大学物理第二版 许瑞珍 贾谊明 编著 课后答案 1-3章

合集下载

大学物理第二版答案(北京邮电大学出版社)

大学物理第二版答案(北京邮电大学出版社)

习 题 解 答第一章 质点运动学1-1 (1) 质点t 时刻位矢为:j t t i t r ⎪⎭⎫ ⎝⎛-+++=4321)53(2(m)(2) 第一秒内位移j y y i x x r)()(01011-+-=∆)(5.33)101(3)01(21)01(32m j i ji +=⎥⎦⎤⎢⎣⎡-+--=(3) 前4秒内平均速度)s m (53)2012(411-⋅+=+=∆∆=j i j i t r V(4) 速度)s m ()3(3d d 1-⋅++==j t i t r V∴ )s m (73)34(314-⋅+=++=j i j i V(5) 前4秒平均加速度)s m (43704204-⋅=-=--=∆∆=j j V V t V a (6) 加速度)s m ()s m (d d 242--⋅=⋅==j a j tV a1-2 23d d 23++==t t txv c t t t c t v x x +++=+==⎰⎰241d d 34 当t =2时x =4代入求证 c =-12 即1224134-++=t t t xtt tv a t t v 63d d 23223+==++= 将t =3s 代入证)s m (45)s m (56)(414123133--⋅=⋅==a v m x1-3 (1) 由运动方程⎩⎨⎧+==ty t x 2342消去t 得轨迹方程0)3(2=--y x(2) 1秒时间坐标和位矢方向为 m y m x 5411==[4,5]m: ︒===3.51,25.1ααxytg(3) 第1秒内的位移和平均速度分别为)m (24)35()04(1j i j i r+=-+-=∆)s m (2411-⋅+=∆∆=j i tr V(4) 质点的速度与加速度分别为i t Va j i tr V8d d ,28d d ==+==故t =1s 时的速度和加速度分别为 2111s m 8,s m 28--⋅=⋅+==i a j i V1-4 该星云飞行时间为a 1009.2s 1059.61093.31074.21046.910177915⨯=⨯=⨯⨯⨯⨯ 即该星云是101009.2⨯年前和我们银河系分离的. 1-5 实验车的加速度为g)(25m/s 1047.280.13600101600223≈⨯=⨯⨯==t v a 基本上未超过25g.1.80s 内实验车跑的距离为)(m 40080.13600210160023=⨯⨯⨯==t v s1-6 (1)设第一块石头扔出后t 秒未被第二块击中,则2021gt t v h -= 代入已知数得28.9211511t t ⨯-=解此方程,可得二解为s 22.1s,84.111='=t t第一块石头上升到顶点所用的时间为s 53.18.9/15/10===g v t m由于m t t >1,这对应于第一块石头回落时与第二块相碰;又由于m t t <'1这对应于第一块石头上升时被第二块赶上击中.以20v 和'20v 分别对应于在t 1和'1t 时刻两石块相碰时第二石块的初速度,则由于2111120)(21)(t t g t t v h ∆∆---= 所以184.1)184.1(8.92111)(2121121120--⨯⨯+=∆-∆-+=t t t t g h v m /s 2.17=同理.122.1)122.1(8.92111)(2121121120--⨯⨯+=-'-'+='t t t t g h v ∆∆ m/s)(1.51=(2) 由于'>=123.1t s t ∆,所以第二石块不可能在第一块上升时与第一块相碰.对应于t 1时刻相碰,第二块的初速度为3.184.1)3.184.1(8.92111)(2122122120--⨯⨯+=--+="t t t t g h v ∆∆ m/s)(0.23=1-7 以l 表示从船到定滑轮的绳长,则t l v d /d 0-=.由图可知22h l s -=于是得船的速度为02222d d d d v s h s t l h l lts v +-=-==负号表示船在水面上向岸靠近. 船的加速度为3202022d d d d d d s v h tl v h l ll t v a -=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛--== 负号表示a 的方向指向岸边,因而船向岸边加速运动.1-8 所求位数为522422221048.9601.0)106(44⨯=⨯⨯⨯==ππωg r n g r1-9 物体A 下降的加速度(如图所示)为222m/s 2.024.022=⨯==t h a 此加速度也等于轮缘上一点在s 3='t 时的切向加速度,即)m/s (2.02='t a在s 3='t 时的法向加速度为)m/s (36.00.1)32.0()(2222=⨯='='=R t a R v a t n1-10 2m /s 2.1=a ,s 5.00=t ,m 5.10=h .如图所示,相对南面,小球开始下落时,它和电梯的速度为m/s)(6.05.02.100=⨯==at v以t 表示此后小球落至底板所需时间,则在这段时间内,小球下落的距离为2021gt t v h +=电梯下降的距离为习题1-9图 习题1-10图2021at t v h +='又20)(21t a g h h h -='-= 由此得s 59.02.18.95.1220=-⨯=-=a g h t而小球相对地面下落的距离为2021gt t v h += 259.08.92159.06.0⨯⨯+⨯= m 06.2= 1-11 人地风人风地v v v+=画出速度矢量合成图(a)又人地风人风地02v v v +'=,速度矢量合成如图(b )两图中风地v应是同一矢量.可知(a )图必是底角为︒45的等腰直角三角形,所以,风向应为西北风,风速为人地人地风地00245cos v v v =︒=)s m (23.41-⋅=1-12 (1) v LvL t 22==(2) 22212u v vLu v L u v L t t t -=++-=+= 1212-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-=v u v L(3) v Lv L t t t '+'=+=21,如图所示风速u 由东向西,由速度合成可得飞机对地速度v u v +=',则22u v V -='.习题1-12图习题1-11图2221222⎪⎭⎫⎝⎛-=--='=v u v L uv L v L t 证毕1-13 (1)设船相对岸的速度为V '(如图所示),由速度合成得V u V +='V 的大小由图1.7示可得αβcos cos u V V +'=即332323cos cos -=⨯-=-='αβu V V 而1212sin sin =⨯=='αβu V 船达到B 点所需时间)s (1000sin =='='=D V DV OB t βAB 两点之距βββsin cos D Dctg S == 将式(1)、(2)代入可得m)(1268)33(=-=D S(2) 由αβsin 101sin 3u V D t ⨯='=船到对岸所需最短时间由极值条件决定0cos sin 11d d 2=⎪⎭⎫⎝⎛-=αααu t 即 2/,0c o s παα==故船头应与岸垂直,航时最短.将α值代入(3)式得最短航时为s)(500105.021012/sin 101333m in=⨯=⨯=⨯=s u t π (3) 设l OB =,则ααββsin cos 2sin sin 22u uV V u D V D V D l -+=''==欲使l 最短,应满足极值条件.习题1-13图a a uV V u u D l '⎢⎢⎣⎡''-+-='cos sin cos 2d d 22αα 0cos 2sin sin 2222=⎥⎦⎤'-+''+αuV V u a a uV 简化后可得01cos cos 222=+'+-'αuVV u a即 01cos 613cos 2=+'-'αa 解此方程得32cos ='α︒=='-2.4832cos 1α 故船头与岸成︒2.48,则航距最短.将α'值代入(4)式得最小航程为222222m in 321232322321000cos 1cos 2⎪⎭⎫ ⎝⎛-⨯⨯⨯-+='-'-+-=ααu uv v u D lkm)(5.1m 105.13=⨯= AB 两点最短距离为km)(12.115.122min min =-=-=D l S第二章 质点动力学2-1 (1)对木箱,由牛顿第二定律,在木箱将要被推动的情况下如图所示,x 向:0cos m ax m in =-f F θ y 向:0sin m in =--Mg F N θ 还有 N f s m ax μ=解以上三式可得要推动木箱所需力F 的最小值为θμθμsin cos s s min -=MgF习题2-1图在木箱做匀速运动情况下,如上类似分析可得所需力F 的大小为θμθμsin cos k k min -=MgF(2)在上面m in F 的表示式中,如果0sin cos s →-θμθ,则∞→m in F ,这意味着用任何有限大小的力都不可能推动木箱,不能推动木箱的条件是0sin cos s ≤-θμθ由此得θ的最小值为s1arctanμθ=2-2 (1)对小球,由牛顿第二定律x 向:ma N T =-θθsin cosy 向:0cos sin =-+mg N T θθ 联立解此二式,可得N)(32.3)30sin 8.930cos 2(5.0)sin cos (=︒+︒⨯⨯=+=ααg a m T N)(74.3)30sin 230cos 8.9(5.0)sin cos (=︒-︒⨯⨯=+=ααa g m N由牛顿第三定律,小球对斜面的压力N)(74.3=='N N(2)小球刚要脱离斜面时N =0,则上面牛顿第二定律方程为mg T ma T ==θθsin ,cos由此二式可解得2m/s 0.1730tan /8.9tan /=︒==θg a2-3 要使物体A 与小车间无相对滑动,三物体必有同一加速度a ,且挂吊B 的绳应向后倾斜。

大物习题解答-大学物理习题答案(许瑞珍_贾谊明)-第3章 刚体力学

大物习题解答-大学物理习题答案(许瑞珍_贾谊明)-第3章 刚体力学

第三章 刚体力学3-1 一通风机的转动部分以初角速度ω0绕其轴转动,空气的阻力矩与角速度成正比,比例系数C 为一常量。

若转动部分对其轴的转动惯量为J ,问:(1)经过多少时间后其转动角速度减少为初角速度的一半?(2)在此时间内共转过多少转? 解:(1)由题可知:阻力矩ωC M -=,又因为转动定理 dtd JJ M ωβ== dtd JC ωω=-∴ dt JC d t ⎰⎰-=∴00ωωωω t JC-=0lnωω t JCe-=0ωω当021ωω=时,2ln CJt =。

(2)角位移⎰=tdt 0ωθ⎰-=2ln 00C J t JC dt eωCJ 021ω=,所以,此时间内转过的圈数为CJ n πωπθ420==。

3-2 质量面密度为σ的均匀矩形板,试证其对与板面垂直的,通过几何中心的轴线的转动惯量为)(1222b a ab J +σ=。

其中a ,b 为矩形板的长,宽。

证明一:如图,在板上取一质元dxdy dm σ=,对与板面垂直的、通过几何中心的轴线的转动惯量为 dm r dJ ⎰=2dxdy y x a a b b σ⎰⎰--+=222222)()(1222b a ab +=σ证明二:如图,在板上取一细棒bdx dm σ=,对通过细棒中心与棒垂直的转动轴的转动惯量为2121b dm ⋅,根据平行轴定理,对与板面垂直的、通过几何中心的轴线的转动惯量为22)2(121x adm b dm dJ -+⋅=dx x ab dx b 23)2(121-+=σσ 33121121ba a b dJ J σσ+==∴⎰)(1222b a ab +=σ3-3 如图3-28所示,一轻绳跨过两个质量为m 、半径为r 的均匀圆盘状定滑轮,绳的两端分别挂着质量为m 2和m 的重物,绳与滑轮间无相对滑动,滑轮轴光滑,求重物的加速度和各段绳中的张力。

解:受力分析如图ma T mg 222=- (1) ma mg T =-1 (2) βJ r T T =-)(2 (3) βJ r T T =-)(1 (4)βr a =,221mr J =(5) 联立求出g a 41=, mg T 811=,mg T 451=,mg T 232=3-4 如图3-29所示,一均匀细杆长为L ,质量为m ,平放在摩擦系数为μ的水平桌面上,设开始时杆以角速度0ω绕过细杆中心的竖直轴转动,试求:(1)作用于杆的摩擦力矩;(2)经过多长时间杆才会停止转动。

大学物理第二版习题答案

大学物理第二版习题答案

13级应用化学(2)班物理习题详解习题精解1-1某质点的速度为j t i v 82-=,已知t=0时它经过点(3,7),则该质点的运动方程为( )A.j t i t 242-B.()()j t i t 74322+-+ C.j 8- D.不能确定解:本题答案为B.因为 dt rd v =所以 ()dt j t i r d82-=于是有()d t j t i r d t rr ⎰⎰-=0820即 j t i t r r2042-=-亦即 ()j t i t j i r 24273-=-- 故 ()()j t i t r 74322+-+=1-2 一质点在平面上作曲线运动,1t 时刻位置矢量为j i r 621+-=,2t 时刻的位置矢量为j i r 422+=,求:(1)在12t t t -=∆时间内质点的位移矢量式;(2)该段时间内位移的大小和方向;(3)在坐标图上画出21,r r及r∆。

解 (1)在12t t t -=∆时间内质点的位移矢量式为()()m j i r r r 2412-=-=∆ (2)该段时间内位移的大小 ()()m r 522422=+=∆该段时间内位移的方向与轴的夹角为 ︒-=⎪⎭⎫⎝⎛-=-6.2642tan 1α (3)坐标图上的表示如图1.1所示1-3某质点作直线运动,其运动方程为214x t t =+- ,其中x 以m 计,t 以s 计,求:(1)第3s 末质点的位置;(2)头3s 的位移大小;(3)头3s 内经过的路程。

解 (1)第3s 末质点的位置为2(3)14334()x m =+⨯-=(2)头3s 的位移大小为 ()(3)03()x x m -=(3)因为质点做反向运动是有()0v t =,所以令0dxdt=,即420,2t t s -==因此头3s 内经过的路程为 (3)(2)(2)(0)45515()x x x x m -+-=-+-=1-4 已知某质点的运动方程为22,2x t y t ==-,式中t 以s 计,x 和y 以m 计。

《大学物理学》第二版上册课后答案

《大学物理学》第二版上册课后答案

大学物理学习题答案习题一答案 习题一1.1 简要回答下列问题:(1) 位移和路程有何区别?在什么情况下二者的量值相等?在什么情况下二者的量值不相等?(2) 平均速度和平均速率有何区别?在什么情况下二者的量值相等?(3) 瞬时速度和平均速度的关系和区别是什么?瞬时速率和平均速率的关系和区别又是什么? (4) 质点的位矢方向不变,它是否一定做直线运动?质点做直线运动,其位矢的方向是否一定保持不变?(5) r ∆ 和r ∆ 有区别吗?v ∆ 和v ∆ 有区别吗?0dvdt= 和0d v dt = 各代表什么运动? (6) 设质点的运动方程为:()x x t =,()y y t =,在计算质点的速度和加速度时,有人先求出r =drv dt = 及 22d r a dt=而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即v = 及 a =你认为两种方法哪一种正确?两者区别何在?(7) 如果一质点的加速度与时间的关系是线性的,那么,该质点的速度和位矢与时间的关系是否也是线性的?(8) “物体做曲线运动时,速度方向一定在运动轨道的切线方向,法向分速度恒为零,因此其法向加速度也一定为零.”这种说法正确吗?(9) 任意平面曲线运动的加速度的方向总指向曲线凹进那一侧,为什么?(10) 质点沿圆周运动,且速率随时间均匀增大,n a 、t a 、a 三者的大小是否随时间改变? (11) 一个人在以恒定速度运动的火车上竖直向上抛出一石子,此石子能否落回他的手中?如果石子抛出后,火车以恒定加速度前进,结果又如何?1.2 一质点沿x 轴运动,坐标与时间的变化关系为224t t x -=,式中t x ,分别以m 、s 为单位,试计算:(1)在最初s 2内的位移、平均速度和s 2末的瞬时速度;(2)s 1末到s 3末的平均加速度;(3)s 3末的瞬时加速度。

解:(1) 最初s 2内的位移为为: (2)(0)000(/)x x x m s ∆=-=-= 最初s 2内的平均速度为: 00(/)2ave x v m s t ∆===∆ t 时刻的瞬时速度为:()44dxv t t dt==- s 2末的瞬时速度为:(2)4424/v m s =-⨯=-(2) s 1末到s 3末的平均加速度为:2(3)(1)804/22ave v v v a m s t ∆---====-∆ (3) s 3末的瞬时加速度为:2(44)4(/)dv d t a m s dt dt-===-。

