第2章 简单事件的概率 单元测试

合集下载

浙教版九年级上册数学第2章 简单事件的概率含答案(考试真题)

浙教版九年级上册数学第2章 简单事件的概率含答案(考试真题)

浙教版九年级上册数学第2章简单事件的概率含答案一、单选题(共15题,共计45分)1、下列命题:(1 )一组数据a1, a2,…an的方差为s2,则另一组数据2a1,2a2,…2an的方差为2s2.(2 )三角形中线能将该三角形的面积平分.(3 )相似三角形的面积比等于相似比的平方.(4 )圆绕圆心旋转37.5°后也能与原来图形重合.(5 )极可能发生的事件可以看作是必然事件.(6 )关于x的方程x2+3ax﹣9=0一定有两个不相等的实数根.其中正确的个数是()A.3个B.4个C.5个D.6个2、数学老师将全班分成7个小组开展小组合作学习,采用随机抽签确定一个小组进行展示活动,则第3个小组被抽到的概率是()A. B. C. D.3、下列事件是必然事件的是()A.同旁内角互补B.任何数的平方都是正数C.两个数的绝对值相等,则这两个数一定相等D.任意写一个两位数,个位数字是的概率是4、“服务他人,提升自我”,七一学校积极开展志愿者服务活动,来自初三的5名同学(3男两女)成立了“交通秩序维护”小分队,若从该小分队中任选两名同学进行交通秩序维护,则恰好是一男一女的概率是( )A. B. C. D.5、在一个暗箱里放入除颜色外其它都相同的3个红球和11个黄球,搅拌均匀后随机任取一个球,取到是红球的概率是( )A. B. C. D.6、下列说法正确的是()A.“经过有交通信号的路口,遇到红灯,”是必然事件B.已知某篮球运动员投篮投中的概率为0.6,则他投10次一定可投中6次C.处于中间位置的数一定是中位数D.方差越大数据的波动越大,方差越小数据的波动越小7、一个口袋中有红球、白球共10个,这些球除颜色外都相同,将口袋中的球搅拌均匀,从中随机摸出一个球,记下它的颜色后再放回口袋中,不断重复这一过程,共摸了100次球,发现有71次摸到红球.请你估计这个口袋中白球的数量为( )个.A.29B.30C.3D.78、下列事件为确定事件的是()A.6张相同的小标签分别标有数字1~6,从中任意抽取一张,抽到3号签 B.抛掷1枚质地均匀的硬币反面朝上 C.射击运动员射击一次,命中靶心 D.长度分别是4,6,8的三条线段能围成一个三角形9、书包里有数学书3本,英语书2本,语文书5本,从中任意抽取一本,是数学书的概率是()A. B. C. D.10、在一副52张的扑g牌中(没有大、小王)任意抽取一张,抽出的这张牌是K的可能性是()A. B. C. D.11、下列说法正确的是()A.调查某班学生的身高情况,适宜采用抽样调查B.“若m、n互为相反数,则mn=0”,这一事件是必然事件C.小南抛挪两次硬币都是正面向上,说明抛掷硬币正面向上的概率是1D.“1,3,2,1的中位数一定是2”,这一件是不可能事件12、在一个10万人的小镇,随机调查了3000人。

第一学期浙教版九年级上册数学第2章《简单事件的概率》单元测试卷(有答案)

第一学期浙教版九年级上册数学第2章《简单事件的概率》单元测试卷(有答案)

第一学期浙教版九年级上册数学第2章《简单事件的概率》单元测试卷(有答案)子,偶数点时黑方前进一步,奇数点时红方前进一步,你认为这个游戏________.(填“公平”或“不公平”)二、选择题(共 10 小题,每小题 3 分,共30 分)11.掷一枚均匀的骰子,骰子停止运动后出现点数可能性大的是()A.出现6点B.出现大于4的点C.出现小于4的点D.出现小于5的点12.不透明的口袋中有2个白球和1个红球,球除颜色外其它都相同.摸球试验规定:摸出一个球后,要放回袋中,再进行下一次试验.小明摸了两次,均摸出了白球,则他第三次摸球的结果是()A.一定是红球B.一定是白球C.红球的可能性较大D.白球的可能性较大13.下列说话是正确的是()A.天气预报员说今天下雨的机会是95%,所以今天一定会下雨,我得带上伞B.一次篮球比赛A队落后B队两分,A队还有一次进攻的机会,A队中小王的3分球命中的机会是70%,小魏的3分球命中的机会是10%.但本次比赛中小王投3分球,4投1中;小魏投3分球,3投3中、尽管如此,最后一个还是应由小王来投是明智的C.小明的幸运数是“2”,所以他在掷正方体骰子时掷出“2”的机会比他掷出其他数字的机会大D.爸爸买彩票又没中奖,所以他现在中奖的机会比以前大了14.下列说法正确的是()A.如果一件事不可能发生,那么它是必然事件,即发生的概率是1B.概率很大的事情必然发生C.若一件事情肯定发生,则其发生的概率P≥1D.不太可能发生的事情的概率不为015.小明用一枚均匀的硬币进行试验,前6次掷得的结果都是正面朝上,如果将第7次掷得正面朝上的概率记为P,则()A.P=12B.P<12C.P>12D.无法确定1 6.同时投掷两枚普通的正方体骰子,所得两个点数之和大于9的概率是()A.16B.19C.112D.113617.已知,电流在一定时间段内正常通过电子元件的概率是0.5,则在一定时间段内AB之间电流能够正常通过的概率为()A.12B.13C.23D.3418.某校篮球队进行篮球投篮训练,下表是某队员投篮的统计结果:投篮次数/次1050100150200命中次数/次94070108144命中0.90.80.70.720.72率根据上表,你估计该队员一次投篮命中的概率大约是()A.0.9B.0.8C.0.7D.0.7219.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有50个,除颜色外其它完全相同.小李通过多次摸球试验后发现其中摸到红色、黑色球的频率稳定在20%和36%,则口袋中白色球的个数很可能是()A.21B.22C.24D.2720.小明和小亮玩一种游戏:三张大小、质地都相同的卡片上分别标有数字1,2,3,现将标有数字的一面朝下,小明从中任意抽取一张,记下数字后放回洗匀,然后小亮从中任意抽取一张,计算小明和小亮抽得的两个数字之和,如果和为奇数,则小明胜;若和为偶数则小亮胜.获胜概率大的是()A.小明B.小亮C.一样D.无法确定三、解答题(共 6 小题,每小题 10 分,共60 分)21.有一个摆地摊的不法摊主,他拿出3个白球,3个黑球,放在一个袋子里(不透明),让人摸球中奖.只要交2元钱就可以从袋中摸出3个球,若摸到的3个球都是白球,就可得10元的回报,请你计算一下摸一次球的平均收益,并估算若有1000名学生每人摸一次,摊主将从同学的身上骗走多少钱?22.如图,有一个转盘,转盘被分成4个相同的扇形,颜色分为红、绿、黄三种,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当作指向右边的扇形),求下列事件的概率:(1)指针指向绿色;(2)指针指向红色或黄色;(3)指针不指向红色.23.一个箱子里装有16个除颜色外都相同的球,其中有2个红球,5个黑球,9个绿球.随机地从这个箱子里摸出一个球,(1)摸出哪种颜色球的可能性最小?(2)求摸出绿球的可能性.24.一个不透明袋子中有1个红球,1个绿球和n 个白球,这些球除颜色外无其他差别.(1)当n=1时,从袋中随机摸出1个球,摸到红球和摸到白球的可能性是否相同?(在答题卡相应位置填“相同”或“不相同”);(2)从袋中随机摸出一个球,记录其颜色,然后放回,大量重复该实验,发现摸到绿球的频率稳定于0.25,则n的值是________;(3)在一个摸球游戏中,所有可能出现的结果如下:根据树状图呈现的结果,求两次摸出的球颜色不同的概率.25.小明和小亮用下面两个转盘做“配紫色”游戏.游戏规则如下:分别转动两个转盘,如果配成紫色,则小明得1分,否则小亮得1分.这个游戏对双方公平吗?如果你认为公平,请说明理由;若不公平,请你修改规则使游戏对双方公平.答案1.142.163.0.64.125.1126.137.358.1129.对乙有利10.公平11-20: DDBDA ADDBB21.解:∵一次摸到3个白球的概率为:3 6×25×14=120,每摸一次平均收益为:2−10×120=1.5元,∴1000×1.5=1500元,∴每摸一次球平均获利1.5元,1000名学生每人摸一次,摊主将从同学们身上骗去约1500元.22.解:转盘分成4个相同的图形,即共有4种等可能的结果,①∵绿色的有1部分,∴指针指向绿色的概率为:14;②∵红色或黄色的共有3部分,∴指针指向红色或黄色的概率为:34;③∵不指向红色的,即绿色或黄色的共有2部分,∴指针不指向红色的概率为:24=12.23.解:(1)红球的个数最少,所以摸到红球的可能性最小.(2)P(绿球)=916.24.相同;(2)∵摸到绿球的频率稳定于0.25,∴11+1+n =14,∴n=2,故答案为:2;(3)由树状图可知,共有12种结果,其中两次摸出的球颜色不同的10种,所以其概率=1012=56.25.解:这个游戏对双方不公平.理由如下:列表如下:红黄蓝红 (红,红) (黄,红) (蓝,红) 黄 (红,黄) (黄,黄) (蓝,黄) 蓝 (红,蓝) (黄,蓝) (蓝,蓝) 根据只有红色与蓝色配成紫色,∴P (小明获胜)=29,P (小亮获胜)=79.所以小明的得分为:29×1=29,小亮的得分为:79×1=79∴这个游戏对双方不公平.修改规则不唯一.若两次转出颜色相同或配成紫色则小明得7分,否则小亮得2分.。

浙教版九年级上册数学第2章 简单事件的概率含答案(精练)

浙教版九年级上册数学第2章 简单事件的概率含答案(精练)

浙教版九年级上册数学第2章简单事件的概率含答案一、单选题(共15题,共计45分)1、从1~9这九个自然数中任取一个,是3的倍数的概率是()A. B. C. D.2、已知不透明的袋中只装有黑、白两种球,这些球除颜色外都相同,其中白球有2个,黑球有n个.随机地从袋子中摸出一个球,记录下颜色后,放回袋子中并摇匀.经过大量重复试验发现摸出白球的频率稳定在0.4附近,则n的值为( )A.2B.3C.4D.53、从1,2,﹣3三个数中,随机抽取两个数相乘,积是正数的概率是()A.0B.C.D.14、把1枚质地均匀的普通硬币重复掷两次,落地后出现一次正面一次反面的概率是()A.1B.C.D.5、口袋中装有形状、大小与质地都相同的红球2个,黄球1个,下列事件为随机事件的是()A.随机摸出1个球,是白球B.随机摸出1个球,是红球C.随机摸出1个球,是红球或黄球D.随机摸出2个球,都是黄球6、在100张奖卷中,有4张中奖,小红从中任抽1张,他中奖的概率是()A. B. C. D.7、电动游览车经过某景区十字路口,可能直行,也可能左转或者右转.如果这三种可能性大小相同,则经过这个十字路口的两辆游览车一辆左转,一辆右转的概率为( )A. B. C. D.8、下列事件中为必然事件的是()A.早晨的太阳从东方升起B.打开电视机,正在播放新闻C.随机掷一枚硬币,落地后正面朝上D.下雨后,天空出现彩虹9、四张完全相同的卡片上分别画有平行四边形、菱形、等腰梯形、圆,现从中任意抽取一张,卡片上所画的图形恰好是中心对称图形的概率为( )A. B. C. D.10、下列说法中正确的是().A.“打开电视机,正在播放《动物世界》”是必然事件B.某种彩票的中奖概率为,说明每买1000张,一定有一张中奖C.抛掷一枚质地均匀的硬币一次,出现正面朝上的概率为D.想了解长沙市所有城镇居民的人均年收入水平,宜采用抽样调查11、某校九年级共有1、2、3、4四个班,现从这四个班中随机抽取两个班进行一场篮球比赛,则恰好抽到1班和2班的概率是()A. B. C. D.12、如图,有四张不透明的卡片除正面的算式不同外,其余完全相同,将它们背面朝上洗匀后,从中随机抽取一张,则抽到得卡片上算式正确的概率是()A. B. C. D.113、“翻开数学书,恰好翻到第16页”,这个事件是()A.随机事件B.必然事件C.不可能事件D.确定事件14、在一个透明的口袋中装着大小、外形一模一样的5个黄球,2个红球和2个白球,这些球在口袋中被搅匀了,下列事件必然发生的是()( 1 )从口袋中任意摸出一个球是一个黄球或是一个白球(2)从口袋中一次任意摸出5个球,全是黄球(3)从口袋中一次任意摸出8个球,三种颜色都有(4)从口袋中一次任意摸出6个球,有黄球和红球,或有黄球和白球,或三种颜色都有.A.(1)(2)B.(2)(3)C.(3)(4)D.(1)(2)(3)(4)15、有两个事件,事件A:367人中至少有2人生日相同;事件B:抛掷一枚均匀的骰子,朝上的面的点数为偶数.下列说法正确的是()A.事件A、B都是随机事件B.事件A、B都是必然事件C.事件A是随机事件,事件B是必然事件D.事件A是必然事件,事件B是随机事件二、填空题(共10题,共计30分)16、不透明的袋子里装有2个白球,1个红球,这些球除颜色外无其他差别,从袋子中随机摸出1个球,则摸出白球的概率是________.17、从-2、1、这三个数中任取两个不同的数相乘,积是无理数的概率是________.18、把1枚质地均匀的普通硬币重复掷三次,落地后三次都是正面朝上的概率是________.19、在一个不透明的盒子中装有a个除颜色外完全相同的球,其中只有6个白球.若每次将球充分搅匀后,任意摸出1个球记下颜色后再放回盒子,通过大量重复试验后,发现摸到白球的频率稳定在20%左右,则a的值约为________.20、一个不透明的袋中有四张形状大小质地完全相同的卡片,它们上面分别标有数字,随机抽取一张卡片不放回,再随机抽取一张卡片,则两次抽取的卡片上数字之和为奇数的概率是________.21、张凯家购置了一辆新车,爸爸妈妈商议确定车牌号,前三位选定为8ZK 后,对后两位数字意见有分歧,最后决定由毫不知情的张凯从如图排列的四个数字中随机划去两个,剩下的两个数字从左到右组成两位数,续在8ZK之后,则选中的车牌号为8ZK86的概率是________.22、小勇第一次抛一枚质地均匀的硬币时正面向上,他第二次再抛这枚硬币时,正面向上的概率是________.23、一袋中装有5个红球、4个白球和3个黄球,每个球除颜色外都相同.从中任意摸出一个球,则:P(摸到红球)=________,P(摸到白球)=________.24、从1,2,3,4这四个数字中,任意抽取两个不同数字组成一个两位数,则这个两位数能被3整除的概率是________.25、布袋内装有大小、形状相同的3个红球和1个白球,从布袋中一次摸出两个球,那么两个都摸到红球的概率是________.三、解答题(共5题,共计25分)26、有3个完全相同的小球,把它们分别标号为1,2,3,放在一个不透明的口袋中,从口袋中随机摸出一个小球,记下标号后放回,再从口袋中随机摸出一个小球,记下标号.用画树状图(或列表)的方法,求两次摸出的小球号码恰好都大于1的概率.27、从一副扑g牌中选取红桃A、方块A、梅花K三张扑g牌,正面朝下洗均后放在桌面上,小红先从中随机抽取一张,放回洗匀;小明再从中随机抽取一张,用画树状图(或列表)的方法,求小红和小明抽取的扑g牌的牌面都是A 的概率.28、有两个构造完全相同(除所标数字外)的转盘A、B,游戏规定,转动两个转盘各一次,指向大的数字获胜.现由你和小明各选择一个转盘游戏,你会选择哪一个,为什么?29、如图,在四张质地,大小相同的卡片上分别写上1,-2,4,-8,从中任意抽取一张卡片,记下上面的数字作为点的横坐标;把卡片放回去搅匀,再任意抽取一张卡片,记下上面的数字作为点的纵坐标.用列表或画树状图的方法求这个点一定在反比例函数y=- ,的图象上的概率。

