人教版八年级下数学第二十章数据分析单元测验试卷 (1)
人教版八年级数学下册第二十章-数据的分析综合测评试卷(含答案解析)
人教版八年级数学下册第二十章-数据的分析综合测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在我校“文化艺术节”英语表演比赛中,有16名学生参加比赛,规定前8名的学生进入决赛,某选手想知道自己能否晋级,只需要知道这16名学生成绩的()A.中位数B.方差C.平均数D.众数2、甲、乙两人一周中每天制作工艺品的数量如图所示,则对甲、乙两人每天制作工艺品数量描述正确的是()A.甲比乙稳定B.乙比甲稳定C.甲与乙一样稳定D.无法确定3、对于数据3,3,2,3,6,3,10,3,6,3,2.①这组数据的众数是3;②这组数据的众数与中位数的数值不等;③这组数据的中位数与平均数的数值相等;④这组数据的平均数与众数的数值相等,其中不正确的结论有( )A .1个B .2个C .3个D .4个4、已知数据1,2,3,3,4,5,则下列关于这组数据的说法错误的是( )A .平均数、中位数和众数都是3B .极差为4C .方差是53D5、某校有11名同学参加某比赛,预赛成绩各不同,要取前6名参加决赛,小敏己经知道了自己的成绩,她想知道自己能否进入决赛,只需要再知道这11名同学成绩的( )A .最高分B .中位数C .极差D .平均分6、若样本12,,,n x x x ⋯的平均数为10,方差为2,则对于样本1232,32,,32n x x x ++⋅⋅⋅+,下列结论正确的是( )A .平均数为30,方差为8B .平均数为32,方差为8C .平均数为32,方差为20D .平均数为32,方差为187、在对一组样本数据进行分析时,小华列出了方差的计算公式S 2=22222(5)(4)(4)(3)(3)5x x x x x -+-+-+-+-,下列说法错误的是( ) A .样本容量是5B .样本的中位数是4C .样本的平均数是3.8D .样本的众数是48、有一组数据:1,2,3,3,4.这组数据的众数是( )A .1B .2C .3D .49、2022年冬季奥运会将在北京张家口举行,如表记录了四名短道速滑选手几次选拔赛成绩的平均数x 和方差s 2.根据表中数据,可以判断乙选手是这四名选手中成绩最好且发挥最稳定的运动员,则m、n的值可以是()A.m=50,n=4 B.m=50,n=18 C.m=54,n=4 D.m=54,n=1810、某校随机抽查了10名学生的体育成绩,得到的结果如表:下列说法正确的是()A.这10名同学的体育成绩的方差为50B.这10名同学的体育成绩的众数为50分C.这10名同学的体育成绩的中位数为48分D.这10名同学的体育成绩的平均数为48分第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、跳远运动员李强在一次训练中,先跳了6次的成绩如下:7.6,7.8,7.7,7.8,8.0,7.9(单位:m).这六次成绩的平均数为7.8,方差为160.如果李强再跳两次,成绩分别为7.6,8.0,则李强这8次跳远成绩与前6次的成绩相比较,其方差 _____.(填“变大”、“不变”或“变小”)2、如果一组数据1a ,2a ,…,n a 的方差是2,那么一组新数据12a ,22a ,…,2n a 的方差是__________.3、某校九年级进行了3次体育中考项目﹣﹣1000米跑的模拟测试,甲、乙、丙三位同学3次模拟测试的平均成绩都是3分55秒,三位同学成绩的方差分别是s 甲2=0.01,s 乙2=0.009,s 丙2=0.0093.则甲、乙、丙三位同学中成绩最稳定的是 ___.4、学校“校园之声”广播站要选拔一名英语主持人,小聪参加选拔的各项成绩如下:读:92分,听:80分,写:90分,若把读,听、写的成绩按5:3:2的比例计入个人的总分,则小聪的个人总分为____分.5、一组数据:2,5,7,3,5的众数是________.三、解答题(5小题,每小题10分,共计50分)1、某班10名男同学参加100米达标检测,15秒以下达标(包括15秒),这10名男同学成绩记录如下:+1.2,0,-0.8,+2,0,-1.4,-0.5,0,-0.3,+0.8 (其中超过15秒记为“+”,不足15秒记为“-”)(1)求这10名男同学的达标率是多少?(2)这10名男同学的平均成绩是多少?(3)最快的比最慢的快了多少秒?2、5,16,16,28,32,51,51的众数是什么?3、某单位招聘员工,采取笔试与面试相结合的方式进行,两项成绩的满分均为100分,前6名选手的得分如下:根据规定,笔试成绩和面试成绩分别按一定的百分比折合成综合成绩.(1)这6名选手笔试成绩的众数是分.(2)现得知1号选手的综合成绩为88分,求笔试成绩和面试成绩各占的百分比.(3)求出其余五名选手的综合成绩,并以综合成绩排序确定前两名人选.4、某单位要买一批直径为60mm的螺丝,现有甲、乙两个螺丝加工厂,它们生产的螺丝的材料相同,价格也相同,该单位分别从甲、乙两厂的产品中抽样调查了20个螺丝,它们的直径(单位:mm)如下:甲厂:60,59,59.8,59.7,60.2,60.3,61,60,60,60.5,59.5,60.3,60.1,60.2,60,59.9,59.7,59.8,60,60;乙厂:60.1,60,60,60.2,59.9,60.1,59.7,59.9,60,60,60,60.1,60.5,60.4,60,59.6,59.5,59.9,60.1,60.你认为该单位应买哪个厂的螺丝?5、某中学为选拔一名选手参加我市“学宪法讲宪法”主题演讲比赛,经研究,按表所示的项目和权数对选拔赛参赛选手进行考评.下图分别是是小明、小华在选拔赛中的得分表和各项权数分布表:得分表结合以上信息,回答下列问题:(1)小明在选拔赛中四个项目所得分数的众数是,中位数是;(2)评分时按统计表中各项权数考评.①求出演讲技巧项目对应扇形的圆心角的大小.②如此考评,小明和小华谁更优秀,派出哪位同学代表学校参加比赛呢?---------参考答案-----------一、单选题1、A【解析】【分析】根据中位数的意义进行求解即可.【详解】解:16位学生参加比赛,取得前8名的学生进入决赛,中位数就是第8、第9个数的平均数,因而要判断自己能否晋级,只需要知道这16名学生成绩的中位数就可以.故选:A.【点睛】本题考查了中位数的意义,掌握中位数的意义是解题的关键.2、C【解析】【分析】先根据折线统计图得出甲、乙每天制作的个数,从而得出两组数据之间的关系,继而得出方差关系.【详解】解:由折线统计图知,甲5天制作的个数分别为15、20、15、25、20,乙5天制作的个数分别为10、15、10、20、15,∴甲从周一至周五每天制作的个数分别比乙每天制作的个数多5个,∴甲、乙制作的个数稳定性一样,故选:C.【点睛】本题主要考查了利用方差进行决策,准确分析判断是解题的关键.3、C【解析】【分析】直接根据众数、中位数和平均数的定义求解即可得出答案.【详解】数据3出现了6次,次数最多,所以众数是3,故①正确;这组数据按照从小到大的顺序排列为2,2,3,3,3,3,3,3,6,6,10,处于中间位置的是3,所以中位数是3,故②错误;平均数为22366210411⨯+⨯+⨯+=,故③、④错误;所以不正确的结论有②、③、④,故选:C.【点睛】本题主要考查众数、众数和平均数,掌握众数、中位数和平均数的定义是解题的关键.4、D【解析】【分析】分别求出这组数据的平均数、众数、中位数、极差、方差、标准差,再进行判断.【详解】解:这组数据的平均数为:(1+2+3+3+4+5)÷6=3,出现次数最多的是3,排序后处在第3、4位的数都是3,因此众数和中位数都是3,因此选项A不符合题意;极差为5﹣1=4,B选项不符合题意;S2=16×[(1﹣3)2+(2﹣3)2+(3﹣3)2+(3﹣3)2+(4﹣3)2+(5﹣3)2]=53,C选项不符合题意;S=D选项符合题意,故选:D.【点睛】考查平均数、中位数、众数、方差、标准差的计算方法,正确的计算是解答的前提.5、B【解析】【分析】由于共有11名同学参加某比赛,比赛取前6名参加决赛,根据中位数的意义分析即可.【详解】解:由于共有11个不同的成绩按从小到大排序后,中位数及中位数之后的共有6个数, 故只要知道自己的成绩和中位数就可以知道是否进入决赛了.故选:B .【点睛】本题考查了中位数意义,解题的关键是正确掌握中位数的意义.6、D【解析】【分析】由样本12,,,n x x x ⋯的平均数为10,方差为2,可得()()()()2222123123···10,101010?··102,n n x x x x n x x x x n ++++=-+-+-++-=再利用平均数公式与方差公式计算1232,32,,32n x x x ++⋅⋅⋅+的平均数与方差即可.【详解】 解: 样本12,,,n x x x ⋯的平均数为10,方差为2,()()()()()222212312311···10,?··2,n n x x x x x x x x x x x x x n n ⎡⎤∴=++++=-+-+-++-=⎣⎦ ()()()()2222123123···10,101010?··102,n n x x x x n x x x x n ∴++++=-+-+-++-=∴ ()1231323232?··32n x x x x n++++++++ ()1131023232,n n n n n=⨯+=⨯= ()()()()22221231323232323232?··3232n x x x x n ⎡⎤+-++-++-+++-⎣⎦()()()()22221231910910910?··910n x x x x n ⎡⎤=-+-+-++-⎣⎦ 19218,n n =⨯⨯= 故选D【点睛】本题考查的是平均数,方差的含义与计算,熟练的运用平均数公式与方差公式进行推导是解本题的顾客.7、D【解析】【分析】先根据方差的计算公式得出样本数据,从而可得样本的容量,再根据中位数(按顺序排列的一组数据中居于中间位置的数)与众数(一组数据中出现频数最多的数)的定义、平均数的计算公式逐项判断即可得.【详解】解:由方差的计算公式得:这组样本数据为5,4,4,3,3,则样本的容量是5,选项A 正确;样本的中位数是4,选项B 正确; 样本的平均数是54433 3.85++++=,选项C 正确; 样本的众数是3和4,选项D 错误;故选:D .【点睛】题目主要考查了中位数与众数的定义、平均数与方差的计算公式等知识点,依据方差的计算公式正确得出样本数据是解题关键.8、C【解析】【分析】找出数据中出现次数最多的数即可.【详解】解:∵3出现了2次,出现的次数最多,∴这组数据的众数为3;故选:C.【点睛】此题考查了众数.众数是这组数据中出现次数最多的数.9、A【解析】【分析】根据乙选手是这四名选手中成绩最好且发挥最稳定的运动员,可得到乙选手的成绩的平均数最大,方差最小,即可求解.【详解】解:因为乙选手是这四名选手中成绩最好的,所以乙选手的成绩的平均数最小,又因为乙选手发挥最稳定,所以乙选手成绩的方差最小.故选:A.【点睛】本题主要考查了平均数和方差的意义,理解方差是反映一组数据的波动大小的一个量:方差越大,则平均值的离散程度越大,稳定性也越差;反之,则它与其平均值的离散程度越小,稳定性越好.10、C【解析】【分析】根据众数、中位数、平均数及方差的定义列式计算即可.【详解】这组数据的平均数为110×(46+47×2+48×3+49×2+50×2)=48.2,故D选项错误,这组数据的方差为110×[(46﹣48.2)2+2×(47﹣48.2)2+3×(48﹣48.2)2+2×(49﹣48.2)2+2×(50﹣48.2)2]=1.56,故A选项错误,∵这组数据中,48出现的次数最多,∴这组数据的众数是48,故B选项错误,∵这组数据中间的两个数据为48、48,∴这组数据的中位数为48482=48,故C选项正确,故选:C.【点睛】本题考查众数、中位数、平均数及方差,把一组数据按从小到大的数序排列,在中间的一个数字(或两个数字的平均值)叫做这组数据的中位数;一组数据中,出现次数最多的数就叫这组数据的众数;熟练掌握定义及公式是解题关键.二、填空题1、变大【解析】【分析】先由平均数的公式计算出李强第二次的平均数,再根据方差的公式进行计算,然后比较即可得出答案.【详解】解:∵李强再跳两次,成绩分别为7.6,8.0, ∴这组数据的平均数是()7.867.68.07.88m ⨯++=, ∴这8次跳远成绩的方差是:()()()()()222222127.67.827.87.87.77.828.07.87.97.88S ⎡⎤=⨯-+⨯-+-+⨯-+-⎣⎦ 0.0225= ∵0.0225>160, ∴方差变大;故答案为:变大.【点睛】本题主要考查了平均数的计算和方差的计算,熟练掌握平均数和方差的计算是解答此题的关键. 2、8【解析】【分析】设一组数据1a ,2a ,…,n a 的平均数为x ,方差是22s =,则另一组数据12a ,22a ,…,2n a 的平均数为2x x '=,方差是2s ',代入方差公式2222121[()()()]n s x x x x x x n =-+-++-,计算即可.【详解】解:设一组数据1a ,2a ,…,n a 的平均数为x ,方差是22s =,则另一组数据12a ,22a ,…,2n a 的平均数为2x x '=,方差是2s ',∵2222121[()()()]n s a x a x a x n =-+-++-, ∴2222121[(22)(22)(22)]n s a x a x a x n '=-+-++-, 则2222121[4()4()4()]n s a x a x a x n '=-+-++-, ∴2222124[()()()]n s a x a x a x n '=-+-++-,∴224s s '=,2428s '=⨯=.【点睛】本题考查了方差的性质:当一组数据的每一个数都乘以同一个数时,方差变成这个数的平方倍.即如果一组数据1a ,2a ,…,n a 的方差是2s ,那么另一组数据1ka ,2ka ,⋯,n ka 的方差是22k s .3、乙【解析】【分析】根据方差的定义,方差越小数据越稳定.【详解】解:∵s 甲2=0.01,s 乙2=0.009,s 丙2=0.0093,∴s 乙2<s 丙2<s 甲2,∴甲、乙、丙三位同学中成绩最稳定的是乙.故答案为:乙.【点睛】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.4、88【解析】【分析】利用加权平均数按照比例求得小莹的个人总分即可.【详解】解:根据题意得:532⨯⨯⨯(分),92+80+90=885+3+25+3+25+3+2答:小聪的个人总分为88分;故答案为:88.【点睛】本题考查了加权平均数的计算方法,在进行计算时候注意权的分配,另外还应细心,否则很容易出错.5、5【解析】【分析】根据众数的概念求解.【详解】解:这组数据5出现的次数最多.故众数为5.故答案为:5,【点睛】本题考查了众数的知识,一组数据中出现次数最多的数据叫做众数.三、解答题1、(1)70%;(2)15.1秒;(3)最快的比最慢的快了3.4秒【分析】(1)求这10名男同学的达标人数除以总人数即可求解;(2)根据10名男同学的成绩即可求出平均数;(3)分别求出最快与最慢的时间,故可求解.【详解】解(1)从记录数据可知达标人数是7∴ 达标率=7÷10×100%=70%(2)15+(+1.2+0-0.8+2+0-1.4-0.5+0-0.3+0.8 )÷10=15.1(秒)∴这10名男同学的平均成绩是15.1秒(3)最快的是(15-1.4)=13.6(秒)最慢的是(15+2)=17(秒)17-13.6=3.4(秒)∴最快的比最慢的快了3.4秒.【点睛】此题主要考查有理数的混合运算的实际应用,解题的关键是熟知有理数的运算法则.2、16和51【分析】根据众数的定义:在一组数据中出现次数最多的数据,由此可求解.【详解】解:因为5,16,16,28,32,51,51中出现最多的数据为16和51,分别为两次,所以这组数据的众数是16和51.【点睛】本题主要考查众数,熟练掌握求一组数据的众数是解题的关键.3、(1)84;(2)笔试成绩和面试成绩各占的百分比是40%,60%;(3)2号:89.6分,3号:85.2分,4号:90分,5号:81.6分,6号:83分,综合成绩排序前两名人选是4号和2号【分析】(1)根据中位数和众数的定义即把这组数据从小到大排列,再找出最中间两个数的平均数就是中位数,再找出出现的次数最多的数即是众数;(2)先设笔试成绩和面试成绩各占的百分百是x ,y ,根据题意列出方程组,求出x ,y 的值即可;(3)根据笔试成绩和面试成绩各占的百分比,分别求出其余五名选手的综合成绩,即可得出答案.【详解】解:(1)把这组数据从小到大排列为,80,84,84,85,90,92,84出现了2次,出现的次数最多,则这6名选手笔试成绩的众数是84分;故答案为:84;(2)设笔试成绩和面试成绩各占的百分比是x ,y ,根据题意得:1859088x y x y +=⎧⎨+=⎩, 解得40%60%x y =⎧⎨=⎩, ∴笔试成绩和面试成绩各占的百分比是40%,60%.(3)2号选手的综合成绩是92×0.4+88×0.6=89.6(分),3号选手的综合成绩是84×0.4+86×0.6=85.2(分),4号选手的综合成绩是90×0.4+90×0.6=90(分),5号选手的综合成绩是84×0.4+80×0.6=81.6(分),6号选手的综合成绩是80×0.4+85×0.6=83(分).∴综合成绩排序前两名人选是4号和2号.【点睛】本题考查了众数、二元一次方程组的实际应用,加权平均数等知识点,依据题意,正确建立方程求出题(2)中的笔试成绩和面试成绩各占的百分比是解题的关键.4、买乙厂的螺丝【分析】分别求出甲乙两厂螺丝的平均数,极差,方差,然后根据平均数,极差,方差综合选取即可.【详解】 解:60.2+60.3+61+600+60+60.5+59.60+59+59.8+59.70+.1=6205+60.3+60.1+6.2+60+599+59.759.86060x +++⎛⎫⨯= ⎪⎝⎭甲 mm , 60.1+60+60+60.2+59.9+60.1+59.7+59.9+60+60+600+60.1+60.5+60.4+60+59.6+59.5+59.9+60.1+601620x ⎛⎫=⨯= ⎪⎝⎭乙 mm ; 61592mm R =-=甲,60.559.51mm R =-=乙;2222222222222222222(60-60)+(59-60)+(59.8-60)+(59.7-60)+(60.2-60)+(60.3-60)+(61-60)1=+(60-60)+(60-60)+(60.5-60)+(59.5-60)+(60.3-60)+(60.1-60)+(60.2-60)20+(60-60)+(59.9-60)+(59.7-60)+(59.8-60)+(60-60S ⨯甲220.152)+(60-60)⎡⎤⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦; 2222222222222222222(60.1-60)+(60-60)+(60-60)+(60.2-60)+(59.9-60)+(60.1-60)+(59.7-60)1=?+(59.9-60)+(60-60)+(60-60)+(60-60)+(60.1-60)+(60.5-60)+(60.4-60)20+(60-60)+(59.6-60)+(59.5-60)+(59.9-60)+(60.1-S 乙220.05160)+(60-60)⎡⎤⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦; ∴从甲、乙两厂抽取的10个螺丝直径的平均数都是60mm ,但甲厂20个螺丝直径的极差为2mm ,方差为0.152;乙厂20个螺丝直径的极差为1mm ,方差为0.051.因此在同等条件下应买乙厂的螺丝.【点睛】本题考查了平均数,极差,方差,以及根据平均数,极差,方差做决策,熟练掌握计算平均数,极差,方差的方法是解本题的关键.5、(1)85分,82.5分;(2)①144°;②小明更优秀,应派出小明代表学校参加比赛【分析】(1)根据众数和中位数的定义求解即可;(2)①根据扇形统计图中的数据,可以得到演讲技巧项目的百分比,进而求出圆心角大小;②根据加权平均数的定义列式计算出小明、小华的成绩,从而得出答案.【详解】解:(1)小明在选拔赛中四个项目所得分数的众数是85分,中位数是85802+=82.5(分);(2)①1-5%-15%-40%=40%360⨯40%=144°答:演讲技巧项目对应扇形的圆心角为144°;②小明分数为:855%7015%8040%8540%80.75⨯+⨯+⨯+⨯=小华分数为:905%7515%7540%8040%77.75⨯+⨯+⨯+⨯=80.75>77.75∴小明更优秀,应派出小明代表学校参加比赛【点睛】本题考查了众数、中位数、加权平均数,解题的关键是掌握众数、中位数、加权平均数的定义.。
人教版数学八年级下册《第二十章数据的分析》单元测试题(含答案)
人教版数学八年级下册第二十章数据的分析单元测试题一、选择题1.一组数据:5,7,10,5,7,5,6,这组数据的众数和中位数分别( D )A.10和7B.5和7C.6和7D.5和62.一城市准备选购一千株高度大约为2m的某种风景树来进行街道绿化,•有四个苗圃生产基地投标(单株树的价格都一样).•采购小组从四个苗圃中都任意抽查了20株树苗的高度,得到的数据如下:请你帮采购小组出谋划策,应选购(D )A.甲苗圃的树苗 B.乙苗圃的树苗;C.丙苗圃的树苗 D.丁苗圃的树苗3.(2017·安顺中考)如图是根据某班40名同学一周的体育锻炼情况绘制的条形统计图.那么该班40名同学一周参加体育锻炼时间的众数、中位数分别是( B )A.16,10.5B.8,9C.16,8.5D.8,8.54.一组数据2,3,2,3,5的方差是( C )A.6B.3C.1.2D.25.为鼓励市民珍惜每一滴水,某居委会表扬了100个节约用水模范户,8月份节约用水的情况如下表:那么,8月份这100户平均节约用水的吨数为(精确到0.01t)( A )A.1.5t B.1.20t C.1.05t D.1t6.甲、乙、丙、丁四位同学五次数学测验成绩统计如表.如果从这四位同学中,选出一位成绩较好且状态稳定的同学参加全国数学联赛,那么应选( B )A.甲B.乙C.丙D.丁7.某校八年级甲、乙两班学生在一学期里的多次检测中,其数学成绩的平均分相等,但两班成绩的方差不等,那么能够正确评价他们的数学学习情况的是( C )A.学习水平一样B.成绩虽然一样,但方差大的班里学生学习潜力大C.虽然平均成绩一样,但方差小的班学习成绩稳定D.方差较小的班学习成绩不稳定,忽高忽低8.对于数据3,3,2,3,6,3,10,3,6,3,2.①这组数据的众数是3;②这组数据的众数与中位数的数值不等;③这组数据的中位数与平均数的数值相等;④这组数据的平均数与众数的数值相等,其中正确的结论有( A )A.1个 B.2个 C.3个 D.4个9.已知:一组数据x1,x2,x3,x4,x5的平均数是2,方差是,那么另一组数据3x1-2,3x2-2,3x3-2,3x4-2,3x5-2的平均数和方差分别是( D )A.2,B.2,1C.4,D.4,310.某射击小组有20人,教练根据他们某次射击的数据绘制成如图所示的统计图,则这组数据的众数和中位数分别是( C )A.7,7B.8,7.5C.7,7.5D.8,6.5二、填空题11.某班中考数学成绩如下:7人得100分,14人得90分,17人得80分,8人得70分,3人得60分,1人得50分,那么中考全班数学成绩的平均分为,中位数为,众数为.答案:82.2 80 8012.某日天气预报说今天最高气温为8℃,气温的极差为10℃,则该日最低气温为_________.答案:-2•℃13..一组数据1,4,6,x的中位数和平均数相等,则x的值是__________.答案:-1或3或914.某校五个绿化小组一天的植树棵数如下:10,10,12,x,8.已知这组数据的平均数是10,那么这组数据的方差是 . 答案:1.615.小明家去年的旅游、教育、饮食支出分别出3600元,1200元,7200元,今年这三项支出依次比去年增长10%,20%,30%,则小时家今年的总支出比去年增长的百分数是_________. 答案:27.3%16.甲、乙两班举行电脑汉字输入速度比赛,参加学生每分钟输入汉字的个数经统计计算后填入下表:某同学根据上表分析得出如下结论:①甲、乙两班学生成绩的平均水平相同;②乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字数≥150个为优秀);③甲班的成绩的波动情况比乙班的成绩的波动大.上述结论正确的是__________(填序号). 答案:①②③ 三、解答题17.(6分)某公司共25名员工,下表是他们月收入的资料.(1)该公司员工月收入的中位数是元,众数是元;(2)根据上表,可以算得该公司员工月收入的平均数为6 276元.你认为用平均数、中位数和众数中的哪一个反映该公司全体员工月收入水平较为合适?说明理由.解:(1)共有25名员工,中位数是第13个数,则中位数是3 400元;3 000出现了11次,出现的次数最多,则众数是3 000元.(2)用中位数或众数来描述更为恰当.理由:平均数受极端值45 000元的影响,只有3个人的工资达到了6 276元,不恰当.18.(8分)为了了解某小区居民的用水情况,随机抽查了该小区10•户家庭的月用水量,结果如下:(1)计算这10户家庭的平均月用水量;(2)如果该小区有500户家庭,根据上面的计算结果,估计该小区居民每月共用水多少吨?答案:(1)=14(吨);(2)7000吨.19.某工厂甲、乙两个部门各有员工400人,为了解这两个部门员工的生产技能情况,进行了抽样调查,过程如下,请补充完整.收集数据从甲、乙两个部门各随机抽取20名员工,进行了生产技能测试,测试成绩(百分制)如下:甲78 86 74 81 75 76 87 70 75 9075 79 81 70 74 80 86 69 83 77乙93 73 88 81 72 81 94 83 77 8380 81 70 81 73 78 82 80 70 40整理、描述数据按如下分数段整理、描述这两组样本数据:(说明:成绩80分及以上为生产技能优秀,70-79分为生产技能良好,60-69分为生产技能合格,60分以下为生产技能不合格)分析数据两组样本数据的平均数、中位数、众数如下表所示:得出结论:a.估计乙部门生产技能优秀的员工人数为________;b.可以推断出________部门员工的生产技能水平较高,理由为________.(至少从两个不同的角度说明推断的合理性)【解析】按如下分数段整理数据:a.估计乙部门生产技能优秀的员工人数为400×=240(人);b.答案不唯一,言之有理即可.可以推断出甲部门员工的生产技能水平较高,理由如下:①甲部门生产技能测试中,测试成绩的平均数较高,表示甲部门生产技能水平较高;②甲部门生产技能测试中,没有生产技能不合格的员工.可以推断出乙部门员工的生产技能水平较高,理由如下:①乙部门生产技能测试中,测试成绩的中位数较高,表示乙部门生产技能水平优秀的员工较多;②乙部门生产技能测试中,测试成绩的众数较高,表示乙部门生产技能水平较高20.(8分)甲、乙两台机床同时生产同一种零件,在10天中两台机床每天生产的次品数如下:甲:0,1,0,2,2,0,3,1,2,4;乙:2,3,1,1,0,2,1,1,0,1.(1)分别计算两组数据的平均数和方差;(2)从结果看,在10天中哪台机床出现次品的波动较小?(3)由此推测哪台机床的性能较好解:(1)甲的平均数是甲=×(0+1+0+2+2+0+3+1+2+4)=1.5;乙的平均数是乙=×(2+3+1+1+0+2+1+1+0+1)=1.2.甲的方差是甲=[(0-1.5)2+(1-1.5)2+(0-1.5)2+…+(4-1.5)2]=1.65;乙的方差是乙=[(2-1.2)2+(3-1.2)2+(1-1.2)2+…+(1-1.2)2]=0.76.(2)因为甲=1.65,乙=0.76,所以甲>乙,所以乙机床出现次品的波动较小.(3)乙的平均数比甲的平均数小,且甲>乙,所以乙机床的性能较好.21.(12分)在某旅游景区上山的一条小路上,有一些断断续续的台阶,•下图是其中的甲、乙两段台阶的示意图.请你用所学过的有关统计的知识(平均数、中位数、方差和极差)回答下列问题:(1)两段台阶路有哪些相同点和不同点?(2)哪段台阶路走起来更舒服?为什么?(3)为方便游客行走,需要重新整修上山的小路.对于这两段台阶路,在台阶数不变的情况下,请你提出合理的整修建议.(图中的数字表示每一级台。
新人教版八年级数学下册第二十章 数据的分析单元测试卷含答案
考试时间:90分钟,总分:120
一、单选题(将唯一正确答案的代号填在题后括号内,每题3分,共30分)
1.小华在一次射击训练时,连续10次的成绩为3次10环、2次9环、5次8环,则小华这10次射击的平均成绩为( )
A.8.6环B.8.7环C.8.8环D.8.9环
2.一组数据2、3、4、6、6、7的众数是()
8.小明家1至6月份的用水量统计如图所示,关于这组数据,下列说法错误的是().