《大学物理学》第二版上册课后答案

《大学物理学》第二版上册课后答案

大学物理学习题答案习题一答案 习题一1.1 简要回答下列问题:(1) 位移和路程有何区别 在什么情况下二者的量值相等 在什么情况下二者的量值不相等 2 平均速度和平均速率有何区别 在什么情况下二者的量值相等3 瞬时速度和平均速度的关系和区别是什么 瞬时速率和平均速率的关系和区别又是什么 (4) 质点的位矢方向不变,它是否一定做直线运动 质点做直线运动,其位矢的方向是否一定保持不变 (5) r ∆和r ∆有区别吗 v ∆和v ∆有区别吗0dvdt =和0d v dt=各代表什么运动 (6) 设质点的运动方程为:()x x t =,()y y t =,在计算质点的速度和加速度时,有人先求出r =然后根据drv dt= 及 22d r a dt =而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即v = 及 a =你认为两种方法哪一种正确 两者区别何在7 如果一质点的加速度与时间的关系是线性的,那么,该质点的速度和位矢与时间的关系是否也是线性的(8) “物体做曲线运动时,速度方向一定在运动轨道的切线方向,法向分速度恒为零,因此其法向加速度也一定为零.”这种说法正确吗9 任意平面曲线运动的加速度的方向总指向曲线凹进那一侧,为什么10 质点沿圆周运动,且速率随时间均匀增大,n a 、t a 、a 三者的大小是否随时间改变 11 一个人在以恒定速度运动的火车上竖直向上抛出一石子,此石子能否落回他的手中 如果石子抛出后,火车以恒定加速度前进,结果又如何1.2 一质点沿x 轴运动,坐标与时间的变化关系为224t t x -=,式中t x ,分别以m 、s 为单位,试计算:1在最初s 2内的位移、平均速度和s 2末的瞬时速度;2s 1末到s 3末的平均加速度;3s 3末的瞬时加速度;解:(1) 最初s 2内的位移为为: (2)(0)000(/)x x x m s ∆=-=-= 最初s 2内的平均速度为: 00(/)2ave x v m s t ∆===∆ t 时刻的瞬时速度为:()44dxv t t dt==- s 2末的瞬时速度为:(2)4424/v m s =-⨯=-2 s 1末到s 3末的平均加速度为:2(3)(1)804/22ave v v v a m s t ∆---====-∆ 3 s 3末的瞬时加速度为:2(44)4(/)dv d t a m s dt dt-===-;1.3 质点作直线运动,初速度为零,初始加速度为0a ,质点出发后,每经过τ时间,加速度均匀增加b ;求经过t 时间后,质点的速度和位移;解: 由题意知,加速度和时间的关系为0ba a t τ=+利用dv adt =,并取积分得000vtb dv a t dv τ⎛⎫=+ ⎪⎝⎭⎰⎰,202b v a t t τ=+ 再利用dx vdt =,并取积分设0t =时00x =得xtx dx vdt =⎰⎰,230126b x a t t τ∆=+ 1.4 一质点从位矢为(0)4r j =的位置以初速度(0)4v i =开始运动,其加速度与时间的关系为(3)2a t i j =-.所有的长度以米计,时间以秒计.求:1经过多长时间质点到达x 轴;2到达x 轴时的位置; 解: 203()(0)()4(2)2t v t v a t dt t i t j ⎛⎫=+=+- ⎪⎝⎭⎰ ()()3201()(0)442tr t r v t dt t t i t j ⎛⎫=+=++- ⎪⎝⎭⎰ (1) 当240t -=,即2t s =时,到达x 轴; (2) 2t s =时到达x 轴的位矢为 :(2)12r i =即质点到达x 轴时的位置为12,0x m y ==;1.5 一质点沿x 轴运动,其加速度与坐标的关系为2a x ω=-,式中ω为常数,设0=t 时刻的质点坐标为0x 、速度为0v ,求质点的速度与坐标的关系;解:按题意 222d xx dt ω=- 由此有 dx dvv dt dx dx dv dt dv dtx d x ====-222ω, 即 xdx vdv 2ω-=,两边取积分 ⎰⎰-=xx vv xdx vdv 02ω,得2022122212021221x x v v ωω+-=-由此给出 v =±,20202x v A +⎪⎭⎫ ⎝⎛=ω1.6 一质点的运动方程为k t j t i t r++=24)(,式中r ,t 分别以m 、s 为单位;试求:1 质点的速度与加速度;2 质点的轨迹方程;解:1 速度和加速度分别为: (8)dr v t j k dt ==+, j dtvd a 8==2 令k z j y i x t r ++=)(,与所给条件比较可知 1=x ,24t y =,t z =所以轨迹方程为:21,4x y z ==;1.7 已知质点作直线运动,其速度为213()v t t ms -=-,求质点在0~4s 时间内的路程; 解: 在求解本题中要注意:在0~4s 时间内,速度有时大于零,有时小于零,因而运动出现往返;如果计算积分4vdt ⎰,则求出的是位移而不是路程;求路程应当计算积分4v dt ⎰;令230v t t =-=,解得3t s =;由此可知:3t <s 时,0v >,v v =; 3t =s 时,0v =;而3t >s时,0v <,v v =-;因而质点在0~4s 时间内的路程为 ()()434342233()33s v dt vdt v dt t t dt t t dt ==+-=---⎰⎰⎰⎰⎰34232303313116()23233t t t t m ⎡⎤⎡⎤=---=⎢⎥⎢⎥⎣⎦⎣⎦;1.8 在离船的高度为h 的岸边,一人以恒定的速率0v 收绳,求当船头与岸的水平距离为x 时,船的速度和加速度;解: 建立坐标系如题 1.8图所示,船沿X 轴方向作直线运动,欲求速度,应先建立运动方程,由图题1.8,可得出0v1.8图222x r h =-两边求微分,则有22dx dr xr dt dt = 船速为dx r drv dt x dt==按题意0drv dt=-负号表示绳随时间t 缩短,所以船速为 0v =负号表明船速与x 轴正向反向,船速与x 有关,说明船作变速运动;将上式对时间求导,可得船的加速度为2203h v dva dt x==-负号表明船的加速度与x 轴正方向相反,与船速方向相同,加速度与x 有关,说明船作变加速运动;1.9 一质点沿半径为10cm 的圆周运动,其角坐标θ以弧度rad 计可用下式表示324t θ=+其中t 的单位是秒s 试问:1在2t s =时,它的法向加速度和切向加速度各是多少 2当θ等于多少时其总加速度与半径成45角解:1 利用 324t θ=+,2/12d dt t ωθ==,/24d dt t αω==,得到法向加速度和切向加速度的表达式24144n a r rt ω==,24t a r rt α==在2t s =时,法向加速度和切向加速度为:4421441440.12230.4()n a rt m s -==⨯⨯=⋅,224240.12 4.8()t a rt m s -==⨯⨯=⋅2 要使总加速度与半径成45角,必须有n t a a =,即414424rt rt = 解得 31/6t =,此时 67.2423=+=t θrad1.10 甲乙两船,甲以10/km h 的速度向东行驶,乙以15/km h 的速度向南行驶;问坐在乙船上的人看来,甲船的速度如何 坐在甲船上的人看来乙船的速度又如何解:以地球为参照系,设i 、j分别代表正东和正北方向,则甲乙两船速度分别为h km i v /101 =,h km j v /152-=根据伽利略变换,当以乙船为参照物时,甲船速度为h km j i v v v /)1510(21+=-=h km v /1.18151022=+=, 31.561015==arctg θ即在乙船上看,甲船速度为18.1/km h ,方向为东偏北 31.56 同理,在甲船上看,乙船速度为18.1/km h ,方向为西偏南 31.56;1.11 有一水平飞行的飞机,速率为0v ,在飞机上安置一门大炮,炮弹以水平速度v 向前射击;略去空气阻力,1 以地球为参照系,求炮弹的轨迹方程;2 以飞机为参照系,求炮弹的轨迹方程;3 以炮弹为参照系,飞机的轨迹如何解:1 以地球为参照系时,炮弹的初速度为01v v v +=,而t v x 1=,25.0gt y -= 消去时间参数t ,得到轨迹方程为:202)(2v v gx y +-=若以竖直向下为y 轴正方向,则负号去掉,下同 2 以飞机为参照系时,炮弹的初速度为v ,同上可得轨迹方程为222vgx y -=3 以炮弹为参照系,只需在2的求解过程中用x -代替x ,y -代替y ,可得 222v gx y =.1.12如题1.12图,一条船平行于平直的海岸线航行,离岸的距离为D ,速率为v ,一艘速率为u v <的海上警卫快艇从一港口出去拦截这条船;试证明:如果快艇在尽可能最迟的时刻出发,那么快艇出发时这条船到海岸线的垂线与港口的距离为x u=;快艇截住这条船所需的时间为t =;D 港口 习题1.12图证明:在如图所示的坐标系中,船与快艇的运动方程分别为 11x vty D =⎧⎨=⎩ 和22cos sin x x u ty u t θθ=+⋅⎧⎨=⋅⎩ 拦截条件为:⎩⎨⎧==2121y y x x 即 cos sin vt x u tD u tθθ=+⋅⎧⎨=⋅⎩ 所以()cos sin D v u x u θθ-=,x 取最大值的条件为:0/=θd dx ,由此得到cos /u v θ=,相应地sin θ=;因此x 的最大值为x =x 取最大值时对应的出发时间最迟;快艇截住这条船所需的时间为sin D t u θ==x习题二答案 习题二2.1 简要回答下列问题:1 有人说:牛顿第一定律只是牛顿第二定律在合外力等于零情况下的一个特例,因而它是多余的.你的看法如何2 物体的运动方向与合外力方向是否一定相同3 物体受到了几个力的作用,是否一定产生加速度4 物体运动的速率不变,所受合外力是否一定为零5 物体速度很大,所受到的合外力是否也很大6 为什么重力势能有正负,弹性势能只有正值,而引力势能只有负值7 合外力对物体所做的功等于物体动能的增量,而其中某一分力做的功,能否大于物体动能的增量8质点的动量和动能是否与惯性系的选取有关 功是否与惯性系有关 质点的动量定理与动能定理是否与惯性系有关 请举例说明. 9判断下列说法是否正确,并说明理由:a 不受外力作用的系统,它的动量和机械能都守恒.b 内力都是保守力的系统,当它所受的合外力为零时,其机械能守恒.c 只有保守内力作用而没有外力作用的系统,它的动量和机械能都守恒. 10 在弹性碰撞中,有哪些量保持不变,在非弹性碰撞中,又有哪些量保持不变11 放焰火时,一朵五彩缤纷的焰火质心运动轨迹如何 为什么在空中焰火总是以球形逐渐扩大 忽略空气阻力2.2 质量为m 质点在流体中作直线运动,受与速度成正比的阻力F kv =-k 为常数作用,0t =时质点的速度为0v ,证明: 1t 时刻的速度为0kt v v e-=;2由0到t 的时间内经过的距离为0()[1]kt x mv k e-=⋅-; 3停止运动前经过的距离为0mv k ;证明: 1 由 dv ma mF kv dt ===- 分离变量得 dv k dt v m=-,积分得 00vt v dvk dt v m =-⎰⎰ ,0ln v k t v m=-,0kt v v e -= 2 //000(1)tkt m kt m mv x vdt v e dt e k--===-⎰⎰3 质点停止运动时速度为零,即t →∞,故有/000kt mmv x v e dt k∞-'==⎰;2.3一质量为10 kg 的物体沿x 轴无摩擦地运动,设0t =时,物体的速度为零,物体在力34F t =+Nt 以s 为单位的作用下运动了3s,求它的速度和加速度. 解. 根据质点动量定理,30Fdt mv mv =-⎰, ()334t dt mv +=⎰322103233232.7()10t t v ms m -⎡⎤+⨯+⨯⎣⎦===根据牛顿第二定律,F ma =[]334343 1.510t t F a m m =++⨯====m/s 22.4 一颗子弹由枪口射出时速率为0v ms -1,当子弹在枪筒内被加速时,它所受的合力为()F a bt =-Na,b 为常数,其中t 以秒为单位:1假设子弹运行到枪口处合力刚好为零,试计算子弹走完枪筒全长所需时间;2求子弹所受的冲量; 3求子弹的质量; 解:1由题意,子弹到枪口时,有()0F a bt =-=, 得a t b=2子弹所受的冲量⎰-=-=tbt at dt bt a I 0221)(,将at b=代入,得b a I 22=3由动量定理可求得子弹的质量 0202bv a v I m ==2.5 一质量为m 的质点在xoy 平面上运动,其位置矢量为j t b i t a rωωsin cos +=,求质点的动量及0t =到2t πω=时间内质点所受的合力的冲量和质点动量的改变量; 解:质点的动量为()sin cos p mv mr m a ti b tj ωωω===-+将0t =和2t πω=分别代入上式,得 1p m bj ω=,2p m ai ω=- 动量的增量,亦即质点所受外力的冲量为21()I p p m ai bj ω=-=-+2.6 作用在质量为10kg 的物体上的力为(102)F t iN =+,式中t 的单位是s ;1求4s 后,这物体的动量和速度的变化,以及力给予物体的冲量;2为了使这力的冲量为200Ns,该力应在这物体上作用多久,试就一原来静止的物体和一个具有初速度16jm s --⋅的物体,回答这两个问题; 解:1若物体原来静止,则410(102)56t p Fdt t idt i ∆==+=⎰⎰1kg m s -⋅⋅,沿x 轴正向,1111115.656[]p v i m s I p i kg m s m--∆∆==⋅=∆=⋅⋅[], 若物体原来具有初速度106v jm s -=-⋅,则0000,()tp mv p t mv Fdt =-=-+⎰于是 201()p p t p p ∆=-=∆ 同理, 2121,v v I I ∆=∆=这说明,只要力函数不变,作用时间相同,则不管物体有无初动量,也不管初动量有多大,那么物体获得的动量的增量亦即冲量就一定相同,这就是动量定理. 2同上理,两种情况中的作用时间相同,即⎰+=+=ttt dt t I 0210)210(令210200t t +=,解得10t s =;2.7 一小船质量为100kg,船头到船尾共长3.6m;现有一质量为50kg 的人从船尾走到船头时,船头将移动多少距离 假定水的阻力不计;习题2.7图 解:由动量守恒 0=-人人船船v m V M又 dt VS t⎰=船船,船人船船人船人人S m M dt V m M dt v s tt===⎰⎰0,如图,船的长度 L S s =+人船 所以 3.61.21001150L S m M m ===++船船人即船头相对岸边移动m S 2.1=船2.8 质量2m kg =的质点,从静止出发沿X 轴作直线运动,受力(12)F t i =N,试求开始3s 内该力作的功;解 3(12)(12)x x LLA F dx t dx tv dt ===⎰⎰⎰而200001232tttx x x x F v v a dt dt tdt t m =+===⎰⎰⎰ 所以()333234003612336729(J)4A t t dt t dt t ⎡⎤=⋅===⎢⎥⎣⎦⎰⎰2.9 一地下蓄水池,面积为250s m =,水深度为1.5m ,假定水的上表面低于地面的高度是5.0m ,问欲将这池水全部抽到地面,需作功多少O1h解:建坐标如习题 2.9图,图中0h 表示水面到地面的距离,1h 表示水深;水的密度为3310kg m ρ=,对于坐标为y 、厚度为dy 的一层水,其质量dm sdy ρ=,将此层水抽到地面需作功dA dmgy sgydy ρ==将蓄水池中的水全部抽到地面需作功()01012201012h h h h h h A dA sgydy sg h h h ρρ++⎡⎤===+-⎣⎦⎰⎰()2101122sg h h h ρ=+ ()32110509.8 1.52 5.0 1.52=⨯⨯⨯⨯+⨯⨯64.2310=⨯J 2.9一炮弹质量为m ,以速度v 飞行,其内部炸药使此炮弹分裂为两块,爆炸后由于炸药使弹片增加的动能为T ,且一块的质量为另一块质量的k 倍,如两者仍沿原方向飞行,试证其速率分别为v ,v 证明:设一块的质量为1m ,则另一块的质量为21m km =;利用12m m m +=,有 11m m k =+, 21km m k =+ ① 又设1m 的速度为1v ,2m 的速度为2v ,则有2222211212121mv v m v m T -+=② 1122m v m v mv += 动量守恒 ③联立①、③解得12(1)v kv k v +=+,12(1)v k v kv =+- ④联立④、②解得22)(2v v kmT-=,于是有km T v v 22±= 将其代入④式,有12(1)kTv k v k v v m⎛=+-= ⎝又因为爆炸后,两弹片仍沿原方向飞行,当1k >时只能取 kmTv v m kT v v 2,221-=+=; 2.10一质量为m 的子弹射入置于光滑水平面上质量为M 并与劲度系数为k 的轻弹簧连着的木块后使弹簧最大压缩了L ,求子弹射入前的速度0v .习题2.10图解: 子弹射入木块到相对静止的过程是一个完全非弹性碰撞,时间极短,木块获得了速度,尚未位移,因而弹簧尚未压缩.