[推荐学习]高中数学第二章函数2.4.2求函数零点近似解的一种计算方法_二分法练习新人教B版必修1
高中数学 第二章 函数 2.4.2 求函数零点近似解的一种
2.4.2 求函数零点近似解的一种计算方法——二分法1.了解函数变号零点与不变号零点的概念,会判断函数变号零点的存在.(重点) 2.会用二分法求函数变号零点的近似值,并能对二分法的过程作出程式化的步骤.(难点)[基础·初探]教材整理1 变号零点与不变号零点阅读教材P72~P73“第一行”以上部分内容,完成下列问题.1.零点存在的判定条件:y=f(x)在[a,b]上的图象不间断,f(a)·f(b)<0.结论:y=f(x)在[a,b]上至少有一个零点,即x0∈(a,b)使f(x0)=0.2.变号零点如果函数图象通过零点时穿过x轴,则称这样的零点为变号零点.3.不变号零点如果函数图象通过零点时没有穿过x轴,则称这样的零点为不变号零点.函数f(x)的图象如图241所示,则函数f(x)的变号零点的个数为( )图241A.0 B.1C.2 D.3【解析】函数f(x)的图象通过零点时穿过x轴,则必存在变号零点,根据图象得函数f(x)有3个变号零点.【答案】 D教材整理2 二分法阅读教材P73“第三行”以下~P73“例”以上的内容,完成下列问题.1.定义对于在区间[a,b]上连续不断且f(a)·f(b)<0的函数y=f(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到函数零点的方法叫做二分法.2.求函数零点的一般步骤已知函数y=f(x)定义在区间D上,求它在D上的一个零点x0的近似值x,使它满足给定的精确度.用二分法求此函数零点的一般步骤为:①在D内取一个闭区间[a0,b0]⊆D,使f(a0)与f(b0)异号,即f(a0)·f(b0)<0,零点位于区间[a0,b0]中.②取区间[a0,b0]的中点,则此中点对应的坐标为x0=a0+b02.计算f(x0)和f(a0),并判断:a.如果f(x0)=0,则x0就是f(x)的零点,计算终止.b.如果f(a0)·f(x0)<0,则零点位于区间[a0,x0]中,令a1=a0,b1=x0. c.如果f(a0)·f(x0)>0,则零点位于区间[x0,b0]中,令a1=x0,b1=b0.③取区间[a1,b1]的中点,则此中点对应的坐标为x1=a1+b12.计算f(x1)和f(a1),并判断:a.如果f(x1)=0,则x1就是f(x)的零点,计算终止.b.如果f(a1)·f(x1)<0,则零点位于区间[a1,x1]上,令a2=a1,b2=x1.c.如果f(a1)·f(x1)>0,则零点位于区间[x1,b1]上,令a2=x1,b2=b1.……继续实施上述步骤,直到区间[a n,b n],函数的零点总位于区间[a n,b n]上,当区间的长度b n-a n不大于给定的精确度时,这个区间[a n,b n]中的任何一个数都可以作为函数y=f(x)的近似零点,计算终止.判断(正确的打“√”,错误的打“×”)(1)二分法所求出的方程的解都是近似解.( )(2)函数f(x)=|x|可以用二分法求零点.( )(3)用二分法求函数零点的近似值时,每次等分区间后,零点必定在右侧区间内.( )【解析】(1)×.如函数x-2=0用二分法求出的解就是精确解.(2)×.对于函数f(x)=|x|,不存在区间(a,b),使f(a)·f(b)<0,所以不能用二分法求其零点.(3)×.函数的零点也可能是区间的中点或在左侧区间内.【答案】(1)×(2)×(3)×[小组合作型](1)图242已知函数f(x)的图象如图242所示,其中零点的个数与可以用二分法求解的个数分别为( )A.4,4 B.3,4C.5,4 D.4,3(2)用二分法求方程x3-2x-5=0在区间[1,3]内的根,取区间的中点为x0=2,那么下一个有根的区间是________.【导学号:60210063】【精彩点拨】(1)可以用二分法求出的零点左右函数值异号;(2)方程的实根就是对应函数f(x)的零点,判断f(2)的符号,在2的左右两边寻找函数值与f(2)异号的自变量.【自主解答】(1)图象与x轴有4个交点,所以解的个数为4;左、右函数值异号的有3个零点,所以可以用二分法求解的个数为3.(2)设f(x)=x3-2x-5,f(1)=1-2-5=-6<0,f(2)=23-4-5=-1<0,f(3)=33-6-5=16>0,f(x)零点所在的区间为(2,3),∴方程x3-2x-5=0有根的区间是(2,3).【答案】(1)D (2)(2,3)二分法求函数零点的依据:其图象在零点附近是连续不断的,且该零点为变号零点,因此,用二分法求函数零点近似值的方法仅对函数的变号零点适用,对函数的不变号零点不适用.[再练一题]1.下面关于二分法的叙述,正确的是( )A.用二分法可求所有函数零点的近似值B.用二分法求方程的近似解时,可以精确到小数点后的任一位C.二分法无规律可循D.只有在求函数零点时才用二分法【解析】只有函数的图象在零点附近是连续不断且在该零点左右函数值异号,才可以用二分法求函数的零点的近似值,故A错.二分法有规律可循,可以通过计算机来进行,故C错.求方程的近似解也可以用二分法,故D错.【答案】 B(1)f(x)=3x-6;(2)f(x)=x2-x-12;(3)f(x)=x2-2x+1;(4)f(x)=(x-2)2(x+1)x.【精彩点拨】(1)是一次函数,(2)、(3)均是二次函数,(4)虽然是高次函数,但给出因式积的形式,所以容易分别求得.【解】(1)零点是2,是变号零点.(2)零点是-3和4,都是变号零点.(3)零点是1,是不变号零点.(4)零点是-1,0和2,其中变号零点是0和-1,不变号零点是2.图象连续不间断的函数f x在[a,b]上,若f a f b,则函数f x在该区间上至少有一个变号零点,也就是可能有多个变号零点,还可能有不变号零点,但至少有一个变号零点是肯定的.这一结论可直接应用于函数变号零点判定之中.[再练一题]2.判断下列函数是否有变号零点.(1)y=x2-5x-14;(2)y=x2+x+1;(3)y=x4-18x2+81.【解】(1)零点是-2,7,是变号零点.(2)无零点.(3)零点是-3,3,都不是变号零点.[探究共研型]探究1【提示】函数y=f(x)的零点就是方程f(x)=0的解.探究2 如何把求方程的近似解转化为求函数零点的近似解?【提示】设方程为f(x)=g(x),构造函数F(x)=f(x)-g(x),求方程f(x)=g(x)的近似解问题就可转化为求函数F(x)=f(x)-g(x)零点的近似解问题.用二分法求方程2x3+3x-3=0的一个正实数近似解(精确度为0.1).【精彩点拨】构造函数f(x)=2x3+3x-3→确定初始区间(a,b)→二分法求方程的近似解→验证|a-b|<0.1是否成立→下结论.【自主解答】令f(x)=2x3+3x-3,经计算,f(0)=-3<0,f(1)=2>0,f(0)·f(1)<0,所以函数f(x)在(0,1)内存在零点,即方程2x3+3x=3在(0,1)内有解.取(0,1)的中点0.5,经计算f(0.5)<0,又f(1)>0,所以方程2x3+3x-3=0在(0.5,1)内有解.如此继续下去,得到方程的正实数根所在的区间,如表:所以方程2x3+3x-3=0的一个精确度为0.1的正实数近似解可取为0.687 5.1.根据函数的零点与相应方程的解的关系,求函数的零点与求相应方程的解是等价的.求方程f(x)=0的近似解,即按照用二分法求函数零点近似值的步骤求解.2.对于求形如f(x)=g(x)的方程的近似解,可以通过移项转化成求形如F(x)=f(x)-g(x)=0的方程的近似解,然后按照用二分法求函数零点近似值的步骤求解.