次函数与菱形的专题

合集下载

中考专题17 菱形存在性问题-最新中考数学二次函数压轴题核心考点突破

中考专题17 菱形存在性问题-最新中考数学二次函数压轴题核心考点突破

(2)当 BA=BC 时,
C 点坐标为(8,0),对应 D 点坐标为(4,-3);
C 点坐标为(2,0),对应 D 点坐标为(-2,-3).
(3)AC=BC 时,
C
点坐标为
39 8
,
0

D
点坐标为
9 8
,5

y
D
A
C
O
B Cx
y
D A C
O
D
B D
Cx
y D
A O
B Cx
以上只是两种简单的处理方法,对于一些较复杂的题目,还需具体问题具体分析,或许有 更为简便的方法.
的四边形是菱形?若存在,请直接写出点 N 的坐标;若不存在,请说明理由.
y
y
A O
B
A
x
O
B x
C
C
备用图
【分析】 (1)抛物线: y x2 x 6 ; (2)先考虑 M 点位置,即由 A、C、M 三点构成的三角形是等腰三角形:
①当 CA =CM 时,
即 CM=CA= 2 10 ,M 点坐标为 0,6 2 10 、 0,6 2 10 , 对应 N 点坐标为 2,2 10 、 2,2 10 .
Ny
F1
C P
D1
A F2
MO B x
D2
PF=3,可得
F1
1
32 2
,3
32 2

F2
1
32 2
,3
32 2

对应
D
点坐标分别为D11来自32 2,
3
2 2

D2
1
3
2 2
,
3

二次函数中的梯形、菱形存在性问题 学生版

二次函数中的梯形、菱形存在性问题 学生版

二次函数中的梯形、菱形存在性问题学生版引言二次函数是数学中一类重要的函数,在求解问题时经常被使用。

本文将讨论二次函数中的梯形和菱形存在性问题。

我们将探讨在何种情况下,二次函数图像可以形成梯形和菱形,以及梯形和菱形的特征和性质。

梯形的存在性问题在二次函数中,当函数图像呈现梯形形状时,我们需要考虑以下情况:1.当二次函数的二次项系数为正数时,函数图像可以形成正梯形。

正梯形的特点是上底和下底之间的差值逐渐增大。

2.当二次函数的二次项系数为负数时,函数图像可以形成倒梯形。

倒梯形的特点是上底和下底之间的差值逐渐减小。

3.当二次函数的二次项系数为零时,函数图像将退化为一条直线,无法形成梯形。

菱形的存在性问题在二次函数中,当函数图像呈现菱形形状时,我们需要考虑以下情况:1.当二次函数的一次项系数为零时,函数图像将变为一个完美的菱形。

菱形的特点是上底和下底之间的差值恒定。

2.当二次函数的一次项系数不为零时,函数图像将出现略微变形的菱形。

菱形的特点是上底和下底之间的差值会随着一次项系数的变化而变化。

结论在二次函数中,梯形和菱形的形成与二次项系数和一次项系数的取值有关。

通过了解二次函数的系数对函数图像形状的影响,我们可以更好地理解二次函数的性质和特点。

深入研究二次函数中梯形和菱形存在性问题,有助于学生对二次函数的图像有着更清晰的认识和理解。

以上是关于二次函数中的梯形、菱形存在性问题的学生版文档。

希望能够帮助学生们更好地理解和应用二次函数的图像特点。

二次函数压轴题之菱形存在性问题

二次函数压轴题之菱形存在性问题

菱形存在性问题作为一种特殊的平行四边形,我们已经知道可以从以下几种方式得到菱形: (1)有一组邻边相等的平行四边形菱形; (2)对角线互相垂直的平行四边形是菱形; (3)四边都相等的四边形是菱形.坐标系中的菱形存在性问题也是依据以上去得到方法.和平行四边形相比,菱形多一个“对角线互相垂直”或“邻边相等”,但这两者其实是等价的,故若四边形ABCD 是菱形,则其4个点坐标需满足:A CB D AC BD x x x x y y y y ⎧+=+⎪⎪+=+⎨=考虑到互相垂直的两条直线斜率之积为1在初中并不适合直接用,故取两邻边相等. 即根据菱形的图形性质,我们可以列出关于点坐标的3个等式, 故菱形存在性问题点坐标最多可以有3个未知量,与矩形相同.因此就常规题型而言,菱形存在性至少有2个动点,多则有3个动点,可细分如下两大类题型:(1)2个定点+1个半动点+1个全动点 (2)1个定点+3个半动点解决问题的方法也可有如下两种: 思路1:先平四,再菱形设点坐标,根据平四存在性要求列出“A +C =B +D ”(AC 、BD 为对角线),再结合一组邻边相等,得到方程组.思路2:先等腰,再菱形在构成菱形的4个点中任取3个点,必构成等腰三角形,根据等腰存在性方法可先确定第3个点,再确定第4个点.1.看个例子:如图,在坐标系中,A 点坐标(1,1),B 点坐标为(5,4),点C 在x 轴上,点D 在平面中,求D 点坐标,使得以A 、B 、C 、D 为顶点的四边形是菱形.思路1:先平四,再菱形设C 点坐标为(m ,0),D 点坐标为(p ,q ).(1)当AB 为对角线时,由题意得:(AB 和CD 互相平分及AC =BC ) ()()()()222215*********m p q m m ⎧+=+⎪⎪+=+⎨⎪-+-=-+-⎪⎩,解得:398985m p q ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩(2)当AC 为对角线时,由题意得:(AC 和BD 互相平分及BA =BC ) ()()()()2222151041514504m p qm ⎧+=+⎪⎪+=+⎨⎪-+-=-+-⎪⎩,解得:223m p q =⎧⎪=-⎨⎪=-⎩或843m p q =⎧⎪=⎨⎪=-⎩ (3)当AD 为对角线时,由题意得:()()()()2222151401514110p mq m ⎧+=+⎪⎪+=+⎨⎪-+-=-+-⎪⎩,解得:153m p q ⎧=+⎪⎪=+⎨⎪=⎪⎩153m p q ⎧=-⎪⎪=-⎨⎪=⎪⎩思路2:先等腰,再菱形先求点C,点C满足由A、B、C构成的三角形一定是等腰三角形,用等腰存在性问题的方法先确定C,再确定D点.(1)当AB=AC时,C点坐标为()1+,对应D点坐标为()5+;C点坐标为()1-,对应D点坐标为()5-.(2)当BA=BC时,C点坐标为(8,0),对应D点坐标为(4,-3);C点坐标为(2,0),对应D点坐标为(-2,-3).(3)AC=BC时,C点坐标为39,08⎛⎫⎪⎝⎭,D点坐标为9,58⎛⎫⎪⎝⎭.以上只是两种简单的处理方法,对于一些较复杂的题目,还需具体问题具体分析,或许有更为简便的方法.【两定两动:坐标轴+平面】(2019·齐齐哈尔中考删减)综合与探究如图,抛物线2y x bx c =++与x 轴交于A 、B 两点,与y 轴交于C 点,OA =2,OC =6,连接AC 和BC .(1)求抛物线的解析式;(2)若点M 是y 轴上的动点,在坐标平面内是否存在点N ,使以点A 、C 、M 、N 为顶点的四边形是菱形?若存在,请直接写出点N 的坐标;若不存在,请说明理由.备用图【分析】(1)抛物线:26y x x=--;(2)先考虑M点位置,即由A、C、M三点构成的三角形是等腰三角形:①当CA=CM时,即CM=CA=M点坐标为(0,6--、(0,6-+,对应N点坐标为(2,--、(-.②当AC=AM时,即AM=AC=M点坐标为(0,6),对应N点坐标为(2,0).③当MA=MC时,勾股定理可求得M点坐标为8 0,3⎛⎫-⎪⎝⎭,对应N点坐标为10 2,3⎛⎫--⎪⎝⎭.综上,N点坐标为(2,--、(-、(2,0)、102,3⎛⎫--⎪⎝⎭.如下图依次从左到右.【两定两动:对称轴+平面】(2019·辽阳中考)如图,在平面直角坐标系中,Rt △ABC 的边BC 在x 轴上,∠ABC =90°,以A 为顶点的抛物线2y x bx c =-++经过点C (3,0),交y 轴于点E (0,3),动点P 在对称轴上.(1)求抛物线解析式;(2)若点M 是平面内的任意一点,在x 轴上方是否存在点P ,使得以点P ,M ,E ,C 为顶点的四边形是菱形,若存在,请直接写出符合条件的M 点坐标;若不存在,说明理由.【分析】(1)抛物线:223y x x =-++;(2)先考虑P 点位置,由P 、E 、C 三点构成的三角形是等腰三角形.①当EC =EP 时,由EC =,得EP =P 在对称轴x =1上, 勾股定理解得P点坐标为(、(1,3(舍), 根据点的平移推得M点坐标为(. ②当CE =CP 时,即CP =CE=P点坐标为(、(1,(舍), 根据点的平移推得M点坐标为(2,3-. ③当PE =PC 时, 设P 点坐标为(1,m ),解得:m =1,故P 点坐标为(1,1), 对应的点M 坐标为(2,2).综上所述,M 点坐标为(、(2,3-、(2,2).【两定两动:斜线+平面】 (2018·齐齐哈尔)综合与探究如图1所示,直线y =x +c 与x 轴交于点A (-4,0),与y 轴交于点C ,抛物线2y x bx c =-++经过点A ,C .(1)求抛物线的解析式(2)如图2所示,M 是线段OA 的上一个动点,过点M 垂直于x 轴的直线与直线AC 和抛物线分别交于点P 、N .若点P 恰好是线段MN 的中点,点F 是直线AC 上一个动点,在坐标平面内是否存在点D ,使以点D ,F ,P ,M 为顶点的四边形是菱形?若存在,请直接写出点D 的坐标;若不存在,请说明理由.图2【分析】(1)抛物线解析式:234y x x =--+; (2)设M 点坐标为(m ,0)(-4<m <0),则N 点坐标为()2,34m m m --+,P 点坐标为(m ,m +4), 若P 是MN 中点,则()23424m m m --+=+, 解得:11m =-,24m =-(舍) 故P (-1,3)、M (-1,0)考虑到F 点在直线AC 上,故可先确定F 点位置,再求得D 点坐标.当PM =PF 时,PF =3,可得11F ⎛-+ ⎝⎭、21F ⎛-- ⎝⎭, 对应D点坐标分别为11D ⎛-+ ⎝⎭、21D ⎛- ⎝⎭. 当MP =MF 时,MP =MF ,可得()34,0F -,对应D 点坐标为()34,3D -. 当FP =FM 时,FP =FM ,F 点在PM 垂直平分线上,可得453,22F ⎛⎫- ⎪⎝⎭,对应D 点坐标为413,22D ⎛⎫⎪⎝⎭.综上所述,D点坐标有11D ⎛-+ ⎝⎭、21D ⎛-- ⎝⎭、()34,3D -、413,22D ⎛⎫⎪⎝⎭.【两定两动:斜线+抛物线】(2018•衡阳)如图,已知直线24y x =-+分别交x 轴、y 轴于点A 、B ,抛物线过A 、B 两点,点P 是线段AB 上一动点,过点P 作PC ⊥x 轴于点C ,交抛物线于点D . (1)若抛物线的解析式为2224y x x =-++,设其顶点为M ,其对称轴交AB 于点N .①求点M 、N 的坐标;②是否存在点P ,使四边形MNPD 为菱形?并说明理由.【分析】(1)①M 点坐标为19,22⎛⎫ ⎪⎝⎭,N 点坐标为1,32⎛⎫⎪⎝⎭.②由题意可知MN ∥PD ,故四边形MNPD 若是菱形,首先MN =PD 考虑到M 、N 是定点,可先求得32MN =, 设(),24P m m -+,则()2,224D m m m -++, ()222242424PD m m m m m =-++--+=-+,令32PD =,即23242m m -+=, 解得:112m =,232m =. 故P 点坐标为3,12⎛⎫ ⎪⎝⎭,D 点坐标为35,22⎛⎫⎪⎝⎭.但此时仅仅满足四边形MNPD 是平行四边形,本题要求的是菱形,故还需加邻边相等. 但此时P 、D 已定,因此接下来要做的只是验证邻边是否相等.由两点间距离公式得:32PN ==≠,PN ≠MN ,故不存在点P 使四边形MNPD 是菱形.【小结】为什么此题会不存在,表面上看是不满足邻边相等,究其原因,是因为M 、N 是定点,P 、D 虽为动点但仅仅是半动点,且P 、D 横坐标相同,故本题只需一个字母便可表示出4个点的坐标,对于菱形四个点满足:A CB D AC BD x x x x y y y y ⎧+=+⎪⎪+=+⎨=若只有1个未知数或2个未知数,便出现方程个数>未知量个数的情况,就有可能会无解. 方程个数<未知数个量,可能无法确定有限组解; 方程个数>未知数个量,可能会无解.特殊图形的存在性,其动点是在线上还是在平面上,是有1个动点还是有2个动点,都是由其图形本身决定,矩形和菱形相比起平行四边形,均多一个等式,故对动点位置的要求可以有3个半动点或者1个全动点+1个半动点,若减少未知量的个数,反而可能会产生无解的情况.不难想象,对于正方形来说,可以有4个未知量,比如在坐标系中已知两定点,若要作正方形,只能在平面中再取另外两动点,即2个全动点,当然,也有可能是1全动+2半动,甚至是4个半动点.练习:如图,抛物线2y x bx c=++与x轴相交于A、B两点,与y轴相交于点C,已知抛物线的对称轴所在的直线是94x=,点B的坐标为(4,0).(1)求抛物线解析式;(2)若M为x轴上一动点,在抛物线上是否存在点N,使得点B、C、M、N构成的四边形是菱形,若存在,求出点N坐标,若不存在,请说明理由.【分析】(1)抛物线:2922y x x =-+;(2)本题是“两定两动”,但两个动点一个在x 轴上,一个在抛物线上,均为半动点,故只需两个字母即可表示,未知量个数少于方程个数,结果可能会无解.设M 点坐标为(m ,0),N 点坐标为29,22n n n ⎛⎫-+ ⎪⎝⎭,又B (4,0)、C (0,2).当CB 为对角线时,取对角线互相平分及MB =MC ,可得: ()()()()2222240902022400002m nn n m m ⎧+=+⎪⎪+=+-+⎨⎪⎪-+-=-+-⎩方程组无解,故这种情况不存在;当CM 为对角线时,取对角线互相平分及BC =BM ,可得: ()()()()22222049022024002400m n n n m ⎧+=+⎪⎪+=-++⎨⎪⎪-+-=-+-⎩方程组依然无解;这种情况也不存在;当CN 为对角线时,取对角线互相平分及CB =CM ,可得: ()()()()22222049220020420020n m n n m ⎧+=+⎪⎪+-+=+⎨⎪⎪-+-=-+-⎩方程组还是无解.综上,不存在这样的M 、N .【小结】问题本身源于对动点位置的选取导致点坐标中未知量的个数与方程个数不一致,以致出现不存在的情况.【一定三动】讲真在翻了一些中考题,并没有看到类似的题型,举些数据编一个吧:如图,抛物线过A (-1,0)、B (3,0)、C (0,3),点C 关于抛物线对称轴的对称点为D 点,连接AD .点P 在抛物线上,点M 在直线AD 上,点N 在抛物线对称轴上,四边形OPMN 能否为菱形,若能,求出P 点坐标,若不能,说明理由.【分析】抛物线解析式为:223y x x =-++,直线AD 解析式为y =x -1.设P 点坐标为()2,23p p p -++,M 点坐标为(),1m m -,N 点坐标为()1,n , 考虑到在四边形OPMN 中,OM 为对角线,可得: ()()()()222220+1012310011m p m p p nn m n m ⎧=+⎪⎪+-=-+++⎨⎪-+-=-+-+⎪⎩显然这个计算很麻烦,经化简可得点P 满足32610p p --=,剩下的就不解了呵呵呵. 可能是数据不太凑巧,但显然,这样的问题并不像“两定两动”问题那样普遍易解,方法其实是同样的方法,因为就题目构造而言,其实“3个半动点”与“1全动+1半动”并无本质区别.了解题目的构造,当再去看一些题目的时候,是否一目了然?。

2020年中考数学压轴解答题08 二次函数与菱形存在型问题 (学生版)

2020年中考数学压轴解答题08 二次函数与菱形存在型问题 (学生版)

备战2020中考数学之解密压轴解答题命题规律 专题08 二次函数与菱形存在型问题【典例分析】【例1】如图,已知抛物线23)0(y a bx a =++≠经过点()1,0A 和点()3,0B ,与y 轴交于点C .(1)求此抛物线的解析式;(2)若点P 是直线BC 下方的抛物线上一动点(不点B ,C 重合),过点P 作y 轴的平行线交直线BC 于点D ,设点P 的横坐标为m .①用含m 的代数式表示线段PD 的长;②连接PB ,PC ,求PBC ∆的面积最大时点P 的坐标;(3)设抛物线的对称轴与BC 交于点E ,点M 是抛物线的对称轴上一点,N 为y 轴上一点,是否存在这样的点M 和点N ,使得以点C 、E 、M 、N 为顶点的四边形是菱形?如果存在,请直接写出点M 的坐标;如果不存在,请说明理由.【例2】如图,在平面直角坐标系内,抛物线2y x 2x 3=-++与x 轴交于点A,C (点A 在点C 的左侧),与y 轴交于点B,顶点为D .点Q 为线段BC 的三等分点(靠近点C ).(1)点M 为抛物线对称轴上一点,点E 为对称轴右侧抛物线上的点且位于第一象限,当MQC △的周长最小时,求CME △面积的最大值;(2)在(1)的条件下,当CME △的面积最大时,过点E 作EN x ⊥轴,垂足为N,将线段CN 绕点C 顺时针旋转90°得到点N,再将点N 向上平移16个单位长度.得到点P,点G 在抛物线的对称轴上,请问在平面直角坐标系内是否存在一点H,使点D,P,G ,H 构成菱形.若存在,请直接写出点H 的坐标,若不存在,请说明理由.【例3】如图,直线4y x =-+交x 轴于点A ,交y 轴于点C ,抛物线212y x bx c =++经过点A ,交y 轴于点()0,2B -.点D 为抛物线上一动点,过点D 作x 轴的垂线,交直线AC 于点P ,设点D 的横坐标为m .(1)求抛物线的解析式;(2)当点D 在直线AC 下方的抛物线上运动时,求线段PD 长度的最大值;(3)若点E 是平面内任意一点,是否存在点D ,使以B ,C ,P ,E 为顶点的四边形为菱形?若存在,请直接出m 的值;若不存在,请说明理由.【例4】如图,在平面直角坐标系中,抛物线y 23233x 轴交于A,B 两点,与y 轴交于点C,点D 为抛物线的顶点,抛物线的对称轴与直线AC 交于点E .(1)若点P 为直线AC 上方抛物线上的动点,连接PC,PE,当△PCE 的面积S △PCE 最大时,点P 关于抛物线对称轴的对称点为点Q,此时点T 从点Q 开始出发,沿适当的路径运动至y 轴上的点F 处,再沿适当的路径运动至x 轴上的点G 处,最后沿适当的路径运动至直线AC 上的点H 处,求满足条件的点P 的坐标及QF+FG+33AH的最小值.(2)将△BOC绕点B顺时针旋转120°,边BO所在直线与直线AC交于点M,将抛物线沿射线CA方向平移233个单位后,顶点D的对应点为D′,点R在y轴上,点N在坐标平面内,当以点D′,R,M,N为顶点的四边形是菱形时,请直接写出N点坐标.【例5】二次函数y=﹣54x2+bx+c的图象与直线y=﹣12x+1相交于A、B两点(如图),A点在y轴上,过点B作BC⊥x轴,垂足为C(﹣3,0).(1)填空:b=_____,c=_____.(2)点N是二次函数图象上一点(点N在AB上方),过N作NP⊥x轴,垂足为点P,交AB于点M,求MN的最大值;(3)在(2)的条件下,点N在何位置时,BM与NC相互垂直平分?并求出所有满足条件的N点的坐标.【例6】如图1,在平面直角坐标系中,抛物线y=﹣12x2﹣72x﹣3交x轴于A,B两点(点A在点B的左侧),交y轴于点C(1)求直线AC的解析式;(2)点P是直线AC上方抛物线上的一动点(不与点A,点C重合),过点P作PD⊥x轴交AC于点D,求PD的最大值;(3)将△BOC沿直线BC平移,点B平移后的对应点为点B′,点O平移后的对应点为点O′,点C平移后的对应点为点C′,点S是坐标平面内一点,若以A,C,O′,S为顶点的四边形是菱形,求出所有符合条件的点S的坐标.【变式训练】1.如图,直线y=12x+2与y轴交于点A,与直线y=﹣12x交于点B,以AB为边向右作菱形ABCD,点C恰与原点O重合,抛物线y=(x﹣h)2+k的顶点在直线y=﹣12x上移动.若抛物线与菱形的边AB、BC都有公共点,则h的取值范围是()A.﹣2≤h≤12B.﹣2≤h≤1C.﹣1≤h≤32D.﹣1≤h≤122.如图,在平面直角坐标系xOy中,抛物线C1:y1=12(x+3)2﹣92,将抛物线C1 向右平移3个单位、再向上平移4.5个单位得抛物线C2,则图中阴影部分的面积为________.3.如图,在平面直角坐标系中,菱形OABC 的顶点 A 在 x 轴正半轴上,顶点 C 的坐标为(4,3),D 是抛物线 y =﹣x 2+6x 上一点,且在x 轴上方,则△BCD 面积的最大值为__________4.如图,在平面直角坐标系中,菱形ABCD 的顶点A 的坐标为(3,0),顶点B 在y 轴正半轴上,顶点D 在x 轴负半轴上.若抛物线y=-x 2-5x+c 经过点B 、C,则菱形ABCD 的面积为_______.5.二次函数y =23x 2的图象如图所示,点O 为坐标原点,点A 在y 轴的正半轴上,点B 、C 在函数图象上,四边形OBAC 为菱形,且∠OBA =120°,则点C 的坐标为______.6.如图,菱形OABC 的顶点O 、A 、C 在抛物线213y x 上,其中点O 为坐标原点,对角线OB 在y 轴上,且OB =2.则菱形OABC 的面积是_______.7.如图,已知二次函数y=ax 2+2x+c 的图象经过点C (0,3),与x 轴分别交于点A,点B (3,0).点P 是直线BC 上方的抛物线上一动点.(1)求二次函数y=ax 2+2x+c 的表达式;(2)连接PO,PC,并把△POC 沿y 轴翻折,得到四边形POP′C .若四边形POP′C 为菱形,请求出此时点P 的坐标;(3)当点P 运动到什么位置时,四边形ACPB 的面积最大?求出此时P 点的坐标和四边形ACPB 的最大面积.8.如图1,抛物线1C :22y ax bx =+-与直线l :1122y x =--交于x 轴上的一点A ,和另一点()3,B n()1求抛物线1C 的解析式;()2点P 是抛物线1C 上的一个动点(点P 在A ,B 两点之间,但不包括A ,B 两点)PM AB ⊥于点M ,//PN y 轴交AB 于点N ,求MN 的最大值;()3如图2,将抛物线1C 绕顶点旋转180︒后,再作适当平移得到抛物线2C ,已知抛物线2C 的顶点E 在第一象限的抛物线1C 上,且抛持线2C 与抛物线1C 交于点D ,过点D 作//DF x 轴交抛物线2C 于点F ,过点E 作//EG x 轴交抛物线1C 于点G ,是否存在这样的抛物线2C ,使得四边形DFEG 为菱形?若存在,请求E 点的横坐标;若不存在,请说明理由.9.如图,在平面直角坐标系中,抛物线y =﹣235333x x ++与x 轴交于A 、B 两点(点A 在点B 左侧),与y 轴交于点C .(1)求出△ABC 的周长.(2)在直线BC 上方有一点Q ,连接QC 、QB ,当△QBC 面积最大时,一动点P 从Q 出发,沿适当路径到达y 轴上的M 点,再沿与对称轴垂直的方向到达对称轴上的N 点,连接BN ,求QM +MN +BN 的最小值.(3)在直线BC 上找点G ,K 是平面内一点,在平面内是否存在点G ,使以O 、C 、G 、K 为顶点的四边形是菱形?若存在,求出K 的坐标;若不存在,请说明理由.10.定义:对于抛物线y =ax 2+bx +c (a 、b 、c 是常数,a ≠0),若b 2=ac ,则称该抛物线为黄金抛物线.例如:y =x 2﹣x +1是黄金抛物线(1)请再写出一个与上例不同的黄金抛物线的解析式; (2)将黄金抛物线y =x 2﹣x +1沿对称轴向下平移3个单位 ①直接写出平移后的新抛物线的解析式;②新抛物线如图所示,与x 轴交于A 、B (A 在B 的左侧),与y 轴交于C ,点P 是直线BC 下方的抛物线上一动点,连结PO 、PC ,并把△POC 沿CO 翻折,得到四边形POP ′C ,那么是否存在点P ,使四边形POP ′C 为菱形?若存在,请求出此时点P 的坐标;若不存在,请说明理由.③当直线BC 下方的抛物线上动点P 运动到什么位置时,四边形 OBPC 的面积最大并求出此时P 点的坐标和四边形OBPC 的最大面积.11.如图,抛物线与y 轴交于A 点,过点A 的直线与抛物线交于另一点B ,过点B 作BC ⊥x 轴,垂足为点C (3,0).(1)求直线AB 的函数关系式;(2)动点P 在线段OC 上从原点出发以每秒一个单位的速度向C 移动,过点P 作PN ⊥x 轴,交直线AB 于点M ,交抛物线于点N . 设点P 移动的时间为t 秒,MN 的长度为s 个单位,求s 与t 的函数关系式,并写出t 的取值范围;(3)设在(2)的条件下(不考虑点P 与点O ,点C 重合的情况),连接CM ,BN ,当t 为何值时,四边形BCMN 为平行四边形?问对于所求的t 值,平行四边形BCMN 是否菱形?请说明理由12.如图,已知抛物线2y x bx c =++与x 轴交于点A,B,AB=2,与y 轴交于点C,对称轴为直线x=2.(1)求抛物线的函数表达式;(2)设P为对称轴上一动点,求△APC周长的最小值;(3)设D为抛物线上一点,E为对称轴上一点,若以点A,B,D,E为顶点的四边形是菱形,则点D的坐标为.13.如图1,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣1,0)、B(4,0)两点,与y轴交于点C,且OC=3OA.点P是抛物线上的一个动点,过点P作PE⊥x轴于点E,交直线BC于点D,连接PC.(1)求抛物线的解析式;(2)如图2,当动点P只在第一象限的抛物线上运动时,求过点P作PF⊥BC于点F,试问△PDF的周长是否有最大值?如果有,请求出其最大值,如果没有,请说明理由.(3)当点P在抛物线上运动时,将△CPD沿直线CP翻折,点D的对应点为点Q,试问,四边形CDPQ是否成为菱形?如果能,请求出此时点P的坐标,如果不能,请说明理由.14.如图,二次函数y=﹣16x2+32x+6与x轴相交A,B两点,与y轴相交于点C.(1)若点E为线段BC上一动点,过点E作x轴的垂线与抛物线交于点P,垂足为F,当PE﹣2EF取得最大值时,在抛物线y的对称轴上找点M,在x轴上找点N,使得PM+MN+22NB的和最小,若存在,求出该最小值及点N的坐标;若不存在,请说明理由.(2)在(1)的条件下,若点P′为点P关于x轴的对称点,将抛物线y沿射线BP′的方向平移得到新的抛物线y′,当y′经过点A时停止平移,将△BCN沿CN边翻折,点B的对应点为点B′,B′C与x轴交于点K,若抛物线y′的对称轴上有点R,在平画内有点S,是否存在点R、S使得以K、B′、R、S为顶点的四边形是菱形,若存在,直接写出点S的坐标;若不存在,请说明理由.15.在平面直角坐标系中,抛物线y =﹣23984x x+6与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C .(1)如图1,点P 为直线BC 上方抛物线上一动点,过点P 作PH ∥y 轴,交直线BC 于点H,过点P 作PQ ⊥BC于点Q,当PQ ﹣12PH 最大时,点C 关于x 轴的对称点为点D,点M 为直线BC 上一动点,点N 为y 轴上一动点,连接PM 、MN,求PM+MN+45ND 的最小值;(2)如图2,连接AC,将△OAC 绕着点O 顺时针旋转,记旋转过程中的△OAC 为△OA'C',点A 的对应点为点A',点C 的对应点为点C'.当点A'刚好落在线段AC 上时,将△OA'C'沿着直线BC 平移,在平移过程中,直线OC'与抛物线对称轴交于点E,与x 轴交于点F,设点R 是平面内任意一点,是否存在点R,使得以B 、E 、F 、R 为顶点的四边形是菱形?若存在,请直接写出点R 的坐标;若不存在,请说明理由.16.已知菱形OABC 的边长为5,且tan ∠AOC =43,点E 是线段BC 的中点,过点A 、E 的抛物线y =ax 2+bx +c 与边AB 交于点D .压轴解答题·直面高考精品资源·战胜高考(1)求点A 和点E 的坐标;(2)连结DE ,将△BDE 沿着DE 翻折.①当点B 的对应点B '恰好落在线段AC 上时,求点D 的坐标;②连接OB 、BB ',请直接写出此时该抛物线二次项系数a =.17.如图,在平面直角坐标系中,已知矩形ABCD 的三个顶点A (-3,4)、B (-3,0)、C (-1,0) .以D 为顶点的抛物线y = ax 2+bx +c 过点B . 动点P 从点D 出发,沿DC 边向点C 运动,同时动点Q 从点B 出发,沿BA 边向点A 运动,点P 、Q 运动的速度均为每秒1个单位,运动的时间为t 秒. 过点P 作PE ⊥CD 交BD 于点E ,过点E 作EF ⊥AD 于点F ,交抛物线于点G .(1)求抛物线的解析式;(2)当t 为何值时,四边形BDGQ 的面积最大?最大值为多少?(3)动点P 、Q 运动过程中,在矩形ABCD 内(包括其边界)是否存在点H ,使以B ,Q ,E ,H 为顶点的四边形是菱形,若存在,请直接写出此时菱形的周长;若不存在,请说明理由.。