此时木块和子弹有共同的速度1v ,由动量守恒,()10m M v mv +=此后,弹簧开始压缩,直到最大压缩,由机械能守恒, ()2211122m M v kL += 由两式消去1v ,解出0v 得0v =2.11质量m 的物体从静止开始,在竖直平面内沿着固定的四分之一圆周从A 滑到B ;在B 处时,物体速度的大小为B v ;已知圆的半径为R ,求物体从A 滑到B 的过程中摩擦力所作的功:1用功的定义求; 2用动能定理求;3用功能原理求;习题2.11图解 方法一:当物体滑到与水平成任意θ角的位置时,物体在切线方向的牛顿方程为cos t dv mg f ma mdt θ-== 即cos dv f mg mdtθ-=-+ 注意摩擦力f 与位移dr 反向,且||dr Rd θ=,因此摩擦力的功为00||cos Bv f dr A mg Rd m dv dt πθθ=-+⎰⎰22001cos 2B v B mgR d m vdv mgR mv πθθ=-+=-+⎰⎰方法二: 选m 为研究对象,合外力的功为()A mg f N dr =++⋅⎰考虑到N 0dr ⋅=⎰,因而2cos ||cos f f f A A mg dr A mgR d A mgR πθθθ=+⋅=+=+⎰⎰由于动能增量为2102k B E mv ∆=-,因而按动能定理有 212f BA mgR mv +=,212f B A mgR mv =-+;方法三:选物体、地球组成的系统为研究对象,以B 点为重力势能零点; 初始在A 点时,0p E mgR =、00k E = 终了在B 点时,0p E =,212k B E mv =由功能原理知:21012f A E E E mv mgR =∆=-=- 经比较可知,用功能原理求最简捷;2.12 墙壁上固定一弹簧,弹簧另一端连接一个物体,弹簧的劲度系数为k ,物体m 与桌面间的摩擦因素为μ,若以恒力F 将物体自平衡点向右拉动,试求到达最远时,系统的势能;习题2.12图解:物体水平受力如图,其中k f kx =,f mg μμ=;物体到达最远时,0v =;设此时物体的位移为x , 由动能定理有()0--00xF kx mg dx μ=-⎰即 21--02Fx kx mgx μ= 解出 ()2F mg x kμ-=系统的势能为 ()22212p F mg E kx kμ-==2.13 一双原子分子的势能函数为⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=6012002)(r r r r E r E p式中r 为二原子间的距离,试证明: ⑴0r 为分子势能极小时的原子间距;⑵分子势能的极小值为0E -; ⑶当0)(=r E p 时,原子间距离为62r ;证明:1当()0P dE r dr=、22()0P d E r dr >时,势能有极小值min )(r E P ;由 126126000000137()2120P r r r r dE r d E E dr dr r r rr ⎡⎤⎛⎫⎛⎫⎛⎫=-=-+=⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎝⎭⎣⎦ 得 12600r r r r ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭所以0r r =,即0r 为分子势能取极值时的原子间距;另一方面,12620002148()12137P r r d E r E dr rr ⎛⎫=- ⎪⎝⎭ 当0r r =时,200222200072()137120P E d E r E dr r r r ⎛⎫=-=> ⎪⎝⎭,所以0r r =时,)(r E P 取最小值;2当0r r =时,12600min0000()2P r r E r E E r r ⎡⎤⎛⎫⎛⎫⎢⎥=-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦3令126000()20P r r E r E r r ⎡⎤⎛⎫⎛⎫=-=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦,得到1260020r r r r ⎡⎤⎛⎫⎛⎫-=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦,602r r ⎛⎫= ⎪⎝⎭,r =2.14 质量为7.2×10-23kg,速度为6.0×107m/s 的粒子A,与另一个质量为其一半而静止的粒子B 相碰,假定这碰撞是弹性碰撞,碰撞后粒子A 的速率为5×107m/s,求:⑴粒子B 的速率及偏转角; ⑵粒子A 的偏转角;B习题2.14图解:两粒子的碰撞满足动量守恒B B A A A A v m v m v m '' +=写成分量式有βαcos 'cos 'B B A A A A v m v m v m +=βαsin 'sin 'B B A A v m v m =碰撞是弹性碰撞,动能不变:222'21'2121B B A A A A v m v m v m += 利用kg m A 23102.7-⨯=, kg m m AB 23106.32-⨯==, s m v A /100.67⨯=,s m v A /100.5'7⨯=,可解得s m v B /1069.4'7⨯=,'454 =β,'2022 =α;2.15 平板中央开一小孔,质量为m 的小球用细线系住,细线穿过小孔后挂一质量为1M 的重物;小球作匀速圆周运动,当半径为0r 时重物达到平衡;今在1M 的下方再挂一质量为2M 的物体,如题2-15图;试问这时小球作匀速圆周运动的角速度ω'和半径r '为多少习题2.15图解:在只挂重物1M 时,小球作圆周运动的向心力为1M g ,即2100M g mr ω= ①挂上2M 后,则有212()M M g mr ω''+= ②重力对圆心的力矩为零,故小球对圆心的角动量守恒.即 22220000r mv r mv r r ωω''''=⇒= ③联立①、②、③得2/33/212100112,M M M r r M M M ωω⎫⎛⎫+''===⋅⎪ ⎪+⎭⎝⎭2.16 哈雷慧星绕太阳运动的轨道是一个椭圆;它离太阳最近距离为m r 1011075.8⨯=时的速率是1411046.5-⨯=msv ,它离太阳最远时的速率是1221008.9-⨯=msv ,这时它离太阳的距离r 2是多少 太阳位于椭圆的一个焦点;解:哈雷彗星绕太阳运动时受到太阳的引力——即有心力的作用,所以角动量守恒;又由于哈雷彗星在近日点及远日点时的速度都与轨道半径垂直,故有 1122r mv r mv =∴ 10412112228.7510 5.4610 5.2610[]9.0810rv r m v ⨯⨯⨯===⨯⨯2.17 查阅文献,对变质量力学问题进行分析和探讨,写成小论文;参考文献:1石照坤,变质量问题的教学之浅见,大学物理,1991年第10卷第10期; 2任学藻、廖旭,变质量柔绳问题研究,大学物理,2006年第25卷第2期; 2.18 通过查阅文献,形成对惯性系的进一步认识,写成小论文;参考文献:1高炳坤、李复,“惯性系”考,大学物理,2002年第21卷第4期; 2高炳坤、李复,“惯性系”考续,大学物理,2002年第21卷第5期;习题三答案 习题三3.1简要回答下列问题:(1) 地球由西向东自转,它的自转角速度矢量指向什么方向 作图说明.2 刚体的转动惯量与那些因素有关 “一个确定的刚体有确定的转动惯量”这句话对吗3 平行于z 轴的力对z 轴的力矩一定为零,垂直于z 轴的力对z 轴的力矩一定不为零.这种说法正确吗4 如果刚体转动的角速度很大,那么作用于其上的力是否一定很大 作用于其上的力矩是否一定很大5 两大小相同、质量相同的轮子,一个轮子的质量均匀分布,另一个轮子的质量主要集中在轮子边缘,两轮绕通过轮心且垂直于轮面的轴转动;问:a 如果作用在它们上面的外力矩相同,哪个轮子转动的角速度较大 b 如果它们的角加速度相同,哪个轮子受到的力矩大 c 如果它们的角动量相等,哪个轮子转得快6 为什么质点系动能的改变不仅与外力有关,而且也与内力有关,而刚体绕定轴转动动能只与外力矩有关,而与内力矩无关7 下列物理量中,哪些与参考点的选择有关,哪些与参考点的选择无关:a 位矢;b 位移;c 速度;d 动量;e 角动量;f 力;g 力矩.8 做匀速圆周运动的质点,对于圆周上某一定点,它的角动量是否守恒 对于通过圆心并与圆平面垂直的轴上任一点,它的角动量是否守恒 对于哪一个定点,它的角动量守恒 9 一人坐在角速度为0ω的转台上,手持一个旋转着的飞轮,其转轴垂直于地面,角速度为'ω;如果忽然使飞轮的转轴倒转,将发生什么情况 设转台和人的转动惯量为I ,飞轮的转动惯量为'I ;3.2质量为m 长为l 的均质杆,可以绕过B 端且与杆垂直的水平轴转动;开始时,用手支住A 端,使杆与地面水平放置,问在突然撒手的瞬时,1绕B 点的力矩和角加速度各是多少 2杆的质心加速度是多少解:1绕B 点的力矩M 由重力产生,设杆的线密度为ρ,lm=ρ,则绕B 点的力矩为 00012mg m l M xdG gxdm gx dx mgl ρ====⎰⎰⎰杆绕B 点的转动惯量为 2020231ml dx x dm x I l m ===⎰⎰ρ角加速度为 32M gI lβ==2杆的质心加速度为 g l a 432==β3.3 如图所示,两物体1和2的质量分别为1m 与2m ,滑轮的转动惯量为I ,半径为r ;⑴如物体2与桌面间的摩擦系数为μ,求系统的加速度a 及绳中的张力1T 与2T 设绳子与滑轮间无相对滑动;⑵如物体2与桌面间为光滑接触,求系统的加速度a 及绳中的张力1T 与2T ;T m习题3.2图解:⑴先做受力分析,物体1受到重力g m 1和绳的张力1T ,对于滑轮,受到张力1T 和2T ,对于物体2,在水平方向上受到摩擦力g m 2μ和张力2T ,分别列出方程a m T g m 111=- ()a g m T -=11 a m g m T 222=-μ ()g a m T μ+=22()12aT T r M I Irα-=== 通过上面三个方程,可分别解出三个未知量()()212212m m gr a m m r I μ-=++,()()22112121m r g Ig T m m m r I μ++=++,()()21222121m r g Ig T m m m r I μμ++=++ ⑵ 在⑴的解答中,取0=μ即得()21212m gr a m m r I =++, ()2211212m r g Ig T m m m r I +=++,()2122212m m r gT m m r I =++; 3.4 电动机带动一个转动惯量为I=50kg·m 2的系统作定轴转动;在0.5s 内由静止开始最后达到120r/min 的转速;假定在这一过程中转速是均匀增加的,求电动机对转动系统施加的力矩; 解:由于转速是均匀增加的,所以角加速度α为2120/min 2/8/0.560/minr rad rrad s t s s ωπαπ∆⨯===∆⨯从而力矩为322508 1.25710M I kgm s απ-==⨯=⨯3.5 一飞轮直径为0.30m,质量为5.00kg,边缘绕有绳子,现用恒力拉绳子的一端,使其由静止均匀的加速,经0.50s 转速达到10r/s;假定飞轮可看作实心圆柱体,求:⑴飞轮的角加速度及在这段时间内转过的转数; ⑵拉力及拉力所作的功;⑶从拉动后t=10s 时飞轮的角速度及轮边缘上一点的速度和加速度; 解:⑴ 飞轮的角加速度为210/2/125.7/0.5r s rad rrad s t sωπα∆⨯===∆ 转过的圈数为r s s r n 5.25.0/1021=⨯⨯= ⑵ 飞轮的转动惯量为 221mr I =, 所以,拉力的大小为110.35125.747.1()222M I F mr N r r αα====⨯⨯⨯=拉力做功为47.1 2.5 3.140.3111()W FS F n d J π==⨯=⨯⨯⨯=⑶从拉动后t=10s 时,轮角速度为3125.710 1.25710(/)t rad s ωα''==⨯=⨯ 轮边缘上一点的速度为31.257100.15188(/)v r m s ω''==⨯⨯= 轮边缘上一点的加速度为2125.70.1518.8(/)a r m s α==⨯=;3.6 飞轮的质量为60kg,直径为0.50m,转速为1000r/min,现要求在5s 内使其制动,求制动力F;假定闸瓦与飞轮之间的摩擦系数μ=0.4,飞轮的质量全部分布在轮的外周上;尺寸如图所示;习题3.6图解:设在飞轮接触点上所需要的压力为F ',则摩擦力为F μ',摩擦力的力矩为2dF 'μ,在制动过程中,摩擦力的力矩不变,而角动量由2dmv 变化到0,所以由 0Mdt L L =-⎰有 222dd m t d F ⋅='ωμ解得785.42m d F N t ωμ'==;由杆的平衡条件得 0.5314.21.25F F N '==; 3.7 弹簧、定滑轮和物体的连接如图3.7所示,弹簧的劲度系数为2.0N m -1;定滑轮的转动惯量是0.5kg m 2,半径为0.30m,问当6.0kg 质量的物体落下0.40m 时,它的速率为多大 假设开始时物体静止而弹簧无伸长;习题3.7图解:当物体落下0.40m 时,物体减少的势能转化为弹簧的势能、物体的动能和滑轮的动能, 即222222121rIv mv kh mgh ++=, 将kg m 6=,2/8.9s kgm g =,m h 4.0=,25.0kgm I =,m r 3.0=代入,得s m v /01.2=3.8 在自由旋转的水平圆盘上,站一质量为m 的人;圆盘的半径为R ,转动惯量为J ,角速度为ω;如果这人由盘边走到盘心,求角速度的变化及此系统动能的变化; 解:系统的角动量在整个过程中保持不变;人在盘边时,角动量为 ()ωω2mR J I L +==人走到盘心时角动量为 ωω'=''=J I L因此 ()ωωJmR J 2+='人在盘边和在盘心时,系统动能分别为22212121ωωJ R m W +=,()222222121ωωJ mR J J W +='= 系统动能增加 24222122121ωωJR m R m W W W +=-=∆ 3.9 在半径为1R ,质量为m 的静止水平圆盘上,站一质量为m 的人;圆盘可无摩擦地绕通过圆盘中心的竖直轴转动;当这人开始沿着与圆盘同心,半径为2R 21R R <的圆周匀速地走动时,设他相对于圆盘的速度为v ,问圆盘将以多大的角速度旋转解:整个体系的角动量保持为零,设人匀速地走动时圆盘的角速度为ω,则()2122120L L L m v R R mRωω=+=--=人盘 解得 v R R R 2221222+-=ω 3.10 如题3.10图示,转台绕中心竖直轴以角速度0ω作匀速转动;转台对该轴的转动惯量J =5×10-5 kg·m 2;现有砂粒以1g/s 的速度落到转台,并粘在台面形成一半径r =0.1m 的圆;试求砂粒落到转台,使转台角速度变为102ω所花的时间;解:要使转台角速度变为102ω,由于砂粒落下时不能改变体系角动量,所以必须要使体系的转动惯量加倍才行,即 J r m =2沙粒;将25105m kg J ⋅⨯=-和m r 1.0=代入得kg m 3105-⨯=沙粒所以 s sg kgt 5/11053=⨯=- 3.11 一脉冲星质量为1.5×1030kg,半径为20km;自旋转速为2.1 r/s,并且以1.0×10-15r/s 的变化率减慢;问它的转动动能以多大的变化率减小 如果这一变化率保持不变,这个脉冲星经过多长时间就会停止自旋 设脉冲星可看作匀质球体;解:脉冲星的转动惯量为 252mr I =转动动能为 2225121r m I W ωω==转动动能的变化率为 225dW d mr dt dtωω= ()230415250.4 1.510210 2.12 1.0102 1.9910/J s ππ-=⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯=⨯由d dtωα=,t ωα=,得停止自旋所需要的时间为151522.1/ 2.1101.010/r s t s r sωα-===⨯⨯ 3.12 两滑冰运动员,质量分别为M A =60kg,M B =70kg,它们的速率V A =7m/s,V B =6m/s,在相距1.5m 的两平行线上相向而行,当两者最接近时,便拉起手来,开始绕质心作圆周运动并保持两者间的距离为1.5m;求该瞬时:⑴系统的总角动量;⑵系统的角速度;⑶两人拉手前、后的总动能;这一过程中能量是否守恒,为什么解:⑴设两滑冰运动员拉手后,两人相距为s ,两人与质心距离分别为A r 和B r ,则 s M M M r B A B A +=, s M M M r BA AB +=两人拉手前系统总角动量为()s kgm s V V M M M M r V M r V M L L L B A BA BA B B B A A A B A /6302=++=+=+=⑵设两人拉手后系统的角速度为ω,由于两人拉手后系统角动量不变22A AB B L M r M r ωω=+所以, s rad s V V r M r M LB A BB A A /67.822=+=+=ω ⑶两人拉手前总动能为: J V M V M W B B A A 27302121221=+=拉手后,由于整个体系的动量保持为零,所以体系动能为 ()J V V M M M M r M r M W B A BA B A B B A A 2730212121222222=++=+=ωω 所以体系动能保持守恒;可以算出,当且仅当B B A A V M V M =时,体系能量守恒,否则能量会减小,且()()22121B B A A B A V M V M M M W W W -+=-=∆-3.13一长l =0.40m 的均匀木棒,质量M=1.00kg,可绕水平轴O 在竖直平面内转动,开始时 棒自然地竖直悬垂;现有质量m=8g 的子弹以v=200m/s 的速率从A 点与O 点的距离为34l ,如图;求:⑴棒开始运动时的角速度;⑵棒的最大偏转角;习题3.13图解:系统绕杆的悬挂点的角动量为 21340.48L mvl kgm s -== 子弹射入后,整个系统的转动惯量为 222054.016931kgm ml Ml I =+= 所以 s rad IL/88.8==ω⑵子弹射入后,且杆仍然垂直时,系统的动能为212 2.13W I J ω==动当杆转至最大偏转角θ时,系统动能为零,势能的增加量为()()31241cos 1cos W Mgl mgl θθ∆=-+-势 由机械能守恒,势动W W ∆= 得 24.94=θ3.14 通过查阅文献,探讨计算刚体转动惯量的简化方法,写成小论文;参考文献:周海英、陈浩、张晓伟,巧算一类刚体的转动惯量,大学物理,2005年第24卷第2期;3.15 通过上网搜寻,查找对称陀螺规则进动在生活、生产中的应用事例,并进行分类;习题四参考解答4.1 惯性系'K 相对惯性系K 以速度u 运动;当它们的坐标原点O 与'O 重合时,0'==t t ;在惯性系'K 中一质点作匀速率圆周运动,轨道方程为()()222a y x ='+',0='z ,试证:在惯性系K 中的观测者观测到该质点作椭圆运动,椭圆的中心以速度u 运动; 提示:在惯性系K 中的观测者观测到该质点的轨道方程为1)1()(22222=+--ay a ut x β; 证明:根据洛仑兹坐标变换关系 ,12β--='ut x x ,y y =' z z ='代入原方程中,得到 22221)(a y ut x =+--β 化简得 1)1()(22222=+--a y a ut x β所以,在K 系中质点做椭圆运动,椭圆中心以速度u 运动;4.2 一观测者测得运动着的米尺长m5.0,问此米尺以多大的速度接近观测者 解:由相对论长度缩短关系 ()20/1c v L L -=得到 ()()s m L L c v /106.22/11100.3/182820⨯=-⨯⨯=-=4.3 如题图4.3所示,在'K 系的Y X O '''平面内放置一固有长度为0 的细杆,该细杆与x '轴的夹角为θ';设'K 系相对于K 系沿x 轴正向以速率u 运动,试求在K 系中测得的细杆的长度 和细杆与x 轴的夹角θ;O X ,X '题图4.3解:细杆在K '系中的两个坐标上的投影分别为 ⎩⎨⎧'='∆'='∆θθsin cos 00l y l x细杆在K 系中的两个坐标上的投影分别为()()⎪⎩⎪⎨⎧'='∆=∆'-='∆-=∆θθsin cos /1/10202l y y c u l x c u x在K 系中细杆的长度为()[]()20222022/cos 1si cos /1c u l n c u l y x l θθθ'-='+'-=∆+∆=。

