17.1反比例函数同步测试A
反比例函数单元测试题及答案
反比例函数单元测试题及答案点,且AB的中点为点C,若反比例函数的图象经过点(2,3),则一次函数的解析式为().图片]A、y=2x+1.B、y=2x-1.C、y=-2x+1.D、y=-2x-1第17章反比例函数综合检测题一、选择题(每小题3分,共30分)1、已知反比例函数$y=\frac{n+5}{x}$ 的图象经过点(2,3),则 $n$ 的值是().A、-2.B、-1.C、1.D、22、若反比例函数 $y=\frac{k}{x}$ 的图象经过点(-1,2),则这个函数的图象一定经过点().A、(1,-2)。
B、(2,-1)。
C、(-2,-1)。
D、(-1,2)3、已知甲、乙两地相距 $s$ (km),汽车从甲地匀速行驶到乙地,则汽车行驶的时间 $t$ (h)与行驶速度$v$ (km/h)的函数关系图象大致是()图片]A、直线。
B、抛物线。
C、双曲线。
D、指数函数4、若 $y$ 与 $x$ 成正比例,$x$ 与 $z$ 成反比例,则$y$ 与 $z$ 之间的关系是().A、成正比例。
B、成反比例。
C、不成正比例也不成反比例。
D、无法确定5、一次函数 $y=kx-k$。
$y$ 随 $x$ 的增大而减小,那么反比例函数 $y=\frac{k}{x}$ 满足().A、当 $x>0$ 时,$y>0$。
B、在每个象限内,$y$ 随$x$ 的增大而减小。
C、图象分布在第一、三象限。
D、图象分布在第二、四象限6、如图,点 $P$ 是 $x$ 轴正半轴上一个动点,过点$P$ 作 $x$ 轴的垂线 $PQ$ 交双曲线 $y=\frac{1}{x}$ 于点 $Q$,连结 $OQ$,点 $P$ 沿 $x$ 轴正方向运动时,△$QOP$ 的面积().图片]A、逐渐增大。
B、逐渐减小。
C、保持不变。
D、无法确定7、在一个可以改变容积的密闭内,装有一定质量 $m$ 的某种气体,当改变容积 $V$ 时,气体的密度 $\rho$ 也随之改变.$\rho$ 与 $V$ 在一定范围内满足 $\rho=\frac{p}{V}$。
反比例函数综合测试卷
反比例函数综合测试卷一、填空题(每题3分,共计30分)1.如果y和x成反比,且当x=2时,y=5,则当x=8时,y=____。
答案:y=5*2/8=5/2=2.52.如果y和x成反比,且当x=3时,y=4.5,则当y=9时,x=____。
答案:9*3/4.5=63.如果y和x成反比,且当x=4时,y=7.5,则当y=5时,x=____。
答案:4*7.5/5=64.如果y和x成反比,且y和x都有一个相同的倍数关系,则这个倍数是____。
答案:15.如果y和x成反比,且y和x都有一个相同的倒数关系,则这个倒数是____。
答案:16.函数y=k/x是一个____。
答案:反比例函数7.函数y=k/x+b是一个____。
答案:一次函数8.函数y=k/x^2是一个____。
答案:反比例函数9.两个变量之间的关系成反比,可以用____表示。
答案:y∝1/x10.如果y=k/x,当y=1时,x=____。
答案:k二、选择题(每题5分,共计30分)1.设y和x成反比,若当x=6时,y=9,则当y=10时,x的值为:A. 5B. 7C. 4D. 8答案:B2.函数y=k/x与y=ax+b的图像是:A. 相等的B. 相切的C. 相交的D. 相异的答案:C3.下列哪个函数是反比例函数:A. y=3xB. y=x+3C. y=3/xD. y=x^2答案:C4.下列函数中,哪个是反比例函数:A. y=x+2B. y=3x-7C. y=5/xD. y=x^2+1答案:C5.当x增大时,反比例函数y=k/x的图像:A. 上升B. 下降C. 不变D. 波动答案:B6.当y=k/x中k=4,取任意的x和y的值,我们发现x和y之间的关系是:A. 正比例关系B. 反比例关系C. 无关系D. 随机关系答案:B三、解答题(每题20分,共计40分)1.某物品的价格与销售量成反比,当销售量为10时,价格为12元,则当销售量为5时,价格为多少元?解:设物品价格为P,销售量为Q,则根据反比例函数的定义,有P=k/Q,其中k 为常数。
数学八年级下人教新课标17.1反比例函数同步测试题A
数学:17.1反比例函数同步测试A 〔人教新课标八年级下〕A 卷〔60分〕选择题1.以下表达式中,表示y 是x 的反比例函数的是〔 〕 ①31-=xy ②.x y 63-= ③x y 2-= ④m my (3=是常数,)0≠m A.①②④ B.①③④ C.②③ D.①③2.以下函数关系中是反比例函数的是〔 〕A.等边三角形面积S 与边长a 的关系B.直角三角形两锐角A 与B 的关系C.长方形面积一定时,长y 与宽x 的关系D.等腰三角形顶角A 与底角B 的关系 3. 〔08甘肃省兰州市〕假设反比例函数ky x=的图象经过点(3)m m ,,其中0m ≠,那么此反比例函数的图象在〔 〕 A .第一、二象限 B .第一、三象限 C .第二、四象限D .第三、四象限4.函数x k y =的图象经过点〔-4,6〕,那么以下个点中在xk y =图象上的是〔 〕 A.〔3,8 〕 B.〔-3,8〕 C.〔-8,-3〕 D.〔-4,-6〕5. 在以下图中,反比例函数xk y 12+=的图象大致是〔 〕D6. 反比例函数xky =的图象在第二、第四象限内,函数图象上有两点A (72,y 1)、B (5,y 2),那么y 1与y 2的大小关系为〔 〕。
A 、y 1>y 2B 、y 1=y 2C 、y 1<y 2D 、无法确定 二、填空题〔每题3分,共18分〕7. 写出一个图象在第一、三象限的反比例函数的解析式 . 8. 反比例函数的图象经过点〔3,2〕和〔m ,-2〕,那么m 的值是__.9. 在ABC △的三个顶点(23)(45)(32)A B C ----,,,,,中,可能在反比例函数(0)ky k x=>的图象上的点是 . 10. 某种蓄电池的电压为定值,使用此电源时,电流 I 〔A 〕与可变电阻 R 〔Ω〕之间的函数关系如下图,当用电器的电流为10A 时,用电器的 可变电阻为_______Ω。
第10题图11. 反比例函数xky =的图象如下图,点M 是该函数图象 上一点,MN 垂直于x 轴,垂足是点N ,如果S △MON =2, 那么k 的值为 .12. 小明家离学校1.5km ,小明步行上学需min x ,那么小明步 行速度(m /min)y 可以表示为1500y x=;水平地面上重1500N 的 物体,与地面的接触面积为2m x ,那么该物体对地面压强2(/m )y N可以表示为1500y x=;,函数关系式1500y x=还可以表示许多不同情境中变量之间的关系,请你再列举1.例.:.三、解答题〔本大题24分〕13.甲、乙两地相距100km ,一辆汽车从甲地开往乙地,把汽车到达乙地所用的时间)(h t 表示为汽车速度)/(h km v 的函数,并画出函数图象.14. 一次函数y x 13=-2k 的图象与反比例函数y k x23=-的图象相交,其中一个交点的纵坐标为6。
人教版初中数学九年级数学下册第一单元《反比例函数》检测题(含答案解析)
一、选择题1.正比例函数1y 的图像与反比例函数2y 的图像相交于点(2,4)A ,下列说法正确的是( )A .反比例函数2y 的解析式是28y x =-B .两个函数图像的另一个交点坐标为(2,4)C .当2x <-或02x <<时,12y y <D .正比例函数1y 与反比例函数2y 都随x 的增大而增大2.已知函数()0k y k x=≠中,在每个象限内,y 的值随x 的值增大而增大,那么它和函数()0y kx k =-≠在同一直角坐标平面内的大致图像是( ).A .B .C .D .3.如图,在平面直角坐标系中,菱形OBCD 的边OB 在x 轴上,反比例函数()0k y x x =>的图象经过菱形对角线的交点,A 且与边BC 交于点F ,点C 的坐标为()8,4,则OBF ∆的面积为( )A .104B .83C .103D .1144.如图,O 为坐标原点,菱形OABC 的顶点A 的坐标为(34)-,,顶点C 在x 轴的负半轴上,函数(0)k y x x=<的图象经过顶点B ,则k 的值为( )A .12-B .27-C .32-D .36-5.如图,直线l x ⊥轴于点P ,且与反比例函数11(0)k y x x=>及22(0)k y x x =>的图象分别交于点A ,B ,连接OA ,OB ,已知△OAB 的面积为2,则12k k -的值为( )A .2B .3C .4D .56.已知0k >,函数y kx k =+和函数k y x=在同一坐标系内的图象大致是( ) A . B .C .D .7.反比例函数y=kb x的图象如图所示,则一次函数y=kx+b (k≠0)的图象的图象大致是( )A .B .C .D .8.已知(5,-1)是双曲线(0)k y k x=≠上的一点,则下列各点中不在该图象上的是( ) A .1(,15)3- B .(5,1) C .(1,5)- D .1(10,)2- 9.当0x <时,反比例函数2y x=-的图象( ) A .在第一象限,y 随x 的增大而减小 B .在第二象限,y 随x 的增大而增大 C .在第三象限,y 随x 的增大而减小 D .在第四象限,y 随x 的增大而减小 10.如图,双曲线k y x=经过Rt BOC ∆斜边上的中点A ,且与BC 交于点D ,若BOD 6S ∆=,则k 的值为( )A .2B .4C .6D .811.如图直线y 1=x+1与双曲线y 2=k x交于A (2,m )、B (﹣3,n )两点.则当y 1>y 2时,x 的取值范围是( )A .x >﹣3或0<x <2B .﹣3<x <0或x >2C .x <﹣3或0<x <2D .﹣3<x <2 12.对于反比例函数5y x=-,下列说法中不正确的是( ) A .图象经过点(1,5)- B .当0x >时,y 的值随x 的值的增大而增大C .图像分布在第二、四象限D .若点11()A x y ,,22()B x y ,都在图像上,且12x x <,则12y y <.二、填空题13.如图,已知双曲线()0k y x x=>经过矩形OABC 边BC 的中点E ,与AB 交于点F ,且四边形OEBF 的面积为3,则k=________.14.已知点(,7)M a 在反比例函数21y x =的图象上,则a=______. 15.如图,直线y=12x ﹣2与x 轴、y 轴分别交于点A 和点B ,点C 在直线AB 上,且点C 的纵坐标为﹣1,点D 在反比例函数y=k x 的图象上,CD 平行于y 轴,S △OCD =52,则k 的值为________.16.已知反比例函数3y x =-,当1x >时,y 的取值范围是____ 17.如图,过x 轴正半轴上任意一点P 作x 轴的垂线,分别与反比例函数24y x =和12y x =的图象交于点A 和点B .若点C 是y 轴上任意一点,则ABC 的面积为______________.18.如图,点A 是反比例函数y =k x(k >0,x >0)图象上一点,B 、C 在x 轴上,且AC ⊥BC ,D 为AB 的中点,DC 的延长线交y 轴于E ,连接BE ,若△BCE 的面积为8,则k 的值为_____.19.如图,△BOD 都是等腰直角三角形,过点B 作AB ⊥OB 交反比例函数y k x=(x >0)于点A ,过点A 作AC ⊥BD 于点C ,若S △BOD ﹣S △ABC =3,则k 的值为____.20.已知点A (-1,2)在反比例函数1m y x -=的图象上,则m =_____________. 三、解答题21.已知反比例函数k y x=的图象与正比例函数2y x =的图象交于点()2,m ,求这个反比例函数的表达式,并在同一平面直角坐标系内,画出这两个函数的图象.22.如图,已知点A (1,-2)在反比例函数y =k x的图象上,直线y =-x +1与反比例函数y =k x 的图象的交点为点B 、D .(1)求反比例函数和直线AB 的表达式;(2)求S △AOB ;(3)动点P (x ,0)在x 轴上运动,若△OAP 是等腰三角形时,直接写出点P 的坐标. 23.如图,已知()()4,2,4A B n --、是一次函数y kx b =+的图象与反比例函数m y x =的图象的两个交点.(1)求此反比例函数和一次函数的解析式;(2)连接,OA OB ,求AOB ∆的面积;(3)根据图象直接写出使不等式m kx b x+>成立的x 的取值范围______________________.24.已知:如图,正比例函数y ax=的图象与反比例函数k yx=的图象交于点()32A,.(1)试确定上述正比例函数和反比例函数的表达式;(2)根据图象回答,在第一象限内,当x取何值时,反比例函数的值大于正比例函数的值?(3)()M m n,是反比例函数图象上的一动点,其中03m<<,过点M作直线MN x 轴,交y轴于点B;过点A作直线AC y轴交x轴于点C,交直线MB于点D.当四边形OADM的面积为6时,请判断线段BM与DM的大小关系,并说明理由.25.如图,在直角坐标系中,双曲线kyx=与直线y ax b=+相交于()2,3,6,)(A B n-两点,(1)求双曲线和直线的函数解析式;(2)点P在x负半轴上,APB△的面积为14,求点P的坐标;(3)根据图象,直接写出不等式组kax bxax b⎧+⎪⎨⎪+⎩﹤﹥的解集.26.如图,A B 、两点的坐标分别为()()2,0,0,3-,将线段AB 绕点B 逆时针旋转90°得到线段BC ,过点C 作CD OB ⊥,垂足为D ,反比例函数k y x=的图象经过点C .(1)直接写出点C 的坐标,并求反比例函数的解析式;(2)点P 在反比例函数k y x=的图象上,当PCD 的面积为3时,求点P 的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】由题意可求正比例函数解析式和反比例函数解析式,由正比例函数和反比例函数的性质可分别进行判断求解,即可得出结论.【详解】解:∵正比例函数y 1的图象与反比例函数y 2的图象相交于点A (2,4), ∴正比例函数12y x =,反比例函数28y x=, ∴两个函数图象的另一个交点为(−2,−4),∴A ,B 选项错误; ∵正比例函数12y x =中,y 随x 的增大而增大,反比例函数28y x=中,在每个象限内y 随x 的增大而减小, ∴D 选项错误;∵当x <−2或0<x <2时,y 1<y 2,∴选项C 正确;故选:C .【点睛】本题考查了反比例函数与一次函数的交点问题,熟练运用反比例函数与一次函数的性质解决问题是本题的关键.2.A解析:A【分析】首先根据反比例函数图象的性质判断出k 的范围,再确定其所在象限,进而确定正比例函数图象所在象限,即可得到答案.【详解】解:∵函数k y x=中,在每个象限内,y 随x 的增大而增大, ∴k <0,∴双曲线在第二、四象限,∴函数y=-kx 的图象经过第一、三象限,故选:A .【点睛】此题主要考查了反比例函数图象的性质与正比例函数图象的性质,图象所在象限受k 的影响. 3.C解析:C【分析】根据菱形的性质可求出点A 坐标,将点A 的坐标代入到反比例函数解析式可求得k 值,即可确定函数的解析式,过点A 作AM ⊥x 轴于点M ,过点C 作CN ⊥x 轴于点N ,如图,首先在Rt △CNB 中,根据勾股定理建立方程求出OB 的长,进而可求得点B 的坐标,然后利用待定系数法可求得直线BC 的解析式,再联立直线和双曲线的解析式求出交点F 坐标,然后根据三角形的面积公式求解可.【详解】解:∵四边形OBCD 是菱形,∴OA =AC ,∵C (8,4),∴A (4,2),把点A (4,2)代入反比例函数()0k y x x =>,得到k =8, ∴反比例函数的解析式为y =8x; 过点A 作AM ⊥x 轴于点M ,过点C 作CN ⊥x 轴于点N ,如图,设OB =x ,则BC =x ,BN =8﹣x ,在Rt △CNB 中,x 2﹣(8﹣x )2=42,解得:x =5,∴点B 的坐标为(5,0),设直线BC的函数表达式为y=ax+b,把点B(5,0),C(8,4)代入得:∴5084a ba b+=⎧⎨+=⎩,解得:43203ab⎧=⎪⎪⎨⎪=-⎪⎩,∴直线BC的解析式为42033y x=-,解方程组420338y xyx⎧=-⎪⎪⎨⎪=⎪⎩,得:18xy=-⎧⎨=-⎩或643xy=⎧⎪⎨=⎪⎩,∴点F的坐标为F(6,43),作FH⊥x轴于H,连接OF,∴S△OBF=12OB•FH=14105233⨯⨯=,故选:C.【点睛】本题考查了菱形的性质、利用待定系数法求函数的解析式、两个函数的交点问题以及勾股定理等知识,属于常考题型,熟练掌握上述知识是解题的关键.4.C解析:C【详解】∵A(﹣3,4),∴2234+,∵四边形OABC是菱形,∴AO=CB=OC=AB=5,则点B的横坐标为﹣3﹣5=﹣8,故B的坐标为:(﹣8,4),将点B的坐标代入kyx=得,4=8k-,解得:k=﹣32.故选C.考点:菱形的性质;反比例函数图象上点的坐标特征.5.C解析:C【分析】据反比例函数k 的几何意义可知:△AOP 的面积为12k ,△BOP 的面积为22k,由题意可知△AOB 的面积为12k −22k . 【详解】根据反比例函数k 的几何意义可知:△AOP 的面积为12k ,△BOP 的面积为22k, ∴△AOB 的面积为12k −22k , ∴12k −22k =2, ∴k 1-k 2=4, 故选:C . 【点睛】本题考查反比例函数k 的几何意义,解题的关键是正确理解k 的几何意义,本题属于中等题型,6.D解析:D 【解析】根据题意,在函数y=kx+k 和函数ky x=中, 有k >0,则函数y=kx+k 过一二三象限.且函数ky x=在一、三象限, 则D 选项中的函数图象符合题意; 故选D .7.D解析:D 【分析】先由反比例函数的图象得到k ,b 同号,然后分析各选项一次函数的图象即可. 【详解】∵y=kbx 的图象经过第一、三象限, ∴kb >0, ∴k ,b 同号,选项A 图象过二、四象限,则k <0,图象经过y 轴正半轴,则b >0,此时,k ,b 异号,故此选项不合题意;选项B 图象过二、四象限,则k <0,图象经过原点,则b=0,此时,k ,b 不同号,故此选项不合题意;选项C 图象过一、三象限,则k >0,图象经过y 轴负半轴,则b <0,此时,k ,b 异号,故此选项不合题意; 选项D 图象过一、三象限,则k >0,图象经过y 轴正半轴,则b >0,此时,k ,b 同号,故此选项符合题意; 故选D .