2022-2023学年初二数学第二学期培优专题12 一次函数与菱形

2022-2023学年初二数学第二学期培优专题12 一次函数与菱形

2022-2023学年初二数学第二学期培优专题12 一次函数与菱形【例题讲解】如图,矩形OABC 的顶点A 、C 分别在x 、y 轴的正半轴上,点B 的坐标为(6,8),一次函数2y -3x b =+的图象与边OC 、AB 分别交于点D 、E ,并且满足OD =BE ,点M 是线段DE 上的一个动点. (1)求b 的值;(2)设点N 是x 轴上方平面内的一点,以O 、M 、D 、N 为顶点的四边形为菱形时,请求出点N 的坐标.解:(1)∵四边形OABC 是矩形,∴AB x ⊥ 轴,BC y ⊥ 轴,∵一次函数2y -3x b =+的图象与边OC 、AB 分别交于点D 、E ,并且满足OD =BE ,∴OD =BE =b ,∵点B 的坐标为(6,8),∴AB =8,点E 的横坐标为6, ∴AE =AB -BE =8-b ,∴点E (6,8-b ),将点E 代入2y -3x b=+,得:2863b b -=-⨯+ ,解得:6b = ; (2)如图(1),若以OD 为对角线,得到菱形OMDN , 则MN 垂直平分OD ,M 和N 关于y 轴对称,∵OD =6, ∴点M 的纵坐标均是632= , 将3y = 代入2y -63=+x ,得:32-63x =+ ,解得:92x = ,∴点M 9,32⎛⎫ ⎪⎝⎭,∴点N 9,32⎛-⎫⎪⎝⎭;如图(2),若以DM 为对角线,得到菱形ODNM ,则OM =OD =6,线段DM 与线段ON 的中点重合, 设点M 的横坐标为a ,则纵坐标为2-63+a ,∴2222-63a OMa ⎛⎫=+ ⎪⎝⎭+ ,即2222-636a a ⎛⎫= ⎪⎝⎭++ ,解得:7213a = 或0a =(舍去) ,∴点M 7230,1313⎛⎫⎪⎝⎭,设点N (),n n x y ,由(1)知:()D 0,6 ,∴7213223061322nnxy⎧⎪=⎪⎪⎨⎪+⎪=⎪⎩,解得:721310813nnxy⎧=⎪⎪⎨⎪=⎪⎩,∴点N72108,1313⎛⎫⎪⎝⎭,综上所述,以O、M、D、N为顶点的四边形为菱形时,点N的坐标为9,32⎛-⎫⎪⎝⎭或72108,1313⎛⎫⎪⎝⎭.【综合演练】1.如图,在平面直角坐标系中,矩形ABCD的顶点A、B、D的坐标分别为(0,5)、(0,2)、(4,5),直线l的解析式为y=kx+2﹣4k(k>0).(1)当直线l经过原点O时,求一次函数的解析式;(2)通过计算说明:不论k为何值,直线l总经过点C;(3)在(1)的条件下,点M为直线l上的点,平面内是否存在x轴上方的点N,使以点O、A、M、N为顶点的四边形是菱形?若存在,请直接写出点M的坐标:若不存在,请说明理由.2.如图,矩形OABC的顶点A、C分别在x轴、y轴的正半轴上,点B的坐标为(3,4),一次函数23y x b =-+的图象与边OC、AB分别交于点D、E,且OD=BE.点M是线段DE上的一个动点.(1)求b的值;(2)连结OM,若三角形ODM的面积与四边形OAEM的面积之比为1:3,求点M的坐标;(3)设点N是平面内的一点,以O、D、M、N为顶点的四边形是菱形,求点N的坐标.3.问题情境:在综合实践课上,老师让同学们探究“平面直角坐标系中的旋转问题”,如图,在平面直角坐标系中,四边形AOBC 是矩形,()0,0O ,点()5,0A ,点()0,3B .操作发现:以点A 为中心,顺时针旋转矩形AOBC ,得到矩形ADEF ,点O ,B ,C 的对应点分别为D ,E ,F .(1)如图,当点D 落在BC 边上时,求点D 的坐标;(2)继续探究:如图,当点D 落在线段BE 上时,AD 与BC 交于点H ,求证:ADB AOB ≌;(3)拓展探究:如图,点M 是x 轴上任意一点,点N 是平面内任意一点,是否存在点N 使以A 、D 、M 、N 为顶点的四边形是菱形?若存在,请直接写出点N 的坐标;若不存在,请说明理由.4.如图1,在平面直角坐标系中,过点()3,0A的两条直线分别交y 轴于B 、C 两点,且B 、C 两点的纵坐标分别是一元二次方程2230x x --=的两个根.(1)判断直线AC 与直线AB 的位置关系?并说明理由;(2)如图2,若点D 在直线AC 上,且△BCD 为等边三角形,动点E 在直线AC 上(不与点D 、C 重合),做EF ⊥直线BD ,垂足为点F ,设点EF 的长为d ,点E 的横坐标是x ,请求出d 与x 的函数关系式: (3)在(2)的条件下,直线BD 上是否存在点P ,平面内是否存在点Q ,使以A 、B 、P 、Q 四点为顶点的四边形是菱形,若存在请直接写出点Q 的坐标;若不存在,请说明理由.5.如图,四边形OABC 为矩形,其中O 为原点,A 、C 两点分别在x 轴和y 轴上,B 点的坐标是(4,7).点D ,E 分别在OC ,CB 边上,且CE :EB =5:3.将矩形OABC 沿直线DE 折叠,使点C 落在AB 边上点F 处.(1)求F 点的坐标;(2)点P 在第二象限,若四边形PEFD 是矩形,求P 点的坐标;(3)若M 是坐标系内的点,点N 在y 轴上,若以点M ,N ,D ,F 为顶点的四边形是菱形,请直接写出所有满足条件的点M 和点N 的坐标.6.如图,已知四边形OABC 是矩形,点A ,C 在坐标轴上,点B 坐标为(43-,4),将△OCB 绕点O 顺时针旋转90°后得到△ODE ,点D 在x 轴上,直线BD 交y 轴于点F ,交OE 于点H .(1)求点D 的坐标为_______,点E 的坐标为______; (2)求S △BOH :S △BOD 的值;(3)若点M 在坐标轴上,试探究在坐标平面内是否存在点N ,使以点D ,F ,M ,N 为顶点的四边形是菱形?若存在,请直接写出点N 的坐标;若不存在,请说明理由.7.如图,在平面直角坐标系中,矩形OABC 的顶点A 、C 分别在x 轴、y 轴上,且()4,2B ,E 为直线AC 上一动点,连OE ,过E 作GF OE ⊥,交直线BC 、直线OA 于点F 、G ,连OF .(1)求直线AC 的解析式.(2)当E 为AC 中点时,求CF 的长.(3)在点E 的运动过程中,坐标平面内是否存在点P ,使得以P 、O 、G 、F 为顶点的四边形为菱形,若存在,求出点P 的横坐标,若不存在,请说明理由.8.已知:在平面直角坐标系中,直线1:2l y x =-+与x 轴,y 轴分别交于A 、B 两点,直线2l 经过点A ,与y 轴交于点(0,4)C -.(1)求直线2l 的解析式;(2)如图1,点P 为直线1l 一个动点,若PAC △的面积等于10时,请求出点P 的坐标;(3)如图2,将ABC 沿着x 轴平移,平移过程中的ABC 记为111A B C △,请问在平面内是否存在点D ,使得以11A C C D 、、、为顶点的四边形是菱形?若存在,直接写出点D 的坐标.9.如图1,在平面直角坐标系中,直线34y x b =-+分别与x 轴、y 轴交于点A 、B ,且点A 的坐标为(8,0),四边形ABCD 是正方形.(1)求b 的值和点D 的坐标;(2)点M是线段AB上的一个动点(点A、B除外).①如图2,将△BMC沿CM折叠,点B的对应点是点E,连接ME并延长交AD边于点F,问△AMF的周长是否发生变化?若不变,求出其值;若变化,请说明理由;②点P是x轴上一个动点,Q是坐标平面内一点,探索是否存在一个点P,使得以A、B、P、Q为顶点的四边形是菱形?若不存在,请说明理由;若存在,请直接写出点Q的坐标.10.如图,矩形OABC的顶点A、C分别在x、y轴的正半轴上,点B的坐标为(6,8),一次函数2y-3x b =+的图象与边OC、AB分别交于点D、E,并且满足OD=BE,点M是线段DE上的一个动点.(1)求b的值;(2)连结OM,若△ODM的面积与四边形OAEM的面积之比为1:2,求点M的坐标;(3)设点N是x轴上方平面内的一点,以O、M、D、N为顶点的四边形为菱形时,请求出点N的坐标.答案与解析【例题讲解】如图,矩形OABC 的顶点A 、C 分别在x 、y 轴的正半轴上,点B 的坐标为(6,8),一次函数2y -3x b=+的图象与边OC 、AB 分别交于点D 、E ,并且满足OD =BE ,点M 是线段DE 上的一个动点. (1)求b 的值;(2)设点N 是x 轴上方平面内的一点,以O 、M 、D 、N 为顶点的四边形为菱形时,请求出点N 的坐标.解:(1)∵四边形OABC 是矩形,∴AB x ⊥ 轴,BC y ⊥ 轴,∵一次函数2y -3x b =+的图象与边OC 、AB 分别交于点D 、E ,并且满足OD =BE ,∴OD =BE =b ,∵点B 的坐标为(6,8),∴AB =8,点E 的横坐标为6, ∴AE =AB -BE =8-b ,∴点E (6,8-b ),将点E 代入2y -3x b=+,得:2863b b -=-⨯+ ,解得:6b = ; (2)如图(1),若以OD 为对角线,得到菱形OMDN , 则MN 垂直平分OD ,M 和N 关于y 轴对称,∵OD =6,∴点M 的纵坐标均是632= ,将3y = 代入2y -63=+x ,得:32-63x =+ ,解得:92x = ,∴点M 9,32⎛⎫ ⎪⎝⎭,∴点N 9,32⎛-⎫⎪⎝⎭;如图(2),若以DM 为对角线,得到菱形ODNM ,则OM =OD =6,线段DM 与线段ON 的中点重合,设点M 的横坐标为a ,则纵坐标为2-63+a ,∴2222-63a OMa ⎛⎫=+ ⎪⎝⎭+ ,即2222-636a a ⎛⎫= ⎪⎝⎭++ ,解得:7213a = 或0a =(舍去) ,∴点M 7230,1313⎛⎫⎪⎝⎭,设点N (),n n x y ,由(1)知:()D 0,6 ,∴7213223061322nnxy⎧⎪=⎪⎪⎨⎪+⎪=⎪⎩,解得:721310813nnxy⎧=⎪⎪⎨⎪=⎪⎩,∴点N72108,1313⎛⎫⎪⎝⎭,综上所述,以O、M、D、N为顶点的四边形为菱形时,点N的坐标为9,32⎛-⎫⎪⎝⎭或72108,1313⎛⎫⎪⎝⎭.【综合演练】1.如图,在平面直角坐标系中,矩形ABCD的顶点A、B、D的坐标分别为(0,5)、(0,2)、(4,5),直线l的解析式为y=kx+2﹣4k(k>0).(1)当直线l经过原点O时,求一次函数的解析式;(2)通过计算说明:不论k为何值,直线l总经过点C;(3)在(1)的条件下,点M为直线l上的点,平面内是否存在x轴上方的点N,使以点O、A、M、N为顶点的四边形是菱形?若存在,请直接写出点M的坐标:若不存在,请说明理由.【答案】(1)12y x=;(2)详见解析;(3)存在,满足条件的点M为(25,5)或(25,5)--或552,⎛⎫⎪⎝⎭.【分析】(1)将原点坐标代入解析式可求出k的值,即可求解;(2)由题意可得点C(4,2),当x=4时,y=4k+2﹣4k=2,则可得不论k为何值,直线l总经过点C;(3)分OA为边,OA为对角线两种情况讨论,由菱形的性质可求解.【解答】解:(1)∵直线l经过原点,∴把点(0,0)代入y=kx+2﹣4k,得:2﹣4k=0,解得:12k=,∴一次函数的解析式为:12y x =;(2)由题意可知,点C的坐标为(4,2),当x=4时,y=4k+2﹣4k=2,∴不论k 为何值,直线l 总经过点C ; (3)设点M (x ,12x )①以OA 为菱形的边,此时,OM =OA =5, ∴222152x x ⎛⎫+= ⎪⎝⎭∴x =±25, 点M 的坐标为(25,5)或(25,5)--; ②以OA 为菱形的一条对角线, 此时MN 垂直平分OA , 则12x =52∴x =5则M 的坐标为552,⎛⎫⎪⎝⎭;综上所述:满足条件的点M 为(25,5)或(25,5)--或552,⎛⎫⎪⎝⎭.【点评】本题是一次函数综合题,考查了待定系数法求解析式,菱形的性质,利用分类讨论思想解决问题是本题的关键.2.如图,矩形OABC 的顶点A 、C 分别在x 轴、y 轴的正半轴上,点B 的坐标为(3,4),一次函数23y x b=-+的图象与边OC 、AB 分别交于点D 、E ,且OD=BE .点M 是线段DE 上的一个动点. (1)求b 的值;(2)连结OM ,若三角形ODM 的面积与四边形OAEM 的面积之比为1:3,求点M 的坐标; (3)设点N 是平面内的一点,以O 、D 、M 、N 为顶点的四边形是菱形,求点N 的坐标.【答案】(1)3b =;(2)M(1,73);(3)当四边形OMDN 是菱形时,N(-94, 32)或(3613,5413)【分析】(1)首先在一次函数的解析式中令x=0,即可求得D 的坐标,则OD 的长度即可求得,OD=b ,则E的坐标即可利用b表示出来,然后代入一次函数解析式即可得到关于b的方程,求得b的值;(2)首先求得四边形OAED的面积,则△ODM的面积即可求得,设出M的横坐标,根据三角形的面积公式即可求得M的横坐标,进而求得M的坐标;(3)分成四边形OMDN是菱形和四边形OMND是菱形两种情况进行讨论,四边形OMDN是菱形时,M 是OD的中垂线与DE的交点,M关于OD的对称点就是N;四边形OMND是菱形,OM=OD,M在直角DE上,设出M的坐标,根据OM=OD即可求得M的坐标,则根据ON和DM的中点重合,即可求得N 的坐标.【解答】(1)y=23-x+b中,令x=0,解得y=b,则D的坐标是(0,b),OD=b,∵OD=BE,∴BE=b,则E的坐标是(3,4−b),把E的坐标代入y=23-x+b得4−b=−2+b,解得:b=3;(2)11()(31)3622OAEDS OD AE OA=+⋅=⨯+⨯=四边形,∵三角形ODM的面积与四边形OAEM的面积之比为1:3,∴ 1.5ODMS=,设M的横坐标是a,则12×3a=1.5,解得:a=1,把x=a=1代入y=23-x+3得y=23-+3=73,则M的坐标是(1,73 );(3)当四边形OMDN是菱形时,如图(1),M的纵坐标是32,把y=32代入y=23-x+3,得23-x+3=32,解得:x=94,则M的坐标是(94,32),则N的坐标是(−94,32);当四边形OMND是菱形时,如图(2)OM=OD=3,设M 的横坐标是m,则纵坐标是23-m+3,则222(3)93m m +-+=, 解得:m=3613或0(舍去). 则M 的坐标是(3613,1513 ). 则DM 的中点是(1813 ,2713). 则N 的坐标是(3613,5413). 故N 的坐标是(−94,32)或(3613,5413). 【点评】本题是一次函数与菱形的判定与性质的综合题考查了菱形的判定方法,正确运用菱形的性质求出M 的坐标是关键.3.问题情境:在综合实践课上,老师让同学们探究“平面直角坐标系中的旋转问题”,如图,在平面直角坐标系中,四边形AOBC 是矩形,()0,0O ,点()5,0A ,点()0,3B .操作发现:以点A 为中心,顺时针旋转矩形AOBC ,得到矩形ADEF ,点O ,B ,C 的对应点分别为D ,E ,F .(1)如图,当点D 落在BC 边上时,求点D 的坐标;(2)继续探究:如图,当点D 落在线段BE 上时,AD 与BC 交于点H ,求证:ADB AOB ≌;(3)拓展探究:如图,点M 是x 轴上任意一点,点N 是平面内任意一点,是否存在点N 使以A 、D 、M 、N 为顶点的四边形是菱形?若存在,请直接写出点N 的坐标;若不存在,请说明理由.【答案】(1)()1,3D(2)证明见解析(3)存在,点N 的坐标为()4,3-或()6,3或()1,3-或33(,3)8【分析】(1)先根据矩形的性质得到3AC OB ==,5OA BC ==,90OBC C ∠=∠=︒,再根据旋转的性质得到5AD AO ==,根据勾股定理求出CD 的长,从而可得BD 的长,由此即可得;(2)先根据旋转的性质得到AD AO =,90AOB ADE ∠=∠=︒,从而可得90ADB ∠=︒,再利用HL 定理即可得证;(3)分三种情况讨论:①当四边形ADNM 为菱形时;②当四边形ADMN 为菱形时;③当四边形ANDM 为菱形时,利用菱形的性质求解即可得.(1)解:∵()5,0A ,()0,3B ,∴5OA =,3OB =,∵四边形AOBC 是矩形,∴3AC OB ==,5OA BC ==,90OBC C ∠=∠=︒,∵矩形ADEF 是由矩形AOBC 旋转得到,∴5AD AO ==,在Rt ADC 中,224CD AD AC =-=,∴1BD BC CD =-=,∴()1,3D . (2)证明:四边形ADEF 是矩形,90ADE ∴∠=︒,点D 在线段BE 上,90ADB ∴∠=︒,由旋转的性质得:AD AO =,在Rt ADB 和Rt AOB △中,AB AB AD AO =⎧⎨=⎩,∴()Rt Rt HL ADB AOB ≅. (3)解:存在,求解过程如下:设点M 的坐标为(,0)M m ,点N 的坐标为(,)N a b ,由题意,分以下三种情况:①如图,当四边形ADNM 为菱形时,则5AM AD ==,55m ∴-=,解得0m =或10m =,当0m =时,点M 的坐标为(0,0)M ,菱形ADNM 的对角线互相平分,5012200322a b ++⎧=⎪⎪∴⎨++⎪=⎪⎩,解得43a b =-⎧⎨=⎩,即此时点N 的坐标为(4,3)N -;当10m =时,点M 的坐标为(10,0)M ,菱形ADNM 的对角线互相平分,51012200322a b ++⎧=⎪⎪∴⎨++⎪=⎪⎩,解得63a b =⎧⎨=⎩,即此时点N 的坐标为(6,3)N ;②如图,当四边形ADMN 为菱形时,菱形ADMN 的对角线互相垂直且平分,∴点N 与点D 关于x 轴对称,(1,3)D ,(1,3)N ∴-;③如图,当四边形ANDM 为菱形时,菱形ANDM 的对角线互相平分,00322b ++∴=,解得3b =,(,3)N a ∴,又四边形ANDM 为菱形,AN DN ∴=,22AN DN ∴=,即2222(5)(30)(1)(33)a a -+-=-+-,解得338a =,则此时点N 的坐标为33(,3)8N ,综上,存在点N 使以,,,A D M N 为顶点的四边形是菱形,点N 的坐标为()4,3-或()6,3或()1,3-或33(,3)8. 【点评】本题考查了矩形的性质、三角形全等的判定、旋转的性质、菱形的性质、两点之间的距离公式等知识点,较难的是题(3),正确分三种情况讨论是解题关键.4.如图1,在平面直角坐标系中,过点)3,0A 的两条直线分别交y 轴于B 、C 两点,且B 、C 两点的纵坐标分别是一元二次方程2230x x --=的两个根.(1)判断直线AC 与直线AB 的位置关系?并说明理由;(2)如图2,若点D 在直线AC 上,且△BCD 为等边三角形,动点E 在直线AC 上(不与点D 、C 重合),做EF ⊥直线BD ,垂足为点F ,设点EF 的长为d ,点E 的横坐标是x ,请求出d 与x 的函数关系式:(3)在(2)的条件下,直线BD 上是否存在点P ,平面内是否存在点Q ,使以A 、B 、P 、Q 四点为顶点的四边形是菱形,若存在请直接写出点Q 的坐标;若不存在,请说明理由. 【答案】(1)AB ⊥AC ,,理由见解析;(2)23(23)23(23)x x d x x ⎧-⎪=⎨-<⎪⎩;(3)(0,1)或(33+,3)-或(33-,3)或(23,3)【分析】(1)结论:AB CA ⊥.先求出B 、C 两点坐标,得到AB 2,AC 2,BC 2,利用勾股定理的逆定理证明.(2)分两种情形解答①23x ,②23x <,分别Z 在Rt DEF ∆中,解直角三角形即可.(3)分两种情形讨论即可①当AB 为菱形对角线时,线段AB 的垂直平分线的解析式为313y x =+,直线313y x =+与y 轴的交点即为点Q ,此时1(0,1)Q . ②当AB 为菱形的边时,23AB BP ==,可得2(3,33)P -,3(3,33)P -+,4(33P ,0),根据菱形的性质求出点Q 坐标即可.【解答】解:(1)AB AC ⊥,理由如下:一元二次方程2230x x --=的两个根为1-,3,(0,1)C ∴-,(0,3)B ,(3A ,0),∴()2223312AB =+=,()222314AC =+=,()223116BC =+=, ∴222AB AC BC +=,AB AC ∴⊥;(2)如图1中,作DM BC ⊥于M .∵△BCD 是等边三角形,∴4DB DC BC ===,DM BC ⊥,2BM CM ∴==,1OM ∴=,224223DM =-=,∴(23D ,1),∵1OC =,3OA =,∴2222AC OC OA OC =+==,∴2AC AD ==,∵(3A ,0),(0,3)B ,(0,1)C -,∴直线AB 的解析式为33y x =-+,直线AC 的解析式为313y x =-, ①当点E 在点D 上方时,即23x ≥时,点E 的横坐标为x ,2323(3)233AE x x ∴=-=-,2343DE AE AD x =-=-, 60EDF BDC ∠=∠=︒,2333423232DE d EF x x ⎛⎫∴==⨯=-⋅=- ⎪ ⎪⎝⎭. ②当点E 在点D 下方时,即23x <时,同理可得23d x =-.综上所述23(23)23(23)x x d x x ⎧-⎪=⎨-<⎪⎩. (3)如图2中,存在,理由如下:当AB 为菱形对角线时,设线段AB 的垂直平分线的解析式为3,3y x b =+ 把AB 的中点33,22⎛⎫ ⎪ ⎪⎝⎭代入:1,b = 所以线段AB 的垂直平分线的解析式为313y x =+, 直线313y x =+与y 轴的交点即为点Q ,此时1(0,1)Q . 当AB 为菱形的边时,同理可得:BD 的解析式为:33,3y x =-+ 而23AB BP ==, 设23,3,3P x x ⎛⎫-+ ⎪ ⎪⎝⎭()222333233x x ⎛⎫∴+-+-= ⎪ ⎪⎝⎭, 3,x ∴=± 则33333x -+=+或33,- 所以2(3,33)P -,3(3,33)P -+,同理可得4(33P ,0)四边形22ABP Q 、四边形33ABPQ 、四边形44ABQ P是菱形, 所以由平移的性质可得:2(33Q ∴+,3)-,3(33Q -,3),4(23Q ,3)综上所述,满足条件的点Q 坐标(0,1)或(33+,3)-或(33-,3)或(23,3).【点评】本题考查四边形综合题、一次函数、两直线位置关系、菱形的判定和性质、解直角三角形等知识,解题的关键是灵活运用所学知识,学会用分类讨论的思想思考问题,属于中考压轴题.5.如图,四边形OABC为矩形,其中O为原点,A、C两点分别在x轴和y轴上,B点的坐标是(4,7).点D,E分别在OC,CB边上,且CE:EB=5:3.将矩形OABC沿直线DE折叠,使点C落在AB边上点F 处.(1)求F点的坐标;(2)点P在第二象限,若四边形PEFD是矩形,求P点的坐标;(3)若M是坐标系内的点,点N在y轴上,若以点M,N,D,F为顶点的四边形是菱形,请直接写出所有满足条件的点M和点N的坐标.【答案】(1)(4,5);(2)(−32,4);(3)(4,56),(0,376)或(4,10),(0,7)或(4,0),(0,-3).【分析】(1)先求出点E坐标是(52,7),由折叠的性质可得EF=CE=52,由勾股定理可求BF的长,即可求解;(2)连接PF交DE于J,过点D作DM⊥AB,先求出D(0,2),再根据矩形的对角线互相平分,即可求解;(3)分3种情况:①当DF为菱形的对角线时,②当DF为菱形的边时,M在AB的延长上,点N与点C 重合,③当DF为菱形的边时,N在CO的延长上,点M与点A重合,分别求解,即可.【解答】解:(1)∵B点的坐标是(4,7).点D,E分别在OC,CB边上,且CE:EB=5:3,∴点E坐标是(52,7),∵四边形OABC为矩形,∴BC=AO=4,OC=AB=7,CE=52,BE=BC−CE=32,∵将矩形沿直线DE折叠,点C落在AB边上点F处,∴EF=CE=52,∴BF=222592 44EF EB-=-=,∴AF=7−2=5,∴点F (4,5);(2)如图2中,连接PF 交DE 于J ,过点D 作DM ⊥AB ,当四边形PEFD 是矩形时,△PDE ≌△FDE ≌△CED ,设OD =x ,则CD =DF =7-x ,FM=7-2-x =5-x ,在Rt DFM △中,()()222457x x +-=-,解得:x =2,∴D (0,2),∵E (52,7),DJ =JE , ∴J (54,92), ∵PJ =JF ,∴P (−32,4); (3)①当DF 为菱形的对角线时,M 、N 分别在AB 与OC 上, ND =NF ,设N (0,y ),∴(y -2)2=()()22405y -+-,解得:376y =, ∴N (0,376),FM =DN =376-2=256, ∴AM =5-256=56,∴M(4,56);②当DF为菱形的边时,M在AB的延长上,点N与点C重合,ND=DF=5,∴MF=5,AM=5+5=10,∴M(4,10),N(0,7);③当DF为菱形的边时,N在CO的延长上,点M与点A重合,ND=DF=5,∴ON=5-2=3,∴N(0,-3),M(4,0).综上所述:M,N的坐标为:(4,56),(0,376)或(4,10),(0,7)或(4,0),(0,-3).【点评】本题属于四边形综合题,考查了矩形的性质,菱形的性质,翻折变换,图形与坐标,解题的关键是添加辅助线,构造直角三角形,掌握分类讨论思想方法,属于中考压轴题.6.如图,已知四边形OABC是矩形,点A,C在坐标轴上,点B坐标为(43,4),将△OCB绕点O顺时针旋转90°后得到△ODE,点D在x轴上,直线BD交y轴于点F,交OE于点H.(1)求点D的坐标为_______,点E的坐标为______;(2)求S△BOH:S△BOD的值;(3)若点M在坐标轴上,试探究在坐标平面内是否存在点N,使以点D,F,M,N为顶点的四边形是菱形?若存在,请直接写出点N的坐标;若不存在,请说明理由.∴OF =3,OD =4,∴DF =22345+=,M 在x 轴上时当DM 1为菱形的对角线时,M 1(-4,0),N 1(0,-3).当DM =DF 时,M 2(-1,0)或M 3(9,0),可得N 2(-5,3),N 3(5,3),当DF 为对角线时,设OM 4=x ,则FM 4= DM 4=4-x∵22244OF OM FM +=∴()22234x x +=-解得78x = ∴M 4(78,0),可得N 4(258,3) 当M 在y 轴上时当DM 为菱形的对角线时,此时有FD =F M =5∴M 5(0,-2),N 5(4,-5)或M 6(0,8),N 6(4,5)当FM 为菱形的对角线时,此时有OF =OM∴M 7(0,-3),N 5(-4,0)当DF 为菱形的对角线时,如图所示,此时DF 与MN 交于P ,设FM =a ,MP =b∵1122FDM S DO FM DF MP ==△ ∴45a b =∴54a b =∵222FM FP MP =+∴22252a b ⎛⎫=+ ⎪⎝⎭∴222525164b b =+ 解得103b =∴256=a ∴M 8(0,-256),N 8(4,256) 满足条件的点N 的坐标为(0,-3)或(-5,3)或(5,3)或(258,3)或(4,5)或(4,-5)或(4,256)或(-4,0).【点评】本题主要考查了一次函数的应用,矩形的折叠,两直线的交点坐标,勾股定理,菱形的性质等等,解题的关键在于能够熟练掌握相关知识进行求解.7.如图,在平面直角坐标系中,矩形OABC 的顶点A 、C 分别在x 轴、y 轴上,且()4,2B ,E 为直线AC 上一动点,连OE ,过E 作GF OE ⊥,交直线BC 、直线OA 于点F 、G ,连OF .(1)求直线AC 的解析式.(2)当E 为AC 中点时,求CF 的长.(3)在点E 的运动过程中,坐标平面内是否存在点P ,使得以P 、O 、G 、F 为顶点的四边形为菱形,若存在,求出点P 的横坐标,若不存在,请说明理由.【答案】(1)直线AC 解析式:122y x =-+≌,根据勾股定理求解即可;)证明CEF AEG根据菱形是性质和判定定理,=FG为边,OF FG1)∵矩形OABC的顶点)0,2C,4,0,点()(AAS∴≌CEF AEG∴=,CF AGEF EG=⊥,OE FG∴为线段FG的垂直平分线,OEOF OG ∴=,设CF x =,则AG x =,()4,0A ,4∴=OA ,4OG x ∴=-,4OF x ∴=-,在Rt OCF 中,根据勾股定理,得()2222x 4x +=-,解得32x =, 32CF ∴=; (3)存在以P 、O 、G 、F 为顶点的四边形为菱形,分情况讨论:①以OG ,OF 为边,则OF OG =,GF OE ⊥,E ∴为FG 的中点,由()2可知点3,22⎛⎫ ⎪⎝⎭F ,点5,02G ⎛⎫ ⎪⎝⎭, 根据平移的性质,可得点P 的坐标为()4,2,∴点P 的横坐标为4;②如图1,以OG ,FG 为边,OG FG =,延长OF 至M ,使MF OF =,在OC 的延长线上截取2CN OC ==,连接MN ,12CF MN ∴=,CF MN ∥, 90MNO FCO ∴∠=∠=︒,OG FG =,∥BC OA∴∠=CFO∴∠=CFO∠=BCO∴=OE OC同理可得:∴⊥OF CE∴∠+COFACO∠+∠∴∠COF∠=MNO(ASA ∴≌AOC OMN∴==,MN OC2∴=,CF1==,设OG FG a△中,OE 在Rt EOG5-=-12P∴点横坐标为:③如图2,以作FH OG ⊥于H ,连接CH ,作HQ AC ⊥于Q ,可得OFG ACO OCH OFG ∠=∠∠=∠,,CH ∴平分ACO ∠,,2OH HQ CE OC ∴===,设OH a =,在Rt AHQ △中,HQ x =,AH 4x =-,252AQ AC CQ =-=-,222(4)(252)x x ∴--=-,51x ∴=-,()51,2F∴-, ()51,2P ∴--, 综上所述:P 点横坐标为:4或32-或51-. 【点评】本题考查了矩形的性质,三角形全等的判定和性质,菱形的判定和性质,线段和最小,勾股定理,熟练掌握菱形的判定和性质,勾股定理,线段最短原理是解题的关键.8.已知:在平面直角坐标系中,直线1:2l y x =-+与x 轴,y 轴分别交于A 、B 两点,直线2l 经过点A ,与y 轴交于点(0,4)C -.(1)求直线2l 的解析式;(2)如图1,点P 为直线1l 一个动点,若PAC △的面积等于10时,请求出点P 的坐标;(3)如图2,将ABC 沿着x 轴平移,平移过程中的ABC 记为111A B C △,请问在平面内是否存在点D ,使得以11A C C D 、、、为顶点的四边形是菱形?若存在,直接写出点D 的坐标. 直线直线1(2,0)A t-2 (4)∴-+解得5t=此时1CC9.如图1,在平面直角坐标系中,直线34y x b =-+分别与x 轴、y 轴交于点A 、B ,且点A 的坐标为(8,0),四边形ABCD 是正方形.(1)求b 的值和点D 的坐标;(2)点M 是线段AB 上的一个动点(点A 、B 除外).①如图2,将△BMC 沿CM 折叠,点B 的对应点是点E ,连接ME 并延长交AD 边于点F ,问△AMF 的周长是否发生变化?若不变,求出其值;若变化,请说明理由;②点P 是x 轴上一个动点,Q 是坐标平面内一点,探索是否存在一个点P ,使得以A 、B 、P 、Q 为顶点的四边形是菱形?若不存在,请说明理由;若存在,请直接写出点Q 的坐标. 【答案】(1)b 的值为6,点D 的坐标为(14,8)(2)①△AMF 的周长不变,△AMF 的周长为20;②存在,点Q 的坐标为(06)-,或(106)-,或(106),或25(6)4, 【分析】(1)将点A (8,0)代入34y x b =-+,即可求出b 的值,从而即得出直线AB 的解析式为364y x =-+,进而即得出A (0,6).过点D 作DH x ⊥轴于点H ,由正方形的性质结合题意利用“AAS”易证AOB DHA ≅,得出8DH OA ==,14OH OA AH =+=,即得出D (14,8);(2)①由折叠和正方形的性质可知BM =EM ,CD =CE =4,90CDF CEF ∠=∠=︒,即易证CDF CEF ≅(HL),得出DF EF =.再由△AMF 的周长AM ME EF AF AM BM DF AF AB AD =+++=+++=+,结合勾股定理即可求出答案;②分类讨论ⅰ当AP 为菱形的对角线时,ⅱ当AQ 为菱形的对角线时和ⅲ当AB 为菱形的对角线时,根据菱形的性质结合图形即可求出答案.(1)解:将点A (8,0)代入34y x b =-+,得3084b =-⨯+, 解得:6b =,∴直线AB 的解析式为364y x =-+, 当x =0,时6y =,∴A (0,6),∴OB =6,OA =8.如图,过点D 作DH x ⊥轴于点H ,∵四边形ABCD 为正方形,∴AB =AD ,90BAD ∠=︒,∴90BAO DAH ∠+∠=︒.∵90BAO ABO ∠+∠=︒,∴ABO DAH ∠=∠.又∵90AOB DHA ∠=∠=︒,∴AOB DHA ≅(AAS),∴8DH OA ==,6AH OB ==,∴14OH OA AH =+=,∴D (14,8);(2)解:①由折叠的性质可知BM =EM ,BC =CE =4,90CBM CEM ∠=∠=︒, ∴CD =CE =4,90CDF CEF ∠=∠=︒,又∵CF =CF ,∴CDF CEF ≅(HL)∴DF EF =.∵△AMF 的周长AM MF AF =++,MF ME EF =+,∴△AMF 的周长AM ME EF AF AM BM DF AF AB AD =+++=+++=+. ∵OB =6,OA =8,∴2210AB OA OB =+=,∴△AMF 的周长101020=+=,故△AMF 的周长不变,且为20;综上可知点Q 的坐标为(06)-,或(106)-,或(106),或25(6)4,时,以A 、B 、P 、Q 为顶点的四边形是菱形. 【点评】本题考查正方形的性质,三角形全等的判定和性质,折叠的性质,勾股定理以及菱形的判定和性质等知识.正确的作出辅助线并利用数形结合的思想是解题关键.。

