锥)ABCD 的顶点A,B,C分别在x轴,y轴,z轴上.(Ⅰ)求证:CD∥平面OAB;(Ⅱ)求二面角C﹣AB﹣D的余弦值.20.(12分)如图,在平面直角坐标系xOy中,直线l1:y=x与直线l2:y=﹣x之间的阴影部分记为W,区域W中动点P(x,y)到l1,l2的距离之积为1.(Ⅰ)求点P的轨迹C的方程;(Ⅱ)动直线l穿过区域W,分别交直线l1,l2于A,B两点,若直线l与轨迹C有且只有一个公共点,求证:△OAB的面积恒为定值.21.(12分)已知函数,g(x)=3elnx,其中e为自然对数的底数.(Ⅰ)讨论函数f(x)的单调性.(Ⅱ)是否存在实数a,b,使f(x)≥ax+b≥g(x)对任意x∈(0,+∞)恒成立?若存在,试求出a,b的值;若不存在,请说明理由.(二)选考题:共10分.请考生在第22,23题中任选一题作答,如果多做,则按所做的第一题计分.【选修4-4:坐标系与参数方程】22.(10分)设直线l的参数方程为,(t为参数),若以直角坐标系xOy的原点O为极点,x轴的正半轴为极轴,选择相同的长度单位建立极坐标系,曲线C的极坐标方程为ρsin2θ=4cosθ.(Ⅰ)将曲线C的极坐标方程化为直角坐标方程,并指出曲线C是什么曲线;(Ⅱ)若直线l与曲线C交于A,B两点,求|AB|.【选修4-5:不等式选讲】23.已知函数f(x)=|x+1|+a|2x﹣1|.(Ⅰ)当时,若对任意x∈R恒成立,求m+n的最小值;(Ⅱ)若f(x)≥|x﹣2|的解集包含[﹣1,2],求实数a的取值范围.2018年河南省安阳市高考数学一模试卷(理科)参考答案与试题解析一、选择题:本题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A={x|﹣2≤x≤2},B={y|y=3x﹣1,x∈R},则A∩B=()A.(﹣1,+∞)B.[﹣2,+∞)C.[﹣1,2]D.(﹣1,2]【解答】解:∵集合A={x|﹣2≤x≤2},B={y|y=3x﹣1,x∈R}={y|y>﹣1},∴A∩B={x|﹣1<x≤2}=(﹣1,2].故选:D.2.(5分)已知复数,则在复平面内所对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:∵=,∴,则在复平面内所对应的点的坐标为(﹣,﹣),位于第三象限角.故选:C.3.(5分)已知函数f(x)满足:①对任意x1,x2∈(0,+∞)且x1≠x2,都有;②对定义域内任意x,都有f(x)=f(﹣x),则符合上述条件的函数是()A.f(x)=x2+|x|+1 B.C.f(x)=ln|x+1|D.f(x)=cosx【解答】解:由题意得:f(x)是偶函数,在(0,+∞)递增,对于A,f(﹣x)=f(x),是偶函数,且x>0时,f(x)=x2+x+1,f′(x)=2x+1>0,故f(x)在(0,+∞)递增,符合题意;对于B,函数f(x)是奇函数,不合题意;对于C,由x+1=0,解得:x≠﹣1,定义域不关于原点对称,高考数学模拟精选试题故函数f(x)不是偶函数,不合题意;对于D,函数f(x)在(0,+∞)无单调性,不合题意;故选:A.4.(5分)若,则cosα﹣2sinα=()A.﹣1 B.1 C.D.﹣1或【解答】解:若,则1+cosα=3sinα,又sin2α+cos2α=1,∴s inα=,∴cosα=3sinα﹣1=,∴cosα﹣2sinα=﹣,故选:C.5.(5分)已知等比数列{a n}中,a1=1,a3+a5=6,则a5+a7=()A.12 B.10 C.D.【解答】解:∵,a1=1,a3+a5=6,∴a3+a5=q2+q4=6,得q4+q2﹣6=0,即(q2﹣2)(q2+3)=0,则q2=2,则a5+a7=q4+q6=22+23=4+8=12,故选:A6.(5分)执行如图所示的程序框图,若输入p=0.99,则输出的n=()A.6 B.7 C.8 D.9【解答】解:模拟程序的运行,可得程序框图的功能是计算S=+++…的值.由题意,S=+++…==1﹣≥0.99,可得:2k≥100,解得:k≥7,即当n=8时,S的值不满足条件,退出循环.故选:C.7.(5分)如图所示是一个几何体的三视图,则该几何体的体积是()A.4+2πB.C.4+πD.【解答】解:由几何体的三视图得:该几何体是一个长方体和一个半圆柱的组合体,其中长方体的长为4,宽为1,高为1,半圆柱的底面半径为r=1,高为h=1,如图,∴该几何体的体积:V=4×1×1+=4+.故选:D.8.(5分)在边长为a的正三角形内任取一点P,则点P到三个顶点的距离均大于的概率是()A.B.C.D.【解答】解:满足条件的正三角形ABC如下图所示:边长AB=a,=•a2•sin=a2;其中正三角形ABC的面积S三角形满足到正三角形ABC的顶点A、B、C的距离至少有一个小于1的平面区域,如图中阴影部分所示,其加起来是一个半径为的半圆,=•π•=,∴S阴影∴使取到的点到三个顶点A、B、C的距离都大于的概率是:P=1﹣=1﹣π.故选:B.9.(5分)已知{a n}为等差数列,S n为其前n项和,若a3+7=2a5,则S13=()A.49 B.91 C.98 D.182【解答】解:设等差数列{a n}的公差为d,∵a3+7=2a5,∴a1+2d+7=2(a1+4d),化为:a1+6d=7=a7.则S13==13a7=13×7=91.故选:B.10.