考点:反比例函数的图象;一次函数的图象.8.B解析:B 【详解】解:因为点(5,-1)是双曲线(0)ky k x=≠上的一点, 将(5,-1)代入(0)ky k x=≠得k=-5; 四个选项中只有B 不符合要求:k=5×1≠-5. 故选B . 【点睛】本题考查反比例函数图象上点的坐标特征.9.B解析:B 【分析】 反比例函数2y x=-中的20k =-<,图像分布在第二、四象限;利用0x <判断即可. 【详解】 解:反比例函数2y x=-中的20k =-<, ∴该反比例函数的图像分布在第二、四象限;又0x <,∴图象在第二象限且y 随x 的增大而增大.故选:B . 【点睛】本题主要考查的是反比例函数的性质,对于反比例函数()0ky k x=≠,(1)0k >,反比例函数图像分布在一、三象限;(2)k 0< ,反比例函数图像分布在第二、四象限内.10.B解析:B 【分析】 设,k A x x ⎛⎫⎪⎝⎭,根据A 是OB 的中点,可得22,k B x x ⎛⎫⎪⎝⎭,再根据BC OC ⊥,点D 在双曲线k y x =上,可得2,2k D x x ⎛⎫ ⎪⎝⎭,根据三角形面积公式列式求出k 的值即可.【详解】 设,k A x x ⎛⎫ ⎪⎝⎭∵A 是OB 的中点 ∴22,k B x x ⎛⎫ ⎪⎝⎭∵BC OC ⊥,点D 在双曲线k y x=上 ∴2,2k D x x ⎛⎫ ⎪⎝⎭∴BOD 112322222k k S BD OC x k x x ∆⎛⎫=⨯⨯=⨯-⨯= ⎪⎝⎭ ∵BOD 6S ∆=∴3642k =÷= 故答案为:B . 【点睛】本题考查了反比例函数的几何问题,掌握反比例函数的性质、中点的性质、三角形面积公式是解题的关键.11.B解析:B 【分析】当y 1>y 2时,x 的取值范围就是y 1的图象落在y 2图象的上方时对应的x 的取值范围. 【详解】根据图象可得当y 1>y 2时,x 的取值范围是:﹣3<x <0或x >2. 故选:B . 【点睛】本题考查了反比例函数与一次函数图象的交点问题,“数形结合”是解题的关键.12.D解析:D 【分析】根据反比例函数的性质判断即可. 【详解】解:A. 把(1,5)-代入反比例函数得,55-=-,本选项正确;B. 50-<,图象分别位于第二、四象限,函数在x<0上为增函数、在x>0上同为增函数,本选项正确;C. 50-<,因此图像分布在第二、四象限,本选项正确;D. 函数在x<0上为增函数、在x>0上同为增函数,若点11()A x y ,,22()B x y ,都在图像上,当120x x <<或120x x <<时,12y y <,本选项错误. 故选:D . 【点睛】本题考查的知识点是反比例函数的性质,牢记反比例函数图象的性质是解此题的关键.二、填空题13.3【分析】设表示点B 坐标再根据四边形OEBF 的面积为3列出方程从而求出k 的值【详解】设则均在反比例函数图象上解得故答案为:3【点睛】本题的难点是根据点E 的坐标得到其他点的坐标准确掌握反比例函数k 值的解析:3 【分析】设(),E a b ,表示点B 坐标,再根据四边形OEBF 的面积为3,列出方程,从而求出k 的值. 【详解】设(),E a b ,则k ab =,()2,B a b ,F E 、均在反比例函数图象上,2COE AOF k S S ∴==△△, COE AOF OABC OEBF S S S S =--△△矩形四边形,2OABC S OA AB ab ==矩形3222k kk ∴=--,解得3k =,故答案为:3. 【点睛】本题的难点是根据点E 的坐标得到其他点的坐标,准确掌握反比例函数k 值的几何意义是解决本题的关键.14.3【分析】把点代入反比例函数解析式求解即可【详解】解:∵点在反比例函数的图象上∴解得故答案为:3【点睛】本题考查反比例函数上点的坐标特征掌握反比例函数上点的坐标特征是解题的关键解析:3 【分析】把点(,7)M a 代入反比例函数解析式,求解即可. 【详解】解:∵点(,7)M a 在反比例函数21y x=的图象上,∴217a=,解得3a =, 故答案为:3. 【点睛】本题考查反比例函数上点的坐标特征,掌握反比例函数上点的坐标特征是解题的关键.15.3【详解】试题分析:把x=2代入y=x ﹣2求出C 的纵坐标得出OM=2CM=1根据CD ∥y 轴得出D 的横坐标是2根据三角形的面积求出CD 的值求出MD 得出D 的纵坐标把D 的坐标代入反比例函数的解析式求出k 即解析:3 【详解】试题分析:把x=2代入y=12x ﹣2求出C 的纵坐标,得出OM=2,CM=1,根据CD ∥y 轴得出D 的横坐标是2,根据三角形的面积求出CD 的值,求出MD ,得出D 的纵坐标,把D 的坐标代入反比例函数的解析式求出k 即可. 解:∵点C 在直线AB 上,即在直线y=12x ﹣2上,C 的横坐标是2,∴代入得:y=12×2﹣2=﹣1,即C (2,﹣1), ∴OM=2,∵CD ∥y 轴,S △OCD =52, ∴12CD×OM=52, ∴CD=52, ∴MD=52﹣1=32, 即D 的坐标是(2,32), ∵D 在双曲线y=kx上,∴代入得:k=2×32=3.故答案为3.考点:反比例函数与一次函数的交点问题.点评:本题考查了反比例函数与一次函数的交点问题、一次函数、反比例函数的图象上点的坐标特征、三角形的面积等知识点,通过做此题培养了学生的计算能力和理解能力,题目具有一定的代表性,是一道比较好的题目.16.-3<y<0【分析】根据反比例函数的增减性求解【详解】在反比例函数∴函数图象在第二四象限且在每个象限内y随x的增大而增大当x>1时函数图象在第四象限且当x=1时y=-3∴当x>1时-3<y<0;故答解析:-3<y<0【分析】根据反比例函数的增减性求解.【详解】在反比例函数3yx=-,30k=-<,∴函数图象在第二、四象限,且在每个象限内y随x的增大而增大,当x>1时,函数图象在第四象限且当x=1时,y=-3,∴当x>1时-3<y<0;故答案为:-3<y<0.【点睛】考查反比例函数的增减性,掌握反比例函数的增减性是解题的关键,即在y=kx(k≠0)中,当k>0时,在每个象限内y随x的增大而减小,当k<0时,在每个象限内y随x的增大而增大.17.1【分析】设线段OP=x则可求出APBP再根据三角形的面积公式得出△ABC 的面积=AB×OP代入数值计算即可【详解】解:设线段OP=x则PB=AP=∵AB=AP-BP=-=∴S△ABC=AB×OP=解析:1【分析】设线段OP=x,则可求出AP、BP,再根据三角形的面积公式得出△ABC的面积=12AB×OP,代入数值计算即可.【详解】解:设线段OP=x,则PB=2x,AP=4x,∵AB=AP-BP=4x -2x =2x, ∴S △ABC =12AB×OP =12×2x×x =1. 故答案为:1. 【点睛】此题考查反比例函数的k 的几何意义,三角形的面积公式,解题的关键是表示出线段OP 、BP 、AP 的长度,难度一般.18.16【分析】设A (nm )B (t0)即可得到C 点坐标为(n0)D 点坐标为()利用待定系数法求出CD 的解析式可得E 点坐标为(0)然后利用三角形的面积公式可得到mn=16即得到k 的值【详解】解:设A (nm解析:16 【分析】设A (n ,m ),B (t ,0),即可得到C 点坐标为(n ,0),D 点坐标为(2n t +,2m),利用待定系数法求出CD 的解析式,可得E 点坐标为(0,mnt n--),然后利用三角形的面积公式可得到mn=16,即得到k 的值. 【详解】解:设A (n ,m ),B (t ,0), ∵AC ⊥BC ,D 为AB 的中点, ∴C 点坐标为(n ,0),D 点坐标为(2n t +,2m), 设直线CD 的解析式为y=ax+b , 把C (n ,0),D (2n t +,2m ),代入得:na+b=0,22n t ma b ++=, 解得a=m t n-,b=mnt n --,∴直线CD 的解析式为y=m mn x t n t n---, ∴E 点坐标为(0,mnt n--), 由S △BCE =12•OE•BC=8, 可得,1()82mnt n t n -=-,∴mn=16, ∴k=mn=16; 故答案为:16. 【点睛】本题考查了反比例函数的综合题的解法,熟练掌握并灵活运用是解题的关键.19.6【分析】设A 点坐标为(ab )根据等腰直角三角形的性质得BC=ACOD=BD 由S △BOD-S △ABC=3得出OD2-AC2=6利用平方差公式得到(OD+AC )(OD-AC )=6得到a•b=6根据反比解析:6. 【分析】设A 点坐标为(a ,b ),根据等腰直角三角形的性质得BC=AC ,OD=BD ,由S △BOD -S △ABC =3得出OD 2-AC 2=6,利用平方差公式得到(OD+AC )(OD-AC )=6,得到a•b=6,根据反比例函数图象上点的坐标特征易得k=6. 【详解】设A 点坐标为(a ,b).∵△ABC 和△BOD 都是等腰直角三角形, ∴BC=AC ,OD=BD ∵S △BOD ﹣S △ABC =3,12OD 212-AC 2=3,OD 2﹣AC 2=6, ∴(OD+AC)(OD ﹣AC)=6, ∴ab=6,∴k=6. 故答案为:6. 【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数y kx=(k 为常数,k≠0)的图象是双曲线,图象上的点(x ,y )的横纵坐标的积是定值k ,即xy=k .20.-1【分析】将点A (-12)代入反比例函数即可求出m 的值【详解】将点A (-12)代入反比例函数得解得m=-1;故答案为:-1【点睛】本题考查了反比例函数图象上点的坐标特征所有在反比例函数上的点的横纵解析:-1 【分析】将点A (-1,2)代入反比例函数1m y x-=即可求出m 的值. 【详解】将点A (-1,2)代入反比例函数1m y x-=,得 121m -=-, 解得,m=-1; 故答案为:-1. 【点睛】本题考查了反比例函数图象上点的坐标特征,所有在反比例函数上的点的横纵坐标的积应等于比例系数.三、解答题21.8y x=,见解析 【分析】把()2,m 代入2y x =求出m 的值,利用待定系数法即可求解. 【详解】解:由题意,反比例函数ky x=的图象与正比例函数2y x =的图象交于点()2,m , 则()2,m 在2y x =上, ∴224m =⨯=, 又∵()2,m 在ky x=上, ∴28k m ==,∴反比例函数的表达式:8y x=, 函数图象如图:.【点睛】本题考查反比例函数与一次函数的交点,掌握待定系数法求解析式是解题的关键. 22.(1)y= 2x-, y=x-3;(2)S △AOB =32;(3))150P ,()250P -,()320P ,,4502P ,⎛⎫⎪⎝⎭. 【分析】(1)运用待定系数法先求出反比例函数解析式,再求出B 的坐标,从而求出直线AB 的解析式;(2)利用反比例函数k 的几何意义进行面积转化求解即可; (3)列出各边长的表达式,根据不同情况进行分类讨论即可. 【详解】(1)将()1,2A -代入k y x=,得2k =-,故反比例函数解析式为2y k =-,联立21y x y x ⎧=-=-+⎪⎨⎪⎩,解得21x y =⎧⎨=-⎩或12x y =-⎧⎨=⎩,即:()2,1B -,()1,2D - 设直线AB 的解析式为:y mx n =+,将()1,2A -,()2,1B -代入得:221m n m n +=-+=-⎧⎨⎩,解得:13m n ==-⎧⎨⎩ ,则直线AB 的解析式为:3y x =-∴反比例函数解析式为2y k =-,直线AB 的解析式为:3y x =-; (2)作AM x ⊥轴,BN x ⊥轴,AH y ⊥轴,则AOB OAH OBN OHAM MABN S S S S S ++=+△△△矩形梯形,根据反比例函数k 的几何意义可知:122OAH OBN OHAM k S S S ===△△矩形, ()()()1132121222AOB MABN S S MN AM BN ∴==+=⨯-⨯+=△梯形, 32AOB S ∴=△;(3)由题:5OA OP x =,()214AP x =-+①若OA OP =5x =,解得5x =,故:)150P ,()250P -; ②若OA AP =()2514x =-+2x =或0(舍去),故:()320P ,; ③若OP AP =,则()214x x =-+52x =,故:4502P ,⎛⎫ ⎪⎝⎭; 综上,所有P 的坐标为:)150P ,()250P -,()320P ,,4502P ,⎛⎫ ⎪⎝⎭. 【点睛】 本题考查了反比例函数与一次函数综合问题,以及等腰三角形的判定与性质,熟练掌握反比例函数k的几何意义,以及分类讨论的思想是解题的关键.23.(1)一次函数的解析式是2y x =--;(2)6AOB S ∆=;(3)x 的取值范围是4x <-或02x <<.【分析】(1)把A 的坐标代入反比例函数解析式求得m 的值,从而求得反比例函数解析式,然后把B 的坐标代入n 的值,再利用待定系数法求得一次函数的解析式;(2)求得AB 与x 轴的交点,然后根据三角形的面积公式求解;(3)一次函数的值大于反比例函数的值的x 的取值范围就是一次函数的图象在反比例函数图象上方的自变量的取值范围.【详解】解:(1)把()4,2-代入m y x =得24m =-,则8m =-, 则反比例函数的解析式是8y x =-; 把(),4n -代入8y x =-得824n =-=-, 则B 的坐标是()2,4-,根据题意得:2442k b k b =-+⎧⎨-=+⎩,解得12k b =-⎧⎨=-⎩, 则一次函数的解析式是2y x =--;(2)设AB 与x 轴的交点是C ,则C 的坐标是()2,0-,则2OC =,11222,24422AOC BOC S S ∆∆=⨯⨯==⨯⨯=, 则6AOB S ∆=;(3)由函数图象可知x 的取值范围是4x <-或02x <<.【点睛】本题考待定系数法求函数的解析式以及函数与不等式的关系,理解求一次函数的值大于反比例函数的值的x 的取值范围就是一次函数的图象在反比例函数图象上方的自变量的取值范围是关键.24.(1)反比例函数的表达式为:6y x =正比例函数的表达式为23y x = (2)第一象限内,当03x <<时,反比例函数的值大于正比例函数的值.(3)BM DM =,理由见解析【分析】(1)将A (3,2)分别代入y=k x ,y=ax 中,得ak 的值,进而可得正比例函数和反比例函数的表达式;(2)观察图象,得在第一象限内,当0<x <3时,反比例函数的图象在正比例函数的上方;故反比例函数的值大于正比例函数的值;(3)有S △OMB =S △OAC =12×|k|=3,可得S 矩形OBDC 为12;即OC•OB=12;进而可得mn 的值,故可得BM 与DM 的大小;比较可得其大小关系.【详解】解:(1)将()32A ,分别代入k y y ax x ==,中,得2323k a ==, ∴263k a ==, ∴反比例函数的表达式为:6y x =正比例函数的表达式为23y x = (2)第一象限内,当03x <<时,反比例函数的值大于正比例函数的值.(3)BMDM = 理由:∵132OMB OAC S S k ==⨯= ∴33612OMB OAC OBDC OADM S S SS =++=++=矩形四边形即·12OC OB = ∵3OC =∴4OB =即4n =∴632m n ==∴3333222MB MD ==-=,∴MB MD = 25.(1)6y x=-,122y =-+;(2)()3,0P -;(3)20x -<< 【分析】 (1)将()2,3A -代入k y x=求出k ,得到B 点坐标,再代入y ax b =+即可求解; (2)作,AD x ⊥轴于,D BE x ⊥轴于E .得到3,1AD BE ==,根据三角形的面积公式求出7PC =,再根据直线解析式求出C 点坐标,故可求出P 点坐标;(3)根据函数图像即可求解.【详解】解:(1)将()2,3A -代入k y x=,得6k =-. ∴双曲线解析式为6y x=-当6x =时,1y =-∴()6,1B -将()()2,3,6,1A B --代入y ax b =+,得2361a b a b -+=⎧⎨+=-⎩,解得1,22a b =-= ∴直线解析式为122y =-+. (2)作,AD x ⊥轴于,D BE x ⊥轴于E .则3,1AD BE ==.∵1122APB SPC AD PC BE =⋅+⋅ ∴()1142PC AD BE += ∴7PC =由1202y x =-+=,得4x =. ∴()4,0C ,∴4OC =,∴3OP = ∴()3,0P -(3)由图象,不等式组0k ax b x ax b ⎧+<⎪⎨⎪+>⎩,的解集为20x -<<.【点睛】此题主要考查一次函数与反比例函数综合,解题的关键是熟知待定系数法的应用. 26.(1)(3,1);3y x=;(2)(1,3)或(3,1)--. 【分析】 (1)由A B ,两点的坐标得出OAOB ,的长度,由题意得出D AOB B C ∆≅∆,进而得出BD CD ,的长度,从而得出OD 的长度,即可得出C 点的坐标;进而求出反比例函数的解析式;(2)分点P 在第一象限、第三象限两种情况分类讨论即可.【详解】解:(1)∵A B ,两点的坐标分别为(2,0),(0,3)-,∴23OA OB ==,,∵线段AB 绕点B 逆时针旋转90°得到线段BC ,CD OB ⊥,∴AB BC =,90ABO CBD CBD BCD ∠+∠=∠+∠=︒,∴ABO BCD ∠=∠,又∵==90AOB BDC ∠∠︒,∴D AOB B C ∆≅∆,∴32CD OB BD OA ====,,∴321OD OB BD =-=-=,∴C 点的坐标为(3,1),∵反比例函数k y x=的图象经过点(3,1)C , 1=3k ∴, 3k ∴=,∴反比例函数的解析式为3y x=; (2)∵3CD =,∴当PCD ∆的面积等于3时,以3CD =为底时,得出的高为2,∵(3,1)C ,∴P 点不会在C 点的右边;设点(,)P x y ,若点P 在第一象限,过点P 作PN CD ⊥,垂足为N , PCD ∴∆的面积为3,113(1)322CD PN y ∴⋅=⨯⨯-=, 解得3y =,将3y =代入3y x=,解得1x =, (1,3)P ∴,若点P 在第三象限,过点P 作PM CD ⊥,垂足为M , PCD 的面积为3, 113(1)322CD PM y ∴⋅=⨯⨯-=, 解得1y =-,将1y =-代入3y x=,解得3x =-, (3,1)P ∴--,综上所述,点P 的坐标是(1,3)或(3,1)--.【点睛】本题主要考查的是反比例函数的图象与性质、待定系数法求关系式、旋转的性质、面积的存在性问题以及分类讨论思想的应用,解决本题的关键就是熟知性质,对于不确定的情况要分类讨论.。