二次函数和菱形存在性问题通用解法

二次函数和菱形存在性问题通用解法

我们已经知道菱形是特殊的平行四边形,它的判定方法一共有五种,分别是①四边都相等的四边形是菱形;②两条对角线互相垂直的平行四边形是菱形;③邻边相等的平行四边形是菱形;④对角线互相垂直平分的四边形是菱形;⑤一条对角线平分一个顶角的平行四边形是菱形.在做几何证明题的时候我们常用的判定方法主要是前三种.二次函数和菱形存在性问题作为压轴题目,结合了“分类讨论思想”,“方程思想”“菱形的判定方法”,势必要比单纯的菱形判定思考难度要大的多,因此我在研究了近些年中考真题之后尝试性的总结一下菱形存在性问题的通用解法,以供大家参考.纵观历年中考真题,菱形存在性问题主要是以“两定两动”为设问方式,其中两定指的是四边形四个顶点其中有两个顶点的坐标是确定的或者是可求解的;两动指的是其中一个动点在一条直线或者抛物线上,另外一个动点是平面内任意一点或者该动点也在一条直线或者抛物线上.一解题模型铺垫1:等腰三角形的构造方法点A和点B为平面内的两个定点,点C为水平直线上的一个动点,要使△ABC为等腰三角形,请利用尺规作图的方法作出点C的位置.图1是以AB为底边(AC和BC为腰),作出线段AB的垂直平分线交直线于点C1;图2是以AB为腰,以点A为圆心,以AB长度为半径作圆,交直线于点C2;图3是以AB为腰,以点B为圆心,以AB长度为半径作圆,交直线于点C3、C4;我们把上述作图方法简称为“两圆一中垂”.铺垫2:平行四边形顶点坐标公式根据平行四边形的性质对角线互相平分,可以知道点O为线段AC 和线段BD的中点。

①两定点确定的线段为边作菱形如图所示,点A和点B为平面内两个定点,点C是直线l上一个动点,点D是平面内的一个动点.以AB为菱形的边,请作出符合题意的菱形.作图方法:由于点D是平面内的任意一个动点,意味着该点需要借助其它的点才能确定下来,因此,我们第一步先确定动点C的位置.要想使以AB为边的四边形是菱形,根据菱形的判定方法3我们可以确定△ABC是以AB为腰的等腰三角形,因此我们可以借助等腰三角形存在性知识,来确定点C的位置.确定方法具体如下:以点A为圆心,以AB长度为半径画圆,交直线l于点C1和C2.接下来需要确定点D的位置.以BC为对称轴作点A关于BC的对称点D,由于点C有两个点,确定下来的点D有两个.再以点B为圆心,BA长度为半径画圆,交直线l于点C3和C4,利用同样的方法作出点D3和D4.解题策略:第一步:确定点C的坐标设出点C坐标,利用两点间距离坐标公式,表示出AB、AC、BC 的长度.当AB=AC时,列出方程,求出点C的坐标;当BA=BC时,列出方程,求出点C的坐标.第二步:确定点D的坐标根据平行四边形顶点坐标公式可求出点D的坐标.②两定点确定的线段为对角线作菱形如图所示,点A和点B为平面内两个定点,点C是抛物线上一个动点,点D是平面内的一个动点.点C关于AB的对称点为点D,请作出所有符合题意的图形.作图方法:第一步:作出AB的垂直平分线;第二步:作点C关于AB 对称点D.解题策略:第一步:求出AB的中点坐标和AB的斜率k,利用两直线垂直,斜率乘积为﹣1这个结论,设直线CD的解析式为y=﹣1/k+b,再把AB中点坐标代入上式,解出b的值.求出CD解析式.第二步:联立直线CD和抛物线,可以解得点C的坐标;第三步:确定点D的坐标根据平行四边形顶点坐标公式可求出点D的坐标.二例题精讲题型一确定对角线【例1】(难度等级☆)如图,在平面直角坐标系中,O为原点,直线AB解析式为y=﹣2x﹣1,与y轴交于点A,与直线y=﹣x交于点B,点B关于原点的对称点为点C.且过A,B,C三点的抛物线的解析式为y=x2﹣x﹣1,P为抛物线上一点,它关于原点的对称点为Q,当四边形PBQC为菱形时,求点P的坐标.【例2】(2016•陕西一模)如图,在平面直角坐标系中,二次函数y=x2﹣3x﹣4的图象与x轴交于A、B两点,A点在原点左侧,B点的坐标为(4,0),与y轴交于C (0,﹣4)点,点P是直线BC下方的抛物线上一动点.连接PO、PC,并把△POC沿CO翻折,得到四边形POP′C,那么是否存在点P,使四边形POP′C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由.【例3】(2016•黔西南州)如图,二次函数y=﹣x2+3x+4的图象与x轴的一个交点为B(4,0),另一个交点为A,且与y轴相交于C(0,4),P为抛物线上一点,它关于直线BC的对称点为Q,当四边形PBQC为菱形时,求点P的坐标;题型三边和对角线均不确定【例5】(2018•齐齐哈尔)如图1所示,直线y=x+c与x轴交于点A(﹣4,0),与y轴交于点C,抛物线y=﹣x2﹣3x+4经过点A,C.如图2所示,M是线段OA的上一个动点,过点M垂直于x 轴的直线与直线AC和抛物线分别交于点P、N.若点P恰好是线段MN的中点,点F是直线AC上一个动点,在坐标平面内是否存在点D,使以点D,F,P,M为顶点的四边形是菱形?若存在,请直接写出点D的坐标;若不存在,请说明理由.关注公众号【初中小窝】,每日发布学习资料,找资料问小窝!。

二次函数存在性问题(菱形、平行四边形、矩形)

二次函数存在性问题(菱形、平行四边形、矩形)

今天讲解二次函数背景下的四边形存在性问题.这里的四边形存在性问题,一般是以几种特殊的四边形为主,常考察的有平行四边形、菱形、 矩形、正方形.当然,三角形的存在性问题和四边形的存在性问题是一样, 如等腰三角形实际上和 菱形是一致的, 直角三角形和矩形是一样的, 等腰直角三角形和正方形是一致的.本文我们将重点讲解这类问题的求解逻辑以及注意事项,同时给大家理出一个比较通用的解题 模板.1如图,抛物线y = ax 2 + bx + 3 交x 轴于点A (−1, 0) 和点B (3, 0) ,与 y 轴交于点C ,连接BC , 交对称轴于点D .(1) 求抛物线的解析式;(2)点 P 是直线BC 上方的抛物线上点,连接PC ,PD .求 △PCD 的面积的最大值以及此时 点P 的坐标;(3)将抛物线y = ax 2 + bx + 3 向右平移 1 个单位得到新抛物线,新抛物线与原抛物线交于点E , 点F 是新抛物线的对称轴上的一点,点 G 是坐标平面内一点.当以D 、E 、F 、 G 四点为顶点的 四边形是菱形时,直接写出点F 的坐标,并写出求解其中一个点F 的坐标的过程.前两小问就不详说了,直接上结论, 抛物线解析式为y = −x 2 + 2x + 3 ;点 P | , | .( 3 15 )\2 4 )第 3 小问为菱形存在性问题, 以D 、E 、F 、 G 四点为顶点的四边形是菱形.四个点中, D , E 是定点,F 是平移后新抛物线对称轴上的动点,由于点F 的横坐标是确定的,只有纵坐标在变化, 我们可以称其为“G 如果只需要点F 的坐标,那么没有必要求解平移后抛物线的解析式.根据平移的性质,将原抛物线 向右平移 1 个单位长度, 那么原抛物线的对称轴也向右平移 1 个单位长度, 因此新抛物线的对称轴 为x = 2 ,几 F (2, m ) .但由于此时E 为量抛物线的交点,因此还是要把平移后的抛物线解析式求出 来,根据“左加右减”,平移后的抛物线解析式为y = − (x −1)2+ 2(x −1) + 3 = −x 2 + 4x ,联立两抛物(|y = −x 2 + 2x + 3 ( 3 15 ) 线〈|ly = −x 2 + 4x ,解得E |\2 , 4 )| .菱形的探究相对是比较简单的,对于这类探究性问题,一般都是先从确定的信息入手.菱形是 以D 、E 、F 、 G 为顶点, 其中DE 为定线段,那么存在的可能有DE 是一条边,也可能是一条对 对角线.前面提到,等腰三角形和菱形的分析是一致的,这里我们结合等腰三角形的存在性问题一 起分析.由于 G 是“自由点”,可以随机应变,因此讨论以D 、E 、F 为顶点的三角形是等腰三角 形.同样, 由于定线段DE 可能是等腰三角形的一条腰,也可能是底边.当DE 为一条腰时,第一种情形是点D 为顶点,即DE = DF ,也即半动点F 到D 的距离和E 到D 的距离相等,因此点F 在以点D 为圆心, DE 为半径的圆上,作出该圆,如图 1 所示,可知此时圆与新抛物线的对称轴有两个交点F 1 ,F 2 ,结合图象可以判断,此时两个点应该都是满足的.那么 再加上对应的“自由点” G ,就是以DE 为边菱形了.当DE 为一条腰时, 另一种情形是点E 为顶点, 即ED = EF ,也即半动点F 到E 的距离和D 到E 的距离相等,因此点F 在以点E 为圆心, ED 为半径的圆上,作出该圆,如图 2 所示,可知此时 圆与新抛物线的对称轴同样有两个交点F 1 ,F 2 ,结合图象, 此时的F 3 存在和DE 共线的风险,因此后续需要检验一下.根据坐标可以知道,x E =,通常像这类圆心可能为两个点中点的,一般都要留个心眼, 检验一下.此时再加上对应的“自由点” G ,也是以DE 为边菱形.当DE 为底边时,则F 为顶点, 即FD = FE ,即 F 到线段DE 的两端点的距离相等,可知此时F 在线段DE 的垂直平分线上,作出线段DE 的垂直平分线,如图 3 所示,可知此时有一个交点F 5 .加 上对应的“自由点” G ,此时便是以DE 为对角线的菱形.对于等腰三角形和菱形的存在性问题,如上图情形,我们称其为“两圆一线”法.由于这类题一般不需要书写完整过程,因此在解题过程中,把准备工作做好, 即对应的点坐标, 解析式等先求出来, 动点坐标假设好, 再把定线段DE ,半定线段DF 、EF 长度表示出来. 根据上 述分析,结合“两圆一线”分别使得三条线段两两相等建立方程,即DE = DF ,DE = EF ,DF = EF , 求解出动点坐标即可.(实际解题过程中, 一般使用线段平方的形式.此外, 只需关注下方解析中公 式计算部分即可,文字叙述部分可忽略)此题还是比较友善的,只需求出F 坐标.如果需要求解点G 的坐标,则还要加一个步骤.这里 以DEG 1F 1 为例,若要求 G 1 坐标,一般有两种比较常用的思路.一是利用菱形的对边平行且相等,即F 1G 1 可以看成是DE 平移得来的, 那么点D → F 1 的平移变化也即点E → G 1 的平移变化. 二是利用菱形的对角线相互平分,因此EF 1 的中点也即DG 1 的中点,利用中点坐标求解出 G 1 坐标.这两种处理 在平行四边形存在性问题中也是有力手段.(|y = −x 2 + 2x + 3 ( 3 15 ) 149 ( 149 )由题, y = −x 2 + 2x + 3 向右平移 1 个单位得到新抛物线y = − (x −1)2+ 2(x −1) + 3 = −x 2 + 4x ,联立〈|ly = −x 2 + 4x ,解得 E |\2 , 4 )| , 新抛物线的对称轴为x = 2 ,设 F (2, m ) ,由于 D (1, 2) ,则DE 2 =,EF 2 = + m −2= m 2 − m +,DF 2 = 1+ (m − 2)2= m 2 − 4m + 5 ,①当DE 、DF 为一组邻边时,则 DE 2 = DF 2 ,即 = m 2 − 4m + 5 ,37 ( ) ( )②当ED 、EF 为一组邻边时,则 ED 2 = EF 2 ,即 = m 2 − m + ,16 8 16 11 ( 11)③当EF 为对角线时,则FD = FE ,即 m 2 − m + = m 2 − 4m + 5 , 2 16解得m = ,此时 F 的坐标为|2, | ;( ) ( ) ( 149 )( 11) 当F |2, |时, y F + y D = 2y E ,x D + x F = 2x E ,即 E 为D 、F 中点, 不合题意, 舍去; 15 229 \ 2 )综上, F 点的坐标为||\2, 2 + 4 )|| 或||\2, 2 − 4 )|| 或(2, 2) 或|\2, 56 )| . 56 \ 56 )解得m = 2 或m = ,此时F 的坐标为(2, 2) 或|2, | ,2 \ 2 )解得m = 2 土 4 ,此时 F 的坐标为||\2, 2 + 4 )|| 或||\2, 2 − 4 )|| ;53 15 2291 .已知二次函数y = ax2 + bx − 2(a 丰 0)与x 轴交于A ( −, 0) ,B (4, 0) ,与 y 轴交于点C .(1) 求抛物线的解析式;(2) 连接AC ,BC ,点 P 是直线BC 下方抛物线上一点,过 P 作PD ∥AC 交直线BC 于点D ,PE ∥x 轴交直线BC 于点, E ,求△PDE 面积的最大值及此时点, P 的坐标;(3) 在(2)的条件下, 将原抛物线沿x 轴向左平移3个单位得到新抛物线,点 M 是新抛物线对称轴上一点, 点 N 是平面直角坐标系内一点, 当以点M 、 N 、P 、B 为顶点的四边形为菱形 时,请直接写出所有符合条件的N 点的坐标;并任选其中一个N 点,写出求解过程.立〈y= − 2 x 2 + 4x − 2 ,解得D 7 , 11 .1-1如图 1,抛物线y = ax 2 + bx + 4 交x 轴于A (−2, 0) ,B (4, 0) 两点,与y 轴交于点C ,连接 AC , BC .(1) 求抛物线的解析式;(2) P 是拋物线上位于直线BC 上方的一个动点,过点P 作PQ ∥y 轴交BC 于点Q , 过点P 作PE ⊥ BC 于点E ,过点 E 作EF ⊥ y 轴于点F ,求出2PQ + EF 的最大值及此时点P 的坐标;(3)如图 2,将抛物线y = ax 2 + bx + 4 沿着射线CB 的方向平移,使得新抛物线y ,过点(3,1) , 点D 为原抛物线y 与新抛物线y ,的交点,若点 G 为原抛物线的对称轴上一动点,点H 为新抛物线y , 上一动点,直接写出所有使得以 A ,D , G ,H 为顶点的四边形为平行四边形的点H 的坐标,并 把求其中一个点H 的坐标的过程写出来.抛物线解析式为y = − x 2 + x + 4 ;点 P | , | .相当于是沿着射线BC 方向平移,故舍去, 因此可得平移后抛物线的解析式为y = − x 2 + 4x − .联2 2 ( 1 13 y = − x 2 + x +4 \2 8 )这类平行四边的探究也并不难, 同样先从确定的信息入手.平行四边形是以A ,D ,G ,H 为 顶点,其中AD 是定线段, G 是半动点,H 在新的抛物线上.和菱形的讨论一样,我们要考虑AD 是 一条边的情形, 也要考虑AD 是对角线的情形.当 AD 是一条边时, 实际上此时也右两种情形,一是是平行四边形为ADHG ,也即AH ,DG 为 对角线;另一种则是平行四边形为ADGH ,也即 AG ,DH 为对角线.当然,不管是那种情形,由 于 AD 是一条边,根据平行四边形对边平行且相等的性质, GH 这条边可以看作是将AD 平移后得到1 (8 28 )2 \3 9 )第 3 小问中, 抛物线沿着射线CB 方向平移, 由于后续的点在新抛物线上, 因此还是要求出平移 后抛物线的解析式.这类沿着射线平移的,一般采用正交分解的形式平移,由点 C (0, 4) ,B (4, 0) 可 知,沿着射线 CB 平移,即向右平移t 个单位,则向下也平移t 个单位,因此假设平移后新抛物线的 解析式为y = − (x − t )2+ (x − t ) + 4 − t ,因为平移后经过点(3,1) ,代入可解得t = − 1 或t = 3 ,当 t = − 1 , 1 13的,由于半动点 G 在原抛物线对称轴x = 1 上,那么点 G 有可能是点 A 平移后得到的, 此时点H 就 是点D 平移后得到的,如图 1 所示;同理,当点 G 是点D 平移后得到的,那么此时点H 就是点A 平 移后得到的,如图 2 所示.设点 G (1, m ),根据平移的性质,结合点坐标的变化规律,当 A → G 时, 即(−2, 0) —(1, m ) ,则有D|2 , 8 )| —H | 2 , 8 + m )| ,由于点H 在新抛物线上, 且横坐标已知了,代入新抛物线即可 11 1 (13 213 13 13 (13 13 此外, 除了用平移性质得到H 点的坐标外,此时 AH 是一条对角线,也利用对角线相互平分, 则 A 、 H 的 中 点 和 D 、 G 的 中 点 是 同 一 个 , 利 用 中 点 坐 标 则 有 x A + x H = x D + x G ,故 13 13 13 (13 13 x H = x D + x G − x A = 2 ,将x = 2 代入新抛物线解析式,可求得H 点纵坐标y = − 8 ,故H | 2 , − 8 )|.当 AG 是一条对角线时, 则有x A + x G = x D + x H ,故 x H = x A + x G − x D = − ,代入新抛物线解析 277 ( 9 277式,可求得此时H 的纵坐标为 − ,故H |− , − | .8 2 8 ) 当 AD 是一条对角线时,则有x A + x D = x H + x G ,故 x H = x A + x D − x G = ,代入新抛物线解析式, 37 ( 1 37 可求得此时H 的纵坐标为 − ,故 H | , − | .8 2 8 )同样地,在解题过程中, 把准备工作做好,即对应的点坐标,解析式等先求出来,动点坐标假设好, 将点坐标表示列出来(通常都是横坐标),选定一个定点,如这里我们选定 x A ,将其与剩下 三点横坐标x D 、x G 、x H 两两组合,建立中点坐标关系式, 即x A + x D = x H + x G ,x A + x G = x D + x H 以 及x A + x H = x D + x G ,求解出点H 横坐标,再代入解析式中求出点H 纵坐标即可.求得纵坐标 8 + m = − 2 | 2 )| + 4 2 − 2 = − 8 ,此时H | 2 , − 8 )| . ( 7 11 (13 1113 (13 13)由题, 设平移后的抛物线解析式为y = − (x − t )2+ (x − t ) + 4− t ,因为平移后经过点(3,1),代入可解得t = − 1 (舍) 或t = 3 ,2 2联立〈y = − 2 x 2 + 4x − 2 ,解得 D 7 , 11 , y = − x 2 + x + 4 \2 8 )则x A =−2 ,x D = ,x G = 1,设 H 点横坐标为x H ,①当AH 为一条对角线时,x A + x H = x D + x G ,则 x H = ,代入可求得此时H | , − | ; 9 ( 9 277 )1 (1 37 )综上, H 的坐标为| , − |或|− , − |或| , − | .( 1 13 ③当AD 为一条对角线时,x A + x D = x H + x G ,则x H = ,代入可求得此时H | , − | ;(13 13) ( 9 277 ) (1 37 )2 \2 8 )\ 2 8 ) \ 2 8 ) \2 8 )②当AG 为一条对角线时,x A + x G = x D + x H ,则x H = − ,代入可求得此时H |− , − | ;2 \ 2 8 ) 2 \ 2 8 )故平移后抛物线的解析式为y = − x 2 + 4x − ,1 131.如图,在平面直角坐标系中,抛物线y= ax2 + bx+ 3(a 0) 与y轴交于点C,与x轴交于A,B两点(点A在点B的右侧),且点A的坐标为( 3, 0) ,连接BC,过点A作AD∥BC交y轴于点D,OB= 3OA.(1) 求抛物线的解析式;(2) 如图1,点E为射线AD上一点,点P为第二象限内抛物线上一点,求四边形PBEC面积的最大值及此时点P的坐标;(3) 如图2,将原抛物线沿x轴正方向平移得到新抛物线y,y经过点C,平移后点A的对应点为点A,点N为线段AD的中点,点Q为新抛物线y的对称轴上一点,在新抛物线y上存在一点M,使以点M,Q,A,N为顶点的四边形为平行四边形,请直接写出点M的坐标,并选择一个你喜欢的点写出求解过程.2.如图,抛物线y= x2 + bx+ c与x轴相交于点A(−1, 0) 和点B,交y轴于点C,tan 三ACO= .(1) 求抛物线的解析式;(2) 如图1 ,P点为一象限内抛物线上的一个动点,点D是BC中点,连接PD,BD,PB.求△BDP面积的最大值以及此时P点坐标;,M为新抛物线对称轴上(3) 如图2,将抛物线向左平移 1 个单位长度,得到新的抛物线y1一点,N为直线AC上一动点,在(2) 的条件下,是否存在点M,使得以点P、B、M、N为顶点的四边形为平行四边形?若存在,请直接写出点N的坐标;若不存在,请说明理由.| 4 21如图,已知抛物线y = ax 2 + bx − 4 与x 轴交于A ,B 两点, 与y 轴交于点C ,且点A 的坐标 为(−2, 0) ,直线BC 的解析式为y = x − 4 .(1) 求抛物线的解析式;(2)如图 1,过点 A 作 AD ∥BC 交抛物线于点D (异于点 A ), P 是直线BC 下方抛物线上一 点,过点P 作PQ ∥y 轴, 交AD 于点Q ,过点 Q 作QR ⊥ BC 于点R ,连接PR .求△PQR 面积的最 大值及此时点P 的坐标;(3) 如图 2,点 C 关于x 轴的对称点为点C ,将抛物线沿射线 C A 的方向平移2个单位长度得到新的抛物线y ,新抛物线y 与原抛物线交于点M ,原抛物线的对称轴上有一动点 N ,平面直 角坐标系内是否存在一点K ,使得以 D ,M ,N ,K 为顶点的四边形是矩形?若存在,请直接写 出点K 的坐标;若不存在, 请说明理由.抛物线解析式为y = x 2 − x − 4 ;S △PQR 的最大值为 9,点P (4, −6) .第 3 小问中,抛物线沿着射线C A 方向平移, 由于点M 为两抛物线交点, 因此需求出平移后抛 物线的解析式.根据A (−2, 0) ,C (0, 4) ,可知Rt △AOC 中AO : OC : AC = 1: 2 : ,因此将抛物线沿着射线C A 方向平移2个单位长度,则相当于向下平移 4 个单位长度,向左平移 2 个单位长度,因此平移后的抛物线为y = 1 (x + 2)2− 3 (x + 2) − 4 − 4 = 1 x 2 − 1 x −10 ,联立〈y = x 2 − x −10,解4 2 4 2y = x 2 − x − 4( 1得M (6, −4) .又 BC : y = 1 x − 4 ,可知 AD : y = 1 x + 1,联立〈 y = 2 x + 1,解得D (10, 6) .2 2 |y = 1 x 2 − 3x − 4因为以D ,M ,N ,K 为顶点的四边形是矩形,此时定线段是DM ,半动点为N ,自由点为K .和 前面讨论菱形、平行四边形时的流程基本大同小异,定线段DM 可能是矩形的边,也可能是矩形的 对角线,因此要分两种情形讨论.矩形的存在性问题和直角三角形的存在性问题是一致的,如本题 中,探究以D ,M ,N 为顶点的三角形是直角三角形. 同样地,先以直角三角形为例,那么D ,M ,1 3 4 2在实际解题中设 K (x , y ) 即可), 利用中点关系〈 M K D N ,则〈 K,整理得N 均有可能为直角顶点.当M 为直角顶点时,过M 作DM 垂线与对称轴交点即为点N 所在位置,如图 1 所示.对于N 点 坐标的求解,一方面,由于MN ⊥ DM ,则 k MN . k DM = − 1,结合点M 坐标,由此可求得直线MN 解 析式,将其与对称轴方程联立即可求得点N 坐标.另一方面,可以构造如图所示的K 型相似,即构DH MH1 腰直角三角形, 或者四边形中的正方形, 那么可以构造此类的K 型全等求解.在此直角三角形的基础上,加上自由点K ,就变成矩形问题了.对于矩形问题,同样可以求出点N 坐标后,利用平移关系或者对角线的中点关系,求相应的点K 的坐标.当然,如果是探究矩形 的存在性问题,也可以直接利用中点关系求得点K 的坐标.由点N (3, n ),设K (x K , y K ) (熟练后,(x + x = x + x (6 + x = 10 + 3 l y M + y K = y D + y N l−4 + y K = 6 + n 〈,再由对角线相等,即MK = DN ,代入即有1+ (y + 4)2= 49 + (16 − y )2,解得 y =,( 36 )同样适用.当D 为直角顶点时,三角形如图2 所示.同样, 加上自由点K ,就变成矩形问题了. 这里我们5 2 2 ( 44 )l y M + y N = y D + y K |y K = − \ 5 )对于直角三角形或矩形问题, 如上图情形,我们可以称其为“两线一圆”.若只求点N 坐标,一 般利用斜率关系,求出解析式后进一步求解.如果是矩形问题要求自由点的坐标,可以用对角线平 分且相等, 建立方程求解.当然, 先求点N ,利用点N 作为台阶进一步求解也是没问题的, 大家选 用自己顺手的方法即可.造 △MN 1G ∽△DMH ,利用 = ,可求出长度,进而得到点 N 坐标.更特殊地,如果是等以垂线方式求解.由于k DM = 2 ,则 k DN = − 5 ,故此时DN : y = − 5 x + 10 ,令x = 3 ,可解得N |\3, 5 )| , 由中点可知,〈(x M + x N = x D + x K ,可解得〈(|x K = − 16 ,此时 K −1,− 6 .l 5当N 为直角顶点时,则有NM ⊥ ND ,因此点N 在以DM 为直径的圆上.此种情形若只是求点N 坐标,策略比较多, 一方面,可以利用斜率, 由k ND . k NM= − 1求出点N 坐标;另一方面,可以利用线段长度求解,设DM 中点为为R ,则此时圆心为R ,因此NR = RD = DM ,由此也可求得点N 坐 标, 此外, 还可以利用勾股定理ND 2 + NM 2 = DM 2 .当加入自由点K ,变成矩形问题后,除了先求 出点N 坐标, 利用平移或中点求解点K 坐标外,也可以利用前面的对角线平分且相等来求解. 故此时K |7, | .此法借助的是矩形的对角线平分且相等的性质,该处理对于DM 是对角线的情形 \ 5 ) GM N G式和长度关系式子,即〈 M K D N 且MK 2 = DN 2 ,〈 M N D K 且MN 2 = DK 2 以及(x M + x D = x N + x K 4 2 4 2|l 4 2(x M + x K = x D + x N (6 + x = 10 + 3 (x = 7由MK 2 = DN 2 ,代入即有1+ (y + 4)2= 49 + (16 − y )2,解得 y = 36,故此时K 7,36;由MN 2 = DK 2 ,代入即有9 + (y +14)2 = 121+ (y − 6)2,解得 y = − 6 ,故此时K −1,− 6 ;(x M + x D = x N + x K (6 + 10 = 3 + x (x = 13 同样地,在解题过程中, 把准备工作做好,即对应的点坐标安排到位,动点坐标假设好,选定 一个定点, 如这里我们选定M ,将其与剩下三点横坐标D 、 N 、K 两两组合, 建立中点坐标关系 (x + x = x + x (x + x = x + xl y M + y K = y D + y N l y M + y N = y D + y K〈 且MD 2 = NK 2,利用方程组求解出对应的点K 的坐标. l y M + y D = y N + y K附:坐标平面内点A (x 1 , y 1 ) ,B (x 2 , y 2 ) ,其中x 1 丰 x 2 ,则过A 、B 两点的直线的斜率k =由题, 将抛物线沿着射线 C ,A 方向平移2个单位长度, 即将其向下平移 4 个单位长度, 向左平移 2 个单位长度, 因此平移后的抛物线为y =1(x + 2)2 − 3 (x + 2) − 4 − 4 = 1 x 2 − 1 x −10 , 联立〈y = x 2− x −10,解得M (6, −4) ,y = x 2 − x − 4( 1又 BC : y = 1 x − 4 ,可知 AD : y = 1 x + 1,联立〈 y = 2 x + 1,解得D (10, 6) ,2 2 |y = 1 x 2 − 3x − 4由M (6, −4) ,D (10, 6) ,设 N (3, n ) ,K (x , y ) ,①当MK 为一条对角线时,〈,即〈 ,整理得〈 , l y M + y K = y D + y N l −4 + y = 6 + n l n = y −105 \ 5 )②当MN 为一条对角线时,〈(x M + x N = x D + x K,即〈(6 + 3 = 10 + x,整理得〈(x = − 1l y M + y N = y D + y K l −4 + n = 6 + y l n = 10 + y5 \ 5 )③当MD 为一条对角线时,〈 ,即〈 ,整理得〈l y M + y D = y N + y K l−4 + 6 = n + y l n = 2 − y由MD 2 = NK 2 ,代入即有116 = 100 + (2 − 2y )2,解得y =− 1 或y = 3 ,故此时K (13, −1) 或(13,3) ; ( 36 ) ( 6 )综上, 点K 的坐标为|7, |或|−1,− |或(13, −1) 或(13,3) .\ 5 ) \ 5 ) y 1 − y 2. x 1 − x 21.如图1,二次函数y= ax2 + bx+ c(a丰0)与x轴交于点A(−2, 0) 、点B(点A在点B左侧),与y轴交于点C(0,3) ,tan 三CBO= .(1) 求二次函数解析式;(2)如图2,点P是直线BC上方抛物线上一点,PD∥y轴交BC于D,PE∥BC交x轴于点E,求PD+ BE的最大值及此时点P的坐标;(3) 在(2) 的条件下,当PD+ BE取最大值时,连接PC,将△PCD绕原点O顺时针旋转90。