大学物理学 第二版 第1-3章习题解答3

大学物理学 第二版 第1-3章习题解答3

大学物理学习题答案习题一答案 习题一1.1 简要回答下列问题:(1) 位移和路程有何区别?在什么情况下二者的量值相等?在什么情况下二者的量值不相等?(2) 平均速度和平均速率有何区别?在什么情况下二者的量值相等?(3) 瞬时速度和平均速度的关系和区别是什么?瞬时速率和平均速率的关系和区别又是什么?(4) 质点的位矢方向不变,它是否一定做直线运动?质点做直线运动,其位矢的方向是否一定保持不变? (5) r ∆和r ∆有区别吗?v ∆和v ∆有区别吗?0dvdt =和0d v dt=各代表什么运动? (6) 设质点的运动方程为:()x x t =,()y y t =,在计算质点的速度和加速度时,有人先求出r =drv dt= 及 22d r a dt =而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即v = 及 a =你认为两种方法哪一种正确?两者区别何在?(7) 如果一质点的加速度与时间的关系是线性的,那么,该质点的速度和位矢与时间的关系是否也是线性的?(8) “物体做曲线运动时,速度方向一定在运动轨道的切线方向,法向分速度恒为零,因此其法向加速度也一定为零.”这种说法正确吗?(9) 任意平面曲线运动的加速度的方向总指向曲线凹进那一侧,为什么?(10) 质点沿圆周运动,且速率随时间均匀增大,n a 、t a 、a 三者的大小是否随时间改变? (11) 一个人在以恒定速度运动的火车上竖直向上抛出一石子,此石子能否落回他的手中?如果石子抛出后,火车以恒定加速度前进,结果又如何?1.2 一质点沿x 轴运动,坐标与时间的变化关系为224t t x -=,式中t x ,分别以m 、s 为单位,试计算:(1)在最初s 2内的位移、平均速度和s 2末的瞬时速度;(2)s 1末到s 3末的平均加速度;(3)s 3末的瞬时加速度。

解:(1) 最初s 2内的位移为为: (2)(0)000(/)x x x m s ∆=-=-= 最初s 2内的平均速度为: 00(/)2ave x v m s t ∆===∆ t 时刻的瞬时速度为:()44dxv t t dt==- s 2末的瞬时速度为:(2)4424/v m s =-⨯=-(2) s 1末到s 3末的平均加速度为:2(3)(1)804/22ave v v v a m s t ∆---====-∆ (3) s 3末的瞬时加速度为:2(44)4(/)dv d t a m s dt dt-===-。

许瑞珍、贾谊明 大学物理课后答案(机械工业出版社)

许瑞珍、贾谊明 大学物理课后答案(机械工业出版社)

第七章 真空中的静电场7-1 在边长为a 的正方形的四角,依次放置点电荷q,2q,-4q 和2q ,它的几何中心放置一个单位正电荷,求这个电荷受力的大小和方向。

解:如图可看出两2q 的电荷对单位正电荷的在作用力 将相互抵消,单位正电荷所受的力为)41()22(420+=a q F πε=,2520aqπε方向由q 指向-4q 。

7-2 如图,均匀带电细棒,长为L ,电荷线密度为λ。

(1)求棒的延长线上任一点P 的场强;(2)求通过棒的端点与棒垂直上任一点Q 的场强。

解:(1)如图7-2 图a ,在细棒上任取电荷元dq ,建立如图坐标,dq =λd ξ,设棒的延长线上任一点P 与坐标原点0的距离为x ,则2020)(4)(4ξπεξλξπεξλ-=-=x d x d dE则整根细棒在P 点产生的电场强度的大小为)11(4)(4002xL x x d E L--=-=⎰πελξξπελ =)(40L x x L-πελ方向沿ξ轴正向。

(2)如图7-2 图b ,设通过棒的端点与棒垂直上任一点Q 与坐标原点0的距离为y204r dxdE πελ=θπελcos 420rdxdE y =, θπελsin 420r dxdE x =因θθθθcos ,cos ,2yr d y dx ytg x ===, 代入上式,则)cos 1(400θπελ--=y=)11(4220Ly y +--πελ,方向沿x 轴负向。

习题7-1图dq ξd ξ习题7-2 图axθθπελθd y dE E x x ⎰⎰-=-=00sin 4xdx习题7-2 图byθθπελθd y dE E y y ⎰⎰==00cos 400sin 4θπελy ==2204Ly y L +πελ 7-3 一细棒弯成半径为R 的半圆形,均匀分布有电荷q ,求半圆中心O 处的场强。

解:如图,在半环上任取d l =Rd θ的线元,其上所带的电荷为dq=λRd θ。

大学物理2课后习题答案.docx

大学物理2课后习题答案.docx

解:回路磁通=BS = Bn r 2感应电动势大小:£— = — (B TI r 2) = B2n r — = 0A0 V At dr dr10-2^-Bcosa2同理,半圆形ddc 法向为7,则0”2鸟与亍夹角和另与7夹角相等,a = 45°①和=Bn R 2 cos a10-6解:0/z? =BS = 5—cos(^ + 久)叫一加&sin (血+久)dr _2Bit r~O) Bn r~2 _ 2 2 2Bf2n f =兀 2『BfR R 解:取半圆形"a 法向为Z ,dt — HR? ABcos a —— dt -8.89 xlO'2V方向与cbadc 相反,即顺时针方向. 题10-6图(1)在Ob 上取尸T 尸+ dr 一小段71 同理•• • r 1 9 % - 3 ca^BAr = 一 Bco, °"」) 18 1 2 1 , £ab - £aO +% =(一花' + 石)广=(2)・・・£ah >0即U a -U h <0 :.b 点电势高.10-11在金属杆上取dr 距左边直导线为r ,则(2) |nj 理, £dc = 碇・d7>0U d -U c v0即 / >U d10-15 设长直电流为/ ,其磁场通过正方形线圈的互感磁通为%蓄绘/警5210-16Q)见题10-16图Q),设长直电流为/,它产生的磁场通过矩形线圈的磁通为丛(丄+丄)d- I 2龙 r 2a-r •:实际上感应电动势方向从g T A , 即从图中从右向左,71 a-b10-14•d5 知, 此吋E 旋以。

为中心沿逆时针方向.(1) V ab 是直径,在〃上处处E 旋与ab m§E 旋• d7 = 0• • £亦也 U Q =Ub心 2n r 2TI 由样旋• M -/z 0/v a + b71 a-b(a (b12-4解:⑴由0 =—,务=£_知,各级条纹向棱边方 2/ 2向移动,条纹间距不变;(2)各级条纹向棱边方向移动,H.条纹变密. 12 5解:工件缺陷是凹的.故各级等厚线(在缺陷附近的)向棱边方向弯曲・按题意,每一条纹弯曲部分的顶点恰与左邻的直线部分连线相切,说明弯曲部分相当于条纹2向棱边移动了一条,故相应的空气隙厚度差为Ae = -,这也是工件缺陷的程度.2 12-6 ・・・ A/ = ^^- = A^^ln2 = 2.8xlO~6 H1 2JI(b)・・•长直电流磁场通过矩形线圈的磁通*2 = 0,见题10-16图(b)・・・ M = O10-17如图10-17图所示,取dS = /dr①二U(如+ ^_炖=做 广「丄)做(In 厶-In 丄) 2〃r 2兀(d-r)2兀 “ r r-d 2K a d-a = ^Il_Xn d-a_7i a:.L / =如1门上£I TI a10-18•・•顺串时厶=厶+厶2 +2M反串联时//二厶+厶2-2M・•・ L_L f = 4MM = --------- = 0.15 H 412-1 y 不变,为波源的振动频率;A,n =— 变小;u = A n v 变小. n 12- 2由心=三久知,(1)条纹变疏;(2)条纹变密;(3)条纹变密;(4)零级明纹在屏幕上作相反方向的上下移动;(5)零 a级明纹向下移动.12- 3解:不同媒质若光程相等,则其儿何路程定不相冋其所需吋间相同,为&€・因为△中已经将光在介质中的路程折算为光在真空中所走的路程。

大学物理第二版 许瑞珍 贾谊明 编著 课后答案 1-3章汇编

大学物理第二版 许瑞珍 贾谊明 编著  课后答案 1-3章汇编

1-7 一人扔石头的最大出手速率为 v=25m/s,他能击中一个与他的手水平距离 L=50m,
高 h=13m 的目标吗?在此距离上他能击中的最大高度是多少?
解:由运动方程
x
vt
cos
,
y
vt
sin
1 2
gt 2
,消去
t
得轨迹方程
y
xtg
g 2v2
(tg 2
1) x 2
以x=05.0m ,v=25ms-1代入后得
l 2 v02t2 (H h)2
dl dt
v02t v02t 2 (H h)2
d 2l dt 2
(H h)2 v02 (H h)2 v02t 2 3/ 2
H v0
h
所以小车移动的速度 v
v02t
(H h)2 v02t 2
图 1-18 习题 1-4 图
小车移动的加速度 a
(H h)2 v02 (H h) 2 v02t 2 3/ 2
z
h 2
t
这是一条空间螺旋线。
在 O xy 平面上的投影为圆心在原点,半径为 R 的圆,螺距为 h
(2) vx
dx dt
R sin t
v
v
2 x
v
2 y
v
2 z
R2
h2 4 2
(3) ax R 2 cost a y R 2 sin t az 0
a
a
2 x
a
2 y
R 2
1-10 飞机以 100m·s-1的速度沿水平直线飞行,在离地面高为 100m时,驾驶员要把物品 投到前方某一地面目标处。问:(1)此时目标在飞机下方前多远?(2)投放物品时,驾驶 员看目标的视线和水平线成何角度?(3)物品投出 2s后,它的法向加速度和切向加速度各 为多少?