[再练一题]3.用二分法求函数f(x)=x3+5的零点可以取的初始区间是( )A.[-2,1] B.[-1,0]C.[0,1] D.[1,2]【解析】由于f(-2)=-3<0,f(1)=6>0,故可以取区间[-2,1]作为计算的初始区间,用二分法逐次计算.【答案】 A1.下列函数中能用二分法求零点的是( )【解析】在A和D中,函数虽有零点,但它们均是不变号零点,因此它们都不能用二分法求零点.在B中,函数无零点.在C中,函数图象是连续不断的,且图象与x轴有交点,并且其零点为变号零点,所以C中的函数能用二分法求其零点.【答案】 C2.用二分法求函数f(x)在(a,b)内的唯一零点时,精确度为0.001,则结束计算的条件是( )A.|a-b|<0.1 B.|a-b|<0.001C.|a-b|>0.001 D.|a-b|=0.001【解析】据二分法的步骤知当区间长度|b-a|小于精确度ε时,便可结束计算.【答案】 B3.用“二分法”可求近似解,对于精确度ε说法正确的是( )A.ε越大,零点的精确度越高B.ε越大,零点的精确度越低C.重复计算次数就是εD.重复计算次数与ε无关【解析】由“二分法”的具体步骤可知,ε越大,零点的精确度越低.【答案】 B4.若函数f(x)=x3+x2-2x-2的一个正数零点附近的函数值用二分法计算,参考数据如下:【导学号:97512033】【解析】 根据题意知函数的零点在1.406 25至1.437 5之间,因为此时|1.437 5-1.406 25|=0.031 25<0.1,故方程的一个近似根可以是1.4.【答案】 1.45.已知函数f (x )=3ax 2+2bx +c ,a +b +c =0,f (0)>0,f (1)>0,证明a >0,并利用二分法证明方程f (x )=0在[0,1]内有两个实根.【证明】 ∵f (1)>0, ∴3a +2b +c >0,即3(a +b +c )-b -2c >0, ∵a +b +c =0, ∴-b -2c >0, 则-b -c >c ,即a >c . ∵f (0)>0,∴c >0,则a >0. 在[0,1]内选取二等分点12,则f ⎝ ⎛⎭⎪⎫12=34a +b +c =34a +(-a )=-14a <0.∵f (0)>0,f (1)>0,∴f (x )在区间⎝ ⎛⎭⎪⎫0,12和⎝ ⎛⎭⎪⎫12,1上至少各有一个零点,又f (x )最多有两个零点,从而f (x )=0在[0,1]内有两个实根.。
原创1:2.4.2 求函数零点近似解的一种计算方法——二分法(导学式)
0.0625
由于0.0625<0.1,所以2.5可作为方程的一个正实数近似解.
题后反思
【规律方法】(1)运用二分法解题流程
(2)二分法中对结果要求的“精确度”与“精确到”有何区别?
精确度为0.1,是指二分法停止二分区间时,区间[a,b]的长
度|b-a|<0.1,此时a(或b)即为零点近似值,且此时位于区间[a,b]
A.(1,1.25)
B.(1.25,1.5)
C.(1.5,2)
[解析]∵f(1.25)·f(1.5)<0,∴方程的根在区间(1.25,1.5)内.
答案:选B.
)
D.不能确定
变式训练:
【变式】用二分法求方程x3 −2x−5=0在区间[2,3]内的实根,取区间
中点x0=2.5,那么下一个有根的区间是______.
找到零点附近足够小的区间,根据所要求的精确度,用此区间的某个数
值近似地表示真正的零点.
归纳小结
2.二分法的记忆口诀:
函数连续值两端,相乘为负有零点,
区间之内有一数,方程成立很显然.
要求方程近似解,先看零点的区间,
每次区间分为二,分后两端近零点.
归纳小结
3.二分法求函数零点步骤的记忆口诀
定区间,找中点;中值计算两边看.
2.25
2.5
− +
3
3
f(2)<0,f(3)>0⟹2<x1<3
f(2)<0,f(2.5)>0 ⟹2<x1<2.5
f(2.25)<0,f(2.5)>0 ⟹2.25<x1<2.5
f(2.375)<0,f(2.5)>0 ⟹2.375<x1<2.5
高中数学二章函数2.4函数与方程2.4.2求函数零点近似解的一种计算方法二分法
2.4.2 求函数零点近似解的一种计算方法—二分法整体设计教学分析求方程的解是常见的数学问题,这之前我们学过解一元一次、一元二次方程,但有些方程求精确解较难.本节从另一个角度来求方程的近似解,这是一种崭新的思维方式,在现实生活中也有着广泛的应用.用二分法求方程近似解的特点是:运算量大,且重复相同的步骤,因此适合用计算器或计算机进行运算.在教学过程中要让学生体会到人类在方程求解中的不断进步.三维目标1.让学生学会用二分法求方程的近似解,知道二分法是科学的数学方法.2.了解用二分法求方程的近似解特点,学会用计算器或计算机求方程的近似解,初步了解算法思想.3.回忆解方程的历史,了解人类解方程的进步历程,激发学习的热情和学习的兴趣.重点难点教学重点:用二分法求方程的近似解.教学难点:二分法.课时安排1课时教学过程导入新课思路1.(情境导入)师:(手拿一款手机)如果让你来猜这件商品的价格,你如何猜?生1:先初步估算一个价格,如果高了再每隔10元降低报价.生2:这样太慢了,先初步估算一个价格,如果高了每隔100元降低报价.如果低了,每隔50元上升报价;如果再高了,每隔20元降低报价;如果低了,每隔10元上升报价……生3:先初步估算一个价格,如果高了,再报一个价格;如果低了,就报两个价格和的一半;如果高了,再把报的低价与一半价相加再求其半,报出价格;如果低了,就把刚刚报出的价格与前面的价格结合起来取其和的半价……师:在现实生活中我们也常常利用这种方法.譬如,一天,我们华庄校区与锡南校区的线路出了故障(相距大约3 500米).电工是怎样检测的呢?是按照生1那样每隔10米或者按照生2那样每隔100米来检测,还是按照生3那样来检测呢?生:(齐答)按照生3那样来检测.师:生3的回答,我们可以用一个动态过程来展示一下(展示多媒体课件,区间逼近法).思路2.(事例导入)有12个小球,质量均匀,只有一个球是比别的球重,你用天平称几次可以找出这个球,要求次数越少越好.(让同学们自由发言,找出最好的办法)解:第一次,两端各放六个球,低的那一端一定有重球.第二次,两端各放三个球,低的那一端一定有重球.第三次,两端各放一个球,如果平衡,剩下的就是重球,否则,低的就是重球.其实这就是一种二分法的思想,那什么叫二分法呢?推进新课新知探究 提出问题①解方程2x -16=0.②解方程x 2-x -2=0.③解方程x 3-2x 2-x +2=0.④解方程x 2-2x 2-3x +2=0.⑤我们知道,函数f x =lnx +2x -6在区间2,3内有零点.进一步的问题是,如何找出这个零点的近似值?⑥“取中点”后,怎样判断所在零点的区间? ⑦什么叫二分法?⑧试求函数f x =lnx +2x -6在区间2,3内零点的近似值.⑨总结用二分法求函数零点近似值的步骤.,⑩思考用二分法求函数零点近似值的特点. 讨论结果: ①x=8.②x=-1,x =2.③x=-1,x =1,x =2 ④x=-2,x =2,x =1,x =2.⑤如果能够将零点所在的范围尽量缩小,那么在一定精确度的要求下,我们可以得到零点的近似值.为了方便,我们通过“取中点”的方法逐步缩小零点所在的范围.〔“取中点”,一般地,我们把x =a +b 2称为区间(a ,b)的中点〕⑥比如取区间(2,3)的中点2.5,用计算器算得f(2.5)<0,因为f(2.5)·f(3)<0,所以零点在区间(2.5,3)内.