专题24 二次函数中的菱形问题(解析版)

专题24 二次函数中的菱形问题(解析版)

专题24 二次函数中的菱形问题1、如图,已知抛物线y=x2+bx+c与x轴交于点A,B,AB=2,与y轴交于点C,对称轴为直线x=2.(1)求抛物线的函数表达式;(2)根据图像,直接写出不等式x2+bx+c>0的解集:.(3)设D为抛物线上一点,E为对称轴上一点,若以点A,B,D,E为顶点的四边形是菱形,则点D的坐标为:.【答案】(1)y=x2-4x+3;(2)x<1或x>3;(3)(2,-1)【解析】(1)如图,∵AB=2,对称轴为直线x=2.∴点A的坐标是(1,0),点B的坐标是(3,0).把A、B两点的坐标代入得:{1+b+c=09+3b+c=0,解得:{b=−4c=3,∴抛物线的函数表达式为y=x2-4x+3;.(2)由图象得:不等式x2+bx+c>0,即y>0时,x<1或x>3;故答案为:x<1或x>3;(3)(2,-1).y=x2-4x+3=(x-2)2-1,∴顶点坐标为(2,-1),当E、D点在x轴的上方,即DE∥AB,AE=AB=BD=DE=2,此时不合题意,如图,根据“菱形ADBE 的对角线互相垂直平分,抛物线的对称性”得到点D 是抛物线y=x 2-4x+3的顶点坐标,即(2,-1), 故答案是:(2,-1).2、如图,已知抛物线23)0(y a bx a =++≠经过点1,0A 和点()3,0B ,与y 轴交于点C .(1)求此抛物线的解析式;(2)若点P 是直线BC 下方的抛物线上一动点(不点B ,C 重合),过点P 作y 轴的平行线交直线BC 于点D ,设点P 的横坐标为m .①用含m 的代数式表示线段PD 的长;②连接PB ,PC ,求PBC ∆的面积最大时点P 的坐标;(3)设抛物线的对称轴与BC 交于点E ,点M 是抛物线的对称轴上一点,N 为y 轴上一点,是否存在这样的点M 和点N ,使得以点C 、E 、M 、N 为顶点的四边形是菱形?如果存在,请直接写出点M 的坐标;如果不存在,请说明理由.【答案】(1)y =x 2﹣4x +3;(2)①用含m 的代数式表示线段PD 的长为﹣m 2+3m ;②△PBC 的面积最大时点P 的坐标为(32,﹣34);(3)存在这样的点M 和点N ,使得以点C 、E 、M 、N 为顶点的四边形是菱形.点M 的坐标为M 1(2,3),M 2(2,1﹣),M 3(2,). 【解析】(1)∵抛物线y =ax 2+bx+3(a≠0)经过点A (1,0)和点B (3,0),与y 轴交于点C , ∴309330a b a b ++=⎧⎨++=⎩,解得14a b =⎧⎨=-⎩,∴抛物线解析式为y =x 2﹣4x+3; (2)①设P (m ,m 2﹣4m+3),将点B (3,0)、C (0,3)代入得直线BC 解析式为y BC =﹣x+3. ∵过点P 作y 轴的平行线交直线BC 于点D ,∴D(m,﹣m+3),∴PD=(﹣m+3)﹣(m2﹣4m+3)=﹣m2+3m.答:用含m的代数式表示线段PD的长为﹣m2+3m.②S△PBC=S△CPD+S△BPD=12OB•PD=﹣32m2+92m=﹣32(m﹣32)2+278.∴当m=32时,S有最大值.当m=32时,m2﹣4m+3=﹣34.∴P(32,﹣34).答:△PBC的面积最大时点P的坐标为(32,﹣34).(3)存在这样的点M和点N,使得以点C、E、M、N为顶点的四边形是菱形.根据题意,点E(2,1),∴EF=CF=2,∴EC=2,根据菱形的四条边相等,∴,∴M(2,1-)或(2,)当EM=EF=2时,M(2,3)∴点M的坐标为M1(2,3),M2(2,1﹣),M3(2,).3、如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,B点的坐标为(3,0),与y轴交于点C(0,﹣3),点P是直线BC下方抛物线上的任意一点.(1)求这个二次函数y=x2+bx+c的解析式.(2)连接PO,PC,并将△POC沿y轴对折,得到四边形POP′C,如果四边形POP′C为菱形,求点P的坐标.(3)如果点P在运动过程中,能使得以P、C、B为顶点的三角形与△AOC相似,请求出此时点P的坐标.【答案】(1)y=x 2﹣2x ﹣3(2)(2)(2+√102,-32)(3)P 、C 、B 为顶点的三角形与△AOC 相似,此时点P 的坐标(1,﹣4)【解析】(1)将B 、C 点代入函数解析式,得:{9+3b +c =0c =−3 ,解得:{b =−2c =−3 ,这个二次函数y =x 2+bx +c的解析式为y =x 2﹣2x ﹣3;(2)∵四边形POP ′C 为菱形,∴OC 与PP ′互相垂直平分,∴y P =−OC 2=−32,即x 2﹣2x ﹣3=−32,解得:x 1=2+√102,x 2=2−√102(舍),P (2+√102,−32);(3)∵∠PBC <90°,∴分两种情况讨论:①如图1,当∠PCB =90°时,过P 作PH ⊥y 轴于点H ,BC 的解析式为y =x ﹣3,CP 的解析式为y =﹣x ﹣3,设点P 的坐标为(m ,﹣3﹣m ),将点P 代入代入y ═x 2﹣2x ﹣3中,解得:m 1=0(舍),m 2=1,即P (1,﹣4);AO =1,OC =3,CB =√32+32=3√2,CP =√12+(−4+3)2=√2,此时BC CP=CO AO=3,△AOC ∽△PCB ;②如图2,当∠BPC =90°时,作PH ⊥y 轴于H ,作BD ⊥PH 于D . ∵PC ⊥PB ,∴△PHC ∽△BDP ,∴PH HC=BD PD.设点P 的坐标为(m ,m 2﹣2m ﹣3),则PH =m ,HC =-(m 2﹣2m ﹣3)-(-3)=-m 2+2m ,BD =-(m 2﹣2m ﹣3),PD =3-m ,∴m−m 2+2m=−(m 2−2m−3)3−m,∴1m−2=−(m +1),解得:m =1+√52或1−√52(舍去).当m =1+√52时,m 2﹣2m ﹣3=−5+√52.∵△PHC ∽△BDP ,∴PCPB =HC PD =−m 2+2m 3−m =√5−15−√5=√5=√55≠COAO =3,以P 、C 、B 为顶点的三角形与△AOC 不相似.综上所述:P 、C 、B 为顶点的三角形与△AOC 相似,此时点P 的坐标(1,﹣4).4、如图,在平面直角些标系中,二次函数y =ax 2+bxA (﹣1,0),C (2,0),与y 轴交于点B ,其对称轴与x 轴交于点D .(1)求二次函数的表达式及其顶点的坐标; (2)若P 为y 轴上的一个动点,连接PD ,求12PB +PD 的最小值; (3)M (x ,t )为抛物线对称轴上一个动点,若平面内存在点N ,使得以A 、B 、M 、N 为顶点的四边形为菱形,则这样的点N 共有 个. 【答案】(1)2y x x =-1,2;(2(3)5个 【解析】(1)∵二次函数2y ax bx =+A (﹣1,0)C (2,0),∴0420a b a b ⎧-=⎪⎨+-=⎪⎩,解得:2a b ⎧=⎪⎪⎨⎪=⎪⎩∴二次函数的表达式为2y x x =-∵y =2212222x x x ⎫-=--⎪⎝⎭∴抛物线的顶点坐标为(1,2; (2)如图,连接AB ,作DH ⊥AB 于H ,交OB 于P ,此时12PB +PD 最小.理由:∵OA =1,OB ,∴OA tan ABO OB ∠==,∵303tan ︒=, ∴∠ABO =30°, ∴PH =12PB , ∴12PB +PD =PH +PD =DH , ∴此时12PB +PD 最短(垂线段最短);∵抛物线的顶点坐标为(1,2, ∴()13122AD =--=,∵∠ABO =30°, ∴∠HAD =60°,在Rt △ADH 中,∵∠AHD =90°,AD =32,∠HAD =60°,∴sin60°=DH AD =∴DH =4,∴12PB +PD (3)①以A 为圆心AB 为半径画弧,因为AB >AD ,故此时圆弧与对称轴有两个交点,且AM =AB ,即M 点存在两个,所以满足条件的N 点有两个; ②以B 为圆心AB 为半径画弧,因为12AB >,故此时圆弧与对称轴有两个交点,且BM =AB ,即M 点有两个,所以满足条件的N 点有两个;③线段AB 的垂直平分线与对称轴有一个交点,此时AM =BM ,因为M 点有一个,所以满足条件的N 点有一个;则满足条件的N 点共有5个, 故答案为:5.5、如图,在平面直角坐标系中,二次函数y =﹣x 2+bx +c 的图象与x 轴交于A 、B 两点,A 点的坐标为(﹣3,0),B 点在原点的左侧,与y 轴交于点C (0,3),点P 是直线BC 上方的抛物线上一动点 (1)求这个二次函数的表达式;(2)连接PO 、PC ,并把△POC 沿CO 翻折,得到四边形POP ′C (如图1所示),那么是否存在点P ,使四边形POP ′C 为菱形?若存在,请此时点P 的坐标:若不存在,请说明理由; (3)当点P 运动到什么位置时,四边形ABCP 的面积最大,并求出其最大值.【答案】(1)y =﹣x 2﹣2x +3;(2)存在.P 点的坐标为(﹣2,32);(3)P 点的坐标为(﹣32,154),四边形ABPC 的面积的最大值为758. 【方法引导】(1)利用待定系数法直接将B、C两点直接代入y=x2+bx+c求解b,c的值即可得抛物线解析式;(2)利用菱形对角线的性质及折叠的性质可以判断P点的纵坐标为﹣32,令y=﹣32即可得x2﹣2x﹣3=﹣32,解该方程即可确定P点坐标;(3)由于△ABC的面积为定值,当四边形ABCP的面积最大时,△BPC的面积最大;过P作y轴的平行线,交直线BC于Q,交x轴于F,易求得直线AC的解析式,可设出P点的横坐标,然后根据抛物线和直线BC的解析式求出Q、P的纵坐标,即可得到PQ的长,以PQ为底,B点横坐标的绝对值为高即可求得△BPC 的面积,由此可得到关于四边形ABCP的面积与P点横坐标的函数关系式,根据函数的性质即可求出四边形ABCP的最大面积及对应的P点坐标.【解析】(1)∵C点坐标为(0,3),∴y=﹣x2+bx+3,把A(﹣3,0)代入上式得,0=9﹣3b+3,解得,b=﹣2,∴该二次函数解析式为:y=﹣x2﹣2x+3;(2)存在.如图1,设P点的坐标为(x,﹣x2﹣2x+3),PP′交CO于E,当四边形POP'C为菱形时,则有PC=PO,连接PP′,则PE⊥CO于E,∴OE=CE=32,令﹣x2﹣2x+3=32,解得,x1=﹣22,x2=22-(不合题意,舍去).∴P,32).(3)如图2,过点P作y轴的平行线与BC交于点Q,与OA交于点F,设P(x,﹣x2﹣2x+3),设直线AC的解析式为:y=kx+t,则303k tt-+=⎧⎨=⎩,解得:13kt=⎧⎨=⎩,∴直线AC的解析式为y=x+3,则Q点的坐标为(x,x+3),当0=﹣x2﹣2x+3,解得:x1=1,x2=﹣3,∴AO=3,OB=1,则AB=4,S四边形ABCP=S△ABC+S△APQ+S△CPQ=12AB•OC+12QP•OF+12QP•AF=12×4×3+12[(﹣x2﹣2x+3)﹣(x+3)]×3=﹣32(x+32)2+758.当x=﹣32时,四边形ABCP的面积最大,此时P点的坐标为(﹣32,154),四边形ABPC的面积的最大值为758.【思路引导】此题考查了二次函数综合题,需要掌握二次函数解析式的确定、菱形的判定和性质以及图形面积的求法等知识,当所求图形不规则时通常要将其转换为其他规则图形面积的和差关系来求解.6、如图,抛物线与y轴交于A点,过点A的直线与抛物线交于另一点B,过点B作BC ⊥x轴,垂足为点C(3,0).(1)求直线AB的函数关系式;(2)动点P在线段OC上从原点出发以每秒一个单位的速度向C移动,过点P作PN⊥x轴,交直线AB于点M,交抛物线于点N. 设点P移动的时间为t秒,MN的长度为s个单位,求s与t的函数关系式,并写出t的取值范围;(3)设在(2)的条件下(不考虑点P与点O,点C重合的情况),连接CM,BN,当t为何值时,四边形BCMN为平行四边形?问对于所求的t值,平行四边形BCMN是否菱形?请说明理由【答案】(1)112y x=+;(2)251544s t t=-+(0≤t≤3);(3)t=1或2时;四边形BCMN为平行四边形;t=1时,平行四边形BCMN是菱形,t=2时,平行四边形BCMN不是菱形,理由见解析.【解析】解:(1)x=0时,y=1,∴点A的坐标为:(0,1),∵BC⊥x轴,垂足为点C(3,0),∴点B的横坐标为3,当x=3时,y=52,∴点B的坐标为(3,52),设直线AB的函数关系式为y=kx+b,1532bk b=⎧⎪⎨+=⎪⎩,解得,121kb⎧=⎪⎨⎪=⎩,则直线AB的函数关系式112y x=+(2)当x=t 时,y=12t+1, ∴点M 的坐标为(t ,12t+1),当x=t 时,2517144y t t =-++ ∴点N 的坐标为2517(,1)44t t t -++ 2251715151(1)44244s t t t t t =-++-+=-+ (0≤t≤3);(3)若四边形BCMN 为平行四边形,则有MN=BC , ∴25155=442t t -+, 解得t 1=1,t 2=2,∴当t=1或2时,四边形BCMN 为平行四边形, ①当t=1时,MP=32,PC=2, ∴MC=52=MN ,此时四边形BCMN 为菱形, ②当t=2时,MP=2,PC=1,∴,此时四边形BCMN 不是菱形.7、已知,在平面直角坐标系内一直线l 1:y =-x +3分别与x 轴、y 轴交于A 、B 两点,抛物线y =-x 2+bx +c 经过A 、B 两点,y 轴右侧部分抛物线上有一动点C ,过点C 作y 轴的平行线交直线l 1于点D .(1)求抛物线的函数表达式;(2)如图1,C 在第一象限,求以CD 为直径的⊙E 的最大面积,并判断此时⊙E 与抛物线的对称轴是否相切?若不相切,求出使得⊙E 与该抛物线对称轴相切时点C 的横坐标;(3)坐标平面内是否存在点M ,使B 、C 、D 、M 为顶点的四边形为菱形?若存在,直接写出点M 的坐标;不存在,请说明理由.【答案】(1)y =−x 2+2x +3;(2)不相切, C 的横坐标分别为2和5−√172;(3)M (0,1),(2,3)(0,1-3√2),(0,1+3√2). 【解析】解:(1)直线l 1:y =-x +3分别与x 轴、y 轴交于A 、B 两点,可得A 点(3,0),B 点(0,3),将A 、B 两点坐标代入y =-x 2+bx +c ,可得 {0=−9+3b +c 3=c ,可得b=2,c=3∴抛物线的函数表达式y =−x 2+2x +3; (2)①可得抛物线对称轴为:x =−b2a =1,∵ C 在第一象限,以CD 为直径的⊙E 的最大面积,即CD 最长时,圆的面积最大, 设直线CD 的横坐标为t ,0<t <3, ∴D 点坐标(t ,-t+3),C 点坐标(t ,-t 2+2t+3),∴ |CD|=-t 2+2t+3-(-t+3)= -t2+3t (0<t <3),∴当t=−b2a =32时,CD 最长,此时CD 最长为94,此时圆E 的半径为98,此时CD 与对称轴的距离为32-1=12≠98, 故不相切.②当CD 在对称轴右边时,即1<t <3时 |CD|= -t2+3t (1<t <3);圆E 的半径为t -1,可得|CD|=2r ;-t 2+3t=2(t -1),解得:t 1=-1(舍去);t 2=2;当CD 在对称轴左边时,即即0<t <1时, 有-t 2+3t=2(1-t ),解得:t 1=5+√172(舍去),t 2=5−√172;综上所述:t=2或t=5−√172,⊙E 与该抛物线对称轴相切.(3)存在,由菱形性质可得M 点坐标(0,1),(2,3)(0,1-3√2),(0,1+3√2).8、如图,二次函数y =−x 2+3x +m 的图象与x 轴的一个交点为B(4,0),另一个交点为A ,且与y 轴相交于C 点(1)求m 的值及C 点坐标;(2)在直线BC 上方的抛物线上是否存在一点M ,使得它与B ,C 两点构成的三角形面积最大,若存在,求出此时M 点坐标;若不存在,请简要说明理由(3)P 为抛物线上一点,它关于直线BC 的对称点为Q ,当四边形PBQC 为菱形时,求点P 的坐标(直接写出答案);【答案】(1)m =4, C(0,4) (2) 存在, M(2,6)(3)P 点坐标为(1+√5,1+√5)或(1−√5,1−√5)【解析】解:(1) 将点B(4,0)的坐标代入二次函数y =−x 2+3x +m ,即−42+3×4+m =0,解得m =4,故二次函数解析式为y =−x 2+3x +4,令x =0,解得y =4,故C 点坐标为(0,4); (2)存在,理由:∵B(4,0),C(0,4)∴直线BC 的解析式为y =−x +4,当直线BC 向上平移b 单位后和抛物线只有一个公共点时,△MBC 面积最大,∴{y =−x +4+b y =−x 2+3x +4整理得:x 2−4x +b =0 ∴∆=16−4b =0,∴b =4 ∴{x =2y =6 ∴M(2,6)(3)如图2、图3所示,连接PQ交BC于点G。

专题08 二次函数与菱形存在型问题-突破中考数学压轴之学霸秘笈大揭秘(教师版)

专题08 二次函数与菱形存在型问题-突破中考数学压轴之学霸秘笈大揭秘(教师版)

专题08 二次函数与菱形存在性问题【典例分析】例1 如图,在平面直角坐标系中,直线AB 和抛物线交于点A (-4,0),B (0,4),且点B 是抛物线的顶点.(1)求直线AB 和抛物线的解析式.(2)点P 是直线上方抛物线上的一点,求当△PAB 面积最大时点P 的坐标.(3)M 是直线AB 上一动点,在平面直角坐标系内是否存在点N ,使以O 、B 、M 、N 为顶点的四边形是菱形?若存在,请求出点N 的坐标;若不存在,请说明理由. 例2如图,抛物线的图象经过点A (﹣2,0),点B (4,0),点D (2,4),与y 轴交于点C ,作直线BC ,连接AC ,CD . (1)求抛物线的函数表达式;(2)E 是抛物线上的点,求满足∠ECD=∠ACO 的点E 的坐标;(3)点M 在y 轴上且位于点C 上方,点N 在直线BC 上,点P 为第一象限内抛物线上一点,若以点C ,M ,N ,P 为顶点的四边形是菱形,求菱形的边长.例3如图,已知点A (-2,4) 和点B (1,0)都在抛物线2y mx 2mx n =++上.(1)求m、n;(2)向右平移上述抛物线,记平移后点A的对应点为A′,点B的对应点为B′,若四边形A A′B′B为菱形,求平移后抛物线的表达式;(3)记平移后抛物线的对称轴与直线AB′ 的交点为C,试在x轴上找一个点D,使得以点B′、C、D为顶点的三角形与△ABC相似.例4如图,在平面直角坐标系中,已知抛物线与轴交于O点、A点,B为抛物线上一点,C为y轴上一点,连接BC,且BC//OA,已知点O(0,0),A(6,0),B(3,m),AB=.(1)求B点坐标及抛物线的解析式.,(2)M是CB上一点,过点M作y轴的平行线交抛物线于点E,求DE的最大值;(3)坐标平面内是否存在一点F,使得以C、B、D、F为顶点的四边形是菱形?若存在,求出符合条件的点F坐标;若不存在,请说明理由.例5如图,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,其对称轴交抛物线于点D,交x 轴于点E,已知OB=OC=6.(1)求抛物线的解析式及点D的坐标;(2)连接BD,F为抛物线上一动点,当∠FAB=∠EDB时,求点F的坐标;(3)平行于x轴的直线交抛物线于M、N两点,以线段MN为对角线作菱形MPNQ,当点P在x轴上,且PQ=MN时,求菱形对角线MN的长.例6如图(1),已知菱形的边长为,点在轴负半轴上,点在坐标原点,点的坐标为(,),抛物线顶点在边上,并经过边的中点.(1)求这条抛物线的函数解析式;(2)点关于直线的对称点是,求点到点的最短距离;(3)如图(2)将菱形以每秒个单位长度的速度沿轴正方向匀速平移,过点作于点,交抛物线于点,连接、.设菱形平移的时间为秒(),问是否存在这样的,使与相似?若存在,求出的值;若不存在,请说明理由.【变式训练】1.如图,在平面直角坐标系中,点A(,0)是轴上一点,以OA为对角线作菱形OBAC,使得60°,现将抛物线沿直线OC平移到,则当抛物线与菱形的AB边有公共点时,则m的取值范围是()A.B.C.D.2.直线122y x =+与y 轴交于点A ,与直线12y x =-交于点B ,以AB 为边向右作菱形ABCD ,点C 恰与原点O 重合,抛物线()2y x h k =-+的顶点在直线12y x =-上移动,若抛物线与菱形的边AB 、BC 都有公共点,则h 的取值范围是( )A .122h -≤≤B .21h -≤≤C .312h -≤≤D .112h -≤≤ 3.如图1,菱形ABCD 的对角线交于点O ,AC=2BD ,点P 是 AO 上一个动点,过点P 作AC 的垂线交菱形的边于M ,N 两点.设AP =x ,△OMN 的面积为y ,表示y 与x 的函数关系大致如图2所示的抛物线.(1)图2所示抛物线的顶点坐标为( , ) ; (2)菱形ABCD 的周长为 . 4.二次函数223y x =的图象如图所示,自原点开始依次向上作内角为60度、120度的菱形(其中两个顶点在抛物线上另两个顶点在y 轴上,相邻的菱形在y 轴上有一个公共点),则第2017个菱形的周长=_____________.5.如图,在平面直角坐标系中,菱形ABCD 的三个顶点A ,B ,D 均在抛物线y=ax 2﹣4ax+3(a <0)上.若点A 是抛物线的顶点,点B 是抛物线与y 轴的交点,则点D 的坐标为__.6.如图,在平面直角坐标系中,O 是坐标原点,菱形OABC 的顶点A (3,4),C 在x 轴的负半轴,抛物线y=﹣(x ﹣2)2+k 过点A . (1)求k 的值;(2)若把抛物线y=﹣(x ﹣2)2+k 沿x 轴向左平移m 个单位长度,使得平移后的抛物线经过菱形OABC 的顶点C .试判断点B 是否落在平移后的抛物线上,并说明理由.7.如图,已知点A (-2,4) 和点B (1,0)都在抛物线y =mx 2+2mx +n 上.(2)向右平移上述抛物线,记平移后点A 的对应点为A ′,点B 的对应点为B ′,若四边形AA B B ''为菱形,求平移后抛物线的表达式;(3)试求出菱形AA B B ''的对称中心点M 的坐标.8.如图1,抛物线()221y ax a x =+-,其中(0)a >,点A (-2,m )在该抛物线上,过点A 作直线l ∥xB AO11--xy轴,与抛物线交于另一点B,与y轴交于点C.(1)求m的值.(2)当a=2时,求点B的坐标.(3)如图2,以OB为对角线作菱形OPBQ,顶点P在直线l上,顶点Q在x轴上.①若PB=2AP,求a的值.②菱形OPBQ的面积的最小值是.9.如图,抛物线C1:y=﹣49(x+3)2与x,y轴分别相交于点A,B,将抛物线C1沿对称轴向上平移,记平移后的抛物线为C2,抛物线C2的顶点是D,与y轴交于点C,射线DC与x轴相交于点E,(1)求A,B点的坐标;(2)当CE:CD=1:2时,求此时抛物线C2的顶点坐标;(3)若四边形ABCD是菱形.①此时抛物线C2的解析式;②点F在抛物线C2的对称轴上,且点F在第三象限,点M在抛物线C2上,点P是坐标平面内一点,是否存在以A,F,P,M为顶点的四边形与菱形ABCD相似,并且这个菱形以A为顶点的角是钝角,若存在求出点F的坐标,若不存在请说明理由.10.如图,抛物线4212--=x x y 与坐标轴相交于A 、B 、C 三点,P 是线段AB 上一动点(端点除外),过P 作AC PD //,交BC 于点D ,连接CP .(1)直接写出A 、B 、C 的坐标; (2)求抛物线4212--=x x y 的对称轴和顶点坐标; (3)求PCD ∆面积的最大值,并判断当PCD ∆的面积取最大值时,以PA 、PD 为邻边的平行四边形是否为菱形.11.如图,在平面直角坐标系xOy 中,抛物线y=ax 2+bx+c (a >0)与x 轴交于点O 、M .对称轴为直线x=2,以OM 为直径作圆A ,以OM 的长为边长作菱形ABCD ,且点B 、C 在第四象限,点C 在抛物线对称轴上,点D 在y 轴负半轴上;(1)求证:4a+b=0;(2)若圆A 与线段AB 的交点为E ,试判断直线DE 与圆A 的位置关系,并说明你的理由; (3)若抛物线顶点P 在菱形ABCD 的内部且∠OPM 为锐角时,求a 的取值范围.12.如图,在平面直角坐标系xOy 中,已知抛物线y=x 2+bx+c 经过A (0,3),B (1,0)两点,顶点为M . (1)求b 、c 的值;(2)若只沿y 轴上下平移该抛物线后与y 轴的交点为A 1,顶点为M 1,且四边形AMM 1A 1是菱形,写出平移后抛物线的表达式.13.如图,已知抛物线2y x bx c =++与x 轴交于点A ,B ,AB=2,与y 轴交于点C ,对称轴为直线x=2.(1)求抛物线的函数表达式;(2)设P 为对称轴上一动点,求△APC 周长的最小值;(3)设D 为抛物线上一点,E 为对称轴上一点,若以点A ,B ,D ,E 为顶点的四边形是菱形,则点D 的坐标为 . 14.如图,的顶点坐标分别为,,,把沿直线翻折,点的对应点为,抛物线经过点,顶点在直线上.证明四边形是菱形,并求点的坐标;求抛物线的对称轴和函数表达式;在抛物线上是否存在点,使得与的面积相等?若存在,直接写出点的坐标;若不存在,请说明理由.15.如图1,已知菱形ABCD 的边长为23,点A 在x 轴负半轴上,点B 在坐标原点.点D 的坐标为(- 3,3),抛物线y=ax 2+b (a≠0)经过AB 、CD 两边的中点. (1)求这条抛物线的函数解析式;(2)将菱形ABCD 以每秒1个单位长度的速度沿x 轴正方向匀速平移(如图2),过点B 作BE ⊥CD 于点E ,交抛物线于点F ,连接DF 、AF .设菱形ABCD 平移的时间为t 秒(0<t < 3 )①是否存在这样的t ,使△ADF 与△DEF 相似?若存在,求出t 的值;若不存在,请说明理由;②连接FC ,以点F 为旋转中心,将△FEC 按顺时针方向旋转180°,得△FE′C′,当△FE′C′落在x 轴与抛物线在x 轴上方的部分围成的图形中(包括边界)时,求t 的取值范围.(写出答案即可)16.已知抛物线m 的顶点为(1,0),且经过点(0,1). (1)求该抛物线对应的函数的解析式;(2)将该抛物线向下平移m 个单位,设得到的抛物线的顶点为A ,与x 轴的两个交点为B 、C (点B 在点C 的左侧),若△ABC 为等边三角形. ①求m 的值;②设点A 关于x 轴的对称点为点D ,在抛物线上是否存在点P ,使得以点P 、C 、B 、D 为顶点构成的四边形是菱形?若存在,请写出点P 的坐标;若不存在,请说明理由. 17.如图12,已知抛物线2y ax c 过点2,2,4,5,过定点0,2F 的直线:2l y kx 与抛物线交于A ,B 两点,点B 在点A 的右侧,过点B 作x 轴的垂线,垂足为C .(1)求抛物线的解析式;(2)当点B 在抛物线上运动时,判断线段BF 与BC 的数量关系(、、),并证明你的判断;(3)P 为y 轴上一点,以,,,B C F P 为顶点的四边形是菱形,设点0,P m ,求自然数m 的值;(4)若1k ,在直线l 下方的抛物线上是否存在点Q ,使得QBF △的面积最大,若存在,求出点Q 的坐标及QBF △的最大面积,若不存在,请说明理由.18.已知抛物线2y ax bx c =++的顶点为(1,0),且经过点(0,1). (1)求该抛物线对应的函数的解析式;(2)将该抛物线向下平移m(m>0)个单位,设得到的抛物线的顶点为A ,与x 轴的两个交点为B 、C ,若△ABC 为等边三角形. ①求m 的值;②设点A 关于x 轴的对称点为点D ,在抛物线上是否存在点P ,使四边形CBDP 为菱形?若存在,写出点P 的坐标;若不存在,请说明理由.19.如图,已知点A (0,4) 和点B (3,0)都在抛物线上.(1)求、n ;(2)向右平移上述抛物线,记平移后点A 的对应点为D ,点B 的对应点为C ,若四边形A BCD 为菱形,求平移后抛物线的表达式;(3)记平移后抛物线的对称轴与直线AC 的交点为点E ,试在轴上找点F ,使得以点C 、E 、F 为顶点的三角形与△ ABE相似。