A.众数是6吨B.平均数是5吨C.中位数是5吨D.方差是
8题图9题图
9.如图是某班学生篮球运球成绩频数分布直方图,根据图中的信息,这组数据的中位数与众数是( )
A.10人、20人B.13人、14人C.14分、14分D.13.5分、14分
(2)计算被调查学生阅读时间的平均数;
(3)该校八年级共有500人,试估计周末阅读时间不低于1.5小时的人数.
21.(本题8分)一分钟投篮测试规定:满分为10分,成绩达到6分及以上为合格,成绩达到9分及以上为优秀.甲、乙两组各15 名学生的某次测试成绩如下:
成绩(分)
甲组(人)
乙组(人)
(1)请补充完成下面的成绩分析表:
17.两组数据m,6,n与1,m,2n,7的平均数都是6,若将这两组数据合并成一组数据,则这组新数据的中位数为_____.
18.已知点(x1,y1),(x2,y2),(x3,y3)都在函数y=-2x+7的图象上,若数据x1,x2,x3的方差为5,则另一组数据y1,y2,y3的方差为_________.
11.一组数据2,6,5,2,4,则这组数据的平均数是__________.
12.观察手机号码13938891548的11个数字,这些数字的中位数是______
人教版初中八年级数学下册第二十章《数据的分析》经典题(含答案解析)(1)
一、选择题1.某校在体育健康测试中,有8名男生“引体向上”的成绩(单位:次)分别是:14,12,8,9,16,12,7,10,这组数据的中位数和众数分别是()A.10,12 B.12,11 C.11,12 D.12,12C解析:C【分析】先把原数据按由小到大排列,然后根据中位数和众数的定义求解.【详解】原数据按由小到大排列为:7,8,9,10,12,12,14,16,所以这组数据的中位数=12(10+12)=11,众数为12.故选:C.【点睛】此题考查众数,中位数的定义,解题关键在于掌握一组数据中出现次数最多的数据叫做众数.2.如果将所给定的数据组中的每个数都减去一个非零常数,那么该数组的()A.平均数改变,方差不变B.平均数改变,方差改变C.平均数不变,方差改变D.平均数不变,方差不变A解析:A【解析】试题分析:根据平均数、方差的计算公式即可判断.由题意得该数组的平均数改变,方差不变,故选A.考点:本题考查的是平均数,方差点评:数学公式的计算与应用是初中数学学习中的一个基本能力,此类问题往往考查学生对数学公式的理解能力,难度不大.3.2017年世界未来委员会与联合国防治荒漠化公约授予我国“未来政策奖”,以表彰我国在防治土地荒漠化方面的突出成就.如图是我国荒漠化土地面积统计图,则荒漠化土地面积是五次统计数据的中位数的年份是( )A.1999年B.2004年C.2009年D.2014年C解析:C【分析】把数据的年份从小到大排列,根据中位数的定义即可得答案,【详解】把数据的年份从小到大排列为:2014年、1994年、2009年、2004年、1999年,∵中间的年份是2009年,∴五次统计数据的中位数的年份是2009年,故选:C.【点睛】本题考查中位数,把一组数据按从小到大的数序排列,在中间的一个数字(或两个数字的平均值)叫做这组数据的中位数.4.甲、乙两班举行电脑汉字输入比赛,参赛学生每分输入汉字的个数统计结果如下表:某同学分析上表后得到如下结论:①甲、乙两班学生平均成绩相同;为优秀)②乙班优秀的人数多于甲班优秀的人数(每分输入汉字个数150③甲班成绩的波动比乙班大.上述结论中正确的是()A.①②③B.①②C.①③D.②③A解析:A【分析】平均水平的判断主要分析平均数;优秀人数的判断从中位数不同可以得到;波动大小比较方差的大小.【详解】从表中可知,平均字数都是135,①正确;甲班的中位数是149,乙班的中位数是151,比甲的多,而平均数都要为135,说明乙的优秀人数多于甲班的,②正确;甲班的方差大于乙班的,又说明甲班的波动情况大,所以③也正确.①②③都正确.故选:A.【点睛】此题考查平均数,中位数,方差的意义.解题关键在于掌握平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.5.某兴趣小组为了解我市气温变化情况,记录了今年1月份连续6天的最低气温(单位:C︒):-6,-4,-2,0,-2,2.关于这组数据,下列结论不正确的是()A.平均数是-2 B.中位数是-2 C.众数是-2 D.方差是5D解析:D【分析】根据平均数、中位数、众数及方差的定义以及计算公式,依次计算各选项即可作出判断.【详解】解:A、平均数是-2,结论正确,故A不符合题意;B、中位数是-2,结论正确,故B不符合题意;C、众数是-2,结论正确,故C不符合题意;D、方差是203,结论错误,故D符合题意;故选:D.【点睛】本题考查平均数、中位数、众数及方差的知识,属于基础题,掌握各部分的定义及计算方法是解题关键.6.有一组数据:1,1,1,1,m.若这组数据的方差是0,则m为()A.4-B.1-C.0 D.1D解析:D【分析】方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.【详解】依题意可得,平均数:45mx∴224441555m mm解得m=1,故选D.【点睛】本题考查了方差,熟练运用方差公式是解题的关键.7.某校八年级(1)班全体学生进行了第一次体育中考模拟测试,成绩统计如下表:根据上表中的信息判断,下列结论中错误的是( )A.该班一共有42名同学B.该班学生这次考试成绩的众数是8C.该班学生这次考试成绩的平均数是27 D.该班学生这次考试成绩的中位数是27分B 解析:B【解析】【分析】根据众数,中位数,平均数的定义解答.【详解】解:该班共有6+5+5+8+7+7+4=42(人),成绩27分的有8人,人数最多,众数为27;该班学生这次考试成绩的平均数是=142(24×6+25×5+26×5+27×8+28×7+29×7+30×4)=27,该班学生这次考试成绩的中位数是第21名和第22名成绩的平均数为27分,错误的为B,故选:B.【点睛】本题考查的是众数,中位数,平均数,熟练掌握众数,中位数,平均数的定义是解题的关键.8.体育课上,某班两名同学分别进行了5次短跑训练,要判断哪一位同学的成绩比较稳定,通常要比较两名同学成绩的()A.平均数B.方差C.众数D.中位数B解析:B【分析】平均数、众数、中位数反映的是数据的集中趋势,方差反映的是数据的离散程度,方差越大,说明这组数据越不稳定,方差越小,说明这组数据越稳定.【详解】解:由于方差能反映数据的稳定性,故需要比较这两名同学5次短跑训练成绩的方差.故选B.【点睛】考核知识点:均数、众数、中位数、方差的意义.9.甲、乙两位射击运动员参加射击训练,各射击20次,成绩如下表所示:设甲、乙两位运动员射击成绩的方差分别为S 2甲和S2乙,则下列说法正确的是( )A.S2甲<S2乙B.S 2甲=S2乙C.S 2甲>S2乙D.无法比较S 2甲和S2乙的大小C解析:C【解析】【分析】先计算两组数据的平均数,再计算它们的方差,选择正确的答案即可.【详解】甲的平均数为:120×5×(7+8+9+10)=172乙的平均数为:120×(4×7+6×8+6×9+4×10)=172S甲2=120×{5×[(7-172)2+(8-172)2+(9-172)2+(10-172)2]}=14×[94+14+14+94]=54;S乙2=120×[4×[(7-172)2+6×(8-172)2+6×(9-172)2+4×(10-172)2]=120×[9+64+64+9]=21 20;∵54>2120∴S甲2>S乙2故选C.【点睛】此题主要考查了平均数及方差的知识.方差的定义:一般地设n个数据,x1,x2,…x n的平均数为x,则方差S2=1n[(x1-x)2+(x2-x)2+…+(x n-x)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.10.下面的统计图表示某体校射击队甲、乙两名队员射击比赛的成绩,根据统计图中的信息,下列结论正确的是()A.甲队员成绩的平均数比乙队员的大B .乙队员成绩的平均数比甲队员的大C .甲队员成绩的中位数比乙队员的大D .甲队员成绩的方差比乙队员的大D 解析:D 【解析】 【分析】根据平均数、中位数和方差的计算公式分别对每一项进行分析,即可得出答案. 【详解】甲队员10次射击的成绩分别为6,7,7,7,8,8,9,9,9,10,则中位数882=8, 甲10次射击成绩的平均数=(6+3×7+2×8+3×9+10)÷10=8(环),乙队员10次射击的成绩分别为6,7,7,8,8,8,8,9,9,10,则中位数是8, 乙10次射击成绩的平均数=(6+2×7+4×8+2×9+10)÷9=8(环), 甲队员成绩的方差=110×[(6-8)2+3×(7-8)2+2×(8-8)3+3×(9-8)2+(10-8)2]=1.4; 乙队员成绩的方差=110×[(6-8)2+2×(7-8)2+4×(8-8)3+2×(9-8)2+(10-8)2]=1.2, 综上可知甲、乙的中位数相同,平均数相同,甲的方差大于乙的方差, 故选D . 【点睛】本题考查了平均数、中位数和方差的定义和公式,熟练掌握平均数、中位数、方差的计算是解题的关键.二、填空题11.已知样本x 1,x 2,x 3,…,x n 的方差是1,那么样本2x 1+3,2x 2+3,2x 3+3,…,2x n +3的方差是___________.4【分析】根据方差的意义分析原数据都乘2则方差是原来的4倍数据都加3方差不变【详解】解:设样本x1x2x3…xn 的平均数为m 则其方差为则样本2x1+32x2+32x3+3…2xn +3的平均数为2m +解析:4 【分析】根据方差的意义分析,原数据都乘2,则方差是原来的4倍,数据都加3,方差不变. 【详解】解:设样本x 1,x 2,x 3,…,x n 的平均数为m , 则其方差为22221121...1n S x mx mx mn ,则样本2x 1+3,2x 2+3,2x 3+3,…,2x n +3的平均数为2m +3, 其方差为222144S S ,故选:D . 【点睛】本题考查方差的计算公式及其运用:一般地设有n 个数据,x 1,x 2,…x n ,若每个数据都放大或缩小相同的倍数后再同加或同减去一个数,其平均数也有相对应的变化,方差则变为这个倍数的平方倍.12.已知一组数据:3,3,x ,5,5的平均数是4,则这组数据的方差是___________.【分析】先由平均数的定义求得x 的值再根据方差的公式计算方差【详解】根据题意得:3+3+x+5+5=4×5解得:x=4则这组数据的方差为×2(3-4)2+(4-4)2+2(5-4)2=08故答案是:0 解析:0.8【分析】先由平均数的定义求得x 的值,再根据方差的公式计算方差. 【详解】 根据题意得: 3+3+x+5+5=4×5, 解得:x=4, 则这组数据的方差为15×[2(3-4)2+(4-4)2+2(5-4)2]=0.8, 故答案是:0.8. 【点睛】考查了求一组数的方差,解题关键是熟记方差计算公式:()()()2222121n S x x x x x x n ⎡⎤=-+-+⋯+-⎣⎦. 13.今年某果园随机从甲、乙、丙三个品种的枇杷树中各选了5棵,每棵产量的平均数x (单位:千克)及方差S 2(单位:千克2)如表所示:__.甲【分析】先比较平均数得到甲和乙产量较高然后比较方差得到甲比较稳定【详解】解:因为甲乙的平均数比丙大所以甲乙的产量较高又甲的方差比乙小所以甲的产量比较稳定即从这三个品种中选出一种产量既高又稳定的枇杷解析:甲 【分析】先比较平均数得到甲和乙产量较高,然后比较方差得到甲比较稳定. 【详解】解:因为甲、乙的平均数比丙大,所以甲、乙的产量较高, 又甲的方差比乙小,所以甲的产量比较稳定,即从这三个品种中选出一种产量既高又稳定的枇杷树进行种植,则应选的品种是甲;故答案为:甲. 【点睛】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了平均数.14.有一组数据如下:2,3,3,4,则这组数据的方差是____________.【分析】先由平均数的公式计算出平均数再根据方差的公式计算即可【详解】2334的平均数是(2+3+3+4)4=3;【点睛】方差等于样本中各数据与平均数差的平方之和再除以样本个数 解析:12【分析】先由平均数的公式计算出平均数,再根据方差的公式计算即可. 【详解】2,3,3,4的平均数是(2+3+3+4) ÷4= 3;2222211(32)(33)(33)(43)42S ⎡⎤=-+-+-+-=⎣⎦ 【点睛】方差等于样本中各数据与平均数差的平方之和再除以样本个数.15.数据-1,2,0,1,-2的方差是____.2【分析】先由平均数的公式计算出这组数的平均值再根据方差的公式S2=计算【详解】设这组数的平均值为则:∴方差S2=故答案为:2【点睛】本题考查的是方差:一般地设n 个数据x1x2…xn 的平均数为则方差解析:2 【分析】先由平均数的公式计算出这组数的平均值,再根据方差的公式S 2=()()()()22221231n x x x x x x x x n ⎡⎤-+-+-++-⎣⎦计算.【详解】设这组数的平均值为x ,则:1201205x -+++-==∴方差S 2=()()()()()222221020001020215⎡⎤--+-+-+-+--=⎣⎦⨯ 故答案为:2. 【点睛】本题考查的是方差:一般地设n 个数据x 1,x 2,…x n 的平均数为x ,则方差S 2=()()()()22221231n x x x x x x x x n ⎡⎤-+-+-++-⎣⎦,它反映了一组数据的波动大小,方差越大,波动性越大.16.若一组数据4,,5,,7,9x y 的平均数为6,众数为5,则这组数据的方差为__________.【分析】根据平均数的计算公式可得再根据众数是5所以可得xy中必须有一个5则另一个就是6通过方差的计算公式计算即可【详解】解:∵一组数据的平均数为6众数为5∴中至少有一个是5∵一组数据的平均数为6∴∴解析:83【分析】根据平均数的计算公式,可得11x y +=,再根据众数是5,所以可得x,y 中必须有一个5,则另一个就是6,通过方差的计算公式计算即可. 【详解】解:∵一组数据4,,5,,7,9x y 的平均数为6,众数为5, ∴,x y 中至少有一个是5,∵一组数据4,,5,,7,9x y 的平均数为6,∴()4579166x y +++++=, ∴11x y +=,∴,x y 中一个是5,另一个是6,∴这组数据的方差为()()()()()22222846256661[]676963-+-+-+-+-=; 故答案为83. 【点睛】本题是一道数据统计中的综合性题目,涉及知识点较多,应当熟练掌握,特别是记忆方差的计算公式.17.已知一组数据5,10,15,x ,9的平均数是8,那么这组数据的中位数是______.9【解析】【分析】根据平均数的定义先求出x 的值再根据中位数的定义即可得出答案【详解】根据平均数的定义可知(5+10+15+x+9)÷5=8解得:x=1把这组数据从小到大的顺序排列为1591015处于解析:9 【解析】 【分析】根据平均数的定义先求出x 的值,再根据中位数的定义即可得出答案. 【详解】根据平均数的定义可知,(5+10+15+x+9)÷5=8,解得:x=1,把这组数据从小到大的顺序排列为1,5,9,10,15,处于中间位置的那个数是9,那么由中位数的定义可知,这组数据的中位数是9;故答案为9.【点睛】考查了中位数,掌握中位数的定义是本题的关键;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.18.某中学人数相等的甲、乙两班学生参加了同一次数学测验,两班平均分和方差分别为⎺x甲=82分,⎺x乙=82分,S2甲=245,S2乙=190.那么成绩较为整齐的是__________班乙【解析】【分析】根据方差的意义方差反映了一组数据的波动大小根据方差越小波动越小故可由两班的方差得到结论【详解】∵S2甲>S2乙∴成绩较为稳定的是乙故答案为乙【点睛】本题考查了方差的意义:反映了一组解析:乙【解析】【分析】根据方差的意义,方差反映了一组数据的波动大小,根据方差越小,波动越小,故可由两班的方差得到结论.【详解】∵S2甲>S2乙∴成绩较为稳定的是乙.故答案为乙.【点睛】本题考查了方差的意义:反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.19.某班一次数学竞赛考试成绩如下表所示,已知全班共有38人,且众数为60分,中位数为70分,则x2-2y=_________.=15结合众数为50分中位数为60分分情况讨论即可确定xy之值从而求出x2-2y之值【详解】∵全班共有38人∴x+y=38-(解析:50【分析】由于全班共有38人,则x+y=38-(2+3+5+6+3+4)=15,结合众数为50分,中位数为60分,分情况讨论即可确定x、y之值,从而求出x2-2y之值.【详解】∵全班共有38人,∴x+y=38-(2+3+5+6+3+4)=15,又∵众数为60分,∴x≥8,当x=8时,y=7,中位数是第19,20两个数的都为70分,则中位数为70分,符合题意;当x=9时,y=6,中位数是第19,20两个数的平均数,则中位数为(60+70)÷2=65分,不符合题意;同理当x=10,11,12,13,14,15时,中位数都不等于70分,不符合题意.则x=8,y=7.则x2-2y=64-14=50.故答案为50.【点睛】此题主要考查了中位数和众数的应用,关键是根据众数的人数和中位数的数值进行分类讨论x、y的取值.20.小明五次数学测验的平均成绩是85,中位数为86,众数是89,则最低两次测验的成绩之和为________.161【解析】分析:知道平均数可以求出5次成绩之和又知道中位数和众数就能求出最低两次成绩详解:由五次数学测验的平均成绩是85分∴5次数学测验的总成绩是425分∵中位数是86分众数是89分∴最低两次测解析:161【解析】分析:知道平均数可以求出5次成绩之和,又知道中位数和众数,就能求出最低两次成绩.详解:由五次数学测验的平均成绩是85分,∴5次数学测验的总成绩是425分,∵中位数是86分,众数是89分,∴最低两次测试成绩为425-86-2×89=161,故答案为:161.点睛:本题主要考查平均数和众数等知识点.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.三、解答题21.某校举办了一次趣味数学竞赛,满分100分,学生得分均为整数,达到成绩60分及以上为合格,达到90分及以上为优秀,这次竞赛中,甲、乙两组学生成绩如下(单位:分)甲组:30,60,60,60,60,60,70,90,90,100;乙组:50,60,60,60,70,70,70,70,80,90.(1)以上成绩统计分析表如表:乙组b c90%则表中a=,b=,c=.(2)如果你是该校数学竞赛的教练员,现在需要你根据成绩的稳定性选一组同学代表学校参加复赛,你会选择哪一组?并说明理由.解析:(1)60,68,70;(2)乙组,理由见解析【分析】(1)利用中位数的定义确定a、c的值,根据平均数的定义计算出b的值;(2)先计算出乙组成绩的方差,然后选择甲乙两组成绩的方差较小的一组.【详解】解:(1)甲组学生成绩的中位数为60602+=60,即a=60;乙组学生成绩的平均数为110(50+3×60+4×70+80+90)=68;乙组学生成绩的中位数为70702+=70,即b=68,c=70;故填:60,68,70;(2)选择乙组.理由如下:乙组学生成绩的方差为110[(50﹣68)2+3(60﹣68)2+4(70﹣68)2+(80﹣68)2+(90﹣68)2]=116,因为甲乙两组学生成绩的平均数相同,而乙组学生成绩的方差较小,成绩比较稳定,所以选择乙组.【点睛】本题考查众数、中位数、平均数的意义和计算方法,理解各个统计量的意义及各个统计量所反映数据的特点是解决问题的关键.22.某校需要选出一名同学去参加温州市“生活中的数学说题”比赛,现有5名候选人参加该校举办的模拟说题比赛,挑选出成绩最高者参加说题比赛.已知5名候选人模拟说题比赛成绩情况如表所示.某校5名候选人模拟说题比赛成绩情况(1)5名候选人模拟说题比赛成绩的中位数是;(2)由于C、E两名候选人成绩并列第一;所以学校决定根据两人平时成绩、任课老师打分、模拟说题比赛成绩按2:3:5的比例最后确定成绩,最终谁将参加说题比赛.已知C、E两名候选人平时成绩、任课老师打分情况如表所示.解析:(1)85;(2)最终候选人E将参加说题比赛【分析】(1)根据中位数的定义直接进行解答即可;(2)根据算术平均数的计算公式先求出C、E两名候选人的平均成绩,再进行比较,即可得出答案.【详解】解:(1)把这些数从小到大排列为:75,83,85,90,90,则名候选人模拟说题比赛成绩的中位数是85分;故答案为:85;(2)∵C的平均成绩是:952803905235⨯+⨯+⨯++=88(分),E的平均成绩是:852903905235⨯+⨯+⨯++=89(分),∴88<89,∴最终候选人E将参加说题比赛.【点睛】本题考查中位数、平均数,加权平均数等知识,解题的关键是理解平均数的定义.23.某初中要调查学校学生(总数 1000 人)双休日课外阅读情况,随机调查了一部分学生,调查得到的数据分别制成频数直方图(如图 1)和扇形统计图(如图 2).(1)请补全上述统计图(直接填在图中);(2)试确定这个样本的中位数和众数;(3)请估计该学校 1000 名学生双休日课外阅读时间不少于 4 小时的人数.解析:(1)画图见解析;(2)中位数是3小时,众数是4小时;(3)400人.【分析】(1)根据阅读5小时以上频数为6,所占百分比为12%,求出数据的总数,再用数据总数减去其余各组频数得到阅读3小时以上频数,然后补全频数分布直方图,分别求得阅读0小时和4小时的人数所占百分比,补全扇形图;(2)利用各组频数和总数之间的关系确定中位数和众数;(3)用1000乘以每周课外阅读时间不小于4小时的学生所占百分比即可.【详解】解:(1)总人数:6÷12%= 50 (人),阅读3小时以上人数:50-4-6-8-14-6= 12 (人),阅读3小时以上人数的百分比为12÷50= 24% ,阅读0小时以上人数的百分比为4÷50= 8% .图如下:(2)中位数是3小时,众数是4小时;(3) 1000⨯(28% + 12%)= 1000⨯40%= 400(人)答:该学校1000名学生双休日课外阅读时间不少于4小时的人数为400人.【点睛】此题考查数据的收集,主要有中位数,众数,扇形图和直方图的画法及表达的意义.24.某校为了了解九年级学生体育测试成绩情况,以九年(1)班学生的体育测试成绩为样本,按A、B、C、D四个等级进行统计,并将统计结果绘制如下两幅统计图,请你结合图中所给信息解答下列问题:(说明:A级:90分﹣100分;B级:75分﹣89分;C级:60分﹣74分;D级:60分以下)(1)求出D级学生的人数占全班总人数的百分比;(2)求出扇形统计图中C级所在的扇形圆心角的度数;(3)该班学生体育测试成绩的中位数落在哪个等级内;(4)若该校九年级学生共有500人,请你估计这次考试中A级和B级的学生共有多少人?