(5分)已知函数,要得到g(x)=cosx的图象,只需将函数y=f(x)的图象()A.向右平移个单位 B.向右平移个单位C.向左平移个单位D.向左平移个单位【解答】解:将函数y=f(x)=sin(x﹣)的图象向左平移个单位,可得y=sin(x+﹣)=cosx的图象,故选:D.11.(5分)已知F1,F2分别是椭圆的左、右焦点,P为椭圆上一点,且(O为坐标原点),若,则椭圆的离心率为()A.B.C.D.【解答】解:如图,取PF1的中点A,连接OA,∴2=+,=,∴+=,∵,∴•=0,∴⊥,∵,不妨设|PF2|=m,则|PF1|=m,∵|PF2|+|PF1|=2a=m+m,∴m=a=2(﹣1)a,∵|F1F2|=2c,∴4c2=m2+2m2=3m2=3×4a2(3﹣2),∴=9﹣6=(﹣)2,∴e=﹣,故选:A12.(5分)已知函数,(e为自然对数的底数),则函数的零点个数为()A.8 B.6 C.4 D.3【解答】解:令f(x)=t可得f(t)=t+1.作出f(x)的函数图象如图所示:设直线y=kx+1与y=e x相切,切点为(x0,y0),则,解得x0=0,k=1.设直线y=kx+1与y=lnx相切,切点为(x1,y1),则,解得x1=e2,k=.∴直线y=t+1与f(t)的图象有4个交点,不妨设4个交点横坐标为t1,t2,t3,t4,且t1<t2<t3<t4,由图象可知t1<0,t2=0,0<t3<1,t4=e2.由f(x)的函数图象可知f(x)=t1无解,f(x)=t2有1解,f(x)=t3有3解,f(x)=t4有2解.∴F(x)有6个零点.故选:B.二、填空题:本题共4小题,每小题5分,共20分.13.(5分)展开式中的常数项为.【解答】解:二项式展开式的通项公式为T r+1=•x6﹣r•=••,令6﹣=0,解得r=4;∴展开式中的常数项为•=.故答案为:.14.(5分)已知向量=(2,3),=(x,y),且变量x,y满足,则z=•的最大值为.【解答】解:由约束条件作出可行域如图,联立,解得A(),∵=(2,3),=(x,y),∴z=•=2x+3y,化为y=,由图可知,当直线y=过A时,直线在y轴上的截距最大,z有最小值为.故答案为:.15.(5分)已知AB为圆C:x2+y2﹣2y=0的直径,点P为直线y=x﹣1上任意一点,则|PA|2+|PB|2的最小值为6.【解答】解:圆C:x2+y2﹣2y=0,转化为:x2+(y﹣1)2=1,则:圆心(0,1)到直线y=x﹣1的距离d=,由于AB为圆的直径,则:点A到直线的最小距离为:.点B到直线的距离为.则:|PA|2+|PB|2==6,故答案为:616.(5分)在棱长为4的密封正方体容器内有一个半径为1的小球,晃动此正方体,则小球可以经过的空间的体积为.【解答】解:∵在棱长为4的密封正方体容器内有一个半径为1的小球,晃动此正方体,∴小球可以经过的空间的体积:V==.故答案为:.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17-21题为必考题,每个试题考生都必须作答.第22,23题为选考题,考生根据要求作答.17.(12分)已知在△ABC中,内角A,B,C所对的边分别为a,b,c,且满足a+2acosB=c.(Ⅰ)求证:B=2A;(Ⅱ)若△ABC为锐角三角形,且c=2,求a的取值范围.【解答】解:(Ⅰ)证明:根据题意,在△ABC中,a+2acosB=c,由正弦定理知sinA+2sinAcosB=sinC=sin(A+B)=sinAcosB+cosAsinB,即sinA=cosAsinB﹣sinAcosB=sin(B﹣A).因为A,B∈(0,π),所以B﹣A∈(﹣π,π),且A+(B﹣A)=B∈(0,π),所以A+(B﹣A)≠π,所以A=B﹣A,B=2A.(Ⅱ)由(Ⅰ)知,.由△ABC为锐角三角形得,得,则0<cosB<,由a+2acosB=2得,又由0<cosB<,则.18.(12分)某公司为了准确把握市场,做好产品计划,特对某产品做了市场调查:先销售该产品50天,统计发现每天的销售量x分布在[50,100)内,且销售量x的分布频率.(Ⅰ)求a的值并估计销售量的平均数;(Ⅱ)若销售量大于等于70,则称该日畅销,其余为滞销.在畅销日中用分层抽样的方法随机抽取8天,再从这8天中随机抽取3天进行统计,设这3天来自X个组,求随机变量X的分布列及数学期望(将频率视为概率).【解答】解:(Ⅰ)由题知,解得5≤n≤9n,n可取5,6,7,8,9,代入中,得,a=0.15.销售量在[50,60),[60,70),[70,80),[80,90),[90,100)内的频率分别是0.1,0.1,0.2,0.3,0.3,销售量的平均数为55×0.1+65×0.1+75×0.2+85×0.3+95×0.3=81.(Ⅱ)销售量在[70,80),[80,90),[90,100)内的频率之比为2:3:3,所以各组抽取的天数分别为2,3,3.X的所有可能值为1,2,3,,,.X的分布列为:X123P数学期望.19.(12分)如图,在空间直角坐标系O﹣xyz中,正四面体(各条棱均相等的三棱锥)ABCD 的顶点A,B,C分别在x轴,y轴,z轴上.(Ⅰ)求证:CD∥平面OAB;(Ⅱ)求二面角C﹣AB﹣D的余弦值.【解答】(Ⅰ)证明:由AB=BC=CA,可得OA=OB=OC.