⑦对于在区间[a ,b]上连续不断且f(a)·f(b)<0的函数y =f(x),通过不断地把函数的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值.像这样每次取区间的中点,将区间一分为二,再经比较,按需要留下其中一个小区间的方法称为二分法.⑧因为函数f(x)=lnx +2x -6,用计算器或计算机作出函数f(x)=lnx +2x -6的对应值表. x 1 2 3 4 5 6 789f(x)-4-1.306 91.098 63.386 35.609 47.791 89.945 9 12.079 4 14.197 2由表可知,f(2)<0,f(3)>0,则f(2)·f(3)<0,这说明f(x)在区间(2,3)内有零点x 0,取区间(2,3)的中点x 1=2.5,用计算器算得f(2.5)≈-0.084,因为f(2.5)·f(3)<0,所以x 0∈(2.5,3).同理,可得表(下表)与图象(如下图).区间 中点的值 中点函数近似值(2,3) 2.5 -0.084 (2.5,3) 2.75 0.512 (2.5,2.75) 2.625 0.215 (2.5,2.625) 2.562 5 0.066 (2.5,2.562 5) 2.531 25 -0.009 (2.531 25,2.562 5)2.546 8750.029(2.531 25,2.546 875) 2.539 062 5 0.010 (2.531 25,2.539 062 5)2.535 156 250.001由于(2,3) (2.5,3) (2.5,2.75),所以零点所在的范围确实越来越小了.如果重复上述步骤,那么零点所在的范围会越来越小(见上表).这样,在一定的精确度下,我们可以在有限次重复相同步骤后,将所得的零点所在区间内的任意一点作为函数零点的近似值.特别地,可以将区间端点作为函数零点的近似值.例如,当精确度为0.01时,由于|2.539 062 5-2.531 25|=0.007 812 5<0.01,所以,我们可以将x =2.531 25作为函数f(x)=lnx +2x -6零点的近似值.⑨用二分法求函数零点的一般步骤如下:第一步 在D 内取一个闭区间[a 0,b 0] D ,使f(a 0)与f(b 0)异号,即f(a 0)·f(b 0)<0.零点位于区间[a 0,b 0]中.第二步 取区间[a 0,b 0]的中点(如下图),则此中点对应的坐标为x 0=a 0+12(b 0-a 0)=12(a 0+b 0).计算f(x 0)和f(a 0),并判断:(1)如果f(x 0)=0,则x 0就是f(x)的零点,计算终止;(2)如果f(a 0)·f(x 0)<0,则零点位于区间[a 0,x 0]中,令a 1=a 0,b 1=x 0; (3)如果f(a 0)·f(x 0)>0,则零点位于区间[x 0,b 0]中,令a 1=x 0,b 1=b 0. 第三步 取区间[a 1,b 1]的中点,则此中点对应的坐标为x 1=a 1+12(b 1-a 1)=12(a 1+b 1).计算f(x 1)和f(a 1),并判断:(1)如果f(x 1)=0,则x 1就是f(x)的零点,计算终止;(2)如果f(a 1)·f(x 1)<0,则零点位于区间[a 1,x 1]上,令a 2=a 1,b 2=x 1; (3)如果f(a 1)·f(x 1)>0,则零点位于区间[x 1,b 1]上,令a 2=x 1,b 2=b 1. ……继续实施上述步骤,直到区间[a n ,b n ],函数的零点总位于区间[a n ,b n ]上,当a n 和b n按照给定的精确度所取的近似值相同时,这个相同的近似值就是函数y =f(x)的近似零点,计算终止.这时函数y =f(x)的近似零点满足给定的精确度.⑩由函数的零点与相应方程的关系,我们可用二分法来求方程的近似解.由于计算量较大,而且是重复相同的步骤,因此,我们可以通过设计一定的计算程序,借助计算器或计算机完成计算.应用示例思路1例1求函数f(x)=x 3+x 2-2x -2的一个正实数零点(精确到0.1).解:由于f(1)=-2<0,f(2)=6>0,可以确定区间[1,2]作为计算的初始区间.用二法逐步计算,列表如下:端点或中点横坐标 计算端点或中点的函数值 定区间 a 0=1,b 0=2 f(1)=-2,f(2)=6 [1,2] x 0=(1+2)/2=1.5 f(x 0)=0.625>0 [1,1.5] x 1=(1+1.5)/2=1.25 f(x 1)=-0.984<0 [1.25,1.5] x 2=(1.25+1.5)/2=1.375 f(x 2)=-0.260<0 [1.375,1.5] x 3=(1.375+1.5)/2=1.437f(x 3)=0.162>0[1.375,1.437 5]1.4,因此1.4就是所求函数的一个正实数零点的近似值.函数f(x)=x3+x2-2x-2的图象如下图.实际上还可用二分法继续算下去,进而得到这个零点精确度更高的近似值.点评:以上求函数零点的二分法,对函数图象是连续不间断的一类函数的零点都有效.如果一种计算方法对某一类问题(不是个别问题)都有效,计算可以一步一步地进行,每一步都能得到唯一的结果,我们常把这一类问题的求解过程叫做解决这一类问题的一种算法.算法是刻板的、机械的,有时要进行大量的重复计算,算法的优点是一种通法,只要按部就班地去做,总会算出结果.算法更大的优点是,它可以让计算机来实现.例如,我们可以编写程序,快速地求出一个函数的零点.有兴趣的同学,可以在“Scilab”界面上调用二分法程序,对上例进行计算,求出精确度更高的近似值.本套书的一个重要特点是,引导同学们认识算法思想的重要性,并希望同学们在学习前人算法的基础上,去寻求解决各类问题的算法.在思路2例1求方程2x3+3x-3=0的一个实数解(精确到0.01).解:考察函数f(x)=2x3+3x-3,从一个两端函数值反号的区间开始,应用二分法逐步缩小方程实数解所在区间.经试算,f(0)=-3<0,f(2)=19>0,所以函数f(x)=2x3+3x-3在[0,2]内存在零点,即方程2x3+3x-3=0在[0,2]内有解.取[0,2]的中点1,经计算,f(1)=2>0,又f(0)<0,所以方程2x3+3x-3=0在[0,1]内有解.3至此,可以看出,区间[0.742 187 5,0.744 140 625]内的所有值,若精确到0.01,都是0.74.所以0.74是方程2x3+3x-3=0精确到0.01的实数解.点评:利用二分法求方程近似解的步骤:①确定函数f(x)的零点所在区间(a,b),通常令b-a=1;②利用二分法求近似解.,发现x1∈(2,2.5)(如上图),这样可以进一步缩小,先画出函数图象的简图,如上图.=2>0,x2-2x-1=0有一解,记为x1.,因为f(2.5)=0.25>0,所以2<x<2.5.知能训练1.函数f(x)=x3-2x2-x+2的零点个数是( )A.0 B.1 C.2 D.3答案:D2.在26枚崭新的金币中,有一枚外表与真币完全相同的假币(重量轻一点),现在只有一台天平,请问:应用二分法的思想,最多称__________次就可以发现这枚假币?解析:将26枚金币平均分成两份,放在天平上,则假币在轻的那13枚金币里面;将这13枚金币拿出1枚,将剩下的12枚平均分成两份,放在天平上,若天平平衡,则假币一定是拿出的那一枚,若不平衡,则假币一定在轻的那6枚金币里面;将这6枚平均分成两份,放在天平上,则假币一定在轻的那3枚金币里面;将这3枚金币任拿出2枚放在天平上,若平衡,则剩下的那一枚就是假币,若不平衡,则轻的那一枚就是假币.综上可知,最多称4次就可以发现这枚假币.答案:43.求方程x 3-3x -1=0的一个正的近似解(精确到0.1).