物理学教程(第二版)上册课后答案1,2,3单元

物理学教程(第二版)上册课后答案1,2,3单元

第一章 质点运动学1 -1 质点作曲线运动,在时刻t 质点的位矢为r ,速度为v ,速率为v ,t 至(t +Δt )时间内的位移为Δr , 路程为Δs , 位矢大小的变化量为Δr ( 或称Δ|r |),平均速度为v ,平均速率为v .(1) 根据上述情况,则必有( )(A) |Δr |= Δs = Δr(B) |Δr |≠ Δs ≠ Δr ,当Δt →0 时有|d r |= d s ≠ d r(C) |Δr |≠ Δr ≠ Δs ,当Δt →0 时有|d r |= d r ≠ d s(D) |Δr |≠ Δs ≠ Δr ,当Δt →0 时有|d r |= d r = d s(2) 根据上述情况,则必有( )(A) |v |= v ,|v |= v (B) |v |≠v ,|v |≠ v(C) |v |= v ,|v |≠ v (D) |v |≠v ,|v |= v分析与解 (1) 质点在t 至(t +Δt )时间内沿曲线从P 点运动到P′点,各量关系如图所示, 其中路程Δs =PP′, 位移大小|Δr |=PP ′,而Δr =|r |-|r |表示质点位矢大小的变化量,三个量的物理含义不同,在曲线运动中大小也不相等(注:在直线运动中有相等的可能).但当Δt →0 时,点P ′无限趋近P 点,则有|d r |=d s ,但却不等于d r .故选(B).(2) 由于|Δr |≠Δs ,故ts t ΔΔΔΔ≠r ,即|v |≠v . 但由于|d r |=d s ,故ts t d d d d =r ,即|v |=v .由此可见,应选(C). 1 -2 一运动质点在某瞬时位于位矢r (x,y )的端点处,对其速度的大小有四种意见,即 (1)t r d d ; (2)t d d r ; (3)t s d d ; (4)22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛t y t x . 下述判断正确的是( )(A) 只有(1)(2)正确 (B) 只有(2)正确(C) 只有(2)(3)正确 (D) 只有(3)(4)正确分析与解tr d d 表示质点到坐标原点的距离随时间的变化率,在极坐标系中叫径向速率.通常用符号v r 表示,这是速度矢量在位矢方向上的一个分量;t d d r 表示速度矢量;在自然坐标系中速度大小可用公式t s d d =v 计算,在直角坐标系中则可由公式22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=t y t x v 求解.故选(D).1 -3 质点作曲线运动,r 表示位置矢量, v 表示速度,a 表示加速度,s 表示路程, a t表示切向加速度.对下列表达式,即(1)d v /d t =a ;(2)d r /d t =v ;(3)d s /d t =v ;(4)d v /d t |=a t.下述判断正确的是( )(A) 只有(1)、(4)是对的 (B) 只有(2)、(4)是对的(C) 只有(2)是对的 (D) 只有(3)是对的 分析与解td d v 表示切向加速度a t,它表示速度大小随时间的变化率,是加速度矢量沿速度方向的一个分量,起改变速度大小的作用;t r d d 在极坐标系中表示径向速率v r (如题1 -2 所述);ts d d 在自然坐标系中表示质点的速率v ;而t d d v 表示加速度的大小而不是切向加速度a t.因此只有(3) 式表达是正确的.故选(D).1 -4 一个质点在做圆周运动时,则有( )(A) 切向加速度一定改变,法向加速度也改变(B) 切向加速度可能不变,法向加速度一定改变(C) 切向加速度可能不变,法向加速度不变(D) 切向加速度一定改变,法向加速度不变分析与解 加速度的切向分量a t起改变速度大小的作用,而法向分量a n 起改变速度方向的作用.质点作圆周运动时,由于速度方向不断改变,相应法向加速度的方向也在不断改变,因而法向加速度是一定改变的.至于a t是否改变,则要视质点的速率情况而定.质点作匀速率圆周运动时, a t恒为零;质点作匀变速率圆周运动时, a t为一不为零的恒量,当a t改变时,质点则作一般的变速率圆周运动.由此可见,应选(B).1 -5 已知质点沿x 轴作直线运动,其运动方程为32262t t x -+=,式中x 的单位为m,t 的单位为 s .求:(1) 质点在运动开始后4.0 s 内的位移的大小;(2) 质点在该时间内所通过的路程;(3) t =4 s 时质点的速度和加速度.分析 位移和路程是两个完全不同的概念.只有当质点作直线运动且运动方向不改变时,位移的大小才会与路程相等.质点在t 时间内的位移Δx 的大小可直接由运动方程得到:0Δx x x t -=,而在求路程时,就必须注意到质点在运动过程中可能改变运动方向,此时,位移的大小和路程就不同了.为此,需根据0d d =tx 来确定其运动方向改变的时刻t p ,求出0~t p 和t p ~t 内的位移大小Δx 1 、Δx 2 ,则t 时间内的路程21x x s ∆+∆=,如图所示,至于t =4.0 s 时质点速度和加速度可用tx d d 和22d d t x 两式计算.题 1-5 图解 (1) 质点在4.0 s 内位移的大小m 32Δ04-=-=x x x(2) 由0d d =tx 得知质点的换向时刻为 s 2=p t (t =0不合题意)则m 0.8Δ021=-=x x xm 40Δ242-=-=x x x所以,质点在4.0 s 时间间隔内的路程为m 48ΔΔ21=+=x x s(3) t =4.0 s 时1s0.4s m 48d d -=⋅-==t t x v 2s0.422m.s 36d d -=-==t t x a 1 -6 已知质点的运动方程为j i r )2(22t t -+=,式中r 的单位为m,t 的单位为s.求:(1) 质点的运动轨迹;(2) t =0 及t =2s时,质点的位矢;(3) 由t =0 到t =2s内质点的位移Δr 和径向增量Δr ;分析 质点的轨迹方程为y =f (x ),可由运动方程的两个分量式x (t )和y (t )中消去t 即可得到.对于r 、Δr 、Δr 、Δs 来说,物理含义不同,(详见题1-1分析).解 (1) 由x (t )和y (t )中消去t 后得质点轨迹方程为 2412x y -=这是一个抛物线方程,轨迹如图(a)所示.(2) 将t =0s和t =2s分别代入运动方程,可得相应位矢分别为j r 20= , j i r 242-=图(a)中的P 、Q 两点,即为t =0s和t =2s时质点所在位置.(3) 由位移表达式,得j i j i r r r 24)()(Δ020212-=-+-=-=y y x x 其中位移大小m 66.5)(Δ)(ΔΔ22=+=y x r 而径向增量m 47.2ΔΔ2020222202=+-+=-==y x y x r r r r题 1-6 图1 -7 质点的运动方程为23010t t x +-=22015t t y -=式中x ,y 的单位为m,t 的单位为s.试求:(1) 初速度的大小和方向;(2) 加速度的大小和方向.分析 由运动方程的分量式可分别求出速度、加速度的分量,再由运动合成算出速度和加速度的大小和方向.解 (1) 速度的分量式为t tx x 6010d d +-==v t ty y 4015d d -==v 当t =0 时, v 0x =-10 m·s-1 , v 0y =15 m·s-1 ,则初速度大小为 120200s m 0.18-⋅=+=y x v v v设v 0与x 轴的夹角为α,则23tan 00-==x yαv v α=123°41′(2) 加速度的分量式为2s m 60d d -⋅==ta x x v , 2s m 40d d -⋅-==t a y y v 则加速度的大小为 222s m 1.72-⋅=+=y x a a a设a 与x 轴的夹角为β,则 32tan -==x y a a β β=-33°41′(或326°19′)1 -8 一升降机以加速度1.22 m·s-2上升,当上升速度为2.44 m·s-1时,有一螺丝自升降机的天花板上松脱,天花板与升降机的底面相距2.74 m .计算:(1)螺丝从天花板落到底面所需要的时间;(2)螺丝相对升降机外固定柱子的下降距离.分析 在升降机与螺丝之间有相对运动的情况下,一种处理方法是取地面为参考系,分别讨论升降机竖直向上的匀加速度运动和初速不为零的螺丝的自由落体运动,列出这两种运动在同一坐标系中的运动方程y 1 =y 1(t )和y 2 =y 2(t ),并考虑它们相遇,即位矢相同这一条件,问题即可解;另一种方法是取升降机(或螺丝)为参考系,这时,螺丝(或升降机)相对它作匀加速运动,但是,此加速度应该是相对加速度.升降机厢的高度就是螺丝(或升降机)运动的路程. 解1 (1) 以地面为参考系,取如图所示的坐标系,升降机与螺丝的运动方程分别为20121at t y +=v 20221gt t h y -+=v 当螺丝落至底面时,有y 1 =y 2 ,即20202121gt t h at t -+=+v v s 705.02=+=ag h t (2) 螺丝相对升降机外固定柱子下降的距离为 m 716.021202=+-=-=gt t y h d v 解2 (1)以升降机为参考系,此时,螺丝相对它的加速度大小a ′=g +a ,螺丝落至底面时,有2)(210t a g h +-= s 705.02=+=ag h t (2) 由于升降机在t 时间内上升的高度为2021at t h +='v则 m 716.0='-=h h d题 1-8 图1 -9 质点沿直线运动,加速度a =4 -t2 ,式中a 的单位为m·s-2 ,t 的单位为s.如果当t =3s时,x =9 m,v =2 m·s-1 ,求质点的运动方程.分析 本题属于运动学第二类问题,即已知加速度求速度和运动方程,必须在给定条件下用积分方法解决.由t a d d v =和tx d d =v 可得t a d d =v 和t x d d v =.如a =a (t )或v =v (t ),则可两边直接积分.如果a 或v 不是时间t 的显函数,则应经过诸如分离变量或变量代换等数学操作后再做积分.解 由分析知,应有⎰⎰=t t a 0d d 0v v v 得 03314v v +-=t t (1)由 ⎰⎰=txx t x 0d d 0v 得 00421212x t t t x ++-=v (2) 将t =3s时,x =9 m,v =2 m·s-1代入(1)、(2)得 v 0=-1 m·s-1, x 0=0.75 m于是可得质点运动方程为75.0121242+-=t t x 1 -10 一石子从空中由静止下落,由于空气阻力,石子并非作自由落体运动,现测得其加速度a =A -B v ,式中A 、B 为正恒量,求石子下落的速度和运动方程.分析 本题亦属于运动学第二类问题,与上题不同之处在于加速度是速度v 的函数,因此,需将式d v =a (v )d t 分离变量为t a d )(d =v v 后再两边积分. 解 选取石子下落方向为y 轴正向,下落起点为坐标原点.(1) 由题意知 v v B A ta -==d d (1) 用分离变量法把式(1)改写为 t B A d d =-vv (2) 将式(2)两边积分并考虑初始条件,有⎰⎰=-t t B A 0d d d 0v v v v v 得石子速度 )e 1(Bt B A --=v 由此可知当,t →∞时,B A →v 为一常量,通常称为极限速度或收尾速度. (2) 再由)e 1(d d Bt BA t y --==v 并考虑初始条件有 t BA y t Bt y d )e 1(d 00⎰⎰--= 得石子运动方程)1(e 2-+=-Bt B A t B A y 1 -11 一质点具有恒定加速度a =6i +4j ,式中a 的单位为m·s-2 .在t =0时,其速度为零,位置矢量r 0 =10 m i .求:(1) 在任意时刻的速度和位置矢量;(2) 质点在Oxy 平面上的轨迹方程,并画出轨迹的示意图.题 1-11 图分析 与上两题不同处在于质点作平面曲线运动,根据叠加原理,求解时需根据加速度的两个分量a x 和a y 分别积分,从而得到运动方程r 的两个分量式x (t )和y (t ).由于本题中质点加速度为恒矢量,故两次积分后所得运动方程为固定形式,即20021t a t x x x x ++=v 和20021t a t y y y y ++=v ,两个分运动均为匀变速直线运动.读者不妨自己验证一下. 解 由加速度定义式,根据初始条件t 0 =0时v 0 =0,积分可得⎰⎰⎰+==tt t t 000)d 46(d d j i a vvj i t t 46+=v 又由td d r =v 及初始条件t =0 时,r 0=(10 m)i ,积分可得 ⎰⎰⎰+==tt rr t t t t 00)d 46(d d 0j i r v j i r 222)310(t t ++=由上述结果可得质点运动方程的分量式,即x =10+3t 2y =2t 2消去参数t ,可得运动的轨迹方程3y =2x -20 m 这是一个直线方程.直线斜率32tan d d ===αx y k ,α=33°41′.轨迹如图所示. 1 -12 质点在Oxy 平面内运动,其运动方程为r =2.0t i +(19.0 -2.0t 2 )j ,式中r 的单位为m,t 的单位为s .求:(1)质点的轨迹方程;(2) 在t 1=1.0s 到t 2 =2.0s 时间内的平均速度;(3) t 1 =1.0s时的速度及切向和法向加速度;(4) t =1.0s 时质点所在处轨道的曲率半径ρ.分析 根据运动方程可直接写出其分量式x =x (t )和y =y (t ),从中消去参数t ,即得质点的轨迹方程.平均速度是反映质点在一段时间内位置的变化率,即t ΔΔr =v ,它与时间间隔Δt 的大小有关,当Δt →0 时,平均速度的极限即瞬时速度td d r =v .切向和法向加速度是指在自然坐标下的分矢量a t 和a n ,前者只反映质点在切线方向速度大小的变化率,即t t te a d d v =,后者只反映质点速度方向的变化,它可由总加速度a 和a t 得到.在求得t 1 时刻质点的速度和法向加速度的大小后,可由公式ρa n 2v =求ρ. 解 (1) 由参数方程x =2.0t , y =19.0-2.0t 2消去t 得质点的轨迹方程:y =19.0 -0.50x 2(2) 在t 1 =1.00s 到t 2 =2.0s时间内的平均速度j i r r 0.60.2ΔΔ1212-=--==t t t r v (3) 质点在任意时刻的速度和加速度分别为j i j i j i t ty t x t y x 0.40.2d d d d )(-=+=+=v v v j j i a 22222s m 0.4d d d d )(-⋅-=+=ty t x t则t 1 =1.00s时的速度v (t )|t =1s=2.0i -4.0j切向和法向加速度分别为t t y x t t t tt e e e a 222s 1s m 58.3)(d d d d -=⋅=+==v v v n n t n a a e e a 222s m 79.1-⋅=-=(4) t =1.0s质点的速度大小为122s m 47.4-⋅=+=y x v v v 则m 17.112==na ρv 1 -13 飞机以100 m·s-1 的速度沿水平直线飞行,在离地面高为100 m 时,驾驶员要把物品空投到前方某一地面目标处,问:(1) 此时目标在飞机正下方位置的前面多远? (2) 投放物品时,驾驶员看目标的视线和水平线成何角度?(3) 物品投出2.0s后,它的法向加速度和切向加速度各为多少?题 1-13 图分析 物品空投后作平抛运动.忽略空气阻力的条件下,由运动独立性原理知,物品在空中沿水平方向作匀速直线运动,在竖直方向作自由落体运动.到达地面目标时,两方向上运动时间是相同的.因此,分别列出其运动方程,运用时间相等的条件,即可求解.此外,平抛物体在运动过程中只存在竖直向下的重力加速度.为求特定时刻t 时物体的切向加速度和法向加速度,只需求出该时刻它们与重力加速度之间的夹角α或β.由图可知,在特定时刻t ,物体的切向加速度和水平线之间的夹角α,可由此时刻的两速度分量v x 、v y 求出,这样,也就可将重力加速度g 的切向和法向分量求得.解 (1) 取如图所示的坐标,物品下落时在水平和竖直方向的运动方程分别为x =v t , y =1/2 gt 2飞机水平飞行速度v =100 m·s -1 ,飞机离地面的高度y =100 m,由上述两式可得目标在飞机正下方前的距离m 4522==gy x v(2) 视线和水平线的夹角为o 5.12arctan==xy θ (3) 在任意时刻物品的速度与水平轴的夹角为 vv v gt αx yarctan arctan == 取自然坐标,物品在抛出2s 时,重力加速度的切向分量与法向分量分别为2s m 88.1arctan sin sin -⋅=⎪⎭⎫ ⎝⎛==v gt g αg a t 2s m 62.9arctan cos cos -⋅=⎪⎭⎫ ⎝⎛==v gt g g a n α 1 -14 为迎接香港回归,特技演员柯受良在1997年6月1日驾车飞越黄河壶口,如图所示,柯驾车从跑道东端启动,到达跑道终端时速度大小为1500=v h km 1-⋅,他随即以仰角 5=α冲出,飞越跨度达57 m ,安全着陆在西岸木桥上,求:题 1-14 图(1) 柯飞车跨越黄河用了多长时间?