人教版九年级数学下册第二十六章《反比例函数——反比例函数》同步检测4附答案
人教版九年级数学下册第二十六章《反比例函数——反比例函数》同步检测4附答案——反比例函数》同步检测4附答案一、填空题:[每题4分,共40分]。
1.当a_______ 时,反比例函数y=3a x - 的图像的两个分支分别在第二 四象限。
2.若反比例函数y= k x(k ≠0)的图像经过点[1,—3],则k 的值为________ 。
3.已知,反比例函数的图像经过点[m ,2]和[—2,3],则m 的值为_______。
4.反比例函数y= 8x的图像与一次函数y=kx+k 的图像在第一项限交与点B(4,n)。
则k=______ n=_____ .5.若反比例函数y=mx |m|-2的图像,在其所在的梅个象限内y 都随x 的增大而增大,则m= .6.已知,y 与z 成正比例,x 与z 成反比例,那么y 是x__________ 函数。
7.反比例函数y= ||k x,若点A[x 1,y 1],B(x 2,y 2)在此图像的同一分支上,且x 1<x 2,,则y 1_____y 2. 8.在平面直角坐标系xoy 中,直线y=x 沿y 轴向上平移1个单位长度得到直线L,直线L 与反比例函数y=k x的图像的一个交点为(a,2),则k 的值等于_________。
9.直线y=mx 与双曲线y= k x的一个交点的坐标为[3,2],则另一个交点的坐标为______。
10.点A[2,1]在反比例函数y=k x 的图像上,当1<x<4时,y 的取值范围是________。
二﹨选择题:[每题4分,共40分]。
11.已知点M(—2,3)在双曲线y=k x上,则下列各点一定在双曲线上的是 [ ] A (3 ,—2) B (—2 ,—3) C (2 ,3) D (3 ,2)12.一个圆柱的侧面展开图是一个面积为4个平方单位的长方形,那么这个圆柱的高h 和底面半径r 之间的函数关系是 [ ]A 正比例函数B 反比例函数C 一次函数D 以上都不是13.已知反比例函数y= 2k x-的图像位于第一﹨三象限,则k 的取值范围是[ ] A. k>2 B. k ≥ 2 C. k ≤ 2 D. k<214.已知反比例函数y=k x的图像经过点P[—1,2],则这个函数图像位于[ ] A 第二﹨三象限 B 第一﹨三象限 C 第三﹨四象限 D 第二﹨四象限15.三角形的面积为24cm ,底边上的高()y cm 与底边()x cm 之间的函数关系图象大致应为( )16.当k ≠0时,函数y=kx+k 与y=k x 在同一坐标系中的图像大致是[ ]17.已知三点A(x,y)﹨B (a,b)﹨C [1,-2]都在反比例函数图像y=k x 上,若x<0,a>0,则下列式子正确的是 [ ]A. y<b<0B. y<0<bC. y>b>0D. y>0>b18.已知点[a,—1]﹨ (b, —254 )﹨(c,- 25)在函数y= —1x 的图像上,则下列关系式正确的是 [ ]A .c>b>a B.a>b>c C.a>c>b D.b>c>a19.已知反比例函数y=k x的图像在第二﹨四象限,则一次函数y=kx-5的图像不经过[ ] A.第一象限 B 。
人教版初中数学九年级数学下册第一单元《反比例函数》测试(答案解析)
一、选择题1.已知点()11,x y 、()22,x y 、()33,x y 在双曲线5y x=上,当1230x x x <<<时,1y 、2y 、3y 的大小关系是( )A .123y y y <<B .312y y y <<C .132y y y <<D .231y y y <<2.关于反比例函数3y x=,下列说法错误的是( ) A .图象关于原点对称B .y 随x 的增大而减小C .图象分别位于第一、三象限D .若点(,)M a b 在其图象上,则3ab =3.如图,菱形ABCD 的边AD 与x 轴平行,A 、B 两点的横坐标分别为1和3,反比例函数y=3x的图象经过A 、B 两点,则菱形ABCD 的面积是( )A .42B .4C .22D .24.(2017广东省卷)如图,在同一平面直角坐标系中,直线()110y k x k =≠与双曲线()220k y k x=≠相交于A B 、两点,已知点A 的坐标为()1,2,则点B 的坐标为( )A .()1,2--B .()2,1--C .()1,1--D .()2,2--5.反比例函数y=kbx的图象如图所示,则一次函数y=kx+b (k≠0)的图象的图象大致是( )A .B .C .D .6.如图,曲线表示温度T (℃)与时间t (h )之间的函数关系,它是一个反比例函数的图像的一支.当温度T ≤2℃时,时间t 应( )A .不小于23h B .不大于23h C .不小于32h D .不大于32h 7.下列函数中图象不经过第三象限的是( ) A .y =﹣3x ﹣2B .y =2xC .y =﹣2x +1D .y =3x +28.已知反比例函数y=21k x +的图上象有三个点(2,1y ), (3, 2y ),(1-, 3y ),则1y ,2y ,3y 的大小关系是( )A .1y >2y >3yB .2y >1y >3yC .3y >1y >2yD .3y >2y >1y9.如图,在平面直角坐标系中,平行四边形OABC 的顶点A 在反比例函数1k y x=(x>0) 的图像上,顶点B 在反比例函数2k y x=(x>0)的图像上,点C 在x 轴的正半轴上.若平行四边形OABC 的面积为8,则k 2-k 1的值为( )A .4B .8C .12D .1610.如图,点A 是反比例函数2(0)y x x=>的图象上任意一点,AB x 轴交反比例函数3y x =-的图象于点B ,以AB 为边作ABCD ,其中C 、D 在x 轴上,则ABCDS为( )A .2.5B .3.5C .4D .511.给出下列函数:①y =﹣3x +2:②y =3x ;③y =﹣5x:④y =3x ,上述函数中符合条件“当x >1时,函数值y 随自变量x 增大而增大”的是( ) A .①③ B .③④ C .②④ D .②③12.如图, O 为坐标原点,点B 在x 轴的正半轴上,四边形OBCA 是平行四边形,45sin AOB ∠=,反比例函数()0m y m x=>在第一象限内的图像经过点A ,与BC 交于点F ,若点F 为BC 的中点,且AOF 的面积为12,则m 的值为( )A .16B .24C .36D .48二、填空题13.双曲线y =kx经过点A (a ,﹣2a ),B (﹣2,m ),C (﹣3,n ),则m _____n (>,=,<).14.如图,反比例函数y =kx(x >0)经过A ,B 两点,过点A 作AC ⊥y 轴于点C ,过点B 作BD ⊥y 轴于点D ,过点B 作轴BE ⊥x 于点E ,连接AD ,已知AC =2,BE =2,S 矩形BEOD =16,则S △ACD =_____.15.调查显示,某商场一款运动鞋的售价是销量的反比例函数(调查获得的部分数据如下表). 售价x (元/双) 200 240 250 400销售量y (双)30 252415已知该运动鞋的进价为180元/双,要使该款运动鞋每天的销售利润达到2400元,则其售价应定为_______元.16.近视眼镜的度数y (度)与镜片焦距x (米)成反比例,已知400度近视眼镜镜片的焦距为0.25米,则眼镜度数y 与镜片焦距x 之间的函数关系式为________.(无需确定x 的取值范围)17.如果反比例函数y 2mx-=的图象在第一、三象限,那么m 的取值范围是____. 18.如图,过x 轴正半轴上任意一点P 作x 轴的垂线,分别与反比例函数24y x=和12y x =的图象交于点A 和点B .若点C 是y 轴上任意一点,则ABC 的面积为______________.19.如图,直线y =34-x +6与反比例函数y =kx(k >0)的图象交于点M 、N ,与x 轴、y 轴分别交于点B 、A ,作ME ⊥x 轴于点E ,NF ⊥x 轴于点F ,过点E 、F 分别作EG ∥AB ,FH ∥AB ,分别交y 轴于点G 、H ,ME 交HF 于点K ,若四边形MKFN 和四边形HGEK 的面积和为12,则k 的值为_____.20.如图,菱形ABCD 顶点A 在函数y=4x(x>0)的图像上,函数y=kx (k>4,x>0)的图象关于直线AC 对称,且经过点B 、D 两点,若AB=4,∠ADC=150°,则k=______。
【数学九年级上册】北师大版 反比例函数 同步练习(答案)
14. 若 蔠 ለ 1是关于 x 的反比例函数,则 m 必须满足______________.
1ለ. 下列函数: 蔠 ለ 2
1; 蔠 ለ ለ; 蔠 ለ 2 8
2;
蔠 ለ 33;
蔠
ለ
1 2
;
蔠 ለ .其中 y 是 x 的反比例函数的有________. 填序号
16. 已知 蔠 ለ 蔠1 蔠2,蔠1与 x 成正比例、蔠2与 x 成反比例,且当 ለ 1 时,蔠 ለ 4,当 ለ 2 时,蔠 ለ ለ,则当 ለ 4 时,y 的值是_______.
2.【答案】C
【解析】解:A、B、D 选项都符合反比例函数的定义;
C 选项不是反比例函数.
3.【答案】B
【解析】解:A、圆面积公式 ለ 2中,S 与 2成正比例关系,故原题说法错误;
B、三角形面积公式
ለ
1 2
确;
中,当 S 是常量时,a 与 h 成反比例关系,故原题说法正
C、蔠 ለ 2 2 中,y 与 x 不成反比例关系,故原题说法错误;
1 写出 y 关于 x 的函数解析式;
2 当 ለ ለ 时,求 y 的值.
第 4页,共 13页
答案和解析
1.【答案】C
【解答】 解: .等边三角形面积 S 与边长 a 的关系,不是反比例函数的关系,不符合题意 B.直角三角形两锐角 与 的关系,不是反比例函数的关系,不符合题意 C.长方形面积一定时,长 y 与宽 x 的关系,是反比例函数的关系,符合题意 D.等腰三角形的顶角度数与底角度数的关系,不是反比例函数的关系,不符合题意. 故选 C.
第 6页,共 13页
反比例函数解析式的一般式 蔠 ለ
12.【答案】 9
中,特别注意不要忽略
【新】人教版九年级数学下册《反比例函数》同步检测6附答案
人教版九年级数学下册第二十六章《反比例函数——反比例函数》同步检测6附答案一、选择题(每题3分,共30分)1.下列函数,①y=2x,②y=x,③y=x-1,④y=11x是反比例函数的个数有().A.0个 B.1个 C.2个 D.3个2.反比例函数y=2x的图象位于()A.第一、二象限 B.第一、三象限 C.第二、三象限 D.第二、四象限3.已知矩形的面积为10,则它的长y与宽x之间的关系用图象表示大致为()4.已知关于x的函数y=k(x+1)和y=-kx(k≠0)它们在同一坐标系中的大致图象是(• ).5.已知点(3,1)是双曲线y=kx(k≠0)上一点,则下列各点中在该图象上的点是().A.(13,-9) B.(3,1) C.(-1,3) D.(6,-12)6.某气球充满一定质量的气体后,当温度不变时,气球内的气体的气压P(kPa)是气体体积V (m3)的反比例函数,其图象如图所示,当气球内的气压大于140kPa时,•气球将爆炸,为了安全起见,气体体积应().A.不大于2435m3 B.不小于2435m3 C.不大于2437m3 D.不小于2437m3(第6题) (第7题)7.某闭合电路中,电源电压为定值,电流I(A)与电阻R(Ω)成反比例,如右图所表示的是该电路中电流I与电阻R之间的函数关系的图象,则用电阻R表示电流I•的函数解析式为().A.I=6RB.I=-6RC.I=3RD.I=2R8.函数y=1x与函数y=x的图象在同一平面直角坐标系内的交点个数是().A .1个B .2个C .3个D .0个9.若函数y=(m+2)|m|-3是反比例函数,则m 的值是( ). A .2 B .-2 C .±2 D .×210.已知点A (-3,y 1),B (-2,y 2),C (3,y 3)都在反比例函数y=4x的图象上,则( ). A .y 1<y 2<y 3 B .y 3<y 2<y 1 C .y 3<y 1<y 2 D .y 2<y 1<y 3 二、填空题(每题3分,共27分)11.一个反比例函数y=k x(k ≠0)的图象经过点P (-2,-1),则该反比例函数的解析式是________. 12.已知关于x 的一次函数y=kx+1和反比例函数y=6x的图象都经过点(2,m ),则一次函数的解析式是________.13.一批零件300个,一个工人每小时做15个,用关系式表示人数x•与完成任务所需的时间y 之间的函数关系式为________. 14.正比例函数y=x 与反比例函数y=1x的图象相交于A 、C 两点,AB ⊥x 轴于B ,CD•⊥x 轴于D ,如图所示,则四边形ABCD 的为_______.(第14题) (第15题) (第19题)15.如图,P 是反比例函数图象在第二象限上的一点,且矩形PEOF 的面积为8,则反比例函数的表达式是_________. 16.反比例函数y=21039n n x--的图象每一象限内,y 随x 的增大而增大,则n=_______.17.已知一次函数y=3x+m 与反比例函数y=3m x-的图象有两个交点,当m=_____时,有一个交点的纵坐标为6.18.若一次函数y=x+b 与反比例函数y=kx图象,在第二象限内有两个交点,•则k______0,b_______0,(用“>”、“<”、“=”填空) 19.两个反比例函数y=3x ,y=6x在第一象限内的图象如图所示,点P 1,P 2,P 3……P 2005,在反比例函数y=6x的图象上,它们的横坐标分别是x 1,x 2,x 3,…x 2005,纵坐标分别是1,3,•5•……,•共2005年连续奇数,过点P 1,P 2,P 3,…,P 2005分别作y 轴的平行线与y=3x的图象交点依次是Q 1(x 1,y 1),Q 2(x 2,y 2),Q 3(x 3,y 3),…,Q 2005(x 2005,y 2005),则y 2005=________. 三、不定项选择题(每题4分,共8分,错选一项得0分,•对而不全酌情给分)20.当>0时,两个函数值y ,一个随x 增大而增大,另一个随x 的增大而减小的是( •).A.y=3x与y=1xB.y=-3x与y=1xC.y=-2x+6与y=1xD.y=3x-15与y=-1x21.在y=1x的图象中,阴影部分面积为1的有().四、计算题.22.(8分)如图,已知一次函数y=kx+b(k≠0)的图象与x轴、y轴分别交于A、B•两点,且与反比例函数y=mx(m≠0)的图象在第一象限交于C点,CD垂直于x轴,垂足为D,•若OA=OB=OD=1.(1)求点A、B、D的坐标;(2)求一次函数和反比例函数的解析式.23.(10分)如图,已知点A(4,m),B(-1,n)在反比例函数y=8x的图象上,直线AB•分别与x轴,y轴相交于C、D两点,(1)求直线AB的解析式.(2)C、D两点坐标.(3)S△AOC:S△BOD是多少?24.(11分)已知y=y1-y2,y1x y与x成反比例,且当x=1时,y=-14,x=4时,y=3.求(1)y与x之间的函数关系式.(2)自变量x的取值范围.(3)当x=14时,y的值.25.(12分)如图,一次函数y=kx+b的图象与反比例函数y=mx的图象交于A、B两点.(1)利用图中的条件,求反比例函数和一次函数的解析式.(2)根据图象写出使一次函数的值大于反比例函数的值的x的取值范围.26.(14分)如图,双曲线y=5x在第一象限的一支上有一点C(1,5),•过点C•的直线y=kx+b(k>0)与x轴交于点A(a,0).(1)求点A的横坐标a与k的函数关系式(不写自变量取值范围).(2)当该直线与双曲线在第一象限的另一个交点D的横坐标是9时,求△COA•的面积.答案:1.B 2.D 3.A 4.A 5.B 6.B 7.A 8.B 9.A 10.D 11.y=2x 12.y=x+1 13.y=20x14.2 15.y=-8x 16.n=-3 17.m=5 18.<,> 19.2004.5 20.A 、B 21.A 、C 、D22.解:(1)∵OA=OB=OD=1,∴点A 、B 、D 的坐标分别为A (-1,0),B (0,1),D (1,0). (2)∵点AB 在一次函数y=kx+b (k ≠0)的图象上,∴01k b b -+=⎧⎨=⎩ 解得11k b =⎧⎨=⎩∴一次函数的解析式为y=x+1,∵点C 在一次函数y=x+1的图象上,•且CD ⊥x 轴, ∴C 点的坐标为(1,2),又∵点C 在反比例函数y=mx(m ≠0)的图象上, ∴m=2,•∴反比例函数的解析式为y=2x.23.(1)y=2x-6;(2)C (3,0),D (0,-6);(3)S △AOC :S △BOD =1:1.24.(1)-216x 提示:设y=k -22k x,再代入求k 1,k 2的值. (2)自变量x 取值范围是x>0.(3)当x=14时,2=255.25.解:(1)由图中条件可知,双曲线经过点A (2,1)∴1=2m,∴m=2,∴反比例函数的解析式为y=2x .又点B 也在双曲线上,∴n=21-=-2,∴点B 的坐标为(-1,-2).∵直线y=kx+b 经过点A 、B .∴122k b k b =+⎧⎨-=-+⎩ 解得11k b =⎧⎨=-⎩ ∴一次函数的解析式为y=x-1.(2)根据图象可知,一次函数的图象在反比例函数的图象的上方时,•一次函数的值大于反比例函数的值,即x>2或-1<x<0. 26.解:(1)∵点C (1,5)在直线y=-kx+b 上,∴5=-k+b , 又∵点A (a ,0)也在直线y=-kx+b 上,∴-ak+b=0,∴b=ak 将b=ak 代入5=-k+a 中得5=-k+ak ,∴a=5k+1.(2)由于D点是反比例函数的图象与直线的交点∴599yy k ak⎧=⎪⎨⎪=-+⎩∵ak=5+k,∴y=-8k+5 ③将①代入③得:59=-8k+5,∴k=59,a=10.∴A(10,0),又知(1,5),∴S△COA=12×10×5=25.。
人教版九年级数学下册《反比例函数》同步练习附答案【新审】
三、解答题( 18- 22 题每题 6 分,计 30 分, 23— 26 题每题 9 分计 36 分,共 66 分)
y 18.已知一次函数 y=kx+b 的图象与双曲线
求此一次函数的解析式。
2 x 交于点(1,m),且过点( 0,1),
y 19.关于 x 的一次函数 y=-2x+m 和反比例函数
1)
k y 16.二、四 因点( a,—2a)在 x 上,
k 2a
a
2
k 2a 0
双曲线在二、四象限
17. 1 一 因当 x>0 时,反比例函数的图象随 x 的减小而增大.