解析:(1)4%;(2)72°;(3)落在B 等级内;(4)380人 【分析】(1)先求出总人数,再求D 成绩的人数占的比例;(2)C 成绩的人数为10人,占的比例=10÷50=20%,表示C 的扇形的圆心角=360°×20%=72°, (3)根据中位数的定义判断;(4)该班占全年级的比例=50÷500=10%,所以,这次考试中A 级和B 级的学生数=(13+25)÷10%=380人, 【详解】(1)总人数为25÷50%=50人,D 成绩的人数占的比例:2÷50=4%; (2)表示C 的扇形的圆心角360°×(10÷50)=360°×20%=72°;(3)由于A 成绩人数为13人,C 成绩人数为10人,D 成绩人数为2人,而B 成绩人数为25人,故该班学生体育测试成绩的中位数落在B 等级内;(4)这次考试中A 级和B 级的学生数:(13+25)÷(50÷500)=(13+25)÷10%=380(人). 【点睛】本题主要考查统计图和用样本估计总体,提取统计图中的有效信息是解答此题的关键. 25.某工厂甲、乙两名工人参加操作技能培训.现分别从他们在培训期间参加的若干次测试成绩中随机抽取8次,数据如下(单位:分). 甲 9582 88 81 93 79 84 78乙83 75808090 859295(1)请你计算这两组数据的平均数、中位数.(2)现要从中选派一人参加操作技能比赛,从统计学的角度考虑,你认为选派哪名工人参加合适?请说明理由.解析:(1)甲、乙两组数据的平均数都是85分,中位数分别为83分、84分;(2)派乙参赛更合适.理由见解析. 【分析】(1)根据平均数、中位数的计算方法分别计算即可; (2)从平均数、中位数、方差以及数据的变化趋势分析. 【详解】()1()19582888193798478858x =+++++++=甲(分),()18375808090859295858x =+++++++=乙 将甲工人的测试成绩从小到大排序,处在第45、位的平均数为()8284283+÷=(分), 因此甲工人测试成绩的中位数是83分,将乙工人的测试成绩从小到大排序,处在第45、位的平均数为()8385284+÷=(分), 因此乙工人测试成绩的中位数是84分,答:甲、乙两组数据的平均数都是85分,中位数分别为83分、84分.()2(答案不唯一,合理即可)()()()2222195858285...788535.58S =-+-+⎤⎣⎦=⎡+-甲(分2) ()()()2222183857585...9585418S =-+-+-⎡⎤⎣⎦+=乙(分2)①从平均数看,甲、乙均为85分,平均水平相同;②从中位数看,乙的中位数大于甲,乙的成绩好于甲; ③从方差来看,因为22S S <甲乙,所以甲的成绩较稳定;④从数据特点看,获得85分以上(含85分)的次数,甲有3次,而乙有4次,故乙的成绩好些;⑤从数据的变化趋势看,乙后几次的成绩均高于甲,且呈上升趋势,因此乙更具潜力.综上分析可知,甲的成绩虽然比乙稳定,但从中位数、获得好成绩的次数及发展势头等方面分析,乙具有明显优势, 所以派乙参赛更合适. 【点睛】考查平均数、中位数、方差的意义及计算方法,从多角度分析数据的发展趋势是一项基本的能力.26.甲、乙两名队员参加射击训练,成绩分别被制成下列两个统计图:根据以上信息,整理分析数据如下:平均成绩/环 中位数/环 众数/环 方差 甲a771.2(1)写出表格中a ,b 的值;(2)从方差的角度看,若选派其中一名参赛,你认为应选哪名队员?并说明理. 解析:(1)7,7.5;(2)甲,理由略. 【分析】(1)利用加权平均数的计算公式、中位数的概念解答即可; (2)根据方差的性质判断即可. 【详解】解:∵甲队员的射击成绩为:5,6,6,7,7,7,7,8,8,9,∴甲队员的射击成绩平均数为:a=(5+6×2+7×4+8×2+9)÷10=7∵乙队员的射击成绩为:3,6,4,8,7,8,7,8,10,9,从小数到大数依次排列为:3,4,6,7,7,8,8,8,9,10, ∴乙队员射击成绩的中位数为:b=7.5 ∴a=7, b=7.5(2)从方差的角度看,选派甲队员去参赛,理由是: 从表中可知:S 甲2=1.2,S 乙2=4.2, ∴S 甲2<S 乙2∴甲队员的射击成绩较稳定, ∴选甲队员去参赛 【点睛】本题考查的是加权平均数、中位数、方差的计算,掌握加权平均数的计算公式、方差的计算公式是解题的关键.27.根据重庆轨道集团提供的日客运量统计,2019年2月21日重庆轨道交通首次日客运量突破300万乘次,其中近期开通的重庆轨道交通环线日客运量为21.5万乘次.据了解,某工作日上午7点至9点轨道环线四公里站有20列列车进出站,每列车进出站时,将上车和下车的人数记录下来,各得到20个数据,并将数据进行整理,绘制成了如下两幅不完整统计图.(数据分组为:A 组:170180x ≤<,B 组:180190x ≤<,C 组:190200x ≤<,D 组:200210x ≤<,E 组:210220x ≤≤)I .上车人数在C 组的是:190,190,191,192,193,193,195,196,198,198,198,198;II .上车人数的平均数、中位数如下表:根据以上信息,回答下列问题: (1)请补全频数分布直方图;(2)表中a=________,扇形统计图中m=_________,扇形统计图中E组所在的圆心角度数为________度;(3)请利用平均数,估算一周内5个工作日的上午7点至9点重庆轨道环线四公里站的上车总人数.解析:(1)补图见解析;(2)193,30,36;(3)19400人.【分析】(1)用20减去A、C、D、E组的数量得到B组数量,据此即可补全直方图;(2)利用中位数的概念可求得a的值,用100%减去B、C、D、E组所占的百分比求得A 组所占的百分比可求得m的值,用360度乘以E组所占的比例即可求得相应圆心角的度数;(3)用样本的平均数乘以这一时间段的进站车数再乘以天数即可得.【详解】(1)B组的数量为:20-2-12-2-1=3,补全频数直方图如图所示:(2)20个数据从小到大排列后位于中间的应该是第10、第11个数据,A、B、C、D、E组的数据是从小到大进行的,A、B组共有5个数据,C组有12个数据,从小到大排列为:190,190,191,192,193,193,195,196,198,198,198,198,C组中的第5个数据是总数据的第10个,为193,C组中的第6个数据是总数据的第11个,为193,所以中位数为:(193+193)÷2=193,即a=193;。
人教版八年级下册第20章 数据的分析 单元测试卷(一)(学生版)
人教版八下第20章数据的分析单元测试卷(二)班级:学号:姓名:一.选择题(共10小题)1.某商场试销一种新款衬衫,一周内销售情况如表所示:型号(厘米)383940414243数量(件)283036552810商场经理想了解哪种型号最畅销,下列关于型号的统计量中,对商场经理来说最有意义的是()A.平均数B.众数C.中位数D.方差2.王老师为了了解本班学生每周课外阅读时间,抽取了10名同学进行调查,调查结果统计如下:时间/小时45678人数24a b1那么这组数据的中位数和众数分别是()A.4,4B.5,4C.5,5D.都无法确定3.随着冬季的来临,流感进入高发期.某校为有效预防流感,购买了A,B,C,D四种艾条进行消毒,它们的单价分别是30元,25元,20元,18元.四种艾条的购买比例如图所示,那么所购买艾条的平均单价是()A.22.5元B.23.25元C.21.75元D.24元4.比赛中“去掉一个最高分,去掉一个最低分”后,一定不会发生变化的统计量是()A.平均数B.众数C.中位数D.极差5.方差计算公式s2=[(4﹣7)2+(6﹣7)2+(8﹣7)2+(11﹣7)2+(6﹣7)2]中,数字5和7分别表示()A.数据个数、平均数B.方差、偏差C.众数、中位数D.数据个数、中位数6.一组数据40,37,x,64的平均数是53,则x的值是()A.67B.69C.71D.727.2022年冬季奥运会将在北京市张家口举行,下表记录了四名短道速滑选手几次选拔赛成绩的平均数和方差s2:小明小红小芳小米平均数(单位:秒)53m5249方差s2(单位:秒2) 5.5n12.517.5根据表中数据,可以判断小红是这四名选手中成绩最好且发挥最稳定的运动员,则m、n的值可以是()A.m=48,n=4B.m=48,n=18C.m=55,n=4D.m=55,n=18 8.已知一组数据:2,6,4,6,7,则这组数据的中位数和众数分别是()A.4,4B.4,6C.6,6D.6,79.在一次数学测验中,甲、乙、丙、丁四位同学的成绩(单位:分)分别是80,x,80,70,若这四位同学成绩的众数与平均数恰好相等,则他们成绩的中位数是()A.90分B.85分C.80分D.75分10.在“传唱红色经典,弘扬爱国精神”比赛中,七位评委给某选手打出7个原始分.如果规定:去掉一个最高分和一个最低分,余下5个有效分的平均值作为这位选手的最后得分,则7个原始分和5个有效分这两组分数相比较,一定不会发生改变的是()A.方差B.极差C.中位数D.平均数二.填空题(共6小题)11.甲、乙两人在相同情况下各打靶8次,每次打靶的成绩如图所示,(填“甲”或“乙”)的成绩更稳定.12.一组数据21,22,23,24,25,用符号A表示,记为A=(21,22,23,24,25),加入一个数据a后,用符号B表示,记为B=(21,22,23,24,25,a).①若a=22,则A的平均数大于B的平均数;②若a=23,则A的方差等于B的方差;③若a=24,则A的中位数小于B的中位数.其中正确的序号是.13.某电视台要招聘1名记者,某应聘者参加了3项素质测试,成绩如下:测试项目采访写作计算机操作创意设计测试成绩(分)828580如果将采访写作、计算机操作和创意设计的成绩按5:2:3计算,则该应聘者的素质测试平均成绩是分.14.已知1,2,3,4,5的方差为2,则2021,2022,2023,2024,2025的方差为.15.数据﹣1,0,1的方差为.16.若一组数据的方差为,则这组数据的平均数为.三.解答题(共6小题)17.某学校开展防疫知识线上竞赛活动,九年级(1)、(2)班各选出5名选手参加竞赛,两个班选出的5名选手的竞赛成绩(满分为100分)如图所示.(1)九(1)班竞赛成绩的众数是,九(2)班竞赛成绩的中位数是.(2)哪个班的成绩较为整齐,试说明理由.18.第24届冬季奥林匹克运动会将于2022年2月在中国北京和张家口举行.为迎接本次冬奥会,某校组织初一年级学生开展“迎冬奥”知识竞赛活动(满分为50分).从竞赛成绩中随机抽取了20名男生和20名女生的成绩(单位:分)进行整理、描述和分析(成绩用x表示,共分成四个等级:A:47<x≤50,B:44<x≤47,C:41<x≤44,D:x≤41),下面是这40名学生成绩的信息:20名男生的成绩:50,46,50,50,46,49,39,46,49,46,46,43,49,47,40,48,44,43,45,44.20名女生中成绩为B等级的数据是:45,46,46,47,47,46,46.所抽取学生的竞赛成绩统计表性别平均数中位数众数男464646女46.5b48根据以上信息,解答下列问题:(1)a=,b=.(2)该校初一年级共有400名男生参与此次竞赛,估计其中等级为A的男生约有多少人?19.某工厂有220名员工,财务科要了解员工收入情况.现在抽测了10名员工的本月收入,结果如下:(单位:元)1660,1540,1510,1670,1620,1580,1580,1600,1620,1620(1)全厂员工的月平均收入是多少?(2)平均每名员工的年薪是多少?(3)财务科本月应准备多少钱发工资?20.已知小明与小华在学校的五次数学竞赛培训时测试总成绩相同,下表是两人各次成绩的统计表,现要从这两名学生中选择一名学生去参加全国数学竞赛,需要对他们的培训成绩进行统计分析,请完成下列问题:第1次第2次第3次第4次第5次小明的成绩90708010060小华的成绩709090a70(1)a=,=;(2)请在图中完成表示小华成绩变化情况的折线;(3)S2小明=200,请你计算小华的方差;(4)根据以上数据说明选择小明或小华参加全国数学竞赛的理由.21.罗山县尚文学校组织了一次环保知识竞赛,每班选25名同学参加比赛,成绩分为A,B,C,D 四个等级,其中相应等级的得分依次记为100分、90分、80分、70分,学校将某年级的一班和二班的成绩整理并绘制成如下的统计图:请根据以上提供的信息解答下列问题:(1)把一班竞赛成绩统计图补充完整:(2)填表:平均数(分)中位数(分)众数(分)一班90二班87.680(3)请从以下给出的三个方面中任选一个对这次竞赛成绩的结果进行分析;①从平均数和中位数方面来比较一班和二班的成绩;②从平均数和众数方面来比较一班和二班的成绩;③从B级以上(包括B级)的人数方面来比较一班和二班的成绩.22.中考体育测试前,某区教育局为了了解选报引体向上的初三男生的成绩情况,随机抽测了本区部分选报引体向上项目的初三男生的成绩,并将测试得到的成绩绘成了下面两幅不完整的统计图:请你根据图中的信息,解答下列问题:(1)写出扇形图中a=%,并补全条形图;(2)在这次抽测中,测试成绩的众数和中位数分别是个、个.(3)该区体育中考选报引体向上的男生共有1800人,如果体育中考引体向上达6个以上(含6个)得满分,请你估计该区体育中考中选报引体向上的男生能获得满分的有多少名?。
人教版八年级数学第20章《数据的分析》单元测试题(1)
新人教版八年级数学第20章《数据的分析》单元测试题(1)一、选择题)1.为了了解参加某运动会的200名运动员的年龄情况,从中抽查了20名运动员的年龄,就这个问题来说,下面说法正确的是()A.200名运动员是总体B.每个运动员是总体C.20名运动员是所抽取的一个样本D.样本容量是202.一城市准备选购一千株高度大约为2m的某种风景树来进行街道绿化,•有四个苗圃生产基地投标(单株树的价格都一样).•采购小组从四个苗圃中都任意抽查了20株树苗的高度,得到的数据如下:请你帮采购小组出谋划策,应选购()A.甲苗圃的树苗B.乙苗圃的树苗; C.丙苗圃的树苗D.丁苗圃的树苗3.将一组数据中的每一个数减去50后,所得新的一组数据的平均数是2,•则原来那组数据的平均数是()A.50 B.52 C.48 D.24.一个射手连续射靶22次,其中3次射中10环,7次射中9环,9次射中8环,3次射中7环.则射中环数的中位数和众数分别为()A.8,9 B.8,8 C.8.5,8 D.8.5,95那么,8月份这100户平均节约用水的吨数为(精确到0.01t)()A.1.5t B.1.20t C.1.05t D.1t6.已知一组数据-2,-2,3,-2,-x,-1的平均数是-0.5,•那么这组数据的众数与中位数分别是()A.-2和3 B.-2和0.5 C.-2和-1 D.-2和-1.57.方差为2的是()A.1,2,3,4,5 B.0,1,2,3,5C.2,2,2,2,2 D.2,2,2,3,38(1)甲、乙两班学生成绩的平均水平相同;(2)乙班优秀的人数多于甲班优秀的人数;(每分钟输入汉字≥150个为优秀)(3)甲班成绩的波动情况比乙班成绩的波动小上述结论中正确的是()A.(1)(2)(3)B.(1)(2)C.(1)(3)D.(2)(3)9.某校把学生的纸笔测试、实践能力、成长纪录三项成绩分别按50%、20%•、•30%的比例计入学期总评成绩,90分以上为优秀.甲、乙、•丙三人的各项成绩如下表(单位:分),学期总评成绩优秀的是()A.甲B.乙丙C.甲乙D.甲丙10.对于数据3,3,2,3,6,3,10,3,6,3,2.①这组数据的众数是3;②这组数据的众数与中位数的数值不等;③这组数据的中位数与平均数的数值相等;④这组数据的平均数与众数的数值相等,其中正确的结论有()A.1个B.2个C.3个D.4个二、填空题11.(2005,深圳)下图是根据某地近两年6•月上旬日平均气温情况绘制的折线统计图,通过观察图形,可以判断这两年6月上旬气温比较稳定的年份是_____年.12.某日天气预报说今天最高气温为8℃,气温的极差为10℃,则该日最低气温为_________.13.在演唱比赛中,8位评委给一名歌手的演唱打分如下:9.3,9.5,9.9,9.4,9.3,8.9,9.2,9.6,若去掉一个最高分和一个最低分后的平均分为得分,则这名歌手最后得分约为________.14.一个样本,各个数据的和为515,如果这个样本的平均数为5,那么这个样本的容量是_________.15.为了估计湖里有多少鱼,我们从湖里捕上150条鱼作上标记,然后放回湖里去,经过一段时间再捕上300条鱼,其中带标记的鱼有30条,•则估计湖里约有鱼_______条.16.一名学生军训时连续射靶10次,命中的环数分别为4,7,8,6,8,5,9,10,7.•则这名学生射击环数的方差是_________.17.某人开车旅行100km,在前60km内,时速为90km,在后40km内,时速为120km,则此人的平均速度为_________.18.小明家去年的旅游、教育、饮食支出分别出3600元,1200元,7200元,今年这三项支出依次比去年增长10%,20%,30%,则小时家今年的总支出比去年增长的百分数是_________.19.将5个整数从大到小排列,中位数是4;如果这个样本中的惟一众数是6,•则这5个整数可能的最大的和是_____.20.某公司欲招聘工人,对候选人进行三项测试:语言、创新、综合知识,并按测试得分1:4:3的比例确定测试总分,已知三项得分分别为88,72,50,•则这位候选人的招聘得分为________.三、解答题(60分)21.(6分)某校规定学生期末数学总评成绩由三部分构成:卷面成绩、•课外论文成绩、平日表现成绩(三部分所占比例如图),若方方的三部分得分依次是92、80、•84,则她这学期期末数学总评成绩是多少?22.(8(1)计算这10户家庭的平均月用水量;(2)如果该小区有500户家庭,根据上面的计算结果,估计该小区居民每月共用水多少吨?23.(8分)下表是某校八年级(1(1)若这20名学生成绩的平均分数为82分,求x和y的值;(2)在(1)的条件下,设这20名学生本次测验成绩的众数为a,中位数为b,求a,b的值.24.(8分)某乡镇企业生产部有技术工人15人,•生产部为了合理制定产品的每月生产定额,统计了15人某月的加工零件个数:(1)写出这15人该月加工零件数的平均数、中位数和众数.(2)假如生产部负责人把每位工人的月加工零件数定为260(件),•你认为这个定额是否合理,为什么?25.(8分)题中给出的条形图是截止到2002年44位费尔兹奖得主获奖时的年龄统计图.经计算费尔兹奖得主获奖时的平均年龄是35岁.根据条形图回答问题:(1)费尔兹奖得主获奖时的年龄超过..中位数的有多少人?(2)费尔兹奖得主获奖时年龄的众数是多少?(3)•费尔兹奖得主获奖时的年龄高于..平均年龄的人数占获奖人数的百分比是多少?26.(10分)某学校对初中毕业班经过初步比较后,决定从九年级(1)、(4)、(8)•班这三个班中推荐一个班为市级先进班集体的候选班,•现对这三个班进行综合素质考评,下表是它们五项素质考评的得分表:(以分为单位,每项满分为10(1)请问各班五项考评分的平均数、•中位数和众数中哪个统计量不能反映三个班的考评结果的差异?并从中选择一个能反映差异的统计量将他们的得分进行排序.(2)根据你对表中五个项目的重要程度的认识,•设定一个各项考评内容的占分比例(比例的各项须满足:①均为整数;②总和为10;③不全相同),•按这个比例对各班的得分重新计算,比较出大小关系,并从中推荐一个得.分最高...的班作为市级先进班集体的候选班.27.(12分)在某旅游景区上山的一条小路上,有一些断断续续的台阶,•下图是其中的甲、乙两段台阶的示意图.请你用所学过的有关统计的知识(平均数、中位数、方差和极差)回答下列问题:(1)两段台阶路有哪些相同点和不同点?(2)哪段台阶路走起来更舒服?为什么?(3)为方便游客行走,需要重新整修上山的小路.对于这两段台阶路,在台阶数不变的情况下,请你提出合理的整修建议.(图中的数字表示每一级台阶的高度(•单位:cm).并且数据15,16,16,14,14,15的方差S甲2=23,数据11,15,18,17,10,19的方差S乙2=353).答案:1.D 2.D 3.B 4.B 5.A 6.D 7.A 8.B 9.C 10.A 11.2005 12.-2•℃13.9.4分14.103 15.1500 16.3 17.100km/h18.27.3% 19.21 20.65.•75分21.解:9070%8020%8410%70%20%10%⨯+⨯+⨯++=88.8(分)22.(1)=14(吨);(2)7000吨.23.(1)x=5,y=7;(2)a=90,b=80.24.(1)平均数:260(件)中位数:240(件)众数:240(件);(2)不合理,•因为表中数据显示,每月能完成260件的人数一共是4人,还有11人不能达到此定额,•尽管260是平均数,但不利于调动多数员工的积极性,因为240既是中位数,又是众数,是大多数人能达到的定额,故定额为240较为合理.25.解:(1)中位数为35.5岁,•年龄超过中位数的有22人.(2)众数是38岁.(3)高于平均年龄的人数为22人,22÷44=50%.26.(1)平均数不能反映三个班的考评结果的差异,用中位数或众数可以反映.(2)行为规范:学习成绩:校运动会:艺术获奖:劳动卫生=3:3:2:1:1.x1=1.78,x4=•1.74,x8=1.8 ∴x8>x1>x4,所以推荐九年级(8)班作为市场先进班集体的候选班级合适.27.(1)相同点:两段台阶路台阶高度的平均数相同.不同点:•两段台阶路台阶高度的中位数、方差和极差均不相同.(2)甲段路走起来更舒服一些,因为它的台阶高度的方差小.(3)每个台阶高度均为15cm(原平均数)使得方差为0.。
人教版八年级下册数学《第20章 数据的分析》单元测试卷 试题试卷 含答案解析(1)