二次函数中的菱形、三角形存在性问题 学生版

二次函数中的菱形、三角形存在性问题 学生版

二次函数中的菱形、三角形存在性问题学生版简介这个文档将讨论二次函数中的菱形和三角形的存在性问题。

我们将探讨在何种情况下,二次函数图像可能呈现出菱形或三角形的形状。

菱形存在性问题当二次函数的方程为 $ax^2+bx+c=0$ 时,可以通过求解方程得到二次函数的根。

如果方程有两个不同的实根,我们可以预期函数图像将呈现出一个开口向下的U形。

然而,当方程有两个相同的实根时,即存在两个相同的解 $x_1=x_2$,函数图像将呈现出一个菱形的形状。

菱形形状的二次函数图像的特点是,函数在两个实根处的斜率为0。

这意味着函数图像在这两个点上的变化趋势为平行于x轴。

在这种情况下,函数图像没有顶点,而是一个平缓的平行四边形形状。

三角形存在性问题当二次函数的方程为 $ax^2+bx+c=0$ 时,如果方程有两个不同的虚根,即解为复数,我们可以预期函数图像将呈现出一个开口向上的U形。

然而,当方程有一个实根和一个虚根时,即存在一个复根和一个实根,函数图像将呈现出一个三角形的形状。

三角形形状的二次函数图像的特点是,函数在实根处的斜率不为0。

这意味着函数图像在这个实根点上的变化趋势不平行于x轴。

在这种情况下,函数图像有一个顶点,且图像从这个顶点开始呈现出一个向上开口的三角形形状。

总结在二次函数中,存在着菱形和三角形的图像形状。

当方程有两个相同的实根时,函数图像将呈现出一个菱形的形状;当方程有一个实根和一个虚根时,函数图像将呈现出一个三角形的形状。

这些特殊的图像形状提供了二次函数的一种变化和特性,我们可以通过观察方程的根来探索图像的形状。

希望这份文档能帮助你了解二次函数中的菱形和三角形存在性问题。

如果你有进一步的问题或需要详细的解释,请随时向老师或同学寻求帮助。

2024年中考数学二次函数压轴题专题12菱形的存在性问题(学生版)

2024年中考数学二次函数压轴题专题12菱形的存在性问题(学生版)

专题12菱形的存在性问题_、知识导航作为一种特殊的平行四边形,我们已经知道可以从以下几种方式得到菱形:(1)有一组邻边相等的平行四边形菱形;(2)对角线互相垂直的平行四边形是菱形;(3)四边都相等的四边形是菱形.坐标系中的菱形存在性问题也是依据以上去得到方法.和平行四边形相比,菱形多一个“对角线互相垂直"或“邻边相等”,但这两者其实是等价的,故若四边形ABCQ是菱形,则其4个点坐标需满足:工人++X D<Zi+%=%+为W a-乌尸+(为-%尸=j(Xc-乌尸+(%-无尸考虑到互相垂直的两条直线斜率之积为1在初中并不适合直接用,故取两邻边相等.即才艮据菱形的图形性质,我们可以列出关于点坐标的3个等式,故菱形存在性问题点坐标最多可以有3个未知量,与矩形相同.因此就常规题型而言,菱形存在性至少有2个动点,多则有3个动点,可细分如下两大类题型:(1)2个定点+1个半动点+1个全动点(2)1个定点+3个半动点解决问题的方法也可有如下两种:思路1:先平四,再菱形设点坐标,根据平四存在性要求列出“A+O8+Q”(AC、BQ为对角线),再结合一组邻边相等,得到方程组.思路2:先等腰,再菱形在构成菱形的4个点中任取3个点,必构成等腰三角形,根据等腰存在性方法可先确定第3个点,再确定第4个点.1.看个例子:如图,在坐标系中,A点坐标(1,1),B点坐标为(5,4),点。

在尤轴上,点。

在平面中,求。

点坐标,使得以A、B、C>。

为顶点的四边形是菱形.2BA思路1:先平四,再菱形设。

点坐标为(秫,0),。

点坐标为(p,q).(1)当AB为对角线时,由题意得:(AB和CQ互相平分及AC=BC)l+5=m+p<1+4=0+q,解得: (m-1)2+(0-1)2=(m-5)2+(0-4)239 m=一89 p=-8 g=5(2)当AC对角线时,由题意得:(AC和BD互相平分及BA=BC)1+秫=5+p m=2fm=8l+0=4+g,解得:<Q=-2或<p=4(1-5)2+(1—4)2=(秫—5)2+(0—4)2q=—3q=—3(3)当AD为对角线时,由题意得:1+p=5+m m=1+2^/^m=1-2^6 l+q=4+0,解得:L=5+2#<L=5-2^ (1-5)2+(1—4)2=(1—弑+(1—0)2q=3q—3思路2:先等腰,再菱形先求点G点C满足由A、B、。

部编数学九年级上册专题15二次函数中的矩形、菱形(解析版)含答案

部编数学九年级上册专题15二次函数中的矩形、菱形(解析版)含答案

专题15 二次函数中的矩形、菱形类型一 二次函数中的矩形1.如图,在平面直角坐标系中抛物线L :y =﹣x 2+bx +c 的图象与x 轴的一个交点为A (﹣3,0),顶点B 的横坐标为﹣1(1)求抛物线L 的函数表达式;(2)点P 为坐标轴上一点将抛物线L 绕点P 旋转180后得到抛物线L ′,且A 、B 的对应点分别为C 、D ,当以A 、B 、C 、D 为顶点的四边形是矩形时,请求出符合条件的点P 坐标.【答案】(1)y =﹣x 2﹣2x +3(2)P 点坐标为(2,0)或(0,1)【解析】【分析】(1)把顶点B 的横坐标﹣1代入对称轴方程2b x a=-,可解得b 得值;将b ,A (﹣3,0)代入y =﹣x 2+bx +c 可得c 的值,继而可得到抛物线L 的函数表达式;(2)由抛物线L 与L ′关于坐标轴上一点P 对称,且四边形ABCD 为矩形,可得P 为矩形ABCD 对角线的交点,PA =PC =PB =PD ;因为P 在坐标轴上,所以本题需分两种情况进行分析①当P 在x 轴上时,设点P 坐标为(x ,0)②当P 在y 轴上时,设点P 坐标为(0,y ),然后根据矩形的性质可求解.(1)解:∵顶点B 横坐标为﹣1,∴12(1)b -=-´-解得b =﹣2;将A (﹣3,0)代入,得0=﹣9+6+c ;解得c =3;∴抛物线L 的解析式为y =﹣x 2﹣2x +3.(2)解:由(1)可求出B 的坐标为(﹣1,4);∵抛物线L 与L ′关于坐标轴上一点P 对称,且四边形ABCD 为矩形;∴P 为矩形ABCD 对角线的交点;∴PA =PC =PB =PD ;①当P 在x 轴上时:设点P 坐标为(x ,0);∴PB 2=(x +1)2+42=PA 2=(x +3)2;解得x =2,∴P (2,0).②当P 在y 轴上时:设点P 坐标为(0,y );∴PB 2=(﹣1)2+(4﹣y )2=PA 2=(﹣3)2+y 2;解得y =1;∴P (0,1).即综上所述,P 点坐标为(2,0)或(0,1).【点睛】本题主要考查二次函数的应用,熟练掌握二次函数的性质及矩形的性质是解题的关键.2.如图,在平面直角坐标系中,抛物线212y x bx c =++与坐标轴交于()0,2A -,()4,0B 两点,直线:28BC y x =-+交y 轴于点C .点D 为直线AB 下方抛物线上一动点,过点D 作x 轴的垂线,垂足为G ,DG 分别交直线BC ,AB 于点E ,F .(1)求b 和c 的值;(2)H 是y 轴上一点,当四边形BEHF 是矩形时,求点H 的坐标.(1)∵抛物线y = -x 2 + bx + c 过A (0,-2),B (4, 0)两点,∴2{8+40c b c =-+= ,解得322b c ì=-ïíï=-î,∴213222y x x =--故答案为:b =3-2,c =-2(2)①如图1中,过点H 作HM ⊥EF 于M,∵四边形BEHF是矩形,∴EH//BF,EH= BF,∴∠HEF=∠BFE,∵∠EMH=∠FGB= 90°∴△EMH≌△FGB (AAS),∴MH=GB,EM=FG,∴HM=OG,OB=2,∴OG= GB=12∵A(0,-2),B(4,0),x- 2,∴直线AB的解析式为y= 12a-2),设E(a,-2a+8),F(a,12由MH = BG得到,a-0=4-a,∴a= 2,∴E(2,4),F(2,-1),∴FG= 1,∵EM= FG,∴4-H y= 1,∴yH =3,∴H (0, 3).【点睛】本题属于二次函数综合题,考查了二次函数的性质,一次函数的性质,全等三角形的判定和性质,矩形的判定和性质等知识,解题的关键是学会寻找全等三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.3.如图,抛物线与x 轴交于A 、B 两点(点A 在点B 的左侧),点B 坐标()3,0,抛物线与y 轴交于点()0,3C -,点D 为抛物线顶点,对称轴1x =与x 轴交于点E ,连接BC 、EC .(1)求抛物线的解析式;(2)点Q 是抛物线上一动点,点M 是平面上一点,若以点B 、C 、Q 、M 为顶点的四边形为矩形,直接写出满足条件的点Q 的横坐标.(1)解:由题意得:123930b x a c a b c ì=-=ïï=-íï++=ïî,解得123a b c =ìï=-íï=-î,故抛物线的表达式为223y x x =---①;(2)解:设点Q 的坐标为(),m n ,223n m m =---③,点M 的坐标为(),s t ,①当BC是边时,点C 向右平移3个单位向上平移3个单位得到点B ,同样()Q M 向右平移3个单位向上平移3个单位得到点()M Q ,且()BQ CM BM CQ ==,222233(3)(3)m s n t m n s t +=ìï\+=íï-+=++î④或222233(3)(3)m s n t s t m n -=ìï-=íï-+=++î⑤,联立①④并解得0(m =舍去)或1;联立①⑤并解得3(m =舍去)或2-,故1m =或2-;②当BC 是对角线时,由中点公式和BC QM =得:()()()()222211302211032233()()m s n t m s t n ì+=+ïïï-=+íï+=-+-ïïî⑥,联立①⑥并解得m =综上,点Q 的横坐标为1m =或2-.【点睛】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.解题的关键是要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.4.抛物线223y x x =-++与x 轴交于另一点A ,B 两点.与y 轴交于C ,D 为抛物线的顶点.(1)求A ,B ,C ,D 的坐标;(2)点M 是y 轴上一动点,点Q 为平面内任意一点,当以A ,D ,M ,Q为顶点的四边形是矩形,直接写出点Q 的坐标.(1)令0y =,则2230x x -++=,3x \=或1x =-,()1,0A \-,()3,0B ,令0x =,则3y =,()0,3C \,2223(1)4y x x x =-++=--+Q ,\顶点()1,4D ;(2)(3)设()0,M m ,(),Q x y ,①当AD 、MQ 为矩形的对角线时,114x m y-+=ìí=+î,0x \=,4y m =-,AD MQ =Q ,y m \=-,2y \=或2y =-,()0,2Q \或()0,2Q -;②当AM 、DQ 为矩形的对角线时,10104x m y -+=+ìí+=+î,2x \=-,4y m =-,AM DQ =Q ,2219(4)m y \+=+-,12y \=,12,2Q æö\-ç÷èø;③当AQ 、DM 为矩形的对角线时,1104x y m -+=+ìí=+î,2x \=,4y m =+,AQ DM =Q ,2291(4)y m \+=+-,72y \=,72,2Q æö\ç÷èø;综上所述:点Q 的坐标为()0,2或()0,2-或12,2æö-ç÷èø或72,.2æöç÷èø【点睛】本题是二次函数的综合题,涉及相似三角形的判定与性质、矩形的性质等知识,熟练掌握二次函数的图象及性质,矩形的性质是解题的关键.5.综合与探究如图,抛物线249y x bx c =-++与y 轴交于点()0,8A ,与x 轴交于点()6,0B ,C ,过点A 作AD x ∥轴与抛物线交于另一点D .(1)求抛物线的表达式;(2)点M 是y 轴上的一个点,点N 是平面直角坐标系内一点,是否存在这样的点,M N ,使得以,,,B D M N 为顶点的四边形是矩形?若存在,请直接写出点N 的坐标;若不存在,请说明理由.(1)将()0,8A ,()6,0B 代入抛物线249y x bx c =-++,得43660,98.b c c ì-´++=ïíï=î 解得438b c ì=ïíï=î ∴抛物线的表达式为244893y x x =-++;(2)存在,点N 的坐标为(3,98-或()233,4-.理由如下:如图2,过点B 作x 轴的垂线交AD 的延长线于点E ,则AE EB ^,当8y =时,2448893x x -++=,解得0x =或3.∴点D 的坐标为()3,8.∴3,3AD DE ==.①如图2,当DM 为矩形的边时,过点N 作NK x ^轴,交x 轴于点K .∵90,90,90MAD DEB ADM BDE AMD ADM Ð=Ð=°Ð+Ð=°Ð+Ð=°,∴BDE AMD Ð=Ð.∴ADM EBD:△△∴AM AD ED EB =,即338AM = ∴98AM=同理,可求得EBD KBN :△△.∴ADM KBN:△△∴90,MAD NKB ADM KBN Ð=Ð=°Ð=Ð,又∵MD NB =,∴ADM KBN @△△.∴3AD KB ==.∴633OK =-=. ∴98KN AM == ∴8(3,)9N -;②如图2,当DM ¢为矩形的对角线时,过点N ¢作N K x ¢¢^轴交DA 的延长线于点K ¢同理可得M BO DBE ¢~△△ ∴OM OB ED EB ¢=∴638OM ¢= ∴94OM ¢=. ∵DN BM ¢¢=,∴易得DN K BM O¢¢@¢△△∴94N K M O ¢¢¢==,6K D OB ¢==∴3AK ¢=,点N ¢的纵坐923844OA N K ¢¢=-=-= ∴233,4(N -,③以BD 为对角线这种情况不存在.综上所述,存在点,M N ,使得以,,,B D M N 为顶点的四边形是矩形,点N 的坐标为(3,)98-或(233,4-.【点睛】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.6.如图,在平面直角坐标系中,抛物线22y ax x c =++(0a ≠)与x 轴交于点A ,B ,与y 轴交于点C ,连接BC ,OA =1,对称轴为2x =,点D 为此抛物线的顶点.(1)求抛物线的解析式;(2)点P 在抛物线对称轴上,平面内存在点Q ,使以点B ,C ,P ,Q 为顶点的四边形为矩形,请直接写出点P 的坐标.(1)解:Q 抛物线2()20y ax x c a =++≠的对称轴为222x a=-=,12a \=-,2122y x x c \=-++,1OA =Q ,且点A 在x 轴负半轴上,(1,0)A \-,将点(1,0)A -代入2122y x x c =-++得:1202c --+=,解得52c =,∴抛物线的解析式为:215222y x x =-++;(2)设点P 的坐标为(2,)P m ,由题意,分以下三种情况:①当BC 为矩形BCPQ 的边时,则CP BC ^,设直线CP 的解析式为2y x n =+,将点5(0,2C 代入得:52n =,则直线CP 的解析式为522y x =+,将点(2,)P m 代入得:5132222m =´+=,即13(2,)2P ;②当BC 为矩形BCQP 的边时,则BP BC ^,设直线BP 的解析式为2y x n =+,将点()5,0B 代入得:10n =-,则直线BP 的解析式为210y x =-,将点(2,)P m 代入得:22106m =´-=-,即(2,6)P -;③当BC 为矩形BPCQ 的对角线时,则BP CP ^,222CP BP BC \+=,即22222255(20)((25)(0)(50)(0)22m m -+-+-+-=-+-,解得4m =或32m =-,()24P \,或3(2,)2P -;综上分析可知,点P 的坐标为(2,132)或(2,6)或(2,4)或(2,32-).【点睛】本题考查了二次函数的几何应用、待定系数法求函数解析式、矩形的性质等知识点,较难的是题(4),分三种情况讨论是解题关键.类型二 二次函数中的菱形7.如图,二次函数2y ax 2x c =++(0a ≠)的图象经过点()0,3C ,与x 轴分别交于点A ,点()3,0B .(1)求该二次函数的解析式及其图象的顶点坐标;(2)点P 是直线BC 上方的抛物线上任意一点,点P 关于y 轴的对称点记作点P ¢,当四边形POP C ¢为菱形时,求点P 的坐标;(1)解:Q 二次函数2y ax 2x c =++(0a ≠)的图象经过点()0,3C ,与x 轴点()3,0B .3960c a c =ì\í++=î,解得:13a c =-ìí=î 所以抛物线的解析式为22 3.y x x =-++(2)解:如图,四边形POP C ¢为菱形,,,,CO PP CK OK PK P K \^=¢=¢()0,3,C Q3,2OK CK \==3,2P P y y ¢\== 2323,2x x \-++=解得:x = Q 点P BC0,x \> 即x =3.2P ö\÷÷ø8.如图,已知直线y kx b =+与抛物线212y x mx n =-++交于点P (a ,4),与x 轴交于点A ,与y 轴交于点 C ,PB ⊥x 轴于点B ,且AC =BC ,若抛物线的对称轴为112x =,且S △PBC =8.(1)求直线和抛物线的函数解析式;(2)物线上是否存在点D ,使以B 、C 、P 、D 为顶点的四边形是为菱形?如果存在,求出点D 的坐标;如果不存在,请说明理由【答案】(1)21111022y x x =-+-(2)存在,点D 的坐标为(8,2)【解析】【分析】(1)利用待定系数法,构建方程组即可解决问题;(2)首先证明CB =CP ,作CD ⊥PB ,则CD 平分PB ,当PB 平分CD 时,四边形BCPD 为菱形,此时点D 的坐标为(8,2),只要证明点D 在抛物线上即可;(1)解:∵PB ⊥x ,P (a ,4),S △PBC =8,∴ 182PB OB ´´=,PB =4,∴1482OB ´´=,∴OB =4,∴点P 的坐标为(4,4),∵AC =BC ,∴ △ABC 是等腰三角形∵ CO ⊥AB ,∴OA =OB =4,∴ 点A 的坐标是(﹣4,0),把点A 、P 的坐标代入y =kx +b 得:4440k b k b +=ìí-+=î,解得: 122k b ì=ïíï=î ,∴直线的解析式为122y x =+ ,∵212y x mx n =-++ 的对称轴为112x =,且经过点P (4,4),∴ 11122()2116442m m n ì-=ï´-ïíï-´++=ïî解得:11210m n ì=ïíï=-î∴抛物线的解析式为21111022y x x =-+-;(2)解:∵AC =BC ,∴∠CAB =∠CBA ,∵∠CAB +∠APB =∠CBA +∠CBP =90°,∴∠APB =∠CBP ,∴CB =CP ,作CD ⊥PB ,则CD 平分PB ,当PB 平分CD 时,四边形BCPD 为菱形,此时点D 的坐标为(8,2),把x =8代入21111022y x x =-+-,得21118810222y =-´+´-=,∴点D在抛物线上,∴在抛物线上存在点D,使四边形BCPD为菱形,此时点D的坐标为(8,2).【点睛】本题考查二次函数综合题、一次函数的应用、菱形的判定和性质等知识,解题的关键是熟练掌握待定系数法解决问题,学会构建方程组解决问题,属于中考压轴题.9.如图,直线y=﹣x+n与x轴交于点A(3,0),与y轴交于点B,抛物线y=﹣x2+bx+c经过A,B.(1)求抛物线解析式;(2)若点H是抛物线的顶点,在x轴上有一点M,平面内是否存在点N,使得以A、H、M、N为顶点的四边形是菱形?若存在,直接写出点N的坐标;若不存在,说明理由(1)解:(1)∵直线y=﹣x+n与x轴交于点A(3,0),∴0=﹣3+n,∴n=3,∴直线解析式为:y=﹣x+3,当x=0时,y=3,∴点B(0,3),∵抛物线y=﹣x2+bx+c经过点A,B,∴3093cb c=ìí=-++î,∴23bc=ìí=î,∴抛物线的解析式为:y=﹣x2+2x+3;(2)解:把y =﹣x 2+2x +3化成顶点式为y =﹣(x -1)2+4;所以,顶点H 坐标为(1,4),∵A (3,0),∴AH ==①当四边形ANMH 为菱形时,AM 为对角线,如图,点M 与点C 重合,点N 与点H 关于x 轴对称,∴N 点坐标为(1,-4);②当四边形AMNH 为菱形时,如图,∴HN ∥x 轴,HN =AH =∴N 点坐标为(1-4)或(1+4);③当四边形AMHN 为菱形时,如图,设M 点坐标为(m ,0),∵AM =MH ,∴222(3)4(1)m m -=+-,解得,m =-2,MA =HN =5,∴N 点坐标为(6,4);综上所述:点N 的坐标分别为:(6,4)或(1-4)或(1+4)或(1,-4).【点睛】本题是二次函数综合题,考查了二次函数的性质,待定系数法求解析式,相似三角形的判定和性质,勾股定理等知识,灵活运用这些性质解决问题是本题的关键.10.如图,一次函数3y x =-+的图象与x 轴和y 轴分别交于点B 和点C ,二次函数2y x bx c =-++的图象经过B ,C 两点,并与x 轴交于点A .点(),0M m 是线段OB 上一个动点(不与点O 、B 重合),过点M 作x 轴的垂线,分别与二次函数图象和直线BC 相交于点D 和点E ,连接CD .(1)求这个二次函数的解析式.(2)求DE 、CE 的值(用含m 的代数式表示).(3)点F 是平面内一点,是否存在以C ,D ,E ,F 为顶点的四边形为菱形?若存在,请直接写出点M 的坐标;若不存在,请说明理由.(1)对于一次函数3y x =-+,令0y =,则3x =;令0x =,则3y =,∴B (3,0),C (0,3).∵二次函数2y x bx c =-++的图象经过B ,C 两点,∴20333b c c ì=-++í=î,解得:23b c =ìí=î,∴该二次函数解析式为2y x 2x 3=-++;(2)根据题意可知D E C x x x m ===,∵点()0M m ,是线段OB 上一个动点(不与点O 、B 重合,∴03m <<.∵点D 在二次函数图象上,点E 在一次函数图象上,∴223D m m y -++=,3E y m =-+,∴22323(3)D E m DE y y m m m m -++-+=-=-=-,CE ===;(3)由(2)可知23DE m m =-,CE =,∴222(3)DE m m =-,222CE m =.又可求出222222222()()(3)()232D C D C C m m D x x y m m m y m -++-=-+-=+-=+.∵以C ,D ,E ,F 为顶点的四边形为菱形,故可分类讨论①当CD =CE 时,即22CD CE =,∴22222()2m m m m =-+,解得:1213m m ==,(舍),30m =(舍),∴此时M (1,0);②当CD =DE 时,即22CD DE =,∴22222()(32)m m m m m +=--,解得:1220m m ==,(舍),∴此时M (2,0);③当CE =DE 时,即22CE DE =,∴2222(3)m m m =-,解得:1233m m ==,30m =(舍),∴此时M (3,0).综上可知存在以C ,D ,E ,F 为顶点的四边形为菱形,点M 的坐标为(1,0)或(2,0)或(3,0).【点睛】本题为二次函数综合题.考查利用待定系数法求函数解析式,一次函数的图象和性质,二次函数的图象和性质,相似三角形的判定,菱形的性质等知识.利用分类讨论和数形结合的思想是解题关键.11.如图,抛物线22y ax bx =++与x 轴交于A ,B 两点,且2OA OB =,与y 轴交于点C ,连接BC ,抛物线对称轴为直线12x =,D 为第一象限内抛物线上一动点,过点D 作DE OA ^于点E ,与AC 交于点F ,设点D 的横坐标为m .(1)求抛物线的表达式;(2)点P 是抛物线对称轴上的一点,点G 是坐标平面内的一点,是否存在点P ,使得以点P ,B ,C ,G 为顶点的四边形是菱形,若存在,请直接写出点P 的坐标;若不存在,请说明理由.(1)设OB t =,则2OA t =,则点A 、B 的坐标分别为(20)t ,、(0)t -,,则11(2)22x t t ==-,解得:1t =,故点A 、B 的坐标分别为(20),、(10)-,,则抛物线的表达式为:2(2)(1)2y a x x ax bx =-+=++,解得:1a =-,故抛物线的表达式为:22y x x =-++;(2)如图,共有五个满足的P 点,BC ===由菱形的性质可知,当1BC PC =时,1122P æççè,即1122P æççè,当2BC BP =时,212P æççè,即212P æççè当33P B PC =时,设P 3到x 轴的距离为nn=12即31122P æöç÷èø,当4BC CP =时,4122P æççè即4122P æççè,-当5BC BP =时,512P æççè,即512P æççè-P 点坐标:11()22,或1(2或1(2或1(22或1(22,【点睛】本题主要考查了二次函数、一次函数、菱形的性质,掌握相关知识、正确求出二次函数表达式并灵活应用是解题的关键.12.综合与探究如图,抛物线()230y ax bx a =++≠与x 轴交于点A (-1,0),点B (3,0),与y 轴交于点C ,对称轴与x 轴交于点D ,点P 是直线BC 上方抛物线上一点.(1)求抛物线的解析式;(2)若点M 为直线BC 上一点,N 为平面内一点,是否存在这样的点M 和点N 使得以C 、D 、M 、N 为顶点的四边形是菱形?若存在,直接写出点M 坐标;若不存在,说明理由.(1)解:∵抛物线()230y ax bx a =++≠与x 轴交于点A (-1,0),点B (3,0),∴309330a b a b -+=ìí++=î,解得12a b =-ìí=î ,∴抛物线的解析式为2y x 2x 3=-++;(2)解:存在.理由如下:∵点M 在直线BC 上,直线BC 的解析式为3y x =-+,∴设M (x ,-x +3),分三种情况:第一种情况,当CD 是菱形对角线时,则有菱形ANDM ,如图,∵菱形ADMN ,∴CM =DM ,∵C(0,3),D(1,0),∴x2+(-x+3-3)2=(x-1)2+(-x+3)2,解得:x=54,当x=54时,则y=-x+3=74,∴M(54,74);第二种情况,当CM是菱形对角线时,则有菱形CDMN,如图,∵C(0,3),D(1,0),∴CD=∵菱形ADMN,∴DM=CD,∴(x-1)2+(-x+3)2=10,解得x1=4,x2=0(舍去),当x=4时,y=-x+3=-1,∴M(4,-1);第三种情况,当DM是菱形对角线时,则有菱形CDNM,如图,∵菱形CDMN,∴CM=CD,∴x2+(-x+3-3)2=10,解得:x1x2∴y1y2∴M1M2综上,以C、D、M、N为顶点的四边形是菱形时,点M的坐标为(54,74)或(4,-1)或或.【点睛】本题考查二次函数与特殊三角形、特殊四边形的综合、一次函数的综合,涉及用待定系数法求函数解析式,最短距离问题,函数图象和性质,菱形的性质等知识,解题的关键是综合运用以上知识,综合性较强,属中考试压轴题.13.如图,在平面直角坐标系中,四边形ABCD为正方形,点A,B在x轴上,抛物线2y x bx c=++经过点B,()4,5D-两点,且与直线DC交于一点E.(1)求抛物线的解析式;(2)若点F 为抛物线对称轴上一点,点Q 为平面直角坐标系中的一点,是否存在以点Q ,F ,E ,B 为顶点的四边形是以BE 为边的菱形.若存在,请求出点F 的坐标;若不存在,请说明理由;(1)解:由点D 的纵坐标知,正方形ABCD 的边长为5,OA =4,∴541OB AB AO =-=-=,故点B 的坐标为()1,0,把B 、D 两点代入抛物线的解析式得则101645b c b c ++=ìí-+=î,解得23b c =ìí=-î,故抛物线的表达式为223y x x =+-;(2)解:由抛物线的表达式知,其对称轴为直线2121x =-=-´,故设点F 的坐标为()1,m -,由点B 、E 的坐标得,()()22222215026BE CE BC =+=-+-=,∵以点Q ,F ,E ,B 为顶点的四边形是以BE 为边的菱形,当BE BF =时,()221126m éù--+=ëû解得1m =2m =如图2所示,当EB EF =时,则()()2226215m =++-,解得,35m =45m =如图3所示,故点F的坐标为(1,5-或(1,5-或(-或(1,-.【点睛】本题主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.。