解:设f(x)=x 3-3x -1,设x 1为函数的零点,即方程x 3-3x -1=0的解.作出函数f(x)=x 3-3x -1的图象如下图.因为f(1)=-3<0,f(2)=1>0,所以在区间(1,2)内方程x 3-3x -1=0有一个解,记为x 1.取1与2的平均数1.5,因为f(1.5)=-2.125<0,所以1.5<x 1<2.再取2与1.5的平均数1.75,因为f(1.75)=-0.890 625<0,所以1.75<x 1<2. 如此继续下去,得f(1)<0,f(2)>0 ⇒x 1∈(1,2), f(1.5)<0,f(2)>0 ⇒x 1∈(1.5,2), f(1.75)<0,f(2)>0 ⇒x 1∈(1.75,2), f(1.875)<0,f(2)>0 ⇒x 1∈(1.875,2),f(1.875)<0,f(1.937 5)>0 ⇒x 1∈(1.875,1.937 5),因为区间[1.875,1.937 5]内的所有值,如精确到0.1都是1.9,所以1.9是方程x 3-3x -1的实数解. 拓展提升从上海到美国旧金山的海底电缆有15个接点,现在某接点发生故障,需及时修理,为了尽快断定故障发生点,一般至少需要检查接点的个数为多少?(此例既体现了二分法的应用价值,也有利于发展学生的应用意识) 答案:至少需要检查接点的个数为4. 课堂小结①掌握用二分法求方程的近似解,及二分法的其他应用. ②思想方法:函数方程思想、数形结合思想. 作业课本习题2—4 A 7.设计感想 “猜价格”的游戏深受人们的喜欢,它是二分法的具体应用,用它引入拉近了数学与生活的距离.二分法是科学的数学方法,它在求方程的近似解和现实生活中都有着广泛的应用.本节设计紧紧围绕这两个中心展开,充分借助现代教学手段,用多种角度处理问题,使学生充分体会数学思想方法的科学性与完美性.备课资料基本初等函数的零点个数 结合基本初等函数的图象得:①正比例函数y =kx(k≠0)仅有一个零点0; ②反比例函数y =kx (k≠0)没有零点;③一次函数y =kx +b(k≠0)仅有一个零点;④二次函数y =ax 2+bx +c(a≠0),当Δ>0时,二次函数有两个零点-b ±Δ2a ;当Δ=0时,二次函数仅有一个零点-b2a;当Δ<0时,二次函数无零点.。
2.4.2 求函数零点近似解的一种计算方法——二分法
2.4.2求函数零点近似解的一种计算方法——二分法【学习目标】1.了解函数变号零点与不变号零点的概念,会判断函数变号零点的存在.2.会用二分法求函数变号零点的近似值,并能对二分法的过程作出程式化的步骤.【重点】了解函数变号零点与不变号零点的概念,会判断函数变号零点的存在.【难点】会用二分法求函数变号零点的近似值,并能对二分法的过程作出程式化的步骤.【基础自测】1.零点存在的判定方法条件:y=f(x)在[a,b]上的图象不间断,f(a)·f(b)<0.结论:y=f(x)在[a,b]上至少有一个零点,即存在x0∈(a,b)使f(x0)=0.2.零点的分类3.二分法(1)定义对于在区间[a,b]上连续不断且f(a)·f(b)<0的函数y=f(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到函数零点的方法叫做二分法.(2)求函数零点的一般步骤已知函数y=f(x)定义在区间D上,求它在D上的一个零点x0的近似值x,使它满足给定的精确度.用二分法求此函数零点的一般步骤为:①在D内取一个闭区间[a0,b0]⊆D,使f(a0)与f(b0)异号,即f(a0)·f(b0)<0,零点位于区间[a0,b0]中.②取区间[a0,b0]的中点,则此中点对应的坐标为x0=a0+b02.计算f(x0)和f(a0),并判断:a.如果f(x0)=0,则x0就是f(x)的零点,计算终止.b.如果f(a0)·f(x0)<0,则零点位于区间[a0,x0]中,令a1=a0,b1=x0. c.如果f(a0)·f(x0)>0,则零点位于区间[x0,b0]中,令a1=x0,b1=b0.③取区间[a1,b1]的中点,则此中点对应的坐标为x1=a1+b12.计算f(x1)和f(a1),并判断:a.如果f(x1)=0,则x1就是f(x)的零点,计算终止.b.如果f(a1)·f(x1)<0,则零点位于区间[a1,x1]上,令a2=a1,b2=x1.c.如果f(a1)·f(x1)>0,则零点位于区间[x1,b1]上,令a2=x1,b2=b1.……继续实施上述步骤,直到区间[a n,b n],函数的零点总位于区间[a n,b n]上,当区间的长度b n-a n不大于给定的精确度时,这个区间[a n,b n]中的任何一个数都可以作为函数y=f(x)的近似零点,计算终止.思考:二分法需要注意的问题有哪些?[提示]用二分法求方程近似解应注意的问题为:①看清题目的精确度,它决定着二分法步骤的结束.②在没有公式可用来求方程根时,可联系相关函数,用二分法求零点,用二分法求出的零点一般是零点的近似解,如求f(x)=g(x)的根,实际上是求函数y=f(x)-g(x)的零点,即求曲线y=f(x)与y=g(x)交点的横坐标.③并不是所有函数都可用二分法求零点,必须满足在区间[a,b]上连续不断,且f(a)·f(b)<0这样条件的函数才能用二分法求得零点的近似值.一、二分法的概念(1)已知函数f(x)的图象如图2-4-2所示,其中零点的个数与可以用二分法求解的个数分别为()A.4,4B.3,4C.5,4 D.4,3(2)用二分法求方程x3-2x-5=0在区间[1,3]内的根,取区间的中点为x0=2,那么下一个有根的区间是________.图2-4-2[规律方法] 二分法求函数零点的依据:其图象在零点附近是连续不断的,且该零点为变号零点,因此,用二分法求函数零点近似值的方法仅对函数的变号零点适用,对函数的不变号零点不适用.[跟踪训练] 1.下面关于二分法的叙述,正确的是( ) A .用二分法可求所有函数零点的近似值B .用二分法求方程的近似解时,可以精确到小数点后的任一位C .二分法无规律可循D .只有在求函数零点时才用二分法 二、函数零点类型的判定判断下列函数是否有变号零点:(1)y =x 2-5x -14; (2)y =x 2+x +1;(3)y =-x 4+x 3+10x 2-x +5; (4)y =x 4-18x 2+81.[规律方法] 图象连续不间断的函数f (x )在[a ,b]上,若f (a )·f (b )<0,则函数f (x )在该区间上至少有一个变号零点,也就是可能有多个变号零点,还可能有不变号零点,但至少有一个变号零点是肯定的.这一结论可直接应用于函数变号零点判定之中提醒:1当fa ·f b>0时,不要轻率地判定f x 在a ,b 上没有零点,如fx =x 2-2x +12,有f0·f 2=14>0,但x =1±22∈0,2是fx的两个变号零点2初始区间的选定一般在两个整数间,如3选的是0和5.[跟踪训练] 2.对于函数f (x )=x 2+mx +n ,若f (a )>0,f (b )>0,则函数f (x )在区间(a ,b )内( )A .一定有零点B .一定没有零点C .可能有两个零点D .至多有一个零点三、用二分法求方程的近似解 [探究问题]1.函数y=f(x)的零点与方程f(x)=0的解有何关系?提示:函数y=f(x)的零点就是方程f(x)=0的解.2.如何把求方程的近似解转化为求函数零点的近似解?提示:设方程为f(x)=g(x),构造函数F(x)=f(x)-g(x),求方程f(x)=g(x)的近似解问题就可转化为求函数F(x)=f(x)-g(x)零点的近似解问题.用二分法求方程2x3+3x-3=0的一个正实数近似解(精确度为0.1).