《第2章 简单事件的概率》单元测试卷2021-2022学年浙教版九年级上册数学

《第2章 简单事件的概率》单元测试卷2021-2022学年浙教版九年级上册数学

2021-2022学年浙教新版九年级上册数学《第2章简单事件的概率》单元测试卷一.选择题1.甲、乙两人投掷两个普通的正方体骰子,规定掷出“和为7”算甲赢,掷出“和为8”算乙赢,这个游戏是否公平?()A.公平B.对甲有利C.对乙公平D.不能判断2.在一个不透明的袋中,装有1个白球、2个红球、2个黄球、3个黑球,它们除颜色外都相同,从袋中任意摸出:一个球,可能性最大的是()A.白球B.红球C.黄球D.黑球3.若气象部门预报明天下雨的概率是80%,下列说法正确的是()A.明天有80%的地方下雨B.明天一定会下雨C.明天有80%的时间下雨D.明天下雨的可能性比较大4.一个不透明的袋子中装有20个红球,2个黑球,1个白球,它们除颜色外都相同,若从中任意摸出1个球,则()A.摸出黑球的可能性最小B.不可能摸出白球C.一定能摸出红球D.摸出红球的可能性最大5.小芳掷一枚硬币10次,有7次正面向上,当她掷第11次时,正面向上的概率为()A.B.C.D.16.在六张卡片上分别写有,π,1.5,5,0,六个数,从中任意抽取一张,卡片上的数为无理数的概率是()A.B.C.D.7.在联欢会上,有A、B、C三名选手站在一个三角形的三个顶点的位置上,他们在玩抢凳子游戏,要求在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,则凳子应放的最适当的位置是在△ABC的()A.三边中线的交点B.三边垂直平分线的交点C.三条角平分线的交点D.三边上高的交点8.下列成语或词语所反映的事件中,可能性最小的是()A.瓜熟蒂落B.旭日东升C.守株待兔D.夕阳西下9.某林业局将一种树苗移植成活的情况绘制成如统计图,由此可估计这种树苗移植成活的概率约为()A.0.95B.0.90C.0.85D.0.8010.一个盒子里装有若干个红球和白球,每个球除颜色以外都相同.5位同学进行摸球游戏,每位同学摸10次(摸出1球后放回,摇匀后再继续摸),其中摸到红球数依次为8,5,9,7,6,则估计盒中红球和白球的个数是()A.红球比白球多B.白球比红球多C.红球,白球一样多D.无法估计二.填空题11.在“抛掷正六面体”的试验中,正六面体的六个面分别标有数字“1”“2”“3”“4”“5”“6”,在试验次数很大时,数字“6”朝上的频率稳定在.12.技术变革带来产品质量的提升.某企业技术变革后,抽检某一产品2020件,欣喜发现产品合格的频率已达到0.9911,依此我们可以估计该产品合格的概率为.(结果要求保留两位小数)13.某班有男生和女生各若干,若随机抽取1人,抽到男生的概率是0.4,则抽到女生的概率是.14.小丽与小华做硬币游戏,任意掷一枚均匀的硬币两次,游戏规定:如果两次朝上的面不同,那么小丽获胜;如果两次朝上的面相同,那么小华获胜.你认为这样的游戏公平吗(填“公平”,“不公平”).15.抛掷一枚质地均匀的骰子(骰子六个面上分别标以1,2,3,4,5,6六个点数),则骰子面朝上的点数大于4的可能性大小是.16.一只不透明的袋子中装有10个白球、20个黄球和30个红球,每个球除颜色外都相同,将球搅匀,从中任意摸出一个球,则下列事件:①该球是白球;②该球是黄球;③该球是红球,按发生的可能性大小从小到大依次排序为(只填写序号).17.事件A发生的概率为,大量重复做这种试验,平均每5000次事件A发生的次数是.18.甲、乙两人轮流做下面的游戏:掷一枚均匀的骰子(每个面分别标有1,2,3,4,5,6这六个数字),如果朝上的数字大于3,则甲获胜,如果朝上的数字小于3,则乙获胜,你认为获胜的可能性比较大的是.19.同时掷两个质地均匀的骰子,则两个骰子的点数和是10的概率为.20.哥哥与弟弟玩一个游戏:三张大小、质地都相同的卡片上分别标有数字1,2,3,将标有数字的一面朝下,哥哥从中任意抽取一张,记下数字后放回洗匀,然后弟弟从中任意抽取一张,计算抽得的两个数字之和,如果和为奇数,则弟弟胜;和为偶数,则哥哥胜,该游戏对双方(填“公平”或“不公平”).三.解答题21.随着互联网的快速发展,人们的生活越来越离不开快递,某快递公司邮寄每件包裹的收费标准是:重量小于或等于1千克的收费10元;重量超过1千克的部分,每超过1千克(不足1千克按1千克计算)需再收费2元.下表是该公司某天9:00~10:00统计的收件情况:重量G(千克)0<G≤11<G≤22<G≤33<G≤44<G≤5G>5件数13514011065500试根据以上所提供的信息,解决下列问题:(1)求包裹重量为1<G≤2的概率;(2)小东打算在该公司邮寄一批每件3千克的包裹到不同地方,现有两种付费方式供他选择:①按该公司收费标准付费;②按上表中的平均费用付费.问:他选择哪种方式付费合算?说明理由.22.一个不透明的口袋里有5个除颜色外都相同的球,其中有2个红球,3个黄球.(1)若从中随意摸出一个球,求摸出红球的可能性;(2)若要使从中随意摸出一个球是红球的可能性为,求袋子中需再加入几个红球?23.口袋里有除颜色外都相同的4个球,其中有红球、白球和蓝球.甲乙两名同学玩摸球游戏.规定:无论谁从口袋里随意摸出一个球,摸到红球,算甲赢;摸到白球,算乙赢;摸到蓝球,不分输赢.每一次摸球,根据球的颜色决定输赢后,将球放回口袋里搅匀后下次再摸球.设计下列游戏:(1)要使甲、乙两人赢的可能性相等,口袋里应放红球、白球和蓝球各多少个?(2)要使甲赢的可能性比乙赢的可能性大,口袋里应放红球、白球和蓝球各多少个?24.某商店在四个月的试销期内,只销售A、B两个品牌的电视机,共售出400台.如图1和图2为经销人员正在绘制的两幅统计图,请根据图中信息回答下列问题.(1)第四个月两品牌电视机的销售量是多少台?(2)先通过计算,再在图2中补全表示B品牌电视机月销量的折线:(3)为跟踪调查电视机的使用情况,从该商店第四个月售出的电视机中,随机抽取一台,抽到A品牌和抽到B品牌电视机的可能性哪个大?请说明理由.25.如图,一个均匀的转盘被平均分成10等份,分别标有1,2,3,4,5,6,7,8,9,10这10个数字.转动转盘,当转盘停止后,指针指向的数字即为转出的数字.两人参与游戏:一人转动转盘,另一人猜数,若所猜数字与转出的数字相符,则猜数的人获胜,否则转动转盘的人获胜.猜数的规则从下面三种中选一种:(1)猜“是奇数”或“是偶数”;(2)猜“是3的倍数”或“不是3的倍数”;(3)猜“是大于6的数”或“不是大于6的数”.如果轮到你猜数,那么为了尽可能获胜,你将选择哪一种猜数方法?怎样猜?请说明理由!26.甲、乙两家销售公司拟各招聘一名产品推销员,日工资方案如下:甲公司规定底薪80元,每销售一件产品提成1元;乙公司规定底薪120元,日销售量不超过45件没有提成,超过45件的部分每件提成8元.(1)请将两家公司各一名推销员的日工资y(单位:元)分别表示为日销售件数n的函数关系式;(2)从两家公司各随机选取一名推销员,对他们过去100天的销售情况进行统计,得到如下条形图、若记甲公司该推销员的日工资为y1,乙公司该推销员的日工资为y2(单位:元),将该频率视为概率,请回答下面问题:某大学毕业生拟到两家公司中的一家应聘推销员工作,如果仅从日均收入的角度考虑,请你利用所学的统计学知识为他作出选择,并说明理由.27.盒中有若干枚黑棋和白棋,这些棋除颜色外无其他差别,现让学生进行摸棋试验:每次摸出一枚棋,记录颜色后放回摇匀.重复进行这样的试验得到以下数据:摸棋的次数n1002003005008001000摸到黑棋的次数m2451761242012500.2400.2550.2530.2480.2510.250摸到黑棋的频率(精确到0.001)(1)根据表中数据估计从盒中摸出一枚棋是黑棋的概率是;(精确到0.01)(2)若盒中黑棋与白棋共有4枚,某同学一次摸出两枚棋,请计算这两枚棋颜色不同的概率,并说明理由参考答案与试题解析一.选择题1.解:两骰子上的数字之和是7的有3+4=7;4+3=7,2+5=7;5+2=7,1+6=7;6+1=7共6种情况,和为8的有2+6=8;6+2=8,3+5=8;5+3=8;4+4=8共5种情况,甲赢的概率大,故选:B.2.解:∵不透明的袋中,装有1个白球、2个红球、2个黄球、3个黑球,共有8个球,∴摸出白球的概率是,摸出红球的概率是=,摸出黄球的概率是=,摸出黑球的概率是,∵<=<,∴从袋中任意摸出:一个球,可能性最大的是黑球;故选:D.3.解:气象部门预报明天下雨的概率是80%,说明明天下雨的可能性比较大.所以只有D 合题意.故选:D.4.解:∵不透明的袋子中装有20个红球,2个黑球,1个白球,共有23个球,∴摸出黑球的概率是,摸出白球的概率是,摸出红球的概率是,∵<<,∴从中任意摸出1个球,摸出红球的可能性最大;故选:D.5.解:∵掷一枚质地均匀的硬币,有两种结果:正面朝上,反面朝上,每种结果等可能出现,∴她第11次掷这枚硬币时,正面向上的概率是:.故选:B.6.解:∵六张卡片上分别写有,π,1.5,5,0,六个数,无理数的是π,,∴从中任意抽取一张卡片上的数为无理数的概率是:.故选:B.7.解:∵三角形的三条垂直平分线的交点到三角形三个顶点的距离相等,∴凳子应放在△ABC的三条垂直平分线的交点最适当.故选:B.8.解:A.瓜熟蒂落,是必然事件,发生的可能性为1,不符合题意;B.旭日东升,是必然事件,发生的可能性为1,不符合题意;C.守株待兔所反映的事件可能发生也可能不发生,是不确定事件,符合题意;D.夕阳西下,是必然事件,发生的可能性为1,不符合题意.故选:C.9.解:这种树苗成活的频率稳定在0.9,成活的概率估计值约是0.90.故选:B.10.解:需要大量重复实验,才能得出结论.本题无法估计盒中红球和白球的个数.故选:D.二.填空题11.解:在试验次数很大时,数字“6”朝上的频率的变化趋势接近的值是.故答案为:.12.解:∵抽检某一产品2020件,发现产品合格的频率已达到0.9911,∴依此我们可以估计该产品合格的概率为0.99,故答案为:0.99.13.解:抽到女生的概率是1﹣0.4=0.6.14.解:任意掷一枚均匀的硬币两次,朝上的情况有正正、反反、正反、反正四种情况,所以两次朝上的面不同或两次朝上的面相同的概率相等,即游戏公平.15.解:掷一枚均匀的骰子时,有6种情况,出现点数大于4的情况有2种,掷得面朝上的点数大于4的概率是:=;故答案为:.16.解:∵共有10+20+30=60(个)球,∴①摸到白球的概率是=,②摸到黄球的概率是=,③摸到红球的概率是=,∴发生的可能性大小从小到大依次排序为①②③,故答案为①②③.17.解:事件A发生的概率为,大量重复做这种试验,则事件A平均每100次发生的次数为:5000×=200.故答案为:200.18.解:∵1,2,3,4,5,6这六个数字中大于3的数字有3个:4、5、6,∴P(甲获胜)=;∵1,2,3,4,5,6这六个数字中小于3的数字有2个:1、2,∴P(乙获胜)=;∵,∴获胜的可能性比较大的是甲.故答案为:甲.19.解:易得有6×6=36种可能,两个骰子的点数和是10的有4,6;5,5;6,4共3种,所以概率是.20.解:列树状图得:共有9种情况,和为偶数的有5种,所以哥哥赢的概率是,那么弟弟赢的概率是,所以该游戏对双方不公平.三.解答题21.解:(1)1<G≤2的概率记为P,则P=,∴包裹重量为1<G≤2的概率为28%;(2)①按公司收费标准付费,则费用S1=10+2×(3﹣1)=10+4=14(元);②按平均费用付费,则费用S2==;∵13.02<14,∴选择平均费用付费合算.22.解:(1)∵从中随意摸出一个球的所有可能的结果个数是5,随意摸出一个球是红球的结果个数是2,∴从中随意摸出一个球,摸出红球的可能性是;(2)设需再加入x个红球.依题意可列:,解得x=4,经检验x=4是原方程的解,∴要使从中随意摸出一个球是红球的可能性为,袋子中需再加入4个红球.23.解:(1)要使甲、乙两人赢的可能性相等,口袋里应放红球1个,白球1个,蓝球2个;(2)要使甲赢的可能性比乙赢的可能性大,口袋里应放红球2个,白球1个,蓝球1个.24.解:(1)根据题意得:400×(1﹣15%﹣30%﹣25%)=120(台),答:第四个月两品牌电视机的销售量是120台;(2)三月份的销售额是:400×25%=100(台),则三月份B品牌电视机销量是100﹣50=50(台),四月份B品牌电视机销量是400×30%﹣40=80(台),补图如下:(3)∵第四个月售出的电视机共有120台,其中销售A品牌有40台,B品牌有80台,∴抽到A品牌的概率是=,抽到B品牌电视机的概率是=,∴抽到B品牌电视机的可能性大.25.解:(1)共有10种等可能出现的结果数,其中“是奇数”的有5种,“是偶数”的也有5种,因此“是奇数”“是偶数”的可能性都是50%,(2)共有10种等可能出现的结果数,其中“是3的倍数”的有3种,“不是3的倍数”的7种,因此“是3的倍数”可能性是30%,“不是3的倍数”的可能性是70%,(3)共有10种等可能出现的结果数,其中“是大于6的数”的有4种,“不是大于6的数”的有6种,因此“是大于6的数”可能性是40%,“不是大于6的数”的可能性是60%,因此,猜数者选择“不是3的倍数”,这样获胜的可能性为70%,获胜的可能性最大.26.解:(1)y甲=80+n,当n≤45时,y乙=120,当n>45时,y乙=120+8(n﹣45)=8n﹣240,所以y乙=,答:两家公司的推销员日工资y与日销售件数n的函数关系式分别为y甲=80+n,y乙=;(2)选择乙公司,理由如下:从条形统计图所反映的数据可计算:甲公司销售员的日销售工资为y1=80+=125(元),乙公司销售员的日销售工资为y2==136(元),因为125<136,所以选择乙公司,27.解:(1)根据表中数据估计从盒中摸出一枚棋是黑棋的概率是0.25,故答案为:0.25;(2)由(1)可知,黑棋的个数为4×0.25=1,则白棋子的个数为3,画树状图如下:由表可知,所有等可能结果共有12种情况,其中这两枚棋颜色不同的有6种结果,所以这两枚棋颜色不同的概率为.。