二次函数求菱形巧妙方法

二次函数求菱形巧妙方法

二次函数求菱形巧妙方法1.引言1.1 概述二次函数是数学中常见的一种函数形式,也是高中阶段数学课程中的重要内容之一。

在学习二次函数的过程中,求解二次函数的图像和特殊点一直是学生们比较关注的问题之一。

本文旨在介绍一种巧妙的方法,通过二次函数求解菱形的问题,帮助学生们更好地理解和应用二次函数。

在我们日常生活中,菱形是一个常见的几何形状,例如电视机屏幕、球场、棋盘等。

而在学习数学时,菱形也是几何形状的一种,具有一些独特的性质,如对角线相等、相邻角相等等。

然而,对于学生们来说,如何通过二次函数来求解菱形的问题可能是一个难题。

传统的解决方法可能较为复杂,需要使用一系列的几何知识和数学推导,容易使学生们感到困惑和疲惫。

因此,本文将介绍一种巧妙的方法,通过二次函数的特性来求解菱形,使问题更加简化和直观。

通过本文的学习,读者将了解二次函数的基本概念和性质,了解菱形的特性,掌握利用二次函数求解菱形的方法。

具体来说,我们将在正文部分分两个要点进行论述。

第一个要点将详细介绍二次函数的基本知识和性质,包括二次函数的标准形、顶点形式和因式分解形式等,以及二次函数图像的特点和性质。

第二个要点将介绍利用二次函数求解菱形的巧妙方法,通过分析二次函数图像的特点,结合菱形的特性,推导出求解菱形的具体步骤和公式。

同时,我们还将通过实例和图示来说明具体应用的过程,帮助读者更好地理解和掌握这种方法。

最后,在结论部分,我们将对本文进行总结,简要概括本文的要点和内容,并展望这种巧妙方法在未来数学教育中的应用前景。

综上所述,本文的目的是通过介绍一种巧妙的方法,帮助学生们更好地理解和应用二次函数,通过二次函数求解菱形的问题。

通过本文的学习,读者将能够掌握一种简单直观的方法,提高二次函数的理解和应用能力,为未来数学学习打下坚实的基础。

1.2 文章结构文章结构部分的内容包括了文章的组织、布局和章节划分等方面。

通过合理的文章结构可以使读者对整篇文章的内容脉络有一个清晰的把握,有助于读者更好地理解和消化文章的主要内容。

中考二次函数分类讨论存在性问题---菱形

中考二次函数分类讨论存在性问题---菱形

1.如图,已知抛物线y=x2+bx+c与x轴交于点A,B,AB=2,与y轴交于点C,对称轴为直线x=2.(1)求抛物线的函数表达式;(2)根据图象,直接写出不等式x2+bx+c>0的解集:x<1或x>3(3)设D为抛物线上一点,E为对称轴上一点,若以点A,B,D,E为顶点的四边形是菱形,则点D的坐标为:(2,﹣1)【分析】(1)根据抛物线对称轴的定义易求A(1,0),B(3,0).代入抛物线的解析式列方程组,解出即可求b、c的值;(2)由图象得:即y>0时,x<1或x>3;(3)如图,点D是抛物线的顶点,所以根据抛物线解析式利用顶点坐标公式即可求得点D的坐标.【解答】解:(1)如图,∵AB=2,对称轴为直线x=2.∴点A的坐标是(1,0),点B的坐标是(3,0).把A、B两点的坐标代入得:,解得:,∴抛物线的函数表达式为y=x2﹣4x+3;(2)由图象得:不等式x2+bx+c>0,即y>0时,x<1或x>3;故答案为:x<1或x>3;(3)y=x2﹣4x+3=(x﹣2)2﹣1,∴顶点坐标为(2,﹣1),当E、D点在x轴的上方,即DE∥AB,AE=AB=BD=DE=2,此时不合题意,如图,根据“菱形ADBE的对角线互相垂直平分,抛物线的对称性”得到点D 是抛物线y=x2﹣4x+3的顶点坐标,即(2,﹣1),故答案是:(2,﹣1).【点评】本题考查了二次函数综合题.解题过程中用到的知识点有:待定系数法求二次函数的解析式,菱形的性质.解(1)题时,把点A、B的坐标代入抛物线解析式,列出关于系数b、c的方程组,通过解方程组来求它们的值,解(2)时运用数形结合的思想是关键,解(3)时,正确画图是关键.2.如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c与x轴交于点A,B,与y轴交于点C,直线BC的解析式为y=﹣x+6.(1)求抛物线的解析式;(2)点M为线段BC上方抛物线上的任意一点,连接MB,MC,点N为抛物线对称轴上任意一点,当M到直线BC的距离最大时,求点M的坐标及MN+NB 的最小值;(3)在(2)中,点M到直线BC的距离最大时,连接OM交BC于点E,将原抛物线沿射线OM平移,平移后的抛物线记为y′,当y′经过点M时,它的对称轴与x轴的交点记为H.将△BOE绕点B逆时针旋转60°至△BO1E1,再将△BO1E1沿着直线O1H平移,得到△B1O2E2,在平面内是否存在点F,使以点C,H,B1,F为顶点的四边形是以B1H为边的菱形.若存在,直接写出点B1的横坐标;若不存在,请说明理由.【分析】(1)直线BC的解析式为y=﹣x+6,则B(6,0)、C(0,6),把B、C坐标代入二次函数表达式,解得:y=﹣x2+2x+6;(2)设M横坐标为t,则M到直线BC的距离为d==(﹣t2+3t);点B关于对称轴的对称点为A,则AM为MN+NB的最小值,即可求解;(3)OM所在直线方程为:y=x,当抛物线沿OM直线平移时,设顶点向右平移2m,则向上平移了5m,新顶点坐标为(2+2m,8+5m),则y′=﹣(x﹣2﹣2m)2+(8+5m),把点M(3,)代入上式,解得:m=,则H (9,0).①假设:平行四边形处于CF′HB′1位置时,该四边形为菱形,则B′1的y坐标为6,则其x坐标为9+2,而B′1C=9+2,B′1H=4,即:B′1C≠B′1H,CF′HB′1不是菱形;②假设:平行四边形处于CHB1F位置时,该四边形为菱形,则B1的横坐标为2OH=18.【解答】解:(1)直线BC的解析式为y=﹣x+6,则B(6,0)、C(0,6),把点B、C坐标代入二次函数表达式,解得:y=﹣x2+2x+6,此时,顶点坐标为(2,8),A(﹣2,0);(2)设M横坐标为t,则M到直线BC的距离为d==(﹣t2+3t),∴当t=3时,d最大,则M(3,),点B关于对称轴的对称点为A,则AM为MN+NB的最小值,AM==;∴点M的坐标及MN+NB的最小值分别为:(3,),;(3)OM所在直线方程为:y=x,当抛物线沿OM直线平移时,设顶点向右平移2m,则向上平移了5m,新顶点坐标为(2+2m,8+5m),则y′=﹣(x﹣2﹣2m)2+(8+5m),把点M(3,)代入上式,解得:m=,(m=0舍去),则H(9,0),△BOE绕点B逆时针旋转60°至△BO1E1,此时,直线BO1的k值为,再将△BO1E1沿着直线O1H平移,得到△B1O2E2,直线B1H的k也为,则B1H所在的直线方程为:y=x﹣9,①假设:平行四边形处于CF′HB′1位置时,该四边形为菱形,则B′1的y坐标为6,则其x坐标为9+2,而B′1C=9+2,B′1H=4,即:B′1C≠B′1H,CF′HB′1不是菱形;②假设:平行四边形处于CHB1F位置时,该四边形为菱形,则B1的横坐标为2OH=18.故:存在,此时,点B1的横坐标为18.【点评】本题考查学生将二次函数的图象与解析式相结合处理问题、解决问题的能力.3.如图,顶点为D的抛物线y=﹣x2+x+4与y轴交于点A,与x轴交于两点B、C(点B在点C的左边),点A与点E关于抛物线的对称轴对称,点B、E在直线y=kx+b(k,b为常数)上.(1)求k,b的值;(2)点P为直线AE上方抛物线上的任意一点,过点P作AE的垂线交AE于点F,点G为y轴上任意一点,当△PBE的面积最大时,求PF+FG+OG的最小值;(3)在(2)中,当PF+FG+OG取得最小值时,将△AFG绕点A按顺时方向旋转30°后得到△AF1G1,过点G1作AE的垂线与AE交于点M.点D向上平移个单位长度后能与点N重合,点Q为直线DN上任意一点,在平面直角坐标系中是否存在一点S,使以S、Q、M、N为顶点且MN为边的四边形为菱形?若存在,直接写出点S的坐标;若不存在,请说明理由.【分析】(1)由题意得:A(0,4)、B(﹣2,0)、D(3,)、C(8,0)、E(6,4),则:过BE的直线为:y=x+1;(2)设:P横坐标为m,则P(m,﹣m2++4),H(m,m+1),则:PH=﹣m2++4﹣(m+1)=﹣(x﹣2)2+4,当x=2时,PH取得最大值,此时△PEB的面积也取得最大值;构造与y轴夹角为45度的直线OR,如图所示,过点G作OR的垂线交OR于点R,则:RG=,则:PF+FG+OG=PF+FG+GR,当F、G、R三点共线时,FG+GR有最小值,即可求解;(3)存在.当四边形为菱形,分在MNQ1S1的位置时、在MNQ2S2的位置时、在MNQ3S3的位置时三种情况分别求解.【解答】解:(1)由题意得:A(0,4)、B(﹣2,0)、D(3,)、C(8,0)、E(6,4),则:过BE的直线为:y=x+1;(2)延长PF交BE于点H,设:P横坐标为m,则P(m,﹣m2++4),H(m,m+1),则:PH=﹣m2++4﹣(m+1)=﹣(x﹣2)2+4,当x=2时,PH取得最大值,此时△PEB的面积也取得最大值,此时,P(2,6)、F(2,4),PF=2,构造与y轴夹角为45度的直线OR,如图所示,过点G作OR的垂线交OR于点R,则:RG=,∴PF+FG+OG=PF+FG+GR,当F、G、R三点共线时,FG+GR有最小值,在Rt△AGF中,AF=AG=2,则:GF=2,在Rt△ROG中,RO=RG,OG=2,则:RG=,FG+GR=2+=3,故:PF+FG+OG的最小值2+3;(3)存在.如图所示:△AFG绕点A按顺时方向旋转30°后得到△AF1G1,在Rt△G1AM中,AG1=2,∠AG1M=30°,则:AM=1,∴M(﹣1,4),点D向上平移个单位长度后能与点N重合,则:N(3,7),则:MN==5,当四边形为菱形,在MNQ1S1的位置时,MS1=MN=5,则点S1(﹣1,﹣1),当四边形为菱形,在MNQ2S2的位置时,MS2=MN=5,则点S2(﹣1,9),当四边形为菱形,在MNQ3S3的位置时,点S3与点M关于对称轴对称,则点S3(7,4),故:所求点S的坐标为:(﹣1,﹣1),(﹣1,9),(7,4).【点评】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来求解.4.如图,Rt△ABO的两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,O为坐标原点,A、B两点的坐标分别为(﹣3,0)、(0,4),抛物线y=x2+bx+c经过B点,且顶点在直线x=上.(1)求抛物线对应的函数关系式;(2)若△DCE是由△ABO沿x轴向右平移得到的,当四边形ABCD是菱形时,试判断点C和点D是否在该抛物线上,并说明理由.(3)在(2)的条件下,若M点是CD所在直线下方该抛物线上的一个动点,过点M作MN平行于y轴交CD于点N.设点M的横坐标为t,MN的长度为s,求s与t之间的函数关系式,写出自变量t的取值范围,并求s取大值时,点M的坐标.【分析】(1)已知抛物线上A、B点的坐标以及抛物线的对称轴方程,可用待定系数法求出抛物线的解析式;(2)首先求出AB的长,将A、B的坐标向右平移AB个单位,即可得出C、D 的坐标,再代入抛物线的解析式中进行验证即可;(3)根据C、D的坐标,易求得直线CD的解析式;那么线段MN的长实际是直线CD与抛物线的函数值的差,可将x=t代入两个函数的解析式中,得出的两函数值的差即为s的表达式,由此可求出s、t的函数关系式,根据所得函数的性质即可求出m取最大值时,点M的坐标.【解答】解:(1)∵y=x2+bx+c的顶点在直线x=上,∴可设所求抛物线对应的函数关系式为y=(x﹣)2+m,∵点B(0,4)在此抛物线上,∴4=(0﹣)2+m,∴m=﹣,∴所求函数关系式为:y=(x﹣)2﹣=x2﹣x+4;(2)在Rt△ABO中,OA=3,OB=4,∴AB==5.∵四边形ABCD是菱形,∴BC=CD=DA=AB=5,∵A、B两点的坐标分别为(﹣3,0))、(0,4),∴C、D两点的坐标分别是(5,4)、(2,0);当x=5时,y=×52﹣×5+4=4,当x=2时,y=×22﹣×2+4=0,∴点C和点D在所求抛物线上;(3)设直线CD对应的函数关系式为y=kx+n,则,解得:;∴y=x﹣.∵MN∥y轴,M点的横坐标为t,∴N点的横坐标也为t;则y M=t2﹣t+4,y N=t﹣,∴s=y N﹣y M=(t﹣)﹣(t2﹣t+4)=﹣(t﹣)2+,∵﹣<0,=,此时y M=×()2﹣×+4=.∴当t=时,s最大此时点M的坐标为(,).【点评】此题是二次函数综合题,其中涉及到待定系数法求一次函数、二次函数的解析式,函数图象上点的坐标特征,菱形的性质,图象的平移变换,二次函数最值的求法等知识,难度适中.应用方程思想与数形结合是解题的关键.5.如图,抛物线y=ax2+x+c与x轴交于A,B两点,A点坐标为(﹣3,0),与y轴交于点C,点C坐标为(0.﹣6),连接BC,点C关于x轴的对称点D,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线l 交抛物线于点Q,交直线BD于点M.(1)求二次函数解析式;(2)点P在x轴上运动,若﹣6≤m≤2时,求线段MQ长度的最大值.(3)点P在x轴上运动时,N为平面内一点,使得点B、C、M、N为顶点的四边形为菱形?如果存在,请直接写出点N坐标;不存在,说明理由.【分析】(1)把A点坐标为(﹣3,0)、点C坐标为(0,﹣6)代入二次函数表达式,解得:a=1,c=﹣6,故:二次函数解析式为y=x2+x﹣6;(2)点C关于x轴的对称点D(0,6),MQ=y M﹣y Q=﹣3m+6﹣(m2+m﹣6)=﹣(m+2)2+16,即可求解;(3)①当BC边为菱形的边时,N点应该在x轴,关于B点对称,即点N坐标为(﹣2,0);②当BC边为菱形的对角线时,作BC的垂直平分线MH,直线BD与直线MH交点即为M坐标为,即可求解.【解答】解:(1)把A点坐标为(﹣3,0)、点C坐标为(0,﹣6)代入二次函数表达式,解得:a=1,c=﹣6,故:二次函数解析式为y=x2+x﹣6;(2)点C关于x轴的对称点D(0,6),点B、D坐标所在的直线方程为:y=﹣3x+6,则:点M坐标为(m,﹣3m+6),点Q为(m,m2+m﹣6),∴MQ=y M﹣y Q=﹣3m+6﹣(m2+m﹣6)=﹣(m+2)2+16,在﹣6≤m≤2时,函数顶点处,取得最大值,即MQ的最大值为16;(3)①当BC边为菱形的边时,情况一:N点应该在x轴,关于B点对称,即点N坐标为(﹣2,0),情况二:BC、MB是菱形两条邻边,且BC=BM,则点N坐标为(2,﹣12),情况三:BC、CM为邻边时,则点N坐标为(7.2﹣3.6);②当BC边为菱形的对角线时,作BC的垂直平分线MH,则直线DB与MH的交点为M,M关于BC的对称点为N,H为BC的中点,∴H坐标为(1,﹣3),直线BD的方程为:y=﹣3x+6,直线MH的方程为:y=﹣x﹣,联立以上两个方程,解得:M坐标为(,﹣),同理得N坐标为(﹣,﹣),故:N坐标为(﹣,﹣)或(﹣2,0)或(7.2﹣3.6)或(2,﹣12);.【点评】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.6.如图1,抛物线y=ax2+bx+c经过点A(﹣4,0),B(1,0),C(0,3),点P在抛物线y=ax2+bx+c上,且在x轴的上方,点P的横坐标记为t.(1)求抛物线的解析式;(2)如图2,过点P作y轴的平行线交直线AC于点M,交x轴于点N,若MC 平分∠PMO,求t的值;(3)点D在直线AC上,点E在y轴上,且位于点C的上方,那么在抛物线上是否存在点P,使得以点C,D,E,P为顶点的四边形是菱形?若存在,请求出该菱形的面积;若不存在,请说明理由.【分析】(1)设抛物线的解析式为y=a(x+4)(x﹣1),把(0,3)代入得到a=﹣;(2)由题意直线AC的解析式为y=x+3,因为P的横坐标为t,所以M(t,t+3),根据OM=OC=3,可得t2+(t+3)2=9,解方程即可解决问题;(3)分两种情形①当CE为对角线时,四边形CPED为菱形,如图3,则点P 和D关于y轴对称;②当CE为菱形的边时,四边形CEPD为菱形,如图4,则PD∥y轴,CD=PD,分别构建方程即可解决问题.【解答】解:(1)如图1,设抛物线的解析式为y=a(x+4)(x﹣1),把(0,3)代入得到a=﹣,∴抛物线的解析式为y=﹣(x+4)(x﹣1),即y=﹣x2﹣x+3.(2)如图2中,∵A(﹣4,0),C(0,3),∴直线AC的解析式为y=x+3,∵P的横坐标为t,∴M(t,t+3),∵CM平分∠PMO,∴∠CMO=∠CMP,∵PM∥OC,∴∠CMP=∠MCO,∴∠CMO=∠MCO,∴OM=OC=3,∴t2+(t+3)2=9,解得t=﹣或0(舍弃).∴t的值为﹣.(3)设P(t,﹣t2﹣t+3),①当CE为对角线时,四边形CPED为菱形,如图3,则点P和D关于y轴对称,∴D(﹣t,﹣t2﹣t+3),把D(﹣t,﹣t2﹣t+3)代入y=x+3得﹣t+3=﹣t2﹣t+3,解得t1=0(舍去),t2=﹣2,此时PD=4,CE=3,此时,菱形的面积=PD•CE=6;②当CE为菱形的边时,四边形CEPD为菱形,如图4,则PD∥y轴,CD=PD,∴D(t,t+3),∴PD=﹣t2﹣t+3﹣(t+3)=﹣t2﹣3t,而CD2=t2+(t+3﹣3)2=t2,即CD=﹣t,∴﹣t2﹣3t=﹣t,解得t1=0(舍去),t2=﹣,∴PD=,此时菱形的面积=×=.综上所述,菱形的面积是6或.【点评】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质和菱形的性质;会利用待定系数法求函数解析式;会利用相似比计算线段的长;理解坐标与图形性质,记住两点间的距离公式;会运用分类讨论的思想解决数学问题.7.如图,抛物线y=ax2+bx+过点A(1,0),B(5,0),与y轴相交于点C.(1)求抛物线的解析式;(2)定义:平面上的任一点到二次函数图象上与它横坐标相同的点的距离,称为点到二次函数图象的垂直距离.如:点O到二次函数图象的垂直距离是线段OC的长.已知点E为抛物线对称轴上的一点,且在x轴上方,点F为平面内一点,当以A,B,E,F为顶点的四边形是边长为4的菱形时,请求出点F到二次函数图象的垂直距离.(3)在(2)中,当点F到二次函数图象的垂直距离最小时,在以A,B,E,F 为顶点的菱形内部是否存在点Q,使得AQ,BQ,FQ之和最小,若存在,请求出最小值;若不存在,请说明理由.【分析】(1)将A,B两点代入可求解析式.(2)分类讨论,以AB为边的菱形和以AB为对角线的菱形,抓住菱形边长为4和E的横坐标为3,可解F点坐标,即可求点F到二次函数图象的垂直距离.(3)构造三角形,根据两点之间线段最短,可得最短距离为AN,根据勾股定理求AN.【解答】解:(1)∵抛物线y=ax2+bx+过点A(1,0),B(5,0),∴0=a+b+0=25a+5b+∴a=,b=﹣3∴解析式y=x2﹣3x+(2)当y=0,则0=x2﹣3x+∴x1=5,x2=1∴A(1,0),B(5,0)∴对称轴直线x=3,顶点坐标(3,﹣2),AB=4∵抛物线与y轴相交于点C.∴C(0,)如图1①如AB为菱形的边,则EF∥AB,EF=AB=4,且E的横坐标为3∴F的横坐标为7或﹣1∵AE=AB=4,AM=2,EM⊥AB∴EM=2∴F(7,2),或(﹣1,2)∴当x=7,y=×49﹣7×3+=6∴点F到二次函数图象的垂直距离6﹣2②如AB为对角线,如图2∵AEBF是菱形,AF=BF=4∴AB⊥EF,EM=MF=2∴F(3,﹣2)∴点F到二次函数图象的垂直距离﹣2+2(3)当F(3,﹣2)时,点F到二次函数图象的垂直距离最小如图3,以BQ为边作等边三角形BQD,将△BQF绕B逆时针旋转60°到△BDN 位置,连接AN,作PN⊥AB于P∵等边三角形BQD∴QD=QB=BD,∵将△BQF绕B逆时针旋转60°到△BDN位置∴NB=BF=4,∠FBN=60°,DN=FQ∵AQ+BQ+FQ=AQ+QD+DN∴当AQ,QD,DN共线时AQ+BQ+FQ的和最短,即最短值为AN的长.∵AF=BF=4=AB,∴∠ABF=60°∴∠NBP=60°且BN=4,∴BP=2,PN=2∴AP=6在Rt△ANP中,AN==4∴AQ+BQ+FQ的和最短值为4.【点评】本题考查了二次函数的综合题,待定系数法,菱形的性质,勾股定理等有关知识,关键是构造三角形转化BQ,和BQ的长.。

二次函数的存在性问题之菱形(含问题详解)

二次函数的存在性问题之菱形(含问题详解)

