laser

合集下载

laser 测量原理

laser 测量原理

laser 测量原理
激光测距(laser distance measuring)是以激光器作为光源进行测距。

根据激光工作的方式,可以分为连续激光器和脉冲激光器。

激光测距的原理主要是基于光速和时间的关系,通过测量光在空气中传播的时间来计算距离。

对于脉冲激光测距,测距仪发射出的激光经被测量物体的反射后又被测距仪接收,测距仪同时记录激光往返的时间。

光速和往返时间的乘积的一半,就是测距仪和被测量物体之间的距离。

脉冲法测量距离的精度一般是在±10厘米左右,而测量盲区一般是1米左右。

此外,还有相位式激光测距,主要使用连续输出的氦氖、氩离子、氪镉等气体激光器。

相位式激光测距的原理是利用激光器的频率稳定度和传播速度,通过测量相位差来计算距离。

相位式激光测距的精度较高,可以达到毫米级别,但测量范围较小。

以上内容仅供参考,如需获取更多信息,建议查阅关于激光测距的资料或者咨询专业人士。

激光镭射原理

激光镭射原理

激光镭射原理
激光镭射(Laser)是一种特殊的光源,具有高亮度、高单色性和高相干性等特点。

激光镭射的产生原理主要是通过受激辐射和光放大来实现的。

在激光镭射的产生过程中,需要一个激活介质来提供辐射能,使得原子或分子处于受激态,然后通过光放大的过程来放大光子,最终产生激光。

激光镭射的产生过程主要包括三个步骤,激活、放大和输出。

首先是激活过程,激活介质受到外部能量的激发,使得原子或分子处于受激态。

在受激态下,原子或分子的能级结构发生变化,能级间的电子跃迁将产生辐射。

接着是放大过程,通过光放大器将受激辐射放大,形成一束相干光。

最后是输出过程,将放大后的光输出为激光。

激光镭射的产生原理需要满足三个条件,首先是激活介质必须具有受激辐射的
能级结构,能够吸收外部能量并处于受激态;其次是需要一个外部能源来提供激活介质的激发能量,常见的外部能源包括光、电、化学和核能等;最后是需要一个光学共振腔来放大激活介质发出的光,形成激光输出。