设OA=a,则,A(a,0,0),B(0,a,0),C(0,0,a),设D点的坐标为(x,y,z),则由,可得(x﹣a)2+y2+z2=x2+(y﹣a)2+z2=x2+y2+(z﹣a)2=2a2,解得x=y=z=a,∴.又平面OAB的一个法向量为,∴,∴CD∥平面OAB;(Ⅱ)解:设F为AB的中点,连接CF,DF,则CF⊥AB,DF⊥AB,∠CFD为二面角C﹣AB﹣D的平面角.由(Ⅰ)知,在△CFD中,,,则由余弦定理知,即二面角C﹣AB﹣D的余弦值为.20.(12分)如图,在平面直角坐标系xOy中,直线l1:y=x与直线l2:y=﹣x之间的阴影部分记为W,区域W中动点P(x,y)到l1,l2的距离之积为1.(Ⅰ)求点P的轨迹C的方程;(Ⅱ)动直线l穿过区域W,分别交直线l1,l2于A,B两点,若直线l与轨迹C有且只有一个公共点,求证:△OAB的面积恒为定值.【解答】解:(Ⅰ)由题意得,|(x+y)(x﹣y)|=2.因为点P在区域W内,所以x+y与x﹣y同号,得(x+y)(x﹣y)=x2﹣y2=2,即点P的轨迹C的方程为.(Ⅱ)设直线l与x轴相交于点D,当直线l的斜率不存在时,,,得.当直线l的斜率存在时,设其方程为y=kx+m,显然k≠0,则,把直线l的方程与C:x2﹣y2=2联立得(k2﹣1)x2﹣2kmx+m2+2=0,由直线l与轨迹C有且只有一个公共点,知△=4k2m2﹣4(k2﹣1)(m2+2)=0,得m2=2(k2﹣1)>0,得k>1或k<﹣1.设A(x1,y2),B(x2,y2),由得,同理,得.所以=.综上,△OAB的面积恒为定值2.21.(12分)已知函数,g(x)=3elnx,其中e为自然对数的底数.(Ⅰ)讨论函数f(x)的单调性.(Ⅱ)是否存在实数a,b,使f(x)≥ax+b≥g(x)对任意x∈(0,+∞)恒成立?若存在,试求出a,b的值;若不存在,请说明理由.【解答】解:(Ⅰ)根据题意,函数,,令f'(x)=0得.当且x≠0时,f'(x)<0;当时,f'(x)>0.所以f(x)在(﹣∞,0)上单调递减,在上单调递减,在上单调递增.(Ⅱ)根据题意,注意到f(e)=g(e)=3e,则ae+b=3e,b=3e﹣ae①.于是,ax+b≥g(x)即a(x﹣e)﹣3e(1﹣lnx)≥0,则记h(x)=a(x﹣e)+3e(1﹣lnx),,若a≤0,则h'(x)<0,得h(x)在(0,+∞)上单调递减,则当x>e时,有h(x)<h (e)=0,不合题意;若a>0,易知h(x)在上单调递减,在上单调递增,得h(x)在(0,+∞)上的最小值.记,则,得m(a)有最大值m(3)=0,即m(a)≤m (3)=0,又m(a)≥0,故a=3,代入①得b=0.当a=3,b=0时,f(x)≥ax+b即⇔2x3﹣3ex2+e3≥0.记φ(x)=2x3﹣3ex2+e3,则φ'(x)=6x(x﹣e),得φ(x)在(0,+∞)上有最小值φ(e)=0,即φ(x)≥0,符合题意.综上,存在a=3,b=0,使f(x)≥ax+b≥g(x)对任意x∈(0,+∞)恒成立.(二)选考题:共10分.请考生在第22,23题中任选一题作答,如果多做,则按所做的第一题计分.【选修4-4:坐标系与参数方程】22.(10分)设直线l的参数方程为,(t为参数),若以直角坐标系xOy的原点O为极点,x轴的正半轴为极轴,选择相同的长度单位建立极坐标系,曲线C的极坐标方程为ρsin2θ=4cosθ.(Ⅰ)将曲线C的极坐标方程化为直角坐标方程,并指出曲线C是什么曲线;(Ⅱ)若直线l与曲线C交于A,B两点,求|AB|.【解答】解:(Ⅰ)由于ρsin2θ=4cosθ,所以ρ2sin2θ=4ρcosθ,即y2=4x,因此曲线C表示顶点在原点,焦点在x轴上的抛物线.(Ⅱ),化为普通方程为y=2x﹣1,代入y2=4x,并整理得4x2﹣8x+1=0,所以,=,=.【选修4-5:不等式选讲】23.已知函数f(x)=|x+1|+a|2x﹣1|.(Ⅰ)当时,若对任意x∈R恒成立,求m+n的最小值;(Ⅱ)若f(x)≥|x﹣2|的解集包含[﹣1,2],求实数a的取值范围.【解答】解:(Ⅰ)当时,,∴,∴.∴,∴,当且仅当m=n时等号成立,∵m,n>0,解得,当且仅当m=n时等号成立,故m+n的最小值为.(Ⅱ)∵f(x)≥|x﹣2|的解集包含[﹣1,2],当x∈[﹣1,2]时,有x+1+a|2x﹣1|≥2﹣x,∴a|2x﹣1|≥1﹣2x对x∈[﹣1,2]恒成立,当时,a(1﹣2x)≥1﹣2x,∴a≥1;当时,a(2x﹣1)≥1﹣2x,∴a≥﹣1.综上:a≥1.故实数a的取值范围是[1,+∞).。

河南省安阳一中、安阳正一中学2018届高三第十一次模拟考试数学(理)试题(原卷版)

河南省安阳一中、安阳正一中学2018届高三第十一次模拟考试数学(理)试题(原卷版)