函数图象在一、三象限
m0 2m2 3m 6 1
由②得
m1 1
5
m2
2
因 m>0, m 1.
y 18.解:因点( 1,m)在
即点( 1,—2)
8
y 与 y 2x
24.在同一坐标系内,画出函数
x
的图象,并求出交点坐标.
25.已知矩形的面积是 4,矩形的长为 x,宽为 y. (1)写出 y 与 x 的函数关系式. (2)求出变量 x 的取值范围 ?
答案
1.B 2.B 3.C 4. A 5. D 6.C 7.B 8.C 9.C 10.C 11. k=2.或 k=3… 符合条件的 k 值较多,只要 k>0 即可
y 1Байду номын сангаас.
4 或y
x
8 ...
x k<0 即可
y 6 或y 13. x
24 ...
x 只要满足 m+n=5,如 m=2,n=3,
6
24
y ,m 3,n 8, y
则x
(完整版)反比例函数综合测试题(含答案)
反比例函数综合测试题一、选择题(每小题3分,共24分)1.已知点M (- 2,3 )在反比例函数xky=的图象上,下列各点也在该函数图象上的是( ).AA. (3,- 2)B. (- 2,- 3)C. (2,3)D. (3,2)2. 反比例函数(0)ky kx=≠的图象经过点(- 4,5),则该反比例函数的图象位于( ).BA. 第一、三象限B. 第二、四象限C. 第二、三象限D. 第一、二象限3. 在同一平面直角坐标系中,函数xy2-=与xy2=的图象的交点个数为( ). DA. 3个B. 2个C. 1个D. 0个4. 如图1,点A是y轴正半轴上的一个定点,点B是反比例函数y = 2 x(x> 0)图象上的一个动点,当点B的纵坐标逐渐减小时,△OAB的面积将( ). AA.逐渐增大B.逐渐减小C.不变D.先增大后减小5. (2009年恩施市)如图2,一张正方形的纸片,剪去两个一样的小矩形得到一个“E”图案,设小矩形的长和宽分别为x,y,剪去部分的面积为20,若2 ≤x≤ 10,则y与x的函数图象是( ). A6. 已知点A(x1,y1),B(x2,y2)是反比例函数xky=(k > 0)的图象上的两点,若x1 < 0 < x2,则( ).AA. y1 < 0 < y2B. y2 < 0 < y1C. y1 < y2 < 0D. y2 < y1 < 07. 如图3,反比例函数3yx=的图象与一次函数y = x + 2的图象交于A,B两点,那么△AOB 的面积是( ).CA. 2B. 3C. 4D. 68. 如图4,等腰直角三角形ABC位于第一象限,AB= AC = 2,直角顶点A在直线y = x上,1212图2图4A B C Dy xOP 1P 2P 3P 4 P 5A 1 A 2 A 3 A 4 A 5 图7其中点A 的横坐标为1,且两条直角边AB ,AC 分别平行于x 轴、y 轴,若反比例函数k y x=的图象与△ABC 有交点,则k 的取值范围是( ). C A.1 < k < 2B.1 ≤ k ≤ 3C.1 ≤ k ≤ 4D.1≤ k < 4二、填空题(每小题4分,共24分) 9. 已知反比例函数k y x =的图象经过点(23),,则此函数的关系式是 .6y x= 10. 在对物体做功一定的情况下,力F (N)与此物体在 力的方向上移动的距离s (m)成反比例函数关系,其图 象如图5所示,点P (5,1)在图象上,则当力达到10 N 时,物体在力的方向上移动的距离是 m. 0. 511. 反比例函数xky =)0(<k 的图象与经过原点的直线l 相交于A ,B 两点,若点A 坐标为(-2,1),则点B 的坐标为 . (2,-1).12.一次函数y = x + 1与反比例函数ky x=的图象都经过点(1,m ),则使这两个函数值都小于0时x 的取值范围是___________. x < - 113. (2009年兰州市)如图6,若正方形OABC 的顶点B 和正方形ADEF 的顶点E 都在函数 反比例函数1y x=(x > 0)的图象上,则点E 的坐标是_________. (215+,215-)14. (2009年莆田市)如图7,在x 轴的正半轴上依次截取OA 1 = A 1A 2 = A 2A 3 = A 3A 4 = A 4A 5,过点A 1,A 2,A 3,A 4,A 5,分别作x 轴的垂线与反比例函数()20y x x=≠的图象相交于点P 1,P 2,P 3,P 4,P 5,得直角三角形OP 1A 1,A 1P 2A 2,A 1P 2A 2,A 2P 3A 3,A 3P 4A 4,A 4P 5A 5,并设其面积分别为S 1,S 2,S 3,S 4,S 5,则S 5的值为 . 三、解答题(共30分)15.(6分) 已知点P (2,2)在反比例函数xky =(k ≠ 0)的图象上. (1)当x = - 3时,求y 的值; (2)当1 < x < 3时,求y 的取值范围.F / N图5s / mO图616.(8分)已知图8中的曲线是反比例函数5myx-=(m为常数)图象的一支. 若该函数的图象与正比例函数y = 2x的图象在第一象内限的交于点A,过点A作x轴的垂线,垂足为点B,当△OAB的面积为4时,求点A的坐标及反比例函数的解析式.17.(8分)如图9,点P的坐标为322⎛⎫⎪⎝⎭,,过点P作x轴的平行线交y轴于点A,交反比例函数kyx=(x > 0)于点点N,作PM ⊥AN交反比例函数kyx=(x > 0)的图象于点M,连接AM.若PN = 4,求:(1)k的值.(2)△APM的面积.18.(8分)为预防“手足口病”,某校对教室进行“药熏消毒”. 已知药物燃烧阶段,室内每立方米空气中的含药量y(mg)与燃烧时间x(min)成正比例;燃烧后,y与x成反比例(如图10所示). 现测得药物10 min燃烧完,此时教室内每立方米空气含药量为8 mg. 根据以上信息,解答下列问题:(1)求药物燃烧时y与x的函数关系式;(2)求药物燃烧后y与x的函数关系式;(3)当每立方米空气中含药量低于1.6 mg时,对人体无毒害作用. 那么从消毒开始,经多长时间学生才可以返回教室?四、探究题(共22分)19.(10分) 我们学习了利用函数图象求方程的近似解,例如,把方程2x – 1 = 3 - x 的解看成函数y = 2 x - 1的图象与函数y = 3 - x 的图象交点的横坐标. 如图11,已画出反比例函数1y x=在第一象限内的图象,请你按照上述方法,利用此图象求方程x 2 – x – 1 = 0的正数解(要求画出相应函数的图象,求出的解精确到0.1).20.(12分)一次函数y = ax + b 的图象分别与x 轴、y 轴交于点M ,N ,与反比例函数k y x=的图象相交于点A ,B .过点A 分别作AC ⊥x 轴,AE ⊥y 轴,垂足分别为点C ,E ;过点B 分别作BF ⊥x 轴,BD ⊥y 轴,垂足分别为点F ,D ,AC 与BC 相交于点K ,连接CD . (1)如图12,若点A ,B 在反比例函数ky x=的图象的同一分支上,试证明: ①A E D K C F B K S S =四边形四边形;②A N B M =. (2)若点AB ,分别在反比例函数ky x=的图象的不同分支上,如图13,则AN 与BM 还相等吗?试证明你的结论.反比例函数综合测试题参考答案一、选择题 1. A. 2. B. 3. D.4. A.5. A.6. A.7. C.8. C.二、填空题 9. 6y x=. 10. 0. 5. 11. (2,-1).12. x < - 1. 13. (215+,215-). 14.15. 三、解答题 15.(1)34-=y ;(2)y 的取值范围为434<<y . 16.∵第一象限内的点A 在正比例函数y = 2x 的图象上,∴设点A 的坐标为(m ,2m )(m > 0),则点B 的坐标为(m ,0). ∵S △OAB = 4,∴12m • 2m = 4. 解得m 1 = 2,m 2 = - 2(不符合题意,舍去).∴点A 的坐标为(2,4).又∵点A 在反比例函数5m y x -=的图象上,∴542m -=,即m – 5 = 8. ∴反比例函数的解析式为8y x=.17.(1)∵点P 的坐标为322⎛⎫ ⎪⎝⎭,,∴AP = 2,OA =32. ∵PN = 4,∴AN = 6. ∴点N 的坐标为362⎛⎫ ⎪⎝⎭,. 把点362N ⎛⎫ ⎪⎝⎭,代入ky x=中,得k = 9. (2)由(1)知k = 9,∴9y x =. 当x = 2时,92y =. ∴93322M P =-=. ∴12332A P MS =⨯⨯=△. 18.(1)设药物燃烧阶段函数关系式为y = k 1x (k 1 ≠ 0).根据题意,得8 = 10k 1,k 1 = 45. ∴此阶段函数关系式为45y x =(0 ≤ x < 10).(2)设药物燃烧结束后函数关系式为22(0)ky k x=≠.根据题意,得2810k=,280k =. ∴此阶段函数关系式为80y x=(x ≥ 10).(3)当y < 1.6时,801.6x<. ∵0x >,∴1.680x >,50x >. ∴从消毒开始经过50 min 学生才返可回教室. 四、探究题19. 方程x 2 – x – 1 = 0的正数解约为1.6.提示:∵x ≠ 0,将x 2 – x – 1 = 0两边同除以x ,得110x x --=.即11x x=-. 把x 2 – x – 1 = 0的正根视为由函数1y x=与函数y = x - 1的图象在第一象限交点的横坐标. 20.(1)①A C x ⊥轴,A E y ⊥轴,∴四边形AE O C 为矩形. BF x ⊥轴,B D y ⊥轴,∴四边形BD O F 为矩形.A C x ⊥轴,B D y ⊥轴,∴四边形A E D K D OC K C F B K ,,均为矩形.1111O C x A C y x y k ===,,,∴11A E O CS O C A C x y k ===矩形2222O F x F B y x yk ===,,,∴22B D O F S O F F B x y k ===矩形.∴A E O C B D O F S S =矩形矩形.A E D K A E O C D O C K S S S =-矩形矩形矩形,C FB K B D O F D OC K S S S =-矩形矩形矩形,∴A ED K C F B K S S =矩形矩形. ②由(1)知,AE D K CF B KS S =矩形矩形.∴A K D K B K C K =.∴AK BKCK DK=. 90A K B C K D ∠=∠=°,∴A K B C K D △∽△.∴C D K A B K ∠=∠.∴A B C D∥.A C y ∥轴,∴四边形AC D N 是平行四边形.∴A N C D =.同理可得B M C D =.A N B M∴=. (2)AN 与BM 仍然相等.A E D K A E O C O D K C S S S =+矩形矩形矩形,B KC F BD O F O D K CS S S =+矩形矩形矩形, 又A E O CB D O F S S k ==矩形矩形,∴A E D K B KC FS S =矩形矩形. ∴A K D K B K C K=.∴CK DKAK BK=. K K ∠=∠,∴C D K A B K △∽△.∴C D K A B K ∠=∠.∴A B C D∥.A C y ∥轴,∴四边形AN D C 是平行四边形.∴A N C D =.同理B M C D =.∴A N B M =【教学标题】反比例函数 【教学目标】1、 提高学生对反比例函数的学习兴趣2、 使学生掌握反比例函数基础知识3、让学生熟练地运用反比例知识【重点难点】图像及性质 【教学内容】反比例函数一、基础知识1. 定义:一般地,形如xk y =(k 为常数,o k ≠)的函数称为反比例函数。
新人教版初中数学九年级数学下册第一单元《反比例函数》测试(包含答案解析)(4)
一、选择题1.函数y a x a =+与(0)ay a x=≠在同一直角坐标系中的图像可能是( ) A . B . C .D .2.关于反比例函数3y x=,下列说法错误的是( ) A .图象关于原点对称B .y 随x 的增大而减小C .图象分别位于第一、三象限D .若点(,)M a b 在其图象上,则3ab =3.如图,ABO 中,∠ABO =45°,顶点A 在反比例函数y =3x(x >0)的图象上,则OB 2﹣OA 2的值为( )A .3B .4C .5D .64.如图,O 为坐标原点,菱形OABC 的顶点A 的坐标为(34)-,,顶点C 在x 轴的负半轴上,函数(0)ky x x=<的图象经过顶点B ,则k 的值为( )A .12-B .27-C .32-D .36-5.已知11(,)x y ,22(,)x y , 33(,)x y 是反比例函数2y x=-的图象上的三个点,且120x x <<,30x >,则123,,y y y 的大小关系是( )A .213y y y <<B .312y y y <<C .123y y y <<D .321y y y <<6.下列函数中图象不经过第三象限的是( ) A .y =﹣3x ﹣2B .y =2xC .y =﹣2x +1D .y =3x +27.已知反比例函数y=21k x +的图上象有三个点(2,1y ), (3, 2y ),(1-, 3y ),则1y ,2y ,3y 的大小关系是( )A .1y >2y >3yB .2y >1y >3yC .3y >1y >2yD .3y >2y >1y8.如图,矩形OABC 的顶点A 、C 分别在x 轴、y 轴上,顶点B 在第一象限,AB=1.将线段OA 绕点O 按逆时针方向旋转600得到线段OP ,连接AP ,反比例函数y=kx过P 、B 两点,则k 的值为( )A .23B 23C .43D 439.若函数2m y x+=的图象在其每一个分支中y 的值随x 值的增大而增大,则m 的取值范围是( ) A .2m ≥B .2m <C .2m ≤-D .2m -<10.当0x <时,反比例函数2y x=-的图象( ) A .在第一象限,y 随x 的增大而减小 B .在第二象限,y 随x 的增大而增大 C .在第三象限,y 随x 的增大而减小 D .在第四象限,y 随x 的增大而减小11.如图,点A 是反比例函数y =kx(x <0)的图象上的一点,过点A 作平行四边形ABCD ,使点B 、C 在x 轴上,点D 在y 轴上.已知平行四边形ABCD 的面积为8,则k 的值为( )A .8B .﹣8C .4D .﹣412.已知点11(,)x y ,22(,)x y 均在双曲线1y x=-上,下列说法中错误的是( ) A .若12x x =,则12y y = B .若12x x =-,则12y y =- C .若120x x <<,则12y y <D .若120x x <<,则12y y >二、填空题13.如图,在平面直角坐标系中,直线36y x =-+与x 轴,y 轴分别交于A 、B 两点,以AB 为边在第一象作正方形ABCD ,则过D 的反比例函数解析式为________.14.如图,Rt △AOB 的一条直角边OB 在x 轴上,双曲线()0ky x x=>经过斜边OA 的中点C ,与另一直角边交于点D ,若3ABOS=,则k 的值为______.15.如图,在方格纸中(小正方形的边长为1),反比例函数ky x=的图象与直线AB 的交点A、B在图中的格点上,点C是反比例函数图象上的一点,且与点A、B组成以AB为底的等腰△,则点C的坐标为________.16.如图,四边形OABC和ADEF均为正方形,反比例函数8yx=的图象分别经过AB的中点M及DE的中点N,则正方形ADEF的边长为___17.将x=23代入反比例函数y=-1x中,所得的函数值记为1y,又将x=1y+1代入反比例函数y=-1x中,所得的函数值记为2y,又将x=2y+1代入反比例函数y=-1x中,所得的函数值记为3y,…,如此继续下去,则y2020=______________18.如图,矩形ABCD的边AB与x轴平行,顶点A的坐标为(2,1),点B,D都在反比例函数6yx=的图像上,则矩形ABCD的面积为_____.19.如图,点A在反比例函数kyx=(x>0)图象上,AB⊥x轴于点B,点C在x轴负半轴上,且BO=2CO,若△ABC的面积为18,则k的值为_______.20.如图,菱形ABCD 顶点A 在函数y=4x(x>0)的图像上,函数y=kx (k>4,x>0)的图象关于直线AC 对称,且经过点B 、D 两点,若AB=4,∠ADC=150°,则k=______。
17.1.2反比例函数的图象和性质同步测控优化训练(含答案)(新人教版)