激光镭射广泛应用于医疗、通信、制造等领域。

在医疗领域,激光镭射被用于
手术刀、激光治疗仪等医疗设备中,具有精准、无创伤的特点。

在通信领域,激光镭射被用于光纤通信、激光雷达等设备中,具有高速、大容量的传输优势。

在制造领域,激光镭射被用于激光切割、激光焊接等工艺中,具有高效、精密的加工特点。

总之,激光镭射的产生原理是通过受激辐射和光放大来实现的,需要满足一定
的条件才能产生激光。

激光镭射在医疗、通信、制造等领域有着广泛的应用前景,将会在未来发展中发挥越来越重要的作用。

激光器及其应用介绍

激光器及其应用介绍

激光器及其应用介绍激光器(Laser)是一种能产生高度聚束、单色、相干、高能量密度的光束的装置。

它通过激活外部的能量转换装置来产生激光,这种装置可以是光电子元器件、光纤、气体、固体或半导体材料。

激光器的光束特性使其在很多领域都有广泛的应用。

激光器的应用领域非常广泛,下面将对其中的几个主要领域进行介绍。

1.医疗领域激光器在医疗领域有着广泛的应用。

激光手术刀可以通过高度聚焦的激光束进行手术,减少了手术损伤和出血,提高了手术效果。

激光剥蚀术可以用来治疗角膜病变,如近视、远视、散光等。

激光切割术可以用来治疗肿瘤、寻找血管等。

此外,激光器还可以被用来进行皮肤美容,如去除斑点、减少皱纹等。

2.通信领域激光器在通信领域的应用非常广泛。

光纤通信系统中的光源通常使用激光器,它可以产生高强度的单色光束,可以在长距离传输中保持信号强度和质量不变。

激光器还可以通过频率调制技术进行信息传输,实现光纤通信的高速率和高容量。

3.材料加工领域激光器在材料加工领域有着广泛的应用。

激光切割可以用来切割金属、塑料、木材等不同类型的材料。

激光焊接可以用来焊接金属和塑料。

激光打标可以用来在材料表面进行打标和刻字。

激光烧蚀可以用来进行表面清理和剥离。

4.科学研究领域激光器在科学研究领域有着广泛的应用。

由于激光器在时间上的极高分辨率,可以用来进行超快速和超高速的实验研究。

激光器在物理、化学、生物等领域中被广泛应用,用来研究物质的结构和性质。

激光光谱学技术可以用来研究原子和分子的能级结构和光谱特性。

5.军事领域激光器在军事领域有着重要的应用。

激光瞄准器可以用来对准目标,并提供精准的引导和打击。

激光测距仪可以用来测量目标的距离,从而进行精确的射击。

激光通信系统可以用来进行无线通信,提供安全和高效的通信手段。

除了以上几个领域之外,激光器还在很多其他领域中有广泛应用,如环境监测、激光制造、激光显示、激光雷达、激光测绘等。

激光器的研发和应用将为人类的生产生活带来更多的便利和创新。

laser(激光器)——外文原著(大量彩图)第一章

laser(激光器)——外文原著(大量彩图)第一章

Introduction in Optics I:I-1)Electro-magnetic WavesThe discussion of electric and magnetic fields can be classified in two general categories.The first includes fields that do not vary with time.The electrostatic field of a distribution of charges at rest and the magnetic field of a steady current in a conductor are examples of fields,which,while they may vary from point to point in space,do not vary with time at any individual point.For such situations it is possible to treat the electric field and magnetic fields independently,without worrying about interactions between the fields.The second category includes situation in which the fields do vary with time,and in all such cases it is not possible to treat the fields independently.Faraday’s law tells us that a time-varying magnetic field acts as source of electric field.This field is manifested in the induced electromotive forces(emf’s)in inductances and transformers.Similarly,in developing the general formulation of Ampere’s law,which is valid for charging capacitors and similar situations as well as for ordinary conductors, we found it necessary to regard a changing electric field as a source of magnetic field.Therefore,when either field is changing with time,a field of the other kind is induced in adjacent regions of space.We are led to consider the possibility of an electromagnetic disturbance,consisting of time-varying electric and magnetic fields,which can propagate through space from one region to another,even when there is no matter in the intervening region. Such a disturbance,if it exists will have the properties of a wave,and the appropriate descriptive term is electromagnetic wave.Such waves do exist; radio and television transmission,x-ray and in the current context most important:light.Figure I-1-1visualizes such electromagnetic wave propagation.yxFigure I-1-1:Electromagnetic monochromatic wave.E and B correspond to the electric and magnetic field.Note the transverse character of the wave.The magnitudes of the field vectors E and B are in phase and are related by E =cB ,with01εµ=c ,(I-1-1)where,c (=2.9979246×108m s -1)is the speed of light in the vacuum,where µ0(=1.2566×10-6Vs V -1m -1)and ε0(=8.8542×10-12As V -1m -1)are the permeability and permittivity (i.e.,the dielectric constant)of the vacuum.The space (x )and time (t )dependence of the electric and magnetic field is described byE y =E y0sin(kx-ωt )(I-1-2)andB z =B z0sin(kx -ωt ),(I-1-3)where E y0and B z0is the amplitude of the E and B field,respectively;k=2π/λis the wave number and ω=2πν is the angular frequency which depend on the wavelength λand frequency ν,respectively.As shown in figure I-1-1,in vacuum (and air)the E and B fields at any point are in phase.In a dissipative medium,however,a phase shift between the fields takes place.In good conductors,the magnetic field is much larger than the electric field and exhibits a phase delay of approximately 45o .In non-dissipative media,as e.g.glass for visible light,the E and B fields behave similar as in vacuum and are in phase.The energy per photon of a monochromatic (=one color)wave is given byλνchh E ==,(I-1-4)where h is Planck’s constant (=6.626×10-34J s),νis the frequency and λis the wavelength.The electromagnetic spectrum is shown in figure I-1-2.Specifically in semiconductor optics the energy is expressed in eV rather than in J.Hence,it is convenient to apply the following relation to convert nm (10-9m)into eV,)nm (1240)eV (λ=E .(I-1-5)Example:One of the possible emissions of an Argon laser is at514.5nm. What is the energy of the emission in nm?Solution:E=1240/514.5=2.41eV.The electromagnetic waves cover an extremely broad spectrum of wavelengths,as shown in figure I-1-2.We can detect only a very small segment of this spectrum directly through our sense of sight from approximately750to430nm.Figure I-1-2:The electromagnetic spectrum.I-2Refraction and ReflectionWe shall begin our introduction in optical phenomena with reflection and refraction at a boundary surface that has been formed by the meeting of two different media.The velocity of light in a medium is below the velocity of light in the vacuum and is given by v=c/n,where n is the refractive index of the medium.We will see that the refractive index does not only determine the light velocity in a medium but it is also an essential parameter for the reflection.Let’s consider that we investigate the directions of the incident, reflected and refracted rays of monochromatic light.We fill find the following results illustrated by Fig.I-2-1:1.The incident,reflected and refracted beams and the normal to thesurface,all lie in the same plane.2.The angle of reflectionφr is equal to the angle of incidenceφa(φr=φa).3.For a given pair of substances,a and b,on opposite sides of the surfaceof separation,the ratio of the sine of the angleφa(between the beam in substance a and the normal)and the sine of angleφb(between the beam in substance b and the normal)is a constant(sinφa/sinφb=constant).If the a beam of monochromatic light travels in vacuum (or air),making an angle of incident φ0with the normal to the surface of a substance a ,we writea aon =φsin sin ,(I-2-1)where n a is the refractive index of substance a .The refractive index is always greater than unity and depends not only on the substance but on the wavelength of the light.I-3Snell’s law of refractionApplying equation (I-2-1)to the to substances a and b in figure I-3-1,we have sin φ0/sin φa =n a and sin φ0/sin φb =n b .Dividing the second equation by the first,we obtain sin φa /sin φb =n b /n a and from this the best known form of Snell’s law of refraction ,n a sin φa =n b sin φb .(I-3-1)The angles in figure I-3-1are independent of the thickness and space between the two plates and are the same when the space shrinks to nothing,as in figureI-3-2.Figure I-3-1:The transmission of light through parallel plates of different substances.The incident and emerging rays areparallel.Figure I-3-2:The figure shows the light rays at the interface of substances a and b without space between the plates.The angles are the same as these in figureI-3-1.Example:In figure I-3-3material a is water and b is glass with index of refraction of 1.52.If the incident ray makes an angle of 60o with the normal,find the directions of the reflected and refractedrays.Solution:Using equation (I-3-1),we find (1.33)(sin600)=(1.52)(sin θb )and θb =arcsin[(1.33)(sin60o )/1.52]=49.3o .I-4Total Internal ReflectionFigure I-4-1shows a number of rays diverging from a point source P in a medium a of index n a and striking the surface of a second medium b of index n b ,where n a >n b.Figure I-4-1:Total internal reflection.The angle of incidence φa ,for which the angle of refraction is 90o ,is called the criticalangle.The angle of incidence for which the refracted ray emerges tangent to the surface is called critical angle φcrit .At this angle φb =90o and Snell’s law becomes n a sin φa =n b ,since sin90o =1.We then have with φa =φcritabcrit sin n n =φ.