安阳一中、安阳正一中学2018届高三第十一次模拟考试理科数学试卷第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,则为( )A.B.C.D.2.设,则是为纯虚数的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件3.庄严美丽的国旗和国徽上的五角星是革命和光明的象征,正五角星是一个非常优美的几何图形,且与黄金分割有着密切的联系:在如图所示的正五角星中,以为顶点的多边形为正五边形,且.下列关系中正确的是( )A .B. C.D.4.定义行列式运算,将函数的图像向左平移个单位,以下是所得函数图像的一个对称中心是( ) A.B.C.D.5.在平面直角坐标系中,已知,动点满足,其中,则所有点构成的图形面积为()A. B.. C. D.6.已知数列是首项为,公差为的等差数列,数列满足关系,数列的前项和为,则的值为()A. B. C. D.7.已知椭圆为其左、右焦点,为椭圆上任意一点,的重心为,内心,且有(其中为实数),椭圆的离心率()A. B. C. D.8.设函数定义在上,给出下述三个命题:①满足条件的函数图像关于点对称;②满足条件的函数图像关于直线对称;③函数与在同一坐标系中,其图像关于直线对称.其中,真命题的个数是()A. B. C. D.9.一个算法的程序框图如下,则其输出结果是()A. B. C. D.10.如图,在圆心角为直角扇形中,分别以为直径作两个半圆。

在扇形内随机取一点,则此点取自阴影部分的概率是A. B. C. D.11.设函数,若函数恰有三个零点,则的取值范围是()A. B. C. D.12.设函数在上存在导函数,对于任意的实数,都有,当时,,若,则实数的取值范围是()A. B. C. D.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知满足条件,若目标函数取得最大值的最优解不唯一,则实数的值为__________.14.在长方体中,底面是边长为的正方形,是线段上一点,若二面角的正切值,则三棱锥外接球的面积为__________.15.__________.16.已知是以为周期的上的奇函数,当,若在区间,关于的方程恰好有个不同的解,则的取值范围是__________.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.已知锐角的内角所对的边分别为,且,.(1)求角的大小;(2)求的取值范围.18.如图,在四棱锥中,底面为平行四边形,已知,,与.(1)求证:;(2)若平面平面,且,求二面角的余弦值.19.下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.(Ⅰ)由折线图看出,可用线性回归模型拟合y与t的关系,请用相关系数加以说明;(Ⅱ)建立y关于t的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量. 附注:参考数据:,,,≈2.646.参考公式:相关系数回归方程中斜率和截距的最小二乘估计公式分别为:20.已知抛物线,点与抛物线的焦点关于原点对称,过点且斜率为的直线与抛物线交于不同两点,线段的中点为,直线与抛物线交于两点.(I )判断是否存在实数使得四边形为平行四边形,若存在,求出的值;若不存在,说明理由;(II )求的取值范围.21.已知函数(为常数,).(I )当在处取得极值时,若关于的方程在上恰有两个不相等的实数根,求实数的取值范围; (II )若对任意的,总存在使不等式成立,求实数的取值范围.选考题:共10分.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程 在直角坐标系中,直线的参数方程为(其中为参数),在以原点的极点,以轴为极轴的极坐标系中,曲线的极坐标方程为.(I )求直线的普通方程及曲线的直角坐标方程; (II )设是曲线上的一动点,的中点为,求点到直线的最小值. 23.选修4-5:不等式选讲 已知函数(I)若对于任意都满足,求的值;(II)若存在,使得成立,求实数的取值范围.。

河南省安阳一中、安阳正一中学2018届高三数学第十一次模拟考试试题理(含解析)

河南省安阳一中、安阳正一中学2018届高三数学第十一次模拟考试试题理(含解析)

安阳一中、安阳正一中学2018届高三第十一次模拟考试理科数学试卷第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,则为()A. B. C. D.【答案】C【解析】【分析】分别求出集合M,N,和,然后计算.【详解】解:由,得,故集合由,得,故集合,所以故选:C.【点睛】本题考查了指数函数的值域,对数函数的定义域,集合的交集和补集运算,属于基础题.2.设,则是为纯虚数的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】B【解析】【分析】设,则,,分充分性和必要性进行讨论即可.【详解】解:设,则,若,则,,当,则,不是纯虚数若为纯虚数,则,,此时成立所以是为纯虚数的必要不充分条件故选:B.【点睛】本题考查了复数的有关概念,充分必要条件的判断,属于基础题.3.庄严美丽的国旗和国徽上的五角星是革命和光明的象征,正五角星是一个非常优美的几何图形,且与黄金分割有着密切的联系:在如图所示的正五角星中,以为顶点的多边形为正五边形,且.下列关系中正确的是()A. B.C. D.【答案】A【解析】【分析】利用平面向量的概念、平面向量的加法、减法、数乘运算的几何意义,便可解决问题.【详解】在如图所示的正五角星中,以A,B,C,D,E为顶点的多边形为正五边形,且.在A中,,故A 正确;在B中,,故B错误;C中,,故C错误;在D中,,若,则,不合题意,故D错误.故答案为:A【点睛】本题以正五角星为载体,考查平面向量的概念及运算法则等基础知识,考查运算求解能力,考查化归与转化思想.4.