[规律方法] 1.根据函数的零点与相应方程的解的关系,求函数的零点与求相应方程的解是等价的.求方程f(x)=0的近似解,即按照用二分法求函数零点近似值的步骤求解.2.对于求形如f(x)=g(x)的方程的近似解,可以通过移项转化成求形如F(x)=f(x)-g(x)=0的方程的近似解,然后按照用二分法求函数零点近似值的步骤求解.[跟踪训练] 3.用二分法求函数f(x)=x3+5的零点可以取的初始区间是() A.[-2,1] B.[-1,0] C.[0,1] D.[1,2]1.下列函数中能用二分法求零点的是()2.用二分法求函数f(x)在(a,b)内的唯一零点时,精确度为0.001,则结束计算的条件是()A.|a-b|<0.1B.|a-b|<0.001C.|a-b|>0.001 D.|a-b|=0.0013.图象连续不间断的函数f(x)的部分对应值如表所示4.若函数f(x)=x3+x2-2x-2的一个正数零点附近的函数值用二分法计算,参考数据如下:5.指出方程x3-2x-1=0的正根所在的大致区间;一、选择题1.用“二分法”可求近似解,对于精确度ε说法正确的是()A.ε越大,零点的精确度越高B.ε越大,零点的精确度越低C.重复计算次数就是εD.重复计算次数与ε无关2.已知连续函数f(x)的部分对应值如下表:则函数f(x)在区间[1,9]上的零点至少有() 【导学号:60462178】A.2个B.3个C.4个D.5个3.函数f(x)=x3-2x2+3x-6在区间[-2,4]上的零点必定属于()A.[-2,1] B.[2.5,4] C.[1,1.75] D.[1.75,2.5]4.在用二分法求函数f(x)的一个正实数零点时,经计算,f(0.64)<0,f(0.72)>0,f(0.68)<0,则函数的一个精确到0.1的正实数零点的近似值为() A.0.68 B.0.72 C.0.7 D.0.65.若a<b<c,则函数f(x)=(x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a)两个零点分别位于区间()A.(a,b)和(b,c)内B.(-∞,a)和(a,b)内C.(b,c)和(c,+∞)内D.(-∞,a)和(c,+∞)内二、填空题6.若函数f(x)的图象是连续不间断的,根据下面的表格,可以断定f(x)的零点所在的区间为________.(只填序号) 【导学号:60462179】①(-∞,1]②[1,2]③[2,3]④[3,4]⑤[4,5]⑥[5,6]⑦[6,+∞)8.已知函数f(x)的图象是连续不断的,且有如下的对应值表:①函数f(x)在区间(-1,0)内有零点;②函数f(x)在区间(2,3)内有零点;③函数f(x)在区间(5,6)内有零点;④函数f(x)在区间(-1,7)内有三个零点.三、解答题9.已知函数f(x)=x2+x+a(a<0)在区间(0,1)上有零点,求实数a的取值范围.10.用二分法求方程x2-5=0的一个近似正解(精确度为0.1)[冲A挑战练]一、选择题1.若函数y=f(x)在区间(-2,2)上的图象是连续的,且方程f(x)=0在(-2,2)上仅有一实根0,则f(-1)·f(1)的值()A.大于0B.小于0 C.等于0 D.无法判断2.下列关于函数y=f(x),x∈[a,b]的叙述中,正确的个数为()①若x0∈[a,b]且满足f(x0)=0,则(x0,0)是f(x)的一个零点;②若x0是f(x)在[a,b]上的零点,则可用二分法求x0的近似值;③函数f(x)的零点是方程f(x)=0的根,但f(x)=0的根不一定是函数f(x)的零点;④用二分法求方程的根时,得到的都是近似值.A.0 B.1 C.3 D.4二、填空题3.下面是连续函数f(x)在[1,2]上的一些函数值,如表:4.已知f(x)的一个零点x0∈(2,3),用二分法求精确度为0.01的x0近似值时,判断各区间中点的函数值的符号最多需要的次数为________.三、解答题5.已知函数f(x)=3ax2+2bx+c,a+b+c=0,f(0)>0,f(1)>0,证明a>0,并利用二分法证明方程f(x)=0在[0,1]内有两个实根.。
高中数学第二章函数2.4函数与方程2.4.2求函数零点近似解的一种计算方法_二分法导学案新人教B版必
2.4.2 求函数零点近似解的一种计算方法——二分法【预习要点及要求】1.理解变号零点的概念。
2.用二分法求函数零点的步骤及原理。
3.了解二分法的产生过程,掌握二分法求方程近似解的过程和方法。
4.根据具体函数的图象,能够借助计算器用二分法求相应方程的近似解。
【知识再现】1.函数零点的概念2.函数零点的性质【概念探究】阅读课本72页完成下列问题。
1.一个函数)(xfy=,在区间[]b a,上至少有一个零点的条件是异号,即<0,即存在一点),(bax∈使,这样的零点常称作。
有时曲线通过零点时不变号,这样的零点称作。
2.能否说出变号零点与不变号零点的区别与联系?阅读课本73页完成下列问题。
3.求函数变号零点的近似值的一种计算方法是,其定义是:已知函数)(xfy=定义在区间D上,求它在D上的一个变号零点0x的近似值x,使它与零点的误差,即使得。
4.用二分法求函数零点的一般步骤是什么?5.二分法求函数的零点的近似值适合于怎样的零点?【例题解析】例1:求32近似值(精确到0.01)例2:求方程33235=+--xxx的无理根(精确到0.01)参考答案:例1解:设x=32,则3x=2,即3x-2=0,令f(x)=3x-2,则函数f(x)零点的近似值就是得近似值,以下用二分法求其零点.由于f(1)=-1<0,f(2)=6>0,故可以取区间[1,2]为计算的初始区间.用二分法逐次计算.列表如下:由上表的计算可知,区间[1.25781,1.26171]的左右端点按照精确度要求的近似值都是1.26,因此1.26可以作为所求的近似值.评析:学会用二分法求近似值的主要步骤.例2解:由于)3)(1(3332235--=+--xxxxx所以原方程的两个有理根为1,-1,而其无理根是方程x3-3=0的根,令g(x)=x3-3,用二分法求出g(x)的近似零点为1.44评析:通过因式分解容易看出无理根为方程x 3-3=0的根,所以令g(x)=x3-3,只需求出g(x)的零点即可. 【达标检测】1.方程04223=-+-g x x x 在区间[]4,2-上的根必定属于区间( ) A.)1,2(-B.)4,25(C.)4,1(πD.)25,47(2.若函数)(x f 的图象是连续不间断的,且0)4()2()1(,0)0(<⋅⋅>f f f f ,则下列命题正确的是( )A.函数)(x f 在区间[]1,0内有零点B.函数)(x f 在区间[]2,1内有零点C.函数)(x f 在区间[]2,0内有零点D.函数)(x f 在区间[]4,0内有零点3.函数x y =与1+=x y 图象交点横坐标的大致区间为( )A.)0,1(-B.)1,0(C.)2,1(D.)3,2(4.下图4个函数的图象的零点不能用二分法求近似值的是5.写出两个至少含有方程01223=--+x x x 一个根的单位长度为1的区间 或。
2.4.2求函数零点近似解的一种方法——二分法
通 高
它的两个端点处的函数值异号,即 f (a) • f (b) 0
中 则,这个函数在这个区间上至少有一个零点,即
课 程
存在一点 x0 (a,b) 使得 f (x0 ) 0 。 不变号零点
标 准 如果函数图像通
y
过零点时没有穿
过x轴,则成这 a
样的零点叫不变 x0 b
x1
号零点。
bqr6401@
y=2x
y
4
y=4-x
1
x
012 4
提问:能否不画图确定根所在的区间?