(I-4-1)For a glass/air interface with n =1.52for the glass,sin φcrit =1/1.52and it follows φcrit =41.1o .The fact that φcrit is less than 45o makes it possible to use a triangular prism with angles 45o ,45o ,and 90o as a totally reflecting surface Such a prism is called Porro prism and is shown in figure I-4-2(a).An application of total internal reflection is shown in figure I-4-2(b).Example:A persiscope uses two totally reflecting 45o -45o -90o prisms.It springs a leak,and the bottom prisms is covered with water.Explain why the periscope no longer works.Solution:The critical angle for water (n b =1.33)on glass (n a =1.52)is φcrit =arcsin(1.33/1.52)=61.0o .The 45o angle of incidence is less than the 61o critical angle for a totally reflecting prism,so total internal reflection does not occur at the glass/water interface.Most of the light is transmitted into the water,and very little is reflected back into the prism.A very important application of total internal reflection is the fiber-optic cable shown in figure I-4-3(a).Figure I-4-3(b)shows the working principle of the cable.When a beam of light enters at one end of the transparent fiber,the light is totally reflected internally and is trapped within therod.Figure I-4-3:(a)Fiber-optic cable,used to transmit a modulated laser beam for communication purposes.(b)The so-called light pipe.The light is trapped by internal reflection,provided that the angles shown exceed the criticalangle.(b)I-5DispersionOrdinarily,white light is a superposition of waves with wavelengths extending through-out the visible spectrum.The speed of light in vacuum is the same for all wavelengths,but the speed in a material substance is different for different wavelengths.Therefore the index of refraction of a material depends on the wavelength.The dependence of the index of refraction on the wavelength is called dispersion .Figure I-5-1shows the variation of the refractive index with the wavelength for different optical materials.The value of n usually decreases with increasing wavelength and thus increases with increasing frequency.Light of longer wavelength usually has greater speed in a material than light of shorter wavelength.The brilliance of diamond is due in part to its large dispersion and in part to its unusually large refractive index (2.417).When you experience the beauty of a rainbow,you are seeing the combined effects of dispersion and total internalreflection.Figure I-5-2shows the ray of white light incident on a prism.The deviation (change of direction)produced by the prism increases with increasing the refractive index and frequency (i.e.,the energy,see equationI-1-4).Refractive IndexbyAlphabetical Listing of MaterialRefractive IndexbyIncreasing RI Value Material RI MaterialRI Air (STP)1.00029Vacuum 1.00000Amethyst (Quartz) 1.54(+1.55)Air (STP) 1.00029Beryl (Emerald) 1.57(+1.60)Water 1.333Citrine1.55Glass 1.517Corundum (Ruby,Sapphire) 1.76(+1.77)Quartz1.54(+1.55)Emerald (Beryl) 1.57(+1.60)Amethyst (Quartz) 1.54(+1.55)Diamond2.417Rock Crystal (Quartz) 1.54(+1.55)Garnet (Pyropes) 1.73-1.75Citrine1.55Garnet (Almandine) 1.76-1.83Beryl (Emerald) 1.57(+1.60)Garnet (Rhodolite) 1.76Emerald (Beryl) 1.57(+1.60)Glass1.517Topaz1.61(+1.62)Peridot (Olivine) 1.65(+1.69)Tourmaline1.62(+1.64)Quartz1.54(+1.55)Peridot (Olivine) 1.65(+1.69)Rock Crystal (Quartz) 1.54(+1.55)Garnet (Pyropes) 1.73-1.75Ruby (Corundum) 1.76(+1.77)Garnet (Rhodolite) 1.76Sapphire (Corundum) 1.76(+1.77)Garnet (Almandine) 1.76-1.83Topaz1.61(+1.62)Ruby (Corundum) 1.76(+1.77)Tourmaline 1.62(+1.64)Sapphire (Corundum)1.76(+1.77)Vacuum 1.00000Corundum (Ruby,Sapphire) 1.76(+1.77)Water1.333'High'Zircon 1.96(+2.01)High'Zircon1.96(+2.01)Diamond2.417Table I-5-1:Refractive index of various materials (from /HTML/Materials3.htm).Note:refractive index listings which have two numbers [ex.1.54(+1.55)]denote materials with double refractionproperties.I-6PolarizationPolarization occurs to all transverse waves.Figure I-6-1illustrates the idea of polarization by showing a transverse wave as it travels long a rope toward a slit.The wave is said to be linearly polarized,which means that its vibration always occur along one direction.Figure I-6-1:The principle of polarization:A transverse wave is linearly polarized when its vibrations always occur along one direction.(a)The rope passes a slit parallel to the vibrations,but(b)does not pass trough a slit that is perpendicular to the vibrations.Linearly polarized light can be produced from unpolarized light with the aid of certain materials.One commercially available material goes under the name of Polaroid.As shown in figure I-6-2,such materials allow only the component of the electric field along one direction to pass through,while absorbing the field component perpendicular to this direction.Light from ordinary sources is not polarized.The“antennas”that radiate light waves are the molecules that makes up the sources.The waves emitted by any one molecule may be linearly polarized.However,any actual light source contains a tremendous number of molecules with random orientations,so the light emitted is a random mixture of waves that are linearly polarized in all-possible directions.In figure I-6-3unpolarized light is incident on a polarizer.The blue line represents the polarizing axis.The E vectors of the incident wave exhibit random directions.The polarizer transmits only the components of E parallel to the polarizing axis.The intensity of the transmitted light is exactlyFigure I-6-3:Unpolarized light is incident on the polarizer.The intensity of the transmitted linearly polarized light,measured by the photocell,is the same for all orientations of the polarizer.half of the incident unpolarized light,no matter how the polarizing axis is oriented.Here’s why:We can resolve the E field of the incident wave into a component parallel to the polarizing axis and a component perpendicular to it.Because the incident light is a random mixture of all states of polarization, these two components are,on average,equal.The(ideal)polarizer transmits only the component that is parallel to the polarizing axis,so half of the incident intensity(I0/2)is transmitted.What happens when the linearly polarized light emerging from a polarizer passes through a second polarizer,as shown in figure I-6-4?To find the transmitted intensity at intermediate values of the angleφ,we bear in mind that the intensity of an electromagnetic wave is proportional to the square of the amplitude of the wave.The ratio of the transmitted to incidentamplitude is cosφ,so the ratio of transmitted to incident intensity is cos2φ. Thus,the intensity of the light transmitted through the analyzer isI=(I0/2)cos2φ,(I-6-1)Where,I0is the maximum light intensity atφ=0.Equation(I-6-1)is called Malus’s law.Figure I-6-4:The analyzer transmits only the component that is parallel to its polarization axis.Example:In figure I-6-4the incident unpolarized light has the intensity I0. Find the intensity transmitted by the first polarizer and the second if the angle between the axes of the two filters is30o.Solution:As explained above,the intensity after the first filter is I0/2. According to equation(I-6-1)with30o,the second polarizer reduces the intensity by a factor cos230o=3/4.Thus the intensity transmitted by the second polarizer is I0/2×(3/4)=(3/8)×I0.Example:What value ofφshould be used in figure I-6-4,so that the average intensity of the polarized light reaching the photocell is one-tenth the average intensity of the unpolarized light?Solution:Using equation(I-6-1),we find I0/10=(I0/2)cos2φ.Solving this relation forφyieldsφ=arccos(1/5)(1/2)=63.4o.A further possibility to create either partially or totally polarized light is by reflection.In figure I-6-5,unpolarized light is incident on a reflectingsurface between two transparent optical materials.The plane containing the incident and reflected rays and the normal to the surface is called the plane of incidence .Figure I-6-5:When light is incident at the polarizing angle,the reflected light is linearly polarized.At one particular angle of incidence,called the polarizing angle θp ,only the light for which the E vector is perpendicular to the plane of incidence is reflected.The reflected light is therefore linearly polarized perpendicular to the plane of incidence (i.e.,parallel to the reflecting surface).In 1812,Sir David Brewster noticed that when the angle of incidence is equal to the polarizing angle θp ,the reflected and refracted ray are perpendicular to each other.The situation is shown in figure I-6-6.In this case θb =90o -θp .Using equation (I-3-1),we find sin θp /sin(90o -θp )=sin θp /cos θp =n b /n a and finally.tan a b n n p =θ(I-6-2)This relation is known as Brewster’s law .Light and other electromagnetic radiation can also have circular or elliptical polarization,i.e.,the E describes a circular or elliptical rotation.In this context polarization by birefringence is important.Birefringence occurs in calcite and other noncubic materials (hence also in various semiconductors)and some stressed plastics and cellophane.Most materials are isotropic ,that is,the speed of light passing through the material is the same in all directions.Because of their atomic structure,birefringent materials are anisotropic .The speed of light depends on its direction of propagation through the material.When a light ray is incident on such materials it may be separated into two rays