定义行列式运算,将函数的图像向左平移个单位,以下是所得函数图像的一个对称中心是( ) A.B.C.D.【答案】B 【解析】y=2sin(2x-),向左平移后得到y=2sin2x . 所以函数y=2sin2x 图象的对称中心为 (,0)(k∈Z),令k=1时,得到(,0). 故选B5.在平面直角坐标系中,已知,动点满足,其中,则所有点构成的图形面积为( )A. B. .C.D.【答案】C 【解析】以 为邻边作平行四边形,∵,其中, 点位于内部(包含边界).∴所有点 构成的图形面积为故选C.6.已知数列是首项为,公差为的等差数列,数列满足关系,数列的前项和为,则的值为( )A.B.C.D.【答案】B 【解析】 【分析】利用等差数列的通项公式求得,由可得时,,相减可得时,当时求得,从而可得结果.【详解】数列是首项为1 ,公差为2的等差数列,,数列满足关系时,,两式相减可得,可得()时,,解得,,故选B.【点睛】本题考查了等差数列的通项公式、数列递推关系、数列求和,意在考查灵活应用所学知识解答问题的能力,考查了分类讨论思想,属于中档题.7.已知椭圆为其左、右焦点,为椭圆上任意一点,的重心为,内心,且有(其中为实数),椭圆的离心率( ) A. B.C.D.【答案】A 【解析】试题分析:方法一:如图,点为三角形的重心,点为三角形的内心,则,所以.又因,所以,因此.考点:求椭圆离心率.【一题多解】方法二:特殊值法.当点为椭圆短轴端点时,不妨设,则向量,也即点与点重合,此时内切圆的半径为,于是,解得.故选B.8.设函数定义在上,给出下述三个命题:①满足条件的函数图像关于点对称;②满足条件的函数图像关于直线对称;③函数与在同一坐标系中,其图像关于直线对称.其中,真命题的个数是()A. B. C. D.【答案】D【解析】【详解】用代替中的,得.如果点在的图像上,则,即点关于点的对称点,也在的图像上.反之亦然,故命题①是真命题.用代替中的,得.如果点在的图像上,则,即点关于点的对称点,也在的图像上,故命题②是真命题.由命题②是真命题,不难推知命题③也是真命题.故三个命题都是真命题.9.一个算法的程序框图如下,则其输出结果是()A. B. C. D.【答案】B【解析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量的值,是以为周期的周期函数,故又故选B.【大家】本题考查的知识点是程序框图,分析出程序的功能是解答的关键.10.如图,在圆心角为直角的扇形中,分别以为直径作两个半圆。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年河南省安阳市高考数学一模试卷(理科)一、选择题:本题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A={x|﹣2≤x≤2},B={y|y=3x﹣1,x∈R},则A∩B=()A.(﹣1,+∞)B.[﹣2,+∞)C.[﹣1,2]D.(﹣1,2]2.(5分)已知复数,则在复平面内所对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.(5分)已知函数f(x)满足:①对任意x1,x2∈(0,+∞)且x1≠x2,都有;②对定义域内任意x,都有f(x)=f(﹣x),则符合上述条件的函数是()A.f(x)=x2+|x|+1 B.C.f(x)=ln|x+1|D.f(x)=cosx 4.(5分)若,则cosα﹣2sinα=()A.﹣1 B.1 C.D.﹣1或5.(5分)已知等比数列{a n}中,a1=1,a3+a5=6,则a5+a7=()A.12 B.10 C.D.6.(5分)执行如图所示的程序框图,若输入p=0.99,则输出的n=()A.6 B.7 C.8 D.97.(5分)如图所示是一个几何体的三视图,则该几何体的体积是()A.4+2πB.C.4+πD.8.(5分)在边长为a的正三角形内任取一点P,则点P到三个顶点的距离均大于的概率是()A.B.C.D.9.(5分)已知{a n}为等差数列,S n为其前n项和,若a3+7=2a5,则S13=()A.49 B.91 C.98 D.18210.(5分)已知函数,要得到g(x)=cosx的图象,只需将函数y=f(x)的图象()A.向右平移个单位B.向右平移个单位C.向左平移个单位D.向左平移个单位11.(5分)已知F1,F2分别是椭圆的左、右焦点,P为椭圆上一点,且(O为坐标原点),若,则椭圆的离心率为()A.B. C.D.12.(5分)已知函数,(e为自然对数的底数),则函数的零点个数为()A.8 B.6 C.4 D.3二、填空题:本题共4小题,每小题5分,共20分.13.(5分)展开式中的常数项为.14.(5分)已知向量=(2,3),=(x,y),且变量x,y满足,则z=•的最大值为.15.(5分)已知AB为圆C:x2+y2﹣2y=0的直径,点P为直线y=x﹣1上任意一点,则|PA|2+|PB|2的最小值为.16.(5分)在棱长为4的密封正方体容器内有一个半径为1的小球,晃动此正方体,则小球可以经过的空间的体积为.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17-21题为必考题,每个试题考生都必须作答.