(2) 若起飞点高出河面10 m ,柯驾车飞行的最高点距河面为几米?(3) 西岸木桥和起飞点的高度差为多少?分析 由题意知,飞车作斜上抛运动,对包含抛体在内的一般曲线运动来说,运用叠加原理是求解此类问题的普适方法,操作程序是:建立一个恰当的直角坐标系,将运动分解为两个相互正交的直线运动,由于在抛体运动中,质点的加速度恒为g ,故两个分运动均为匀变速直线运动或其中一个为匀速直线运动,直接列出相关运动规律方程即可求解,本题可建立图示坐标系,图中m m x y 和分别表示飞车的最大高度和飞跃跨度. 解 在图示坐标系中,有t v x )cos (0α= (1)2021sin (gt t v y -=)α (2) gt v v y -=αsin 0 (3)(1) 由式(1),令57m ==x x m ,得飞跃时间37.1cos 0m m ==αv x t s (2)由式(3),令0=y v ,得飞行到最大高度所需时间gv t αsin 0m =’将’m t 代入式(2),得飞行最大高度 67.02sin 220m ==gv y αm 则飞车在最高点时距河面距离为10m +=y h m 67.10= m(3)将37.1m =t s 代入式(2),得西岸木桥位置为y = - 4.22 m“-”号表示木桥在飞车起飞点的下方.讨论 本题也可以水面为坐标系原点,则飞车在 y 方向上的运动方程应为10=y m + 2021)sin (gt t v -α 1 -15 如图所示,从山坡底端将小球抛出,已知该山坡有恒定倾角 30=α,球的抛射角 60=β,设球被抛出时的速率v 0 =19.6 m·s-1,忽略空气阻力,问球落在山坡上处离山坡底端的距离为多少?此过程经历多长时间?题 1-15 图分析 求解方法与上题类似,但本题可将运动按两种方式分解,如图(a )和图(b )所示.在图(a )坐标系中,两个分运动均为匀减速直线运动,加速度大小分别为-g αcos 和-g αsin ,看似复杂,但求解本题确较方便,因为落地时有y =0,对应的时间t 和x 的值即为本题所求.在图(b )坐标系中,分运动看似简单,但求解本题还需将落地点P 的坐标y 与x 的关系列出来.解 1 由分析知,在图(a )坐标系中,有20)sin (21)]cos([t g t v x ααβ-+-= (1) 20)cos (21)]sin([t g t v y ααβ-+-= (2)落地时,有y =0,由式(2)解得飞行时间为31.230tan 20==g v t s将 t 值代入式(1),得1.26322===g v x OP m解 2 由分析知,在图(b )坐标系中,对小球 t v x )cos (0β=(1) 2021)sin (gt t v y -=β(2) 对点P αtan x y ='(3) 由式(1)、(2)可得球的轨道方程为ββ2202cos 2tan v gx x y -=(4) 落地时,应有y y '=,即60cos 260tan 30tan 2202v gx x x -=解之得落地点P 的x 坐标为g v x 332=(5) 则 1.263230cos 20===g v xOP m联解式(1)和式(5)可得飞行时间31.2=t s讨论 比较两种解法,你对如何灵活运用叠加原理有什么体会?1 -16 一质点沿半径为R 的圆周按规律2021bt t s -=v 运动,v 0 、b 都是常量.(1) 求t 时刻质点的总加速度;(2) t 为何值时总加速度在数值上等于b ?(3) 当加速度达到b 时,质点已沿圆周运行了多少圈?分析 在自然坐标中,s 表示圆周上从某一点开始的曲线坐标.由给定的运动方程s =s (t ),对时间t 求一阶、二阶导数,即是沿曲线运动的速度v 和加速度的切向分量a t,而加速度的法向分量为a n =v 2 /R .这样,总加速度为a =a te t+a n e n .至于质点在t 时间内通过的路程,即为曲线坐标的改变量Δs =s t -s 0.因圆周长为2πR,质点所转过的圈数自然可求得.解 (1) 质点作圆周运动的速率为bt ts -==0d d v v 其加速度的切向分量和法向分量分别为 b t s a t -==22d d , Rbt R a n 202)(-==v v 故加速度的大小为R )(402222bt b a a a a t tn -+=+=v 其方向与切线之间的夹角为⎥⎦⎤⎢⎣⎡--==Rb bt a a θt n 20)(arctan arctan v (2) 要使|a |=b ,由b bt b R R=-+4022)(1v 可得 bt 0v = (3) 从t =0 开始到t =v 0 /b 时,质点经过的路程为b s s s t 2200v =-= 因此质点运行的圈数为bRR s n π4π220v == 1 -17 一半径为0.50 m 的飞轮在启动时的短时间内,其角速度与时间的平方成正比.在t =2.0s 时测得轮缘一点的速度值为4.0 m·s-1.求:(1) 该轮在t′=0.5s的角速度,轮缘一点的切向加速度和总加速度;(2)该点在2.0s内所转过的角度.分析 首先应该确定角速度的函数关系ω=kt 2.依据角量与线量的关系由特定时刻的速度值可得相应的角速度,从而求出式中的比例系数k ,ω=ω(t )确定后,注意到运动的角量描述与线量描述的相应关系,由运动学中两类问题求解的方法(微分法和积分法),即可得到特定时刻的角加速度、切向加速度和角位移.解 因ωR =v ,由题意ω∝t 2 得比例系数322s rad 2-⋅===Rtt ωk v 所以 22)(t t ωω== 则t ′=0.5s 时的角速度、角加速度和切向加速度分别为12s rad 5.02-⋅='=t ω2s rad 0.24d d -⋅='==t tωα 2s m 0.1-⋅==R αa t总加速度n t t n R ωR αe e a a a 2+=+= ()()2222s m 01.1-⋅=+=R ωR αa 在2.0s内该点所转过的角度rad 33.532d 2d 203202200====-⎰⎰t t t t ωθθ 1 -18 一质点在半径为0.10 m 的圆周上运动,其角位置为342t θ+=,式中θ 的单位为rad,t 的单位为s.(1) 求在t =2.0s时质点的法向加速度和切向加速度.(2) 当切向加速度的大小恰等于总加速度大小的一半时,θ 值为多少?(3) t 为多少时,法向加速度和切向加速度的值相等?分析 掌握角量与线量、角位移方程与位矢方程的对应关系,应用运动学求解的方法即可得到.解 (1) 由于342t θ+=,则角速度212d d t tθω==.在t =2 s 时,法向加速度和切向加速度的数值分别为 22s 2s m 30.2-=⋅==ωr a t n2s 2s m 80.4d d -=⋅==t ωr a t t (2) 当22212/t n t a a a a +==时,有223n t a a =,即 ()()422212243t r rt = 得 3213=t此时刻的角位置为 rad 15.3423=+=t θ(3) 要使t n a a =,则有()()422212243t r rt = t =0.55s1 -19 一无风的下雨天,一列火车以v 1=20.0 m·s-1 的速度匀速前进,在车内的旅客看见玻璃窗外的雨滴和垂线成75°角下降.求雨滴下落的速度v2 .(设下降的雨滴作匀速运动)题 1-19 图分析 这是一个相对运动的问题.设雨滴为研究对象,地面为静止参考系S,火车为动参考系S′.v 1 为S′相对S 的速度,v 2 为雨滴相对S的速度,利用相对运动速度的关系即可解.解 以地面为参考系,火车相对地面运动的速度为v 1 ,雨滴相对地面竖直下落的速度为v 2 ,旅客看到雨滴下落的速度v 2′为相对速度,它们之间的关系为1'22v v v += (如图所示),于是可得 1o 12s m 36.575tan -⋅==v v 1 -20 如图(a)所示,一汽车在雨中沿直线行驶,其速率为v 1 ,下落雨滴的速度方向偏于竖直方向之前θ 角,速率为v 2′,若车后有一长方形物体,问车速v 1为多大时,此物体正好不会被雨水淋湿?分析 这也是一个相对运动的问题.可视雨点为研究对象,地面为静参考系S,汽车为动参考系S′.如图(a)所示,要使物体不被淋湿,在车上观察雨点下落的方向(即雨点相对于汽车的运动速度v 2′的方向)应满足hl αarctan≥.再由相对速度的矢量关系122v v v -=',即可求出所需车速v 1.题 1-20 图解 由122v v v -='[图(b)],有θθcos sin arctan 221v v v -=α而要使hlαarctan ≥,则 hl θθ≥-cos sin 221v v v ⎪⎭⎫ ⎝⎛+≥θh θl sin cos 21v v 第二章 牛顿定律2 -1 如图(a)所示,质量为m 的物体用平行于斜面的细线联结置于光滑的斜面上,若斜面向左方作加速运动,当物体刚脱离斜面时,它的加速度的大小为( )(A) g sin θ (B) g cos θ (C) g tan θ (D) g cot θ分析与解 当物体离开斜面瞬间,斜面对物体的支持力消失为零,物体在绳子拉力F T (其方向仍可认为平行于斜面)和重力作用下产生平行水平面向左的加速度a ,如图(b)所示,由其可解得合外力为mg cot θ,故选(D).求解的关键是正确分析物体刚离开斜面瞬间的物体受力情况和状态特征.2 -2 用水平力F N 把一个物体压着靠在粗糙的竖直墙面上保持静止.当F N 逐渐增大时,物体所受的静摩擦力F f 的大小( )(A) 不为零,但保持不变 (B) 随F N 成正比地增大(C) 开始随F N 增大,达到某一最大值后,就保持不变(D) 无法确定 分析与解 与滑动摩擦力不同的是,静摩擦力可在零与最大值μF N 范围内取值.当F N 增加时,静摩擦力可取的最大值成正比增加,但具体大小则取决于被作用物体的运动状态.由题意知,物体一直保持静止状态,故静摩擦力与重力大小相等,方向相反,并保持不变,故选(A).2 -3一段路面水平的公路,转弯处轨道半径为R,汽车轮胎与路面间的摩擦因数为μ,要使汽车不至于发生侧向打滑,汽车在该处的行驶速率()(A) 不得小于gRμμ(B) 必须等于gR(C) 不得大于gRμ(D) 还应由汽车的质量m 决定分析与解由题意知,汽车应在水平面内作匀速率圆周运动,为保证汽车转弯时不侧向打滑,所需向心力只能由路面与轮胎间的静摩擦力提供,能够提供的最大向心力应为μF N.由此可算得汽车转弯的最大速率应为v=μRg.因此只要汽车转弯时的实际速率不大于此值,均能保证不侧向打滑.应选(C).2 -4一物体沿固定圆弧形光滑轨道由静止下滑,在下滑过程中,则()(A) 它的加速度方向永远指向圆心,其速率保持不变(B) 它受到的轨道的作用力的大小不断增加(C) 它受到的合外力大小变化,方向永远指向圆心(D) 它受到的合外力大小不变,其速率不断增加分析与解由图可知,物体在下滑过程中受到大小和方向不变的重力以及时刻指向圆轨道中心的轨道支持力F N作用,其合外力方向并非指向圆心,其大小和方向均与物体所在位置有关.重力的切向分量(m g cos θ) 使物体的速率将会不断增加(由机械能守恒亦可判断),则物体作圆周运动的向心力(又称法向力)将不断增大,由轨道法向方向上的动力学方程R m θmg F N 2sin v =-可判断,随θ 角的不断增大过程,轨道支持力F N 也将不断增大,由此可见应选(B).*2 -5 图(a)示系统置于以a =1/4 g 的加速度上升的升降机内,A 、B 两物体质量相同均为m ,A 所在的桌面是水平的,绳子和定滑轮质量均不计,若忽略滑轮轴上和桌面上的摩擦,并不计空气阻力,则绳中张力为( ) (A) 5/8 mg (B) 1/2 mg (C) mg (D) 2mg 分析与解 本题可考虑对A 、B 两物体加上惯性力后,以电梯这个非惯性参考系进行求解.此时A 、B 两物体受力情况如图(b)所示,图中a ′为A 、B 两物体相对电梯的加速度,m a 为惯性力.对A 、B 两物体应用牛顿第二定律,可解得F T =5/8 mg .故选(A).讨论 对于习题2 -5 这种类型的物理问题,往往从非惯性参考系(本题为电梯)观察到的运动图像较为明确,但由于牛顿定律只适用于惯性参考系,故从非惯性参考系求解力学问题时,必须对物体加上一个虚拟的惯性力.如以地面为惯性参考系求解,则两物体的加速度a A 和a B 均应对地而言,本题中a A 和a B 的大小与方向均不相同.其中a A 应斜向上.对a A 、a B 、a 和a ′之间还要用到相对运动规律,求解过程较繁琐.有兴趣的读者不妨自己尝试一下.2 -6 图示一斜面,倾角为α,底边AB 长为l =2.1 m,质量为m 的物体从题2 -6 图斜面顶端由静止开始向下滑动,斜面的摩擦因数为μ=0.14.试问,当α为何值时,物体在斜面上下滑的时间最短? 其数值为多少?分析 动力学问题一般分为两类:(1) 已知物体受力求其运动情况;(2) 已知物体的运动情况来分析其所受的力.当然,在一个具体题目中,这两类问题并无截然的界限,且都是以加速度作为中介,把动力学方程和运动学规律联系起来.本题关键在列出动力学和运动学方程后,解出倾角与时间的函数关系α=f (t ),然后运用对t 求极值的方法即可得出数值来.解 取沿斜面为坐标轴Ox ,原点O 位于斜面顶点,则由牛顿第二定律有ma αmg μαmg =-cos sin (1) 又物体在斜面上作匀变速直线运动,故有()22cos sin 2121cos t αμαg at αl -== 则 ()αμααg l t cos sin cos 2-= (2)为使下滑的时间最短,可令0d d =αt,由式(2)有 ()()0sin cos cos cos sin sin =-+--αμαααμαα 则可得μα12t a n -=,o 49=α 此时 ()s 99.0cos sin cos 2min =-=αμααg l t2 -7 工地上有一吊车,将甲、乙两块混凝土预制板吊起送至高空.甲块质量为m 1 =2.00 ×102 kg,乙块质量为m 2 =1.00 ×102 kg .设吊车、框架和钢丝绳的质量不计.试求下述两种情况下,钢丝绳所受的张力以及乙块对甲块的作用力:(1) 两物块以10.0 m·s-2的加速度上升;(2) 两物块以1.0 m·s-2的加速度上升.从本题的结果,你能体会到起吊重物时必须缓慢加速的道理吗?题2-7 图分析预制板、吊车框架、钢丝等可视为一组物体.处理动力学问题通常采用“隔离体”的方法,分析物体所受的各种作用力,在所选定的惯性系中列出它们各自的动力学方程.根据连接体中物体的多少可列出相应数目的方程式.结合各物体之间的相互作用和联系,可解决物体的运动或相互作用力.解按题意,可分别取吊车(含甲、乙)和乙作为隔离体,画示力图,并取竖直向上为Oy轴正方向(如图所示).当框架以加速度a 上升时,有FT-( m1+m2)g =(m1+m2)a (1)F N2 - m2g =m2a (2) 解上述方程,得FT=(m1+m2)(g +a) (3)F N2=m2(g +a) (4)(1) 当整个装置以加速度a=10 m·s-2上升时,由式(3)可得绳所受张力的值为FT=5.94 ×103 N乙对甲的作用力为F′N2=-F N2=-m2 (g +a)=-1.98 ×103 N(2) 当整个装置以加速度a=1 m·s-2上升时,得绳张力的值为FT=3.24 ×103 N此时,乙对甲的作用力则为F′N2=-1.08 ×103 N由上述计算可见,在起吊相同重量的物体时,由于起吊加速度不同,绳中所受张力也不同,加速度大,绳中张力也大.因此,起吊重物时必须缓慢加速,以确保起吊过程的安全.2 -8 如图(a)所示,已知两物体A 、B 的质量均为m =3.0kg 物体A 以加速度a =1.0 m·s-2 运动,求物体B 与桌面间的摩擦力.(滑轮与连接绳的质量不计)分析 该题为连接体问题,同样可用隔离体法求解.分析时应注意到绳中张力大小处处相等是有条件的,即必须在绳的质量和伸长可忽略、滑轮与绳之间的摩擦不计的前提下成立.同时也要注意到张力方向是不同的.解 分别对物体和滑轮作受力分析[图(b)].由牛顿定律分别对物体A 、B 及滑轮列动力学方程,有m A g -F T =m A a (1) F ′T1 -F f =m B a ′ (2) F ′T -2F T1 =0 (3) 考虑到m A =m B =m , F T =F′T , F T1 =F ′T1 ,a ′=2a ,可联立解得物体与桌面的摩擦力()N 2.724f =+-=a m m mg F题 2-8 图讨论 动力学问题的一般解题步骤可分为:(1) 分析题意,确定研究对象,分析受力,选定坐标;(2) 根据物理的定理和定律列出原始方程组;(3) 解方程组,得出文字结果;(4) 核对量纲,再代入数据,计算出结果来. 2 -9 质量为m ′的长平板A 以速度v ′在光滑平面上作直线运动,现将质量为m 的木块B 轻轻平稳地放在长平板上,板与木块之间的动摩擦因数为μ,求木块在长平板上滑行多远才能与板取得共同速度?分析 当木块B 平稳地轻轻放至运动着的平板A 上时,木块的初速度可视为零,由于它与平板之间速度的。