第2章 简单事件的概率数学九年级上册-单元测试卷-浙教版(含答案)

第2章 简单事件的概率数学九年级上册-单元测试卷-浙教版(含答案)

第2章简单事件的概率数学九年级上册-单元测试卷-浙教版(含答案)一、单选题(共15题,共计45分)1、一个不透明的盒子中装有3个红球,2个黄球和1个绿球,这些球除了颜色外无其他差别,从中随机摸出一个小球,恰好是黄球的概率为()A. B. C. D.2、一个布袋里装有2个红球,3个黄球和5个白球,除颜色外其它都相同,搅匀后任意摸出一个球,是白球的概率为()A. B. C. D.3、下列事件中,属于确定事件的个数是( )⑴打开电视,正在播广告;⑵投掷一枚普通的骰子,掷得的点数小于10;⑶射击运动员射击一次,命中10环;⑷在一个只装有红球的袋中摸出白球.A.0B.1C.2D.34、有一“抢30”游戏,规则是:甲先说“1”或“1、2”,当甲先说“1”时,乙接着说“2”或“2、3”;当甲先说“1、2”时,乙接着说“3”或“3、4”,然后甲再接着按次序往下说一个或二个数,这样两个人反复轮流,每次每人说一个或两个数都可以,但不可以连说三个数,谁先抢到30,谁就获胜.其结果是()A.后报数者可获胜B.先报数者可获胜C.两者都可能胜D.很难预料5、根据电视台天气预报:庐江县明天降雨的概率80%。

对此信息,下列几种说法中正确的是()A.庐江县明天一定会下雨;B.庐江县明天有%的地区会降雨; C.庐江县明天有%的时间会降雨; D.庐江县明天下雨的可能性比较大。

6、下列事件⑴打开电视机,正在播放新闻;⑵父亲的年龄比他儿子年龄大;⑶下个星期天会下雨;⑷向上用力抛石头,石头落地;⑸一个实数的平方是负数.属于确定事件的有()个.A.1B.2C.3D.47、在一个不透明的盒子里装有只有颜色不同的10个红球和若中个黄球每次从盒子里摸出一个球,记录下颜色后再放回,经过多次重复试验,发现摸到黄球的频率稳定在0.8.请估计盒子里黄球约有()A.20个B.40个C.60个D.80个8、在一个不透明的口袋里有红、绿、蓝三种颜色的小球,三种球除颜色外其他完全相同,其中有6个红球,5个绿球,若随机摸出一个球是绿球的概率是,则随机摸出一个球是蓝球的概率是()A. B. C. D.9、下列事件中,属于必然事件的是()A.明天的最高气温将达35℃B.任意购买一张动车票,座位刚好挨着窗口 C.掷两次质地均匀的骰子,其中有一次正面朝上 D.对顶角相等10、某小组在“用频率估计概率”的实验中,统计了某种结果出现的频率,绘制了如图所示的折线图,那么符合这一结果的实验最有可能的是()A.袋子中有1个红球和2个黄球,它们只有颜色上的区别,从中随机地取出一个球是黄球B.掷一个质地均匀的正六面体骰子,落地时面朝上的点数是6C.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”D.掷一枚质地均匀的硬币,落地时结果是“正面向上”11、下列事件(1)打开电视机,正在播放新闻;(2)父亲的年龄比他儿子年龄大;(3)下个星期天会下雨;(4)抛掷两枚质地均匀的骰子,向上一面的点数之和是1;(5)一个实数的平方是正数(6)若a、b异号,则a+b<0.属于确定事件的有()个.A.1B.2C.3D.412、在不透明的布袋中,装有大小、形状完全相同的3个黑球、1个红球,从中摸一个球,摸出1个黑球这一事件是()A.必然事件B.随机事件C.确定事件D.不可能事件13、一个不透明袋子中装有1个红球,2个绿球,除颜色外无其他差别.从中随机摸出一个球,然后放回摇匀,再随机摸出一个,下列说法中,错误的是( )A.第一次摸出的球是红球,第二次摸出的球一定是绿球B.第一次摸出的球是红球,第二次摸出的不一一定是红球C.第一次摸出的球是红球的概率是D.两次摸出的球都是红球的概率是14、一个不透明的袋中,装有2个黄球、3个红球和5个白球,它们除颜色外都相同.从袋中任意摸出一个球,是白球的概率是()A. B. C. D.15、下列事件中,是随机事件的是()A.通常温度降到0°C以下,纯净水结冰.B.随意翻到一本书的某页,这页的页码是偶数.C.我们班里有46个人,必有两个人是同月生的. D.一个不透明的袋中有2个红球和1个白球,它们除了颜色外都相同,从中任意摸出一个球,摸到白球比摸到红球的可能性大.二、填空题(共10题,共计30分)16、小林和小华参加社会实践活动,随机选择“打扫社区卫生”“参加社会调查”其中一项.那么两人同时选择“参加社会调查”的概率是________.17、下列4个事件:①异号两数相加,和为负数;②异号两数相减,差为正数;③异号两数相除,商为负数;④异号两数相乘,积为正数.必然事件是________.(将事件的序号填上即可)18、3张除所标数值外完全相同的卡片,它们标有的数值分别为1、2、-3.把这3张卡片,背面朝上放在桌面上,随机抽取2张,把抽到卡片上的数值分别作为A点的横坐标、纵坐标,则A点落在第一象限的概率是________.19、抛掷一枚质地均匀的硬币,落地后正面朝上的概率是________.20、甲、乙两人轮流做下面的游戏:掷一枚均匀的骰子(每上面分别标有1,2,3,4,5,6这六个数字),如果朝上的数字大于3,则甲获胜,如果朝上的数字小于3,则乙获胜,你认为获胜的可能性比较大的是________.21、“抛掷一枚质地均匀的硬币,正面向上”是________事件(从“必然”、“随机”、“不可能”中选一个).22、在不透明的袋中装有除颜色外其它都相同的3个红球和2个白球,搅匀后从中随机摸出2个球,则摸出的两个球恰好一红一白的概率是________.23、从一副扑g牌中任意抽取1张.①这张牌是“A”;②这张牌是“红桃”;③这张牌是“大王”;④这张牌是“红色的”.将这些事件按发生的可能性从小到大顺序排列________.(填序号,用“<”连接)24、盒子里有4支红色笔芯,3支黑色笔芯,每支笔芯除颜色外均相同.从中任意摸出一支笔芯,则摸出黑色笔芯的概率是________.25、大冶市现要从甲、乙两位男生和丙、丁两位女生中,选派两位同学分别作为参加全市汉字听写大赛,则恰好选中一男一女两位同学参赛的概率是________.三、解答题(共5题,共计25分)26、在四编号为A,B,C,D的卡片(除编号外,其余完全相同)的正面分别写上如图所示正整数后,背面朝上,洗匀放好,现从中随机抽取一张(不放回),再从剩下的卡片中机抽取一张.我们知道,满足的三个正整数a,b,c成为勾股数,请用“列表法”或“树状图法”求抽到的两张卡片上的数都是勾股数的概率(卡片用A,B,C,D表示).27、1路公共汽车大部分是双门的大车,少数是单门的小车.在车站等车,等来的车是双门大车还是单门小车的可能性大?说明理由.28、为丰富学生的校园文化生活,珠海第十中学举办了“十中好声音”才艺比赛,三个年级都有男、女各一名选手进入决赛.初一年级选手编号为男1号、女1号,初二年级选手编号为男2号、女2号,初三年级选手编号为男3号、女3号.比赛规则是男、女各一名选手组成搭档展示才艺.(1)用列举法说明所有可能出现搭挡的结果;(2)求同一年级男、女选手组成搭档的概率;(3)求高年级男选手与低年级女选手组成搭档的概率.29、用如图所示的两个转盘进行“配紫色”游戏,每个转盘都被分成面积相等的三个扇形,游戏者同时转动两个转盘,配成紫色的概率是多少?请用树状图或列表说明理由(蓝色和红色能配成紫色).30、如图,有两个构造完全相同(除所标数字外)的转盘A,B,每个转盘都被分成3个大小相同的扇形,指针位置固定,游戏规定,转动两个转盘各一次,转盘停止后若A盘指针指示区域数字比B盘指针指示区域数字大则小明胜,否则小亮胜(指针指向两个扇形的交线时,当作指向右边的扇形).你认为这个游戏规则公平吗?为什么?参考答案一、单选题(共15题,共计45分)1、B2、A3、B4、A5、D6、C8、D9、D10、B11、B12、B13、A14、A15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、24、25、三、解答题(共5题,共计25分)26、27、28、30、。

浙教版初中数学九年级上册第二单元《简单事件的概率》单元测试卷(标准难度)(含答案解析)

浙教版初中数学九年级上册第二单元《简单事件的概率》单元测试卷(标准难度)(含答案解析)

浙教版初中数学九年级上册第二单元《简单事件的概率》单元测试卷考试范围:第二章;考试时间:120分钟;总分:120分学校:___________姓名:___________班级:___________考号:___________第I卷(选择题)一、选择题(本大题共12小题,共36.0分。

在每小题列出的选项中,选出符合题目的一项)1.我国南方地区冬至的传统习俗是吃汤圆,其寓意团团圆圆冬至这一天,小红家煮了30个汤圆,其中有12个黑芝麻馅的,14个枣泥馅的,4个豆沙馅的,煮完之后的汤圆看起来都一样,小红盛了1个汤圆,下列各种描述正确的是( )A. 她吃到黑芝麻馅汤圆和枣泥馅汤圆可能性一样大B. 她吃到枣泥馅汤圆比豆沙馅汤圆的可能性大很多C. 她不可能吃到豆沙馅汤圆D. 她一定能吃到枣泥馅汤圆2.某班有25名男生和20名女生,现随机抽签确定一名学生做代表参加学代会,则下列选项中说法正确的是( )A. 男、女生做代表的可能性一样大B. 男生做代表的可能性较大C. 女生做代表的可能性较大D. 男、女生做代表的可能性的大小不能确定3.甲、乙、丙3位同学选修课程,从4门课程中,甲选修2门,乙、丙各选修3门,则不同的选修方案共有( )A. 36种B. 48种C. 96种D. 192种4.将三幅完全相同的图片,分别剪成大小相同的上、中、下三段,每张图片的三段放在一起组成三部分,若从每一部分中抽取一段,则正好拼成一幅完整图片的概率是( )A. 227B. 29C. 13D. 495.某轨道列车共有3节车厢,设乘客从任意一节车厢上车的机会均等.某天甲、乙两位乘客同时乘同一列轨道列车,则甲和乙从同一节车厢上车的概率是( )A. 15B. 14C. 13D. 126.下列说法中,正确的是( )A. 不可能事件发生的概率为0B. 随机事件发生的概率为12C. 概率很小的事件不可能发生D. 投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次7.小明在一次用频率估计概率的实验中,统计了某一结果出现的频率,并绘制了如图所示的统计图,则符合这一结果的实验可能是( )A. 从一个装有2个白球和1个红球的不透明袋子中任意摸出一球(小球除颜色外,完全相同),摸到红球的概率B. 掷一枚质地均匀的硬币,正面朝上的概率C. 从一副去掉大小王的扑克牌,任意抽取一张,抽到黑桃的概率D. 任意买一张电影票,座位号是2的倍数的概率8.下图显示了用计算机模拟随机投掷一枚图钉的某次试验的结果.下面有三个推断: ①当投掷次数是500时,计算机记录“钉尖向上”的次数是308,所以“钉尖向上”的概率是0.616; ②随着试验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618; ③若再次用计算机模拟此试验,则当投掷次数为1000时,“钉尖向上”的概率一定是0.620.其中合理的是( )A. ①B. ②C. ① ②D. ① ③9.一个不透明的袋子中有1个红球,1个绿球和n个白球,这些球除颜外都相同.从袋中随机摸出一个球,记录其颜色,然后放回.大量重复该实验,发现摸到绿球的频率稳定于0.25,则白球的个数n的值可能是( )A. 1B. 2C. 4D. 510.某校九年级百日誓师大会的学生代表王红,李明和张敏三人按顺序先后发言,但是教务处认为采用抽签方式决定发言顺序比较公平.经过抽签后,只有李明顺序不变的概率为( )A. 112B. 16C. 13D. 1211.小明和小刚各自掷一枚质地均匀的正方体骰子,若两人的点数之和是奇数,则小明积1分,若两人的点数之和是偶数,则小刚积1分,此游戏( )A. 对小明有利B. 对小刚有利C. 是公平的D. 无法判断12.经过某十字路口的汽车,可能直行,也可能向左转或向右转,如果这三种可能性大小相同,则两辆汽车经过这个十字路口时,一辆向右转,一辆向左转的概率是( )A. 23B. 13C. 29D. 19第II卷(非选择题)二、填空题(本大题共4小题,共12.0分)13.小东认为:任意抛掷一个啤酒盖,啤酒盖落地后印有商标一面向上的可能性的大小是12,你认为小东的想法______(“合理”或“不合理”),理由是______.14.如图,小李与小陈做猜拳游戏,规定每人每次至少要出一个手指,两人出拳的手指数之和为偶数时小李获胜,那么,小李获胜的概率为________.15.从一个不透明的口袋中随机摸出1个球,再放回袋中,不断重复上述过程,一共摸了150次,其中有50次摸到黑球,已知口袋中仅有黑球10个和白球若干个,这些球除颜色外,其他都一样,由此估计口袋中有___________个白球.16.名额分配综合评价是2022年上海市高中阶段学校的招生录取方式之一.市实验性示范性高中将对入围学生开展现场综合评价并赋分,为更好保证打分的公平,将以所有打分的截尾平均数作为考生的分数,即去掉一个最高分和一个最低分以后的平均分数.如果7位高中老师的打分如表所示,那么这位学生的现场综合评价得分是______分.老师1老师2老师3老师4老师5老师6老师7打分910788910三、解答题(本大题共9小题,共72.0分。