第22,23题为选考题,考生根据要求作答. 17.(12分)已知在△ABC中,内角A,B,C所对的边分别为a,b,c,且满足a+2acosB=c.(Ⅰ)求证:B=2A;(Ⅱ)若△ABC为锐角三角形,且c=2,求a的取值范围.18.(12分)某公司为了准确把握市场,做好产品计划,特对某产品做了市场调查:先销售该产品50天,统计发现每天的销售量x分布在[50,100)内,且销售量x的分布频率.(Ⅰ)求a的值并估计销售量的平均数;(Ⅱ)若销售量大于等于70,则称该日畅销,其余为滞销.在畅销日中用分层抽样的方法随机抽取8天,再从这8天中随机抽取3天进行统计,设这3天来自X个组,求随机变量X的分布列及数学期望(将频率视为概率).19.(12分)如图,在空间直角坐标系O﹣xyz中,正四面体(各条棱均相等的三棱锥)ABCD的顶点A,B,C分别在x轴,y轴,z轴上.(Ⅰ)求证:CD∥平面OAB;(Ⅱ)求二面角C﹣AB﹣D的余弦值.20.(12分)如图,在平面直角坐标系xOy中,直线l1:y=x与直线l2:y=﹣x之间的阴影部分记为W,区域W中动点P(x,y)到l1,l2的距离之积为1.(Ⅰ)求点P的轨迹C的方程;(Ⅱ)动直线l穿过区域W,分别交直线l1,l2于A,B两点,若直线l与轨迹C 有且只有一个公共点,求证:△OAB的面积恒为定值.21.(12分)已知函数,g(x)=3elnx,其中e为自然对数的底数.(Ⅰ)讨论函数f(x)的单调性.(Ⅱ)是否存在实数a,b,使f(x)≥ax+b≥g(x)对任意x∈(0,+∞)恒成立?若存在,试求出a,b的值;若不存在,请说明理由.(二)选考题:共10分.请考生在第22,23题中任选一题作答,如果多做,则按所做的第一题计分.【选修4-4:坐标系与参数方程】22.(10分)设直线l的参数方程为,(t为参数),若以直角坐标系xOy的原点O为极点,x轴的正半轴为极轴,选择相同的长度单位建立极坐标系,曲线C的极坐标方程为ρsin2θ=4cosθ.(Ⅰ)将曲线C的极坐标方程化为直角坐标方程,并指出曲线C是什么曲线;(Ⅱ)若直线l与曲线C交于A,B两点,求|AB|.【选修4-5:不等式选讲】23.已知函数f(x)=|x+1|+a|2x﹣1|.(Ⅰ)当时,若对任意x∈R恒成立,求m+n的最小值;(Ⅱ)若f(x)≥|x﹣2|的解集包含[﹣1,2],求实数a的取值范围.2018年河南省安阳市高考数学一模试卷(理科)参考答案与试题解析一、选择题:本题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A={x|﹣2≤x≤2},B={y|y=3x﹣1,x∈R},则A∩B=()A.(﹣1,+∞)B.[﹣2,+∞)C.[﹣1,2]D.(﹣1,2]【解答】解:∵集合A={x|﹣2≤x≤2},B={y|y=3x﹣1,x∈R}={y|y>﹣1},∴A∩B={x|﹣1<x≤2}=(﹣1,2].故选:D.2.(5分)已知复数,则在复平面内所对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:∵=,∴,则在复平面内所对应的点的坐标为(﹣,﹣),位于第三象限角.故选:C.3.(5分)已知函数f(x)满足:①对任意x1,x2∈(0,+∞)且x1≠x2,都有;②对定义域内任意x,都有f(x)=f(﹣x),则符合上述条件的函数是()A.f(x)=x2+|x|+1 B.C.f(x)=ln|x+1|D.f(x)=cosx【解答】解:由题意得:f(x)是偶函数,在(0,+∞)递增,对于A,f(﹣x)=f(x),是偶函数,且x>0时,f(x)=x2+x+1,f′(x)=2x+1>0,故f(x)在(0,+∞)递增,符合题意;对于B,函数f(x)是奇函数,不合题意;对于C,由x+1=0,解得:x≠﹣1,定义域不关于原点对称,故函数f(x)不是偶函数,不合题意;对于D,函数f(x)在(0,+∞)无单调性,不合题意;故选:A.4.(5分)若,则cosα﹣2sinα=()A.﹣1 B.1 C.D.﹣1或【解答】解:若,则1+cosα=3sinα,又sin2α+cos2α=1,∴sinα=,∴cosα=3sinα﹣1=,∴cosα﹣2sinα=﹣,故选:C.5.(5分)已知等比数列{a n}中,a1=1,a3+a5=6,则a5+a7=()A.12 B.10 C.D.【解答】解:∵,a1=1,a3+a5=6,∴a3+a5=q2+q4=6,得q4+q2﹣6=0,即(q2﹣2)(q2+3)=0,则q2=2,则a5+a7=q4+q6=22+23=4+8=12,故选:A6.(5分)执行如图所示的程序框图,若输入p=0.99,则输出的n=()A.6 B.7 C.8 D.9【解答】解:模拟程序的运行,可得程序框图的功能是计算S=+++…的值.由题意,S=+++…==1﹣≥0.99,可得:2k≥100,解得:k≥7,即当n=8时,S的值不满足条件,退出循环.故选:C.7.(5分)如图所示是一个几何体的三视图,则该几何体的体积是()A.4+2πB.C.4+πD.【解答】解:由几何体的三视图得:该几何体是一个长方体和一个半圆柱的组合体,其中长方体的长为4,宽为1,高为1,半圆柱的底面半径为r=1,高为h=1,如图,∴该几何体的体积:V=4×1×1+=4+.故选:D.8.(5分)在边长为a的正三角形内任取一点P,则点P到三个顶点的距离均大于的概率是()A.B.C.D.