called the ordinary and extraordinary ray.There is one particular direction in a birefringent material in which both rays propagate with the same speed.This direction is called the optic axis of the material.However,when light is incident at an angle to the optic axis,as shown in figure I-6-7,the rays travel in different directions and emerge separated inspace.If light is incident on a birefringent plate perpendicular to its crystal face and perpendicular to the optic axis,the two rays travel in the same direction but different speeds.The rays emerge with a phase difference that depends on the thickness of the plate and on the wavelength of the incident light.In a quarter-wave plate,the thickness is such that there is a90o phase difference between the waves of a particular wavelength when they emerge. In a half-wave plate,the rays emerge with a phase difference of180o.Suppose that the incident light is linearly polarized such that E is45o to the optic axis,as illustrated in figure I-6-8.The ordinary and extraordinary rays start out in phase and have equal amplitudes.With a quarter-wave plate,they emerge with a phase difference of90o,so the resultant components of E are E x=E0sinωt and E y=E0sin(ωt+90o)=E0cosωt (ω=2πνis the angular frequency and t represents the time).The electric field vector thus rotates in a circle and the wave is circularly polarized.Figure I-6-8:Polarized light is incident on a birefringent crystal such that E makes45o angle with the optic axis,which is perpendicular to the light beam.If the crystal is a quarter-wave plate the light behind the crystal is circularly polarized.Figure I-6-9shows the propagation of circular polarized light.If the advancing wave revolves clockwise(looking toward the source),then it’s said to be right-circularly polarized;if counterclockwise,it’s left-circularly polarized.The magnitude of E remains constant while revolving once around with every advance of one wavelength.With a half-wave plate,the wave emerge with a phase difference of 180o ,so the resultant electric field is linearly polarized with components E x =E 0sin ωt and E y =E 0sin(ωt +180o )=-E 0sin ωt .Hence,the direction of the wave polarization is rotated by 90o relative to that of the incident wave,as shown in figureI-6-10.If the phase difference between the two components of E is something other than a quarter wavelength,or if the two component wave have different amplitudes,the resulting wave is elliptically polarized.I-7Huygens’PrincipleThe principles governing reflection and refraction of light rays,discussed in I-2and I-3,were discovered experimentally long before the wave nature of the light was firmly established.These principles however can be derived from wave considerations and thus shown to be consistent with the wave nature of light.To establish this connection we use a principle called Huygens’principle(Christian Huygens in1678).According to this principle,each point on a given wavefront can be considered to be a point source of secondary wavelets.Figure I-7-1shows the plane wavefront AA’striking a mirror at point A.As can be seen from the figure,the angleφ1between the wavefront and the mirror is the same as the angle of incidenceθ1.From figure I-7-1it isFigure I-7-1:Plane wave reflected at a plane mirror.readily shown that the angle of reflection equals the angle of incidence. Figure I-7-2shows an enlargement of a portion of figure I-7-1showing AP, which is part of the original wavefront.The reflected BB’’makes anangle φ1’with the mirror that is equal to the angle of reflection θ1’between reflected ray and the normal to the mirror.The triangles ABP and BAB’’are both right triangles with a common side AB and an equal side AB’’=BP =ct .Hence,these triangles are congruent and the angles φ1and φ1’are equal,implying that θ1’=θ1.Figure I-7-3shows a plane wave incident on an air/glass interface.We apply Huygen’s construction to find the wavefront of the transmitted wave.The new wavefront BB’is not parallel to the original wavefront AP because the speeds v 1and v 2are different.From the triangle APB ,sin φ1=v 1t /AB or AB =v 1t /sin φ1=v 1t/sin θ1using the fact that φ1=θ1.Similarly,from triangle AB’B ,sin φ2=v 2t/AB or AB =v 2t /sin φ2=v 2t /sin θ2,where θ2=φ2is the angle of refraction.Equating the two values for AB ,we obtain2211sin sin v v θθ=.(I-7-1)Substituting v 1=c /n 1and v 2=c /n 2in this equation delivers Snell’s law,n 1sin θ1=n 2sin θ2.I-8Thin filmsYou have probably noticed the colored bands in a soap bubble or in the film on the surface of oily water.The bands are due to the interference of light reflected from the top to the bottom surfaces of the film.The different colors arise because of the variation in the thickness of the film,causing interference for different wavelength at different points.Such an interference effect is shown in figureI-8-1.We consider now a thin film of uniform thickness d and index of refraction n shown in figure I-8-2.To determine whether the reflected light rays interfere constructively or destructively,we must note the following fact:A wave traveling in a medium of low refractive index (air)undergoes a 180o phase change upon reflection from a medium of higher refractive index.There is no phase change in the reflected wave if it reflects from a medium of lower refractiveindex.dRay 1is reflected from the upper surface A undergoes a phase change of 180o with respect to the incident wave.On the other hand,ray 2,which is reflected from the lower surface B undergoes no phase change with respect to the incident wave.Therefore,ray 1is 180o out of phase with ray 2corresponding to path difference of λn /2.However,we must consider that ray 2travels an extra distance equal to 2d before the waves recombine.Hence,if 2d =λn /2=λ/(2n )the phase difference between both rays is 360o and the waves recombine in phase and constructive interference takes palace.In general,the condition for constructive interference is expressed as2nd =(m +1/2)λ(m =0,1,2,…)(I-8-1)and for destructive interference we have2nd =m λ.(m =0,1,2,…)(I-8-2)Thin films are of considerable importance for the formation semiconductor devices.Almost all optoelectronic devices are composed of the combination of various thin films.Concerning research and development,by means of optical spectroscopy not only the optical or optoelectronic features of semiconductors are investigated but also other features as the film thickness.Hence,in many cases optical characterization methods accompany the manufacturing steps of electronic and optoelectronic devices.For optical thickness measurements,equations (I-8-1)and (I-8-2)can be used to determine the film thickness.According to equation (I-8-2),the fringe of order m lies at λ1and that of order (m +1)at λ2.Hence,we have m λ1=(m +1)λ2so that m =λ2/(λ1-λ2).With (I-8-2)we find,2nd =λ1λ2/(λ1-λ2)and the thickness of the film is)(22121λλλλ−=n d ,(I-8-3)where λ1and λ2is the wavelength of two adjacent maxima or minima in the spectrum.Example:Figure I-8-3shows the transmission spectrum of a thin CdS film on glass.The transmittance starts at the band-gap of the material (≈500nm)and pronounced fringes at 582and 631nm are observed.More details concerning semiconductor will follow in Semiconductor Optics I &II.3003504004505005506006507007500.00.10.20.30.40.50.6582nm631nmT r a n s m i t t a n c e W avelength (nm)Figure I-8-3:Transmittance of thin film CdS on glass at room temperature.Solution:The thin film CdS exclusively causes the fringes in figure I-8-3.The glass substrate does not influence the interference effect.Hence,we insert the wavelengths of the two indicated maxima and n CdS =2.5in equation (I-8-3)and get the thickness of the film,µm 1.5m)10(495m)10m)(63110(582999=××××=−−−d .The calculation of the transmitted and reflected intensities of thin films requires the consideration of the internal reflections.Figure I-8-4shows the concept.I 0is the intensity of the incident beam,R is the reflection coefficient of the surface and backface,αis the absorption coefficient and x the thickness of the film.The transmitted and reflected intensities are summed up with a geometrical series delivering the following results for the transmittance and reflectance,xxe R e R Tr αα2221)1(−−−−=(I-8-4)and}{2α22α2e 1e )(11x x R R R Re −−−−+=.(I-8-5)Figure I-8-4:The transmitted and reflected intensities through a thin film.For many applications,the formulas)}2exp()1(1{2x R R Re α−−+=(I-8-6)and)exp()1(2x R Tr α−−=(I-8-7)are accurate enough.Example:Calculate the transmittance of the film with a thickness of 1µm,an absorption coefficient of 100cm -1and an reflection coefficient of 0.2.Solution:Tr =(1-0.2)2exp(-100cm -1×10-4cm)≈(1-0.2)2=0.64.We see,in case of effective absorption the reflection of the surface determines the transmission features of the film.。