17.1.2 反比例函数的图象和性质一、课前预习 (5分钟训练) 1.什么是反比例函数?2.判断下面哪些式子表示y 是x 的反比例函数?为什么?(1)xy=31-; (2)y=5-x ; (3)y=x52-; (4)y=x a 2(a 为常数且a≠0).3.已知反比例函数y=xk的图象经过点(2,3),则在每一象限内,y 随x 的增大而__________.4.画出反比例函数y=x 6和y=x6-的图象.二、课中强化(10分钟训练) 1.如果反比例函数y=xk的图象经过点(-3,4),那么k 的值是( ) A.-12 B.12 C.34-D.43- 2.如图,某闭合电路中,电源的电压为定值,电流I(A)与电阻R(Ω)成反比例.右图表示的是该电路中电流I 与电阻R 之间关系的图象,则用电阻R 表示电流I 的函数关系式为( )A.I=R 2 B.I=R 3 C.I=R6D.I=R 6-3.函数y=xk(k≠0)的图象如图所示,那么函数y=kx -k 的图象大致是( )4.下图给出了反比例函数y=x32和y=x 32-的图象,你知道哪一个是y=x 32-的图象吗?____.5.已知反比例函数y=xm 23-,当m_____________时,其图象的两个分支在第一、三象限内;当m_____________时,其图象在每个象限内y 随x 的增大而增大. 6.直线y=2x 与双曲线y=xk的一个交点坐标为(2,4),则它们的另一个交点坐标是__________.三、课后巩固(30分钟训练)1.若点(-2,y 1)、(1,y 2)、(2,y 3)都在反比例函数y=x1-的图象上,则有( ) A.y 1>y 2>y 3 B.y 1>y 3>y 2 C.y 3>y 1>y 2 D.y 2>y 1>y 32.已知一个矩形的面积为24 cm 2,其长为y cm ,宽为x cm ,则y 与x 之间的函数关系的图象大致是( )3.已知函数y=xk的图象过点A(6,-1),则下列点中不在该函数图象上的点是( )A.(-2,3)B.(-1,-6)C.(1,-6)D.(2,-3)4.已知k >0,则函数y=kx 、y=xk-的图象大致是下图中的( )5.反比例函数y=xk(k >0)在第一象限的图象如图所示,点M 是图象上一点, MP 垂直x 轴于点P ,如果△MOP 的面积为1,那么k 的值是( ) A.1 B.2 C.3 D.46.已知反比例函数的图象一定经过点(-3,4),则这个函数解析式是_____________.7.请你写出一个反比例函数,使它的图象在第二、四象限:_____________. 8.已知反比例函数y=xk的图象与直线y=2x 和y=x+1的图象过同一点(1,2),则当x >0时,这个反比例函数值y 随x 的增大而_____________ (填增大或减小).9.已知双曲线y=xk-3,在每个象限内,自变量x 逐渐增大,y 的值也随着逐渐增大,那么k 的取值范围为_____________.10.已知正比例函数y=kx 与反比例函数y=x3的图象都过点A(m ,1),求此正比例函数解析式及另一个交点的坐标.参考答案一、课前预习 (5分钟训练) 1.什么是反比例函数?答案:一般地,形如y=xk(k 是常数,k≠0)的函数叫做反比例函数. 2.判断下面哪些式子表示y 是x 的反比例函数?为什么?(1)xy=31-; (2)y=5-x ; (3)y=x 52-; (4)y=x a 2(a 为常数且a≠0).答案:(1)(3)(4)是反比例函数,因为(1)(3)(4)是形如y=xk(k 是常数,k≠0)的函数;(2)不是反比例函数,因为(2)不是形如y=xk(k 是常数,k≠0)的函数.3.已知反比例函数y=xk的图象经过点(2,3),则在每一象限内,y 随x 的增大而__________.答案:减小 4.画出反比例函数y=x 6和y=x6-的图象. 解析:(1)列表:y=x6-1-1.2-1.5-2-3-6632 1.5 1.21y=x6-1 1.2 1.5236-6-3-2-1.5-1.2-1(2)描点.(3)连线,图象如图.二、课中强化(10分钟训练)1.如果反比例函数y=xk的图象经过点(-3,4),那么k的值是( )A.-12B.12C.34- D.43-解析:将(-3,4)的坐标代入y=xk,得k=-12.答案:A2.如图,某闭合电路中,电源的电压为定值,电流I(A)与电阻R(Ω)成反比例.右图表示的是该电路中电流I与电阻R之间关系的图象,则用电阻R表示电流I 的函数关系式为( )A.I=R 2 B.I=R 3 C.I=R6D.I=R 6-解析:设I=Rk,将(3,2)代入即得k=6. 答案:C 3.函数y=xk(k≠0)的图象如图所示,那么函数y=kx -k 的图象大致是( )解:y=xk在二、四象限,所以k <0,则y=kx -k 向左倾斜,与y 轴交于正半轴. 答案:C4.下图给出了反比例函数y=x32和y=x 32-的图象,你知道哪一个是y=x 32-的图象吗?____.解析:反比例函数y=x32的图象在第一、三象限,而反比例函数y=x 32-的图象在第二、四象限. 答案:(2)5.已知反比例函数y=xm 23-,当m_____________时,其图象的两个分支在第一、三象限内;当m_____________时,其图象在每个象限内y 随x 的增大而增大. 解析:若使反比例函数y=xm 23-的图象的两个分支在第一、三象限内,需使3m -2>0,即32>m ;若使反比例函数y=xm 23-的图象在每个象限内y 随x 的增大而增大,需使3m -2<0,即32<m . 答案: 32>32< 6.直线y=2x 与双曲线y=xk的一个交点坐标为(2,4),则它们的另一个交点坐标是__________.解析:因为点(2,4)在双曲线y=x k 上,所以4=2k,得k=8,则它与y=2x 组成方程组,,28⎪⎩⎪⎨⎧==x y x y 解得⎩⎨⎧==4y 2,x 或⎩⎨⎧==-4,y -2,x 所以另一个交点坐标是(-2,-4). 答案:(-2,-4) 三、课后巩固(30分钟训练)1.若点(-2,y 1)、(1,y 2)、(2,y 3)都在反比例函数y=x1-的图象上,则有( ) A.y 1>y 2>y 3 B.y 1>y 3>y 2 C.y 3>y 1>y 2 D.y 2>y 1>y 3解析:因为y=x1-在第四象限内随x 的增大y 增大,又知道1<2,所以y 2<y 3.而(-2,y 1)在第二象限,故y 1>0,所以y 1>y 3>y 2. 答案:B2.已知一个矩形的面积为24 cm 2,其长为y cm ,宽为x cm ,则y 与x 之间的函数关系的图象大致是( )解析:根据矩形面积公式得y=x24,其中k=24>0,x >0,所以函数关系的图象大致是答案D 的图象. 答案:D 3.已知函数y=xk的图象过点A(6,-1),则下列点中不在该函数图象上的点是( )A.(-2,3)B.(-1,-6)C.(1,-6)D.(2,-3)解析:将点A(6,-1)代入y=xk,得k=-6,再将四个选择项点坐标代入解析式验证,两坐标之积不为-6的即不在图象上. 答案:B4.已知k >0,则函数y=kx 、y=xk-的图象大致是下图中的( )解析:当k >0时正比例函数y=kx 的图象经过原点和一、三象限,而反比例函数y=-xk的图象在二、四象限,所以选C.选项A 的正比例函数y=kx 的图象经过原点和二、四象限,则k <0.选项B 的反比例函数y=-xk的图象在一、三象限,则-k >0,即k <0.选项D 的错误和选项A 、B 的错误一样. 答案:C 5.反比例函数y=xk(k >0)在第一象限的图象如图所示,点M 是图象上一点,MP 垂直x 轴于点P ,如果△MOP 的面积为1,那么k 的值是( )A.1B.2C.3D.4 解析:△MOP 的面积等于21OP×PM=1,如果设点M 的坐标为(x 1,y 1),因为反比例函数y=xk(k >0)的图象在第一象限,所以OP=|x 1|=x 1,PM=|y 1|=y 1,即21×OP×PM=21x 1y 1=1.所以k=x 1y 1=2. 答案:B6.已知反比例函数的图象一定经过点(-3,4),则这个函数解析式是_____________.解析:设反比例函数解析式为y=x k ,当x=-3时,y=3-k =4,解得k=-12,所以这个函数解析式是y=x12-. 答案:y=x 12- 7.请你写出一个反比例函数,使它的图象在第二、四象限:_____________. 解析:在二、四象限的反比例函数所具有的性质是k <0.答案:y=x1-(不唯一,k <0即可) 8.已知反比例函数y=x k 的图象与直线y=2x 和y=x+1的图象过同一点(1,2),则当x >0时,这个反比例函数值y 随x 的增大而_____________ (填增大或减小).解析:先求直线y=2x 和y=x+1的图象的交点为(1,2),把点(1,2)代入反比例函数y=xk 中,得k=2,所以x >0时这个反比例函数值y 随x 的增大而减小. 答案:减小9.已知双曲线y=xk -3,在每个象限内,自变量x 逐渐增大,y 的值也随着逐渐增大,那么k 的取值范围为_____________.解析:若使双曲线y=xk -3在每个象限内自变量x 逐渐增大,y 的值也随着逐渐增大,则3-k <0,得k >3.答案:k >310.已知正比例函数y=kx 与反比例函数y=x3的图象都过点A(m ,1),求此正比例函数解析式及另一个交点的坐标.解:∵y=x 3的图象过A(m ,1)点,则1=m3, ∴m=3,即A(3,1).将A(3,1)代入y=kx ,得k=31, ∴正比例函数解析式为y=x 31. 又xx 331 ,∴x=±3. 当x=3时,y=1;当x=-3时,y=-1.∴另一交点为(-3,-1).。
人教八年级数学下 17.1反比例函数同步测试B
17.1反比例函数同步测试题B一、选择题1. 对于反比例函数y =x5,下列结论中正确的是( ) A.y 取正值 B.y 随x 的增大而增大 C.y 随x 的增大而减小 D.y 取负值 2.下列各点中,在双曲线xy 2=上的是( ) A.(1,2) B.(2,2) C.(4,2) D.(0,2) 3. 下列函数中,图象经过点(11)-,的反比例函数解析式是( )A .1y x =B .1y x -=C .2y x =D .2y x -= 4.函数x k y =的图象经过点(-4,6),则下列个点中在xky =图象上的是( )A.(3,8 )B.(-3,8)C.(-8,-3)D.(-4,-6)5. 在下图中,反比例函数xk y 12+=的图象大致是( )6. 已知反比例函数xky =的图象在第二、第四象限内,函数图象上有两点A (72,y 1)、B (5,y 2),则y 1与y 2的大小关系为( )。
A 、y 1>y 2B 、y 1=y 2C 、y 1<y 2D 、无法确定7.函数y =mx 922--m m 的图象是双曲线,且在每个象限内函数值y 随x 的增大而减小,则m 的值是( )A.-2B.4C.4或-2D.-18. 若反比例函数y =xk的图象经过点(-2, 4),那么这个函数是( ) A.y =x 8 B.y =8x C.y =-x 8 D.y =-8x9.反比例函数xm y 5-=的图象的两个分支分别在二、四象限内,那么m 的取值范围是( )A.0<mB.0>mC.5>mD.5<m10. 如图,反比例函数ky x=的图象经过点A ,则k 的值 是( )A.2B. 1.5C.3-D. 32-11. 如图,P P P 123、、是双曲线上的三点,过这三点分别作yP A O PA OP A O 112233、、,设它们的面积分别是S S S 123、、,则()A . S S S 123<<B .S S S 213<< C . S S S 132<<D . S S S 123==12. 反比例函数ky x=与正比例函数2y x =图像的一个交点的横坐标为1,则反比例函数的图像大致为( )13. 函数y x m =+与(0)my m x=≠在同一坐标系内的图象可以是( )14. 如图,反比例函数xy 5=的图象与直线)0(>=k kx y 相交于B 两点,AC ∥y 轴,BC ∥x 轴,则△ABC 的面积等于 个面积单位.A.4B.5C.10D.20 二、填空题15. 如果点(a ,-3a )在双曲线y =xk上,那么k _________0.xA .xB .xC . xD .16. y 与x +1成反比例,当x =2时,y =1,则当y =-1时,x =_________. 17. 函数y =xk(k >0)的图象上两点A (x 1, y 1)和B (x 2, y 2),且x 1>x 2>0,分别过A 、B 向x 轴作AA 1⊥x 轴于A 1,BB 1⊥x 轴于B 1,则O AA S 1∆_________O BB S 1∆ (填“>”“=”或“<”),若O AA S 1∆=2,则函数解析式为_________.18. (08四川省资阳市)若A (1x ,1y )、B (2x ,2y )在函数12y x=的图象上,则当1x 、2x 满足_______________时,1y >2y . 19. 已知12y y y =+,其中1y 与1x成反比例且比例系数为1k ,2y 与2x 成正比例且比例系数为2k ,若1-=x 时,0=y ,则1k 与2k 的关系为 20. 已知(11,y x )、(22,y x )为反比例函数xky =图象上的点,当2121,0y y x x <<<时,则k 的一个值为 (只符合条件的一个即可).21. 近视眼镜的度数y (度)与镜片焦距x (米)成反比例,已知400度近视眼镜镜片的焦距为0.25米,则眼镜度数y 与镜片焦距x 之间的函数关系式为 . 三、解答题(本大题24分)22.甲、乙两地相距100km ,一辆汽车从甲地开往乙地,把汽车到达乙地所用的时间)(h t 表示为汽车速度)/(h km v 的函数,并画出函数图象.23已知函数y = y 1-y 2,y 1与x 成反比例,y 2与x -2成正比例,且当x = 1时,y =-1;当x = 3时,y = 5.求当x =5时y 的值。
【新】人教版九年级数学下册反比例函数同步测试卷及答案
第二十六章 反比例函数测试1 反比例函数的概念学习要求理解反比例函数的概念和意义,能根据问题的反比例关系确定函数解析式.课堂学习检测一、填空题1.一般的,形如____________的函数称为反比例函数,其中x 是______,y 是______.自变量x 的取值范围是______.2.写出下列各题中所要求的两个相关量之间的函数关系式,并指出函数的类别.(1)商场推出分期付款购电脑活动,每台电脑12000元,首付4000元,以后每月付y 元,x 个月全部付清,则y 与x 的关系式为____________,是______函数. (2)某种灯的使用寿命为1000小时,它的使用天数y 与平均每天使用的小时数x 之间的关系式为__________________,是______函数.(3)设三角形的底边、对应高、面积分别为a 、h 、S .当a =10时,S 与h 的关系式为____________,是____________函数; 当S =18时,a 与h 的关系式为____________,是____________函数.(4)某工人承包运输粮食的总数是w 吨,每天运x 吨,共运了y 天,则y 与x 的关系式为______,是______函数.3.下列各函数①x k y =、②x k y 12+=、③x y 53=、④14+=x y 、⑤x y 21-=、⑥31-=x y 、⑦24xy =和⑧y =3x -1中,是y 关于x 的反比例函数的有:____________(填序号).4.若函数11-=m xy (m 是常数)是反比例函数,则m =____________,解析式为____________.5.近视眼镜的度数y (度)与镜片焦距x (m)成反比例,已知400度近视眼镜片的焦距为0.25m ,则y 与x 的函数关系式为____________. 二、选择题 6.已知函数xky =,当x =1时,y =-3,那么这个函数的解析式是( ). (A)xy 3=(B)x y 3-= (C)x y 31= (D)xy 31-=7.已知y 与x 成反比例,当x =3时,y =4,那么y =3时,x 的值等于( ).(A)4 (B)-4 (C)3 (D)-3 三、解答题8.已知y 与x 成反比例,当x =2时,y =3. (1)求y 与x 的函数关系式;(2)当y =-23时,求x 的值.综合、运用、诊断一、填空题9.若函数522)(--=k x k y (k 为常数)是反比例函数,则k 的值是______,解析式为_______ __________________.10.已知y 是x 的反比例函数,x 是z 的正比例函数,那么y 是z 的______函数. 二、选择题11.某工厂现有材料100吨,若平均每天用去x 吨,这批原材料能用y 天,则y 与x 之间的函数关系式为( ).(A)y =100x(B)xy 100=(C)xy 100100-= (D)y =100-x 12.下列数表中分别给出了变量y 与变量x 之间的对应关系,其中是反比例函数关系的是( ).三、解答题13.已知圆柱的体积公式V =S ·h .(1)若圆柱体积V 一定,则圆柱的高h (cm)与底面积S (cm 2)之间是______函数关系; (2)如果S =3cm 2时,h =16cm ,求: ①h (cm)与S (cm 2)之间的函数关系式;②S =4cm 2时h 的值以及h =4cm 时S 的值.拓展、探究、思考 14.已知y 与2x -3成反比例,且41=x 时,y =-2,求y 与x 的函数关系式.15.已知函数y =y 1-y 2,且y 1为x 的反比例函数,y 2为x 的正比例函数,且23-=x 和x =1时,y 的值都是1.求y 关于x 的函数关系式.测试2 反比例函数的图象和性质(一)学习要求能根据解析式画出反比例函数的图象,初步掌握反比例函数的图象和性质.课堂学习检测一、填空题 1.反比例函数xky =(k 为常数,k ≠0)的图象是______;当k >0时,双曲线的两支分别位于______象限,在每个象限内y 值随x 值的增大而______;当k <0时,双曲线的两支分别位于______象限,在每个象限内y 值随x 值的增大而______.2.如果函数y =2x k +1的图象是双曲线,那么k =______.3.已知正比例函数y =kx ,y 随x 的增大而减小,那么反比例函数xky =,当x <0时,y 随x 的增大而______.4.如果点(1,-2)在双曲线xky =上,那么该双曲线在第______象限. 5.如果反比例函数xk y 3-=的图象位于第二、四象限内,那么满足条件的正整数k 的值是____________. 二、选择题 6.反比例函数xy 1-=的图象大致是图中的( ).7.下列函数中,当x >0时,y 随x 的增大而减小的是( ). (A)y =x(B)xy 1=(C)xy 1-= (D)y =2x8.下列反比例函数图象一定在第一、三象限的是( ).(A)xmy =(B)xm y 1+= (C)x m y 12+= (D)x my -=9.反比例函数y =221)(2--m x m ,当x >0时,y 随x 的增大而增大,则m 的值是( ).(A)±1 (B)小于21的实数 (C)-1 (D)110.已知点A (x 1,y 1),B (x 2,y 2)是反比例函数xky =(k >0)的图象上的两点,若x 1<0<x 2,则有( ).(A)y 1<0<y 2 (B)y 2<0<y 1 (C)y 1<y 2<0 (D)y 2<y 1<0三、解答题11.作出反比例函数xy 12=的图象,并根据图象解答下列问题: (1)当x =4时,求y 的值; (2)当y =-2时,求x 的值; (3)当y >2时,求x 的范围.综合、运用、诊断一、填空题12.已知直线y =kx +b 的图象经过第一、二、四象限,则函数xkby =的图象在第______象限. 13.已知一次函数y =kx +b 与反比例函数xkb y -=3的图象交于点(-1,-1),则此一次函数的解析式为____________,反比例函数的解析式为____________. 二、选择题14.若反比例函数xky =,当x >0时,y 随x 的增大而增大,则k 的取值范围是( ). (A)k <0(B)k >0(C)k ≤0(D)k ≥015.若点(-1,y 1),(2,y 2),(3,y 3)都在反比例函数xy 5=的图象上,则( ). (A)y 1<y 2<y 3 (B)y 2<y 1<y 3(C)y 3<y 2<y 1(D)y 1<y 3<y 216.对于函数xy 2-=,下列结论中,错误..的是( ). (A)当x >0时,y 随x 的增大而增大(B)当x <0时,y 随x 的增大而减小(C)x =1时的函数值小于x =-1时的函数值(D)在函数图象所在的每个象限内,y 随x 的增大而增大17.一次函数y =kx +b 与反比例函数xky =的图象如图所示,则下列说法正确的是( ).(A)它们的函数值y 随着x 的增大而增大 (B)它们的函数值y 随着x 的增大而减小 (C)k <0(D)它们的自变量x 的取值为全体实数 三、解答题18.作出反比例函数xy 4-=的图象,结合图象回答: (1)当x =2时,y 的值;(2)当1<x ≤4时,y 的取值范围; (3)当1≤y <4时,x 的取值范围.拓展、探究、思考19.已知一次函数y =kx +b 的图象与反比例函数xmy =的图象交于A (-2,1),B (1,n )两点.(1)求反比例函数的解析式和B 点的坐标;(2)在同一直角坐标系中画出这两个函数的图象的示意图,并观察图象回答:当x 为何值时,一次函数的值大于反比例函数的值?(3)直接写出将一次函数的图象向右平移1个单位长度后所得函数图象的解析式.测试3 反比例函数的图象和性质(二)学习要求会用待定系数法确定反比例函数解析式,进一步理解反比例函数的图象和性质.课堂学习检测一、填空题1.若反比例函数x ky =与一次函数y =3x +b 都经过点(1,4),则kb =______. 2.反比例函数xy 6-=的图象一定经过点(-2,______).3.