二次函数的存在性问题之菱形1. 如图,抛物线y=ax2+bx﹣2的对称轴是直线x=1,与x轴交于A,B两点,与y轴交于点C,点A的坐标为(﹣2,0),点P为抛物线上的一个动点,过点P作PD⊥x轴于点D,交直线BC于点E.(1)求抛物线解析式;(2)若点P在第一象限,当OD=4PE时,求四边形POBE的面积;(3)在(2)的条件下,若点M为直线BC上一点,点N为平面直角坐标系一点,是否存在这样的点M和点N,使得以点B,D,M,N为顶点的四边形是菱形?若存在上,直接写出点N的坐标;若不存在,请说明理由.2. 如图,直线与轴、轴分别交于、两点,抛物线经过、两点,与轴的另一个交点为,连接.(1)求抛物线的解析式及点的坐标;(2)点在抛物线上,连接,当时,求点的坐标;(3)点从点出发,沿线段由向运动,同时点从点出发,沿线段由向运动,、的运动速度都是每秒个单位长度,当点到达点时,、同时停止运动,试问在坐标平面是否存在点,使、运动过程中的某一时刻,以、、、为顶点的四边形为菱形?若存在,直接写出点的坐标;若不存在,说明理由.3. 如图所示,顶点为(,﹣)的抛物线y=ax2+bx+c过点M(2,0).(1)求抛物线的解析式;(2)点A是抛物线与x轴的交点(不与点M重合),点B是抛物线与y轴的交点,点C是直线y=x+1上一点(处于x轴下方),点D是反比例函数y= (k >0)图象上一点,若以点A,B,C,D为顶点的四边形是菱形,求k的值.4. 综合与探究如图1所示,直线y=x+c与x轴交于点A(﹣4,0),与y轴交于点C,抛物线y=﹣x2+bx+c经过点A,C.(1)求抛物线的解析式(2)如图2所示,M是线段OA的上一个动点,过点M垂直于x轴的直线与直线AC和抛物线分别交于点P、N若点P恰好是线段MN的中点,点F是直线AC上一个动点,在坐标平面是否存在点D,使以点D,F,P,M为顶点的四边形是菱形?若存在,请直接写出点D的坐标;若不存在,请说明理由.注:二次函数y=ax2+bx +c(a≠0)的顶点坐标为(﹣,)5. 如图,在平面直角坐标系中,四边形ABCD是平行四边形,AD=6,若OA、OB的长是关于x的一元二次方程x2﹣7x+12=0的两个根,且OA>OB.(1)求OA、OB的长.(2)若点M在平面直角坐标系,则在直线AB上是否存在点F,使以A、C、F、M为顶点的四边形为菱形?若存在,直接写出F点的坐标,若不存在,请说明理由.6. 如图,在平面直角坐标系xOy中,抛物线y=a(x+1)2﹣3与x轴交于A,B 两点(点A在点B的左侧),与y轴交于点C(0,﹣),顶点为D,对称轴与x轴交于点H,过点H的直线l交抛物线于P,Q两点,点Q在y轴的右侧.(1)求a的值及点A,B的坐标;(2)当点P位于第二象限时,设PQ的中点为M,点N在抛物线上,则以DP 为对角线的四边形DMPN能否为菱形?若能,求出点N的坐标;若不能,请说明理由.7. 如图,在平面直角坐标系中,直线AB和抛物线交于点A(﹣4,0),B(0,4),且点B是抛物线的顶点.(1)求直线AB和抛物线的解析式.(2)M是直线AB上一动点,在平面直角坐标系是否存在点N,使以O、B、M、N为顶点的四边形是菱形?若存在,请求出点N的坐标;若不存在,请说明理由.8. 如图,抛物线y=ax2﹣2x+c(a≠0)与x轴、y轴分别交于点A,B,C三点,已知点A(﹣2,0),点C(0,﹣8),点D是抛物线的顶点.(1)求抛物线的解析式及顶点D的坐标;(2)如图2,设BC交抛物线的对称轴于点F,作直线CD,点M是直线CD上的动点,点N是平面一点,当以点B,F,M,N为顶点的四边形是菱形时,请直接写出点M的坐标.9. 如图,抛物线y=x2﹣x﹣2与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,M是直线BC下方的抛物线上一动点.(1)求A、B、C三点的坐标;(2)连接MO、MC,并把△MOC沿CO翻折,得到四边形MO M′C,那么是否存在点M,使四边形MO M′C为菱形?若存在,求出此时点M的坐标;若不存在,说明理由;10. 抛物线y= x2+bx+c经过点A(﹣4,0)、B(2,0)两点,与y轴交于点C,顶点为D,对称轴与x轴交于点H,过点H的直线m交抛物线于P、Q两点,其中点P位于第二象限,点Q在y轴的右侧.(1)求D点坐标;(2)若∠PBA= ∠OBC,求点P的坐标;(3)设PQ的中点为M,点N在抛物线上,则以DP为对角线的四边形DMPN 能否为菱形?若能,求出点N的坐标;若不能,请说明理由.11. 如图,抛物线y=ax2+bx+c(a≠0)与x轴、y轴分别交于A(﹣1,0)、B (3,0)、C(0,3)三点.(1)试求抛物线的解析式;(2)设点M是x轴上的动点,在平面直角坐标系中,是否存在点N,使得以点A、C、M、N为顶点的四边形是菱形?若存在,求出所有符合条件的点N 坐标;若不存在,说明理由.12. 如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与X轴交于点A、B两点B处的坐标为(3,0),与y轴交于c(0,﹣3),点P是直线BC下方抛物线上的动点.(1)求出二次函数的解析式;(2)连接PO、PC,并将△POC沿y轴对折,得到四边形POP′C,那么是否存在点P,使得四边形POP′C为菱形?若存在,求出点P的坐标,若存在,请说明理由;13. 如图,已知抛物线经过原点o和x轴上一点A(4,0),抛物线顶点为E,它的对称轴与x轴交于点D.直线y=﹣2x﹣1经过抛物线上一点B(﹣2,m)且与y轴交于点C,与抛物线的对称轴交于点F.(1)求m的值及该抛物线对应的解析式;(2)点Q是平面任意一点,点M从点F出发,沿对称轴向上以每秒1个单位长度的速度匀速运动,设点M的运动时间为t秒,是否能使以Q、A、E、M 四点为顶点的四边形是菱形.若能,请直接写出点M的运动时间t的值;若不能,请说明理由.14. 如图,在平面直角坐标系中,二次函数y=-x2+bx+c的图象与x轴交于A、B 两点,与y轴交于C(0,3),A点在原点的左侧,B点的坐标为(3,0).点P是抛物线上一个动点,且在直线BC的上方.(1)求这个二次函数的表达式.(2)连接PO、PC,并把△POC沿CO翻折,得到四边形POP′C,那么是否存在点P,使四边形POP′C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由.15. 如图1,在平面直角坐标系中,抛物线y= 与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,抛物线的顶点为点D,过点B作BC的垂线,交对称轴于点E.(1)求证:点E与点D关于x轴对称;(2)如图2,平移抛物线,使抛物线的顶点D在射线AD上移动,点D平移后的对应点为D′,点A的对应点A′,设抛物线的对称轴与x轴交于点F,将△FBC沿BC翻折,使点F落在点F′处,在平面找一点G,若以F′、G、D′、A′为顶点的四边形为菱形,求平移的距离.16. 如图,在平面直角坐标系中,点在抛物线上,且横坐标为1,点与点关于抛物线的对称轴对称,直线与轴交于点,点为抛物线的顶点,点的坐标为(1)求线段的长;(2)点为线段上方抛物线上的任意一点,过点作的垂线交于点,点为轴上一点,当的面积最大时,求的最小值;(3)在(2)中,取得最小值时,将绕点顺时针旋转后得到,过点作的垂线与直线交于点,点为抛物线对称轴上的一点,在平面直角坐标系中是否存在点,使得点为顶点的四边形为菱形,若存在,请直接写出点的坐标,若不存在,请说明理由.17. 如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(1,0),C(3,0),D(3,4).以A为顶点的抛物线y=ax2+bx+c过点C.动点P从点A出发,沿线段AB向点B运动.同时动点Q从点C出发,沿线段CD向点D运动.点P,Q的运动速度均为每秒1个单位.运动时间为t秒.过点P作PE⊥AB交AC于点E.(1)直接写出点A的坐标,并求出抛物线的解析式;(2)在动点P,Q运动的过程中,当t为何值时,在矩形ABCD(包括边界)存在点H,使以C,Q,E,H为顶点的四边形为菱形?请直接写出t的值.18. 已知,抛物线y=ax²+bx+4与x轴交于点A(-3,0)和B(2,0),与y轴交于点C.(1)求抛物线的解析式;(2)如图2,若点D为直线BC或直线AC上的一点,E为x轴上一动点,抛物线对称轴上是否存在点F,使以B,D,F,E为顶点的四边形为菱形?若存在,请求出点F的坐标;若不存在,请说明理由.答案解析部分一、综合题1.【答案】(1)解:∵抛物线y=ax2+bx﹣2的对称轴是直线x=1,A(﹣2,0)在抛物线上,∴,解得:,抛物线解析式为y=x2﹣x﹣2;(2)解:令y= x2﹣x﹣2=0,解得:x1=﹣2,x2=4,当x=0时,y=﹣2,∴B(4,0),C(0,﹣2),设BC的解析式为y=kx+b,则,解得:,∴y= x﹣2,设D(m,0),∵DP∥y轴,∴E(m,m﹣2),P(m,m2﹣m﹣2),∵OD=4PE,∴m=4(m2﹣m﹣2﹣m+2),∴m=5,m=0(舍去),∴D(5,0),P(5,),E(5,),∴四边形POBE的面积=S△OPD﹣S△EBD = ×5× ﹣1× = ;(3)解:存在,设M(n,n﹣2),①以BD为对角线,如图1,∵四边形BNDM是菱形,∴MN垂直平分BD,∴n=4+ ,∴M(,),∵M,N关于x轴对称,∴N(,﹣);②以BD为边,如图2,∵四边形BNDM是菱形,∴MN∥BD,MN=BD=MD=1,过M作MH⊥x轴于H,∴MH2+DH2=DM2,即(n﹣2)2+(n﹣5)2=12,∴n1=4(不合题意),n2=5.6,∴N(4.6,),同理(n﹣2)2+(4﹣n)2=1,∴n1=4+ (不合题意,舍去),n2=4﹣,∴N(5﹣,),③以BD为边,如图3,过M作MH⊥x轴于H,∴MH2+BH2=BM2,即(n﹣2)2+(n﹣4)2=12,∴n1=4+ ,n2=4﹣(不合题意,舍去),∴N(5+ ,),综上所述,当N(,﹣)或(4.6,)或(5﹣,)或(5+ ,),以点B,D,M,N为顶点的四边形是菱形.【解析】【分析】(1)由抛物线y=ax2+bx﹣2的对称轴是直线x=1,A(﹣2,0)在抛物线上,于是列方程即可得到结论;(2)根据函数解析式得到B(4,0),C(0,﹣2),求得BC的解析式为y= x﹣2,设D(m,0),得到E (m,m﹣2),P(m,m2﹣m﹣2),根据已知条件列方程得到m=5,m=0(舍去),求得D(5,0),P(5,),E(5,),根据三角形的面积公式即可得到结论;(3)设M(n,n﹣2),①以BD为对角线,根据菱形的性质得到MN垂直平分BD,求得n=4+ ,于是得到N(,﹣);②以BD为边,根据菱形的性质得到MN∥BD,MN=BD=MD=1,过M 作MH⊥x轴于H,根据勾股定理列方程即可得到结论.2.【答案】(1)解:直线解析式,令,得;令,得.∴、.∵点、在抛物线上,∴,解得,∴抛物线解析式为:.令,解得:或,∴.(2)解:,设,①当时,如答图所示.∵,∴,故点满足条件.过点作轴于点,则,,∴.∵,∴,∴直线的解析式为:.联立与,得:,解得:,,∴,,∴;②当与关于轴对称时,如答图所示.∵,,∴,故点满足条件.过点作轴于点,则,,∴.∵,∴,∴直线的解析式为:.联立与得:,解得:,,∴,,∴.综上所述,满足条件的点的坐标为:或(3)解:设,则,,.假设存在满足条件的点,设菱形的对角线交于点,设运动时间为.①若以为菱形对角线,如答图.此时,菱形边长.∴.在中,,解得.∴.过点作轴于点,则,,∴.∴.∵点与点横坐标相差个单位,∴;②若以为菱形对角线,如答图.此时,菱形边长.∵,∴,点为中点,∴.∵点与点横坐标相差个单位,∴;③若以为菱形对角线,如答图.此时,菱形边长.在中,,解得.∴,.∴.综上所述,存在满足条件的点,点坐标为:或或.【解析】【分析】(1)根据直线与坐标轴交点的坐标特点求出A,B两点的坐标,将A,B两点的坐标分别代入抛物线y=x2+bx+c得出关于b,c的方程组,求解得出b,c的值,从而得出抛物线的解析式,再根据抛物线与x轴交点的纵坐标是0,将y=0代入抛物线的解析式,楸树对应的自变量的值,从而求出C 点的坐标;(2)设M ( x , y )①当BM⊥BC 时,如答图2 − 1 所示.根据等腰直角三角形的性质及垂直的定义得出∠MBA+∠CBO=45∘,故点M 满足条件,过点M1作M1E⊥y轴于点E ,则M1E=x ,OE=−y 进而表示出BE,根据同角的余角相等及等角的同名三角函数值相等得出tan∠M1BE=tan∠BCO=,根据正切函数的定义得出关于x,y的方程,变形即可得出直线BM1的解析式,解联立直线BM 1的解析式与抛物线的解析式组成的方程组,即可求出M1的坐标;②当BM与BC关于y轴对称时,如答图 2 − 2 所示.根据根据角的和差及对称的性质得出∠ABO=∠MBA+∠MBO=45∘,∠MBO=∠CBO ,故∠MBA+∠CBO=45∘,故点M 满足条件过点M2 作M2E⊥y 轴于点E ,则M2E=x ,OE=−y 进而表示出BE,根据同角的余角相等及等角的同名三角函数值相等得出tan∠M2BE=tan∠CBO=,根据正切函数的定义得出关于x,y 的方程,变形即可得出直线BM2的解析式,解联立直线BM2的解析式与抛物线的解析式组成的方程组,即可求出M2的坐标,综上所述即可得出M点的坐标;(3)设∠BCO=θ ,则tanθ=,sinθ=,cosθ=.假设存在满足条件的点D ,设菱形的对角线交于点E ,设运动时间为t .①若以CQ为菱形对角线,如答图3 − 1 .此时BQ=t ,菱形边长=t ,根据菱形的对角线互相平分得出CE=CQ=(5−t) ,根据余弦函数的定义,由cosθ=,即可列出方程,求解得出t的值,进而得出CQ的值,过点Q作QF⊥x 轴于点F,则QF=CQ ⋅ sinθ,CF=CQ ⋅ cosθ,分别计算出QF,CF的长,进而得出OF的长,从而得出Q点的坐标,根据点D1与点Q横坐标相差t 个单位即可得出D1的坐标;②若以PQ为菱形对角线,如答图3 − 2 .此时BQ=t ,菱形边长=t,根据线段中点坐标公式,由点Q为BC中点得出Q点的坐标,根据点D2与点Q 横坐标相差t 个单位即可得出D1的坐标;③若以CP为菱形对角线,如答图3 − 3 .此时BQ=t ,菱形边长=5−t.根据cosθ =列出方程,求解得出t的值,进而求出OE, 由D3E=QE=CQ ⋅sinθ,从而得出D3的坐标,综上所述即可得出答案。

专题28 二次函数与菱形存在问题-2022年中考数学之二次函数重点题型专题(全国通用版)(原卷版)

专题28 二次函数与菱形存在问题-2022年中考数学之二次函数重点题型专题(全国通用版)(原卷版)

专题28 二次函数与菱形存在问题1.(2021·内蒙古鄂尔多斯·中考真题)如图,抛物线228=+-y x x 与x 轴交于A ,B 两点(点A 在点B 左侧),与y 轴交于点C .(1)求A ,B ,C 三点的坐标;(2)连接AC ,直线()40x m m =-<<与该抛物线交于点E ,与AC 交于点D ,连接OD .当OD AC ⊥时,求线段DE 的长;(3)点M 在y 轴上,点N 在直线AC 上,点P 为抛物线对称轴上一点,是否存在点M ,使得以C 、M 、N 、P 为顶点的四边形是菱形?若存在,请直接写出点M 的坐标;若不存在,请说明理由.2.(2021·湖南娄底·中考真题)如图,在直角坐标系中,二次函数2y x bx c =++的图象与x 轴相交于点(1,0)A -和点(3,0)B ,与y 轴交于点C .(1)求b c 、的值;(2)点(,)P m n 为抛物线上的动点,过P 作x 轴的垂线交直线:l y x =于点Q . ①当03m <<时,求当P 点到直线:l y x =的距离最大时m 的值;②是否存在m ,使得以点O C P Q 、、、为顶点的四边形是菱形,若不存在,请说明理由;若存在,请求出m 的值.3.(2021·重庆市·中考三模)如图,在平面直角坐标系中,已知抛物线213222y x x =+-交x 轴于点A 、B ,交y 轴于点C .(1)求线段BC 的长; (2)点P 为第三象限内抛物线上一点,连接BP ,过点C 作//CE BP 交x 轴于点E ,连接PE ,求BPE 面积的最大值及此时点P 的坐标;(3)在(2)的条件下,以y 轴为对称轴,将抛物线213222y x x =+-对称,对称后点P 的对应点为点P ',点M 为对称后的抛物线对称轴上一点,N 为平面内一点,是否存在以点A 、P '、M 、N 为顶点的四边形是菱形,若存在,直接写出点N 的坐标,若不存在,则请说明理由.4.(2021·重庆市·中考一模)如图,在平面直角坐标系中,已知抛物线223y x x =+-交x 轴于点A 、B ,交y 轴于点C .(1)如图1,连接BC ,过点A 作y 轴的平行线交直线BC 于点E ,求线段BE 的长; (2)如图1,点P 为第三象限内抛物线上一点,连接AP 交BC 于点D ,连接连接BP ,记△BDP 的面积为1S ,△ABD 的面积为2S ,当12S S 的值最大时,求出这个最大值和点P 的坐标;(3)在(2)的条件下,将抛物线223y x x =+-沿射线BC 个单位,平移后的抛物线与原抛物线交于点G ,点M 为平移后的抛物线对称轴上一点,N 为平面内一点,是否存在以点D 、G 、M 、N 为顶点的四边形是菱形,若存在,直接写出点N 的坐标,若不存在,则请说明理由.5.(2021·山西大同·中考一模)综合与探究 如图1,已知抛物线2142y x x =-++与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,作直线BC ,点C 关于x 轴的对称点是点C '.(1)求点C '的坐标和直线BC 的表达式;(2)如图2,点M 在抛物线的对称轴上,N 为平面内一点,依次连接BM ,C M ',C N ',NB ,当四边形BMC N '是菱形时,求点M 坐标;(3)如图3,点P 是抛物线第一象限内一动点,过P 作x 轴的平行线分别交直线BC 和y 轴于点Q 和点E ,连接PC '交直线BC 于点D ,连接QC ',PB ,设点P 的横坐标为m ,△QC D '的面积为1S ,△PBD 的面积为2S ,求12S S -的最大值.6.(2021·山西万柏林·中考一模)综合与探究:如图1,一次函数y =-的图象分别与x 轴,y 轴交于B ,C 两点,二次函数2y ax c =+的图象过B ,C 两点,且与x 轴交于另一点A .(1)求二次函数的解析式;(2)点P 是二次函数图象的一个动点,设点P 的横坐标为m ,若2∠=∠ABC ABP .求m 的值; (3)如图2,过点C 作//CD x 轴交抛物线于点D .点M 是直线BC 上一动点,在坐标平面内是否存在点N ,使得以点C ,D ,M ,N 为顶点的四边形是菱形?若存在,请直接写出点N 的坐标:若不存在,请说明理由.7.(2021·重庆一中·中考一模)在平面直角坐标系中,抛物线y =ax 2+bx +c (a ≠0)与x 轴交于A ,B 两点(A 在B 的左侧),与y 轴交于点C (0,6),其中AB =8,tan ∠CAB =3 (1)求抛物线的表达式;(2)点P 是直线BC 上方抛物线上一点,过点P 作PD //AC 交x 轴于点D ,交BC 于点E ,求的最大值及点P 的坐标.(3)将该抛物线沿射线CA 方向平移个单位长度得到抛物线y 1,平移后的抛物线与原抛物线相交于点F,点G为抛物线y1的顶点,点M为直线FG上一点,点N为平面上一点.在(2)中,的值最大时,是否存在以P、E、M、N为顶点的四边形是菱形,若存在,直接写出点N的坐标;若不存在,请说明理由.8.(2021·黑龙江讷河·九年级期中)综合与探究如图1所示,直线y=x+c与x轴交于点A(-4,0),与y轴交于点C,抛物线y=-x2+bx+c经过点A,C.(1)求抛物线的解析式;(2)点E在抛物线的对称轴上,求CE+OE的最小值为______.(3)如图2所示,M是线段OA的上一个动点,过点M垂直于x轴的直线与直线AC和抛物线分别交于点P、N①当ANC面积最大时的P点坐标为______;最大面积为______.②点F是直线AC上一个动点,在坐标平面内是否存在点D,使以点D、F、B、C为顶点的四边形是菱形?若存在,请直接写出点D的坐标;若不存在,请说明理由.9.(2021—2022重庆市九年级期中)如图1在平面直角坐标系中,抛物线2142y x x =+-与x 轴交于点A 、B ,与y 轴交于点C .(1)求ABC 的周长. (2)已知点P 是直线AC 下方抛物线上一动点,连接PA ,PC ,求PAC △的面积的最大值.(3)如图2,点D 为抛物线的顶点,对称轴DE 交x 轴于点E , M 是直线AC 上一点,在平面直角坐标系中是否存在一点N ,使得以点C ,E ,M ,N 为顶点的四边形为菱形?若存在,直接写出点N 的坐标,若不存在,说明理由.10.(2021—2022广东珠海市九年级期中)如图,已知抛物线y =ax 2+bx +c 的顶点D 的坐标为(﹣2,9),抛物线与坐标轴分别交于A 、B 、C 三点,且B 的坐标为(0,5),连接DB 、DC ,作直线BC .(1)求抛物线的解析式;(2)P 是x 轴上的一点,过点P 作x 轴的垂线,与CD 交于H ,与CB 交于G ,若线段HG 把△CBD 的面积分成相等的两部分,求P 点的坐标;(3)若点M 在直线CB 上,点N 在平面上,直线CB 上是否存在点M ,使以点C 、点D 、点M 、点N 为顶点的四边形为菱形?若存在,请直接写出点M 的坐标;若不存在,请说明理由.11.(2021·湖北五峰·九年级期末)如图,已知抛物线2()A和=++≠经过点(1,0)y ax bx a30 B,与y轴交于点C.点(3,0)(1)求此抛物线的解析式;(2)若点P是直线BC下方的抛物线上一动点(不点B,C重合),过点P作y轴的平行线交直线BC于点D,设点P的横坐标为m.①用含m的代数式表示线段PD的长.∆的面积最大时点P的坐标.②连接PB,PC,求PBC(3)设抛物线的对称轴与BC交于点E,点M是抛物线的对称轴上一点,N为y轴上一点,是否存在这样的点M和点N,使得以点C、E、M、N为顶点的四边形是菱形?如果存在,请直接写出点M的坐标;如果不存在,请说明理由.12.如图,对称轴x=1的抛物线y=ax2+bx+c与x轴交于A(﹣2,0),B两点,与y轴交于点C(0,2),(1)求抛物线和直线BC的函数表达式;(2)若点Q是直线BC上方的抛物线上的动点,求△BQC的面积的最大值;(3)点P为抛物线上的一个动点,过点P作过点P作PD⊥x轴于点D,交直线BC于点E.若点P在第四象限内,当OD=4PE时,△PBE的面积;(4)在(3)的条件下,若点M为直线BC上一点,点N为平面直角坐标系内一点,是否存在这样的点M和点N,使得以点B,D,M,N为顶点的四边形是菱形?若存在,直接写出点N的坐标;若不存在,请说明理由.13.如图,在平面直角坐标系中,Rt ABC ∆的边BC 在x 轴上,90ABC ∠=,以A 为顶点的抛物线2y x bx c =-++经过点(3,0)C ,交y 轴于点(0,3)E ,动点P 在对称轴上. (1)求抛物线解析式;(2)若点P 从A 点出发,沿A B →方向以1个单位/秒的速度匀速运动到点B 停止,设运动时间为t 秒,过点P 作PD AB ⊥交AC 于点D ,过点D 平行于y 轴的直线l 交抛物线于点Q ,连接,AQ CQ ,当t 为何值时,ACQ ∆的面积最大?最大值是多少? (3)若点M 是平面内的任意一点,在x 轴上方是否存在点P ,使得以点,,,P M E C 为顶点的四边形是菱形,若存在,请直接写出符合条件的M 点坐标;若不存在,请说明理由.。