laser

laser

激光及其在CF中的应用孟祥明一、激光的定义激光LASER,是取自英文Light Amplific ation by Stimulated Emission of Radiation的各单词头一个字母组成的缩写词。

意思是"通过受激发射光扩大"。

1964年按照我国著名科学家钱学森建议将“光受激发射”改称“激光”。

二、激光的产生原理原子中的电子的运动状态可以分为不同的能级,当电子从高能级向低能级跃迁时,会释放出相应能量的光子(自发辐射)。

同样的,当一个光子入射到一个能级并为之吸收的话,会导致电子从低能级向高能级跃迁(受激吸收);然后,部分跃迁到高能级的电子又会跃迁到低能级并释放出光子(受激辐射)。

这些运动不是孤立的,而往往是同时进行的。

当我们创造一种条件,譬如采用适当的媒质、共振腔、足够的外部电场,受激辐射得到放大从而比受激吸收要多,那么总体而言,就会有光子射出,从而产生激光。

三、激光的特点1、高方向性激光光束的发散度极小,大约只有0.001弧度,接近平行。

2、高亮度红宝石激光器的激光亮度,能超过氙灯的几百亿倍。

机构能量密度很大,短时间里聚集起大量的能量。

激光比普通光源高亿万倍,比太阳表面的亮度高几百亿倍。

亮度是衡量一个光源质量的重要指标,若将中等强度的激光束经过会聚,可在焦点出产生几千到几万度的高温。

3、高单色性激光器输出的光,波长分布范围非常窄,因此颜色极纯。

以输出红光的氦氖激光器为例,其光的波长分布范围可以窄到2×10-9nm,是氪灯发射的红光波长分布范围的万分之二。

4、高相干性激光的频率、振动方向、相位高度一致,使激光光波在空间重叠时,重叠区的光强分布会出现稳定的干涉现象。

四、CF中用到的激光由于激光有很好的方向性和干涉性,用其测量距离,精度高,为了节省空间用现在很成熟的半导体激光器或者He-Ne激光器就可以完成精密测长。

Coater中的异物检测、测长机中的定位。

Laser由来

Laser由来

LASER(一)雷射的由来雷射 Laser 之名称的由来,系由其装置之原理 ( light amplification by stimulated emission of radiation) 五个英文字取其前缀结合而成。

雷射的出现可以说是人类科学〝知而后行〞的具体实现例子。

在爱迪生发明灯泡光源的时代,人类科学是处于一种〝不知而行〞的情况,因此各式各样的东西例如木炭、羽毛、头发都拿来测试是否适合作为灯丝,一直到钨丝装上时整个爱迪生电力厂足足明亮了五分钟,于是全场试验的科学家为之一致欢呼,在此之前,他们对于钨丝是否适合作为灯丝殊无把握。

然而雷射就不同了,在雷射尚未问世之前,科学家就已预言这种高同调光的存在。

1950年二次世界大战结束后,微波技术发达,选定氨作为微波活性介质,首先出现镁射 (Maser, M 为 microwave 之缩写),然而其实用价值较低,因此仍然希望得到光束的放大作用。

1960 年由T.H.Mainman 及 A.Javan 产生世上第一部红宝石脉冲雷射。

(二)雷射的简单原理一般的光线具多相(由不同波长的光组合而成)和散发性,所以照度和距离平方成反比。

雷射光则是单相光,光线在雷射管中,反复地『反射→激发→反射』,能量逐渐累积,且光线的方向一致。

所以雷射光具有高能量及低散发性。

可以利用这个特性。

雷射是将大量的光子(photon)聚集在单一方向,使其具有高同调性及单一波长的特性,并利用光学系统将光在加工对象上聚集成一极小的范围,通常直径约在数百个微米(um)以下。

物质表面吸光子所携带的能量,进而和材料进行交互作用而产生加工的效果,但随着波长所属范围的不同,其交互作用的机制却也有相当大的差异。

雷射(LASER)是「Lignt Amplification by Stimulated Emission of Radiation」的缩写。

要了解雷射的基本原理必须先回想原子的构造。

原子由原子核与在周围绕转的电子构成,电子在一定的轨道绕转,各轨道各有一定的能量,离原子愈远的轨道能阶愈高。

光学激光技术缩写

光学激光技术缩写

光学激光技术缩写光学激光技术是当今高科技领域中的一个热门话题。

随着科技的不断进步和发展,我们对激光技术的了解和应用也逐渐加深。

在这项技术中,缩写也是非常重要的一部分,因为它们可以帮助人们更好地理解和应用激光技术。

在下面的文章中,我们将详细介绍一些常见的光学激光技术缩写。

1. LASER“LASER”是“激光”这个词的缩写,全称是“Light Amplification by Stimulated Emission of Radiation”(光子放大的受激辐射)。

这个术语最初是由美国物理学家西奥多·曼纳斯创建的,他在1958年首次使用了这个缩写。

今天,“LASER”已经成为了激光技术领域中最常用的缩略词。

2. CO2“CO2”是二氧化碳(Carbon Dioxide)的缩写,当它用于激光技术时,通常表示一种长波红外激光器。

这种激光器的波长可以达到9.4微米到10.6微米,通常用于切割和焊接不同种类的材料,比如钢铁、不锈钢、铝合金等。

3. Nd:YAG“Nd:YAG”是钕掺杂的钇铝石榴石晶体(Neodymium-doped Yttrium Aluminum Garnet)的缩写。

这种晶体通常用于制造固体激光器。

Nd:YAG激光器的波长为1.064微米,被广泛用于医疗、皮秒镭射等领域。

4. Q-switching“Q-switching”是确定激光输出的方法中最重要的技术之一,它通过调节一个叫做“Q开关”的特殊器件来控制激光器的输出。

Q-switching可以使激光器在极短的时间内输出非常高的功率,可用于制造超短激光器、雷达、制造等领域。

5. MOPA“MOPA”是“Master Oscillator Power Amplifier”的缩写,这是一种激光器系统,使用了两个不同的部分:一个被称为主振荡器(Master Oscillator)产生激光,另一个被称为功率放大器(Power Amplifier)将激光增幅到更高的功率。