【解答】解:满足条件的正三角形ABC如下图所示:边长AB=a,=•a2•sin=a2;其中正三角形ABC的面积S三角形满足到正三角形ABC的顶点A、B、C的距离至少有一个小于1的平面区域,如图中阴影部分所示,其加起来是一个半径为的半圆,=•π•=,∴S阴影∴使取到的点到三个顶点A、B、C的距离都大于的概率是:P=1﹣=1﹣π.故选:B.9.(5分)已知{a n}为等差数列,S n为其前n项和,若a3+7=2a5,则S13=()A.49 B.91 C.98 D.182【解答】解:设等差数列{a n}的公差为d,∵a3+7=2a5,∴a1+2d+7=2(a1+4d),化为:a1+6d=7=a7.则S13==13a7=13×7=91.故选:B.10.(5分)已知函数,要得到g(x)=cosx的图象,只需将函数y=f(x)的图象()A.向右平移个单位B.向右平移个单位C.向左平移个单位D.向左平移个单位【解答】解:将函数y=f(x)=sin(x﹣)的图象向左平移个单位,可得y=sin(x+﹣)=cosx的图象,故选:D.11.(5分)已知F1,F2分别是椭圆的左、右焦点,P为椭圆上一点,且(O为坐标原点),若,则椭圆的离心率为()A.B. C.D.【解答】解:如图,取PF1的中点A,连接OA,∴2=+,=,∴+=,∵,∴•=0,∴⊥,∵,不妨设|PF2|=m,则|PF1|=m,∵|PF2|+|PF1|=2a=m+m,∴m=a=2(﹣1)a,∵|F1F2|=2c,∴4c2=m2+2m2=3m2=3×4a2(3﹣2),∴=9﹣6=(﹣)2,∴e=﹣,故选:A12.(5分)已知函数,(e为自然对数的底数),则函数的零点个数为()A.8 B.6 C.4 D.3【解答】解:令f(x)=t可得f(t)=t+1.作出f(x)的函数图象如图所示:设直线y=kx+1与y=e x相切,切点为(x0,y0),则,解得x0=0,k=1.设直线y=kx+1与y=lnx相切,切点为(x1,y1),则,解得x1=e2,k=.∴直线y=t+1与f(t)的图象有4个交点,不妨设4个交点横坐标为t1,t2,t3,t4,且t1<t2<t3<t4,由图象可知t1<0,t2=0,0<t3<1,t4=e2.由f(x)的函数图象可知f(x)=t1无解,f(x)=t2有1解,f(x)=t3有3解,f (x)=t4有2解.∴F(x)有6个零点.故选:B.二、填空题:本题共4小题,每小题5分,共20分.13.(5分)展开式中的常数项为.【解答】解:二项式展开式的通项公式为T r+1=•x6﹣r•=••,令6﹣=0,解得r=4;∴展开式中的常数项为•=.故答案为:.14.(5分)已知向量=(2,3),=(x,y),且变量x,y满足,则z=•的最大值为.【解答】解:由约束条件作出可行域如图,联立,解得A(),∵=(2,3),=(x,y),∴z=•=2x+3y,化为y=,由图可知,当直线y=过A时,直线在y轴上的截距最大,z有最小值为.故答案为:.15.(5分)已知AB为圆C:x2+y2﹣2y=0的直径,点P为直线y=x﹣1上任意一点,则|PA|2+|PB|2的最小值为6.【解答】解:圆C:x2+y2﹣2y=0,转化为:x2+(y﹣1)2=1,则:圆心(0,1)到直线y=x﹣1的距离d=,由于AB为圆的直径,则:点A到直线的最小距离为:.点B到直线的距离为.则:|PA|2+|PB|2==6,故答案为:616.(5分)在棱长为4的密封正方体容器内有一个半径为1的小球,晃动此正方体,则小球可以经过的空间的体积为.【解答】解:∵在棱长为4的密封正方体容器内有一个半径为1的小球,晃动此正方体,∴小球可以经过的空间的体积:V==.故答案为:.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17-21题为必考题,每个试题考生都必须作答.第22,23题为选考题,考生根据要求作答. 17.(12分)已知在△ABC中,内角A,B,C所对的边分别为a,b,c,且满足a+2acosB=c.(Ⅰ)求证:B=2A;(Ⅱ)若△ABC为锐角三角形,且c=2,求a的取值范围.【解答】解:(Ⅰ)证明:根据题意,在△ABC中,a+2acosB=c,由正弦定理知sinA+2sinAcosB=sinC=sin(A+B)=sinAcosB+cosAsinB,即sinA=cosAsinB﹣sinAcosB=sin(B﹣A).因为A,B∈(0,π),所以B﹣A∈(﹣π,π),且A+(B﹣A)=B∈(0,π),所以A+(B﹣A)≠π,所以A=B﹣A,B=2A.(Ⅱ)由(Ⅰ)知,.由△ABC为锐角三角形得,得,则0<cosB<,由a+2acosB=2得,又由0<cosB<,则.18.(12分)某公司为了准确把握市场,做好产品计划,特对某产品做了市场调查:先销售该产品50天,统计发现每天的销售量x分布在[50,100)内,且销售量x的分布频率.(Ⅰ)求a的值并估计销售量的平均数;(Ⅱ)若销售量大于等于70,则称该日畅销,其余为滞销.在畅销日中用分层抽样的方法随机抽取8天,再从这8天中随机抽取3天进行统计,设这3天来自X个组,求随机变量X的分布列及数学期望(将频率视为概率).【解答】解:(Ⅰ)由题知,解得5≤n≤9n,n可取5,6,7,8,9,代入中,得,a=0.15.