2020年浙教新版九年级上册数学《第2章简单事件的概率》单元测试卷(解析版)

2020年浙教新版九年级上册数学《第2章简单事件的概率》单元测试卷(解析版)

2020年浙教新版九年级上册数学《第2章简单事件的概率》单元测试卷一.选择题(共10小题)1.中央电视台“非常6+1”栏目中有个互动环节,在电视直播现场有三个“金蛋”三个“银蛋”其中只有一个“金蛋”内有礼物,银蛋也是如此.有一个打进电话的观众,选择并打开后得到礼物的可能性是()A.B.C.D.2.在有22名男生和20名女生的班级中,随机抽签确定一名学生代表,则下列说法正确的是()A.男、女生做代表的可能性一样大B.男生做代表的可能性较大C.女生做代表的可能性较大D.男、女生做代表的可能性的大小不能确定3.某地气象局预报称:明天A地区降水概率为80%,这句话指的是()A.明天A地区80%的时间都下雨B.明天A地区的降雨量是同期的80%C.明天A地区80%的地方都下雨D.明天A地区下雨的可能性是80%4.在相同条件下重复试验,若事件A发生的概率是,下列陈述中,正确的是()A.事件A发生的频率是B.反复大量做这种试验,事件A只发生了7次C.做100次这种试验,事件A一定发生7次D.做100次这种试验,事件A可能发生7次5.我们知道:用形状,大小完全相同的一种或几种平面图形进行拼接,彼此间不留空隙,不重叠地铺成一片,就是平面图形的镶嵌.那么从若干正三角形,正四边形,正五边形,正六边形中,只选择一种正多边形进行拼接,能够镶嵌的概率是()A.B.C.D.16.A、B、C、D四名同学随机分为两组,两个人一组去参加辩论赛,问A、B两人恰好分到一组的概率()A.B.C.D.7.教科书117页游戏1中的“抢30”游戏,规则是:第一人先说“1”或“1,2”,第二个要接着往下说一个或两个数,然后又轮到第一个,再接着往下说一个或两个数,这样两个人反复轮流,每次每人说一个或两个数都可以,但不可以连说三个数,谁先抢到30,谁就获胜.若按同样的规则改为抢“40”,其结果是()A.后报数者胜B.先报数者胜C.两者都可能胜D.很难预料8.桌子上放着20颗糖果,小明和小军玩游戏,两人商定的游戏规则为:两人轮流拿糖果,每人每次至少要拿1颗,至多可以拿2颗,谁先拿到第10颗谁就获胜,获胜者可以把剩下的10颗糖果全部拿走,其结果是()A.后拿者获胜B.先拿者获胜C.两者都可能胜D.很难预料9.在一个不透明的袋子里装有若干个白球和15个黄球,这些球除颜色不同外其余均相同,每次从袋子中摸出一个球记录下颜色后再放回,经过很多次重复试验,发现摸到黄球的频率稳定在0.75,则袋中白球有()A.5个B.15个C.20个D.35个10.抛掷两枚均匀的硬币,当抛掷多次以后,出现两个反面的成功率大约稳定在()A.25%B.50%C.75%D.100%二.填空题(共8小题)11.从一副扑克牌中任意抽取1张.①这张牌是“A”;②这张牌是“红桃”;③这张牌是“大王”;④这张牌是“红色的”.将这些事件按发生的可能性从小到大顺序排列.(填序号,用“<”连接)12.在一个不透明的袋子中装有1个白球,2个黄球和3个红球,每个除颜色外完全相同,将球摇匀从中任取一球:(1)恰好取出白球;(2)恰好取出红球;(3)恰好取出黄球,根据你的判断,将这些事件按发生的可能性从小到大的顺序排列(只需填写序号).13.小明参加“一站到底”节目,答对最后两道单选题就通关:第一道单选题有3个选项,第二道单选题有4个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项).从概率的角度分析,你建议小明在第题使用“求助”.14.某彩票的中奖率是1‰,某人一次购买一盒(200张)其中每张彩票的中奖率为.15.在一个不透明的袋子里装有2个白色乒乓球和若干个黄色乒乓球,若从这个袋子里随机摸出一个乒乓球,恰好是白球的概率为,则袋子内黄色乒乓球的个数为.16.一个不透明的袋中共有20个球,它们除颜色不同外,其余均相同,其中:8个白球,5个黄球,5个绿球,2个红球,则任意摸出一个球是红球的概率是.17.甲乙两人用2张红心和1张黑桃做游戏,规则是:甲乙各抽取一张,如果两张同一花色,甲胜;若两张花色不同,乙胜;请问:这个游戏是否公平?答:.18.含有4种花色的36张扑克牌的牌面都朝下,每次抽出一张记下花色后再原样放回,洗匀牌后再同,不断重复上述过程,记录抽到红心的频率为25%,那么其中扑克牌花色是红心的大约有张.三.解答题(共8小题)19.下列事件:(1)从装有1个红球和2个黄球的袋子中摸出的1个球是白球;(2)随意调查1位青年,他接受过九年制义务教育;(3)花2元买一张体育彩票,喜中500万大奖;(4)抛掷1个小石块,石块会下落.估计这些事件的可能性大小,在相应位置填上序号.一定会发生的事件:;发生的可能性非常大的事件:;发生的可能性非常小的事件:;不可能发生的事件:.20.一个不透明的口袋里有5个除颜色外都相同的球,其中有2个红球,3个黄球.(1)若从中随意摸出一个球,求摸出红球的可能性;(2)若要使从中随意摸出一个球是红球的可能性为,求袋子中需再加入几个红球?21.某高级酒店为了吸引顾客,设立了一个可以自由转动的转盘,如图所示,并规定:顾客消费100以上(不包括100元),就能获得一次转动转盘的机会,如果转盘停止后,指针正好对准九折、八折、七折、五折区域顾客就可以获得此项待遇(转盘等分成16份)(1)甲顾客消费80元,是否可获得转动转盘的机会?(2)乙顾客消费150元,获得打折待遇的概率是多少?他获得九折,八折,七折,五折待遇的概率分别是多少?22.酒局上经常两人玩猜拳游戏.游戏规则是:每人同时伸出一只手的几个手指(手指数可以是0、1、2、3、4、5),并同时口中喊出一个数,若某人喊出的数恰好等于两人的手指数的和,而另一个人喊出的数与两人的手指数的和不等,就算喊对的人赢,输的人就要喝酒,两人都喊对了或都没喊对,就重来.在某次甲乙两人猜拳时,甲说:“我让让你,我就喊一个数5,其他的数我都不喊,都归你喊,如何?”请你用学过的概率知识加以分析,试说明甲是否作出了让步.23.小明和小亮用下面两个可以自由转动的转盘做游戏,每个转盘被分成面积相等的几个扇形.转动两个转盘各一次,若两次数字之积大于2,则小明胜,否则小亮胜.这个游戏对双方公平吗?请说明理由.24.某商场为了吸引顾客,设计了一个摸球获奖的箱子,箱子中共有20个球,其中红球2个,兰球3个,黄球5个,白球10个,并规定购买100元的商品,就有一次摸球的机会,摸到红、兰、黄、白球的(一次只能摸一个),顾客就可以分别得到80元、30元、10元、0元购物卷,凭购物卷仍然可以在商场购买,如果顾客不愿意摸球,那么可以直接获得购物卷10元.(1)每摸一次球所获购物卷金额的平均值是多少?(2)你若在此商场购买100元的货物,两种方式中你应选择哪种方式?为什么?25.某商场设立了一个可以自由转动的转盘,并规定:顾客购物10元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品.下表是活动进行中的一组统计数据:(1)计算并完成表格:落在“铅笔”的频率(2)请估计,当n很大时,频率将会接近(精确到0.1)(3)假如你去转动该转盘一次,你获得铅笔的概率约是,理由是:.26.在一个不透明的盒子里装有黑、白两种颜色的球共20只,这些球除颜色外其余完全相同,小明做摸球试验,搅匀后,他从盒子里随机摸出一只球记下颜色后,再把球放回盒子中,不断重复上述过程,如表是实验中的一组统计数据:摸到白球的概率(1)请估计:当n很大时,摸到白球的频率将会接近(精确到0.1).(2)若从盒子里随机摸出一只球,则摸到白球的概率的估计值为.(3)试估算盒子里黑、白两种颜色的球各有多少只?2020年浙教新版九年级上册数学《第2章简单事件的概率》单元测试卷参考答案与试题解析一.选择题(共10小题)1.中央电视台“非常6+1”栏目中有个互动环节,在电视直播现场有三个“金蛋”三个“银蛋”其中只有一个“金蛋”内有礼物,银蛋也是如此.有一个打进电话的观众,选择并打开后得到礼物的可能性是()A.B.C.D.【分析】让可能得到礼物的2种情况数除以总情况数即为得到礼物的可能性.【解答】解:三个“金蛋”三个“银蛋”其中只有一个“金蛋”内有礼物,银蛋也是如此,有一个打进电话的观众,选择并打开后得到礼物的可能性是为.故选D.【点评】用到的知识点为:可能性=所求情况数与总情况数之比.2.在有22名男生和20名女生的班级中,随机抽签确定一名学生代表,则下列说法正确的是()A.男、女生做代表的可能性一样大B.男生做代表的可能性较大C.女生做代表的可能性较大D.男、女生做代表的可能性的大小不能确定【分析】根据题意,只要求出男生和女生当选的可能性,再进行比较即可解答.【解答】解:∵某班有25名男生和18名女生,∴用抽签方式确定一名学生代表,男生当选的可能性为=,女生当选的可能性为=,∴男生当选的可能性大于女生当选的可能性.故选:B.【点评】此题考查可能性大小的比较:只要总情况数目相同,谁包含的情况数目多,谁的可能性就大;反之也成立;若包含的情况相当,那么它们的可能性就相等.3.某地气象局预报称:明天A地区降水概率为80%,这句话指的是()A.明天A地区80%的时间都下雨B.明天A地区的降雨量是同期的80%C.明天A地区80%的地方都下雨D.明天A地区下雨的可能性是80%【分析】降水概率就是降水的可能性,根据概率的意义即可作出判断.【解答】解:“明天A地区降水概率为80%”是指明天A地区下雨的可能性是80%.且明天下雨的可能性较大,故A、B、C都错误,只有D正确;故选:D.【点评】本题主要考查了概率的意义,掌握概率是反映出现的可能性大小的量是解题的关键.4.在相同条件下重复试验,若事件A发生的概率是,下列陈述中,正确的是()A.事件A发生的频率是B.反复大量做这种试验,事件A只发生了7次C.做100次这种试验,事件A一定发生7次D.做100次这种试验,事件A可能发生7次【分析】根据概率的意义,可得事件A发生的概率是,表示事件A可能发生7次,但不是一定发生7次,或者只发生了7次,也不表示事件A发生的频率是,据此判断即可.【解答】解:∵事件A发生的概率是,不表示事件A发生的频率是,∴选项A不正确;∵事件A发生的概率是,不表示事件A只发生了7次,可能比7次多,也有可能比7次少,∴选项B不正确;∵事件A发生的概率是,不表示事件A一定发生7次,∴选项C不正确;∵事件A发生的概率是,表示事件A可能发生7次,∴选项D正确.故选:D.【点评】此题主要考查了概率的意义,要熟练掌握,解答此题的关键是要明确:一般地,在大量重复实验中,如果事件A发生的频率会稳定在某个常数p附近,那么这个常数p 就叫做事件A的概率,记为P(A)=p.5.我们知道:用形状,大小完全相同的一种或几种平面图形进行拼接,彼此间不留空隙,不重叠地铺成一片,就是平面图形的镶嵌.那么从若干正三角形,正四边形,正五边形,正六边形中,只选择一种正多边形进行拼接,能够镶嵌的概率是()A.B.C.D.1【分析】几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.360°为正多边形一个内角的整数倍才能单独镶嵌.再根据概率公式计算即可求解.【解答】解:从若干正三角形,正四边形,正五边形,正六边形中,只选择一种正多边形进行拼接,能够镶嵌的有正三角形,正四边形,正六边形,一共3种,故概率是3÷4=.故选:C.【点评】考查了概率公式,平面镶嵌(密铺),用一种正多边形镶嵌,只有正三角形,正四边形,正六边形三种正多边形能镶嵌成一个平面图案.6.A、B、C、D四名同学随机分为两组,两个人一组去参加辩论赛,问A、B两人恰好分到一组的概率()A.B.C.D.【分析】画出树状图,再根据概率公式列式计算即可.【解答】解:根据题意画树状图如下:共有12种情况,A,B两名同学分在同一组的情况有4种,则A、B恰好分到同一组的概率为=;故选:C.【点评】本题考查了概率公式、树状图法,树状图法适合两步或两步以上完成的事件;画出树状图是解题的关键.7.教科书117页游戏1中的“抢30”游戏,规则是:第一人先说“1”或“1,2”,第二个要接着往下说一个或两个数,然后又轮到第一个,再接着往下说一个或两个数,这样两个人反复轮流,每次每人说一个或两个数都可以,但不可以连说三个数,谁先抢到30,谁就获胜.若按同样的规则改为抢“40”,其结果是()A.后报数者胜B.先报数者胜C.两者都可能胜D.很难预料【分析】为了抢到30,那就必须抢到27,这样无论对方叫“28”或“29”,你都获胜.所以为了抢到40,必需抢到37,游戏的关键是报数先后顺序,并且每次报的个数和对方合起来是三个,即对方报a(1≤a≤2)个数字,你就报(3﹣a)个数.抢数游戏,它的本质是一个是否被“3”整除的问题.【解答】解:谁先抢到37,对方无论叫“38”或“39”你都获胜.若甲同学先报数1,为抢到37,甲每次报的个数和对方合起来是三个,(37﹣1)÷3=12,先报数者胜.故选:B.【点评】此题属基本知识的考查,关键是得到需抢到的数字.8.桌子上放着20颗糖果,小明和小军玩游戏,两人商定的游戏规则为:两人轮流拿糖果,每人每次至少要拿1颗,至多可以拿2颗,谁先拿到第10颗谁就获胜,获胜者可以把剩下的10颗糖果全部拿走,其结果是()A.后拿者获胜B.先拿者获胜C.两者都可能胜D.很难预料【分析】通过从第20颗开始向前推,要拿10,必须拿7,以此类推,即可算出结果.【解答】解:最多拿2个,最少拿1个,和为3;则要是想拿到第十颗就必须拿到第7颗,以此类推,必须拿到4,1;所以先拿者获胜.故选:B.【点评】本题主要考查对于题目的推演,要充分考虑会出现的情况.关键是得到需抢到的数字.9.在一个不透明的袋子里装有若干个白球和15个黄球,这些球除颜色不同外其余均相同,每次从袋子中摸出一个球记录下颜色后再放回,经过很多次重复试验,发现摸到黄球的频率稳定在0.75,则袋中白球有()A.5个B.15个C.20个D.35个【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:设袋中白球有x个,根据题意得:=0.75,解得:x=5,经检验:x=5是分式方程的解,故袋中白球有5个.故选:A.【点评】此题考查了利用概率的求法估计总体个数,利用如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=是解题关键.10.抛掷两枚均匀的硬币,当抛掷多次以后,出现两个反面的成功率大约稳定在()A.25%B.50%C.75%D.100%【分析】抛掷两枚均匀的硬币,可能会出现四种情况,而出现出现两个反面的机会为四分之一.【解答】解:抛掷两枚均匀的硬币,可能出现的情况为:正正,反反,正反,反正,∴出现两个反面的概率为,∴抛掷多次以后,出现两个反面的成功率大约稳定在25%.故选:A.【点评】考查利用频率估计概率.大量反复试验下频率稳定值即概率.用到的知识点为:概率=所求情况数与总情况数之比.二.填空题(共8小题)11.从一副扑克牌中任意抽取1张.①这张牌是“A”;②这张牌是“红桃”;③这张牌是“大王”;④这张牌是“红色的”.将这些事件按发生的可能性从小到大顺序排列③①②④.(填序号,用“<”连接)【分析】首先分别求出一副扑克牌中含“A”、“红桃”、“大王”、“红色的”的张数各是多少,然后根据每张牌被抽到的机会相等,只要比较出哪个事件的可能结果最多,即可判断出这些事件发生的可能性的大小,并将这些事件按发生的可能性从小到大顺序排列即可.【解答】解:一副扑克牌中含“A”4张,“红桃”13张,“大王”1张,“红色的”26张,∵1<4<13<26,∴将这些事件按发生的可能性从小到大顺序排列:③①②④.故答案为:③①②④.【点评】此题主要考查了随机事件发生的可能性的大小问题,要熟练掌握,解答此题的关键是判断出一副扑克牌中含“A”、“红桃”、“大王”、“红色鹅”的张数各是多少.12.在一个不透明的袋子中装有1个白球,2个黄球和3个红球,每个除颜色外完全相同,将球摇匀从中任取一球:(1)恰好取出白球;(2)恰好取出红球;(3)恰好取出黄球,根据你的判断,将这些事件按发生的可能性从小到大的顺序排列(1)(3)(2)(只需填写序号).【分析】根据可能性大小的求法,求出各个事件发生的可能性的大小,再按照大小顺序从小到大排列起来即可.【解答】解:根据题意,袋子中共6个球,其中有1个白球,2个黄球和3个红球,故将球摇匀,从中任取1球,①恰好取出白球的可能性为,②恰好取出红球的可能性为=,③恰好取出黄球的可能性为=,故这些事件按发生的可能性从小到大的顺序排列是(1)(3)(2).故答案为:(1)(3)(2).【点评】本题主要考查了可能性大小计算,即概率的计算方法,用到的知识点为:可能性等于所求情况数与总情况数之比,难度适中.13.小明参加“一站到底”节目,答对最后两道单选题就通关:第一道单选题有3个选项,第二道单选题有4个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项).从概率的角度分析,你建议小明在第一题使用“求助”.【分析】首先根据概率的求法,求出第一题使用“求助”小明顺利通关的概率是多少,然后求出在第二题使用“求助”小明顺利通关的概率为多少;最后比较大小,判断出小明在第几题使用“求助”即可.【解答】解:第一题使用“求助”小明顺利通关的概率是:;第二题使用“求助”小明顺利通关的概率是:;∵,∴建议小明在第一题使用“求助”.故答案为:一.【点评】此题主要考查了概率的意义和应用,要熟练掌握,解答此题的关键是分别求出第一题使用“求助”小明顺利通关的概率、第二题使用“求助”小明顺利通关的概率各是多少.14.某彩票的中奖率是1‰,某人一次购买一盒(200张)其中每张彩票的中奖率为1‰.【分析】这道题是有关不确定事件中可能性大小的问题,可能性的大小是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生,小也可能发生.福利彩票的中奖率是1%,说明中奖是不确定事件,无论买多少张彩票,每张彩票的中奖率为1‰.【解答】解:每张彩票的中奖率为1‰.【点评】这道题是有关可能性(概率)的问题,概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,关键是理解概率是反映事件的可能性大小的量.15.在一个不透明的袋子里装有2个白色乒乓球和若干个黄色乒乓球,若从这个袋子里随机摸出一个乒乓球,恰好是白球的概率为,则袋子内黄色乒乓球的个数为3.【分析】设袋子内黄色乒乓球的个数为x,利用概率公式可得=,解出x的值,可得黄球数量即可.【解答】解:设袋子内黄色乒乓球的个数为x,由题意得:=,解得:x=3,经检验,x=3是原方程的解.故答案为:3.【点评】此题主要考查了概率公式,关键是掌握随机事件A的概率P(A)=事件A可能出现的结果数:所有可能出现的结果数.16.一个不透明的袋中共有20个球,它们除颜色不同外,其余均相同,其中:8个白球,5个黄球,5个绿球,2个红球,则任意摸出一个球是红球的概率是.【分析】本题属于比较简单的概率计算问题,用红球总数除以袋中球的总数即可.【解答】解:∵20个球中共有2个红球,∴任意摸出一个球是红球的概率是.故答案是:.【点评】考查了概率的公式,此题是比较简单的概率计算问题,用符合要求的球的总数除以袋子中球的个数即可.17.甲乙两人用2张红心和1张黑桃做游戏,规则是:甲乙各抽取一张,如果两张同一花色,甲胜;若两张花色不同,乙胜;请问:这个游戏是否公平?答:不公平.【分析】分别求得两人获胜的概率后比较,若概率相等则公平,否则就不公平.【解答】解:列表得:共9种情况,同一花色的有5种情况,花色不同的有4种情况,∴甲获胜的概率为:,乙获胜的概率为,故不公平,故答案为:不公平.【点评】本题考查了游戏的公平性,正确地列表或树状图是解决此类问题的关键,难度不大.18.含有4种花色的36张扑克牌的牌面都朝下,每次抽出一张记下花色后再原样放回,洗匀牌后再同,不断重复上述过程,记录抽到红心的频率为25%,那么其中扑克牌花色是红心的大约有9张.【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手求解.【解答】解:∵共有36张扑克牌,红心的频率为25%,∴扑克牌花色是红心的张数=36×25%=9张.故本题答案为:9.【点评】部分的具体数目=总体数目×相应频率.三.解答题(共8小题)19.下列事件:(1)从装有1个红球和2个黄球的袋子中摸出的1个球是白球;(2)随意调查1位青年,他接受过九年制义务教育;(3)花2元买一张体育彩票,喜中500万大奖;(4)抛掷1个小石块,石块会下落.估计这些事件的可能性大小,在相应位置填上序号.一定会发生的事件:(4);发生的可能性非常大的事件:(2);发生的可能性非常小的事件:(3);不可能发生的事件:(1).【分析】根据其发生的概率即可比较出事件发生的可能性的大小.【解答】解:(1)从装有1个红球和2个黄球的袋子中摸出的1个球是白球的概率是0,不可能发生;(2)随意调查1位青年,他接受过九年制义务教育概率较大,发生的可能性较大;(3)花2元买一张体育彩票,喜中500万大奖,概率较小,发生的可能性较小;(4)抛掷1个小石块,石块会下落,概率为1,一定会发生.故答案为:(4);(2);(3);(1).【点评】本题考查的是可能性大小的判断,解决这类题目要注意具体情况具体对待,最准确的方法是计算出事件发生的概率进行比较.一般地必然事件的可能性大小为1,不可能事件发生的可能性大小为0,随机事件发生的可能性大小在0至1之间.20.一个不透明的口袋里有5个除颜色外都相同的球,其中有2个红球,3个黄球.(1)若从中随意摸出一个球,求摸出红球的可能性;(2)若要使从中随意摸出一个球是红球的可能性为,求袋子中需再加入几个红球?【分析】(1)求出摸到红球的概率即可;(2)设需再加入x个红球,根据摸出红球的概率为列出方程求解即可.【解答】解:(1)∵从中随意摸出一个球的所有可能的结果个数是5,随意摸出一个球是红球的结果个数是2,∴从中随意摸出一个球,摸出红球的可能性是.….(3分)(2)设需再加入x个红球.依题意可列:,解得x=1∴要使从中随意摸出一个球是红球的可能性为,袋子中需再加入1个红球.【点评】考查了可能性的大小,对于这类题目,可算出球的总个数,要求某种球被摸到的可能性,就看这种球占总数的几分之几就可以了.21.某高级酒店为了吸引顾客,设立了一个可以自由转动的转盘,如图所示,并规定:顾客消费100以上(不包括100元),就能获得一次转动转盘的机会,如果转盘停止后,指针正好对准九折、八折、七折、五折区域顾客就可以获得此项待遇(转盘等分成16份)(1)甲顾客消费80元,是否可获得转动转盘的机会?(2)乙顾客消费150元,获得打折待遇的概率是多少?他获得九折,八折,七折,五折待遇的概率分别是多少?。