laser用法

laser用法

laser用法
哎哟,说起这laser的用法,咱们得先来摆摆龙门阵。

咱四川人说话直接,laser这玩意儿,那就是个光刀子,快得很,准得很!你要是想切个啥,瞄个啥,都得靠它。

陕西的哥们,你们得听好了,这laser可不是闹着玩儿的,得使对了劲儿,才能发挥出它的威力。

北京的兄弟姐妹们,咱们也别闲着,得把这laser的用法搞明白了,以后在工作、生活中都能派上用场。

咱们四川人讲究实用,这laser嘛,首先得搞明白它的原理。

说白了,它就是利用光的特性,把能量集中到一个点上,然后“咻”地一下,就把东西给切了或者烧了。

这可比咱们以前用的那些工具快多了,也方便多了。

陕西的乡党们,你们知道不?这laser在咱们工业上可是个得力助手。

无论是焊接、切割还是打孔,它都能轻松搞定。

而且啊,它的精度还特别高,比那些传统的工具可强太多了。

北京的朋友们,你们也得学学这laser的用法。

现在科技这么发达,这玩意儿在医疗、科研、军事等领域都有广泛应用。

你们要是掌握了它的用法,那以后的发展可就不得了了。

总的来说啊,这laser是个好东西,咱们得好好利用它。

不管你是四川人、陕西人还是北京人,都得把它搞明白了,才能在这个快速发展的社会里立足。

所以啊,大家得加油了,好好学学这laser的用法吧!。

射频和激光的原理

射频和激光的原理

射频和激光的原理
射频(Radio Frequency)和激光(Laser)是两种不同的物理原理和技术。

射频原理:
射频是指在无线通信和电磁波传输中使用的频率范围,通常指从3 kHz到300 GHz的电磁波。

射频技术利用电磁场的传播特性进行信息的传输和通信。

在射频通信中,电磁波通过无线电设备发送和接收,传输信号可以是语音、数据或图像等。

射频通信的基本原理是通过调制载波频率来携带信息,然后将调制后的信号发送到接收设备进行解调还原原始信息。

这种传输方式适用于广播、电视、无线网络、手机通信等众多领域。

激光原理:
激光是指一种特殊的光,具有高度的定向性、单色性和相干性。

激光产生的过程是通过激发原子、分子或其他材料中的电子,使其从低能级跃迁到高能级,然后在受激辐射的作用下产生一束高度集中和定向的光。

激光的产生涉及到三个基本过程:吸收能量、受激辐射和光放大。

通过激活材料中的原子或分子,使其处于激发态,然后通过受激辐射产生的光子与其他激发的粒子相互作用,从而形成一束高度相干和定向的激光光束。

激光具有很多应用,包括激光器、激光切割、激光医疗、激光通信、激光雷达等领域。

其主要特点是高度的定向性、高能量密度和较远的传输距离,使其在许多领域中发挥重要作用。

总结:
射频和激光是基于不同的物理原理和技术,用于不同的应用领域。

射频主要用于无线通信和电磁波传输,而激光则用于产生高度定向和相干的光束,具有广泛的应用,包括激光器、切割、医疗、通信等。

laser波长范围

laser波长范围

laser波长范围
激光器的波长范围非常广泛,从纳米级到毫米级都有不同类型的激光器可供选择。

以下是常见的激光器波长范围的几个示例:
1. 红光激光器:波长在630纳米至700纳米之间,主要用于光纤通信、医疗和指示灯等应用。

2. 绿光激光器:波长在515纳米至532纳米之间,通常用于激光展示、医疗和测距等应用。

3. 蓝光激光器:波长在445纳米至473纳米之间,常用于高清晰度显示器、光存储和蓝光光碟等应用。

4. 紫外光激光器:波长在100纳米至400纳米之间,主要用于科学研究、半导体生产和荧光标记等应用。

5. 远红外光激光器:波长在10微米至1毫米之间,主要用于多种检测和测量应用,如红外线光谱学和热成像。

需要注意的是,不同类型的激光器在不同波长范围内具有不同的特性和应用场景。

同时,同一波长范围内可能存在多种激光器,每种激光器具有不同的输出功率和
其他参数。

因此,在选择激光器时,需要根据具体的应用需求来确定最合适的波长范围。

激光

激光

(3)方向性强 ) 激光的方向性比现在所有的其他光源都好得多, 激光的方向性比现在所有的其他光源都好得多,它 几乎是一束平行线。 几乎是一束平行线。如果把激光 发射到月球上去,历经38.4 万公里的路程后,也只 万公里的路程后, 发射到月球上去,历经 有一个直径为2km 左右的光斑。如果用 左右的光斑。 有一个直径为 的是探照灯,则绝大部分光早就在中途“开小差” 的是探照灯,则绝大部分光早就在中途“开小差” 了。 79 普通光源总是向四面八方发散的, 普通光源总是向四面八方发散的,这作为照明来说 是必要的。 是必要的。但要把这种光集中到 一点,则绝大多数能量都会被浪费掉,效率很低。 一点,则绝大多数能量都会被浪费掉,效率很低。 半导体激光器发出的光绝大部分都很集中, 半导体激光器发出的光绝大部分都很集中, 很容易射入光纤端面。 很容易射入光纤端面。
(2)相干性高 一个几十瓦的电灯泡,只能用作普通照明。如果把它 的能量集中到1m 直径的小球 内,就可以得到很高的光功率密度,用这个能量能把 钢板打穿。然而,普通光源的光是向四 面八方发射的,光能无法高度集中。普通光源上不同 点发出的光在不同方向上、不同时间里 都是杂乱无章的,经过透镜后也不可能会聚在一点上。 激光与普通光相比则大不相同。因为它的频率很单纯, 从激光器发出的光就可以步 调一致地向同一方向传播,可以用透镜把它们会聚到 一点上,把能量高度集中起来,送入光 纤,这就叫相干性高。一台巨脉冲红宝石激光器的亮 度可达1015w/cm2·sr,比太阳表面的 亮度还高若干倍。
英国制造出首件用激光缝制的衣物 新华网北京12 新华网北京 月4 日专电 英国科学家最近利用激光 代替针线成功地缝制了一件衬衫, 代替针线成功地缝制了一件衬衫,这项创举对传统服 装业提出了新的挑战。 装业提出了新的挑战。 科学家首先将一层能够吸收红外线的液体涂在衬衫要 缝合的部位,然后将边沿叠在一起,使液体夹在两层 缝合的部位,然后将边沿叠在一起, 要缝合的衣料之间, 要缝合的衣料之间,再利用低能量红外线激光照射这 个重叠部分,将这种化学液体加温使衣料稍微融化, 个重叠部分,将这种化学液体加温使衣料稍微融化, 焊接要缝合的部分。 焊接要缝合的部分。 利用这种技术焊接缝出来的各类衣物十分结实耐用, 利用这种技术焊接缝出来的各类衣物十分结实耐用, 甚至比行军用的衣物有过之而无不及,而且适用于羊 甚至比行军用的衣物有过之而无不及, 毛衣、透气衣以至目前流行的弹性衣料。 毛衣、透气衣以至目前流行的弹性衣料。

激光

激光

二.粒子数按能级分布
1.波尔兹曼分布
根据波尔兹曼分布,在热平衡条件下,处在高 能级上的粒子的数目总是少于低能级上的粒子的 数目。例如:根据波尔兹曼分布计算得知,氖原 子3s激发态与基态在常温下(T=300K),两能级的 粒子数之比为
N2/N1=e-653 <<1 这说明,在热平衡条件下,绝大多数的粒子 都处在基态,能级能量越高,粒子数越少。
• • • • • •
1962年:研制成功第一台半导体激光器。 1963年:第一台液体激光器 1964年:锁模激光器 1965年:激光参量振荡器研制成功 1966年:制成染料激光器 1967年:超短脉冲激光器 到目前为止,激光器的品种已达数千种 之多.
以光作为武器在人类历史上并非绝无仅有。相传在公 元前215年的第二次布匿战争中,西西里岛名城叙拉古遭 受罗马舰队围城。城中的伟大的科学家阿基米德利用自己 设计的抛石器将可燃油料的陶罐抛射到罗马战舰之上,然 后利用巨大的凸透镜聚焦太阳光点燃敌船,被称为“死亡 之光”。以至于美国的一位教授将其煞有介事地称其为 “激光武器之父”。阿基米德的这种想法可能来自与他在 当时的学术之都埃及首都亚历山大里亚留学时观看七大奇 迹之一的法洛斯灯塔的经历有关。不管这种传说是真是假, 这座地中海的粮仓还是在3年后陷落在罗马共和国的鹰旗 之下。尽管罗马将领尊重阿基米德,下令军队要礼待他, 不得伤害,但是他还是被一名粗暴的罗马士兵杀死。于是 这个事件也成了政治摧残科学的典型。无独有偶,公元6 世纪,东罗马首都君士坦丁堡遭遇围城,也是依靠巨镜烧 毁敌舰脱险,战果几乎可以与摧毁了阿拉伯海军的拜占庭 的秘传武器“希腊火”相提并论。
•液体激光器
以液体染料为工作物质的染料激光器于 1966年问世,广泛应用于各种科学研究领域。现在 已发现的能产生激光的染料,大约在500种左右。 这些染料可以溶于酒精、苯、丙酮、水或其他溶 液。它们还可以包含在有机塑料中以固态出现, 或升华为蒸汽,以气态形式出现。所以染料激光 器也称为“液体激光器”。染料激光器的突出特点 是波长连续可调。燃料激光器种类繁多,价格低廉, 效率高,输出功率可与气体和固体激光器相媲美, 应用于分光光谱、光化学、医疗和农业。 •化学激光器 如:氟原子和氢原子 “死光武器”