销售量在[50,60),[60,70),[70,80),[80,90),[90,100)内的频率分别是0.1,0.1,0.2,0.3,0.3,销售量的平均数为55×0.1+65×0.1+75×0.2+85×0.3+95×0.3=81.(Ⅱ)销售量在[70,80),[80,90),[90,100)内的频率之比为2:3:3,所以各组抽取的天数分别为2,3,3.X的所有可能值为1,2,3,,,.X的分布列为:数学期望.19.(12分)如图,在空间直角坐标系O﹣xyz中,正四面体(各条棱均相等的三棱锥)ABCD的顶点A,B,C分别在x轴,y轴,z轴上.(Ⅰ)求证:CD∥平面OAB;(Ⅱ)求二面角C﹣AB﹣D的余弦值.【解答】(Ⅰ)证明:由AB=BC=CA,可得OA=OB=OC.设OA=a,则,A(a,0,0),B(0,a,0),C(0,0,a),设D点的坐标为(x,y,z),则由,可得(x﹣a)2+y2+z2=x2+(y﹣a)2+z2=x2+y2+(z﹣a)2=2a2,解得x=y=z=a,∴.又平面OAB的一个法向量为,∴,∴CD∥平面OAB;(Ⅱ)解:设F为AB的中点,连接CF,DF,则CF⊥AB,DF⊥AB,∠CFD为二面角C﹣AB﹣D的平面角.由(Ⅰ)知,在△CFD中,,,则由余弦定理知,即二面角C﹣AB﹣D的余弦值为.20.(12分)如图,在平面直角坐标系xOy中,直线l1:y=x与直线l2:y=﹣x之间的阴影部分记为W,区域W中动点P(x,y)到l1,l2的距离之积为1.(Ⅰ)求点P的轨迹C的方程;(Ⅱ)动直线l穿过区域W,分别交直线l1,l2于A,B两点,若直线l与轨迹C 有且只有一个公共点,求证:△OAB的面积恒为定值.【解答】解:(Ⅰ)由题意得,|(x+y)(x﹣y)|=2.因为点P在区域W内,所以x+y与x﹣y同号,得(x+y)(x﹣y)=x2﹣y2=2,即点P的轨迹C的方程为.(Ⅱ)设直线l与x轴相交于点D,当直线l的斜率不存在时,,,得.当直线l的斜率存在时,设其方程为y=kx+m,显然k≠0,则,把直线l的方程与C:x2﹣y2=2联立得(k2﹣1)x2﹣2kmx+m2+2=0,由直线l与轨迹C有且只有一个公共点,知△=4k2m2﹣4(k2﹣1)(m2+2)=0,得m2=2(k2﹣1)>0,得k>1或k<﹣1.设A(x1,y2),B(x2,y2),由得,同理,得.所以=.综上,△OAB的面积恒为定值2.21.(12分)已知函数,g(x)=3elnx,其中e为自然对数的底数.(Ⅰ)讨论函数f(x)的单调性.(Ⅱ)是否存在实数a,b,使f(x)≥ax+b≥g(x)对任意x∈(0,+∞)恒成立?若存在,试求出a,b的值;若不存在,请说明理由.【解答】解:(Ⅰ)根据题意,函数,,令f'(x)=0得.当且x≠0时,f'(x)<0;当时,f'(x)>0.所以f(x)在(﹣∞,0)上单调递减,在上单调递减,在上单调递增.(Ⅱ)根据题意,注意到f(e)=g(e)=3e,则ae+b=3e,b=3e﹣ae①.于是,ax+b≥g(x)即a(x﹣e)﹣3e(1﹣lnx)≥0,则记h(x)=a(x﹣e)+3e(1﹣lnx),,若a≤0,则h'(x)<0,得h(x)在(0,+∞)上单调递减,则当x>e时,有h(x)<h(e)=0,不合题意;若a>0,易知h(x)在上单调递减,在上单调递增,得h(x)在(0,+∞)上的最小值.记,则,得m(a)有最大值m(3)=0,即m(a)≤m(3)=0,又m(a)≥0,故a=3,代入①得b=0.当a=3,b=0时,f(x)≥ax+b即⇔2x3﹣3ex2+e3≥0.记φ(x)=2x3﹣3ex2+e3,则φ'(x)=6x(x﹣e),得φ(x)在(0,+∞)上有最小值φ(e)=0,即φ(x)≥0,符合题意.综上,存在a=3,b=0,使f(x)≥ax+b≥g(x)对任意x∈(0,+∞)恒成立.(二)选考题:共10分.请考生在第22,23题中任选一题作答,如果多做,则按所做的第一题计分.【选修4-4:坐标系与参数方程】22.(10分)设直线l的参数方程为,(t为参数),若以直角坐标系xOy的原点O为极点,x轴的正半轴为极轴,选择相同的长度单位建立极坐标系,曲线C的极坐标方程为ρsin2θ=4cosθ.(Ⅰ)将曲线C的极坐标方程化为直角坐标方程,并指出曲线C是什么曲线;(Ⅱ)若直线l与曲线C交于A,B两点,求|AB|.【解答】解:(Ⅰ)由于ρsin2θ=4cosθ,所以ρ2sin2θ=4ρcosθ,即y2=4x,因此曲线C表示顶点在原点,焦点在x轴上的抛物线.(Ⅱ),化为普通方程为y=2x﹣1,代入y2=4x,并整理得4x2﹣8x+1=0,所以,=,=.【选修4-5:不等式选讲】23.已知函数f(x)=|x+1|+a|2x﹣1|.(Ⅰ)当时,若对任意x∈R恒成立,求m+n的最小值;(Ⅱ)若f(x)≥|x﹣2|的解集包含[﹣1,2],求实数a的取值范围.【解答】解:(Ⅰ)当时,,∴,∴.∴,∴,当且仅当m=n时等号成立,∵m,n>0,解得,当且仅当m=n时等号成立,故m+n的最小值为.(Ⅱ)∵f(x)≥|x﹣2|的解集包含[﹣1,2],当x∈[﹣1,2]时,有x+1+a|2x﹣1|≥2﹣x,∴a|2x﹣1|≥1﹣2x对x∈[﹣1,2]恒成立,当时,a(1﹣2x)≥1﹣2x,∴a≥1;当时,a(2x﹣1)≥1﹣2x,∴a≥﹣1.综上:a≥1.故实数a的取值范围是[1,+∞).第21页(共21页)。

相关文档
最新文档