若点A (7,y 1),B (5,y 2)在双曲线xy 3-=上,则y 1、y 2中较小的是______. 4.函数y 1=x (x ≥0),xy 42=(x >0)的图象如图所示,则结论:①两函数图象的交点A 的坐标为(2,2); ②当x >2时,y 2>y 1; ③当x =1时,BC =3;④当x 逐渐增大时,y 1随着x 的增大而增大,y 2随着x 的增大而减小. 其中正确结论的序号是____________. 二、选择题5.当k <0时,反比例函数xky =和一次函数y =kx +2的图象大致是( ).(A) (B) (C) (D)6.如图,A 、B 是函数xy 2=的图象上关于原点对称的任意两点,BC ∥x 轴,AC ∥y 轴, △ABC 的面积记为S ,则( ).(A)S =2 (B)S =4 (C)2<S <4 (D)S >47.若反比例函数xy 2-=的图象经过点(a ,-a ),则a 的值为( ). (A)2 (B)2- (C)2± (D)±2三、解答题8.如图,反比例函数xky =的图象与直线y =x -2交于点A ,且A 点纵坐标为1,求该反比例函数的解析式.综合、运用、诊断一、填空题9.已知关于x 的一次函数y =-2x +m 和反比例函数xn y 1+=的图象都经过点A (-2,1),则m =______,n =______.10.直线y =2x 与双曲线x y 8=有一交点(2,4),则它们的另一交点为______. 11.点A (2,1)在反比例函数xky =的图象上,当1<x <4时,y 的取值范围是__________.二、选择题12.已知y =(a -1)x a 是反比例函数,则它的图象在( ).(A)第一、三象限 (B)第二、四象限 (C)第一、二象限 (D)第三、四象限 13.在反比例函xky -=1的图象的每一条曲线上,y 都随x 的增大而增大,则k 的取值可以是( ). (A)-1(B)0(C)1(D)214.如图,点P 在反比例函数xy 1=(x >0)的图象上,且横坐标为2.若将点P 先向右平移两个单位,再向上平移一个单位后得到点P ′.则在第一象限内,经过点P ′的反比例函数图象的解析式是( )(A))0(5>-=x x y (B))0(5>=x x y (C))0(5>-=x xy(D))0(6>=x xy15.如图,点A 、B 是函数y =x 与xy 1=的图象的两个交点,作AC ⊥x 轴于C ,作BD ⊥x 轴于D ,则四边形ACBD 的面积为( ).(A)S >2 (B)1<S <2 (C)1 (D)2三、解答题16.如图,已知一次函数y 1=x +m (m 为常数)的图象与反比例函数xky2(k 为常数,k ≠0)的图象相交于点A (1,3).(1)求这两个函数的解析式及其图象的另一交点B 的坐标; (2)观察图象,写出使函数值y 1≥y 2的自变量x 的取值范围.拓展、探究、思考17.已知:如图,在平面直角坐标系xOy 中,Rt △OCD 的一边OC 在x 轴上,∠C =90°,点D 在第一象限,OC =3,DC =4,反比例函数的图象经过OD 的中点A .(1)求该反比例函数的解析式;(2)若该反比例函数的图象与Rt △OCD 的另一边交于点B ,求过A 、B 两点的直线的解析式.18.已知正比例函数和反比例函数的图象都经过点A (3,3).(1)求正比例函数和反比例函数的解析式;(2)把直线OA 向下平移后与反比例函数的图象交于点B (6,m ),求m 的值和这个一次函数的解析式;(3)在(2)中的一次函数图象与x 轴、y 轴分别交于C 、D ,求四边形OABC 的面积.测试4 反比例函数的图象和性质(三)学习要求进一步理解和掌握反比例函数的图象和性质;会解决与一次函数和反比例函数有关的问题.课堂学习检测一、填空题1.正比例函数y =k 1x 与反比例函数x ky 2=交于A 、B 两点,若A 点坐标是(1,2),则B 点坐标是______.2.观察函数xy 2-=的图象,当x =2时,y =______;当x <2时,y 的取值范围是______;当y ≥-1时,x 的取值范围是______.3.如果双曲线xky =经过点)2,2(-,那么直线y =(k -1)x 一定经过点(2,______). 4.在同一坐标系中,正比例函数y =-3x 与反比例函数)0(>=k xky 的图象有______个交点.5.如果点(-t ,-2t )在双曲线xky =上,那么k ______0,双曲线在第______象限.二、选择题6.如图,点B 、P 在函数)0(4>=x xy 的图象上,四边形COAB 是正方形,四边形FOEP 是长方形,下列说法不正确的是( ).(A)长方形BCFG 和长方形GAEP 的面积相等 (B)点B 的坐标为(4,4) (C)xy 4=的图象关于过O 、B 的直线对称 (D)长方形FOEP 和正方形COAB 面积相等 7.反比例函数xky =在第一象限的图象如图所示,则k 的值可能是( ).(A)1 (B)2 (C)3(D)4三、解答题8.已知点A (m ,2)、B (2,n )都在反比例函数xm y 3+=的图象上. (1)求m 、n 的值;(2)若直线y =mx -n 与x 轴交于点C ,求C 关于y 轴对称点C ′的坐标.9.在平面直角坐标系xOy 中,直线y =x 向上平移1个单位长度得到直线l .直线l 与反比例函数xky =的图象的一个交点为A (a ,2),求k 的值.综合、运用、诊断一、填空题10.如图,P 是反比例函数图象上第二象限内的一点,且矩形PEOF 的面积为3,则反比例函数的解析式是______.11.如图,在直角坐标系中,直线y =6-x 与函数)0(5>=x xy 的图象交于A ,B ,设A (x 1,y 1),那么长为x 1,宽为y 1的矩形的面积和周长分别是______.12.已知函数y =kx (k ≠0)与xy 4-=的图象交于A ,B 两点,若过点A 作AC 垂直于y 轴,垂足为点C ,则△BOC 的面积为____________.13.在同一直角坐标系中,若函数y =k 1x (k 1≠0)的图象与xky 2=)0(2≠k 的图象没有公共点,则k 1k 2______0.(填“>”、“<”或“=”) 二、选择题14.若m <-1,则函数①)0(>=x xmy ,②y =-mx +1,③y =mx ,④y =(m +1)x 中,y 随x 增大而增大的是( ). (A)①④ (B)②(C)①②(D)③④15.在同一坐标系中,y =(m -1)x 与xmy -=的图象的大致位置不可能的是( ).三、解答题16.如图,A 、B 两点在函数)0(>=x xmy 的图象上.(1)求m 的值及直线AB 的解析式; (2)如果一个点的横、纵坐标均为整数,那么我们称这个点是格点.请直接写出图中阴影部分(不包括边界)所含格点的个数.17.如图,等腰直角△POA 的直角顶点P 在反比例函数xy 4=)0(>x 的图象上,A 点在x 轴正半轴上,求A 点坐标.拓展、探究、思考18.如图,函数xy 5=在第一象限的图象上有一点C (1,5),过点C 的直线y =-kx +b (k >0)与x 轴交于点A (a ,0).(1)写出a 关于k 的函数关系式; (2)当该直线与双曲线xy 5=在第一象限的另一交点D 的横坐标是9时,求△COA 的面积.19.如图,一次函数y =kx +b 的图象与反比例函数xmy =的图象交于A (-3,1)、B (2,n )两点,直线AB 分别交x 轴、y 轴于D 、C 两点.(1)求上述反比例函数和一次函数的解析式; (2)求CDAD的值.测试5 实际问题与反比例函数(一)学习要求能写出实际问题中的反比例函数关系式,并能结合图象加深对问题的理解.课堂学习检测一、填空题1.一个水池装水12m 3,如果从水管中每小时流出x m 3的水,经过y h 可以把水放完,那么y 与x 的函数关系式是______,自变量x 的取值范围是______. 2.若梯形的下底长为x ,上底长为下底长的31,高为y ,面积为60,则y 与x 的函数关系是______ (不考虑x 的取值范围). 二、选择题3.某一数学课外兴趣小组的同学每人制作一个面积为200 cm 2的矩形学具进行展示.设矩形的宽为x cm ,长为y cm ,那么这些同学所制作的矩形的长y (cm)与宽x (cm)之间的函数关系的图象大致是( ).4.下列各问题中两个变量之间的关系,不是反比例函数的是( ).(A)小明完成百米赛跑时,所用时间t (s)与他的平均速度v (m/s)之间的关系 (B)长方形的面积为24,它的长y 与宽x 之间的关系(C)压力为600N 时,压强p (Pa)与受力面积S (m 2)之间的关系(D)一个容积为25L 的容器中,所盛水的质量m (kg)与所盛水的体积V (L)之间的关系5.在温度不变的条件下,通过一次又一次地对汽缸顶部的活塞加压,测出每一次加压后缸内气体体积x /ml100 80 60 40 20 压强y /kPa60 75 100 150 300 (A)y =3000x(B)y =6000x(C)xy 3000=(D)xy 6000=综合、运用、诊断一、填空题6.甲、乙两地间的公路长为300km ,一辆汽车从甲地去乙地,汽车在途中的平均速度为v (km/h),到达时所用的时间为t (h),那么t 是v 的______函数,v 关于t 的函数关系式为______. 7.农村常需要搭建截面为半圆形的全封闭蔬菜塑料暖房(如图所示),则需要塑料布y (m 2)与半径R (m)的函数关系式是(不考虑塑料埋在土里的部分)__________________.二、选择题8.一张正方形的纸片,剪去两个一样的小矩形得到一个“E”图案,如图所示,设小矩形的长和宽分别为x、y,剪去部分的面积为20,若2≤x≤10,则y与x的函数图象是( ).三、解答题9.一个长方体的体积是100cm3,它的长是y(cm),宽是5cm,高是x(cm).(1)写出长y(cm)关于高x(cm)的函数关系式,以及自变量x的取值范围;(2)画出(1)中函数的图象;(3)当高是3cm时,求长.测试6 实际问题与反比例函数(二)学习要求根据条件求出函数解析式,运用学过的函数知识解决反比例函数的应用问题.课堂学习检测一、填空题1.一定质量的氧气,密度ρ是体积V的反比例函数,当V=8m3时,ρ=1.5kg/m3,则ρ与V的函数关系式为______.2.由电学欧姆定律知,电压不变时,电流强度I与电阻R成反比例,已知电压不变,电阻R=20Ω时,电流强度I=0.25A.则(1)电压U=______V;(2)I与R的函数关系式为______;(3)当R=12.5Ω时的电流强度I=______A;(4)当I=0.5A时,电阻R=______Ω.3.如图所示的是一蓄水池每小时的排水量V/m3·h-1与排完水池中的水所用的时间t(h)之间的函数图象.(1)根据图象可知此蓄水池的蓄水量为______m3;(2)此函数的解析式为____________;(3)若要在6h内排完水池中的水,那么每小时的排水量至少应该是______m3;(4)如果每小时的排水量是5m3,那么水池中的水需要______h排完.二、解答题4.一定质量的二氧化碳,当它的体积V=4m3时,它的密度p=2.25kg/m3.(1)求V与ρ的函数关系式;(2)求当V=6m3时,二氧化碳的密度;(3)结合函数图象回答:当V≤6m3时,二氧化碳的密度有最大值还是最小值?最大(小)值是多少?综合、运用、诊断一、选择题5.下列各选项中,两个变量之间是反比例函数关系的有( ).(1)小张用10元钱去买铅笔,购买的铅笔数量y(支)与铅笔单价x(元/支)之间的关系(2)一个长方体的体积为50cm3,宽为2cm,它的长y(cm)与高x(cm)之间的关系(3)某村有耕地1000亩,该村人均占有耕地面积y(亩/人)与该村人口数量n(人)之间的关系(4)一个圆柱体,体积为100cm3,它的高h(cm)与底面半径R(cm)之间的关系(A)1个(B)2个(C)3个(D)4个二、解答题6.一个气球内充满了一定质量的气体,当温度不变时,气球内气体的气压p(kPa)是气体体积V(m3)的反比例函数,其图象如图所示.(1)写出这一函数的解析式;(2)当气体体积为1m3时,气压是多少?(3)当气球内的气压大于140kPa时,气球将爆炸,为了安全起见,气体的体积应不小于多少? 7.一个闭合电路中,当电压为6V时,回答下列问题:(1)写出电路中的电流强度I(A)与电阻R(Ω)之间的函数关系式;(2)画出该函数的图象;(3)如果一个用电器的电阻为5Ω,其最大允许通过的电流强度为1A,那么把这个用电器接在这个闭合电路中,会不会被烧?试通过计算说明理由.拓展、探究、思考三、解答题8.为了预防流感,某学校在休息天用药熏消毒法对教室进行消毒.已知药物释效过程中,室内每立方米空气中的含药量y(毫克)与时间x(分钟)成正比例;药物释放完毕后,y与x成反比例,如图所示.根据图中提供的信息,解答下列问题:(1)写出从药物释放开始,y与x之间的两个函数关系式及相应的自变量取值范围;(2)据测定,当空气中每立方米的含药量降低到0.45毫克以下时,学生方可进入教室,那么从药物释放开始,至少需要经过多少小时后,学生才能进入教室?9.水产公司有一种海产品共2104千克,为寻求合适的销售价格,进行了8天试销,试销情况如下:第1天第2天第3天第4天第5天第6天第7天第8天售价400 250 240 200 150 125 120x(元/千克)销售量y/千克30 40 48 60 80 96 100x(元/千克)之间的关系.现假定在这批海产品的销售中,每天的销售量y(千克)与销售价格x(元/千克)之间都满足这一关系.(1)写出这个反比例函数的解析式,并补全表格;(2)在试销8天后,公司决定将这种海产品的销售价格定为150元/千克,并且每天都按这个价格销售,那么余下的这些海产品预计再用多少天可以全部售出?参考答案第二十六章 反比例函数测试1 反比例函数的概念1.xky =(k 为常数,k ≠0),自变量,函数,不等于0的一切实数. 2.(1)x y 8000=,反比例;(2)xy 1000=,反比例;(3)s =5h ,正比例,ha 36=,反比例;(4)xwy =,反比例.3.②、③和⑧. 4.2,x y 1=. 5.)0(100>⋅=x xy 6.B . 7.A .8.(1)xy 6=; (2)x =-4.9.-2,⋅-=xy 410.反比例. 11.B . 12.D .13.(1)反比例; (2)①Sh 48=; ②h =12(cm), S =12(cm 2).14.⋅-=325x y 15..23x xy -=测试2 反比例函数的图象和性质(一)1.双曲线;第一、第三,减小;第二、第四,增大. 2.-2. 3.增大. 4.二、四. 5.1,2. 6.D . 7.B . 8.C . 9.C . 10.A . 11x … -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 …y … -2 -2.4 -3 -4 -6 -12 12 6 4 3 2.4 2…由图知,(1)y =3;(2)x =-6; (3)0<x <6.12.二、四象限. 13.y =2x +1,⋅=xy 1 14.A . 15.D 16.B 17.C 18x… -4 -3 -2 -1 1 234… y…1342 4 -4-2 -34-1 …(1)y =-2;(2)-4<y ≤-1; (3)-4≤x <-1. 19.(1)xy 2-=, B (1,-2); (2)图略x <-2或0<x <1时; (3)y =-x .测试3 反比例函数的图象和性质(二)1.4. 2.3. 3.y 2. 4.①③④. 5.B . 6.B . 7.C . 8.xy 3=. 9.-3;-3. 10.(-2,-4). 11..221<<y . 12.B . 13.D. 14.D . 15.D . 16.(1)xy 3=,y =x +2;B (-3,-1); (2)-3≤x <0或x ≥1. 17.(1))0(3>=x x y ;(2).332+-=x y 18.(1)x y x y 9,==;(2)23=m ;;29-=x y(3)S 四边形OABC =1081.测试4 反比例函数的图象和性质(三)1.(-1,-2). 2.-1,y <-1或y >0,x ≥2或x <0. 3..224-- 4.0. 5.>;一、三. 6.B . 7.C 8.(1)m =n =3;(2)C ′(-1,0). 9.k =2. 10.⋅-=xy 311.5,12. 12.2. 13.<. 14.C . 15.A . 16.(1)m =6,y =-x +7;(2)3个. 17.A(4,0).18.(1)解⎩⎨⎧=+-=+-0,5b ak b k 得15+=k a ;(2)先求出一次函数解析式95095+-=x y ,A (10,0),因此S △COA =25.19.(1)2121,3--=-=x y x y ;(2).2=CD AD测试5 实际问题与反比例函数(一)1.xy 12=;x >0. 2.⋅=x y 903.A . 4.D . 5.D .6.反比例;⋅=tV 3007.y =30πR +πR 2(R >0). 8.A .9.(1))0(20>=x x y ; (2)图象略; (3)长cm.320. 测试6 实际问题与反比例函数(二)1.).0(12>=V vρ 2.(1)5; (2)R I 5=; (3)0.4; (4)10.3.(1)48; (2))0(48>=t tV ; (3)8; (4)9.6.4.(1))0(9>=ρρV ; (2)ρ=1.5(kg/m 3); (3)ρ有最小值1.5(kg/m 3).5.C . 6.(1)V p 96=; (2)96 kPa ; (3)体积不小于3m 3524. 7.(1))0(6>=R RI ; (2)图象略; (3)I =1.2A >1A ,电流强度超过最大限度,会被烧. 8.(1)x y 43=,0≤x ≤12;y =x108(x >12); (2)4小时. 9.(1)xy 12000=;x 2=300;y 4=50; (2)20天。
初中数学 反比例函数图象和性质同步测试
人教版九年级上册《反比例函数图象和性质》同步练习题 哈尔滨冰雪运动学校 王 轶 一、练一练。
①若反比例函数 ,在每一个象限内,y 随x 的增大而减小,则k 。
② 函数 的图象在第 象限内,在每一个象限内,y 随x 的增大而 。
③ 下列函数中,其图象位于第一、三象限的有 ;
在其所在的象限内,y 随x 的增大而增大的有________.
④ 对于函数 ,这部分图像在第 ________象限。
二、测一测。
① 函数 的图像在二、四象限,则m 的取值范围是 _ _ . ② 双曲线 经过点(-1,___) ③ 已知y 与 x 成反比例, 并且当 x = 2 时y = 5,则 x 与 y 的函数关系式为 。
④ 根据图象写出函数的解析式。
三、考一考。
①反比例函数 的图象在( )
A.第一.三象限
B.第一.二象限
C.第二.四象限
D.第三.四象限
②下列函数中,y 随x 的增大而减小的有( )
k
y x =
43y x
=-x
y 7=413(4)(5)(0)(6)(0)3x
y y x y x x x
-==>=<
3(1)(2)21(3)5y y x y x x ==-=-+
个 个 个 个
③反比例函数 经过(-3, 2),则图象在 象限.