激光切割的组成

激光切割的组成

激光切割的组成激光切割系统通常由以下主要组成部分组成:1.激光器(Laser):激光切割系统的核心组件是激光器。

激光器产生高能量和高聚集度的激光光束,用作切割工具。

常用的激光器类型包括CO2激光器、纤维激光器和固态激光器等。

2.光束传输系统(Beam Delivery System):光束传输系统用于将激光光束从激光器输送到切割点。

它通常包括反射镜、光纤、光束导向器等,以确保激光能准确地聚焦到切割区域。

3.光学系统(Optical System):光学系统主要用于聚焦激光光束,使其在切割区域内获得所需的光斑尺寸和能量密度。

光学系统包括透镜、反射镜和聚焦镜等组件。

4.切割头(Cutting Head):切割头是激光光束与工件交互的部分。

它包括一个焦点调节装置,用于精确控制光斑位置和聚焦深度。

切割头通常还包括喷气口,用于引入辅助气体以完成切割过程。

C控制系统(Computer Numerical Control System):CNC控制系统是用于控制整个激光切割过程的计算机系统。

它接收输入的CAD文件和切割参数,然后控制激光器的输出功率、光束位置和速度,实现精确的切割路径。

6.辅助气体系统(Assist Gas System):辅助气体系统用于辅助激光切割过程。

它提供高压气体,如氮气或氧气,通过切割头的喷气口,用于吹走切割区域产生的熔渣和烟尘,同时也可以对切割区域进行冷却。

7.工作台(Worktable):工作台是放置待切割工件的平台。

它通常具有一些固定或可调节的夹具,以保持工件的位置稳定。

工作台也可以具备适当的冷却系统,以避免工件过热。

这些组成部分的选择和设计取决于应用的需求、切割材料类型和厚度等因素。

激光切割系统的各个部件协同工作,以实现高精度、高速度和高质量的切割操作。

laser工艺

laser工艺

laser工艺
激光工艺是一种利用激光束对物体进行加工和处理的技术。

它在许多不同的领域中得到广泛应用,包括制造业、医疗、通信、科学研究等。

激光工艺的主要特点是高能量密度、高精度、非接触性和可控性。

通过控制激光束的功率、频率和聚焦方式,可以实现对材料的切割、打孔、焊接、表面改性等各种加工操作。

在制造业中,激光切割是最常见的应用之一。

它可以用来切割金属、塑料、玻璃等材料,具有高精度、无毛刺、无变形等优点。

另外,激光焊接也广泛应用于汽车、航空航天、电子等领域,可以实现高强度的焊接连接。

除了切割和焊接,激光还可以用于表面处理。

例如,通过激光打标可以在物体表面刻画出文字、图案等,广泛应用于商品标识、二维码等领域。

此外,激光还可以用于材料的表面改性,如激光淬火、激光熔覆等,以提高材料的硬度、耐磨性和抗腐蚀性能。

总之,激光工艺在现代制造业中扮演着重要角色,它通过高能量、高精度的激光束实现对材料的精细加工和处理,为各行各业提供了更高效、更精确的解决方案。

激光的英语单词

激光的英语单词

跟激光有关的英语单词1.Laser(激光)2.Light(光)3.Photon(光子)4.Beam(光束)5.Optics(光学)6.Amplification(放大)7.Excitation(激发)8.Wavelength(波长)9.Frequency(频率)10.Intensity(强度)11.Collimation(准直)12.Diffraction(衍射)13.Interference(干涉)14.Resonator(谐振腔)15.Holography(全息术)16.Absorption(吸收)17.Refraction(折射)18.Scattering(散射)19.Polarization(偏振)20.Laser diode(激光二极管)21.Semiconductor(半导体)22.Excited state(激发态)23.Population inversion(粒子逆转)24.Laser cavity(激光腔)25.Mode locking(锁模)26.Q-switching(Q开关)27.Continuous wave(连续波)28.Pulse(脉冲)29.Power output(功率输出)30.Laser safety(激光安全)31.Laser pointer(激光笔)32.Laser surgery(激光手术)33.Laser cutting(激光切割)34.Laser engraving(激光雕刻)35.Laser printing(激光打印)36.Laser scanning(激光扫描)37.Laser spectroscopy(激光光谱学)38.Laser cooling(激光冷却)39.Laser ablation(激光剥离)40.Laser therapy(激光疗法)。

laser 405nm激光器技术参数

laser 405nm激光器技术参数

laser 405nm激光器技术参数摘要:1.激光器概述2.405nm 激光器的技术参数a.波长b.功率c.光束质量d.工作电压e.工作温度f.尺寸和重量3.应用领域正文:激光器是一种通过激发原子或分子产生的高能光束,具有高度的单色性、方向性和相干性。