人教版八年级下册数学《第20章数据的分析》单元测试卷一、选择题(共9小题,满分36分)1.某商店5天的营业额如下(单位:元):14845,25706,18957,11672,16330,利用计算器求得这5天的平均营业额是()A.18116元B.17805元C.17502元D.16678元2.某工厂为了选拔1名车工参加加工直径为10mm的精密零件的技术比赛,随机抽取甲、乙两名车工加工的5个零件,现测得的结果如下表,请你用计算器比较S2甲、S2乙的大小()甲10.0510.029.979.9610乙1010.0110.029.9710A.S2甲>S2乙B.S2甲=S2乙C.S2甲<S2乙D.S2甲≤S23.一组数据5,3,3,2,5,7的中位数是()A.2B.2.5C.3D.44.2022年杭州亚运会以“中国新时代•杭州新亚运”为定位.“中国风范、浙江特色、杭州韵味、共建共享”为目标,秉持“绿色、智能、节俭、文明”的办会理念,坚持“以杭州为主,全省共享”的办赛原则,高质量推进亚运会筹办工作,某校对亚运知识进行了相关普及,学生会为了了解学生掌握情况,从中抽取50名学生成绩,列表如下:分数(分)9092949698100人数(人)241081511根据表格提供的信息可知,这组数据的众数与中位数分别是()A.100分,95分B.98分.95分C.98分,98分D.97分,98分5.在一次科技作品制作比赛中,某小组六件作品的成绩(单位:分)分别是:7,10,9,8,7,9.对这组数据,下列说法正确的是()A.平均数是7B.众数是7C.极差是5D.中位数8.5 6.甲、乙两人在相同条件下进行射击练习,每人10次射击成绩的平均数都是8环,方差分别为S甲2=1.4,S乙2=0.6,则两人射击成绩波动情况是()A.甲波动大B.乙波动大C.甲、乙波动一样D.无法比较7.一组数据x、0、1、﹣2、3的平均数是1,则x的值是()A.3B.1C.2.5D.08.某校评价项目化成果展示,对甲、乙、丙、丁展示成果进行量化评分,具体成绩(百分制)如表,如果按照创新性占55%,实用性占45%计算总成绩,并根据总成绩择优推广,那么应推广的作品是()项目作品甲乙丙丁创新性87939091实用性90919093A.甲B.乙C.丙D.丁9.某校九年级有9名同学参加“建党一百周年”知识竞赛,预赛成绩各不相同,要取前5名参加决赛.小兰已经知道了自己的成绩,她想知道自己能否进入决赛,还需要知道这9名同学成绩的()A.中位数B.众数C.平均数D.方差二、填空题(共9小题,满分36分)10.一组数据1,6,3,﹣4,5的极差是.11.一鞋店试销一种新款式鞋,试销期间卖出情况如表:型号2222.52323.52424.525数量(双)351015832鞋店经理最关心哪种型号鞋畅销,则下列统计量对鞋店经理来说最有意义的是.(填“平均数”、“众数”或“中位数”)12.有甲、乙两组数据,如表所示:甲1012131416乙1212131414甲、乙两组数据的方差分别为s甲2,s乙2,则s甲2s乙2(填“>”、“<”或“=”).13.某车间20名工人每天加工零件数如表所示:每天加工零件数45678人数36542这些工人每天加工零件数的众数、中位数分别是.14.在某学校开展的艺术作品征集活动中,五个班上交的作品数量(单位:件)分别为:46,45,49,42,50,则这组数据的中位数是.15.某同学用计算器求20个数据的平均数时,错将一个数据75输入为15,那么由此求出的平均数与实际平均数的差是.16.某电力公司需招聘一名电工技师,对应聘者李某从形象、实践操作、理论检测三个方面进行量化考核.李某各项得分如表:考查项目形象实践操作理论检测李技师85分90分80分该公司规定:形象、实践操作、理论检测得分分别按20%,50%,30%的比例计入总分,则应聘者李某的总分为分.17.已知数据a,b,c的平均数为8,那么数据a+1,b+1,c+1的平均数是.18.利用计算器求数据2,1,3,4,3,5的平均数是;方差;中位数.三、解答题(共6小题,满分78分)19.河南省对居民生活用电采用阶梯电价,鼓励居民节约用电,其中年用电量为2160千瓦时及以下执行基础电价0.56元/千瓦时;2160~3120千瓦时的部分按0.61元/千瓦时收费;超过3120千瓦时的部分按0.86元/千瓦时收费.为了解某小区居民生活用电情况.调查小组从该小区随机调查了200户居民的月平均用电量x(千瓦时),并将全部调查数据分组统计如下:组别60<x≤100100<x≤140140<x≤180180<x≤220220<x≤260260<x≤300频数(户数)2842a302010把这200个数据从小到大排列后,其中第96到第105(包含第96和第105这两个数据)个数据依次为:148148150152152154160161161162根据以上信息,回答下列问题:(1)本次调查中,该小区居民月平均用电量的中位数为,表中a=;(2)估计该小区能享受基础电价的居民占全小区的百分比;(3)国家在制订收费标准时,为了减轻居民用电负担,制订的收费标准能让85%的用户享受基础电价.请你根据以上信息对该小区居民的用电情况进行评价,并写出一条建议.20.2021年12月4日是我国第二十一个法制宣传日,也是第八个国家宪法日.为大力弘扬宪法精神,维护宪法权威,普及宪法知识,进一步增强学生的法制观念,某学校在全校七、八年级共2000名学生中开展“国家宪法日”知识竞赛,并从七、八年级学生中各抽取20名学生统计这部分学生的竞赛成绩(竞赛成绩均为整数,满分10分,6分及以上为合格).相关数据统计、整理如下:七年级抽取的学生的竞赛成绩:2,4,5,6,7,7,7,7,7,7,8,8,9,9,9,9,9,10,10,10.八年级抽取的学生的竞赛成绩:4,5,5,5,6,6,7,7,7,8,8,8,8,8,9,9,10,10,10,10.七、八年级抽取的学生的竞赛成绩的统计表年级七年级八年级平均数7.57.5中位数7.5m众数n8根据以上信息,解答下列问题:(1)填空:m=,n=;(2)你觉得哪个年级学生的知识竞赛成绩更好?请说明理由(一条理由即可);(3)若该校七、八年级学生人数均为1000人,估计本次竞赛中成绩合格的人数.21.至善中学七年一班期中考试数学成绩平均分为84.75,该班小明的数学成绩为92分,把92与84.75的差叫做小明数学成绩的离均差,即小明数学成绩的离均差为+7.25.(1)该班小丽的数学成绩为82分,求小丽数学成绩的离均差.(2)已知该班第一组8名同学数学成绩的离均差分别为:+10.25,﹣8.75,+31.25,+15.25,﹣3.75,﹣12.75,﹣10.75,﹣32.75.①求这组同学数学成绩的最高分和最低分;②求这组同学数学成绩的平均分;③若该组数学成绩最低的同学达到及格的72分,则该组数学成绩的平均分是否达到或超过班平均分?超过或低于多少分?22.21世纪已经进入了中国太空时代,2021年到2022年,我国会通过11次航天发射完成空间站建设,空间站由“天和”核心舱、“问天”和“梦天”两个实验舱,我国空间站的建成将为开展太空实验及更广泛的国际合作提供精彩舞台.校团委以此为契机,组织了“中国梦•航天情”系列活动.下面是八年级甲,乙两个班各项目的成绩(单位:分):(1)如果根据三项成绩的平均分计算最后成绩,请通过计算说明甲、乙两班谁将获胜;(2)如果将知识竞赛、演讲比赛、版面创作按5:3:2的比例确定最后成绩,请通过计算说明甲乙两班谁将获胜.项目班次知识竞赛演讲比赛版面创作甲859188乙90848723.某校为了了解九年级学生在寒假期间的数学学习情况,开学之际进行了一次数学小测验(满分100分),并从甲、乙两个班各抽取10名学生的测验成绩进行统计分析.收集数据:甲班:90,90,70,90,100,80,80,90,95,65乙班:95,70,80,90,70,80,95,80,100,90整理数据成绩x (分)60≤x≤7070<x≤8080<x≤9090<x≤100甲班2242乙班23a3分析数据数据平均数中位数众数甲班8590d乙班b c80解答下列问题:(1)直接写出a、b、c、d的值;(2)小明同学说:“这次测验我得了90分,在我们小组中属于中游偏上!”观察上面的表格判断,小明可能是班的学生;(3)若乙班共有50人参加测验,请估计乙班测验成绩超过90分的人数.24.2022年北京冬奥会的成功举办,掀起了广大群众的冰雪热情.某学校社团发起了对同学们的冰雪运动知识了解程度的调查,现从初中、高中各随机抽取了15名同学进行知识问答测试,测试成绩用x表示,共分成4组:A:70以下.B:70≤x<80.C;80≤x<90,D:90≤x<100,对成绩进行整理分析,给出了下面部分信息:初中同学的测试成绩在C组中的数据为:81,85,88.高中同学的测试成绩:76,83,71,100,81,100,82,88,95,90,100,86,89,93,86.成绩统计表如表:校部平均数中位数最高分众数极差初中88a989832高中8888100b c (1)a=,b=,c=;(2)通过以上数据分析,你认为(填“初中”或“高中”)的学生对冰雪项目的知识掌握更好?请写出理由(给出一条理由即可);(3)若初中、高中共有2400名学生,请估计此次测试成绩达到90分及以上的学生共有多少人?参考答案一、选择题(共9小题,满分36分)1.C2.A3.D4.C5.D6.A7.A8.B9.A二、填空题(共9小题,满分36分)10.10.11.众数.12.>.13.5,6.14.46.15.﹣3.16.86.17.9.18.3,,3.三、解答题(共6小题,满分78分)19.解:(1)根据中位数的定义,中位数为按照从小到大排好顺序的数据的第100个和第101个数的平均值,∴中位数为:=153,∵28+42+a+30+20+10=200,∴a=70,故答案为:153,70;(2)年用电量为2160千瓦时及以下执行基础电价,∴每月平均电量为2160÷12=180(千瓦时),从表中可知,200户中,能享受基础电价的户数为:28+42+70=140,∴该小区能享受基础电价的居民占全小区的百分比为:×100%=70%;(3)∵70%<85%,∴不能达到让85%的用户享受基础电价的目标,故该小区用电量较多,应该节约用电,例如离开天气不是太热或太冷时少开空调.20.解:(1)由图表可得:m==8,n=8.故答案为:8,7;(2)八年级学生的知识竞赛成绩更好,理由:八年级的中位数和众数高于七年级的中位数和众数,∴八年级学生的知识竞赛成绩更好;(3)1000×2×=1650(人),答:本次竞赛中成绩合格的人数为1650人.21.解:(1)82﹣84.75=﹣2.75,答:小丽数学成绩的离均差为﹣2.75;(2)①最高分为84.75+31.25=116(分),最低分为84.75﹣32.75=52(分),答:最高分为116分,最低分为52分;②10.25﹣8.75+31.25+15.25﹣3.75﹣12.75﹣10.75﹣32.75=﹣12,﹣12÷8+84.75=83.25(分),答:这组同学的平均分是83.25分;③该组最低分是52分,若达到72分,则增加20分,(﹣12+20)÷8=1,1+83.25=84.25(分),84.75﹣84.25=0.5(分),答:该组数学成绩的平均分没有达到班平均分,低0.5分.22.解:(1)甲班的平均分为:(85+91+88)÷3=88(分),乙班的平均分为:(90+84+87)÷3=87(分),∵88>87,∴甲班将获胜;(2)由题意可得,甲班的平均分为:=87.4(分),乙班的平均分为:=87.6(分),∵87.4<87.6,∴乙班将获胜.23.解:(1)a=10﹣2﹣3﹣3=2,乙班的平均数b=(95+70+80+90+70+80+95+80+100+90)=85(分),乙班成绩按顺序排列后第5个数是80,第6个数是90,所以中位数c=(80+90)=85(分),甲班的众数d=90(分),答:a=2,b=85,c=85,d=90;(2)小明可能是乙班的学生,理由如下:因为甲班的中位数是90分,乙班的中位数是85分,所以小明可能在乙班,故答案为:乙;(3)50×=15(人),答:估计乙班测验成绩超过90分的有15人.24.解:(1)由直方图可知,初中同学的测试成绩15个数据按从小到大的顺序排列,第8个数落在C组的第二个,∵初中同学的测试成绩在C组中的数据为:81,85,88,∴中位数a=85,∵高中同学的测试成绩:76,83,71,100,81,100,82,88,95,90,100,86,89,93,86.∴按从小到大排列是:71,76,81,82,83,86,86,88,89,90,93,95,100,100,100,∴众数b=100,极差c=100﹣71=29,故答案为:85,100,29;(2)根据以上数据,我认为高中的同学对冰雪项目的知识掌握更好.理由:两个校部的平均成绩一样,而高中校部的中位数、最高分、众数均高于初中校部,说明高中校部掌握的较好.故答案为:高中,两个校部的平均成绩一样,而高中校部的中位数、最高分、众数均高于初中校部,说明高中校部掌握的较好(答案不唯一);(3)2400×=960(人).答:此次测试成绩达到90分及以上的学生共有960人.。
人教版八年级数学下册《第二十章数据的分析》单元测试题(含答案)
第二十章数据的分析第Ⅰ卷(选择题共30分)一、选择题(每小题3分,共30分)1.若一组数据有8个数,它们的平均数为12,另一组数据有4个数,它们的平均数为18,则这12个数的平均数为( )A.12 B.13C.14 D.152.在学校演讲比赛中,10名选手成绩的折线统计图如图1所示,则这10名选手成绩的众数是( )图1A.95分 B.90分C.85分 D.80分3.在一次捐款活动中,某单位共有13人参加捐款,其中小王捐款数比13人捐款的平均数多2元,据此可知,下列说法错误的是( )A.小王的捐款数不可能最少B.小王的捐款数可能最多C.将捐款数按从少到多排列,小王的捐款数可能排在第十二位D.将捐款数按从少到多排列,小王的捐款数一定比第七名多4.图2是交警在一个路口统计的某个时段来往车辆的速度(单位:千米/时)情况,则这些车辆的车速的中位数(单位:千米/时)是( )图2A.51.5 B.52C.52.5 D.535.下列说法中,正确的有( )①在一组数据中,平均数越大,众数越大;②在一组数据中,众数越大,中位数越大;③在一组数据中,中位数越大,平均数越大;④在一组数据中,众数越大,平均数越大.A.0个 B.1个C.2个 D.3个6.在全国汉字听写大赛的热潮下,某学校进行了选拔赛,有15名学生进入了半决赛,他们的成绩各不相同,并且要按成绩取前8名进入决赛.小明只知道自己的成绩,他要判断自己能否进入决赛,可用下列哪个统计结果判断( )A.平均数 B.众数C.中位数 D.方差7.某学校教师分为四个植树小组参加植树节活动,其中三个小组植树的棵数分别为8,10,12,另一个小组的植树棵数与其他三组中的一组相同,且这四个数据的众数与平均数相等,则这四个数据的中位数是( )A.8 B.10C.12 D.10或128.某校合唱团有30名成员,下表是合唱团成员的年龄分布统计表.对于不同的x,下列关于年龄的统计量不会发生改变的是(年龄(岁)13141516频数515x 10-xA.平均数、中位数B.平均数、方差C.众数、中位数D.众数、方差9.学校广播站要招聘1名记者,小明、小亮和小丽报名参加了3项素质测试,成绩如下表.现在要计算3人的加权平均分,如果将采访写作、计算机和创意设计这三项的权的比由2∶3∶5变成5∶3∶2,那么成绩变化情况是( )采访写作计算机创意设计小明70分60分86分小亮90分75分51分小丽60分84分72分A.小明增加最多B.小亮增加最多C.小丽增加最多D.三人的成绩增加相同10.已知一组数据x1,x2,x3,x4,x5的平均数为8,方差为2,那么另一组数据4x1+1,4x2+1,4x3+1,4x4+1,4x5+1的平均数和方差分别为( )A.33与2B.8与2C.33与32D.8与33请将选择题答案填入下表:题号12345678910总分答案第Ⅱ卷(非选择题共70分)二、填空题(每小题3分,共18分)11.如图3是一次射击训练中甲、乙两人的10次射击成绩的分布情况,则射击成绩的方差较小的是________.(填“甲”或“乙”)图312.为了了解某班数学成绩情况,抽样调查了13份试卷成绩,结果如下:3个140分,4个135分,2个130分,2个120分,1个100分,1个80分.则这组数据的中位数为________分.13.国庆节期间,小李调查了“福美小区”10户家庭一周内使用环保袋的数量,数据如下(单位:只):6,5,7,8,7,5,8,10,5,9.据此,估计该小区2000户家庭一周内使用环保袋的数量为________只.14.已知一组数据-3,x,-2,3,1,6的中位数为1,则其方差为________.15.为选拔一名选手参加全国中学生游泳锦标赛自由泳比赛,某市四名中学生参加了男子100米自由泳训练,他们成绩的平均数x及方差s2如右表所示.如果选拔一名学生去参赛,应派________去.16.有5个从小到大排列的正整数,中位数是3,唯一的众数是6,则这5个数的和为________.三、解答题(共52分)(1)小谢家的小轿车每月(每月按30天计算)要行驶多少千米?(2)若每行驶100 km需汽油8 L,汽油每升3.45元,求出小谢家一年(按12个月计算)的汽油费用是多少元.18.(本小题6分)已知一组数据8,9,6,m的平均数与中位数相等,求m的值.19.(本小题6分)某商店3,4月份出售某一品牌各种规格的空调,销售台数如下表所示.根据表格回答问题:(1)商店出售的各种规格空调中,众数是多少?(2)假如你是经理,现要进货,6月份在有限的资金下将如何安排进货?20.(本小题6分)某公司欲聘请一位员工,三位应聘者A,B,C的原始评分(单位:分)如下表:(2)如果按仪表、工作经验、电脑操作、社交能力、工作效率的原始评分分别占10%,15%,20%,25%,30%综合评分,择优录取,应录取谁?为什么?21.(本小题6分)某高科技产品开发公司现有员工50名,所有员工的月工资情况如下表:(1)该公司“高级技工”有________名;(2)所有员工月工资的平均数x为2500元,中位数为________元,众数为________元;(3)小张到这家公司应聘普通工作人员.请你回答图4中小张的问题,并指出用(2)中的哪个数据向小张介绍员工的月工资实际水平更合理些;(4)去掉四个管理人员的工资后,请你计算出其他员工的月平均工资y(结果保留整数),并判断y能否反映该公司员工的月工资实际水平.图422.(本小题7分)某社区准备在甲、乙两位射箭爱好者中选出一人参加集训,两人各射了5箭,他们的总成绩(单位:环)相同,小宇根据他们的成绩绘制了尚不完整的统计图表,并计算了甲成绩的平均数和方差(见小宇的作业).图5甲、乙两人射箭成绩统计表小宇的作业:解:x 甲=15×(9+4+7+4+6)=6,s 甲2=15×[(9-6)2+(4-6)2+(7-6)2+(4-6)2+(6-6)2]=15×(9+4+1+4+0)=3.6.(1)a =________,x 乙=________.(2)请完成图中表示乙成绩变化情况的折线.(3)①观察统计图,可看出________的成绩比较稳定(填“甲”或“乙”),参照小宇的计算方法,计算乙成绩的方差,并验证你的判断;②请你从平均数和方差的角度分析,谁将被选中.23.(本小题7分)某班男生分成甲、乙两组进行引体向上的专项训练,已知甲组有6名男生,并对两组男生训练前、后引体向上的个数进行统计分析,得到乙组男生训练前、后引体向上的平均个数分别是6个和10个,以及下面不完整的统计表和统计图.甲组男生训练前、后引体向上个数统计表(单位:个)(1)a =________,b =________,c =________;(2)甲组训练后引体向上的平均个数比训练前增长了________%; (3)你认为哪组训练效果较好?并提供一个支持你观点的理由; (4)小明说他发现了一个错误:“乙组训练后引体向上个数不变的人数占到该组人数的50%,所以乙组的平均个数不可能提高4个之多.”你同意他的观点吗?请说明理由.图624.(本小题8分)为了迎接体育中考,九年级7班的体育老师对全班48名学生进行了一次体能模拟测试,得分均为整数,满分10分,成绩达到6分以上(包括6分)为合格,成绩达到9分以上(包括9分)为优秀,这次模拟测试中男、女生全部成绩分布的条形统计图如图7.(1) 平均数(分)方差 中位数(分)合格率 优秀率 男生 6.9 2.4 91.7% 16.7% 女生1.383.3%8.3%(2)男生说他们的合格率、优秀率均高于女生,所以他们的成绩好于女生,但女生不同意男生的说法,认为女生的成绩要好于男生,请你给出两条支持女生观点的理由;(3)体育老师说:“咱班的合格率基本达标,但优秀率太低,我们必须加强体育锻炼,两周后的目标是全班优秀率达到50%.”如果女生新增优秀人数恰好是男生新增优秀人数的两倍,那么男、女生分别新增多少优秀人数才能达到老师的目标?图7答案1.C 2.B 3.D 4.B 5.A 6.C 7.B 8.C 9.B 10.C 11.甲 12.135 13.14000 14.9 15.乙 16.1817.解:(1)由表中七天的数据可知,平均每天行驶的路程为:17×(46+39+36+50+54+91+34)=50(km),故小谢家的小轿车每月(每月按30天计算)要行驶50×30=1500(km). (2)小谢家一年的汽油费用为 1500×12100×8×3.45=4968(元). 18.解:①当m 为最大值时,排序为:m ,9,8,6, 根据题意,得m +9+8+64=9+82,解得m =11;②当m 为最小值时,排序为:9,8,6,m ,根据题意,得m +9+8+64=8+62,解得m =5;③当m 既不是最大值,也不是最小值时,排序为:9,8,m ,6或9,m ,8,6,根据题意,得m +9+8+64=8+m2,解得m =7. 综上可知,m 的值为5或7或11. 19.解:(1)众数为1.2匹.(2)通过观察可得:1.2匹的空调的销售量最大,所以要多进1.2匹的空调,由于资金有限,就要少进2匹的空调.20.解:(1)A 的平均分为15×(4+5+5+3+3)=4(分),B 的平均分为15×(4+3+3+5+4)=3.8(分),C 的平均分为15×(3+3+4+4+4)=3.6(分),因此应录取A.(2)应录取B.理由:根据题意,三人的综合评分如下: A 的综合评分为4×10%+5×15%+5×20%+3×25%+3×30%=3.8(分), B 的综合评分为4×10%+3×15%+3×20%+5×25%+4×30%=3.9(分), C 的综合评分为3×10%+3×15%+4×20%+4×25%+4×30%=3.75(分). 因此应录取B.21.解:(1)该公司“高级技工”的人数=50-1-3-2-3-24-1=16(名).故答案为16.(2)工资数从小到大排列,第25个和第26个分别是1600元和1800元,因而中位数是1700元; 在这些数中,1600元出现的次数最多,因而众数是1600元. 故答案为1700,1600.(3)这个经理的介绍不能反映该公司员工的月工资实际水平. 用1700元或1600元来介绍更合理些. (4)y =2500×50-21000-8400×346≈1713(元).y 能反映该公司员工的月工资实际水平.22.解:(1)4 6 (2)如图所示:(3)①观察统计图,可看出乙的成绩比较稳定;s 乙2=15×[(7-6)2+(5-6)2+(7-6)2+(4-6)2+(7-6)2]=1.6.因为s 乙2<s 甲2,所以上述判断正确.②因为两人成绩的平均水平(平均数)相同,根据方差得出乙的成绩比甲稳定,所以乙将被选中. 23.解:(1)a =(8+9+6+6+7+6)÷6=7, b =4,c =(6+7)÷2=6.5. (2)(7-4)÷4×100%=75%.(3)(答案合理即可)甲组训练效果较好.理由:因为甲组训练后的平均个数比训练前增长75%,乙组训练后的平均个数比训练前增长约67%, 甲组训练前、后平均个数的增长率大于乙组训练前后平均个数的增长率,所以甲组训练效果较好.(4)不同意.理由:因为乙组训练后的平均个数增加了50%×0+20%×7+20%×8+10%×10=4(个),所以我不同意小明的观点.24平均数(分)方差 中位数(分)合格率 优秀率 男生 6.9 2.4 7 91.7% 16.7% 女生71.3783.3%8.3%(2)从平均数上看,女生平均数高于男生;从方差上看,女生成绩的方差低于男生,波动性小(答案合理即可). (3)设男生新增优秀人数为x 人, 则2+4+x +2x =48×50%, 解得x =6, 故6×2=12.答:男生新增优秀人数为6人,女生新增优秀人数为12人.。
人教版八年级下册二十章《数据分析》单元测试卷