④若反比例函数 图像位于第一、三象限,则k . ⑤反比例函数 (0>k )的图象的两个分支关于 对称.
⑥某个反比例函数的图象如图所示,根据图象提供的信息,求反比例函数的解析式.
k
y x =3k y x +=k y x =。
反比例函数测试题(含答案)
反比例函数测试题(含答案)(时间90 分钟满分100 分)班级学号姓名得分一、选择题(每小题 3 分,共24 分)4.已知关于x 的函数y=k(x+1 )和y=-图象是(? )k(k≠0 )它们在同一坐标系中的大致x1.如果x、y 之间的关系是ax 1y 0( a≠0) ,那么y 是x 的() 5. 已知反比例函数y=k的图象经过点(m,3m),则此反比例函数的图象在xA .正比例函数B.反比例函数C.一次函数D.二次函数()2 .函数y =-()4的图象与x 轴的交点的个数是xA .第一、二象限B.第一、三象限C .第二、四象限D .第三、四象限6. 某气球内充满了一定质量的气体,当温度不变时,气球内气体P (kPa)A .零个B .一个C.两个D.不能确定4 的气压P (kPa )是气体体积V (m 3 )的反比例函数,60(1.6,60)3 .反比例函数y =-()的图象在x 其图象如图所示.当气球内的气压大于120 kPa 时,气球发将爆炸.为了安全起见,气球的体积应()O 1.6第 6 题V (m3)A .第一、三象限B.第二、四象限 A .不小于54m 3 B .小于54m 3 C .不小于45m 3 D.小于4m 35C .第一、二象限D .第三、四象限7. 如果点P 为反比例函数y 4 的图象上一点,PQ ⊥x轴,垂足为Q,那么△POQx8. 已知:反比例函数1 2m y的图象上两点 A ( x 1, y 1 ), B ( x 2, y 2)当 x 1x点到两坐标轴的距离的积都是3;乙同学说:这个反比例函数的图象与直线< 0< x 2 时, y 1< y 2,则 m 的取值范围()A .m <0 B . m > 0 C .m <1 D .m > 122y =x 有两个交点, 你认为这两位同学所描述的反比例函数的解析式是.二、填空题(每小题 2 分,共 20 分)15.在 △ ABC 的三个顶点 A (2,- 3)、 B (- 4 ,- 5 )、 C (- 3 , 2 )中,可9.有 m 台完全相同的机器一起工作,需 m 小时完成一项工作,当由 x 台机器( x为不大于 m 的正整数)完成同一项工作时,所需的时间 y 与机器台数 x 的函数能在反比例函数 yk (k x0) 的图象上的点是.4 n关系式是.10 .已知 y 与 x 成反比例, 且当 x3 16 .如果反比例函数 y3 时,y =5 ,则y 与 x 的函数关系式为 .;2的图象位于第二、四象限,则 n 的取值范围是x11 .反比例函数 y的图象在第一象限与第 象限 .x如 果 图 象 在 每 个 象 限 内 , y 随 x 的 增 大 而 减 小 , 则 n 的 取 值 范 围12 .某食堂现有煤炭 500 吨,这些煤炭能烧的天数y 与平均每天烧煤的吨数 x 之是 .间的函数关系式是.17.如图,△ P 1OA 1、△P 2A 1 A 2 是等腰直角三角形,点 P 1、P 2 在函数 y的图象上,斜边OA 1、A 1 A 2 都在 x 轴上,则点 A 2 的坐标4( x 0) xy13 .若 y (5 m)x2 是反比例函数,则m 、n 的取值是 .是.P 1Pn的面积为 ( )14.两位同学在描述同一反比例函数的图象时, 甲同学说: 这个反比例函数图象上A . 2B . 4C . 6D . 8任意一18 .两个反比例函数y k 1 k 和y 在第一象限内的图象如图所示,点P 在y 的x x x图象上,PC ⊥x轴于点C,交y 1的图象于点A,PD ⊥y轴于点D,交y1x x20.(4 分)已知三角形的一边为x,这条边上的高为y,三角形的面积为3,写的图象于点B,当点P 在y k的图象上运动时,以下结论:x出y 与x 的函数表达式,并画出函数的图象.①△ODB 与△OCA 的面积相等;②四边形PAOB 的面积不会发生变化;③PA 与PB 始终相等;④当点 A 是PC 的中点时,点 B 一定是PD 的中点.其中一定正确的是(把你认为正确结论的序号都填上,少填或错填不给分).三、解答题(共56 分)19 .(4 分)反比例函数y k的图象经过点A(2 ,3 ). x(1 )求这个函数的解析式;(2 )请判断点B(1 ,6 )是否在这个反比例函数的图象上,并说明理由. 21.(4 分)如图,一次函数y=kx+b 的图像与反比例函数y m的图像相交于A、xB 两点,(1 )利用图中条件,求反比例函数和一次函数的解析式(2 )根据图像写出使一次函数的值大于反比例函数的值的x 的取值范围.yA(-2,1)xB(1,n)第21 题图22 .(6 分)某蓄水池的排水管每时排水8 m 3 ,6h 可将满池水全部排空.(1 )蓄水池的容积是多少?(2 )如果增加排水管,使每时排水量达到Q(m 3),那么将满池水排空所需23.(6 分)双曲线y 5在第一象限的一支上有一点C(1 ,5),过点 C 的直线x的时间t(h)将如何变化?(3 )写出t 与Q 之间的函数关系式.(4 )如果准备在 5 小时之内将满水池排空,那么每时的排水量至少为多少?y=kx+b(k>0)与x 轴交于点A(a,0 ).(1 )求点 A 的横坐标 a 与k 之间的函数关系式;(2 )当该直线与双曲线在第一象限内的另一交点 D 的横坐标是9 时,求△COAy(5 )已知排水管的最大排水量为每时12m 3,那么最少多长时间可将满池水全部排空?的面积.C(1,5)DxO A第23 题图25.(6 分)近视眼镜的度数y(度)与镜片焦距x(米)成反比例,已知800 度近视眼镜镜片的焦距为0.125 米,(1 )求y 与x 的函数关系;(2 )若张华同学近视眼镜镜片的焦距为0.25 米,你知道他的眼睛近视多少度吗?24 .(6 分)已知反比例函数3m)3my 和一次函数yxkx 1 的图象都经过点P(m ,(1 )求点P 的坐标和这个一次函数的解析式;(2 )若点M(a ,y1 )和点N (a 1,y2 )都在这个一次函数的图象上.试通过计算或利用一次函数的性质,说明y1 大于y226 .(6 分)对于取消市场上使用的杆秤的呼声越来越高,原因在于一些不法商贩在卖货时将秤砣挖空,或更换较小称砣,使砣较轻,从而欺骗顾客.(1 )如图,对于同一物体,哪个图用的是标准秤砣,哪个用的是较轻的秤砣?(2 )在称同一物体时,所称得的物体质量y(千克)与所用秤砣质量x(千克)之间满足关系.(3 )当砣较轻时,称得的物体变重,这正好符合哪个函数的哪些性质?图1 图2 27.(6 分)联想电脑公司新春期间搞活动,规定每台电脑0.7 万元,交首付后剩余的钱数y 与时间t 的关系如图所示:(1 )根据图象写出y 与t 的函数关系式.(2 )求出首付的钱数.(3 )如果要求每月支付的钱数不少于400 元,那么还至少几个才能将所有的钱全部还清?y(元)900600100(10,600)O 5 10 15 t (月)'28 .( 8 分)如图,直线 y kx b 与反比例函数 yk ( x < 0)的图象相交于x新人教八年级(下)第17 章《反比例函数》答案点 A 、点 B ,与 x 轴交于点 C ,其中点 A 的坐标为(- 2, 4 ),点 B 的横坐标为- 4.( 1 )试确定反比例函数的关系式;一、选择题1 .B ;2 . A ;3. B ;4. A ;5 . B ;6 . C ;7.A ;8. C .( 2 )求△AOC 的面积 .二、填空题m29.y =x10 . y152 x11 .三 12 . y =500x13. m ≠-5 n =- 3 14 .y =3 15 . Bx16. n >4 , n < 4 17 .( 4 2 ,0) 18.①②④三、解答题19.( 1 ) y =6 6;(2 )在 x20. y = ,图像略x2 21.( 1 ) y, yx x1 ;(2 ) x2或 0 x22 .(1)48m3 ;(2)t 将减小;(3 )t48 ;(4 )5Q 48,Q 9.6 ;(5)t484 Q 1223 .(1)a 5 1,(2 )25k24 .(1)y 2 x 1 ;(2 )略25 .(1)y 100x,(2 )400 度26 .(1)图②是用与秤配套的秤砣,图①则使用较轻的秤砣.(2 )反比例. (3)k函数y=x (k>0),当x 变小时,y 增大6000 600027 .(1 )y=t ;(2)7000 -6000 =1000 (元);( 3 )400 =,tt=1528 .(1)y x;(2 )126 8Welcome To Download !!!欢迎您的下载,资料仅供参考!。
人教版初中数学九年级数学下册第一单元《反比例函数》测试题(答案解析)(1)
一、选择题1.正比例函数1y 的图像与反比例函数2y 的图像相交于点(2,4)A ,下列说法正确的是( )A .反比例函数2y 的解析式是28y x=-B .两个函数图像的另一个交点坐标为(2,4)C .当2x <-或02x <<时,12y y <D .正比例函数1y 与反比例函数2y 都随x 的增大而增大2.在同一坐标系中,y kx k =-与()0ky k x=≠的图象大致是( ) A . B .C .D .3.规定:如果关于x 的一元二次方程ax 2+bx+c =0(a≠0)有两个实数根,且其中一个根是另一个根的2倍,则称这样的方程为“倍根方程”现有下列结论 ①方程x 2+2x ﹣8=0是倍根方程;②若关于x 的方程x 2+ax+2=0是倍根方程,则a =±3; ③若(x ﹣3)(mx ﹣n )=0是倍根方程,则n =6m 或3n =2m ; ④若点(m ,n )在反比例函数y =2x的图象上,则关于x 的方程mx 2﹣3x+n =0是倍根方程.上述结论中正确的有( ) A .①②B .③④C .②③D .②④4.已知反比例函数2y -x=,点A (a-b ,2),B (a-c ,3)在这个函数图象上,下列对于a ,b ,c 的大小判断正确的是( ) A .a <b <c B .a <c <b C .c <b <a D .b <c <a5.下列函数是y 关于x 的反比例函数的是( ) A .y =11x + B .y =21xC .y =﹣12xD .y =﹣2x 6.如图,△ABC 的三个顶点分别为A (1,2),B (2,5),C (6,1).若函数在第一象限内的图像与△ABC 有交点,则的取值范围是A .2≤≤B .6≤≤10C .2≤≤6D .2≤≤7.如图,四边形OABC 是矩形,ADEF 是正方形,点A 、D 在x 轴的正半轴上,点C 在y 轴的正半轴上,点F 在AB 上,点B 、E 在反比例函数y =kx的图象上,OA =1,OC =6,则正方形ADEF 的边长为( )A .1.5B .1.8C .2D .无法求8.同一坐标系中,函数()1y k x +=与ky x=的图象正确的是( ) A . B .C .D .9.已知点()1,3M -在双曲线ky x=上,则下列各点一定在该双曲线上的是( ) A .()3,1-B .()1,3--C .()1,3D .()3,110.在平面直角坐标系中,对于不在坐标轴上的任意一点P (x ,y ),我们把的P '(1x,1y )称为点P 的“倒影点”.直线y =﹣2x +1上有两点A 、B ,它们的倒影点A '、B '均在反比例函数y kx=的图象上,若AB 5=,则k 的值为( )A .83-B .43-C .5D .1011.函数y =x +m 与my x=(m ≠0)在同一坐标系内的图象可以是( ) A . B .C .D .12.已知1(3A -,1)y 、1(2B -,2)y 、3(1,)C y 是一次函数3y x b =-+的图象上三点,则1y ,2y ,3y 的大小关系是( )A .123y y y <<B .213y y y <<C .312y y y <<D .321y y y <<二、填空题13.反比例函数()0ky x x=<的图象如图所示,下列关于该函数图象的四个结论:①0k >;②当0x <时,y 随x 的增大而增大;③该函数图象关于直线y x =-对称;④若点()2,3-在该反比例函数图象上,则点()1,6-也在该函数的图象上.其中正确结论的有_________(填番号).14.反比例函数2(0)m y x x+=<的图象如图所示,则m 的取值范围为__________.15.如图,四边形OABC 和ADEF 均为正方形,反比例函数8y x=的图象分别经过AB 的中点M 及DE 的中点N ,则正方形ADEF 的边长为___16.已知反比例函数3y x=-,当1x >时,y 的取值范围是____ 17.过原点直线l 与反比例函数ky x=的图像交于点(2,)A a -,(,3)B b -,则k 的值为____.18.如图,菱形ABCD 的两个顶点A 、B 在函数ky x=(x>0)的图像上,对角线AC//x 轴.若AC=4,点A 的坐标为(2,2),则菱形ABCD 的周长为_____.19.如图,在平面直角坐标系中,菱形OABC的面积为20,点B在y轴上,点C在反比函数kyx=的图像上,则k的值为________.20.若A、B两点关于y轴对称,且点A在双曲线y=12x上,点B在直线y=x+6上,设点A的坐标为(a,b),则a bb a+=_____.三、解答题21.已知A(n,-2),B(1,4)是一次函数y=kx+b的图象和反比例函数y=mx的图象的两个交点,直线AB与y轴交于点C.(1)求反比例函数和一次函数的关系式;(2)求△AOC的面积;(3)求不等式kx+b<mx的解集(直接写出答案).22.如图,在平面直角坐标系中,一次函数152y x=-+的图象于反比例函数(0)ky k x=≠的图象相交于点(8,t)A 和点B .(1)求反比例函数的关系式和点B 的坐标;(2)结合图象,请直接写出在第一象限内,当152kx x-+>时x 的取值范围. 23.如图,已知一次函数1332y x =-与反比例函数2ky x =的图象相交于点A (4,n )和M(m ,﹣6),与x 轴相交于点B . (1)求m ,n 的值;(2)观察图象,当y 2≥﹣6且y 2≠0时,自变量x 的取值范围为 ,若y 1﹣y 2<0时自变量x 的取值范围为 ;(3)若P 点为x 轴上一点, Q 点为平面直角坐标系中的一点,以点A 、B 、P 、Q 为顶点的四边形为菱形,求Q 点的坐标.24.如图,直线y=k 1x+b 与双曲线y=2k x相交于A (1,2)、B (m ,﹣1)两点.(1)求直线和双曲线的解析式;(2)若A 1(x 1,y 1),A 2(x 2,y 2),A 3(x 3,y 3)为双曲线上的三点,且x 1<x 2<0<x 3,请直接写出y 1,y 2,y 3的大小关系式; (3)观察图象,请直接写出不等式k 1x+b >2k x的解集. 25.如图,A B 、两点的坐标分别为()()2,0,0,3-,将线段AB 绕点B 逆时针旋转90°得到线段BC ,过点C 作CD OB ⊥,垂足为D ,反比例函数ky x=的图象经过点C .(1)直接写出点C 的坐标,并求反比例函数的解析式;(2)点P 在反比例函数ky x=的图象上,当PCD 的面积为3时,求点P 的坐标. 26.如图,一次函数1y x =+的图象与反比例函数ky x=的图象相交,其中一个交点的横坐标是2.(1)求反比例函数的表达式;(2)将一次函数1y x =+的图象向下平移2个单位,求平移后的图象与反比例函数k y x=图象的交点坐标;(3)直接写出一个一次函数,使其过点(0,5),且与反比例函数ky x=的图象没有公共点.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C解析:C 【分析】由题意可求正比例函数解析式和反比例函数解析式,由正比例函数和反比例函数的性质可分别进行判断求解,即可得出结论. 【详解】解:∵正比例函数y 1的图象与反比例函数y 2的图象相交于点A (2,4),∴正比例函数12y x =,反比例函数28y x=, ∴两个函数图象的另一个交点为(−2,−4), ∴A ,B 选项错误;∵正比例函数12y x =中,y 随x 的增大而增大, 反比例函数28y x=中,在每个象限内y 随x 的增大而减小, ∴D 选项错误;∵当x <−2或0<x <2时,y 1<y 2, ∴选项C 正确; 故选:C . 【点睛】本题考查了反比例函数与一次函数的交点问题,熟练运用反比例函数与一次函数的性质解决问题是本题的关键.2.D解析:D 【分析】根据一次函数和反比例函数的图象与性质即可得. 【详解】对于一次函数y kx k =-, 当1x =时,0y k k =-=, 则直线y kx k =-经过定点(1,0),A 、由一次函数的图象得:0k <,由反比例函数的图象得:0k >,两者不一致,此项不符题意;B 、由一次函数的图象得:0k >,由反比例函数的图象得:0k <,两者不一致,此项不符题意;C 、一次函数的图象不经过定点(1,0),此项不符题意;D 、由一次函数的图象得:0k <,且经过定点(1,0),由反比例函数的图象得:0k <,两者一致,此项符合题意; 故选:D . 【点睛】本题考查了反比例函数与一次函数的综合,熟练掌握一次函数和反比例函数的图象与性质是解题关键.3.D解析:D 【分析】】①通过解方程得到该方程的根,结合“倍根方程”的定义进行判断;②设x 2=2x 1,得到x 1•x 2=2x 12=2,得到当x 1=1时,x 2=2,当x 1=-1时,x 2=-2,于是得到结论;③根据“倍根方程”的定义即可得到结论; ④若点(m ,n )在反比例函数y =2x的图象上,得到mn=2,然后解方程mx 2-3x+n=0即可得到正确的结论; 【详解】解:①∵方程x 2+2x-8=0的两个根是x 1=-4,x 2=2,则2×2≠-4, ∴方程x 2+2x-8=0不是倍根方程,故①错误; ②若关于x 的方程x 2+ax+2=0是倍根方程,则2x 1=x 2, ∵x 1+x 2=-a ,x 1•x 2=2, ∴2x 12=2,解得x 1=±1, ∴x 2=±2,∴a=±3,故②正确;③解方程(x-3)(mx-n )=0得,123,n x x m==, 若(x-3)(mx-n )=0是倍根方程,则6n m =或23nm⨯=, ∴n=6m 或3m=2n ,故③错误; ④∵点(m ,n )在反比例函数y =2x的图象上, ∴mn=2,即2n m=, ∴关于x 的方程为2230mx x m-+=, 解方程得1212,x x m m==, ∴x 2=2x 1,∴关于x 的方程mx 2-3x+n=0是倍根方程,故④正确; 故选D . 