bqr6401@
四、应用举例
例1:利用计算器,求方程2x=4-x的近似解(精确到0.1)
解:设函数f (x)=2x+x-4
普 则f (x)在R上是增函数∵f (0)= -3<0, f (2)=2>0
通 ∴ f (x)在(0,2)内有惟一零点,
普 通 高 中 课 程 标 准
良乡中学数学组 任宝泉 bqr6401@
书少成天勤劳才功山小才的就=有艰孩是不在苦子百路展分学于的勤之望劳习勤一为未动,的来径奋+老灵,正,感确学来努但,的懒百海徒力方惰分无法的之伤才+孩崖九少悲能子十苦谈享九成空作受的话现汗舟功在水!!!!!
普通高中课程标准数学1(必修)
普
区间
通
高
(2,3)
中
课
(2.5,3)
程
(2.5,2.75)
标
准
(2.5,2.625)
中点的值
2.5 2.75 2.625 2.5625
中点函数近似值
-0.084 0.512 0.215 0.066
区间长度
高中数学第二章函数2.4.2求函数零点近似解的一种计算方法——二分法bb高一数学
第三十二页,共三十九页。
2.设 f(x)在区间[a,b]上是单调函数,且 f(a)·f(b)<0,则方程 f(x)=0 在闭区间[a,b]内( ) A.至少有一实根 B.至多有一实根 C.没有实根 D.必有唯一实根 答案:D
12/8/2021
第三十三页,共三十九页。
3.下面关于二分法的叙述,正确的是________. ①用二分法可求所有函数零点的近似值; ②用二分法求方程的近似解时,可以精确到小数点后的任一 位; ③二分法无规律可循,无法在计算机上完成; ④只有在求函数零点时才用二分法. 答案:②
12/8/2021
第二十五页,共三十九页。
端点(中点)坐标
a0=-1,b0=0
x1=-12+0=- 0.5
x2=-1-2 0.5=- 0.75
计算中点的函数值 f(-1)=-1<0,f(0)
=5>0 f(x1)=3.375>0
f(x2)=1.578 125>0
取区间 [-1,0] [-1,-0.5]
12/8/2021
第八页,共三十九页。
解析:选 A.因为 f(0)<0,f(0.5)>0, 所以函数 f(x)的一个零点 x0∈(0,0.5), 第二次计算 f0+20.5=f(0.25).
12/8/2021
第九页,共三十九页。
3.函数的零点都能用“二分法”求吗? 解:不一定.例如:函数 y=x2 的零点为 x=0,但不能用二 分法求解.
12/8/2021
第三十六页,共三十九页。
本部分(bù ,即 f(a)·f(b)<0,那么这 个函数在这个区间上_至__少__有__一_个__(y_ī_ɡè_)零__点__,即存在一点 x0∈ (a,b),使___f_(_x0_)=__0_________,若函数图象通过零点时穿过 x 轴,这样的零点称为__变__号__零__点__(lí,nɡ d如iǎn果) 没有穿过 x 轴,则 称为_不__变__号__零_点__(_lín_ɡ.diǎn)
高中数学 第二章 函数 2.4 函数与方程 2.4.2 求函数零点近似解的一种计算方法—二分法教学素
高中数学第二章函数2.4 函数与方程2.4.2 求函数零点近似解的一种计算方法—二分法教学素材新人教B版必修1编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第二章函数2.4 函数与方程2.4.2 求函数零点近似解的一种计算方法—二分法教学素材新人教B版必修1)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第二章函数2.4 函数与方程2.4.2 求函数零点近似解的一种计算方法—二分法教学素材新人教B版必修1的全部内容。
2.4.2 求函数零点近似解的一种计算方法—二分法教学建议1。
通过二分法的教学让学生体验算法思想,并且认识其重要性。
在用二分法求函数零点的近似值时,首先要选好计算的初始区间,这个区间既要符合条件,又要使其长度尽可能小;其次要依据条件给定的精确度及时检验计算所得到的区间[a n,b n]是否满足这一精确度,以决定是否停止计算。
2.求方程的无理根问题可通过因式分解,先找出其有理根,然后转化为求另一个函数的无理数零点问题,再利用二分法求出近似零点.例如求函数f(x)=x4+x3—4x2—2x+4的无理零点,先分解因式f(x)=(x—1)(x+2)(x3—2),其有理根为x1=1和x2=—2,转化为求函数g(x)=x3—2的零点问题.3.求函数零点的二分法,对图象连续不断的一类函数的变号零点都有效。
凡是一种计算方法对某一类问题都有效的可以一步步地进行下去,每一步都得到唯一结果.这类问题的求解过程就是解决这类问题的一种算法,它的优点是一种通法,可让计算机来实现.备用习题1。
对于函数f(x)=x2+mx+n,若f(a)〉0,f(b)>0,则函数f(x)在区间(a,b)内( )A.一定有零点B。
高中数学 第二章 函数 2.4.2 求函数零点近似解的一种计算方法—二分法学业分层测评 新人教B版必
2018版高中数学第二章函数2.4.2 求函数零点近似解的一种计算方法—二分法学业分层测评新人教B版必修1编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018版高中数学第二章函数2.4.2 求函数零点近似解的一种计算方法—二分法学业分层测评新人教B版必修1)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018版高中数学第二章函数2.4.2 求函数零点近似解的一种计算方法—二分法学业分层测评新人教B版必修1的全部内容。
求函数零点近似解的一种计算方法——二分法(建议用时:45分钟)[学业达标]一、选择题1.用二分法求如图2。
4。
3所示函数f(x)的零点时,不可能求出的零点是()图243A.x1B.x2C.x3D.x4【解析】由题图知x1,x2,x4是变号零点,可用二分法求出,x3不是变号零点,不能用二分法求出.【答案】C2.已知连续函数f(x)的部分对应值如下表:x123456789f(x)148-2273-2-18则函数f(xA.2个B.3个C.4个D.5个【解析】∵f(2)=8>0,f(3)=-2〈0,f(4)=2>0,f(6)=3〉0,f(7)=-2〈0,f(8)=-1<0,f(9)=8>0,∴f(2)·f(3)〈0,f(3)·f(4)〈0,f(6)·f(7)<0,f(8)·f(9)<0,∴在(2,3),(3,4),(6,7),(8,9)上都至少各有一个零点,∴至少有4个零点,故选C。
【答案】C3.函数f(x)=x3-2x2+3x-6在区间[-2,4]上的零点必定属于()【导学号:60210065】A.[-2,1]B.[2.5,4]C.[1,1。
高中数学第二章函数2.4.2求函数零点近似解的一种计算方法_二分法练习新人教B版必修1