第二十章《数据分析》单元测试卷(检测范围:全章综合 时间:90分钟)一、选择题.1.数据5,7,8,8,9的众数是( ).A.5B.7C.8D.92.已知一组数据:-3,6,2,-1,0,4则这组数据的中位数是( ).A.1B. 34 C. 0 D.2 3.某中学数学兴趣小组12名成员的年龄情况如下:则这个小组成员年龄的平均数是( ).A. 15B. 13C. 13.5D. 144.已知3,5,7,x1,x ?的平均数是7,那么x 1,x 2的平均数为( ).A.20B.10C. 15D.45.数学老师对黄华的8次单元考试成绩进行统计分析,要判断黄华的数学成绩是否稳定,老师需要知道黄华这8次数学成绩的( )A. 平均数B.中位数C. 众数D.方差6.为了解某班学生每天使用零花钱的情况,随机调查了15名同学,结果如下表:下列说法正确的是( ).A.众数是5元B. 平均数是 2.5元C. 极差是4元D.中位数是3元7.在某校“我的中国梦”演讲比赛中,有9名学生参加比赛,他们决赛的最终成绩各不相同,其中的一名学生要想知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的 ( ).A. 众数B. 方差C. 平均数D. 中位数8.某市测得一周PM2.5的日均值(单位:微克/立方米)如下:31,30,34,35,36,34,31,对这组数据下列说法正确的是( ).A. 众数是 35B. 中位数是 34C. 平均数是 35D. 方差是 69.为了比较甲乙两种水稻苗谁出苗更整齐,每种苗各随机抽取50株,分别量出每株长度,发现两组苗的平均长度一样,甲、乙的方差分别是3.5、10.9,则下列说法正确的是( ).A. 甲苗出苗更整齐B. 乙苗出苗更整齐C. 甲、乙出苗一样整齐D. 无法确定甲、乙出苗谁更整齐10. 八(一)班班长统计去年1~8 月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是( ).A. 极差是47B. 众数是42C. 中位数是58D.每月阅读数量超过40的有4个月二、填空题.11. 一组数据:10,5,15,5,20,则这组数据的平均数是,中位数是.12.一名射击爱好者5次射击的中靶环数如下:6,7,9,8,9.这5个数据的众数是.13.学校以德智体三项成绩来计算学生的平均成绩,三项成绩的比例依次为1:3:1,小明德智体三项成绩分别为96分,95分,94分,则小明的平均成绩为分.14.一组数据1,4,6,x的中位数和平均数相等,则x的值是.15.某校抽样调查了七年级学生每天体育锻炼时间,整理数据后制成了如下所示的频数分布表:则这个样本的中位数在第组.16.已知一组数据:-1,x,0,1,-2的平均数是0,那么这组数据的方差是.17.10名九年级学生的体重分别是41,48,50,53,49,50,53,67,51,53(单位:kg).这组数据的极差是.18.某校对甲、乙两名跳高运动员的近期跳高成绩进行统计分析,结果如下:甲x=1.69m,x=1.69m,甲2S=0.0006,乙2S=0.0315,则这两名运动员中的的成绩更稳定.乙19.某校开展“节约每一滴水”活动,为了了解开展活动一个月以来节约月水的情况,从八年级的400名同学中选取20名同学统计了各自家庭一个月节约用水情况.见下表:请你估计这400名同学的家庭一个月节约用水的总量大约是.20.已知一组数据:x1,x2,x3,...,x n的平均数是2,方差是5,则另一组数据:3x1,3x2,3x3,...3x n 的方差是.三、解答题.21.某公司欲招聘一名工作人员,对甲、乙两位应聘者进行面试和笔试,他们的成绩(百分制)如下表所示.若公司分别赋予面试成绩和笔试成绩6和4的权,计算甲、乙两人各自的平均成绩,谁将被录取?22.甲、乙两位运动员进行射击比赛,各射击了10次,每次命中环数如下:甲:8,6,7,8,9,10,6,5,4,7乙:7,9,8,5,6,7,7,6,7,8(1)甲、乙运动员的平均成绩分别是多少?(2)这十次比赛成绩的方差分别是多少?(3)试分析这两名运动员的射击成绩.23.某公司销售部有营销人员15人,销售部为了制定某种商品的月销售定量,统计了15人某月的销售量,如下表所示:(1)求这15位营销人员该月销售量的平均数、中位数和众数;(2)假设销售部负责人把每位营销人员的月销售量定为320件,你认为是否合理?为什么?如不合理,请你制定一个较为合理的月销售定量,并说明理由·24.要从甲、乙两名同学中选出一名,代表班级参加射击比赛,如图是两人最近10次射击训练成绩的折线统计图.(1)已求得甲的平均成绩为8环,求乙的平均成绩;(2)观察图形,直接写出甲,乙射击成绩的方差甲2S,乙2S哪个大;(3)如果其他班级参赛选手的射击成绩都在7环左右,本班应该选参赛更合适;如果其他班级参赛选手的射击成绩都在9环左右,本班应该选参赛更合适.25.甲、乙两校参加市教育局举办的初中生英语口语竞赛,两校参赛人数相等.比赛结束后,发现学生成绩分别为7分、8分、9分、10分(满分为10分).依据统计数据绘制了如下尚不完整的统计图表.甲校成绩统计表图1 图2(1)请将甲校成绩统计表和图2的统计图补充完整;(2)经计算,乙校的平均分是8.3分,中位数是8分,请写出甲校的平均分、中位数;并从平均分和中位数的角度分析哪个学校成绩较好.26.某市团委举办“我的中国梦”为主题的知识竞赛,甲、乙两所学校参赛人数相等,比赛结束后,发现学生成绩分别为70分,80分,90分,100分,并根据统计数据绘制了如下不完整的统计图表:乙校成绩计表:(1)在图①中,“80分”所在扇形圆心角度数为.(2)请你将图②补充完整;(3)求乙校成绩的平均分;(4)经计算得甲2S=135,乙2S=175,请你根据这两个数据,对甲、乙两校成绩作出合理评价.四.思维发散,挑战自我.(选做)27.已知A组数据下:0,1,-2,-1,0,-1,3.(1)求A组数据的平均数;(2)从A组数据中选取5个数据,记这5个数据为B组数据.要求B组数据满足两个条件:①它的平均数与A组数据的平均数相等;②它的方差比A组数据的方差大.你选取的B组数据是.(写出具体解答步骤)。
人教版八年级数学下册第二十章《数据的分析》单元测试卷附答案
第二十章《数据的分析》单元测试卷(共23题,满分120分,考试用时90分钟)学校班级姓名学号一、选择题(共10小题,每小题3分,共30分)1.一组数据2,3,5,7,8的平均数是()A.2B.3C.4D.52.已知n个数据的和为108,平均数为12,则n为()A.7B.8C.9D.103.(跨学科融合)“青年大学习”是共青团中央为组织引导广大青少年,深入学习贯彻习近平新时代中国特色社会主义思想的青年学习行动.某校为了解同学们某季度学习“青年大学习”的情况,从中随机抽取5位同学,经统计他们的学习时间(单位:分钟)分别为78,80,85,90,80,则这组数据的众数为()A.78B.80C.85D.904.在以下一列数3,3,5,6,7,8中,中位数是()A.3B.5C.5.5D.65.现有相同个数的甲、乙两组数据,经计算得x甲=x乙,且s甲2=0.35,s乙2=0.25,比较这两组数据的稳定性,下列说法正确的是()A.甲比较稳定B.乙比较稳定C.甲、乙一样稳定D.无法确定6.八年级某同学6次数学小测验的成绩分别为80分,85分,95分,95分,95分,100分,则该同学这6次成绩的众数和中位数分别是()A.95分,95分B.95分,90分C.90分,95分D.95分,85分7.(跨学科融合)奥林匹克官方旗舰店统计了某一段时间内各款“冰墩墩”销售情况(如下表),厂家决定多生产20 cm高的“冰墩墩”,则依据的统计量是()A.平均数8.对于一组统计数据3,3,6,5,3,下列说法错误的是()A.众数是3B.平均数是4C.方差是1.6D.中位数是69.学校食堂午餐供应6元、8元和10元三种价格的盒饭,如图是食堂某月销售三种午餐盒饭数量的统计图,则该月食堂销售午餐盒饭的平均价格为()A.7.9元B.8元C.8.9元D.9.2元10.某市举行了一次数学竞赛,分段统计参赛同学的成绩,从中抽查了50名学生的成绩如下表:A.81分B.82分C.79分D.75.5分二、填空题(共5小题,每小题3分,共15分)11.冬天某地区一周最高气温的走势图如图所示,则这组数据的众数是℃.12.某班50人一次测验成绩(10分制)如下:10分4人,9分7人,8分14人,7分18人,6分5人,5分2人,则本次测验的中位数是分.13.学校组织“我的青春我做主”演讲比赛,小红演讲内容得100分,语言表达得80分,若按演讲内容占40%,语言表达占60%的比例计算总成绩,则她的总成绩是分.14.在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的(从“平均数、中位数、众数、方差”中选择答案).15.(创新题)某学校随机抽查了学生读课外书册数的情况,绘制成条形图和不完整的扇形图(如图),其中条形图被墨迹遮盖了一部分,则被调查的学生读课外书册数的中位数为.三、解答题(一)(共3小题,每小题8分,共24分)16.某饮料店为了解某一种罐装饮料上半年的销售情况,随机调查了6天该种饮料的日销售量,结果如下(单位:听):33,32,28,32,24,31.求这6天的日销售量的众数和平均数.17.在一次大学生一年级新生训练射击比赛中,某小组10人的成绩如下表:(1)该小组射击数据的众数是,中位数是;(2)该小组的平均成绩为多少?18.在校体育集训队中,跳高运动员小军和小明的9次成绩如下(单位:m):小军:1.41,1.42,1.42,1.43,1.43,1.43,1.44,1.44,1.45;。
初中数学八年级下册第二十章数据的分析单元检测练习试题一(含答案) (119)
初中数学八年级下册第二十章数据的分析单元检测练习试题一(含答案)某超市出售甲、乙、丙三种糖果,其售价分别为5元/千克,12元/千克,20元/千克,为满足客多样化需求,超市打算把糖果混合成杂拌糖出售,如果按照如图所示的扇形统计图中甲、乙、丙三种糖果的比例混合,这种新混合的杂排糖的售价应该为多少元/千克?【答案】这种新混合的杂排糖的售价应该为10.1元/千克.【解析】【分析】由扇形统计图中可以得到甲、乙、丙三种糖果所占的比例,然后根据加权平均数的计算方法求出结果即可.【详解】丙对应的百分比为1-50%-30%=20%∴这种新混合物的杂拌糖的售价应该为5×50%+12×30%+20×20%=10.1(元/千克)答:这种新混合的杂排糖的售价应该为10.1元/千克.【点睛】考查扇形统计图的特征、加权平均数的计算方法,明确和理解加权平均数中“权”是正确解答的前提.62.最近几年,某市持续大面积雾霾天气让环保和健康问题成为焦点,为了调查学生对雾霾天气知识的了解程度,某校在全校学生中抽取400名同学做了一次调查,调查结果共分为四个等组A .非常了解;B .比较了解;C .基本了解;D .不了解根据调查统计结果,绘制了不完整的三种统计图表. 对雾霾天气了解程度的条形统计图对雾霾天气了解程度的扇形统计图对雾霾天气了解程度的统计表图1图2对雾霾的了解程度百分比A .非常了解 5%B .比较了解m C .基本了解45%D .不了解n请结合统计图表,回答下列问题:(1)本次参与调查的学生选择“A .非常了解”的人数为__________人,m=__________,n=__________;(2)请在图1中补全条形统计图;(3)请计算在图2所示的扇形统计图中,D部分扇形所对应的圆心角是多少度?【答案】(1)20;15%;35%;(2)补图见解析;(3)126°.【解析】试题分析:(1)非常了解的人数=总人数×非常了解的人数占总人数的百分比=400×5%=20人;m=比较了解的人数÷总人数=60÷400=0.15=15%;n=1-5%-45%-15%=35%;(2)不了解的人数=总人数×不了解的人数占总人数的百分比=400×35%=140人,补全条形图即可;(3)D部分扇形所对应的圆心角=360°×不了解人数占总人数的百分比=360°×35%=126°.试题解析:(1)20;15%;35%;(2)∵D等级的人数为:400×35%=140,∴补全条形统计图如图所示:对雾霾天气了解程度的条形统计图(3)D部分扇形所对应的圆心角:360°×35%=126°.点睛:掌握统计图相关概念与计算方法.63.某政府部门进行公务员招聘考试,其中三人中录取一人,他们的成绩如下:(1)按照平均成绩甲、乙、丙谁应被录取?(2)若按照文化课知识、面试、平时表现的成绩已4:3:1的比例录取,甲、乙、丙谁应被录取?【答案】(1)甲的平均数=73,乙的平均数=68 丙的平均数=68∴甲被录取;(2)甲的成绩=69.625,乙的成绩=76.625,丙的成绩=68.875,∴乙被录取.【解析】【分析】(1)根据算术平均数的计算方法分别求出三人的平均分,然后作出判断即可;(2)根据加权平均数的计算方法分别求出三人的平均分,然后作出判断即可.【详解】解:(1)甲:11⨯++=⨯=,(745887)2197333乙:11(877443)20468⨯++=⨯=,33丙:11(697065)20468⨯++=⨯=,33∵73分最高,∴应该录取甲;(2)甲:11⨯⨯+⨯+⨯=⨯=,(744583871)55769.62588乙:11(874743431)61376.625⨯⨯+⨯+⨯=⨯=,88丙:11⨯⨯+⨯+⨯=⨯=,(694703651)55168.87588∵76.625分最高,∴应该录取乙.【点睛】本题考查的是加权平均数的求法与算术平均数的求法,是基础题,需熟练掌握.64.我市某中学对学校倡导的“压岁钱捐款活动”进行抽样调查,得到一组学生捐款的数据,下图是根据这组数据绘制的统计图,图中从左到右长方形的高度之比为2:4:5:8:6.又知此次调查中捐款20元和25元的学生一共28人.(1)他们一共调查了多少学生?(2)写出这组数据的中位数、众数;(3)若该校共有2000名学生,估计全校学生大约捐款多少元?【答案】(1)50人(2)20,20(3)34800 【解析】【分析】(1)根据捐款20元和25与的学生一共是28人及这两组所占的总人数比例可求出总人数;(2)众数即人数最多的捐款数,中位数要找到从小到大排列位于中间的数据;(3)首先计算平均捐款数,再进一步估计总体平均捐款数,从而计算全校捐款数.【详解】(1)(1)28÷8624586+++++=50(名),所以一共调查了50名学生;(2)设捐款20元和25元的学生分别有8x 人和6x 人. 则有:8x+6x=28, ∴x=25个组的人数分别为4,8,10,16,12, ∴这组数据的中位数是20元,众数是20元; (3)平均每个学生捐款的数量是:150(5×4+10×8+15×10+20×16+25×12)=17.4(元), 17.4×2000=34800(元), 所以全校学生大约捐款34800元.【点睛】本题考查了统计图、用样本估计总体、中位数、众数等,考查了利用频数分布直方图以及利用频数分布直方图获取信息的能力,解答本题的关键是理解众数、中位数的概念,能够根据部分所占的百分比计算总体,能够用样本平均数估计总体平均数.65.个体户王某经营一家饭馆,下面是饭馆所有工作人员在某个月份的工资;王某3000元,厨师甲450元,厨师乙400元,杂工320元,招待甲350元,招待乙320元,会计410元.()1计算工作人员的平均工资;()2计算出的平均工作能否反映帮工人员这个月收入的一般水平?()3去掉王某的工资后,再计算平均工资;()4后一个平均工资能代表一般帮工人员的收入吗?()5根据以上计算,从统计的观点看,你对()()34的结果有什么看法?【答案】()1工作人员的平均工资是750元;()2不能反映工作人员这个月的月收入的一般水平;()3去掉王某的工资后,他们的平均工资是375元;()4能代表一般工作人员的收入;()5个别特殊值对平均数具有很大的影响.【解析】试题分析:(1)根据算术平均数的计算公式进行计算即可;(2)根据(1)得出的数据和实际情况进行分析即可;(3)去掉王某的工资,再根据算术平均数的计算公式进行计算即可得出答案;(4)根据(3)得出的数据再结合实际情况进行分析即可;(5)通过对(2)和(4)得出的数据,再结合实际进行分析即可.试题解析:()1根据题意得:()++++++÷=元),30004504003203503204107750(答:工作人员的平均工资是750元;()2因为工作人员的工资都低于平均水平,所以不能反映工作人员这个月的月收入的一般水平.()3根据题意得:()+++++÷=元),4504003203503204106375(答:去掉王某的工资后,他们的平均工资是375元;()4由于该平均数接近于工作人员的月工资收入,故能代表一般工作人员的收入;()5从本题的计算中可以看出,个别特殊值对平均数具有很大的影响.点睛:此题考查了平均数,熟记平均数的计算公式是解决本题的关键,根据求出的数据再结合实际进行分析.66.某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果当天卖不完,剩下的玫瑰花作垃圾处理.(1)若花店一天购进16枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n是自然数)的函数解析式;(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:①这100个日需求量所组成的一组数据的中位数和众数分别是________,________;②以100天记录的各需求量的频率作为计算平均一天需求量对应的权重.若花店计划一天购进16枝或17枝玫瑰花,从盈利的角度分析,你认为应购进16枝还是17枝?请说明理由.【答案】(1)见解析(2)①17枝,15枝②17 【解析】 【分析】(1)分两种情况依据“利润=售价-进价”列出解析式即可; (2)①根据中位数和众数的定义求出即可;②求出进17枝时当天的利润,与购进16枝玫瑰花时当天的利润比较,即可得到结论.【详解】(1)当16n ≤时,55(16)1080y n n n =--=- 当16n >时80y =(2)①这100个日需求量所组成的一组数据的中位数和众数分别是17枝,15枝;②∵把100天记录的各需求量的频率作为平均一天需求量是对称权重 ∴当需求量为16时∴10.1600.2700.78076w =⨯+⨯+⨯= 当需求量为17时当17n ≤时55(17)1085y n n n =--=- 当17n >时85y =∴20.1550.2650.16750.548576.4w =⨯+⨯+⨯+⨯= ∴21w w > ∴应购进17枝 【点睛】本题考查了列函数关系式以及求一组数据的中位数和众数,熟练掌握它们的定义是解题关键.67.某单位共有280位员工参加了社会公益捐款活动,从中任意抽取了12位员工的捐款数额,记录如下:估计该单位的捐款总额.【答案】17500元.【解析】【分析】先计算出样本平均数,再估计该单位的捐款总额即可.【详解】这12位员工的捐款数额平均数为1x=⨯+⨯+⨯+⨯=(元)(3025058031002)62.512以x作为所有员工捐款的平均数,由此估计该单位的捐款总额约为62.5×280=17500(元)所以估计该单位的捐款总额约为17500元.【点睛】此题主要考查了用样本平均数估计总体,熟练掌握平均数的计算是解答此题的关键.68.随机抽取某市一年(以365天计)中的30天的日平均气温状况统计如下:温度(C ︒)请根据上述数据回答下列问题:(1)估计该城市年平均气温大约是多少?(2)上表中的温度数据的中位数是_______众数是_________; (3)计算该城市一年中约有几天的日平均气温为26C ︒?【答案】(1)该城市年平均气温大约是20.8C ︒;(2)22;22;(3)该城市一年中约有73天的日平均气温为26C ︒.【解析】 【分析】(1)由样本平均数估算总体平均数,该城市年平均气温即为该组数据的平均数;(2)根据中位数的定义可知该组数据的中位数是第15、16个数的平均数,然后代入计算即可,众数即出现次数最多的数;(2)用365乘以日平均气温是26C ︒的天数所占的百分比即可. 【详解】(1)由题意,得年平均气温为10314518522726630232220.830⨯+⨯+⨯+⨯+⨯+⨯+⨯=C ︒(2)该组数据的中位数是第15、16个数的平均数,为2222222+= 众数是22;(3)该城市一年中日平均气温为26C ︒约为63657330⨯=天. 【点睛】此题考查了平均数、中位数、众数的意义,也考查了利用样本估计总体的思想.69.某校举行全市读书活动月演讲比赛的选拔赛,根据选拔赛成绩拟从小红和小王两位同学中推选1人参加全市的总决赛,两人的选拔赛成绩如下(单位:分):(1)若要按形象占40%,主题占10%,普通话占20%,演讲技巧占30%计算总分,哪位选手将胜出?(2)评委们已算出小红和小王同学的形象、主题、普通话、演讲技巧四项成绩的平均分都是80分,小红的成绩方差为237.5S=小红,请你计算小王成绩的方差,并说明若要选派各方面素质均衡的选手参赛,哪位选手将胜出?【答案】(1)小王获胜;(2)小红胜出. 【解析】 【分析】(1)利用加权平均数的计算方法计算出小红和小王的成绩,然后比较大小即可判断;(2)利用方差公式计算出小王成绩的方差,然后根据方差的意义,通过比较方差的大小进行判断.【详解】解:(1)小红:8540%7010%8020%8530%825⨯+⨯⨯⨯=++.(分),小王:9540%7010%7520%8030%84⨯⨯⨯⨯=+++(分), 答:小王获胜.(2)222221(9580)(7080)(7580)(8080)4S ⎡⎤=-+-+-+-⎣⎦小红, 答:小红胜出. 【点睛】本题考查了方差:一般地设n 个数据,x 1,x 2,…x n 的平均数为x ,则方差S 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.也考查了中位数和众数.70.莒县宏大出租公司的王师傅在周日下午的营运全是在东西走向的银杏大道上进行的,如果规定向东为正,向西为负,他这天下午行车里程(单位:千米)如下: +14,-13,+7,—9,-8,+11,-4,-4,+13,+4(1)王师傅这天最后到达目的地时,距离下午出车时的出发地多远? (2)王师傅这天下午共行车多少千米?(3)若每千米耗油0.1升,则这天下午王师傅用了多少升汽油?【答案】(1)+11;(2)87 千米;(3)耗油:8.7升.【解析】(1)(2)根据有理数加法列出算式,然后按照运算的法则进行即可;(3)根据单位耗油乘以行使路程可得答案.解:(1)(+14)+(-13)+(+7)+(-9)+(-8)+(+11)+(-4)+(-4)+(+13)+(+4)=14-13+7-9-8+11-4-4+13+4=+11,(2)王先生开车行走的路程是:|+14|+|-13|+|+7|+|-9|+|-8|+|+11|+|-4|+ |-4|+|+13|+|4|= 14+13+7+9+8+11+4+4+13+4=87 千米(3)耗油:87×0.1=8.7升.“点睛”本题考察查了正数和负数,利用有理数的加法是解题的关键.。
人教版八年级下册数学第二十章《数据的分析》单元检测试卷(含答案)