【点睛】本题考查了反比例函数图象上点的坐标特征,根与系数的关系,正确的理解倍根方程的定义是解题的关键.4.B解析:B 【分析】利用反比例函数图象上点的坐标特征得到2(a-b )=-2,3(a-c )=-2,则a-b=-1<0,a-c=-23<0,再消去a 得到-b+c=-13<0,然后比较a 、b 、c 的大小关系.【详解】∵点A (a-b ,2),B (a-c ,3)在函数2y -x=的图象上, ∴2(a-b )=-2,3(a-c )=-2, ∴a-b=-1<0,a-c=-23<0, ∴a <b ,a <c ,∵-b+c=-13<0, ∴c <b , ∴a <c <b . 故选B . 【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数y=kx(k 为常数,k≠0)的图象是双曲线,图象上的点(x ,y )的横纵坐标的积是定值k ,即xy=k .5.C解析:C 【分析】直接利用反比例函数的定义分别判断得出答案. 【详解】 解:A 、y =11x +是y 与x+1成反比例,故此选项不合题意; B 、y =21x,是y 与x 2成反比例,不符合反比例函数的定义,故此选项不合题意; C 、y =﹣12x,符合反比例函数的定义,故此选项符合题意; D 、y =﹣2x是正比例函数,故此选项不合题意. 故选:C . 【点睛】本题考查了反比例函数的定义,正确把握定义是解题的关键.6.A解析:A把A点的坐标代入即可求出k的最小值;当反比例函数和直线BC相交时,求出b2﹣4ac的值,得出k的最大值.【详解】把点A(1,2)代入kyx=得:k=2;C的坐标是(6,1),B的坐标是(2,5),设直线BC的解析式是y=kx+b,则25 61 k bk b+=⎧⎨+=⎩,解得:17kb=-⎧⎨=⎩,则函数的解析式是: y=﹣x+7,根据题意,得:kx=﹣x+7,即x2﹣7x+k=0,△=49﹣4k≥0,解得:k≤494.则k的范围是:2≤k≤494.故选A.考点:反比例函数综合题.7.C解析:C【分析】根据OA、OC的长度,可得反比例函数的比例系数k=6,设正方形ADEF的边长为x,则OD DE=(1x)x=6⋅+⋅,解得x即为正方形的边长.【详解】解:根据OA=1,OC=6,可得反比例函数的比例系数k=OA OC=6⋅,设正方形ADEF的边长为x,则OD=OA+AD=1+x,DE=x,则OD DE=(1x)x=6⋅+⋅,解得:x=2或-3(舍),故选:C.【点睛】本题主要考察了反比例函数与几何图形的综合、解一元二次函数,解题的关键在于根据图形求出反比例函数的比例系数k.8.D解析:D先根据四个选项的共同点确定k 的符号,再根据各函数图象的性质确定图象所在的象限即可.【详解】解:A 、反比例函数图象位于一、三象限,0k >,则一次函数图象应该交y 轴于正半轴,故本选项错误;B 、反比例函数图象位于二、四象限,k 0<,则一次函数图象应该交y 轴于负半轴,故本选项错误;C 、反比例函数图象位于二、四象限,k 0<,则一次函数应该是个减函数,故本选项错误;D 、反比例函数图象位于一、三象限,0k >,则一次函数图象应该交y 轴于正半轴,故本选项正确;故选:D .【点睛】此题考查反比例函数的图象性质和一次函数的图象性质,解题关键是由k 的取值确定函数所在的象限.9.A解析:A【分析】先求出k=-3,再依次判断各点的横纵坐标乘积,等于-3即是在该双曲线上,否则不在.【详解】∵点()1,3M -在双曲线k y x=上, ∴133k =-⨯=-,∵3(1)3⨯-=-,∴点(3,-1)在该双曲线上,∵(1)(3)13313-⨯-=⨯=⨯=,∴点()1,3--、()1,3、()3,1均不在该双曲线上,故选:A.【点睛】此题考查反比例函数解析式,正确计算k 值是解题的关键. 10.A解析:A【分析】设点A (a ,-2a+1),B (b ,-2b+1)(a <b ),则A '(1a ,112a -),B '(1b ,112b -),由AB =b=a+1,再根据反比例函数图象上点的坐标特征即可得出关于k 、a 、b 的方程组,解之即可得出k 值.设点A (a ,﹣2a +1),B (b ,﹣2b +1)(a <b ),则A '(1a ,112a -),B '(1b ,112b-).∵AB===(b ﹣a )=∴b ﹣a =1,即b =a +1.∵点A ',B '均在反比例函数y k x =的图象上, ∴k 1a =•1112a b =-•112b-, 解得:k 83=-. 故选:A .【点睛】此题考查反比例函数图象上点的坐标特征、一次函数图象上点的坐标特征以及两点间的距离公式,根据反比例函数图象上点的坐标特征列出关于k 、a 、b 的方程组是解题的关键. 11.B解析:B【分析】先根据一次函数的性质判断出m 取值,再根据反比例函数的性质判断出m 的取值,二者一致的即为正确答案.【详解】A .由函数y =x +m 的图象可知m <0,由函数y m x =的图象可知m >0,相矛盾,故错误; B .由函数y =x +m 的图象可知m >0,由函数y m x =的图象可知m >0,正确; C .由函数y =x +m 的图象可知m >0,由函数y m x =的图象可知m <0,相矛盾,故错误; D .由函数y =x +m 的图象可知m =0,由函数y m x=的图象可知m <0,相矛盾,故错误. 故选:B .【点睛】此题考查了反比例函数的图象性质和一次函数的图象性质,解题关键在于掌握它们的性质才能灵活解题. 12.C解析:C 【分析】分别计算自变量为13-,12-和1时的函数值,然后比较函数值的大小即可.1(3A -,1)y 、1(2B -,2)y 、3(1,)C y 是一次函数3y x b =-+的图象上三点, 11y b ∴=+,232y b =+,33y b =-+. 3312b b b -+<+<+, 312y y y ∴<<.故选:C .【点睛】本题考查了一次函数图象上点的坐标特征:一次函数图象上点的坐标满足其解析式.也考查了一次函数的性质.二、填空题13.②③④【分析】观察反比例函数y =(x <0)的图象可得图象过第二象限可得k <0然后根据反比例函数的图象和性质即可进行判断【详解】解:①由题图可得:当时则该函数的应满足:则①错误②由题图象可知随的增大而 解析:②③④. 【分析】观察反比例函数y =k x(x <0)的图象可得,图象过第二象限,可得k <0,然后根据反比例函数的图象和性质即可进行判断.【详解】解:①由题图可得:当0x <时,0y >, 则该函数()0k y x x=<的k 应满足:0k <, 则①错误,②由题图象可知, y 随x 的增大而增大,(反比例函数具有单调性),则②正确,③由于该图象为()0k y x x=<的图象(注意x 的范围),在第二象限。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学:17.1反比例函数同步测试A (人教新课标八年级下)A 卷(60分)选择题1.下列表达式中,表示y 是x 的反比例函数的是( ) ①31-=xy ②.x y 63-= ③x y 2-= ④m my (3=是常数,)0≠m A.①②④ B.①③④ C.②③ D.①③2.下列函数关系中是反比例函数的是( )A.等边三角形面积S 与边长a 的关系B.直角三角形两锐角A 与B 的关系C.长方形面积一定时,长y 与宽x 的关系D.等腰三角形顶角A 与底角B 的关系 3. (08甘肃省兰州市)若反比例函数ky x=的图象经过点(3)m m ,,其中0m ≠,则此反比例函数的图象在( ) A .第一、二象限 B .第一、三象限 C .第二、四象限D .第三、四象限4.函数x k y =的图象经过点(-4,6),则下列个点中在xk y =图象上的是( ) A.(3,8 ) B.(-3,8) C.(-8,-3) D.(-4,-6)5. 在下图中,反比例函数xk y 12+=的图象大致是( )D6. 已知反比例函数xky =的图象在第二、第四象限内,函数图象上有两点A (72,y 1)、B (5,y 2),则y 1与y 2的大小关系为( )。
A 、y 1>y 2B 、y 1=y 2C 、y 1<y 2D 、无法确定 二、填空题(每小题3分,共18分)7. 写出一个图象在第一、三象限的反比例函数的解析式 . 8. 已知反比例函数的图象经过点(3,2)和(m ,-2),则m 的值是__.9. 在ABC △的三个顶点(23)(45)(32)A B C ----,,,,,中,可能在反比例函数(0)ky k x=>的图象上的点是 . 10. 某种蓄电池的电压为定值,使用此电源时,电流 I (A )与可变电阻 R (Ω)之间的函数关系如图所示,当用电器的电流为10A 时,用电器的 可变电阻为_______Ω。
11. 反比例函数xky =的图象如图所示,点M 是该函数图象 上一点,MN 垂直于x 轴,垂足是点N ,如果S △MON =2, 则k 的值为 .12. 小明家离学校1.5km ,小明步行上学需min x ,那么小明步 行速度(m /min)y 可以表示为1500y x=;水平地面上重1500N 的 物体,与地面的接触面积为2m x ,那么该物体对地面压强2(/m )y N 可以表示为1500y x =; ,函数关系式1500y x=还可以表示许多不同情境中变量之间的关系,请你再列举1.例.:.三、解答题(本大题24分)13.甲、乙两地相距100km ,一辆汽车从甲地开往乙地,把汽车到达乙地所用的时间)(h t 表示为汽车速度)/(h km v 的函数,并画出函数图象.14. 已知一次函数y x 13=-2k 的图象与反比例函数y k x23=-的图象相交,其中一个交点的纵坐标为6。
(1)求两个函数的解析式;(2)结合图象求出y y 12<时,x 的取值范围。
15. 如图,一次函数y kx b =+的图象与反比例函数my x=的图象交于(21)(1)A B n -,,,两点.(1)试确定上述反比例函数和一次函数的表达式; (2)求AOB △的面积.A 卷答案:一、1.D ,提示:直接利用定义法判断;2.C ,提示:根据条件列出关系式,A 为243a s =,B 为A=90-B ,C 为xs y =,D 为A=180-2B ,只有选项C 满足k x k y (=是常数,0≠k )形式;3. B , 4.B ,提示:将(-4,6)代入xk y =得,24-=k ,所以函数解析式x y 24-=,然后将四个选项分别代入xy 24-=,成立的只有B ;5. D ,提示:012>+k ,所以图象位于一、三象限,故选D ;6. A ,提示:图象在第二、第四象限说明,0<k y 随x 的增大而增大,因为572>,所以y 1>y 2;;二、7. 答案不唯一,如:y =x y 6=2x,提示:只要0>k 的任意数即可;8. -3,提示:先把(3,2)用待定系数法求出反比例函数解析式x y 6=,再将(m ,-2)代入xy 6=求得3-=m ;9.B ;10. 3.6 ;11. -4,提示:ON=x ,MN=y ,有因为S △MON =2,所以4=xy ,又因为在第二象限,说明,0<k 所以4-=k ;12. 体积为1 5003cm 的圆柱底面积为2cm x ,那么圆柱的高(cm)y 可以表示为1500y x= (其它列举正确均可); 三、13.由,vt s =得vt 100=,图略(注意0>v ,只画在第一象限即可. 14. (1)由已知设交点A (m ,6)32636m k k m-=-=⎧⎨⎪⎩⎪∴=-=-⎧⎨⎪⎩⎪m k 435∴=+=-y x y x123108,(2)由方程组3108x y xy +=-=⎧⎨⎪⎩⎪得310802x x ++=x x 12243=-=-,由图像可知当x x y y <--<<<243012或时15.解:(1)∵点(21)A -,在反比例函数my x=的图象上, (2)12m =-⨯=-∴.∴反比例函数的表达式为2y x=-.∵点(1)B n ,也在反比例函数2y x=-的图象上,2n =-∴,即(12)B -,.把点(21)A -,,点(12)B -,代入一次函数y kx b =+中,得212k b k b -+=⎧⎨+=-⎩,,解得11k b =-⎧⎨=-⎩,.∴一次函数的表达式为1y x =--. (2)在1y x =--中,当0y =时,得1x =-.∴直线1y x =--与x 轴的交点为(10)C -,. ∵线段OC 将AOB △分成AOC △和BOC △,1113111212222AOB AOC BOC S S S =+=⨯⨯+⨯⨯=+=△△△∴.B 卷一、选择题1. 如图,P P P 123、、是双曲线上的三点,过这三点分别作y 轴的垂线,得到三个三角形P A O P A O P A O 112233、、,设它们的面积分别是S S S 123、、,则( )A . S S S 123<<B . S S S 213<<C . S S S 132<<D . S S S 123==2. 反比例函数ky x=与正比例函数2y x =图像的一个交点的横坐标为1,则反比例函数的图像大致为( )3. 函数y x m =+与(0)my m x=≠在同一坐标系内的图象可以是( )xA .xB .xC .xD .4. 如图,反比例函数xy 5=的图象与直线)0(>=k kx y 相交于B 两点,AC ∥y 轴,BC ∥x 轴,则△ABC 的面积等于 个面积单位. 10 A.4 B.5 C.10 D.20二、填空题 5. 函数22)1(--=m xm y 是反比例函数,则=m .6.如果反比例函数xk y 3-=的图象位于第二、四象限内,那么满足条件的正整数k 的值是 .7.已知(11,y x )、(22,y x )为反比例函数xky =图象上的点,当2121,0y y x x <<<时,则k 的一个值为 (只符合条件的一个即可).8. 近视眼镜的度数y (度)与镜片焦距x (米)成反比例,已知400度近视眼镜镜片的焦距为0.25米,则眼镜度数y 与镜片焦距x 之间的函数关系式为 .三、解答题9. 已知函数y = y 1-y 2,y 1与x 成反比例,y 2与x -2成正比例,且当x = 1时,y =-1;当x = 3时,y = 5.求当x =5时y 的值。
10. 某气球内充满了一定质量的气球,当温度不变时,气球内气球的压力p(千帕)是气球的体积V(米2)的反比例函数,其图象如图所示(千帕是一种压强单位) (1)写出这个函数的解析式:当气球的体积为0.8立方米时,气球内的气压是多少千帕(3) 当气球内的气压大于144千帕时,气球将爆炸,为了安全起见,气球的体积应不小于多少立方米。
11. 如图,已知直线12y x =与双曲线(0)ky k x=>交于A B ,两点,且点A 的横坐标为4.(1)求k 的值; (2)若双曲线(0)ky k x=>上一点C 的纵坐标为8, 求AOC △的面积;(3)过原点O 的另一条直线l 交双曲线(0)ky k x=>于 两点(P 点在第一象限),若由点A B P Q ,,,为顶点组成的四边形面积为24,求点P 的坐标.B 卷答案:一、1.D ,提示:三个面积都等于比列系数的一半,故都相等选D ;2. B ,提示:利用正比例函数解析式求出交点的纵坐标为2,即交点的坐标为(1,2),再代入ky x=求得02>=k ,图象位于一、三象限,故选B ;3. B ,提示:因为0≠m ,即0,0<>m m 两种情况讨论,当0>m 时,一次函数在一、二、三象限,反比例函数在一、三象限,所以B 正确;4.C ,提示:设A 点的坐标为(β,a )(,0,0>>βa )则B 点的坐标为(β--,a )AC=β2,BC=a 2,所以三角形的面积为1022221==∙∙ββa a ; 二、5.-1,提示:根据定义得1,1,1222±==-=-m m m ,又因为1,01≠≠-m m ,所以1-=m ;6.1,2,提示:根据题意得,3,03<<-k k 则满足该条件的正整数k 的值是1,2;7.答案不唯一: ,1-=k ,提示:由反比例函数的性质可知,0<k ,只要符合0<k 任意一个即可;8.100y x =; 三、9. 解:设11k y x =,22(2)y k x =-,则y = 1kx2(2)k x --。
根据题意有:1212153k k k k +=-⎧⎪⎨-=⎪⎩ ,解得:13k =,24k =-,∴348y x x =+-当x =5时,y 32085=+-=3125.10.(1)vp 96=;(2)当8.0=v 时,120=p (千帕);(3)∵当气球内的气压大于144千帕时,气球将爆炸,∴144≤p ,∴14496≤v ,3214496=≥v (3m ) 11. 解:(1) 点A 横坐标为4,∴当4x =时,2y =.∴点A 的坐标为(42),. 点A 是直线12y x =与双曲线(0)ky k x=>的交点428k ∴=⨯=. (2)解法一:如图B-11-1,点C 在双曲线上,当8y =时,1x =∴点C 的坐标为(18),.过点A C ,分别做x 轴,y 轴的垂线,垂足为M N ,,得矩形DMON .32ONDM S =矩形,4ONC S =△,9CDA S =△,4OAM S =△.3249415AOC ONC CDA OAM ONDM S S S S S =---=---=△△△△矩形.解法二:如图B-11-2,过点C A ,分别做x 轴的垂线,垂足为E F ,,点C 在双曲线8y x=上,当8y =时,1x =. ∴点C 的坐标为(18),. 点C ,A 都在双曲线8y x=上, 4COE AOF S S ∴==△△ CO EC O ACE F A S S SS ∴+=+△△△梯形.COA CEFA S S ∴=△梯形.1(28)3152CEFA S =⨯+⨯= 梯形,COA S ∴△(3) 反比例函数图象是关于原点O 的中心对称图形,OP OQ ∴=,OA OB =.∴四边形APBQ 是平行四边形.1124644POA APBQ S S ∴==⨯=△平行四边形. 设点P 横坐标为(04)m m m >≠且,得8()P m m,. 过点P A ,分别做x 轴的垂线,垂足为E F ,,点P A ,在双曲线上,4PQE AOF S S ∴==△△.若04m <<,如图B-11-3,POE POA AOF PEFA S S S S +=+ △△△梯形,6POA PEFA S S ∴==△梯形.182(4)62m m ⎛⎫+-= ⎪⎝⎭∴·. 解得2m =,8m =-(舍去).∴(24)P ,. 若4m >,如图B-11-4,AOF AOP POE AFEP S S S S +=+ △△△梯形,6POA PEFA S S ∴==△梯形.182(4)62m m ⎛⎫∴+-= ⎪⎝⎭, 解得8m =,2m =-(舍去).(81)P ∴,. ∴点P 的坐标是(24)P ,或(81)P ,.B-11-2。