在众多激光器中,405nm 激光器因具有独特的性能而在许多领域得到广泛应用。

405nm 激光器的技术参数如下:a.波长:405nm 激光器的波长为深紫外光,介于蓝光与紫外线之间。

b.功率:405nm 激光器的功率范围较广,通常在数十瓦特至数百瓦特之间。

不同厂家和型号的激光器功率可能有所不同。

c.光束质量:405nm 激光器的光束质量通常采用M值来表示,该值反映了光束的聚焦性能。

高M值表示光束质量较好,聚焦性能更强。

d.工作电压:405nm 激光器的工作电压通常在100-150V 之间,具体数值可能因激光器的类型和用途而有所不同。

e.工作温度:405nm 激光器的工作温度范围较广,一般可以在室温至80 摄氏度之间正常工作。

不过,不同型号的激光器可能具有不同的工作温度范围。

f.尺寸和重量:405nm 激光器的尺寸和重量因厂家和型号而异。

一般来说,激光器的尺寸越小,重量越轻,便携性越好。

405nm 激光器广泛应用于以下领域:1.材料加工:405nm 激光器可以对多种材料进行切割、雕刻、打标等加工操作,如金属、非金属、塑料、木材等。

2.光通信:405nm 激光器在光通信领域具有较高的应用价值,可以用于光模块、光开关、光放大器等光电子器件的制造。

3.生物医学:405nm 激光器可用于生物组织切割、凝血、消毒等医学应用,以及基因编辑、生物检测等科研领域。

4.娱乐照明:405nm 激光器在舞台灯光、夜场照明、户外广告等领域有着广泛的应用。

5.科学研究:405nm 激光器可用于原子物理、分子物理、光学等领域的实验研究。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Laser & Spectroscopy(Phys2227)Ph2227)Coordinator and Lecturer:S. J. XuS J XTutor:C. C. ZhengC C ZhengLaser Spectroscopy/SJXLaser Spectroscopy and Nobelp pyPrizesThe Nobel Prize for Physics 2009The Nobel Prize for Physics2009The Nobel Prize in Physics 2009 is associated with light. "for groundbreaking achievements concerning the transmission of light in fibers for optical communication” to Charles K. Kao, and “for the invention of an imaging semiconductor circuit –the CCD sensor” to Willard S. Boyle and George E. Smith.Laser Spectroscopy/SJXLaser Spectroscopy and Nobel Laser Spectroscopy and NobelPrizesThe Nobel Prize for Physics 2005The Nobel Prize in Physics 2005 is also about light. Roy Glauber, who is considered “the father of quantum optics”, shares the Prize with John Hall and Theodor Hänsch. Nobel prize is awarded to these Physicists for their contributions in the field of Quantum Optics and Laser basedthese Physicists for their contributions in the field of Quantum Optics and Laser based spectroscopy.The Royal Swedish Academy of Sciences has decided to award the Nobel Prize in Physics for 2005 with one half to Roy J. Glauber, Harvard University, Cambridge, MA, USA“for his contribution to the quantum theory of optical coherence”and one half jointly to John L. Hall, JILA, University of Colorado and National Institute of Standards and Technology, Boulder, CO, USA and Theodor W. Hänsch, Max-Planck-Institut für Quantenoptik, Garching and Ludwig-Maximilians-Universität, Munich, Germany Quantenoptik Garching and Ludwig Maximilians Universität Munich Germany“for their contributions to the development of laser-based precision spectroscopy, including the optical frequency comb technique”.Laser Spectroscopy/SJXContents1.Introduction2.Fundamentalsp p gsers as Spectroscopic Light Sourcesponents of Spectroscopic Instruments5.Spectroscopy of Solids5Spectroscopy of SolidsLaser Spectroscopy/SJXText Books & ReferencesT t B k&R fText book: An Introduction to the OpticalSpectroscopy of Inorganic Solids, J. GarciaSole, L.E. Bausa, and S. Jaque, (Wiley,England, 2005).References: Laser Spectroscopy, 2nd,3rdedition, W. Demtröder, (Springer, 1996,2003).2003)Laser Spectroscopy, E. R. Menzel, (MarcelDekker Inc., 1995).Photonics, R. Menzel, (Springer, 2001).Laser Spectroscopy/SJXhi&ATeaching & Assessment•24 hours of lectures and tutorial classes •One 2-hour written examination (50% weighting) and continuous courseweighting)and continuous courseassessment (30% weighting)•One experiment: Low-temperatureiphotoluminescence (20% weighting) Laser Spectroscopy/SJXChap. 1 Introduction•Why we study laser spectroscopy?ser is one of the greatest inventions inhumankind history so far.ser is the most beautiful coherent light source.ser has great applications.3Laser has great applicationsser spectroscopy has made us have so muchknowledge and deep understanding about lightknowledge and deep understanding about lightitself, matter, and light-matter interactions.ser itself and laser spectroscopy are still rapidly5L it lf d l t till idl developing.Laser Spectroscopy/SJXChap. 1 IntroductionLaser HistoryLaser Heroes: Gordon Gould, Charles Townes,Arthur Schawlow, Theodore MaimanArthur Schawlow,Theodore MaimanThe name LASER is an acronym for L ight A mplification by theS timulated E mission of R adiation. In 1917, Albert Einstein first timulated mission of In1917Albert Einstein firsttheorized about the process which makes lasers possible called"Stimulated Emission."In1954,Charles Townes and Arthur Schawlow invented themaser(m icrowave a mplification by s timulated e mission ofr adiation),using ammonia gas and microwave radiation-themaser was invented before the(optical)laser.The technology isvery close but does not use a visible light.l b t d t i ibl li htLaser Spectroscopy/SJXChap. 1 IntroductionLaser HistoryIn1958,Charles Townes and Arthur Schawlow theorized about a I1958Ch l T d A h S h l h i d b visible laser,an invention that would use infrared and/or visible lightspectrum light.yTheodore Maiman invented the ruby laser considered to be the first successful optical or light laser.Many historians claim that Theodore Maiman invented the first optical laser,however,there is some controversy that Gordon Gould was the first.h G d G ld h fiGordon Gould was the first person to use the word"laser".There is good reason to believe that Gordon Gould made the first light laser. Gould was a doctoral student at Columbia University under Charles Townes,the inventor of the maser.Gordon Gould was inspired toT th i t f th G d G ld i i d t Laser Spectroscopy/SJXLaser Historybuild his optical laser starting in1958.He failed to file for a patent his invention until1959.As a result,Gordon Gould's patent was refused and his technology was exploited by others.Itt t f d d hi t h l l it d b thtook until1977for Gordon Gould to finally win his patent war and receive his first patent for the laser.laserThe first gas laser(helium neon) was invented in 1960 by AliJavanJavan.The carbon dioxide laser was invented by Kumar Patel in 1964.In1962,Robert Hall created a revolutionary type of laser that is still used in many of the electronic appliances and communications systems that we use every day.(Semiconductor Laser Diodes!)dayLaser Spectroscopy/SJX•What is laser spectroscopy?It is a technique that uses the interaction of coherentlight with a sample to perform an analysis.•What can laser spectroscopy provide us?It provides information on the interaction of coherentIt id i f ti th i t ti f h tlight with matter.•What features does laser spectroscopy have?It generally has high resolution and sensitivity.g y g yLaser Spectroscopy/SJX•The Main AimTo provide a broad introduction to modern laser spectroscopicT id b d i t d ti t d l t itechniques and selected applications.•OutlineChap. 2 discusses the fundamental definitions and concepts of laser and spectroscopy, such as optical transition, absorption, emission, radiation power and intensity, transition probabilities and so forth.power and intensity transition probabilities and so forthChap. 3 treats the fundamentals of lasers as spectroscopic radiationsources.Chap. 4 covers basic instrumentation and its application to wavelength Ch4b i i t t ti d it li ti t l th and intensity measurements.Chap. 5 talks about laser spectroscopy of solids.Laser Spectroscopy/SJXW S d T h!We Study Together!We Gain Together!We Gain Together!Contact information of lecturer and tutorS. J. Xu: C. C. Zheng:S J Xu:C C Zheng:Office: R316 CYM Physics Building Office: G21Tel: 22415636 Tel: 22415190Tel:22415636Tel:22415190Email: sjxu@hkucc.hku.hk Email: zhengcc@hkusua.hku.hk Web: Http://www.physics.hku.hk/laserWeb:Http://www physics hku hk/~laserLaser Spectroscopy/SJX。

相关文档
最新文档