2019年(期末复习)九年级上《第2章简单事件的概率》单元检测试题有答案-(浙教版数学)-原创精品

2019年(期末复习)九年级上《第2章简单事件的概率》单元检测试题有答案-(浙教版数学)-原创精品

期末专题复习:浙教版九年级数学上册第二章简单事件的概率单元检测试卷一、单选题(共10题;共30分)1.有一个不透明的盒子中装有个除颜色外完全相同的球,这个球中只有3个红球,若每次将球充分搅匀后,任意摸出一个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则的值大约是()A.12B.15C.18D.212.在大量重复试验中,关于随机事件发生的频率与概率,下列说法正确的是( )A. 频率就是概率B. 频率与试验次数无关C. 概率是随机的,与频率无关D. 随着试验次数的增加,频率一般会越越接近概率3.小明练习射击,共射击60次,其中有38次击中靶子,由此可估计,小明射击一次击中靶子的频率约是( )A. 38%B. 60%C. 63%D. 无法确定4.有三张正面分别写有数字-1,1,2的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,以其正面数字作为a的值,然后再从剩余的两张卡片随机抽一张,以其正面的数字作为b的值,则点(a,b)在第二象限的概率为A. B.C.D.5.下列说法中正确的是()A. 一个事件发生的机会是99.99%,所以我们说这个事件必然会发生B. 抛一枚硬币,出现正面朝上的机会是,所以连续抛2次,则必定有一次正面朝上C. 甲、乙两人掷一枚正六面体骰子做游戏,规则是:出现1点时甲赢,出现2点时乙赢,出现其它点数时大家不分输赢,这个游戏对两人说是公平的D. 在牌面是1~9的九张牌中随机地抽出一张,抽到牌面是奇数和偶数的机会是一样的6.在1,2,3三个数中任取两个,组成一个两位数,则组成的两位数是偶数的概率为()A. B.C.D.7.投掷一枚普通的六面体骰子,有下列事件①掷得的点数是 ;②掷得的点数是奇数;③掷得的点数不大于 ;④掷得的点数不小于2.这些事件发生的可能性由大到小排列正确的是( )A. ①②③④B. ④③②①C. ③④②①D. ②③①④8.袋中装有编号为1,2,3的三个质地均匀、大小相同的球,从中随机取出一球记下编号后,放入袋中搅匀,再从袋中随机取出一球,两次所取球的编号相同的概率为()A. B.C.D..“上海地区明天降水概率是 5%”,下列说法中,正确的是().A. 上海地区明天降水的可能性较小B. 上海地区明天将有15%的时间降水C. 上海地区明天将有15%的地区降水D. 上海地区明天肯定不降水10.下列说法正确的是().①试验条件不会影响某事件出现的频率;②在相同的条件下试验次数越多,就越有可能得到较精确的估计值,但各人所得的值不一定相同;③如果一枚骰子的质量分布均匀,那么抛掷后每个点数出现的机会均等;④抛掷两枚质量分布均匀的相同的硬币,出现“两个正面”、“两个反面”、“一正一反”的机会相同.A. ①②B. ②③C. ③④D. ①③二、填空题(共10题;共30分)11.在一个不透明的盒子中装有n个规格相同的乒乓球,其中有2个黄色球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复试验后发现,摸到黄色球的频率稳定于0.2,那么可以推算出n大约是________.12.给甲、乙、丙三人打电话,若打电话的顺序是任意的,则第一个打电话给甲的概率是________ .13.从某玉米种子中抽取6批,在同一条件下进行发芽试验,有关数据如下:根据以上数据可以估计,该玉米种子发芽的概率约为________(精确到0.1).14.一个不透明的袋子里装有3个白球、1个红球,这些球除了颜色外无其他的差异,从袋子中随机摸出1个球,恰好是白球的概率是________.15.在一个不透明的布袋中装有标着数字2,3,4,5的4个小球,这4个小球的材质、大小和形状完全相同,现从中随机摸出两个小球,这两个小球上的数字之积大于9的概率为________16.如图,在 × 正方形网格中,黑色部分的图形构成一个轴对称图形,现在任选取一个白色的小正方形并涂黑,使图中黑色部分的图形仍然构成一个轴对称图形的概率是________.17.—个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有6个黄球.每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球试验后发现,摸到黄球的频率稳定在30%,那么可以推算出n大约是________18.同时掷两枚标有数字1~6的正方形骰子,数字和为1的概率是 ________。