第二十章《数据的分析》单元测试卷.一、单选题(每题3分,共30分)1.一组数据:5,7,10,5,7,5,6,这组数据的众数和中位数分别( )A.10和7B.5和7C.6和7D.5和62.一城市准备选购一千株高度大约为2m的某种风景树来进行街道绿化,•有四个苗圃生产基地投标(单株树的价格都一样).•采购小组从四个苗圃中都任意抽查了20株树苗的高度,得到的数据如下:请你帮采购小组出谋划策,应选购()A.甲苗圃的树苗 B.乙苗圃的树苗;C.丙苗圃的树苗 D.丁苗圃的树苗3. 为了解游客在十渡、周口店北京人遗址博物馆、圣莲山和石花洞这四个风景区旅游的满意率,数学小组的同学商议了几个收集数据的方案:方案一:在多家旅游公司调查 400 名导游;方案二:在十渡风景区调查 400 名游客;方案三:在云居寺风景区调查 400名游客;方案四:在上述四个景区各调查 100 名游客.在这四个收集数据的方案中,最合理的是 ( )A. 方案一B. 方案二C. 方案三D. 方案四4. 下列调查中,调查方式选择合理的是( )A. 为了了解某一品牌家具的甲醛含量,选择全面调查;B. 为了了解神州飞船的设备零件的质量情况,选择抽样调查;第1 页共10 页C. 为了了解某公园全年的游客流量,选择抽样调查;D. 为了了解一批袋装食品是否含有防腐剂,选择全面调查.5. 某地区有 38 所中学,其中七年级学生共 6858 名.为了了解该地区七年级学生每天体育锻炼的时间,请你运用所学的统计知识,将解决上述问题所要经历的几个主要步骤进行排序.①抽样调查;②设计调查问卷;③用样本估计总体;④整理数据;⑤分析数据.其中正确的是( )A. ①②③④⑤B. ②①③④⑤C. ②①④③⑤D. ②①④⑤③6. 学校准备从甲、乙、丙、丁四个科创小组中选出一组代表学校参加青少年科技创新大赛,各组的平时成绩的平均数(单位:分)及方差如表所示:如果要选出一个成绩较好且状态稳定的组去参赛,那么应选的组是( )A. 甲B. 乙C. 丙D. 丁7. 甲、乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字的个数统计结果如下表.某同学分析上表后得出如下结论:①甲、乙两班学生成绩平均水平相同;②乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字≥150个为优秀);③甲班成绩的波动比乙班大.上述结论正确的是()A. ①②③B. ①C. ③D. ②③8. 有一组数据如下:3,a,4,6,7,它们的平均数是5,那么这组数据的方差是()第2 页共10 页A. 10C. 29.在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的( )A.众数B.方差C.平均数D.中位数10.某“中学生暑期环保小组”的同学,随机调查了“幸福小区”10户家庭一周内使用环保方便袋的数量,数据如下(单位:只):6,5,7,8,7,5,8,10,5,9.利用上述数据估计该小区2000户家庭一周内需要环保方便袋约( )A.2000只B.14000只C.21000只D.98000只二、填空题(每题3分,共12分)11.如图3是一次射击训练中甲、乙两人的10次射击成绩的分布情况,则射击成绩的方差较小的是________.(填“甲”或“乙”)图312.为了了解某班数学成绩情况,抽样调查了13份试卷成绩,结果如下:3个140分,4个135分,2个130分,2个120分,1个100分,1个80分.则这组数据的中位数为________分.13.国庆节期间,小李调查了“福美小区”10户家庭一周内使用环保袋的数量,数据如下(单位:只):6,5,7,8,7,5,8,10,5,9.据此,估计该小区2000户家庭一周内使用环保袋的数量为________只.14.已知一组数据-3,x,-2,3,1,6的中位数为1,则其方差为________.第3 页共10 页。
初中数学八年级下册第二十章数据的分析单元检测练习试题一(含答案) (130)
初中数学八年级下册第二十章数据的分析单元检测练习试题一(含答案)为提升学生的数学素养,某学校开展了“数学素养”竞赛活动.九年级1200名学生参加了竞赛,结果所有学生成绩都不低于60分(满分100分).为了了解成绩分布情况,学校随机抽取了部分学生的成绩进行统计,得到如下不完整的统计表,根据表中所给信息,解答下列问题:()1表中a=___ _ _ ,b=_;()2这组数据的中位数落在_____ _范围内;()3若成绩不小于80分为优秀,请估计九年级大约有多少名学生获得优秀成绩?()4竞赛中有这样一道题目:如图,有两个转盘,、在每个转盘各自的两A B个扇形区域中分别标有数字1,2,分别转动转盘,、当转盘停止转动时,若A B事件“指针都落在标有数字1的扇形区域内”概率是1,则转盘B中标有数字1的9扇形的圆心角的度数是.【答案】()120a =,0.2b =; ()2中位数在7080x ≤<内; ()3360名;()480︒ 【解析】 【分析】(1)先根据6070x ≤<组求出样本数为50名学生,四个分组的人数和就是50,即可求出a 的值;根据已知8090x ≤<的频数和样本数即可求出b ;(2)根据中位数的概念即可求出答案;(3)根据样本中成绩不小于80分为优秀的频率即可估计总体中成绩不小于80分的学生人数;(4)先根据题意求出转盘B 中指针落在标有数字1的扇形区域内的概率,再根据圆周角等于360︒计算即可.【详解】解:(1)调查学生总数:150.350÷=(名),7080x ≤<的频数:501510520---=,即20a =, 8090x ≤<的频率:10500.2÷=,即0.2b =,故答案为:20,0.2.(2)共50名学生,中位数落在“7080x ≤<”范围内. (3)调查学生中,成绩不小于80分的频率:0.20.10.3+=,所以根据样本估计总体,九年级获得优秀成绩的学生人数:12000.3360⨯=(名),即九年级大约有360名学生获得优秀成绩.(4)设转盘B中指针落在标有数字1的扇形区域内的概率为x,根据题意得:11x=,29解得2x=,9所以转盘B中指针落在标有数字1的扇形的圆心角的度数为:2︒⨯=︒.360809故答案为:80︒.【点睛】本题考查了数据的分析与整理及事件的概率等知识点,熟练掌握基本概念如中位数、频率及事件概率的求法是解题的关键.92.为了了解市民“获取新闻的最主要途径”,某市记者开展了一次抽样调查,根据调查结果绘制了如下尚不完整的统计图.根据以上信息解答下列问题:(1)这次抽样调查的样本容量是;(2)通过“电视”了解新闻的人数占被调查人数的百分比为;扇形统计图中,“手机上网”所对应的圆心角的度数是;(3)请补全条形统计图;(4)若该市约有70万人,请你估计其中将“电脑和手机上网”作为“获取新闻的最主要途径”的总人数.【答案】(1)1000;(2)15%144°;(3)补全条形统计图见解析;(4)将“电脑和手机上网”作为“获取新闻的最主要途径”的总人数462000人.【解析】试题分析: (1)根据“电脑上网”的人数和所占的百分比求出总人数;(2)用“电视”的数量除以总数求出所占的百分比,用“手机上网”所占的百分比乘以360°,即可得出答案;(3)用总人数乘以“报纸”所占百分比,求出“报纸”的人数,从而补全统计图;(4)用全市的总人数乘以“电脑和手机上网”所占的百分比,即可得出答案.试题解析:(1)这次接受调查的市民总人数是:260÷26%=1000(2)扇形统计图中,通过“电视”了解新闻的人数占被调查人数的百分比为:1501000=15%, 4003601000⨯︒=144°;(3)“报纸”的人数为:1000×10%=100. 补全图形如图所示:(4)估计将“电脑和手机上网”作为“获取新闻的最主要途径”的总人数为:70×(26%+40%)=70×66%=46.2(万人).∴将“电脑和手机上网”作为“获取新闻的最主要途径”的总人数为462000人.93.我区某中学开展“社会主义核心价值观”演讲比赛活动,九(1)、九(2)班根据初赛成绩各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩(满分为100分)如图所示.根据图中数据解决下列问题:(1)九(1)班复赛成绩的中位数是分,九(2)班复赛成绩的众数是分;(2)小明同学已经算出了九(1)班复赛的平均成绩1x=85分;方差[(85﹣85)2+(75﹣85)2+(80﹣85)2+(85﹣85)2+(100 S2=15﹣85)2]=70(分2),请你求出九(2)班复赛的平均成绩x2和方差S22;(3)根据(2)中计算结果,分析哪个班级的复赛成绩较好?【答案】(1)85,100;(2)85,160;(3)九(1)班的成绩比较稳定,理由见解析【解析】【分析】(1)利用统计图得到九(1)、九(2)班选手的得分,再根据中位数和众数的概念即可得出(2)利用统计图得到九(2)班的选手的得分,然后利用平均数的计算方法和方差公式计算九(2)班复赛的平均成绩和方差;(2)利用方差的意义进行判断【详解】解:(1)九(1)班复赛成绩的中位数是85分,九(2)班复赛成绩的众数是100分;故答案为:85,100;(2)九(2)班的选手的得分分别为70,100,100,75,80,所以九(2)班成绩的平均数=(70+100+100+75+80)=85,九(2)班的方差S22=[(70﹣85)2+(100﹣85)2+(100﹣85)2+(75﹣85)2+(80﹣85)2]=160;(3)平均数一样的情况下,九(1)班方差小,所以九(1)班的成绩比较稳定.【点睛】本题考查了平均数和方差,熟练掌握计算方法是解题的关键94.某学校规定:学生的学期总评成绩由三部分组成:平时作业、期中测验、期末测验,并分别按50%、20%、30%的比例计入学期总评成绩.小明同学的平时作业、期中测验、期末测验的数学成绩依次是98分、80分、90分,这学期小明的数学总评成绩是多少?【答案】92分 【解析】 【分析】根据加权平均数的计算公式列式进行计算即可求得. 【详解】 由题意得:9850%8020%9030%50%20%30%⨯+⨯+⨯++=92(分),答:这学期小明的数学总评成绩是92分. 【点睛】本题考查了加权平均数的应用,正确理解题意,熟练应用加权平均数的公式是解题的关键.95.河南某校招聘干部一名 ,对A 、B 、C 三人进行素质测试,他们各项成绩如下表:将语言、综合知识、创新和处理问题能力按测试成绩20%、30%、30%、20%比例计算,谁将被录用?【答案】A将被录用.【解析】【分析】按各项所占百分数求出A、B、C三人的测试成绩,再进行比较即可.【详解】⨯+⨯+⨯+⨯=A的测试成绩为8520%9030%9530%9520%91.5⨯+⨯+⨯+⨯=B的测试成绩为9520%8530%9530%9020%91C的测试成绩为9020%9530%8530%9520%91⨯+⨯+⨯+⨯=>=,所以A将被录用.因为91.59191【点睛】本题主要考查了加权平均数的计算,解题关键是正确理解题目含义.96.九年级(1)班的小华和小红两名学生10次数学测试成绩如下表(表Ⅰ)所示:现根据上表数据进行统计得到下表(表Ⅱ):(1)填空:根据表Ⅰ的数据完成表Ⅱ中所缺的数据; (2)老师计算了小红的方差()()()2221908060801008020010⎡⎤⨯-+⨯-+-=⎣⎦43请你计算小华的方差并说明哪名学生的成绩较为稳定. 【答案】(1)80,85;(2)120,小华 【解析】 【分析】(1)根据表Ⅰ分别计算填入;(2)根据方差公式计算小华的方差,再与小红的方差比较,即可得到答案. 【详解】 解:(1)(2)小华的方差=222212908027080(6080)1008012010,∵200>120, ∴小华成绩稳定. 【点睛】此题考查数据的统计与计算,熟练掌握平均数、中位数、众数、方差的计算方法即可正确解答.97.某学校从甲、乙两名班主任中选拔一名参加教育局组织的班主任技能比赛,选拔内容分案例分析、班会设计、情景问答三个项目,选拔比赛结束后,统计的这两位班主任成绩并制成了如图所示的条形统计图:(1)乙班主任三个项目的成绩中位数是______________________;(2)用6张相同的卡片分别写上甲、乙两名班主任的六项成绩,洗匀后,从中任意抽取一张,求抽到的卡片写有“80”的概率;(3)若按照图2所示的权重比进行计算,选拔分数最高的一名班主任参加比赛,应确定哪名班主任获得参赛资格,说明理由.;(3)甲教师获得参赛资格.【答案】(1)80;(2)13【解析】【分析】(1)直接从三个数据中找到中位数即可;(2)利用概率公式求解即可;(3)分别按照不同的权,利用加权平均数求解即可.【详解】解:(1)乙班主任的得分排序为:75,80,82,中位数为80;(2)六张卡片中写着80的共两张,因此P(抽到的卡片写有80)21==;63⨯+⨯+⨯=(分);(3)甲教师得分:7230%8060%8510%78.1⨯+⨯+⨯=(分)乙教师的得分:8030%7560%8210%77.2>,∵78.177.2∴甲教师获得参赛资格.【点睛】本题考查了概率公式等知识,解题的关键是从统计图中整理出进一步解题的有关信息,难度不大.98.2016年3月1日,某园林公司派出一批工人去完成种植2200棵景观树木的任务,这批工人3月1日到5日种植的数量(单位:棵)如图所示.(1)这批工人前两天平均每天种植多少棵景观树木?(2)因业务需要,到3月10日必须完成种植任务,你认为该园林公司是否需要增派工人?请运用统计知识说明理由.【答案】(1)220;(2)207.【解析】试题分析:(1)计算平均数.(2)利用前5填的平均数估算总工作量.试题解析:+=220(棵).解:(1)2232172答:这批工人前两天平均每天种植220棵景观树木.++++(2)这批工人前五天平均每天种植的树木为:2232171981952025=207(棵).估计到3月10日,这批工人可种植树木2070棵,由于2070<2200,所以我认为公司还需增派工人.99.在3月22日的“世界水资源保护日”当天,我县某校开展“节约用水,从你我做起”的宣传活动,小明利用课余时间对他所居住小区100户居民2月份的用水量进行调查,情况如下表请根据表中的数据,求这100户居民2月份用水量的众数、中位数和平均数.【答案】10,10,10.3.【解析】【分析】众数是一组数据中出现次数最多的数据;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数,根据定义可求解;根据加权平均数的定义求其平均数.【详解】解:数据10出现次数最多,所以用水量的众数是10(m3);位置处于中间的数是第50个和第51个,都是10,故中位数是10 m3;用水量的平均数=1(9×20+10×40+11×30+12×10)=10.3(m3).100答:这100户居民2月份用水量的众数、中位数和平均数分别为10 m3,10 m3,10.3 m3.【点睛】此题主要考查了统计表,扇形统计图,平均数,中位数与众数,关键是看懂统计表,从统计表中获取必要的信息,熟练掌握平均数,中位数与众数的计算方法.100.树叶有关的问题如图,一片树叶的长是指沿叶脉方向量出的最长部分的长度(不含叶柄),树叶的宽是指沿与主叶脉垂直方向量出的最宽处的长度,树叶的长宽比是指树叶的长与树叶的宽的比值。
【3套试卷】人教版八年级数学下册第二十章 数据的分析单元测试题含答案
人教版八年级数学下册第二十章数据的分析单元测试题含答案一、选择题(本大题共6小题,每小题5分,共30分;在每小题列出的四个选项中,只有一项符合题意)1.一组数据2,6,5,5,2,3的中位数是( )A.5 B.4 C.2 D.2或52.下列说法正确的是( )A.方差反映了一组数据的离散或波动的程度B.数据1,5,3,7,10的中位数是3C.任何一组数据的平均数和众数都不相等D.中位数一定是原数据中的某个数3.10支不同型号的签字笔的相关信息如下表所示,则这10支签字笔的平均单价是( )A.1.4元/支 B.1.5元/支C.1.6元/支 D.1.7元/支4.某单位若干名职工参加普法知识竞赛,将成绩制成如图1所示的扇形统计图和条形统计图,根据图中提供的信息,这些职工成绩的中位数和平均数分别是( )图1A.94分,96分 B.96分,96分C.94分,96.4分 D.96分,96.4分5.李华根据演讲比赛中九位评委所给的分数制作了如下表格:若要去掉一个最高分和一个最低分,则表中数据一定不发生变化的是( )A.平均数 B.众数C.方差 D.中位数6.下表是某校合唱团成员的年龄分布情况:对于不同的x,下列关于年龄的统计量不会发生改变的是( )A.平均数、中位数 B.众数、中位数C.平均数、方差 D.中位数、方差二、填空题(本大题共6小题,每小题5分,共30分)7.商店想调查哪种品牌的空调销售量大,用________来描述较好;想知道总体盈利的情况用________来描述较好.某同学的身高在全班45人中排名第23,则他的身高值可看作是全班同学身高值的________.(填“中位数”“众数”或“平均数”)8.甲、乙两班各有45人,某次数学考试成绩的中位数分别是88分和90分,若90分及90分以上为优秀,则优秀人数多的班级是________.9.某中学九年级舞蹈兴趣小组8名学生的身高(单位:cm)分别为:168,165,168,166,170,170,176,170.有如下说法:①这8名学生身高的众数是170 cm;②这8名学生身高的中位数是169 cm;③这8名学生身高的平均数是169 cm.其中正确的是________.(填序号)10.某商城新进一批规定直径为100 mm的机器零件,为检验零件的直径是否合格,抽取了12个进行检验,测得直径(单位:mm)如下:99,100,98,100,100,103,99,100,102,99,100,100.按规定,若方差大于1,则这批零件就不合格,商城可以退货.根据抽测结果,商城是否可以退货?________.(填“可以”或“不可以”)11.某学校把学生的笔试测试、实践能力两项成绩分别按60%,40%的比例计入学期总成绩.小明实践能力这一项成绩是81分,若想学期总成绩不低于90分,则笔试测试的成绩至少是________分.12.自然数4,5,5,x ,y 按从小到大的顺序排列后,其中位数...为4,如果这组数据唯.一.的众数是5,那么,所有满足条件的x ,y 中,x +y 的最大值是________. 三、解答题(本大题共3小题,共40分)13.(12分)新华机械厂有15名工人,某月这15名工人加工的零件数统计如下:(1)求这15名工人该月加工的零件数的平均数、中位数和众数;(2)假如部门负责人把平均数定为每名工人每月加工零件的任务,你认为是否合理?为什么?如果不合理,你认为定为多少比较合适?14.(14分)为选拔两名运动员参加即将举行的十米跳台比赛,教练对甲、乙、丙、丁四名运动员十米跳台技能进行了跟踪测试,连续记录了最近五次的测试成绩(按10分制记分)如下表所示:(1)填写下表:(2)如果你是教练,你将挑选哪两名运动员参加比赛?并叙述理由(至少两条).15.(14分)为了解某校学生的身高情况,随机抽取该校男生、女生进行抽样调查.已知抽取的样本中,男生、女生人数相同,利用所得数据绘制成如下所示的统计图表:身高情况分组表(单位:cm)图2根据图表提供的信息,回答下列问题:(1)样本中,男生身高的众数在________组,中位数在________组;(2)样本中,女生身高在E组的人数为________;(3)已知该校共有男生400人、女生380人,请估计身高在160 cm≤x<170 cm之间的学生有多少人.详解详析1.[解析] B 求中位数时要先将数据排序.求得的中位数不一定是原数据中的数.原数据从小到大排序是2,2,3,5,5,6.位于中间位置的两个数3,5的平均数是4,即这组数据的中位数是4.故选B.2.[答案] A 3.[答案] C4.[解析] D 先求出共调查了60人,得分为94分的有12人,得分为98分的有18人,通过计算可知,中位数是96分,平均数为96.4分,故应选D.5.[解析] D 去掉最高分和最低分后,不发生变化的是中位数,应选D. 6.[解析] B 这个合唱团共有30人,年龄的众数和中位数都是14岁,故选B. 7.[答案] 众数 平均数 中位数 8.[答案] 乙班 9.[答案] ①②[解析] 通过计算可知,这8名学生身高的众数是170 cm ,中位数是169 cm ,平均数不是169 cm ,故应填①②.10.[答案] 可以[解析] 这组数据的方差为53,大于1,可以退货.11.[答案] 96[解析] 设笔试测试的成绩为x 分,则60%x +40%×81≥90,解得x ≥96. 12.[答案] 5[解析] ∵中位数是4,∴x ≤4,y ≤4.∵唯一众数是5,∴x <4,y <4,且x ≠y . ∵x ,y 是自然数,∴当x =3,y =2(或x =2,y =3)时,x +y 的值最大,最大值是5.13.[解析] (1)由平均数、中位数和众数的定义进行计算;(2)结合一半及一半以上的人加工零件的情况进行分析.解:(1)平均数:260件,中位数:240件,众数:240件.(2)不合理.理由:因为若把平均数260件定为每名工人每月加工零件的任务,则在这15名工人中只有4人能够完成任务.260件虽是所给数据的平均数,却不能反映工人每月加工零件任务的一般水平,这是因为平均数受到极端值的影响.而这组数据的中位数和众数都是240件.若把每名工人每月加工零件的任务定为240件,在这15名工人中有10人能够完成任务,是大部分人能达到的目标,所以每名工人每月加工零件的任务应定为240件.14.[解析] (1)根据给出的数据求出甲的平均数x甲=15×(7+7+8+8+8)=7.6(分),乙的众数为7分,丙的中位数为6分,丁的方差s丁2=15×[(8-7)2+(7-7)2+(6-7)2+(7-7)2+(7-7)2]=0.4.(2)综合比较各种统计量,结合实际做出判断.解:(1)依次填入7.6,7,6,0.4.(2)选甲、丁两名运动员参加比赛.理由如下(不唯一):选甲:①五次的平均成绩最高,估计他的水平较高;②方差最小,说明他的成绩最稳定.选丁:①平均成绩较高,排第二,估计他的水平较高;②方差较小,说明他的成绩较稳定.15.解:(1)样本中,男生身高的众数在B组;中位数在C组.故答案为B,C.(2)样本中女生人数=样本中男生人数=40,E组女生所占百分比=5%,∴E组女生人数=40×5%=2.故答案为2.(3)男生:400×1840=180(人),女生:380×40%=152(人),∴估计该校身高在160 cm≤x<170 cm之间的学生有180+152=332(人).人教版八年级下册数学第20章数据的分析单元检测卷一、选择题1.今年3月份某周,我市每天的最高气温单位::,则这组数据的中位数与极差分别是A. B. C. D.2.要比较两位同学在五次数学测验中谁的成绩比较稳定,应选用的统计量是A. 平均数B. 中位数C. 众数D. 方差3.某校八年级一班在两位同学中推荐一位同学参加学校短跑比赛,统计了他们平时10次成绩,经计算,他们的平均成绩一样,若要比较这两名同学的成绩哪一位更稳定,通常还需要比较他们成绩的A. 最低分B. 众数C. 中位数D. 方差4.一个射击运动员连续射击5次,所得环数分别是,则这个运动员本次射击所得环数的标准差为A. 2B.C. 0D.5.在某校“我的中国梦”演讲比赛中,有7名学生参加决赛,他们决赛的最终成绩各不相同,其中一名学生想要知道自己能否进入前3名,他不仅要了解自己的成绩,还要了解这7名学生成绩的A. 众数B. 方差C. 平均数D. 中位数6.在本学期数学期中考中,某小组8名同学的成绩如下:90、103、105、105、105、115、140、140,则这组数据的众数为A. 105B. 90C. 140D. 507.10名学生的体重分别是单位:,这组数据的极差是A. 