2.4.2 求函数零点近似解的一种计算方法——二分法【选题明细表】1.用二分法求如图所示函数f(x)的零点时,不可能求出的零点是( C )(A)x1 (B)x2 (C)x3 (D)x4解析:由题图知x1,x2,x4是变号零点,可用二分法求出,x3不是变号零点,不能用二分法求出.2.若函数f(x)的图象在R上连续不断,且满足f(0)<0,f(1)>0,f(2)>0,则下列说法正确的是( C )(A)f(x)在区间(0,1)上一定有零点,在区间(1,2)上一定没有零点(B)f(x)在区间(0,1)上一定没有零点,在区间(1,2)上一定有零点(C)f(x)在区间(0,1)上一定有零点,在区间(1,2)上可能有零点(D)f(x)在区间(0,1)上可能有零点,在区间(1,2)上一定有零点解析:根据零点存在性定理,由于f(0)·f(1)<0,f(1)·f(2)>0,所以f(x)在区间(0,1)上一定有零点,在区间(1,2)上无法确定,可能有,也可能没有,如图所示.故选C.3.函数f(x)=x3-2x2+3x-6在区间[-2,4]上的零点必定属于( D )(A)[-2,1] (B)[2.5,4](C)[1,1.75] (D)[1.75,2.5]解析:因为f(-2)=-28<0,f(4)=38>0,f(1)=-4<0,f(2.5)=4.625>0, f(1.75)=-1.515625<0. 所以f(x)在[-2,4]上的零点必定属于[1.75,2.5].故选D.4.在用二分法求方程x3-2x-1=0的一个近似解时,现在已经将一根锁定在区间(1,2)内,则下一步可断定该根所在的区间为( D )(A)(1.4,2) (B)(1.1,4)(C)(1,) (D)(,2)解析:设f(x)=x3-2x-1,则f(1)=-2<0,f(2)=23-2×2-1>0,F()=()3-2×-1=-<0,所以f()·f(2)<0,所以该根应在区间(,2)内.故选D.5.(2018·河南中原名校联考)函数y=x3与y=x+3图象交点的横坐标所在的区间是( A )(A)[1,2] (B)[0,1](C)[-1,0] (D)[2,3]解析:设f(x)=x3-x-3,当x=1时,y=-3,当x=2时,y=3,f(1)f(2)<0,所以函数的零点必在区间[1,2],故选A.2(A)(-3,-1)和(2,4) (B)(-3,-1)和(-1,1)(C)(-1,1)和(1,2) (D)(-∞,-3)和(4,+∞)解析:因为f(-3)·f(-1)<0,f(2)·f(4)<0.故选A.7.若函数y=f(x)在区间(-2,2)上的图象是连续的,且方程f(x)=0在(-2,2)上仅有一实根0,则f(-1)·f(1)的值( D )(A)大于0 (B)小于0(C)等于0 (D)无法判断解析:如图,根据连续函数零点的性质,若f(-1)·f(1)<0,则f(x)在(-1,1)内必有零点,即方程f(x)=0在(-1,1)内有实根;反之,若方程f(x)=0在(-2,2)内有实根,不一定有f(-1)·f(1)<0,也可能有f(-1)·f(1)>0.故选D.8.下面是函数f(x)在区间[1,2]上的一些点的函数值.由此可判断:方程f(x)=0在[1,2]上解的个数( A )(A)至少5个(B)5个(C)至多5个 (D)4个解析:由所给的函数值的表格可以看出,在x=1.25与x=1.375这两个数对应的函数值的符号不同,即f(1.25)·f(1.375)<0,所以函数的一个零点在(1.25,1.375)上,同理:函数的一个零点在(1.375,1.406 5)上,函数的一个零点在(1.406 5,1.438)上,函数的一个零点在(1.5,1.61)上,函数的一个零点在(1.61,1.875)上.故函数至少有5个零点,即方程f(x)=0在[1,2]上至少有5个解.解析:令F(x)=f(x)-g(x),因为F(-1)=f(-1)-g(-1)=-0.677-(-0.530)<0,F(0)=f(0)-g(0)=3.011-3.451<0,F(1)=f(1)-g(1)=5.432-4.890>0,于是F(0)·F(1)<0,故使f(x)=g(x)有实数解的区间是(0,1),又因为F(2)>0,F(3)>0,故只有区间(0,1).答案:(0,1)10.(2018·广西四校期中联考)已知函数f(x)=x3-x2+1.(1)证明方程f(x)=0在区间(0,2)内有实数解;(2)请使用二分法,取区间的中点二次,指出方程f(x)=0,x∈[0,2]的实数解x0在哪个较小的区间内.(1)证明:因为f(0)=1>0,f(2)=-<0,所以f(0)·f(2)=-<0,函数f(x)=x3-x2+1是连续函数,由函数的零点存在性定理可得方程f(x)=0在区间(0,2)内有实数解.(2)解:取x1=(0+2)=1,得f(1)=>0,由此可得f(1)·f(2)=-<0,下一个有解区间为(1,2),再x2=(1+2)=,得f()=-<0,由f(1)·f()=-<0,则下一个有解区间为(1,),综合上述所求实数解x0在较小区间(1,)内.11.已知二次函数f(x)=ax2+bx+c.(1)a>b>c,且f(1)=0,试证明:f(x)必有两个零点;(2)设x1,x2∈R,x1<x2,且f(x1)≠f(x2),若方程f(x)=[f(x1)+f(x2)]有两个不等实根,试证明必有一个实根属于区间(x1,x2).证明:(1)因为f(1)=0,所以a+b+c=0.又因为a>b>c,所以a>0,c<0,即ac<0.所以Δ=b2-4ac≥-4ac>0.所以方程ax2+bx+c=0必有两个不相等的实根,所以f(x)必有两个零点.(2)令g(x)=f(x)-[f(x1)+f(x2)],则g(x1)=f(x1)-[f(x1)+f(x2)]=[f(x1)-f(x2)].g(x2)=f(x2)-[f(x1)+f(x2)]=[f(x2)-f(x1)].因为g(x1)g(x2)=-[f(x1)-f(x2)]2,且f(x1)≠f(x2),所以g(x1)g(x2)<0.所以g(x)=0在(x1,x2)内必有一实根.所以方程f(x)=[f(x1)+f(x2)]必有一实根属于区间(x1,x2).。
高中数学第二章2.4.2求函数零点近似解的一种计算方法_二分法同步训练新人教B版必修442
2.4.2 求函数零点近似解的一种计算方法——二分法5分钟训练1.用二分法研究函数f(x)=x3+3x-1的零点时,第一次经计算f(0)<0,f(0.5)>0,可得其中一个零点x0∈______________,第二次应计算______________.以上横线上应填的内容为( )A.(0,0.5) f(0.25)B.(0,1) f(0.25)C.(0.5,1) f(0.75)D.(0,0.5) f(0.125)答案:A解析:∵f(0)<0,f(0.5)>0,∴函数f(x)的一个零点x0∈(0,0.5).第二次计算f(25.0)=f(0.25).2.用“二分法”可求近似解,对于精确度ε说法正确的是( )A.ε越大,零点的精确度越高B.ε越大,零点的精确度越低C.重复计算次数就是εD.重复计算次数与ε无关答案:B解析:依“二分法”的具体步骤可知,ε越大,零点的精确度越低.3.函数f(x)=x3-2x2-x+2的零点个数是( )A.0B.1C.2D.3答案:D解析:考虑分解因式降次.∵f(x)=x2(x-2)-(x-2)=(x-2)(x+1)(x-1),∴f(x)有三个零点.4.