浙教版九年级数学上册第2章《简单事件的概率》测试题含答案(PDF版)

浙教版九年级数学上册第2章《简单事件的概率》测试题含答案(PDF版)

第2章测试题一、选择题(每小题4分,共32分)1.下列事件中,属于必然事件的是(D )A .随意掷两个均匀的骰子,朝上面的点数之和为6B .抛一枚硬币,正面朝上C .打开电视正在播放动画片D .3个人分成两组,一定有2个人分在一组2.一个袋子里装有6个红球,3个白球和7个黑球,每个球除颜色外都相同,任意摸出一个球,被摸到的可能性最大的球是(C )A .红球B .白球C .黑球D .无法确定3.某校九年级(1)班50名学生中有20名团员,他们都积极报名参加市“文明倡导活动”.根据要求,该班从团员中随机抽取1名参加,则该班团员贝贝被抽到的概率是(D ) A.150 B.12 C.25 D.1204.在盒子里放有3张分别写有整式a -3,a -4,2的卡片,从中随机抽取两张卡片,把两张卡片上的整式分别作为分子和分母,则还是整式的概率是(A ) A.13 B.23 C.16 D.345.两道单选题都含有A ,B ,C ,D 四个选择项,两道题都随意选一个答案,恰好全部猜对的概率是(D ) A.12 B.14 C.18 D.1166.经过十字路口的汽车,它可继续直行,也可以向左转或向右转,如果这三种可能性大小相同,那么两辆车经过这个十字路口全部继续直行的概率是(A ) A.1B.1C.1D.17.小君手上有24张卡片,其中12张卡片被画上O 记号,另外12张卡片被画上X 记号.如图所示为小君从手上拿出6张卡片放在桌面的情形,且她打算从手上剩下的卡片中抽出一张卡片.若小君手上剩下的每张卡片被抽出的机会相等,则她抽出O 记号卡片的概率是(C )(第7题)A.12 B.13 C.49 D.59【解】 ∵共有12张O 记号卡片和12张X 记号卡片,桌面上有4张O 记号卡片和2张X 记号卡片, ∴剩下的卡片中记号为O 的有8张,记号为X 的有10张, ∴她抽出O 记号卡片的概率为8=4.8.把4根相同颜色的绳子握在手中,仅露出他们的头和尾.然后请另一个同学把4个头分成两组,把每组的两个头相接,4个尾也用同样的方法连接,放手后,4根绳恰巧连成一个环的概率是(A ) A.2B.1C.1D.1【解】 设头为A 1,A 2,A 3,A 4,尾为B 1,B 2,B 3,B 4,则分组后相接,头有A 1A 2和A 3A 4,A 1A 3和A 2A 4,A 1A 4和A 2A 3,尾有B 1B 2和B 3B 4,B 1B 3和B 2B 4,B 1B 4和B 2B 3,∴共有9种连接方式,能结成环的有6种,∴P =69=23. 二、填空题(每小题4分,共24分)9.“任意打开一本200页的数学书,正好是第35页”,这是随机事件(填“必然”“不可能”或“随机”). 10.如图,有A ,B ,C ,D ,E 五张质地均匀、大小形状完全相同的卡片.将有运算式的一面朝下,洗匀后,从中随机抽取1张卡片, 卡片上运算正确的概率是35.2×(-5)=-10 a (3a -1)=3a 2-a (a 2)3=a 5A B C (3+2)(3-2)=1 x 3·x -4=xD E(第10题)11.现有两个不透明的袋子,其中一个装有标号分别为1,2的两个小球,另一个装有标号分别为2,3,4的三个小球,小球除标号外其他均相同,从两个袋子中各随机摸出1个小球,两球标号恰好相同的概率是16.12.一个口袋中有3个黑球和若干个白球,在不允许将球倒出来数的前提下,小明为估计其中的白球数,采用了如下的方法:从口袋中随机摸出一球,记下颜色,然后把它放回口袋中,摇匀后再随机摸出一球,记下颜色……不断重复上述过程.小明共摸了100次,其中20次摸到黑球.根据上述数据,小明可估计口袋中的白球大约有12个. 13.一个密码箱的密码,每个数位上的数都是0~9的自然数,若要使不知道密码的人一次就拨对密码的概率小于12016,则密码至少需要4位.【解】 密码是一位数时一次就拨对密码的概率是110;密码是两位数时一次就拨对密码的概率是1100;密码是三位数时一次就拨对密码的概率是11000;密码是四位数时一次就拨对密码的概率是110000,故密码至少需要4位. 14.4名女同学同一天生日,她们做了一个游戏:买来4张相同的贺卡,各自在其中一张内写上祝福的话,然后放在一起,每人随机拿一张,则她们拿到的贺卡都不是自己所写的概率是38.【解】 设4名同学为A ,B ,C ,D ,相应的贺卡为a ,b ,c ,d ,画树状图如解图.(第14题解)∴P (都不是自己所写)=9=3. 三、解答题(共44分)15.(8分)一个不透明的口袋里装有红、白、黄三种颜色的球(除颜色不同外其余都相同),其中白球有2个,黄球有1个,从中任意摸出1个球是白球的概率为13. (1)求袋中红球的个数.(2)小明认为口袋中共有三种颜色的球,所以从袋中任意摸出一球,摸到红球、白球或黄球的概率都是13,你认为对吗?请你用列表或画树状图的方法说明理由. 【解】 (1)设红球的个数为x ,则22+1+x =13,解得x =3.∴袋中红球有3个. (2)不对,理由如下:画树状图如解图.(第15题解)∴P (白)=26=13,P (黄)=16,P (红)=36=12. ∴摸到白、黄、红三种球的可能性不一样.16.(10分)某校九年级兴趣小组进行投针试验,在地面上有一组平行线,相邻两条平行线之间的距离都为5 cm.将一长为3 cm 的针任意投向这组平行线,下表是他们的试验数据:投掷次数 100 600 1000 2500 3500 5000 针与线相 交的次数 48 251 404 961 1371 1901 相交的频率(1)计算出针与平行线相交的频率,并完成统计表(精确到0.01).(2)估算出针与平行线相交的概率.(3)表中的数据表明:在以上条件下,相交与不相交的可能性相同吗?(4)能否用列表法或画树状图求出针与平行线相交的概率?【解】(1)从左往右依次填:0.48,0.42,0.40,0.38,0.39,0.38.(2)0.38.(3)在以上条件下,针与平行线相交与不相交的可能性不相同.(4)不能用列表法或画树状图来求其概率.17.(12分)有四张卡片(背面完全相同),分别写有数字1,2,-1,-2,把它们背面朝上洗匀后,甲同学抽取一张记下这个数字后放回洗匀,乙同学再从中抽出一张,记下这个数字,用字母b,c分别表示甲、乙两同学抽出的数字.(1)用列表法求关于x的方程x2+bx+c=0有实数解的概率.(2)求(1)中方程有两个相等实数解的概率.【解】(1)列表如下:bc12-1-21(1,1)(2,1)(-1,1)(-2,1)2(1,2)(2,2)(-1,2)(-2,2)-1(1,-1)(2,-1)(-1,-1)(-2,-1)-2(1,-2)(2,-2)(-1,-2)(-2,-2)∴一共有16种等可能的结果.∵关于x的方程x2+bx+c=0有实数解,即b2-4c≥0,∴关于x的方程x2+bx+c=0有实数解的有(1,-1),(1,-2),(2,1),(2,-1),(2,-2),(-1,-1),(-1,-2),(-2,1),(-2,-1),(-2,-2)这10种情况,∴关于x的方程x2+bx+c=0有实数解的概率为1016=58.(2)(1)中方程有两个相等实数解的有(-2,1),(2,1)这两种情况,∴(1)中方程有两个相等实数解的概率为216=18.18.(14分)经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转,如果这三种情况是等可能的,当三辆汽车经过这个十字路口时:(1)求三辆车全部同向而行的概率.(2)求至少有两辆车向左转的概率.(3)由于十字路口右拐弯处是通往新建经济开发区的,因此交管部门在汽车行驶高峰时段对车流量做了统计,发现汽车在此十字路口向右转的频率为25,向左转和直行的频率均为310.目前在此路口,汽车左转、右转、直行的绿灯亮的时间都为30 s,在绿灯亮总时间不变的条件下,为了缓解交通拥挤,请你用统计的知识对此路口三个方向的绿灯亮的时间做出合理的调整.【解】 (1)分别用A ,B ,C 表示向左转、直行、向右转.根据题意,画出树状图如解图.(第18题解)∵共有27种等可能的情况,三辆车全部同向而行的有3种情况, ∴P (三辆车全部同向而行)=327=19. (2)∵至少有两辆车向左转的有7种情况, ∴P (至少有两辆车向左转)=7.(3)∵汽车向右转、向左转、直行的频率分别为25,310,310,∴在不改变各方向绿灯亮的总时间的条件下,可调整绿灯亮的时间如下: 左转绿灯亮的时间为30×3×310=27(s);直行绿灯亮的时间为30×3×310=27(s);右转绿灯亮的时间为30×3×2=36(s).。

浙教版九年级数学上册第二章简单事件的概率单元测试

浙教版九年级数学上册第二章简单事件的概率单元测试

第二章简单事件的概率单元测试一、选择题1.用频率估计概率,可以发现,抛掷硬币,“正面朝上”的概率为0.5,是指(??)A. 连续掷2次,结果一定是“正面朝上”和“反面朝上”各1次B. 连续抛掷100次,结果一定是“正面朝上”和“反面朝上”各50次C. 抛掷2n次硬币,恰好有n次“正面朝上”D. 抛掷n次,当n越来越大时,正面朝上的频率会越来越稳定于0.52.下列事件是必然事件的是(??)A. 某射击运动员射击一次,命中靶心B. 单项式加上单项式,和为多项式C. 打开电视机,正在播广告D. 13名同学中至少有两名同学的出生月份相同3.对“某市明天下雨的概率是75%”这句话,理解正确的是()A. 某市明天将有75%的时间下雨B. 某市明天下雨的可能性较大C. 某市明天一定下雨D. 某市明天将有75%的地区下雨4.下列事件是必然事件的(??)A. 抛掷一枚硬币,四次中有两次正面朝上B. 打开电视体育频道,正在播放NBA球赛C. 射击运动员射击一次,命中十环D. 若a是实数,则??≥05.下列说法中,正确的是(??)A. 不可能事件发生的概率是0B. 打开电视机正在播放动画片,是必然事件C. 随机事件发生的概率是12D. 对“梦想的声音”节目收视率的调查,宜采用普查6.甲同学做数学选择题,他不知道应该选择哪一个,随机的从四个选项中任选一个,一共有12个选择题,每题5分,那么该同学得分的期望为A. 10分B. 20分C. 15分D. 30分7.下列事件中,是不可能事件的是(??)A. 买一张电影票,座位号是奇数B. 射击运动员射击一次,命中9环C. 明天会下雨D. 度量三角形的内角和,结果是360°8.下列事件中,是必然事件的是(??)A. 两条线段可以组成一个三角形B. 400人中有两个人的生日在同一天C. 早上的太阳从西方升起D. 打开电视机,它正在播放动画片9.袋子内有3个红球和2个蓝球,它们只有颜色上的区别,从袋子中随机地取出一个球,取出红球的概率是()A. B. C. D.10.若a是实数,则下列事件是随机事件的是(??)A. ??2+2=0B. ??2>0C. |??|是一个非负数D. 三角形内角和是180°二、填空题11.在九张质地都相同的卡片上分别写有数字-4,-3,-2,-1,0,1,2,3,4,从中任意抽取一张卡片,则所抽卡片上数字的绝对值不大于2的概率是______ .12.如图,在一个正方形围栏中均匀散布着许多米粒,正方形内画有一个圆.一只小鸡在围栏内啄食,则“小鸡正在圆圈内”啄食的概率为______ .13.小明抛掷一枚质地均匀的硬币9次,有6次正面向上,则第10次抛掷这个硬币,背面向上的概率为______.14.设不等式组0<??<20<??<2表示的平面区域为D,在区域D内随机取一个点??(??,??),则??+??<1的概率为________.15.在某次花样滑冰比赛中,发生裁判受贿事件,竞赛委员会决定将裁判由原来的9名增加到14人,其中任取7名裁判的评分作为有效分,这样做的目的是______ .三、解答题16.小明和小亮做游戏,他们利用地上的图案(如图),蒙上眼睛在一定距离处向该图案区域内掷小石子,掷中阴影区域小明赢,否则小亮赢,掷到图案区域外不算.下表是游戏中统计的二组数据.掷中圈内的区域次数m1001502005008001000落在“阴影”区域的次数n73114151374601750落在“阴影”区域的频率??0.730.760.7550.7480.7510.75??⑴估计石子落在“阴影”区域的概率约为多少?⑵小明、小亮谁的获胜概率大?⑶若圆的半径为1,试估计地上该图案(不包括圆)的面积.17.学校旁边的文具店里有A、B、C、D四种笔记本,每种笔记本数量充足,某同学去该店购买笔记本,每种笔记本被选中的可能性相同.⑴若他去买一本笔记本,则他买到A种笔记本的概率是;⑵若他两次去买笔记本,每次买一本,且两次所买笔记本品种不同,求他恰好买到A、D两种笔记本的概率.18.在不透明的袋子中有四张标着数字1,2,3,4的卡片.(1)随机地抽取一张,求??(偶数);(2)随机地抽取两张,两数字之和是偶数的小明获胜、两数字之和为奇数的小华胜,你认为谁获胜的可能性大?为什么?19.小明参加某网店的“翻牌抽奖”活动,如图,4张牌分别对应价值5,10,15,20(单位:元)的4件奖品.(1)如果随机翻1张牌,那么抽中20元奖品的概率为______(2)如果随机翻2张牌,且第一次翻过的牌不再参加下次翻牌,则所获奖品总值不低于30元的概率为多少?【答案】1. D2. D3. B4. D5. A6. B7. D8. B9. C10. B11. 5912. ??413. 1214. 略15. 减少有效分中有受贿裁判评分的可能性16. 解:(1)1000次时,本组实验次数最多,频率可代表概率,石子落在“阴影”区域的概率约为0.75.(2)投到阴影部分的概率大,小明赢的概率大.(3)圆的面积为=??×12=??,∵??:??总=1-0.75=0.25,∴??总=4??,??阴影=4??-??=3??.17. 解:(1)1;4(2)画树状图得:∵共有12种等可能的结果,恰好买到A种笔记本和D种笔记本的有2种情况,∴恰好买到A种笔记本和D种笔记本的概率为:212=16.18. 解:(1)∵共有4个数字,有2个偶数,∴??(偶数)=24=12;(2)列表得:第一次第二次12341(2,1)(3,1)(4,1) 2(1,2)(3,2)(4,2) 3(1,3)(2,3)(4,3) 4(1,4)(2,4)(3,4)∵共有12种情况,和为偶数的有4种,和为奇数的有8种,∴小明获胜的可能性大.19. 25%。