27B. 26C. 25D. 248.一位经销商计划进一批“运动鞋”,他到眉山的一所学校里对初二的100名男生的鞋号进行了调查,经销商最感兴趣的是这组鞋号的A. 中位数B. 平均数C. 方差D. 众数9.小颖随机抽样调查本班20名女同学所穿运动鞋尺码,并统计如表:尺码学校附近的商店经理根据表中决定本月多进尺码为的女式运动鞋,商店经理的这一决定应用了哪个统计知识A. 众数B. 中位数C. 平均数D. 方差二、填空题10.数据的中位数是______.11.数据:的众数为______.12.一组数据的众数是6,则这组数据的中位数是______.13.在学校艺术节文艺汇演中,甲、乙两个舞蹈队队员的身高的方差分别是,那么身高更整齐的是队填“甲”或“乙”.三、解答题14.数学老师布置10道选择题当堂测试,统计结果每人至少答对7道题,数学课代表对全班48名同学的答题情况绘制了条形统计图.请你补全统计图;若规定学生至少答对9道题为优秀,求这次测试的优秀率.15.星期天上午,茱萸湾动物园熊猫馆来了甲、乙两队游客,两队游客的年龄如下表所示:根据上述数据完成下表:根据前面的统计分析,回答下列问题:能代表甲队游客一般年龄的统计量是______ ;平均数能较好地反映乙队游客的年龄特征吗?为什么?16.市射击队为从甲、乙两名运动员中选拔一人参加省比赛,对他们进行了六次测试,测试成绩如表单位:环:根据表格中的数据,分别计算甲、乙的平均成绩;已知甲六次成绩的方差,试计算乙六次测试成绩的方差;根据、计算的结果,你认为推荐谁参加省比赛更合适,请说明理由.17.在一组数据中,各数据与它们的平均数的差的绝对值的平均数,即叫做这组数据的“平均差”“平均差”也能描述一组数据的离散程度“平均差”越大说明数据的离散程度越大因为“平均差”的计算要比方差的计算要容易一点,所以有时人们也用它来代替方差来比较数据的离散程度极差、方差标准差、平均差都是反映数据离散程度的量.一水产养殖户李大爷要了解鱼塘中鱼的重量的离散程度,因为个头大小差异太大会出现“大鱼吃小鱼”的情况;为防止出现“大鱼吃小鱼”的情况,在能反映数据离散程度几个的量中某些值超标时就要捕捞;分开养殖或出售;他从两个鱼塘各随机捕捞10条鱼称得重量如下:单位:千克A鱼塘:3、5、5、5、7、7、5、5、5、3B鱼塘:4、4、5、6、6、5、6、6、4、4分别计算甲、乙两个鱼塘中抽取的样本的极差、方差、平均差;完成下面的表格:如果你是技术人员,你会建议李大爷注意哪个鱼塘的风险更大些?计算哪些量更能说明鱼重量的离散程度?18.某校要从八年级甲、乙两个班中各选取10名女同学组成礼仪队,选取的两个班女生的身高如下单位::甲班:168 167 170 165 168 166 171 168 167 170乙班:165 167 169 170 165 168 170 171 168 167补充完成下面的统计分析表:根据如表,请选择一个合适的统计量作为选择标准,说明哪一个班能被选取.【答案】1. C2. D3. D4. B5. D6. A7. B8. D9. A10. 211.12. 613. 甲14. 解:道,补全统计图如下:.答:这次测试的优秀率为.15. 15;;;6;平均数或中位数或众数16. 解:甲的平均成绩是:,乙的平均成绩是:;推荐甲参加全国比赛更合适,理由如下:两人的平均成绩相等,说明实力相当;但甲的六次测试成绩的方差比乙小,说明甲发挥较为稳定,故推荐甲参加比赛更合适.17. 解:甲组数据中最大的值7,最小值3,故极差,,,;乙组数据中最大的值6,最小值4,故极差;,;,;根据的极差与方差可以得出A鱼塘风险更大极差与方差更能说明鱼重量的离散程度18. 解:甲班的方差;乙班的中位数为168;补全表格如下:选择方差做标准,甲班方差乙班方差,甲班可能被选取.数学八年级下册第20章单元检测一.选择题(共12小题)1.已知一组数据:9,9,8,8,7,6,5,则这组数据的中位数是()A.9 B.8 C.7 D.62.长沙地区七、八月份天气较为炎热,小华对其中连续十天每天的最高气温进行统计,依次得到以下一组数据:38,35,36,38,36,38,37,36,38,37(单位℃).则这组数据的中位数和众数分别是()A.36,38 B.37,38 C.36.5,38 D.37,36.53.在以下数据2,2,﹣1,3中,中位数和极差分别是()A.1,4 B.1,3 C.2,4 D.2,34.下表是校女子排球队员的年龄分布,则校女子排球队的平均年龄为()A.13 B.14 C.14.4 D.155.如果一组数据3,7,2,a,4,6的平均数是5,则a的值是()A.8 B.5 C.4 D.36.在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:则这些运动员成绩的中位数、众数分别为()A.1.65、1.70 B.1.65、1.75 C.1.70、1.75 D.1.70、1.707.若数据m,2,5,7,1,4,n的平均数为4,则m,n的平均数为()A.7.5 B.5.5 C.2.5 D.4.58.利用数学计算器求一组数据的平均数,其按键顺序如下:则输出结果为()A.1.5 B.6.75 C.2 D.79.重庆市主城区2016年8月10日至8月19日连续10天的最高气温统计如表:则这组数据的中位数和平均数分别为( ) A .39.5,39.6 B .40,41 C .41,40 D .39,4110.福州近期空气质量指数(AQI )分别为:48,50,49,49,51,48,50,50,则这组数据的中位数是( ) A .49 B.49.5 C .50 D .50.511.某居民小区开展节约用水活动,3月份各户用水量比2月份有所下降,不同节水量的户数统计如下表所示: 那么3月份平均每户节水量是( )A .1.9立方米B .2.2立方米C .33.33立方米D .66.67立方米12.某工厂分发年终奖金,具体金额和人数如下表所示,则下列对这组数据的说法中不正确的是( )A .极差是195000B .中位数是15000C .众数是15000D .平均数是15000二.填空题(共5小题)13.在校园歌手大赛中,参赛歌手的成绩为5位评委所给分数的平均分.各位评委给某位歌手的分数分别是92,93,88,87,90,则这位歌手的成绩是 .14.一个射手连续打靶20次,其中2次射中10环,7次射中9环,8次射中8环,3次射中7环,这个射手每次射中环数的众数是 环,中位数是 环.15.在学校的卫生检查中,规定各班的教室卫生成绩占30%,环境卫生成绩占40%,个人卫生成绩占30%.八年级一班这三项成绩分别为85分,90分和95分,求该班卫生检查的总成绩.16.在2017年的理化生实验考试中某校6名学生的实验成绩统计如图,这组数据的众数是分.17.选作题(要求在①、②中任选一题作答,若多选,则按第①题计分)①如图,AB∥CD,EF⊥DB,垂足为点E,∠1=50°,则∠2的度数是;②用计算器求一组数据71,75,63,89,100,77,86的平均数为(精确到0.1).三.解答题(共7小题)18.某工厂甲、乙两名工人参加操作技能培训,现分别从他们在培训期间参加的若干次测试成绩中随机抽取5次,记录如下:(1)请你分别计算这两组数据的平均数;(2)现要从中选派一人参加操作技能比赛,从统计学的角度考虑,你认为选派哪名工人参加合适?请说明理由.19.请根据下列图表信息解答问题:(1)表中空缺的数据为;(精确到1%)(2)求统计表中增长率的平均数及中位数;(3)预测2017年的观影人次,并说明理由.20.有甲、乙、丙三种糖果混合而成的什锦糖100千克,其中各种糖果的单价和千克数如表所示,商家用加权平均数来确定什锦糖的单价.(1)求该什锦糖的单价.(2)为了使什锦糖的单价每千克至少降低2元,商家计划在什锦糖中加入甲、丙两种糖果共100千克,问其中最多可加入丙种糖果多少千克?21.九年级某班部分同学利用课外活动时间,积极参加篮球定点投篮的训练,训练后的测试成绩如下表所示:回答下列问题:(1)训练后篮球定点投篮进球数的众数是个,中位数是个;(2)若训练后的人均进球数比训练前增加25%,求训练前的人均进球数.22.若数据2,a,3,4的极差为5,求a的值及这组数据的平均数.23.某班九年级第二学期数学一共进行四次考试,小丽和小明的成绩如表所示:(1)请你通过计算这四次考试成绩的方差,比较谁的成绩比较稳定?(2)若老师计算学生的学期总评成绩按照如下的标准:单元测验1占10%,期中考试占30%,单元测验2占10%,期末考试成绩占50%.请你通过计算,比较谁的学期总评成绩高?24.某同学使用计算器求30个数据的平均数时,错将其中一个数据105输成了15,则由此求出的平均数与实际平均数的差是多少?参考答案与试题解析一.选择题(共12小题)1.已知一组数据:9,9,8,8,7,6,5,则这组数据的中位数是()A.9 B.8 C.7 D.6【解答】解:∵9,9,8,8,7,6,5是从大到小排列的,∴处于最中间的数是8,∴这组数据的中位数是8;故选B.2.长沙地区七、八月份天气较为炎热,小华对其中连续十天每天的最高气温进行统计,依次得到以下一组数据:38,35,36,38,36,38,37,36,38,37(单位℃).则这组数据的中位数和众数分别是()A.36,38 B.37,38 C.36.5,38 D.37,36.5【解答】解:把数据从小到大的顺序排列为:35,36,36,36,37,37,38,38,38,38;在这一组数据中38是出现次数最多的,故众数是38.处于中间位置的两个数是37,那么由中位数的定义可知,这组数据的中位数是37.故选:B.3.在以下数据2,2,﹣1,3中,中位数和极差分别是()A.1,4 B.1,3 C.2,4 D.2,3【解答】解:把这些数从小到大排列为﹣1,2,2,3,则中位数是=2;极差是:3﹣(﹣1)=4;故选C.4.下表是校女子排球队员的年龄分布,则校女子排球队的平均年龄为()A.13 B.14 C.14.4 D.15【解答】解:根据题意得:(13×1+14×4+15×5)÷10=14.4(岁),答:该校女子排球队的平均年龄为14.4岁;故选C.5.如果一组数据3,7,2,a,4,6的平均数是5,则a的值是()A.8 B.5 C.4 D.3【解答】解:∵数据3,7,2,a,4,6的平均数是5,∴(3+7+2+a+4+6)÷6=5,解得:a=8;故选A.6.在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:则这些运动员成绩的中位数、众数分别为()A.1.65、1.70 B.1.65、1.75 C.1.70、1.75 D.1.70、1.70【解答】解:共15名学生,中位数落在第8名学生处,第8名学生的跳高成绩为1.70m,故中位数为1.70;跳高成绩为1.75m的人数最多,故跳高成绩的众数为1.75;故选C.7.若数据m,2,5,7,1,4,n的平均数为4,则m,n的平均数为()A.7.5 B.5.5 C.2.5 D.4.5【解答】解:∵m+n=7×4﹣2﹣5﹣7﹣1﹣4=28﹣19=9,∴==4.5,故选D .8.利用数学计算器求一组数据的平均数,其按键顺序如下:则输出结果为( ) A .1.5 B .6.75 C .2D .7【解答】解:(23+3+0+2)÷4 =28÷4 =7∴输出结果为7. 故选:D .9.重庆市主城区2016年8月10日至8月19日连续10天的最高气温统计如表:则这组数据的中位数和平均数分别为( ) A .39.5,39.6 B .40,41 C .41,40 D .39,41 【解答】解:由表格可知, 这组数据的中位数是:,平均数是: =39.6,故选A .10.福州近期空气质量指数(AQI )分别为:48,50,49,49,51,48,50,50,则这组数据的中位数是( ) A .49 B .49.5 C .50 D .50.5【解答】解:把这些数从小到大排列为:48,48,49,49,50,50,50,51,则这组数据的中位数是=49.5;故选B.11.某居民小区开展节约用水活动,3月份各户用水量比2月份有所下降,不同节水量的户数统计如下表所示:那么3月份平均每户节水量是()A.1.9立方米B.2.2立方米C.33.33立方米D.66.67立方米【解答】解:平均节水量==2.2立方米,故选B.12.某工厂分发年终奖金,具体金额和人数如下表所示,则下列对这组数据的说法中不正确的是()A.极差是195000 B.中位数是15000C.众数是15000 D.平均数是15000【解答】解:A.由题意可知,极差为200000﹣5000=195000(元),故本选项正确,B.总人数为1+3+5+70+10+8+3=100(人),则中位数为第50、51个数的平均数,即中位数为15000,故本选项正确,C.15000出现了70次,出现的次数最多,则众数是15000,故本选项正确,D.平均数=×(200000+150000×3+80000×5+15000×70+10000×10+8000×8+5000×3)=22790,故本选项错误,故选D.二.填空题(共5小题)13.在校园歌手大赛中,参赛歌手的成绩为5位评委所给分数的平均分.各位评委给某位歌手的分数分别是92,93,88,87,90,则这位歌手的成绩是90.【解答】解:这位参赛选手在这次比赛中获得的平均分为:(92+93+88+87+90)÷5=90(分);故答案为:90.14.一个射手连续打靶20次,其中2次射中10环,7次射中9环,8次射中8环,3次射中7环,这个射手每次射中环数的众数是8环,中位数是8环.【解答】解:这组数据中出现次数最多的一个数是8,所以这组数据的众数是89环).20是偶数,按大小顺序排列后中间两个数是8和8,所以这组数据的中位数是8(环).故填8,8.15.在学校的卫生检查中,规定各班的教室卫生成绩占30%,环境卫生成绩占40%,个人卫生成绩占30%.八年级一班这三项成绩分别为85分,90分和95分,求该班卫生检查的总成绩90分.【解答】解:该班卫生检查的总成绩=85×30%+90×40%+95×30%=90(分).故答案为90分.16.在2017年的理化生实验考试中某校6名学生的实验成绩统计如图,这组数据的众数是26分.【解答】解:由图可得,这组数据分别是:24,24,26,26,26,30,∵26出现的次数最多,∴这组数据的众数是26.故答案为26.17.选作题(要求在①、②中任选一题作答,若多选,则按第①题计分)①如图,AB∥CD,EF⊥DB,垂足为点E,∠1=50°,则∠2的度数是40°;②用计算器求一组数据71,75,63,89,100,77,86的平均数为80.1(精确到0.1).【解答】解:①∵EF⊥DB,∴∠FED=90°,∴∠1+∠D=90°,∵∠1=50°,∴∠D=40°,∵AB∥CD,∴∠2=∠D=40°,故答案为:40°.②≈80.1,故答案为:80.1.三.解答题(共7小题)18.某工厂甲、乙两名工人参加操作技能培训,现分别从他们在培训期间参加的若干次测试成绩中随机抽取5次,记录如下:(1)请你分别计算这两组数据的平均数;(2)现要从中选派一人参加操作技能比赛,从统计学的角度考虑,你认为选派哪名工人参加合适?请说明理由.【解答】解:(1)甲平均数:×(85+88+84+85+83)=×425=85,乙平均数:×(83+87+84+86+85)=×425=85;(2)选派乙工人参加合适.理由如下:S甲2=×[(85﹣85)2+(88﹣85)2+(84﹣85)2+(85﹣85)2+(83﹣85)2],=×(0+9+1+0+4),=2.8,S乙2=×[(83﹣85)2+(87﹣85)2+(84﹣85)2+(86﹣85)2+(85﹣85)2],=×(4+4+1+1+0),=2,∵2.8>2,∴S甲2>S乙2,∴乙成绩更稳定,∴选派乙工人参加合适.19.请根据下列图表信息解答问题:(1)表中空缺的数据为9%;(精确到1%)(2)求统计表中增长率的平均数及中位数;(3)预测2017年的观影人次,并说明理由.【解答】解:(1)由题意可得,2016年的年增长率是:(13.72﹣12.60)÷12.60×100%≈9%,故答案为:9%;(2)统计表中增长率的平均数为:(31%+27%+32%+35%+52%+9%)÷6=31%;将它们按从小到大的顺序排列为:9%,27%,31%,32%,35%,52%,所以中位数是(31%+32%)÷2=31.5%;(3)2017年的观影人次为:13.72×(1+31%)≈17.97(人次),预估的理由是:由折线统计图和表格可知,最近6年增长率的平均数为31%,故预估2016年的增长率为31%.20.有甲、乙、丙三种糖果混合而成的什锦糖100千克,其中各种糖果的单价和千克数如表所示,商家用加权平均数来确定什锦糖的单价.(1)求该什锦糖的单价.(2)为了使什锦糖的单价每千克至少降低2元,商家计划在什锦糖中加入甲、丙两种糖果共100千克,问其中最多可加入丙种糖果多少千克?【解答】解(1)根据题意得:(元/千克).答:该什锦糖的单价是24元/千克;(2)设加入丙种糖果x千克,则加入甲种糖果(100﹣x)千克,根据题意得:≤22,解得:x ≤0.答:最多可加入丙种糖果0千克.21.九年级某班部分同学利用课外活动时间,积极参加篮球定点投篮的训练,训练后的测试成绩如下表所示:回答下列问题:(1)训练后篮球定点投篮进球数的众数是 4 个,中位数是 5 个; (2)若训练后的人均进球数比训练前增加25%,求训练前的人均进球数.【解答】解:(1)由表格可知,4出现的次数最多,故众数为4,中位数为=5,故答案为:4,5;(2)训练后人均进球数为=5,设训练前的人均进球数为x ,则(1+25%)x=5,解得:x=4,答:训练前的人均进球数为4个.22.若数据2,a ,3,4的极差为5,求a 的值及这组数据的平均数.【解答】解:当a 为最小数时,有4﹣a=5,解得a=﹣1. ∴这组数据的平均数是=2.当a 为最大数时,有a ﹣2=5,解得a=7.∴这组数据的平均数是=4.23.某班九年级第二学期数学一共进行四次考试,小丽和小明的成绩如表所示:(1)请你通过计算这四次考试成绩的方差,比较谁的成绩比较稳定?(2)若老师计算学生的学期总评成绩按照如下的标准:单元测验1占10%,期中考试占30%,单元测验2占10%,期末考试成绩占50%.请你通过计算,比较谁的学期总评成绩高?【解答】解:(1)小丽的平均数为:×(85+75+95+85)=85,小明的平均数为:×(65+95+85+95)=85,小丽的方差为:×[(85﹣85)2+(75﹣85)2+(95﹣85)2+(85﹣85)2]=50,小明的方差为:×[(65﹣85)2+(95﹣85)2+(85﹣85)2+(95﹣85)2]=150,则小丽的成绩比较稳定;(2)小丽的平均成绩为:85×10%+75×30%+95×10%+85×50%=83,小明的平均的平均成绩为:65×10%+95×30%+85×10%+95×50%=91,则小明的学期总评成绩高.24.某同学使用计算器求30个数据的平均数时,错将其中一个数据105输成了15,则由此求出的平均数与实际平均数的差是多少?【解答】解:该数据相差105﹣15=90,∴平均数与实际平均数相差=3.答:求出的平均数与实际平均数的差是﹣3.。
【3套】人教八年级数学下册 第二十章 数据的分析 单元测试(含答案)
人教八年级数学下册 第二十章 数据的分析 单元测试(含答案)一、相信你的选择1、 若数据8,4,,2x 的平均数是4,则这组数据的中位数和众数是( )A 、3和2B 、2和3C 、2和2D 、2和42、数学老师对小明在参加高考前5次数学模拟考试的成绩进行统计分析,判断小明的数学成绩是否稳定,于是老师需要知道小明这5次数学成绩的( ) A 、平均数或中位数 B 、方差或频率 C 、频数或众数 D 、方差或极差3、已知一组数据5,15,75,45,25,75,45,35,45,35,那么40是这组数据的( ) A 、平均数但不是中位数 B 、平均数也是中位数 C 、众数 D 、中位数但不是平均数4、小亮所在学习小组的同学们响应“为国争光,为奥运添彩”的号召,主动到附近的7个社区帮助爷爷奶奶们学习英语日常用语,他们记录的各社区参加其中一次活动的人数如下:32,26,28,31,32,32,33,那么这组数据的众数和中位数分别是( )A 、31,32B 、32,32C 、31,3D 、32,35、若54321,,,,x x x x x 的平均数为-x ,方差为2s ,则3,3,3,3,354321+++++x x x x x 的平均数和方差分别是 ( )A 、2+-x ,32+s B 、3+-x ,2s C 、-x ,32+s D 、-x ,2s6、已知一组数据1,2,,0,1--x 的平均数是0,那么这组数据的标准差( ) A 、2 B 、2 C 、4 D 、2-7、一组数据n x x x x ,,,,321 的极差是8,另一组数据12,,12,12,12321++++n x x x x 的极差是( )A 、8B 、9C 、16D 、178、某中学人数相等的甲、乙两班学生参加同一次数学测验,两班成绩的方差分别是2452=甲s ,1902=乙s ,那么成绩比较整齐的是( )A 、甲班B 、乙班C 、两班一样整齐D 、无法确定二、试试你的身手1、根据天气预报可知,我国某城市一年中的最高气温为C ︒37,最低气温是C ︒-8,那么这个城市一年中温度的极差为2、航天知识竞赛中,包括甲同学在内的6名同学的平均分为74分,其中甲同学考了89分,则除了甲以外的5名同学的平均分是 分.3、数据9,10,8,10,9,10,7,9的方差是________,标准差是_____.4、甲、乙两种产品进行对比试验,得知乙产品比甲产品的性能更稳定,如果甲、乙两种产品的方差分别是甲2s,乙2s ,则它们的大小关系是在15,5,16,16,28这组数据中,众数、中位数分别是6、甲、乙两人比赛飞镖,两人所得环数甲的方差是15,乙所得环数如下:0,1,5,9,10,那么,成绩比较稳定的是7、八年级上学期期中质量检测之后,甲、乙两班的数学成绩的统计情况如下表所示:(单位:分)从成绩的波动情况来看, 班学生的成绩波动较大. 8、若一个样本是3,3,1,,1,3--a ,它们的平均数-x 是a 的31,则这个样本的标准差是 三、挑战你的技能1、甲、乙两台编织机同时编织一种毛衣,在5天中,两台编织机每天出的合格品数量如下(单位:件):甲:10 , 8 , 7 , 7 ,8; 乙:9 , 8 , 7 , 7, 9.在这5天中,哪台编织机出合格品的波动较小?2、甲、乙两名学生进行射击练习,两人在相同条件下各射靶10次,将射击结果作统计分析(1)请你填上表中乙进行射击练习的相关数据;(2)根据你所学的统计知识,利用上面提供的数据评价甲、乙两人的射击水平.3、一次实习作业课中,甲、乙两组学生各自对学校旗杆进行了5次测量,所得数据如下表所示.现已算得乙组所测得数据的平均数为,00.12=-乙x ,方差002.02=乙s . (1)求甲组所测得数据的中位数与平均数;(2)问哪一组学生所测得的旗杆高度比较一致.四、拓广探究1、某电信局对计算机拨号上网用户提供三种付费方式供用户选择(每个用户只能选择其中一种付费方式):甲种方式是按实际用时付费,每小时付信息费4元,另加付电话费,每小时1.2元;乙种方式是包月制,每月付信息费100元,同时加付电话费每小时1.2元;丙种方式也是包月制,每月付信息费150元,但不必再付电话费.某用户为选择合适的付费方式,连续记录7天中每天的上网所花的时间(单位:分钟):1、A2、A3、B4、B5、B6、B7、D8、D 二、1、45℃2、713、1,14、乙甲22s s 〉 5、16,166、甲7、甲8、5.33 三、1、解:这20名学生成绩的众数是80分,中位数是70分,平均数是()()分72290780670360250201=⨯+⨯+⨯+⨯+⨯. 2、解:该用户一个月上网总时间约为:()h t 276030780602774354062=÷⨯++++++=。