大物习题解答-大学物理习题答案(许瑞珍_贾谊明)-第2章 质点动力学

大物习题解答-大学物理习题答案(许瑞珍_贾谊明)-第2章 质点动力学

第二章 质点动力学2-1如本题图,A 、B 两物体质量均为m ,用质量不计的滑轮和细绳连接,并不计摩擦,则A 和B 的加速度大小各为多少 。

解:如图由受力分析得(1)(2)2(3)2(4)ggA AB B A B A BA B mg T ma T mg ma a a T T a a -=-===1解得=-52=-52-2如本题图所示,已知两物体A 、B 的质量均为m=3.0kg ,物体A 以加速度a =1.0m/s 2运动,求物体B 与桌面间的摩擦力。

(滑轮与连接绳的质量不计)解:分别对物体和滑轮受力分析(如图),由牛顿定律和动力学方程得,()()()1f 111f (1)''(2)2'(3)'2(4)5'6'7(4)7.22A T A TB T T A B T T T T m g F m a F F m a a a F F m m m F F F F mg m m aF N-=-======-+===解得2-3 如图所示,细线不可伸长,细线、定滑轮、动滑轮的质量均不计,已知314m m =,322m m =。

求各物体运动的加速度及各段细线中的张力。

解:设m 1下落的加速度为a 1,因而动滑轮也以a 1上升。

再设m 2相对动滑轮以加速度a ′下落,m 3相对动滑轮以加速度a ′上升,二者相对地面的加速度分别为:1a a -'(下落)和1a a +'(上升),设作用在m 1上的线中张力为T 1,作用在m 2和m 3上的线中张力为T 2。

列出方程组如下:习题2-2图AB 习题2-1图a AmgT A T B a Bmg习题2-3 图211332122211112)()(T T a a m g m T a a m T g m a m T g m =+'=--'=-=- 代入314m m =,322m m =,可求出:51g a =,52g a =',52g a =,533g a =,g m T 1154=,g m T 1252=2-4光滑的水平面上放置一半径为R 的固定圆环,物体紧贴环的内侧作圆周运动,其摩擦系数为μ。

理论力学(第二版)参考答案上部

理论力学(第二版)参考答案上部

理论力学(第二版)参考答案上部(一~三章)第一章1.2写出约束在铅直平面内的光滑摆线上运动的质点的微分方程,并证明该质点在平衡位置附近作振动时,振动周期与振幅无关. 解:设s为质点沿摆线运动时的路程,取=0时,s=0S== 4 a (1)设为质点所在摆线位置处切线方向与x轴的夹角,取逆时针为正,即切线斜率=受力分析得:则,此即为质点的运动微分方程。

该质点在平衡位置附近作振动时,振动周期与振幅无关,为.1.3证明:设一质量为m的小球做任一角度θ的单摆运动运动微分方程为θθθFrrm=+)2(θθsinmgmr= ①给①式两边同时乘以dθθθθθdgdr s i n=对上式两边关于θ 积分得cgr+=θθc o s212②利用初始条件θθ=时0=θ 故cosθgc-=③由②③可解得c o sc o s2-θθθ-∙=lg上式可化为dtdlg=⨯-∙θθθcoscos2-两边同时积分可得θθθθθθθθd g l d g l t ⎰⎰---=--=020222002sin 12sin 10012cos cos 12进一步化简可得θθθθd g l t ⎰-=0002222sin sin 121由于上面算的过程只占整个周期的1/4故⎰-==02022sin2sin124T θθθθd g l t由ϕθθsin 2sin /2sin 0=两边分别对θϕ微分可得ϕϕθθθd d cos 2sin2cos=ϕθθ202sin 2sin 12cos-=故ϕϕθϕθθd d 202sin 2sin 1cos 2sin2-= 由于00θθ≤≤故对应的20πϕ≤≤故ϕϕθϕθϕθθθθπθd g l d g l T ⎰⎰-=-=202022cos 2sinsin 2sin 1/cos 2sin42sin2sin 2故⎰-=2022sin 14πϕϕK d g l T 其中2sin 022θ=K通过进一步计算可得g lπ2T =])2642)12(531()4231()21(1[224222 +⨯⨯⨯⨯-⨯⨯⨯⨯++⨯⨯++n K nn K K1.5解:如图,在半径是R的时候,由万有引力公式,对表面的一点的万有引力为, ①M为地球的质量;可知,地球表面的重力加速度g , x为取地心到无限远的广义坐标,,②联立①,②可得:,M为地球的质量;③当半径增加,R2=R+,此时总质量不变,仍为M,此时表面的重力加速度可求:④由④得:⑤则,半径变化后的g 的变化为⑥对⑥式进行通分、整理后得:⑦对⑦式整理,略去二阶量,同时远小于R ,得⑧则当半径改变 时,表面的重力加速度的变化为:。

大学物理学第二版 习题解答

大学物理学第二版 习题解答

大学物理学习题答案习题一答案 习题一1.1 简要回答下列问题:(1) 位移和路程有何区别在什么情况下二者的量值相等在什么情况下二者的量值不相等 (2) 平均速度和平均速率有何区别在什么情况下二者的量值相等(3) 瞬时速度和平均速度的关系和区别是什么瞬时速率和平均速率的关系和区别又是什么 (4) 质点的位矢方向不变,它是否一定做直线运动质点做直线运动,其位矢的方向是否一定保持不变(5) r ∆v 和r ∆v 有区别吗v ∆v 和v ∆v有区别吗0dv dt =v 和0d v dt=v 各代表什么运动 (6) 设质点的运动方程为:()x x t =,()y y t =,在计算质点的速度和加速度时,有人先求出r =drv dt= 及 22d r a dt =而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即v = 及 a =你认为两种方法哪一种正确两者区别何在(7) 如果一质点的加速度与时间的关系是线性的,那么,该质点的速度和位矢与时间的关系是否也是线性的(8) “物体做曲线运动时,速度方向一定在运动轨道的切线方向,法向分速度恒为零,因此其法向加速度也一定为零.”这种说法正确吗(9) 任意平面曲线运动的加速度的方向总指向曲线凹进那一侧,为什么(10) 质点沿圆周运动,且速率随时间均匀增大,n a 、t a 、a 三者的大小是否随时间改变 (11) 一个人在以恒定速度运动的火车上竖直向上抛出一石子,此石子能否落回他的手中如果石子抛出后,火车以恒定加速度前进,结果又如何1.2 一质点沿x 轴运动,坐标与时间的变化关系为224t t x -=,式中t x ,分别以m 、s 为单位,试计算:(1)在最初s 2内的位移、平均速度和s 2末的瞬时速度;(2)s 1末到s 3末的平均加速度;(3)s 3末的瞬时加速度。

解:(1) 最初s 2内的位移为为: (2)(0)000(/)x x x m s ∆=-=-=最初s 2内的平均速度为: 00(/)2ave x v m s t ∆===∆ t 时刻的瞬时速度为:()44dxv t t dt==- s 2末的瞬时速度为:(2)4424/v m s =-⨯=-(2) s 1末到s 3末的平均加速度为:2(3)(1)804/22ave v v v a m s t ∆---====-∆ (3) s 3末的瞬时加速度为:2(44)4(/)dv d t a m s dt dt-===-。

大学物理第二版习题答案

大学物理第二版习题答案

大学物理第二版习题答案大学物理第二版习题答案:探索自然规律的奥秘在大学物理学习中,习题是检验学生对知识掌握程度的重要手段。

大学物理第二版习题答案不仅是学生们学习的辅助工具,更是对自然规律的探索和理解的奥秘之窗。

物理作为一门基础科学,研究的是自然界中各种现象和规律。

通过学习大学物理,我们可以了解到宇宙的起源、物质的结构、能量的转换等各种自然规律。

而通过解答大学物理第二版习题,我们可以更深入地理解这些规律,并且在实践中加深对知识的理解和掌握。

大学物理第二版习题答案涵盖了力学、热学、电磁学、光学等多个领域的问题,通过解答这些习题,我们可以逐步建立起对自然规律的认识和理解。

在解答习题的过程中,我们需要动脑思考、分析问题,并且运用所学的知识进行推理和计算,这样才能得出正确的答案。

通过这样的过程,我们不仅能够巩固所学的知识,更能够培养自己的逻辑思维能力和问题解决能力。

除此之外,大学物理第二版习题答案也可以帮助我们发现和理解一些平时不容易察觉到的自然规律。

通过解答习题,我们可以发现一些有趣的现象,比如光的折射规律、电磁场的作用等,这些都是我们在日常生活中不容易观察到的现象。

通过这样的学习和实践,我们可以更好地理解自然规律,同时也能够更好地应用这些规律来解决实际问题。

总的来说,大学物理第二版习题答案不仅是学习物理知识的工具,更是我们探索自然规律的奥秘之窗。

通过解答这些习题,我们可以更深入地理解自然规律,培养自己的思维能力和解决问题的能力。

希望大家在学习物理的过程中,能够善于运用大学物理第二版习题答案,不断探索自然规律的奥秘,为科学进步和人类发展做出自己的贡献。

《大学物理学》第二版上册课后答案

《大学物理学》第二版上册课后答案

大学物理学习题答案习题一答案 习题一1.1简要回答下列问题:(1) 位移和路程有何区别?在什么情况下二者的量值相等?在什么情况下二者的量值不相等?(4)(5)r ∆和r ∆有区别吗?v ∆和v ∆有区别吗?0dv=和0d v =各代表什么运动? (6)先求出22r x y =+,然后根据你认为两种方法哪一种正确?两者区别何在?(7) 如果一质点的加速度与时间的关系是线性的,那么,该质点的速度和位矢与时间的关系是否也是线性的?(8) “物体做曲线运动时,速度方向一定在运动轨道的切线方向,法向分速度恒为零,因此其法向加速度也一定为零.”这种说法正确吗?(9) 任意平面曲线运动的加速度的方向总指向曲线凹进那一侧,为什么? (10) 质点沿圆周运动,且速率随时间均匀增大,n a 、t a 、a 三者的大小是否随时间改变?(11) 一个人在以恒定速度运动的火车上竖直向上抛出一石子,此石子能否落回他的手中?如果石子抛出后,火车以恒定加速度前进,结果又如何?m 、s 为s 3末(1)时间,加速度均匀增加b 。

求经过t 时间后,质点的速度和位移。

解: 由题意知,加速度和时间的关系为 利用dv adt =,并取积分得000vtb dv a t dv τ⎛⎫=+ ⎪⎝⎭⎰⎰,202b v a t t τ=+ 再利用dx vdt =,并取积分[设0t =时00x =]得xtx dx vdt =⎰⎰,230126b x a t t τ∆=+ 1.4 一质点从位矢为(0)4r j =的位置以初速度(0)4v i =开始运动,其加速度与时间的关系为(3)2a t i j =-.所有的长度以米计,时间以秒计.求:(1)经过多长时间质点到达x 轴; (2)到达x 轴时的位置。

12i其加速度与坐标的关系为a ω=-0=t 时即得 2022122212021221x x v v ωω+-=-由此给出 v =±,20202x v A +⎪⎭⎫ ⎝⎛=ω1.6 一质点的运动方程为k t j t i t r++=24)(,式中r ,t 分别以m 、s 为单位。