第二章 简单事件的概率 章末检测(解析版)

第二章 简单事件的概率 章末检测(解析版)

初中数学浙教版九年级上册第二章简单事件的概率章末检测一、单选题1.下列事件中,是随机事件的是()A. 任意画一个三角形,其内角和是360°B. 任意抛一枚图钉,钉尖着地C. 通常加热到100℃时,水沸腾D. 太阳从东方升起2.下列语句描述的事件中,是随机事件的为()A. 水能载舟,亦能覆舟B. 只手遮天,偷天换日C. 瓜熟蒂落,水到渠成D. 心想事成,万事如意3.下列说法中,正确的是()A. 不可能事件发生的概率为0B. 随机事件发生的概率为C. 概率很小的事件不可能发生D. 投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次4.一个布袋里装有2个红球,3个黑球,4个白球,它们除颜色外都相同,从中任意摸出1个球,则下列事件中,发生可能性最大的是()A. 摸出的是白球B. 摸出的是黑球C. 摸出的是红球D. 摸出的是绿球5.抛掷一枚质地均匀的硬币,正面朝上的概率为0.5,下列说法正确的是()A. 连续抛掷2次必有1次正面朝上B. 连续抛掷10次不可能都正面朝上C. 大量反复抛掷每100次出现正面朝上50次D. 通过抛掷硬币确定谁先发球的比赛规则是公平的6.下列计算①②③④⑤,其中任意抽取一个,运算结果符合题意的概率是()A. B. C. D.7.如图,有一电路AB是由图示的开关控制,闭合a,b,c,d,e五个开关中的任意两个开关,使电路形成通路,则使电路形成通路的概率是()A. B. C. D.8.甲、乙两名同学在一次用频率去估计概率的实验中,统计了某一结果出现的频率,绘出的统计图如图所示,则符合这一结果的实验可能是()A. 掷一枚质地均匀的正六面体的骰子,向上的一面点数是1点的概率B. 抛一枚质地均匀的硬币,出现正面朝上的概率C. 一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃的概率D. 在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”的概率9.在围棋盒中有x颗白色棋子和y颗黑色棋子,从盒中随机取出一颗棋子,取得白色棋子的概率是.如果再往盒中放进6颗黑色棋子,取得白色棋子的概率是,则原来盒中有白色棋子()A. 8颗B. 6颗C. 4颗D. 2颗10.甲乙两人轮流在黑板上写下不超过的正整数(每次只能写一个数),规定禁止在黑板上写已经写过的数的约数,最后不能写的为失败者,如果甲写第一个,那么,甲写数字()时有必胜的策略.A. 10B. 9C. 8D. 6二、填空题11.在线段AB上任取三点x1、x2、x3,则x2位于x1与x3之间的可能性________(填写“大于”、“小于”或“等于”)x2位于两端的可能性.12.一个不透明的盒子中装有6张生肖邮票,其中有3张“猴票”,2张“鸡票”和1张“狗票”,这些邮票除了画面内容外其他都相同,从中随机摸出一张邮票,恰好是“鸡票”的可能性为________.13.如图,在2×2的正方形网格中有9个格点,已经取定点A和B,在余下的7个点中任取一点C,使△ABC不是直角三角形的概率是________.14.若正整数n使得在计算n+(n+1)+(n+2)的过程中,各数位均不产生进位现象,则称n为“本位数”.例如2和30是“本位数”,而5和91不是“本位数”.现从所有大于0且小于100的“本位数”中,任意抽取一个数,抽到偶数的概率为________.15.若质量抽检时任抽一件西服成品为合格品的概率为0.9,则200件西服中大约有________合格品.三、综合题16.下列事件,哪些是必然发生的事件?哪些是不可能发生的事件?哪些是随机事件?(1)有一副洗好的只有数字1~10的10张扑克牌。

九年级浙教版第二章简单事件的概率单元过关测试

九年级浙教版第二章简单事件的概率单元过关测试

第二章 简单事件的概率(A 卷)一、选择题(每小题5分,共25分)1. 同时投掷2颗均匀的股子,朝上一面点数的和是偶数的概率是( ) A. 0 B.14 C.12D.1 2. 从两批零件中,各取5个零件,其中都有一个不合格品.如果各取l 个,取到都是合格品的概率为( ) A.15 B.45 C.1625D. 2425 3. 甲从标有1,2,3,4的4张卡片中任抽1张,然后放回.乙再在4张卡片中任抽1张两人抽到的标号的和是2的倍数的(包括2)概率是( ) A .12 B .14 C .16 D .184. 在一个8万人的小镇上,随机调查1500人,其中有200人看中央电视台的早新闻.在该镇随便问一个人,他看早新闻的概率大约是 ( ) A.215 B.3160 C.1400 D. 17805. 有a 张甲级票和b 张乙级票,小英用实验的方法,从中任抽l 张,抽到甲级票的概率为m ,则甲级票张数是乙级票的( ) A .m 倍 B .1m m -倍 C .1m m +倍 D .1mm-倍 二、填空题(每小题5分,共25分)6. 如图是一个可以自由转动的转盘,其中阴影部分是圆心角为600和90的两个扇形.小明以相同速度转动两次转盘,当每次转盘停止后,指针都指向阴影部分的概率为 .7. 一道选择题有A ,B ,C,D 4个选项,只有1个选项是正确的.若两位同学随意任选1个答案,则同时选对的概率为 .8. 现有6张扑克牌,牌面七分别是方块l,2,3和草花2,3,4.小红从草花和方一块里各摸1张牌,摸到2张牌上的数之和是5的概率是 .9. 小华和小勇做抛掷硬币游戏,抛2次.如果2次“正面向上”,那么小华得1分;如果2次“反面向上”,那么小勇得1分;否则两人都得0分.准先得到10分,谁就赢.对小华和小勇来讲,这个游戏规则公平吗?答: .10. 冬冬设计一种游戏,在2张卡片上各画1只羊,在另2张卡片上各画l只猴,在其余2张卡片上各画1匹马.从这6张卡片中第一次抽取l张后重新放回,第二次再抽取1张,两次抽取的卡片画面都为猴的概率是.三、解答题(共50分)11. (8分)某口袋中有红色、白色、黑色塑料球共88个.明明通过多次摸球实验后,发现摸到红球、白球、黑球的概率依次为25%, 45%和30%.试估计口袋中3种塑料球的数目分别有多少个?12. ( 10 分)如图是利用两个转盘进行“配紫色”游戏.请你在这个游戏中用列表或树状图法,求配得紫色的概率.13.(10分)某公司的各办公室内线电话的号码都是由四个数字组成.前两个数都是88,后两个数是由l、3、5 和2、4、6 两组数中分别任取一个组成(秋序不限).后两个数之和为几的概率最大?概率为多少?后两个数字的和为9的概率是多少.清画出树状图说明.14. (10分)桌子上放着6张扑克牌,全部正面朝下,其中有2张是方块J.甲、乙两人做游戏,游戏规则是:随机取2张牌并把它们翻开,若2张牌中有方块J,则甲方为胜.否则乙方为胜.你愿意充当甲方还是乙方?为什么?15.(12分)如图,甲、乙两人做转盘游戏,游戏规则如下:甲按顺时针方向转动转盘一次,乙按逆时针方向转动转盘一次.(1)若两次转动所得数的和为奇数,则甲为胜;若两次转动所得数的和为偶数,则乙为胜.这个游戏对双方公平吗?请说说你的理由.(2)若两次转动所得数的和为6、8,则甲为胜;若两次转动所得数的和为9、10,则乙为胜. 这个游戏对双方公平吗?请说说你的理由.参考答案第二章简单事件的概率(B卷)一、选择题(共30分)1.下列说法不正确的是A.某事件发生的概率为1,则它不一定必然会发生;B.某事件发生的概率为O,则它必然不会发生;C.抛一个普通纸杯,杯口不可能向上;D.从一批产品中任取一个为次品是可能的2. 一个袋中有4个珠子,其中2个红色,2个蓝色,除颜色外其余特征均相同,若从这个袋中任取2个珠子,都是蓝色珠子的概率是( )A.12B.13C.14D.163. 一次抽奖活动中,印发奖券1000张,其中一等奖20张,二等奖80张,三等奖200 张,那么任一位抽奖者(仅买一张奖券)中奖的概率是( )A. 150B.225C.15D.3104. 往返与 A 、B 两市之间的特快列车,途中要停靠两个站点,如果任意两站间的票价都不同,那么有( )种不同的票价.A. 4B. 6C. 10D.125. 一个箱子中放有红、黄、黑三种小球,三个人先后去摸球,一人摸一次,一次摸出一个小球,摸出后放回,摸出黑色小球为赢,这个游戏是( )A .公平的;B .不公平的;C .先摸者赢的可能性大;D .后摸者赢的可能性大 6.下列说法中,正确的是( )A .买一张电影票,座位号一定是偶数;B .投掷一枚均匀硬币,正面一定朝上;C .三条任意长的线段可以组成一个三角形;D .从1、2、3、4、5这五个数字中任取一个数,取得奇数比取得偶数的可能性大 7.如图,小明周末到外婆家,走到十字路口处,记不清哪条路通往外婆家,那么他能一次选对路的概率是( ) A.12 B. 13 C. 14D.0 8. 某班学生在颁奖大会上得知该班获得奖励的情况如下表.已知该班共有28人获得奖励,其中获得两项奖励的13人,那么该班获得奖励最多的一位同学可能获得的奖励为( )A. 3 项B. 4 项C. 5 项D. 6 项二、填空题(共20分)9.某校有一支由 12 人组成的篮球队,年龄结构如下表.从中抽取1人,年龄不小于15岁的概率是.10.如图表示某班21位同学衣服上口袋的数目.若任选一位同学,则其衣服上口袋数为5的概率是 .11.一个科室有3名男士、2名女士,从中任选2人做一项接待工作,则选到的人都是女士的概率为 .12. 去掉大小王一副牌共52张,任取两张,则两张为同色的概率等于.三、解答题(共50分)13.某公司对一批某品牌衬衣的质量抽检结果如下表..抽查件数50 100 200 300 400 500次品件数0 4 16 19 24 30(1)从这批衬衣众人抽1件是次品的概率约为多少?(2)如果销售这批衬衣600件,那么至少要再准备多少件正品衬衣供买到次品的顾客更换?14. 两家商厦搞节日促销活动,A商厦进行有奖销售,凡购物满100元可摸一张奖券,每一万张奖券设一等奖10个,奖金5000元;二等奖100个,奖金500元;三等奖200个,奖金20元.B商厦,全场八五折酬宾.问顾客参加哪一家商厦的节日促销活动期望值较高?15. 保险公司对某地区人们的寿命调查后发现活到50岁的有69800人,在该年龄死亡的人数为 980人,活到70岁的有38500人,在该年龄死亡的有2400人.(1)某人今年50岁,则他活到70岁的概率为多少?(2)若有20000个50岁的人参加保险,当年死亡的赔偿金为每人2万元,预计保险公司该年赔付总额为多少?.16. 小明有3双黑袜子和1双白袜子,假设袜子不分左右,那么从中随机抽取2只恰好配成一双的概率是多少?如果袜子分左右呢?17. 请你在如图转盘内涂上红、黄、蓝三种颜色,要求任意旋转一次指针落在红色区域的概率是5,落在黄色区域和蓝色区域的概率之比是3 : 41218. 你喜欢玩游戏吗?现请你玩一个转盘游戏.如图所示的两个转盘中指针落在每一个数字上的机会均等.现同时自由转动甲、乙两个转盘,转盘停止后,指针各指向一个数字,用所指的两个数字作乘积.请你:(1)列举(用列表或画树状图)所有可能得到的数字之积. (2)求出数字之积为奇数的概率.19. 某商场搞促销活动,设计了一个游戏:在一只黑色的口袋里装有颜色不同的50只小球,其中红球1只、黄球2只、绿球10只,其余为白球.搅拌均匀后,每花2元钱可摸1个球.奖品的情况为:摸得红球奖金8元;摸得黄球奖金5元;摸得绿球奖金l元;摸得白球无奖金.(1)如果花2元摸1个球,那么摸不到奖的概率是多少?(2)如果花4元同时摸2个球,那么获得10元奖品的概率是多少?20. 一个口袋里有10个红球和若干个白球,请通过以下实验估计口袋中白球的个数:从口袋中随机摸出一球,记下其颜色,再把它放回口袋中,不断重复上述过程.实验中总共摸了200 次,其中有50次摸到红球.参考答案。