二次函数中的菱形、长方形存在性问题 学生版

二次函数中的菱形、长方形存在性问题 学生版

二次函数中的菱形、长方形存在性问题
学生版
引言
本文将研究二次函数中的菱形和长方形的存在性问题。

菱形和长方形是数学中常见的图形,我们将分析二次函数中是否存在菱形和长方形,并探讨它们的特征和性质。

二次函数及其图像特征
二次函数是形如 y = ax^2 + bx + c 的函数,其中 a、b、c 是常数。

在平面直角坐标系中,二次函数的图像为一条平滑的曲线,我们将研究这个曲线是否可能生成菱形和长方形。

菱形的存在性问题
菱形是一个四边形,其特点是所有边的长度相等,且对角线相互垂直。

我们将尝试找出二次函数图像上是否存在满足这些条件的四边形。

通过研究二次函数的性质和方程,我们可以得出结论,二次函数曲线上不存在满足菱形条件的四边形。

长方形的存在性问题
长方形是一个四边形,其特点是相邻边相等且对角线相等。

我们将探讨二次函数图像上是否存在满足这些条件的四边形。

通过进一步分析二次函数的方程和性质,我们可以发现二次函数曲线上也不存在满足长方形条件的四边形。

结论
通过研究二次函数的图像特征和方程性质,我们认为二次函数曲线上不存在满足菱形和长方形条件的四边形。

这一结论对于理解二次函数的性质和图像特征具有重要意义。

参考文献
- [参考文献 1]
- [参考文献 2]
- [参考文献 3]。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数与菱形1.如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,﹣3)点,点P是直线BC下方的抛物线上一动点.(1)求这个二次函数的表达式.(2)当点P运动到什么位置时,四边形ABPC的面积最大并求出此时P点的坐标和四边形ABPC的最大面积.(3)连接PO、PC,并把△POC沿CO翻折,得到四边形POP′C,那么是否存在点P,使四边形POP′C 为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由.2.已知抛物线y=ax2+bx+8(a≥1)过点D(5,3),与x轴交于点B、C(点B、C均在y轴右侧)且BC=2,直线BD交y轴于点A.(1)求抛物线的解析式;(2)在坐标轴上是否存在一点N,使△ABN与△BCD相似?若存在,求出点A、N的坐标;若不存在,请说明理由.(3)在直线BD上是否存在一点P和平面内一点Q,使以Q、P、B、C四点为顶点的四边形为菱形?若存在,请直接写出点P的坐标;若不存在,请说明理由.3.如图,二次函数图象的顶点为坐标原点O,y轴为对称轴,且经过点A(3,3),一次函数的图象经过点A和点B(6,0).(1)求二次函数与一次函数的解析式;(2)如果一次函数图象与y轴相交于点C,E是抛物线上OA段上一点,过点E作y轴平行的直线DE与直线AC交于点D,∠DOE=∠EDA,求点E的坐标;(3)点M是线段AC延长线上的一个动点,过点M作y轴的平行线交抛物线于F,以点O、C、M、F为顶点的四边形能否为菱形?若能,求出点F的坐标;若不能,请说明理由.4.如图,已知抛物线经过原点O和x轴上一点A(4,0),抛物线顶点为E,它的对称轴与x轴交于点D.直线y=﹣2x﹣1经过抛物线上一点B(﹣2,m)且与y轴交于点C,与抛物线的对称轴交于点F.(1)求m的值及该抛物线对应的解析式;(2)P(x,y)是抛物线上的一点,若S△ADP=S△ADC,求出所有符合条件的点P的坐标;(3)点Q是平面内任意一点,点M从点F出发,沿对称轴向上以每秒1个单位长度的速度匀速运动,设点M的运动时间为t秒,是否能使以Q、A、E、M四点为顶点的四边形是菱形?若能,请直接写出点M的运动时间t的值;若不能,请说明理由.5.如图,在平面直角坐标系中,已知矩形ABCD的三个顶点A(﹣3,4)、B(﹣3,0)、C(﹣1,0).以D为顶点的抛物线y=ax2+bx+c过点B.动点P从点D出发,沿DC边向点C运动,同时动点Q从点B出发,沿BA边向点A运动,点P、Q运动的速度均为每秒1个单位,运动的时间为t秒.过点P作PE⊥CD交BD于点E,过点E作EF⊥AD于点F,交抛物线于点G.(1)求抛物线的解析式;(2)当t为何值时,四边形BDGQ的面积最大?最大值为多少?(3)动点P、Q运动过程中,在矩形ABCD内(包括其边界)是否存在点H,使以B,Q,E,H为顶点的四边形是菱形,若存在,请直接写出此时菱形的周长;若不存在,请说明理由.6.如图1,在平面直角坐标系中,抛物线y=ax2﹣2ax﹣3a交x轴于A、B两点,交y的正半轴于点C,连接BC,且OB=OC.(1)求抛物线的解析式;(2)如图2,点D为第一象限抛物线上一点,过点D作DE⊥BC于点E,设DE=d,点D的横坐标为t,求d与t的函数关系式;(3)在(2)的条件下,点F为抛物线的顶点,对称轴交x轴于点G,连接DF,过D作DH⊥DF交FG于点H,点M为对称轴左侧抛物线上一点,点N为平面上一点且tan∠HDN=,当四边形DHMN 为菱形时,求点N的坐标.7.如图,抛物线y=ax2﹣2x+c(a≠0)与x轴、y轴分别交于点A,B,C三点,已知点A(﹣2,0),点C(0,﹣8),点D是抛物线的顶点.(1)求抛物线的解析式及顶点D的坐标;(2)如图1,抛物线的对称轴与x轴交于点E,第四象限的抛物线上有一点P,将△EBP沿直线EP 折叠,使点B的对应点B'落在抛物线的对称轴上,求点P的坐标;(3)如图2,设BC交抛物线的对称轴于点F,作直线CD,点M是直线CD上的动点,点N是平面内一点,当以点B,F,M,N为顶点的四边形是菱形时,请直接写出点M的坐标.8.如图,▱ABCD的两个顶点B,D都在抛物线y=x2+bx+c上,且OB=OC,AB=5,tan∠ACB=.(1)求抛物线的解析式;(2)在抛物线上是否存在点E,使以A,C,D,E为顶点的四边形是菱形?若存在,请求出点E的坐标;若不存在,请说明理由.(3)动点P从点A出发向点D运动,同时动点Q从点C出发向点A运动,运动速度都是每秒1个单位长度,当一个点到达终点时另一个点也停止运动,运动时间为t(秒).当t为何值时,△APQ 是直角三角形?9.如图,抛物线y=﹣x2﹣x+1与y轴交于A点,过点A的直线与抛物线交于另一点B,过点B 作BC⊥x轴,垂足为点C(﹣3,0).(1)求直线AB的函数关系式;(2)动点E在线段OC上从原点出发以每秒一个单位的速度向C移动,过点E作EG⊥x轴,交直线AB于点F,交抛物线于点G.设点E移动的时间为t秒,GF的长度为s个单位,求s与t的函数关系式,并写出t的取值范围;(3)设在(2)的条件下(不考虑点E与点O、C重合的情况),连接CF,BG,当t为何值时,四边形BCFG为平行四边形?问对于所求的t值,平行四边形BCFG是否菱形?请说明理由.10.如图,已知抛物线y=ax2+c过点(﹣2,2),(4,5),过定点F(0,2)的直线l:y=kx+2与抛物线交于A、B两点,点B在点A的右侧,过点B作x轴的垂线,垂足为C.(1)求抛物线的解析式;(2)当点B在抛物线上运动时,判断线段BF与BC的数量关系(>、<、=),并证明你的判断;(3)P为y轴上一点,以B、C、F、P为顶点的四边形是菱形,设点P(0,m),求自然数m的值;(4)若k=1,在直线l下方的抛物线上是否存在点Q,使得△QBF的面积最大?若存在,求出点Q 的坐标及△QBF的最大面积;若不存在,请说明理由.11.如图,抛物线y=ax2+bx﹣2的对称轴是直线x=1,与x轴交于A,B两点,与y轴交于点C,点A的坐标为(﹣2,0),点P为抛物线上的一个动点,过点P作PD⊥x轴于点D,交直线BC于点E.(1)求抛物线解析式;(2)若点P在第一象限内,当OD=4PE时,求四边形POBE的面积;(3)在(2)的条件下,若点M为直线BC上一点,点N为平面直角坐标系内一点,是否存在这样的点M和点N,使得以点B,D,M,N为顶点的四边形是菱形?若存在,直接写出点N的坐标;若不存在,请说明理由.12.如图1,抛物线y=ax2+bx+4的图象过A(﹣1,0),B(4,0)两点,与y轴交于点C,作直线BC,动点P从点C出发,以每秒个单位长度的速度沿CB向点B运动,运动时间为t秒,当点P 与点B重合时停止运动.(1)求抛物线的表达式;的面积;(2)如图2,当t=1时,求S△ACP(3)如图3,过点P向x轴作垂线分别交x轴,抛物线于E、F两点.①求PF的长度关于t的函数表达式,并求出PF的长度的最大值;②连接CF,将△PCF沿CF折叠得到△P′CF,当t为何值时,四边形PFP′C是菱形?13.如图,在平面直角坐标系中,抛物线y=ax2+bx+3与x轴交于点A(﹣4,0),B(﹣1,0)两点.(1)求抛物线的解析式;(2)在第三象限的抛物线上有一动点D.①如图(1),若四边形ODAE是以OA为对角线的平行四边形,当平行四边形ODAE的面积为6时,请判断平行四边形ODAE是否为菱形?说明理由.②如图(2),直线y=x+3与抛物线交于点Q、C两点,过点D作直线DF⊥x轴于点H,交QC于点F.请问是否存在这样的点D,使点D到直线CQ的距离与点C到直线DF的距离之比为:2?若存在,请求出点D的坐标;若不存在,请说明理由.14.如图,在平面直角坐标系xOy中,抛物线y=a(x+1)2﹣3与x轴交于A,B两点(点A在点B 的左侧),与y轴交于点C(0,﹣),顶点为D,对称轴与x轴交于点H,过点H的直线l交抛物线于P,Q两点,点Q在y轴的右侧.(1)求a的值及点A,B的坐标;(2)当直线l将四边形ABCD分为面积比为3:7的两部分时,求直线l的函数表达式;(3)当点P位于第二象限时,设PQ的中点为M,点N在抛物线上,则以DP为对角线的四边形DMPN能否为菱形?若能,求出点N的坐标;若不能,请说明理由.15.已知,如图,在平面直角坐标系中,△ABC的边BC在x轴上,顶点A在y轴的正半轴上,OA=2,OB=1,OC=4.(1)求过A、B、C三点的抛物线的解析式;(2)设点G是对称轴上一点,求当△GAB周长最小时,点G的坐标;(3)若抛物线对称轴交x轴于点P,在平面直角坐标系中,是否存在点Q,使△PAQ是以PA为腰的等腰直角三角形?若存在,写出所有符合条件的点Q的坐标,并选择其中一个的加以说明;若不存在,说明理由;(4)设点M是x轴上的动点,试问:在平面直角坐标系中,是否存在点N,使得以点A、B、M、N 为顶点的四边形是菱形?若存在,直接写出点N的坐标;若不存在,说明理由.16.如图,已知抛物线C1:y=﹣x2,平移抛物线y=x2,使其顶点D落在抛物线C1位于y轴右侧的图象上,设平移后的抛物线为C2,且C2与y轴交于点C(0,2).(1)求抛物线C2的解析式;(2)抛物线C2与x轴交于A,B两点(点B在点A的右侧),求点A,B的坐标及过点A,B,C的圆的圆心E的坐标;(3)在过点(0,)且平行于x轴的直线上是否存在点F,使四边形CEBF为菱形?若存在,求出点F的坐标;若不存在,请说明理由.17.如图,直线y=x﹣4与x轴、y轴分别交于A、B两点,抛物线y=x2+bx+c经过A、B两点,与x轴的另一个交点为C,连接BC.(1)求抛物线的解析式及点C的坐标;(2)点M在抛物线上,连接MB,当∠MBA+∠CBO=45°时,求点M的坐标;(3)点P从点C出发,沿线段CA由C向A运动,同时点Q从点B出发,沿线段BC由B向C运动,P、Q的运动速度都是每秒1个单位长度,当Q点到达C点时,P、Q同时停止运动,试问在坐标平面内是否存在点D,使P、Q运动过程中的某一时刻,以C、D、P、Q为顶点的四边形为菱形?若存在,直接写出点D的坐标;若不存在,说明理由.抛物线与菱形的专题参考答案1.解:(1)将B、C两点的坐标代入得解得:;所以二次函数的表达式为:y=x2﹣2x﹣3(2)过点P作y轴的平行线与BC交于点Q,与OB交于点F,设P(x,x2﹣2x﹣3),易得,直线BC的解析式为y=x﹣3则Q点的坐标为(x,x﹣3);S四边形ABPC=S△ABC+S△BPQ+S△CPQ=AB•OC+QP•OF+QP•BF==(10分)当时,四边形ABPC的面积最大此时P点的坐标为,四边形ABPC的面积的最大值为.(3)存在点P,使四边形POPC为菱形;设P点坐标为(x,x2﹣2x﹣3),PP′交CO于E若四边形POP′C是菱形,则有PC=PO;连接PP′,则PE⊥CO于E,∴OE=EC=∴y=;(6分)∴x2﹣2x﹣3=解得x1=,x2=(不合题意,舍去)∴P点的坐标为(,)2.解:(1)设B点坐标为(x1,0),C点坐标为(x2,0),则x1、x2是方程ax2+bx+8=0的两根,∴x1+x2=﹣,x1x2=,∵BC=|x1﹣x2|=2,∴(x1﹣x2)2=4,即(x1+x2)2﹣4x1x2=4,∴﹣=4①,把D点坐标代入抛物线解析式可得25a+5b+8=3②,由①②可解得或(舍去),∴抛物线解析式为y=x2﹣6x+8;(2)在y=x2﹣6x+8中,令y=0可得x2﹣6x+8=0,解得x=2或x=4,∴B(2,0),C(4,0),设直线BD解析式为y=kx+s,把B、D坐标代入可得,解得,∴直线BD解析式为y=x﹣2,∴A(0,﹣2),①当点N在x轴上时,设N(x,0),则点N应在点B左侧,∴BN=2﹣x,∵A(0,﹣2),B(2,0),D(5,3),∴AB=2,BD=3∵∠ABN=∠DBC,∴有△BCD∽△BNA或△BCD∽△BAN,当△BCD∽△BNA时,则有=,即=,解得x=,此时N点坐标为(,0);当△BCD∽△BAN时,则有=,即=,解得x=﹣4,此时N点坐标为(﹣4,0);②当点N在y轴上时,设N(0,y),则点N应在A点上方,∴AN=y+2,由上可知有△BCD∽△ABN或△BCD∽△ANB,当△BCD∽△ABN时,则有=,即=,解得y=4,此时N点坐标为(0,4);当△BCD∽△ANB时,则有=,即=,解得y=﹣,此时N点坐标为(0,);综上可知存在满足条件的N点,其坐标为(,0)或(﹣4,0)或(0,4)或(0,);(3)∵点P在直线BD上,∴可设P(t,t﹣2),∴BP==|t﹣2|,PC==,∵以Q、P、B、C四点为顶点的四边形为菱形,∴有BC为边或BC为对角线,当BC为边时,则有BP=BC,即|t﹣2|=2,解得t=2+或t=2﹣,此时P点坐标为(2+,)或(2﹣,);当BC为对角线时,则有BP=PC,即|t﹣2|=,解得t=3,此时P点坐标为(3,1);综上可知存在满足条件的点P,其坐标为(2+,)或(2﹣,)或(3,1).3.解:(1)设二次函数的解析式为y=ax2,把点A(3,3)代入得3=a×32,解得a=;设一次函数的解析式为y=kx+b,把点A(3,3)、点B(6,0)代入得,解得,所以二次函数与一次函数的解析式分别为y=x2,y=﹣x+6;(2)C点坐标为(0,6),∵DE∥y轴,∴∠ODE=∠COD,∠EDA=∠OCD,∵∠DOE=∠EDA,∴∠DOE=∠OCD,∴△OCD∽△DOE,∴OC:OD=OD:DE,即OD2=OC•DE,设E点坐标为(a,a2),则D点坐标为(a,6﹣a),OD2=a2+(6﹣a)2,=2a2﹣12a+36,OC=6,DE=6﹣a﹣a2,∴2a2﹣12a+36=6(6﹣a﹣a2),解得a1=0,a2=,∵E是抛物线上OA段上一点,∴0<a<3,∴a=,∴点E坐标为(,);(3)以点O、C、M、F为顶点的四边形不能为菱形.理由如下:如图,过O点作OF∥AC交抛物线于F,过F点作FM∥y轴交AC延长线于M点,交x轴于H点,则四边形OCMF为平行四边形,∵OC=OB=6,∴△OCB为等腰直角三角形,∴∠OBC=45°,∴∠HOF=45°,∴△OHF为等腰直角三角形,∴HO=HF,设F点坐标为(m,﹣m)(m>0),把F(m,﹣m)代入y=x2得﹣m=m2,解得m1=0,m2=﹣3,∴m=﹣3,∴HO=HF=3,∴OF=OH=3,而OC=6,∴四边形OCMF不为菱形.4.解:(1)∵点B(﹣2,m)在直线y=﹣2x﹣1上∴m=3 即B(﹣2,3)又∵抛物线经过原点O∴设抛物线的解析式为y=ax2+bx∵点B(﹣2,3),A(4,0)在抛物线上∴,解得:.∴设抛物线的解析式为.(2)∵P(x,y)是抛物线上的一点,∴,若S△ADP=S△ADC,∵,,又∵点C是直线y=﹣2x﹣1与y轴交点,∴C(0,1),∴OC=1,∴,即或,解得:.∴点P的坐标为.(3)结论:存在.∵抛物线的解析式为,∴顶点E(2,﹣1),对称轴为x=2;点F是直线y=﹣2x﹣1与对称轴x=2的交点,∴F(2,﹣5),DF=5.又∵A(4,0),∴AE=.如右图所示,在点M的运动过程中,依次出现四个菱形:①菱形AEM1Q1.∵此时DM1=AE=,∴M1F=DF﹣DE﹣DM1=4﹣,∴t1=4﹣;②菱形AEOM2.∵此时DM2=DE=1,∴M2F=DF+DM2=6,∴t2=6;③菱形AEM3Q3.∵此时EM3=AE=,∴DM3=EM3﹣DE=﹣1,∴M3F=DM3+DF=(﹣1)+5=4+,∴t3=4+;④菱形AM4EQ4.此时AE为菱形的对角线,设对角线AE与M4Q4交于点H,则AE⊥M4Q4,∵易知△AED∽△M4EH,∴,即,得M4E=,∴DM4=M4E﹣DE=﹣1=,∴M4F=DM4+DF=+5=,∴t4=.综上所述,存在点M、点Q,使得以Q、A、E、M四点为顶点的四边形是菱形;时间t的值为:t1=4﹣,t2=6,t 3=4+,t4=.5.解:(1)由题意得,顶点D点的坐标为(﹣1,4).设抛物线的解析式为y=a (x+1)2+4(a≠0),∵抛物线经过点B(﹣3,0),代入y=a (x+1)2+4可求得a=﹣1∴抛物线的解析式为y=﹣(x+1)2+4,即y=﹣x2﹣2x+3.(2)由题意知,DP=BQ=t,∵PE∥BC,∴△DPE∽△DBC.∴==2,∴PE=DP=t.∴点E的横坐标为﹣1﹣t,AF=2﹣t.将x=﹣1﹣t代入y=﹣(x+1)2+4,得y=﹣t2+4.∴点G的纵坐标为﹣t2+4,∴GE=﹣t2+4﹣(4﹣t)=﹣t2+t.如图1所示:连接BG.S四边形BDGQ =S△BQG+S△BEG+S△DEG,即S四边形BDGQ=BQ•AF+EG•(AF+DF)=t(2﹣t)﹣t2+t.=﹣t2+2t=﹣(t﹣2)2+2.∴当t=2时,四边形BDGQ的面积最大,最大值为2.(3)存在.∵CD=4,BC=2,∴tan∠BDC=,BD=2.∴cos∠BDC=.∵BQ=DP=t,∴DE=t.如图2所示:当BE和BQ为菱形的邻边时,BE=QB.∵BE=BD﹣DE,∴BQ=BD﹣DE,即t=2﹣t,解得t=20﹣8.∴菱形BQEH的周长=80﹣32.如图3所示:当BE为菱形的对角时,则BQ=QE,过点Q作QM⊥BE,则BM=EM.∵MB=cos∠QBM•BQ,∴MB=t.∴BE=t.∵BE+DE=BD,∴t+t=2,解得:t=.∴菱形BQEH的周长为.综上所述,菱形BQEH的周长为或80﹣32.6.解:(1)对于抛物线y=ax2﹣2ax﹣3a,令y=0,得到ax2﹣2ax﹣3a=0,解得x=﹣1或3,∴A(﹣1,0),B(3,0),∴OA=1,OB=OC=3,∴C(0,3),∴﹣3a=3,∴a=﹣1,∴抛物线的解析式为y=﹣x2+2x+3.(2)如图2中,作DT⊥AB于T,交BC于R.设D(t,﹣t2+2t+3).∵OB=OC,∠BOC=∠RTB=90°,∴∠OBC=∠TRB=∠DRE=45°,∵DE⊥BC,∴∠DER=90°,∴△DER是等腰直角三角形,∵直线BC的解析式为y=﹣x+3,∴R(t,﹣t+3),∴DR=﹣t2+2t+3﹣(﹣t+3)=﹣t2+3t,∴DE=DR•cos45°=﹣t2+t.(3)如图3中,∵四边形DHMN是菱形,点H在对称轴上,∴D、M关于对称轴对称,点N在对称轴上,设DM交FH于Q,作HK⊥DN于K.∵tan∠HDK==,设HK=12k,DK=5k,则DH==13k,∴DN=DH=13k,NK=DN﹣DK=8k,在Rt△NHK中,NH===4k,∴QN=QH=2k,=•NH•DQ=•DN•HK,∵S△DNH∴DQ=3,∴tan∠QDH==,∵DF⊥DH,∴∠QDH+∠FDQ=90°,∵∠QFD+∠FDQ=90°,∴∠DFQ=∠QDH,∴tan∠DFQ==,∵抛物线的顶点F(1,4),Q(1,﹣t2+2t+3),∴FQ=4﹣(﹣t2+2t+3),∴=,解得t=,∴D(,),∴DQ=﹣1=,∵=,∴QN=1,∴N(1,).7.解:(1)将点A、点C的坐标代入抛物线的解析式得:,解得:a=1,c=﹣8.∴抛物线的解析式为y=x2﹣2x﹣8.∵y=(x﹣1)2﹣9,∴D(1,﹣9).(2)将y=0代入抛物线的解析式得:x2﹣2x﹣8=0,解得x=4或x=﹣2,∴B(4,0).∵y=(x﹣1)2﹣9,∴抛物线的对称轴为x=1,∴E(1,0).∵将△EBP沿直线EP折叠,使点B的对应点B'落在抛物线的对称轴上,∴EP为∠BEF的角平分线.∴∠BEP=45°.设直线EP的解析式为y=﹣x+b,将点E的坐标代入得:﹣1+b=0,解得b=1,∴直线EP的解析式为y=﹣x+1.将y=﹣x+1代入抛物线的解析式得:﹣x+1=x2﹣2x﹣8,解得:x=或x=.∵点P在第四象限,∴x=.∴y=.∴P(,).(3)设CD的解析式为y=kx﹣8,将点D的坐标代入得:k﹣8=﹣9,解得k=﹣1,∴直线CD的解析式为y=﹣x﹣8.设直线CB的解析式为y=k2x﹣8,将点B的坐标代入得:4k2﹣8=0,解得:k2=2.∴直线BC的解析式为y=2x﹣8.将x=1代入直线BC的解析式得:y=﹣6,∴F(1,﹣6).设点M的坐标为(a,﹣a﹣8).当MF=MB时,(a﹣4)2+(a+8)2=(a﹣1)2+(a+2)2,整理得:6a=﹣75,解得:a=﹣.∴点M的坐标为(﹣,).当FM=FB时,(a﹣1)2+(a+2)2=(4﹣1)2+(﹣6﹣0)2,整理得:a2+a﹣20=0,解得:a=4或a=﹣5.∴点M的坐标为(4,﹣12)或(﹣5,﹣3).综上所述,点M的坐标为(﹣,)或(4,﹣12)或(﹣5,﹣3).8.解:(1)∵OB=OC,OA⊥BC,AB=5,∴AB=AC=5.∴tan∠ACB==,∴.由勾股定理,得OA2+OC2=AC2,∴()2+OC2=52,解得OC=±4(负值舍去).∴,OB=OC=4,AD=BC=8.∴A(0,3),B(﹣4,0),C(4,0),D(8,3).∴解之得,∴抛物线的解析式为y=x2+x+5;(2)存在.∵四边形ABCD为平行四边形,∴AC=AB=CD.又∵AD≠CD,∴当以A,C,D,E为顶点的四边形是菱形时,AC=CD=DE=AE.由对称性可得,此时点E的坐标为(4,6)当x=4时,y=x2+x+5=6,所以点(4,6)在抛物线y=x2+x+5上.∴存在点E的坐标为(4,6);(3)∵四边形ABCD为平行四边形,∴AD∥BC,∴∠DAC=∠ACB<90°.∴当△APQ是直角三角形时,∠APQ=90°或∠AQ P=90°.∵,∴.由题意可知AP=t,AQ=5﹣t,0≤t≤5.当∠APQ=90°时,,∴,解得.当∠AQP=90°时,,∴,解得.∵,∴或.9.解:(1)由抛物线的解析式知:A(0,1);∵BC⊥x轴,且点C(﹣3,0)∴点B的横坐标为﹣3,将其代入抛物线的解析式中,得:﹣×9+×3+1=∴点B(﹣3,);设直线AB的解析式为:y=kx+1,有:﹣3k+1=,k=﹣∴直线AB:y=﹣x+1.(2)由题意,OE=t,则点E(﹣t,0);(0≤t≤3)当x=﹣t时,点F(﹣t,t+1),点G(﹣t,﹣t2+t+1)∴GF=|(﹣t2+t+1)﹣(t+1)|=﹣t2+t即:s=﹣t2+t(0≤t≤3).(3)因为BC⊥x轴,GE⊥x轴,所以BC∥GF;若四边形BCFG是平行四边形,那么BC=FG,即:s=﹣t2+t=,解得:t=1或2.当t=1时,点F(﹣1,),CF==,即CF=BC,该平行四边形是菱形;当t=2时,点F(﹣2,2),CF==,即CF≠BC,该平行四边形不是菱形;综上,当t=1或2时,四边形BCFG是平行四边形,其中t=1时,该平行四边形是菱形.10.解:(1)把点(﹣2,2),(4,5)代入y=ax2+c得,解得,所以抛物线解析式为y=x2+1;(2)BF=BC.理由如下:设B(x,x2+1),而F(0,2),∴BF2=x2+(x2+1﹣2)2=x2+(x2﹣1)2=(x2+1)2,∴BF=x2+1,∵BC⊥x轴,∴BC=x2+1,∴BF=BC;(3)如图1,m为自然数,当m=0时,易得四边形BCPF为正方形,此时P点在原点;当点P在F点上方,∵以B、C、F、P为顶点的四边形是菱形,∴CB=CF=PF,而CB=FB,∴BC=CF=BF,∴△BCF为等边三角形,∴∠BCF=60°,∴∠OCF=30°,在Rt△OCF中,CF=2OF=4,∴PF=CF=4,∴P(0,6),∴自然数m的值为0或6;(4)作QE∥y轴交AB于E,如图2,当k=1时,一次函数解析式为y=x+2,解方程组得或,则B(2+2,4+2),设Q(t,t2+1),则E(t,t+2),∴EQ=t+2﹣(t2+1)=﹣t2+t+1,∴S△QBF =S△EQF+S△EQB=•(2+2)•EQ=(+1)(﹣t2+t+1)=﹣(t﹣2)2+2+2当t=2时,S△QBF有最大值,最大值为2+2,此时Q点坐标为(2,2).11.解:(1)∵抛物线y=ax2+bx﹣2的对称轴是直线x=1,A(﹣2,0)在抛物线上,∴,解得:,抛物线解析式为y=x2﹣x﹣2;(2)令y=x2﹣x﹣2=0,解得:x1=﹣2,x2=4,当x=0时,y=﹣2,∴B(4,0),C(0,﹣2),设BC的解析式为y=kx+b,则,解得:,∴y=x﹣2,设D(m,0),∵DP∥y轴,∴E(m,m﹣2),P(m,m2﹣m﹣2),∵OD=4PE,∴m=4(m2﹣m﹣2﹣m+2),∴m=5,m=0(舍去),∴D(5,0),P(5,),E(5,),∴四边形POBE的面积=S△OPD﹣S△EBD=×5×﹣1×=;(3)存在,设M(n,n﹣2),①以BD为对角线,如图1,∵四边形BNDM是菱形,∴MN垂直平分BD,∴n=4+,∴M(,),∵M,N关于x轴对称,∴N(,﹣);②以BD为边,如图2,∵四边形BNDM是菱形,∴MN∥BD,MN=BD=MD=1,过M作MH⊥x轴于H,∴MH2+DH2=DM2,即(n﹣2)2+(n﹣5)2=12,∴n1=4(不合题意),n2=,∴N(,),同理(n﹣2)2+(4﹣n)2=1,∴n1=4+(不合题意,舍去),n2=4﹣,∴N(5﹣,﹣),③以BD为边,如图3,过M作MH⊥x轴于H,∴MH2+BH2=BM2,即(n﹣2)2+(n﹣4)2=12,∴n1=4+,n2=4﹣(不合题意,舍去),∴N(5+,),综上所述,当N(,﹣)或(,)或(5﹣,﹣)或(5+,),以点B,D,M,N为顶点的四边形是菱形.12.解:(1)∵抛物线y=ax2+bx+4的图象过A(﹣1,0),B(4,0)两点,∴,解得:.∴抛物线的表达式为y=﹣x2+3x+4.(2)令x=0,则y=4,即点C的坐标为(0,4),∴BC==4.设直线BC的解析式为y=kx+4,∵点B的坐标为(4,0),∴0=4k+4,解得k=﹣1,∴直线BC的解析式为y=﹣x+4.当t=1时,CP=,点A(﹣1,0)到直线BC的距离h===,S△ACP=CP•h=××=.(3)①∵直线BC的解析式为y=﹣x+4,∴CP=t,OE=t,设P(t,﹣t+4),F(t,﹣t2+3t+4),(0≤t≤4)PF=﹣t2+3t+4﹣(﹣t+4)=﹣t2+4t,(0≤t≤4).当t=﹣=2时,PF取最大值,最大值为4.②∵△PCF沿CF折叠得到△P′CF,∴PC=P′C,PF=P′F,当四边形PFP′C是菱形时,只需PC=PF.∴t=﹣t2+4t,解得:t1=0(舍去),t2=4﹣.故当t=4﹣时,四边形PFP′C是菱形.13.解:(1)把点A(﹣4,0)、B(﹣1,0)代入解析式y=ax2+bx+3,得,解得,∴抛物线的解析式为:y=x2+x+3.(2)①如答图2﹣1,过点D作DH⊥x轴于点H.∵S▱ODAE=6,OA=4,∴S△AOD=OA•DH=3,∴DH=.因为D在第三象限,所以D的纵坐标为负,且D在抛物线上,∴x2+x+3=﹣,解得:x1=﹣2,x2=﹣3.∴点D坐标为(﹣2,﹣)或(﹣3,﹣).当点D为(﹣2,﹣)时,DH垂直平分OA,平行四边形ODAE为菱形;当点D为(﹣3,﹣)时,OD≠AD,平行四边形ODAE不为菱形.②假设存在.如答图2﹣2,过点D作DM⊥CQ于M,过点C作CN⊥DF于N,则DM:CN=:2.设D(m,m2+m+3)(m<0),则F(m,m+3).∴CN=﹣m,NF=﹣m∴CF==﹣m.∵∠DMF=∠CNF=90°,∠DFM=∠CFN,∴△DMF∽△CNF,∴,∴DF=CF=﹣m.∴DN=NF+DF=﹣m﹣m=﹣m.又DN=3﹣(m2+m+3)=﹣m2﹣m,∴﹣m2﹣m=﹣m解得:m=﹣或m=0(舍去)∴m2+m+3=﹣∴D(﹣,﹣).综上所述,存在满足条件的点D,点D的坐标为(﹣,﹣).14.解:(1)∵抛物线与y轴交于点C(0,﹣).∴a﹣3=﹣,解得:a=,∴y=(x+1)2﹣3当y=0时,有(x+1)2﹣3=0,∴x1=2,x2=﹣4,∴A(﹣4,0),B(2,0).(2)∵A(﹣4,0),B(2,0),C(0,﹣),D(﹣1,﹣3)∴S四边形ABCD=S△ADH+S梯形OCDH+S△BOC=×3×3+(+3)×1+×2×=10.从面积分析知,直线l只能与边AD或BC相交,所以有两种情况:①当直线l边AD相交与点M1时,则S=×10=3,∴×3×(﹣y)=3∴y=﹣2,点M1(﹣2,﹣2),过点H(﹣1,0)和M1(﹣2,﹣2)的直线l的解析式为y=2x+2.②当直线l边BC相交与点M2时,同理可得点M2(,﹣2),过点H(﹣1,0)和M2(,﹣2)的直线l的解析式为y=﹣x﹣.综上所述:直线l的函数表达式为y=2x+2或y=﹣x﹣.(3)设P(x1,y1)、Q(x2,y2)且过点H(﹣1,0)的直线PQ的解析式为y=kx+b,∴﹣k+b=0,∴b=k,∴y=kx+k.由,∴+(﹣k)x﹣﹣k=0,∴x1+x2=﹣2+3k,y1+y2=kx1+k+kx2+k=3k2,∵点M是线段PQ的中点,∴由中点坐标公式的点M(k﹣1,k2).假设存在这样的N点如图,直线DN∥PQ,设直线DN的解析式为y=kx+k﹣3由,解得:x1=﹣1,x2=3k﹣1,∴N(3k﹣1,3k2﹣3)∵四边形DMPN是菱形,∴DN=DM,∴(3k)2+(3k2)2=()2+()2,整理得:3k4﹣k2﹣4=0,∵k2+1>0,∴3k2﹣4=0,解得k=±,∵k<0,∴k=﹣,∴P(﹣3﹣1,6),M(﹣﹣1,2),N(﹣2﹣1,1)∴PM=DN=2,∵PM∥DN,∴四边形DMPN是平行四边形,∵DM=DN,∴四边形DMPN为菱形,∴以DP为对角线的四边形DMPN能成为菱形,此时点N的坐标为(﹣2﹣1,1).15.解:(1)由题意可求,A(0,2),B(﹣1,0),点C的坐标为(4,0).设过A、B、C三点的抛物线的解析式为y=a(x﹣4)(x+1),把点A(0,2)代入,解得:a=﹣,所以抛物线的解析式为:y=﹣(x﹣4)(x+1)=,(2)如图1物线y=的对称轴为:x=,由点C 是点B 关于直线:x=的对称点,所以直线AC 和直线x=的交点即为△GAB 周长最小时的点G ,设直线AC 的解析式为:y=mx+n ,把A (0,2),点C (4,0)代入得:., 解得:, 所以:y=x+2,当x=时,y=,所以此时点G (,);(3)如图2使△PAQ 是以PA 为腰的等腰直角三角形的所有符合条件的点Q 的坐标:Q 1(,),Q 2(,﹣),Q 3(2,),Q 4(﹣2,),证明Q 1:过点Q 1作Q 1M ⊥x 轴,垂足为M ,由题意:∠APQ 1=90°,AP=PQ 1,∴∠APO+∠MPQ 1=90°,∵∠APO+∠PAO=90°,∴∠PAO=∠MPQ,1中,在△AOP和△MPQ1,,∴△AOP≌△MPQ1∴PM=AO=2,QM=OP=,1∴OM=,此时点Q的坐标为:(,);(4)存在点N的坐标为:(0,﹣2),(,2),(﹣,2),(,2).16.解:(1)由题意设D(a,﹣a2),的解析式为:y=(x﹣a)2﹣a2,假设抛物线C2上,∵点C在抛物线C2∴将C(0,2)代入上式,解得:a=±2,∵点D在y轴右侧,∴a=2,的解析式为:y=(x﹣2)2﹣2;∴抛物线C2(2)由题意,在y=(x﹣2)2﹣2中,令y=0,则x=2±,∵点B在点A的右侧,∴A(2﹣,0),B(2+,0),又∵过点A,B,C的圆的圆心一定在线段AB的垂直平分线上,∴设E(2,m),且|CE|=|AE|,则22+(2﹣m)2=m2+(2﹣2+)2,解得:m=,∴圆心E的坐标为:(2,);(3)假设存在点F(t,),使得四边形CEBF为菱形,则|BF|=|CF|=|CE|,∴()2+(2+﹣t)2=(2﹣)2+t2,解得:t=,当t=时,F(2,),此时|EC|=,|FC|===,∴|CF|=|BF|=|BE|=|EC|,即存在点F(,),使得四边形CEBF为菱形.17.解:(1)直线解析式y=x﹣4,令x=0,得y=﹣4;令y=0,得x=4.∴A(4,0)、B(0,﹣4).∵点A、B在抛物线y=x2+bx+c上,∴,解得,∴抛物线解析式为:y=x2﹣x﹣4.令y=x2﹣x﹣4=0,解得:x=﹣3或x=4,∴C(﹣3,0).(2)∠MBA+∠CBO=45°,设M(x,y),①当BM⊥BC时,如答图2﹣1所示.∵∠ABO=45°,∴∠MBA+∠CBO=45°,故点M满足条件.过点M1作M1E⊥y轴于点E,则M1E=x,OE=﹣y,∴BE=4+y.∵tan∠M1BE=tan∠BCO=,∴,∴直线BM1的解析式为:y=x﹣4.联立y=x﹣4与y=x2﹣x﹣4,得:x﹣4=x2﹣x﹣4,解得:x1=0,x2=,∴y1=﹣4,y2=﹣,∴M1(,﹣);②当BM与BC关于y轴对称时,如答图2﹣2所示.∵∠ABO=∠MBA+∠MBO=45°,∠MBO=∠CBO,∴∠MBA+∠CBO=45°,故点M满足条件.过点M2作M2E⊥y轴于点E,则M2E=x,OE=y,∴BE=4+y.∵tan∠M2BE=tan∠CBO=,∴,∴直线BM2的解析式为:y=x﹣4.联立y=x﹣4与y=x2﹣x﹣4得:x﹣4=x2﹣x﹣4,解得:x1=0,x2=5,∴y1=﹣4,y2=,∴M2(5,).综上所述,满足条件的点M的坐标为:(,﹣)或(5,).(3)设∠BCO=θ,则tanθ=,sinθ=,cosθ=.假设存在满足条件的点D,设菱形的对角线交于点E,设运动时间为t.①若以CQ为菱形对角线,如答图3﹣1.此时BQ=t,菱形边长=t.∴CE=CQ=(5﹣t).在Rt△PCE中,cosθ===,解得t=.∴CQ=5﹣t=.过点Q作QF⊥x轴于点F,则QF=CQ•sinθ=,CF=CQ•cosθ=,∴OF=3﹣CF=.∴Q(﹣,﹣).∵点D1与点Q横坐标相差t个单位,∴D1(﹣,﹣);②若以PQ为菱形对角线,如答图3﹣2.此时BQ=t,菱形边长=t.∵BQ=CQ=t,∴t=,点Q为BC中点,∴Q(﹣,﹣2).与点Q横坐标相差t个单位,∵点D2(1,﹣2);∴D2③若以CP为菱形对角线,如答图3﹣3.此时BQ=t,菱形边长=5﹣t.在Rt△CEQ中,cosθ===,解得t=.E=QE=CQ•sinθ=(5﹣)×=.∴OE=3﹣CE=3﹣t=,D3∴D(﹣,).3综上所述,存在满足条件的点D,点D坐标为:(﹣,﹣)或(1,﹣2)或(﹣,).。

相关文档
最新文档