人教版八年级数学下册第二十章-数据的分析专题测评试题(含详细解析)
人教版八年级数学下册第二十章-数据的分析专题测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、李大伯种植了100棵“曙光”油桃树,今年已进入收获期.收获时,从中任选并采摘了10棵树的油桃,分别称得每棵树所产油桃的质量如下表:据调查,市场上今年油桃的批发价格为每千克15元.用所学的统计知识估计今年李大伯果园油桃的总产量(损耗忽略不计)与按批发价格销售油桃所得的总收入分别约为()A.500千克,7500元B.490千克,7350元C.5000千克,75000元D.4850千克,72750元2、甲、乙、丙、丁四人的数学测验成绩分别为90分、90分、x分、80分,若这组数据的平均数恰好等于90分,则这组数据的中位数是()A.100分B.95分C.90分D.85分3、小强每天坚持做引体向上的锻炼,下表是他记录的某一周每天做引体向上的个数.对于小强做引体向上的个数,下列说法错误的是()A.平均数是12 B.众数是13C.中位数是12.5 D.方差是8 74、甲、乙、丙、丁四名学生近4次数学测验成绩的平均数都是90分,方差分别是S甲2=5,S乙2=20,S丙2=23,S丁2=32,则这四名学生的数学成绩最稳定的是()A.甲B.乙C.丙D.丁5、小明前3次购买的西瓜单价如图所示,若第4次买的西瓜单价是a元/千克,且这4个单价的中位数与众数相同,则a 的值为()A.5 B.4 C.3 D.26、一组数据分别为:79、81、77、82、75、82,则这组数据的中位数是()A.82B.77C.79.5D.807、为了丰富校园文化,学校艺术节举行初中生书法大赛,设置了10个获奖名额.结果共有21名选手进入决赛,且决赛得分均不相同.若知道某位选手的决赛得分,要判断它是否获奖,只需知道学生决赛得分的()A.平均数B.中位数C.众数D.方差8、在春季运动会中,有9名学生参加100米比赛,并且他们的最终成绩各不相同,若一名学生想知道自己能否进入前5名,除了要了解自己的成绩外,还要了解这9名学生成绩的()A.众数B.中位数C.平均数D.方差9、一组数据中的中位数()A.只有1个B.有2个C.没有D.不确定10、如果在一组数据中23,25,28,22出现的次数依次为2,5,3,4,并且没有其他的数据,则这组数据的众数是()A.5 B.4.5 C.25 D.24第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知一组数据a,b,c的方差为4,那么数据3a﹣2,3b﹣2,3c﹣2的方差是_____.2、数据25,23,25,27,30,25的众数是 _____.3、超市决定招聘一名广告策划人员,某应聘者三项素质测试的成绩如表:如果将创新能力、综合知识和语言表达三项测试成绩按4:3:1的比例计入总成绩,则该应聘者的总成绩是 ____分.4、已知一组数据的方差S21n[(6﹣7)2+(10﹣7)2+(a﹣7)2+(b﹣7)2+(8﹣7)2](a,b为常数),则a+b的值为_______.5、某学校决定招聘数学教师一名,一位应聘者测试的成绩如表:将笔试成绩,面试成绩按6:4的比例计入总成绩,则该应聘者的总成绩是______分.三、解答题(5小题,每小题10分,共计50分)1、某校开展了以“不忘初心,奋斗新时代”为主题的读书活动,校德育处对本校八年级学生九月份“阅读该主题相关书籍的读书量”(下面简称:“读书量”)进行了抽样调查,随机抽取八年级部分学生,对他们的“读书量”(单位:本)进行了统计,并将统计结果绘制成了如下统计图:(1)本次所抽取学生九月份“读书量”的众数为______本,中位数为______本;(2)求本次所抽取学生九月份“读书量”的平均数.2、某鞋厂为了了解初中学生穿鞋的尺码情况,对某中学八年级(1)班的20名男生进行了调查,结果如图所示.(1)写出这20个数据的平均数、中位数、众数;(2)在平均数、中位数和众数中,鞋厂最感兴趣的是哪一个?3、某校春季运动会计划从七年级三个班中评选一个精神文明队,评比内容包括:“开幕式得分”,“纪律卫生”和“投稿及播稿情况”三项(得分均为整数分),三个班的各项得分(不完整)如图所示.(1)“开幕式”三个班得分的中位数是 ;“纪律卫生”三个班得分的众数是 ;(2)根据大会组委会的规定:“开幕式”,“纪律卫生”,“投稿及播稿情况”三项按4:4:2的比例确定总成绩,总成绩高的当选精神文明队,已知七年级一班的总成绩为79分. ①请计算七年级二班的总成绩;②若七年级三班当选精神文明队,请求出七年级三班在“投稿及播稿情况”方面的最少得分? 4、2021年9月起,重庆市各中小学为落实教育部政策,全面开展课后延时服务.某区教委为了了解该区中学延时服务的情况,随机抽查了甲、乙两中学各100名家长进行问卷调查.家长对延时服务的综合评分记为x ,将所得数据分为5组(“很满意”:90100x ≤≤;“满意”:8090x ≤<;“比较满意”:7080x ≤<;“不太满意”:6070x ≤<;“不满意”:060x ≤<;)区教委将数据进行分析后,得到如下部分信息:a .甲中学延时服务得分情况扇形统计图b.乙中学延时服务得分情况频数分布直方图c.甲、乙两中学延时服务得分的平均数、中位数、众数如表:d.乙中学“满意组”的分数从高到低排列,排在最后的10个数分别是:83,83,83,83,83,82,81,81,80,80.e.甲、乙两中学“满意组”的人数一样多.请你根据以上信息,回答下列问题:(1)直接写出a和m的值;(2)根据以上数据,你认为哪所中学的延时服务开展得更好?并说明理由(一条即可);(3)区教委指出:延时服务综合得分在70分及以上才算合格,请你估计甲中学2000名家长中认为该校延时服务合格的人数.5、下面是我国近几届奥运会所获金牌数,请指出其中的中位数.---------参考答案-----------一、单选题1、C【解析】【分析】先算出10棵油桃树的平均产量,再估计100棵油桃树的总产量,最后用批发价乘100棵油桃树的总产量即可得.【详解】解:选出的10棵油桃树的平均产量为:44515747485049534952+++++++++10=50(千克),估计100棵油桃树的总产量为:50×100=5000(千克),按批发价的总收入为:15×5000=75000(元).故选C.【点睛】本题考查了平均数,用样本估计总体,解题的关键是掌握平均数的算法.2、C【解析】【分析】由题意平均数是90,构建方程即可求出x的值,然后根据中位数的定义求解即可.【详解】解:∵这组数据的平均数数是90,∴14(90+90+x+80)=90,解得x=100.这组数据为:80,90,90,100,∴中位数为90.故选:C.【点睛】本题考查了求一组数据的平均数和中位数,掌握求解方法是解题的关键.3、C【解析】【分析】根据平均数的定义:一组数据的总和除以这组数据的个数所得的商,叫做这组数据的算术平均数,简称平均数;众数的定义:一组数据中出现次数最多的数据;中位数的定义:一组数据中,处在最中间或处在最中间的两个数的平均数;方差的定义:一组数据中各个数据与它们平均数的差的平方的和的平均数,进行求解即可.【详解】解:由题意得它们的平均数为:11121013131312127x ++++++==,故选项A 不符合题意;∵13出现的次数最多,∴众数是13,故B 选项不符合题意;把这组数据从小到大排列为:10、11、12、12、13、13、13,处在最中间的数是12, ∴中位数为12,故C 选项符合题意;方差:()()()()222221810121112212123131277s ⎡⎤=-+-+⨯-+⨯-=⎣⎦,故D 选项不符合题意; 故选C . 【点睛】本题主要考查了平均数,中位数,众数和方差,解题的关键在于能够熟知相关定义. 4、A 【解析】 【分析】根据方差的意义求解即可. 【详解】解:∵S 甲2=5,S 乙2=20,S 丙2=23,S 丁2=32, ∴S 甲2<S 乙2<S 丙2<S 丁2,∴这四名学生的数学成绩最稳定的是甲, 故选:A . 【点睛】本题主要考查了方差,方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越差;反之,则它与其平均值的离散程度越小,稳定性越好.5、C【解析】【分析】根据统计图中的数据和题意,可以得到a的值,本题得以解决.【详解】解:由统计图可知,前3次的中位数是3,第4次买的西瓜单价是a元/千克,这四个单价的中位数恰好也是众数,3a∴=,故选:C.【点睛】本题考查条形统计图、中位数、众数,解题的关键是明确题意,利用数形结合的思想解答.6、D【解析】【分析】将数据排序,进而根据中位数的定义,可得答案.【详解】解:数据79、81、77、82、75、82从小到大排列后可得:75、77、79、81、82、82,排在中间的两个数是79,81,所以,其中位数为79+81=802,故选:D.本题主要考查中位数,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.7、B【解析】【分析】由于书法大赛设置了10个获奖名额,共有21名选手进入决赛,根据中位数的意义分析即可.【详解】解:将21名选手进入决赛不同的分数按从小到大排序后,中位数及中位数之后的共有11个数,故只要知道自己的分数和中位数就可以知道是否获奖了,故选B.【点睛】本题主要考查中位数,以及相关平均数、众数、方差的意义,熟练掌握相关知识是解题的关键.8、B【解析】【分析】根据众数、中位数、平均数及方差的意义知,只要知道了中位数即可知道自己能否进入前5名.【详解】众数表示一组数据中出现次数最多的数,知道众数无法知道自己能否进入前5名;平均数表示的是一组数据的平均水平,方差反映的是一组数据的波动程度,它们都不能知道自己能否进入前5名,只有中位数,才能知道自己能否进入前5名,9名学生中,成绩按高低排列第5位学生的成绩是中位数,若该学生的成绩等于或高于中位数,则进入前5名,否则没有.故选:B本题考查了众数、中位数、平均数及方差这四个统计量,前三个反映的是数据的平均水平,后一个反映的是数据的波动程度,理解这四个概念是关键.9、A【解析】【分析】根据中位数的求法:把数据按从小到大或从大到小排列,处于中间的数据即为该组数据的中位数,当数据个数为偶数时,则取中间两个数的平均值,当数据个数为奇数时,则取中间的数据,由此可求解.【详解】解:一组数据中的中位数只有一个;故选A.【点睛】本题主要考查中位数,熟练掌握中位数的求法是解题的关键.10、C【解析】【分析】根据众数的的定义:一组数据中,出现次数最多的那个数称为众数,即可得出答案.【详解】解:由题意可知:25出现了5次,出现次数最多,所以众数为25.故选:C.【点睛】本题主要是考查了众数的定义,熟练掌握众数的定义,是解决该题的关键.1、36【解析】【分析】根据“当数据都乘以一个数(或除以一个数)时,平均数也乘以或除以这个数,方差变为这个数的平方倍”求解可得.【详解】解:∵数据a,b,c的方差为4,∴数据3a﹣2,3b﹣2,3c﹣2的方差32×4=36,故答案为:36.【点睛】本题考查了方差的定义.当数据都加上一个数(或减去一个数)时,平均数也加或减这个数,方差不变,即数据的波动情况不变;当数据都乘以一个数(或除以一个数)时,平均数也乘以或除以这个数,方差变为这个数的平方倍.2、25【解析】【分析】根据众数的定义分析即可,众数:在一组数据中出现次数最多的数.【详解】解:数据25,23,25,27,30,25的众数是25故答案为:25【点睛】本题考查了众数的定义,理解众数的定义是解题的关键.3、78【解析】【分析】由创新能力、综合知识和语言表达三项测试成绩按4:3:1的比例计入总成绩,可以列式431728096888⨯+⨯+⨯,即可得到答案.【详解】解:∵创新能力、综合知识和语言表达三项测试成绩按4:3:1的比例计入总成绩∴431728096888⨯+⨯+⨯=78(分).则该应聘者的总成绩是78分.故答案为:78【点睛】本题考查加权平均数的应用,牢记相关的知识并能准确计算是解题关键.4、11【解析】【分析】根据方差及平均数的定义解答.【详解】解:由题意得610875a b++++=,∴11a b+=,故答案为:11.【点睛】此题考查方差的定义,平均数的计算公式,熟记方差的定义是解题的关键.5、84【解析】【分析】根据求加权平均数的方法求解即可【详解】 解:6480904836841010⨯+⨯=+= 故答案为:84【点睛】 本题考查了求加权平均数,掌握加权平均数计算公式是解题的关键.加权平均数计算公式为:1122()1k k x x f x f x f n=++⋯+,其中12k f f f ⋯,,,代表各数据的权. 三、解答题1、(1)3;3;(2)本次所抽取学生九月份“读书量”的平均数为3本.【分析】(1)从条形统计图中直接可得众数;将各组人数相加得出抽取学生总数,然后排序后找出最中间的“读书量”即可得出中位数;(2)先计算出学生“读书量”的总数,由(2)得抽取的学生总数为60人,由此即可计算出平均数.【详解】解:(1)从条形统计图中可得:有21人“读书量”为3本,人数最多,∴众数为:3;抽取的学生总数为:3182112660++++=人,第30、31人“读书量”均为3本,∴中位数为:3;故答案为:3;3;(2)学生“读书量”的总数为:3118221312465180⨯+⨯+⨯+⨯+⨯=(本),抽取的学生总数由(1)可得:60人,平均数为:180360=(本),∴本次所抽取学生九月份“读书量”的平均数为3本.【点睛】题目主要考查从条形统计图获取信息,中位数、众数及平均数的求法,熟练掌握中位数、众数及平均数的求法是解题关键.2、(1)平均数为39.1码,中位数为39码,众数为40码;(2)鞋厂最感兴趣的是众数【分析】(1)根据平均数、众数与中位数的定义求解分析.40出现的次数最多为众数,第10、11个数的平均数为中位数.(2)鞋厂最感兴趣的是使用的人数,即众数.【详解】解:(1)平均数=(37×3+38×4+39×4+40×7+41×1+42×1)÷20=39.1.观察图表可知:有7人的鞋号为40,人数最多,即众数是40;中位数是第10、11人的平均数,(39+39)÷2=39,故答案为:平均数为39.1码,中位数为39码,众数为40码;(2)鞋厂最感兴趣的是使用的人数,即众数,故答案为:鞋厂最感兴趣的是众数.【点睛】本题考查平均数,众数与中位数.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.众数是数据中出现最多的一个数.正确理解中位数、众数及平均数的概念,是解决本题的关键.3、(1)85;85;(2)①七年级二班的总成绩为80;②七年级三班在“投稿及播稿情况”方面的最少得分是51分.【分析】(1)将三个班“开幕式”和“纪律卫生”列出来,从中找出中位数和众数即可;(2)①利用加权平均数计算出七年级三班的得分即可;②设七年级三班“投稿及播稿情况”的得分为x,因为三班的成绩要比二班的高,根据加权平均数计算与二班的成绩列出不等式求解即可.【详解】(1)“开幕式”三个班得分分别为:85,75,90,故中位数为85;“纪律卫生”三个班得分分别为:70,85,85,故众数为85;(2)①7548548028008044210⨯+⨯+⨯==++(分),故七年级二班的总成绩为:80分;②设七年级三班在“投稿及播稿情况”方面的得分为x分,若七年级三班当选精神文明对,则七年级三班的总成绩应比七年级二班精神文明成绩要高,则904854280442x⨯+⨯+⨯>++,解得50x>,∵x为整数,∴x 最低为51,∴七年级三班在“投稿及播稿情况”方面的最少得分为51分.【点睛】本题考查了中位数、众数和加权平均数的计算,解题的关键是对定义的理解.4、(1)10a =;82.5m =;(2)见解析;(3)1500名【分析】(1)根据甲、乙两中学“满意组”的人数一样多得出甲组满意的人数为40人,从而得出甲组满意所占总人数百分比,进而得出a 的值;根据中位数的计算方法得出乙组的中位数位于第50和51的平均数;(2)根据平均数以及中位数进行分析即可;(3)由甲组70分及以上所占百分比估算甲中学2000名家长中认为该校延时服务合格的人数即可.【详解】解:(1)∵甲、乙两中学“满意组”的人数一样多,∴甲满意的人数为40人, ∴甲满意的人数占甲组的百分比为:4010040100⨯=%%, ∴=1-7-18-25-40=10a %%%%%%,∴10a =;乙学校中位数为第50名和51名的平均数,∴乙(中位数)=838282.52+=, ∴82.5m =;(2)从平均数来看,乙学校整体成绩高于甲学校整体成绩;从中位数来看,乙学校的高分段人数较多;综上:乙学校的延时服务开展得更好;(3)甲中学70分及以上的百分比=25401075%%%%,++=%(名),⨯=2000751500答:甲中学2000名家长中认为该校延时服务合格的人数为1500名.【点睛】本题考查了扇形统计图,频数分布直方图,中位数,平均数,由部分估计总体等知识点,读懂题意,理解相关定义是解本题的关键.5、28【分析】根据中位数的求法:把数据按从小到大或从大到小排列,处于中间的数据即为该组数据的中位数,当数据个数为偶数时,则取中间两个数的平均值,当数据个数为奇数时,则取中间的数据,由此可求解.【详解】解:由图表可得:我国近几届奥运会所获金牌数的中位数为28.【点睛】本题主要考查中位数,熟练掌握求一组数据的中位数的定义是解题的关键.。
2021年人教版数学八年级下册 第二十章《数据分析》测试卷(一).doc
2021年人教版数学八年级下册 第二十章《数据分析》测试卷(一)姓名:_____________ 年级:____________ 学号:______________一、单项选择题。
(每小题2分,共20分)1.为了了解参加某运动会的200名运动员的年龄情况,从中抽查了20名运动员的年龄,就这个问题来说,下面说法正确的是( ) A. 200名运动员是总体 B. 每个运动员是总体C. 20名运动员是所抽取的一个样本D. 样本容量是202.将一组数据中的每一个数减去50后,所得新的一组数据的平均数是2,则原来那组数据的平均数是( ) A. 50 B. 52 C. 48 D. 23.一组数据-1,0,3,5,x 的极差是7,那么x 的值可能有( ) A. 1个 B. 2个 C. 3个 D. 6个4.关于数据-4,1,2,-1,2,下面结果中,错误的是 ( ) A. 中位数为1 B. 方差为26 C. 众数为2 D. 平均数为05.某工厂共有50名员工,他们的月工资方差是s ²,现在给每个员工的月工资增加200元,那么他们的新工资的方差 ( ) A. 变为s ²+200 B. 不变 C. 变大了 D. 变小了6.5个相异自然数的平均数为12,中位数为17,这5个自然数中最大一个的可能值的最大值是( )A. 21B. 22C. 23D. 247.下表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择()A. 甲B. 乙C. 丙D. 丁8.校舞蹈队10名队员的年龄情况统计如下表,则校舞蹈队队员年龄的众数是()A. 12B. 13C. 14D. 159.为了考察甲、乙两块地小麦的长势,分别从中抽取10株苗,测得苗高如下(单位:cm):甲:12,13,14,15,10,16,13,11,15,11;乙:11,16,17,14,13,19,6,8,10,16。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级下数学第二十章《数据的分析》测验卷
班级:________ 姓名:_________ 成绩:_______
一、选择题:(每题4分,共20分)
1、8个数的平均数12,4个数的平均为18,则这12个数的平均数为( ). A .12 B .18 C .14 D .6
2、衡量样本和总体的波动大小的特征数是( )
A .平均数
B .方差
C .众数
D .中位数
3、一组数据按从小到大排列为1,2,4,x ,6,9这组数据的中位数为5,•那么这组数据的众数为( )
A .4
B .5
C .5.5
D .6
4、某服装销售商在进行市场占有率的调查时,他最应该关注的是( ) A .服装型号的平均数;B .服装型号的众数; C .服装型号的中位数;D .最小的服装型号
5、人数相同的八年级甲、乙两班学生在同一次数学单元测试中,班级平均分和
方差如下:80==乙甲x x ,2402
=甲s ,1802=乙
s ,则成绩较为稳定的班级是( )
A.甲班
B.乙班
C.两班成绩一样稳定
D.无法确定 二、填空题(每空4分,共36分)
6、数据“1,2,1,3,1”的众数是_______
7、一组数据-1,0,1,2,3的方差是_____.
8、某移动公司为了调查手机发送短信的情况,在本区域的1000位用户中抽取
则本次调查中抽取的样本容量是_________, 中位数是_________,众数是_________.
9、右图是一组数据的折线统计图,这组数据的极差
是_____,平均数是____. 有一个样本的方差是2
2222129101
[(5)(5)......(5)(5)]10
s x x x x =
-+-+-+- 这个样本共有_____个数据,平均数为________ 三、解答题(共44分)
11.(本小题9分)某超市招聘收银员一名,对三名申请人进行了三次素质测试,
下面是三名后选人的素质测试成绩:
公司根据实际需要,对计算机、语言、商品知识三项测试成绩分别赋予权:4,3,2,这三人中谁将被录用?
12.甲、乙、丙、丁四支足球队在世界杯预选赛中进球数分别为9,9,x ,7,若这组数据的众数和平均数恰好相等,求出其中的x 值以及此组数据的方差.
13、(本小题9分)某公司有10名员工,他们所在部门及相应每人所创的年利
求这个公司平均每人所创年利润是多少?
14、(本小题9分)某市举行一次少年书法比赛,各年级组的参赛人数如下表所示:
(1
(2)小明说,他所在年龄组的参赛人数占全体参赛人数的28%,你认为小明是哪个年龄组的选手?请说明理由.
15.(本小题9分)当今,青少年视力水平
下降已引起全社会的关注,为了了解
某市30000名学生的视力情况,从中
抽取了一部分学生进行了一次抽样调
查,利用所得数据绘制的频数分布直
方图如下:解答下列问题:
(1)本次抽样调查共抽测了
名学生;
(2)参加抽测的学生的视力的众数在范围内;中位数在范围内;
(3)若视力为4.9及以上为正常,试估计该市学生的视力正常的人数约为多少?
16、(本小题8分)甲、乙两台机床生产同种零件,10天出的次品个数分别是:
甲:0,1,0,2,1,0,1,1,2,2
乙:1,3,0,1,0,2,1,1,0,1
请你运用所学的知识作出判断,估计哪台机床性能较好。
为什么?(注意:要列出式子)。