浙教版九年级上册 第2章《简单事件的概率》单元检测

浙教版九年级上册 第2章《简单事件的概率》单元检测

浙教版九上数学第2章《简单事件的概率》测试、答案考试时间:120分钟满分:120分一、选择题(本大题有12小题,每小题3分,共36分)下面每小题给出的四个选项中,只有一个是正确的.1.下列说法正确的是()A. “明天降雨的概率为50%”,意味着明天一定有半天都在降雨B. 了解全国快递包裹产生的包装垃圾数量适合采用全面调查(普查)方式C. 掷一枚质地均匀的骰子,骰子停止转动后,6点朝上是必然事件D. 一组数据的方差越大,则这组数据的波动也越大2.在一个不透明的盒子里有3个分别标有数字5,6,7的小球,它们除数字外其他均相同.充分摇匀后,先摸出1个球不放回,再摸出1个球,那么这两个球上的数字之和为奇数的概率为()A. B. C. D.3.已知不透明的袋中只装有黑、白两种球,这些球除颜色外都相同,其中白球有30个,黑球有n个.随机地从袋中摸出一个球,记录下颜色后,放回袋子中并摇匀,再从中摸出一个球,经过如此大量重复试验,发现摸出的黑球的频率稳定在0.4附近,则n的值约为()A. 20B. 30C. 40D. 504.在一个不透明的塑料袋中装有红色、白色球共40个,除颜色外其它都相同,小明通过多次摸球实验后发现,其中摸到红色球的频率稳定在15%左右,则口袋中白色球可能()A. 4个B. 6个C. 34个D. 36个5.下列说法正确的是().①试验条件不会影响某事件出现的频率;②在相同的条件下试验次数越多,就越有可能得到较精确的估计值,但各人所得的值不一定相同;③如果一枚骰子的质量分布均匀,那么抛掷后每个点数出现的机会均等;④抛掷两枚质量分布均匀的相同的硬币,出现“两个正面”、“两个反面”、“一正一反”的机会相同.A. ①②B. ②③C. ③④D. ①③6.小明在一只装有红色和白色球各一只的口袋中摸出一只球,然后放回搅匀再摸出一只球,反复多次实验后,发现某种“状况”出现的机会约为50%,则这种状况可能是().A. 两次摸到红色球B. 两次摸到白色球C. 两次摸到不同颜色的球D. 先摸到红色球,后摸到白色球7.下列关于概率的叙述正确的是()A. 某运动员投篮5次,投中4次,投中的概率为0.8B. 任意抛掷一枚硬币两次,结果是两个都是正面的概率是C. 数学选择题,四个选择支中有且只有一个正确,如果从中任选一个,选对的概率为D. 飞机失事死亡的概率为0.000000000038,因此乘飞机失事而死亡是不可能事件8.如图,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,与图中阴影部分构成轴对称图形的概率是( )A. B. C. D.(第8题)(第9题)9.在边长为1的小正方形组成的网格中,有如图所示的A,B两点,在格点上任意放置点C,恰好能使得△ABC的面积为1的概率为().A. B. C. D.10.下列说法正确的是().A. 可能性很小的事件在一次实验中一定不会发生B. 可能性很小的事件在一次实验中一定发生C. 可能性很小的事件在一次实验中有可能发生D. 不可能事件在一次实验中也可能发生11.某校九年级一班共有学生50人,现在对他们的生日(可以不同年)进行统计,则正确的说法是()A. 至少有两名学生生日相同B. 不可能有两名学生生日相同C. 可能有两名学生生日相同,但可能性不大D. 可能有两名学生生日相同,且可能性很大12.下列成语或词语所反映的事件中,可能性大小最小的是()A. 瓮中捉鳖B. 守株待兔C. 旭日东升D. 夕阳西下二、填空题(本大题有6小题,每小题3分,共18分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.13.一口袋中有6个红球和若干个白球,除颜色外均相同,从口袋中随机摸出一球,记下颜色,再把它放回口袋中摇匀.重复上述实验共300次,其中120次摸到红球,则口袋中大约有________个白球.14.如图,平面内有16个格点,每个格点小正方形的边长为1,则图中阴影部分的面积为_ _ .15.某彩票的中奖率是1‰,某人一次购买一盒(200张)其中每张彩票的中奖率为________.16.小强与小红两人下军棋,小强获胜的概率为46%,小红获胜的概率是30%,那么两人下一盘棋小红不输的概率是________.17.有两把不同的锁和四把不同的钥匙,其中两把钥匙恰好分别能打开这两把锁,其余的钥匙不能打开这两把锁,现在任意取出一把钥匙去开任意一把锁,一次就能打开锁的概率是________.18.在100个数据中,用适当方法抽取50个样本进行统计,在频数分布表中,54.5~57.5这一组的频率是0.2,那么估计总体数据落在54.5~57.5之间的约有________个.三、解答题(本大题有7小题,共66分)解答应写出文字说明,证明过程或推演步骤19.(8分)在四张编号为A,B,C,D的卡片(除编号外,其余完全相同)的正面分别写上如图所示正整数后,背面朝上,洗匀放好,现从中随机抽取一张,不放回,再从剩下的卡片中随机抽取一张.(1)请用树状图或列表的方法表示两次抽取卡片的所有可能出现的结果(卡片用A,B,C,D表示);(2)我们知道,满足a2+b2=c2的三个正整数a,b,c成为勾股数,求抽到的两张卡片上的数都是勾股数的概率.20.(12分)一个盒中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机摸取一个小球然后放回,再随机摸出一个小球.(Ⅰ)请用列表法(或画树状图法)列出所有可能的结果;(Ⅱ)求两次取出的小球标号相同的概率;(Ⅲ)求两次取出的小球标号的和大于6的概率.21.(8分)小亮和小芳都想参加学校杜团组织的暑假实践活动,但只有一个名额,小亮提议用如下的办法决定谁去等加活动:将一个转盘9等分,分别标上1至9九个号码,随意转动转盘,若转到2的倍数,小亮去参加活动;转到3的倍数,小芳去参加活动;转到其它号码则重新特动转盘.(1)转盘转到2的倍数的概率是多少?(2)你认为这个游戏公平吗?请说明理由.22(8分).一个家庭有3个孩子,(1)求这个家庭有2个男孩和1个女孩的概率;(2)求这个家庭至少有一个男孩的概率.23.(8分)西安汇聚了很多人们耳熟能详的陕西美食.李华和王涛同时去选美食,李华准备在“肉夹馍(A)、羊肉泡馍(B)、麻酱凉皮(C)、(biang)面(D)”这四种美食中选择一种,王涛准备在“秘制凉皮(E)、肉丸胡辣汤(F)、葫芦鸡(G)、水晶凉皮(H)”这四种美食中选择一种.(1)求李华选择的美食是羊肉泡馍的概率;(2)请用画树状图或列表的方法,求李华和王涛选择的美食都是凉皮的概率.24.(10分)一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色外都相同,其中红球有2个,若从中随机摸出一个球,这个球是白球的概率为.(1)求袋子中白球的个数;(请通过列式或列方程解答)(2)随机摸出一个球后,不放回,再随机摸出一个球,求两次都摸到相同颜色的小球的概率.(请结合树状图或列表解答)25.(12分)王老师将个黑球和若干个白球放入一个不透明的口袋并搅匀,让若干学生进行摸球实验,每次摸出一个球(有放回),下表是活动进行中的一组统计数据.摸球的次数摸到黑球的次数摸到黑球的频率(1)补全上表中的有关数据,根据上表数据估计从袋中摸出一个球是黑球的概率是________(精确到0.01);(2)估算袋中白球的个数;(3)在的条件下,若小强同学有放回地连续两次摸球,用画树状图或列表的方法计算他两次都摸出白球的概率.参考答案一、单选题1. D2. A3. A4. C5. B6. C7. C 8. C 9. C 10. C 11. C 12. B二、填空题13.9 14.15.1%16.54% 17. 18. 20三、解答题19.(1)解:画树状图如下:则共有12种等可能的结果数;(2)∵共有12种等可能的结果数,抽到的两张卡片上的数都是勾股数的结果数为6种,∴抽到的两张卡片上的数都是勾股数的概率==.20.解:(Ⅰ)画树状图得:(Ⅱ)∵共有16种等可能的结果,两次取出的小球的标号相同的有4种情况,∴两次取出的小球标号相同的概率为= ;(Ⅲ)∵共有16种等可能的结果,两次取出的小球标号的和大于6的有3种结果,∴两次取出的小球标号的和大于6的概率为.21.(1)解:∵共有9种等可能的结果,其中2的倍数有4个,∴P(转到2的倍数)=(2)解:游戏不公平,∵共有9种等可能的结果,其中3的倍数有3个,∴P(转到3的倍数)= = ,∵>,∴游戏不公平22.(1)解:画树状图为:共有8种等可能的结果数;有2个男孩和1个女孩的结果数为3,所以有2个男孩和1个女孩的概率=;(2)解:至少有一个男孩的结果数为7,所以至少有一个男孩的概率=.23.(1)李华选择的美食是羊肉泡馍的概率为;(2)解:列表得:由列表可知共有16种情况,其中李华和王涛选择的美食都是凉皮的结果数为2,所以李华和王涛选择的美食都是凉皮的概率为= .24.(1)解:设袋子中有白色的球x个,由题意得解得 x=1,经检验x=1是该方程的解,∴袋子中一共有白色的球1个;(2)解:根据题意画树状图如下,∵共有6种等可能的结果,两次都摸到相同颜色的小球的有2种情况,∴两次都摸到相同颜色的小球的概率为。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章 简单事件的概率 单元检测试题
一、选择题
1、随机掷两枚硬币,落地后全部正面朝上的概率是( ) A .1
B .
12
C .
13
D .
14
2、如图,有5张形状、大小、质地均相同的卡片,正面分别印有北京奥运会的会徽、吉祥物(福娃)、火炬和奖牌等四种不同的图案,背面完全相同.现将这5张卡片洗匀后正面向下放在桌子上,从中随机抽取一张,抽出的卡片正面图案恰好是吉祥物(福娃)的概率是( )
A .
15
B .
25
C .
12
D .
35
3、有一个质地均匀且六个面上分别刻有1到6的点数的正方体骰子,掷一次骰子,向上的一面的点数为2的概率是( ) A .0
B .
12
C .
16
D .1
4、向如图所示的圆盘中随机抛掷一枚骰子,骰子落在阴影区域的概率(盘底被等分成12份,不考虑骰子落在线上情形)是( ) A .
61 B .41 C .31 D .23
5、在一个不透明的口袋中,装有若干个除颜色不同其余都相同的球,如果口袋中装有4个红球且摸到红球的概率为1
3
,那么口袋中球的总数为( )
A.12个 B.9个 C.6个 D.3个
6、在盒子里放有三张分别写有整式1a +、2a +、2的卡片,从中随机抽取两张卡片,把两张卡片上的整式分别作为分子和分母,则能组成分式的概率是( ).
A.
13 B. 23 C. 16 D. 34
7、从n 个苹果和3个雪梨中,任选1个,若选中苹果的概率是
1
2
,则n 的值是( ) A . 6 B . 3 C . 2 D . 1 8、从n 张互不相同的普通扑克牌中任意抽取一张,抽到黑桃K 的概率为
5
1
,则n =( ) A .54 B .52 C .10 D .5
9、在一个暗箱里放有a 个除颜色外其它完全相同的球,这a 个球中红球只有3个.每次将球搅拌均 匀
后,任意摸出一个球记下颜色再放回暗箱.通过大量重复摸球实验后发现,摸到红球的频率稳定在25%,那么可以推算出a 大约是( ) A .12 B .9 C .4 D .3答 10、一个袋子中装有6个黑球3个白球,这些球除颜色外,形状、大小、质地等完全相同,在看不 到 球
的条件下,随机地从这个袋子中摸出一个球,摸到白球的概率为( )
A .
19
B .
13
C .
12
D .
23
二、填空题
11、随机掷一枚质地均匀的普通硬币两次,出现两次正面都朝上的概率是 .
12、在一个袋子中装有除颜色外其它均相同的2个红球和3个白球,从中任意摸出一个球,则摸到 红
球的概率是 . 13、在2
a □2a
b □2
b 的空格中,任意填上“+”或“-”,得到的所有多项式中是完全平方式的概率为 .
14、某校九年级二班50名学生的年龄情况如下表所示:
15岁的 概
率等于________.
15、已知平面内的凸四边形ABCD ,现从一下四个关系式 ①AB =CD 、②AD =BC 、③AB ∥CD 、④∠A =∠
C 中任取两个作为条件,能够得出这个四边形ABC
D 是平行四边形的概率为 . 16、有5张质地相同的卡片,它们的背面都相同,正面分别印有“贝贝”、“晶晶”、“欢欢”、“迎迎”、
“妮妮”五种不同形象的福娃图片.现将它们背面朝上,卡片洗匀后,任抽一张是“欢欢”的概率是 .
17、如图所示的扇形图给出的是地球上海洋、陆地的表面积约占地球总表面积的百分比,若宇宙中有一块
陨石落在地球上,则它落在海洋中的概率是 .
18、在一个不透明的盒子中装有2个白球,n 个黄球,它们除颜色不同外,其余均相同.若从中随机摸出
一个球,它是白球的概率为
2
3
,则n . 19、一个袋子中装有6个球,其中4个黑球2个白球,这些球除颜色外,形状、大小、质地等完全相同.搅
匀后,在看不到球的条件下,随机从这个袋子中摸出一个球为白球的概率是 .
20、如图所示,有一电路AB 是由图示的开关控制,闭合a ,b ,c ,d ,e 五个开关中的任意两个开关,使电路形成通
路.则使电路形成通路的概率是 .
三、应用题
21、甲同学口袋中有三张卡片,分别写着数字1,1,2,乙同
学口袋中也有三张卡片,分别写着数字1,2,2.两人各自从自己的口袋中随机摸出一张卡片,若两人摸出的卡片上的数字之和为偶数,则甲胜;否则乙胜.求甲胜的概率.
22、四张大小、质地均相同的卡片上分别标有1,2,3,4.现将标有数字的一面朝下扣在桌子上,然后由小明从中随机抽取一张(不放回),再从剩下的3张中随机取第二张.
(1)用画树状图的方法,列出小明前后两次取得的卡片上所标数字的所有可能情况;
(2)求取得的两张卡片上的数字之积为奇数的概率.
23、甲、乙两超市(大型商场)同时开业,为了吸引顾客,都举行有奖酬宾活动:凡购物满100元,均可
得到一次摸奖的机会.在一个纸盒里装有2个红球和2个白球,除颜色外其它都相同,摸奖者一次从中摸出两个球,根据球的颜色决定送礼金券(在他们超市使用时,与人民币等值)的多少(如下表).甲超市:
乙超市:
(1)用树状图表示得到一次摸奖机会时中礼金券的所有情况;
(2)如果只考虑中奖因素,你将会选择去哪个超市购物?请说明理由.
参考答案
一、选择题
1、D
2、B
3、C
4、C
5、A
6、B
7、B
8、D
9、A 10、B 二、填空题 11、
4
1
12、25 13、0.5 14、15岁(1分); 52 (2分)
15、0.5 16、
51 17、0.71 18、1 19、13 20、35
三、应用题
21、解:所有可能的结果列表如下:
由表可知,和为偶数的结果有4种,()9
P ∴=甲胜. 答:甲胜的概率是4
9
. 10分
22、解:(1)
(2)P (积为奇数)1
6
=.
23、(1)树状图为:
(2)方法1:
∵ 去甲超市购物摸一次奖获10元礼金券的概率是P (甲)42=
=2 3 4
1 3 4
1 2 4
1 2 3 1 2 3 4 第一次
第二次
去乙超市购物摸一次奖获10元礼金券的概率是P (乙)2163
=
=, ∴ 我选择去甲超市购物.
方法2:
∵ 两红的概率P=61,两白的概率P=61
,一红一白的概率P=46=3
2, ∴ 在甲商场获礼金券的平均收益是:61×5+32×10+61×5=325

在乙商场获礼金券的平均收益是:61×10+32×5+61×10=3
20
.
∴ 我选择到甲商场购物.
说明:树状图表示为如下形式且按此求解第(2)问的,也正确.。

相关文档
最新文档