大学物理(北邮)第二版上参考答案

大学物理(北邮)第二版上参考答案

大学物理(北邮)第二版上参考答案习题解答第一章质点运动学1-1 (1) 质点t时刻位矢为:r (3t 5)i 12t2 3t 4j(m)(2) 第一秒V rt 14(12 i 20 j) 3 i 5 j(m s 1)(4) 速度Vdrt 3 i ( t 3) j(m s 1d)∴V 14 3i (4 3)j 3i 7j(m s)(5) 前4秒平均加速度a Vt V4 V4 0 7 34j j(m s 2)(6) 加速度a dVj(m s 2a dt)4 j(m s 2)1-2 v dxdt t3 3t2 2x dx vdt c 1434t t2t c当t=2时x=4代入求证c=-12 即x 14t4 t3 2t 12 v t3 3t2 2a dvdt 3t2 6t将t=3s代入证1x 41134(m)v3 56(m s 1)a3 45(m s 2)(1) 由运动方程 x 4t2消去t得轨迹方程y 32tx (y 3)2 0(2) 1秒时间坐标和位矢方向为x1 4my1 5m[4,5]m:tg yx 1.25, 51.3(3) 第1秒基本上未超过25g.1.80s(1)设第一块石头扔出后t秒未被第二块击中,则h v10t 2gt2代入已知数得2 1-3111 15t 9.8t2 2解此方程,可得二解为t1 1.84s,第一块石头上升到顶点所用的时间为 t1 1.22stm v10/g 15/9.8 1.53s由于t1 tm,这对应于第一块石头回落时与第二块相碰;又由于t1 tm这对应于第一块石头上升时被第二块赶上击中.以v20和v20分别对应于在t1和t1时刻两石块相碰时第二石块的初速度,则由于 h v20(t1 t1)所以1g(t1 t1)2 2hv20 11g(t1 t1)211 9.8 (1.84 1)2t1 t11.84 117.2m/s 同理.v20 h 11 g(t1 t1)211 9.8 (1.22 1)21.22 1t1 t151.1(m/s)(2) 由于 t2 1.3s t1,所以第二石块不可能在第一块上升时与第一块相碰.对应于t1时刻相碰,第二块的初速度为v20 h 11g(t1 t2)211 9.8 (1.84 1.3)2t1 t21.84 1.323.0(m/s)1-7 以l表示从船到定滑轮的绳长,则v0 d l/dt.由图可知s l2 h2于是得船的速度为习题1-7图3dsv dt负号表示船在水面上向岸靠近.船的加速度为dls2 h2 v0 22dtsl h ld dvla 22dt dl l h2 dlh2v0 v0 3 s dt负号表示a的方向指向岸边,因而船向岸边加速运动.1-8 所求位数为2r4 2n2r4 2(6 104)2 0.15 4 102gg60 9.81-9 物体A下降的加速度(如图所示)为2h2 0.4 0.2m/s2 22t2此加速度也等于轮缘上一点在t 3s时的切向加速度,即aat 0.2(m/s2)在t 3s时的法向加速度为v 2(att)2(0.2 3)2an 0.36(m/s2) RR1.02习题1-9图习题1-10图1-10 a 1.2m/s,t0 0.5s,h0 1.5m.如图所示,相对南面,小球开始下落时,它和电梯的速度为v0 at0 1.2 0.5 0.6(m/s)以t表示此后小球落至底板所需时间,则在这段时间内,小球下落的距离为h v0t电梯下降的距离为12gt 241h v0t a t2 2又h0 h h由此得1(g a)t2 2t而小球相对地面下落的距离为2h0 g a2 1.5 0.59s 9.8 1.2h v0t 12gt 21 9.8 0.592 2 0.6 0.592.06m1-11 v风地 v风人v人地2v0人地,速度矢量合成如图(b)两图中v风地应是画出速度矢量合成图(a)又v风地 v风人同一矢量.可知(a)图必是底角为45 的等腰直角三角形,所以,风向应为西北风,风速为v风地 v0人地45 2v0人地4.23(m s 1)1-12 (1) t 习题1-11图2L2 vLL2vL (2) t t1 t2 2v u v u v u222L u 1 v vLL (3) t t1 t2 ,如图所示风速u由东向西,由速度v v22合成可得飞机对地速度v u v,则V v u. 1习题1-12图5t 2L2L 22v v u2L u v v 2 证毕1-13 (1)设船相对岸的速度为V (如图所示),由速度合成得V u VV的大小由图1.7示可得V V cos u cos 即V cos V u cos 3 2而V sin usin 2船达到B点所需时间t 3 2习题1-13图in1 1 2OBD D 1000(s) VVscos sin AB两点之距S Dctg D将式(1)、(2)代入可得S D(3 3) 1268(m)D1 103(2) 由t Vsin usin船到对岸所需最短时间由极值条件决定dt1 1 c os 0 2d u sins 0,即co /2故船头应与岸垂直,航时最短.将 值代入(3)式得最短航时为tmin(3) 设OB l,则1 1031 103 0.5 103s 500(s) usin /22DV DDu2 V2 2uVcos l sin Vsin usin欲使l最短,应满足极值条件.6dlD u2 V2 2uVcosa d u c osasinu Vsin2asin2a u2 V2 2uVcos 02u2 V2简化后可得cosa u Vcos 1 0即cos2a 136cos 1 0 解此方程得cos 23cos 123 48.2故船头与岸成48.2 ,则航距最短.将 值代入(4)式得最小航程为100022 32 2 2 3 2lv2 2uvcos 3min D u2u c os22 22 31.5 103m 1.5(km)AB两点最短距离为S l22minmin D .5 1 1.12(km)第二章质点动力学2-1 (1)对木箱,由牛顿第二定律,在木箱将要被推动的情况下如图所示,x向:Fmincos f max 0y向:N F minsin M g 0还有fmax sN 习题2-1图解以上三式可得要推动木箱所需力F的最小值为Fmin sMgcosssin在木箱做匀速运动情况下,如上类似分析可得所需力F的大小为7Fmin kMg cos ksin(2)在上面Fmin的表示式中,如果cos ssin 0,则Fmin ,这意味着用任何有限大小的力都不可能推动木箱,不能推动木箱的条件是cos ssin 0由此得 的最小值为arctan2-2 (1)对小球,由牛顿第二定律x向:Tcos N sin may向:Tsin N cos m g 0联立解此二式,可得1 sT m(acos g sin ) 0.5 (2 cos30 9.8sin30 ) 3.32(N)N m(gcos a sin ) 0.5 (9.8 cos30 2sin30 ) 3.74(N)由牛顿第三定律,小球对斜面的压力N N 3.74(N)(2)小球刚要脱离斜面时N=0,则上面牛顿第二定律方程为Tcos ma,由此二式可解得Tsin mg 习题2-2图a g/tan 9.8/tan30 17.0m/s22-3 要使物体A与小车间无相对滑动,三物体必有同一加速度a,且挂吊B的绳应向后倾斜。

大学物理第1章(许瑞珍、贾谊明版)

大学物理第1章(许瑞珍、贾谊明版)

v v
B
用 v t 可粗略描述质点速度大小和方向改变的快慢, 称为平均加速度 。表示为:
v a t
第一章 质点运动学
瞬时加速度:当△t 趋于 0 时, 求得平均加速度的极
限,表示质点通过A 点的瞬时加速度,简称加速度。
表示为
2 v dv d dr dr a lim ( ) 2 t 0 t dt dt dt dt
例: 质量为5kg可视为质点的物体从原点开始运动,其
加速度为 a (0.4 1.2t )i 1.6 j (设运动开始记时,t 为运动时间),求任意时刻质点的速度及运动方程。
dv 解:因为加速度 a (0.4 1.2t )i 1.6 j dt
t t v a dt (0.4 1.2t )i 1.6 j d t 0 0
dr v dt 2 dv d r a 2 dt dt
位置变化率
速度
速度变化率
加速度
第一章 质点运动学
下列各式分别表示何种运动?
(1)
(2)
dr 0 dt
dr 0 dt
静止 圆周运动 -静止
dv (4) 0 dt
dv (3) 0 dt
-匀速率运动
-匀速直线运动 (含静止)
第1章 质点运动学
首先要研究物体怎样运动,然 后才能研究物体为什么运动。
——
伽利略
伽利略(意) 1564-1642
第一章 质点运动学
内容:
1、质点运动的描述
2、直线运动
3、曲线运动
4、相对运动 重点: 1. 模型:质点、质点系 2. 概念:位矢、位移、速度、加速度、 角位移、角速度、角加速度 3. 计算:运动学的两类基本问题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章 质点的运动1-1 已知质点的运动方程为:,。

式中x 、y 的单位为m ,t 的单位为s。

试求:(1) 初速度的大小和方向;(2) 加速度的大小和方向。

23010t t x +-=22015t t y -=分析 由运动方程的分量式可分别求出速度、加速度的分量,再由运动合成算出速度和加速度的大小和方向.解 (1) 速度的分量式为t t xx 6010d d +-==v t ty y 4015d d -==v当t =0 时, v o x =-10 m·s-1 , v o y =15 m·s-1 ,则初速度大小为120200s m 0.18-⋅=+=y x v v v设v o 与x 轴的夹角为α,则23tan 00-==xy αv vα=123°41′(2) 加速度的分量式为2s m 60d d -⋅==ta xx v , 2s m 40d d -⋅-==t a y y v则加速度的大小为222s m 1.72-⋅=+=y x a a a设a 与x 轴的夹角为β,则32tan -==x ya a β β=-33°41′(或326°19′)1-2 一石子从空中由静止下落,由于空气阻力,石子并非作自由落体运动。

现测得其加速度a =A-B v ,式中A 、B 为正恒量,求石子下落的速度和运动方程。

分析 本题亦属于运动学第二类问题,与上题不同之处在于加速度是速度v 的函数,因此,需将式d v =a (v )d t 分离变量为t a d )(d =v v后再两边积分. 解 选取石子下落方向为y 轴正向,下落起点为坐标原点.(1) 由题意知 v vB A ta -==d d (1) 用分离变量法把式(1)改写为t B A d d =-vv(2)将式(2)两边积分并考虑初始条件,有⎰⎰=-t t B A 0d d d 0v vvvv得石子速度 )1(Bt e BA--=v 由此可知当,t →∞时,BA→v 为一常量,通常称为极限速度或收尾速度. (2) 再由)1(d d Bt e BAt y --==v 并考虑初始条件有 t e BA y t Bt y d )1(d 00⎰⎰--= 得石子运动方程)1(2-+=-Bt e BAt B A y1-3 一个正在沿直线行驶的汽船,关闭发动机后,由于阻力得到一个与速度反向、大小与船速平方成正比例的加速度,即a = - k v 2,k 为常数。

在关闭发动机后,试证:(1)船在t 时刻的速度大小为 100+=t kv v v ;(2)在时间t 内,船行驶的距离为 01ln(1)x v kt k=+;(3)船在行驶距离x 时的速率为v =v 0e -kx 。

[证明](1)分离变数得2d d vk t v=-, 故20d d v tv vk t v =-⎰⎰, 可得:011kt v v =+. (2)公式可化为001v v v kt=+,由于v = d x/d t ,所以:00001d d d(11(1)v )x t v v kt k v kt ==+++kt积分0001d d(1(1)xt)x v kt k v kt =++⎰⎰.因此 01ln(1)x v kt k=+. (3 ) 要求 v ( x ),可由 dxdv v dt dx dx dv dt dv a ===,有 kdx vdvdx dv v kv -=⇒=-2积分得kx x vv e v v kx v vdx k v dv -=-=⇒-=⎰⎰000,ln 0 证毕.1-4行人身高为h ,若人以匀速v 0用绳拉一小车行走,而小车放在距地面高为H 的光滑平台上,求小车移动的速度和加速度。

解:人前进的速度v 0,则绳子前进的速度大小等于车移动的速度大小,22220222203/222220()()()l v t H h dldt H h v d l dt H h v t =+-∴=-=⎡⎤-+⎣⎦h所以小车移动的速度220220)(t v h H tv v --=图1-18 习题1-4图小车移动的加速度[]2/32202202)()(tv h H v h H a +--=1-5 质点沿x 轴运动,其加速度和位置的关系为 ,a 的单位为 m/s 262x a +=2,x 的单位为 m 。

质点在x =0处,速度为10m/s ,试求质点在任何坐标处的速度值。

解:解: ∵x v v t x x v t v a d d d d d d d d ===分离变量: x x adx d )62(d 2+==υυ两边积分得 cx x v ++=322221 由题知,时,,∴0=x 100=v 50=c∴ 13s m 252-⋅++=x x v1-6 如图所示,一弹性球由静止开始自由下落高度 h 后落在一倾角的斜面上,与斜面发生完全弹性碰撞后作抛射体运动,问它第二次碰到斜面的位置距原来的下落点多远。

30=θ解:小球落地时速度为gh v 20=建立直角坐标系,以小球第一次落地点为坐标原点如图0060cos v v x =200060cos 2160cos t g t v x += (1) 00060sin v v y =200060sin 2160sin t g t v y -= (2) 第二次落地时 0=y gv t 02=所以 m gv t g t v x 8.0260cos 2160cos 202000==+=1-7一人扔石头的最大出手速率为v =25m/s ,他能击中一个与他的手水平距离L=50m ,高h=13m 的目标吗?在此距离上他能击中的最大高度是多少?解:由运动方程21cos ,sin 2x vt y vt gt θθ==-,消去t 得轨迹方程 222(1)2g y xtg tg x vθθ=-+ 以x =05.0m ,v =25ms -1代入后得2222250(1)502255020(1)520()11.254gy tg tg tg tg tg θθθθθ=-+⨯⨯=-+=--+ 取g =10.0,则当 1.25tg θ=时,max 11.25y =〈13 所以他不能射中,能射中得最大高度为max 11.25y =1-8 一质点沿半径为R 的圆周按规律2021bt t s -=v 运动,v 0 、b 都是常量。

(1) 求t 时刻质点的总加速度;(2) t 为何值时总加速度在数值上等于b ?(3) 当加速度达到b 时,质点已沿圆周运行了多少圈?分析 在自然坐标中,s 表示圆周上从某一点开始的曲线坐标.由给定的运动方程s =s (t ),对时间t 求一阶、二阶导数,即是沿曲线运动的速度v 和加速度的切向分量a t,而加速度的法向分量为a n =v 2 /R .这样,总加速度为a =a te t+a n e n .至于质点在t 时间内通过的路程,即为曲线坐标的改变量Δs =s t -s 0.因圆周长为2πR,质点所转过的圈数自然可求得.解 (1) 质点作圆周运动的速率为bt ts-==0d d v v 其加速度的切向分量和法向分量分别为b t s a t -==22d d , Rbt R a n 202)(-==v v 故加速度的大小为2402222)(R bt b R a a a tn -+=+=v其方向与切线之间的夹角为⎥⎦⎤⎢⎣⎡--==Rb bt a a θt n20)(arctan arctan v(2) 要使|a |=b ,由b bt b R R=-+4022)(1v 可得bt 0v =(3) 从t =0 开始到t =v 0 /b 时,质点经过的路程为bs s s t 2200v =-= 因此质点运行的圈数为bRR sn π4π220v ==1-9 已知质点的运动方程为:t hz t R y t R x ωπωω2,sin ,cos ===,式中ω、、h R 为正的常量。

求:(1)质点运动的轨道方程;(2)质点的速度大小;(3)质点的加速度大小。

解:(1)轨道方程为222R y x =+t hz ωπ2=这是一条空间螺旋线。

在O xy 平面上的投影为圆心在原点,半径为R 的圆,螺距为h (2)t R dtdxv x ωωsin -==2222224πωh R v v v v zyx+=++=(3) t R a x ωωcos 2-=t R a y ωωsin 2-=0=z a 222ωR a a a y x =+=1-10飞机以100m·s -1的速度沿水平直线飞行,在离地面高为100m 时,驾驶员要把物品投到前方某一地面目标处。

问:(1)此时目标在飞机下方前多远?(2)投放物品时,驾驶员看目标的视线和水平线成何角度?(3)物品投出2s 后,它的法向加速度和切向加速度各为多少? 解:(1)21y gt t 2452x m ∴== =,(2) 5.12==θxyarctg(3)2222n v dv dt 1.96/,10.0(m 9.80/,10.0(9.62/9.8)t ta a m s g a ga m s g m s ∴====∴=== 2=或1.88/s ,g=9.8)或,g=1-11一无风的下雨天,一列火车以v 1=20m/s 的速度匀速前进,在车内的旅客看见玻璃窗外的雨滴和垂线成75°角下降,求雨滴下落的速度v 2。

(设下降的雨滴作匀速运动)解:以地面为参考系,火车相对地面运动的速度为V 1,雨滴相对地面竖直下落的速度为V 2,旅客看到雨滴下落速度V 2’为相对速度,它们之间的关系为22'v v v 1=+121/75 5.36v v tg ms -∴==1-12升降机以加速度a 0=1.22m·s -2上升,当上升速度为2.44m·s -1时,有一螺帽自升降机的天花板脱落,天花板与升降机的底面相距2.74m ,试求:(1)螺帽从天花板落到底面所需时间;(2)螺帽相对于升降机外固定柱子的下降距离。

解:(1)以升降机为参考系,此时,螺丝相对它的加速度为a’=g+a,螺丝落到底面时,有210()20.705h g a t t s=-+==(2)由于升降机在t 时间内的高度为201'2h v t at =+则'0.716d h h m =-=1-13飞机A 相对地面以v A =1000km/h 的速率向南飞行,另一飞机B 相对地面以v B =800 km/h 的速率向东偏南30°方向飞行。

求飞机A 相对飞机B 的速度。

解:()1000,4001000400tg ,4052',2A B A Bv j v j v v v j j θθ==+=-+∴===-方向西偏南916/v k ==m h1-14 一人能在静水中以1.10m·s -1的速度划船前进,今欲横渡一宽为1000m 、水流速度为0.55m·s -1的大河。

相关文档
最新文档