电视中某一娱乐性节目有一种猜价格的游戏,在限定时间内(如15秒)猜出某一种商品的售价,就把该商品奖给选手,每次选手给出报价,主持人告诉说高了或低了,以猜对或到时为游戏结束.如猜一种品牌的电风扇,过程如下:游戏参与者开始报价500元,主持人说高了,300元,高了,260元,低了,280元,低了,290元,高了,285元,低了,288元,你猜对了!恭喜!请问游戏参与者用的数学知识是_________________(只写出一个正确答案).答案:二分法(或综合法等)10分钟训练1.下列函数图象与x轴均有交点,其中不能用二分法求图中函数零点的是( )答案:C解析:只有函数的变号零点才能用二分法求.2.二次函数y=ax 2+bx+c 中,a·c<0,则函数的零点个数是( )A.1B.2C.0D.无法确定 答案:B解析:分析条件a·c<0,a 是二次项系数,确定抛物线的开口方向;c=f(0). ∴a·c=af(0)<0,由此得解. ∵c=f(0),∴ac=af(0)<0,即a 与f(0)异号,即⎩⎨⎧><⎩⎨⎧<>.0)0(,00)0(,0f a f a 或 ∴函数必有两个零点.3.已知连续函数y=f(x),有f(a)·f(b)<0(a<b),则y=f(x)( )A.在区间[a,b ]上可能没有零点B.在区间[a,b ]上至少有一个零点C.在区间[a,b ]上零点个数为奇数个D.在区间[a,b ]上零点个数为偶数个 答案:B4.用二分法求方程x 3-2x-5=0在区间[2,3]内的实根,取区间中点x 0=2.5,那么下一个有根区间是______________. 答案:[2,2.5]解析:由计算器计算得f(2)=23-2×2-5=-1,f(2.5)=15.625>0, ∴f(2)·f(2.5)<0,∴下一个有根区间是[2,2.5].5.如果一个立方体的体积在数值上等于V,表面积在数值上等于S,且V=S+1,那么这个立方体的一个面的边长(精确到0.01)约为______________. 答案:6.05解析:设立方体的边长为x,则V=x 3,S=6x 2. ∵V=S+1, ∴x 3=6x 2+1.不妨设f(x)=x 3-6x 2-1,应用二分法得方程的根约为6.05.函数f(x)在哪几个区间内有零点?为什么?解:由x 、f(x)的对应值表,可得f(2)·f(3)<0,f(3)·f(4)<0,f(4)·f(5)<0,又根据“如果函数y=f(x)在区间[a,b ]上的图象是连续不断的一条曲线,并且有f(a)·f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点”,可知函数f(x)分别在区间(2,3),(3,4),(4,5)内有零点. 30分钟训练1.(创新题)在26枚崭新的金币中,混入了一枚外表与它们完全相同的假币(重量稍轻),现在只有一台天平,请问:最多需要称几次就可以发现这枚假币( )A.3B.4C.5D.6 答案:B解析:可利用二分法的思想方法去解决.2.若函数f(x)唯一的一个零点在区间(0,24),(0,12),(0,6),(0,3)内,则下列命题正确的是( )A.函数f(x)在区间(0,2)内有零点B.函数f(x)在区间(0,2)或(2,3)内有零点C.函数f(x)在区间(3,24)内无零点D.函数f(x)在区间(2,24)内无零点 答案:C3.若方程2ax 2-x-1=0在(0,1)内恰有一解,则a 的取值范围是( )A.a<-1B.a>1C.-1<a<1D.0≤a<1 答案:B解析:令f(x)=2ax 2-x-1,a=0时显然不适合,a≠0时,则有f(0)f(1)=-1×(2a -2)<0, ∴a>1.4.已知函数f(x)=mx 2+(m-3)x+1的图象与x 轴的交点至少有一个在原点右侧,则实数m 的取值范围是( )A.(0,1]B.(0,1)C.(-∞,1)D.(-∞,1] 答案:D解法一:取m=0有f(x)=-3x+1的根x=31>0,即m=0应符合题设,所以排除、当m=1时,f(x)=x 2-2x+1=(x-1)2,它的根是x=1,符合要求,排除,故选D.解法二:直接法. ∵f(0)=1,∴(1)当m<0时,必成立,排除、B.(2)当m>0时,要使与x 轴的交点至少有一个在原点的右侧,则⎪⎪⎩⎪⎪⎨⎧>--≥--=∆>.023,04)3(,02mm m m m∴0<m≤1.(3)当m=0时根为x=31>0.故选D. 5.(探究题)已知y=x(x-1)(x+1)的图象如图所示,今考虑f(x)=x(x-1)(x+1)+0.01,则函数f(x):①当x<-1时,恰有一零点(有一零点且仅有一零点);②当-1<x<0时,恰有一零点;③当0<x<1时,恰有一零点;④当x>1时,恰有一零点.其中正确命题的个数为( )A.0B.1C.2D.4答案:B解析:∵f(-2)=-2×(-3)×(-1)+0.01=-5.99<0,f(-1)=0.01>0,即f(-2)·f(-1)<0,∴在(-2,-1)内有一零点.结合函数图象,函数在(-∞,-1)上,恰有一个零点,∴①正确.又∵f(0)=0.01>0,结合图象,知函数f(x)在(-1,0)上没有零点,∴②不正确.又∵f(0.5)=0.5×(-0.5)×1.5+0.01=-0.365<0,f(1)=0.01>0,即f(0.5)·f(1)<0,∴函数f(x)在(0.5,1)上必有一个零点,且f(0)·f(0.5)<0.∴函数f(x)在(0,0.5)上也有一个零点.∴函数f(x)在(0,1)上有两个零点,③不正确.由f(1)>0,结合图象,知函数f(x)在(1,+∞)上没有零点,∴④不正确.6.定义在R上的偶函数y=f(x),当x>0时,y=f(x)是单调递增的,f(1)·f(2)<0,则函数y=f(x)的图象与x轴的交点的个数是______________.答案:2解析:∵f(1)·f(2)<0,∴在(1,2)上函数y=f(x)有零点.又∵y=f(x)在(0,+∞)上是单调增函数,∴函数y=f(x)在(0,+∞)上有且只有一个零点.由函数为偶函数可知,函数在(-∞,0)上也有一个零点.7.已知图象连续不断的函数y=f(x)在区间(a,b)(b-a=0.1)上有唯一零点,如果用“二分法”求这个零点(精确到0.000 1)的近似值,那么将区间(a,b)等分的次数至多是_______________.答案:108.求函数f(x)=x3+2x2-3x-6的一个为正数的零点(精确到0.1).解:∵f(1)=-6<0,f(2)=4>0,∴存在x1∈(1,2),使f(x1)=0.用二分法逐次计算,列表如下:∵最后一个区间端点精确到0.1的近似值都是1.7,∴所求的正数零点为1.7. 9.某方程有一无理根在区间D 内,若用二分法求此根的近似值,那么: (1)区间D=(1,3)时,将D 等分n 次后,所得近似解可精确到多少? (2)一般情况,是否有必要尽可能多地将区间D 等分? 解:(1)设无理根为x 0,将D 等分n 次后的长度为d n . 包含x 0的区间为(a,b),于是d 1=1,d 2=21,d 3=221,d 4=321,…,d n =121-n . 所以|x 0-a|≤d n =121-n , 即近似值可精确到121-n .(2)由于121-n 随n 的增大而不断地趋向于0,故对于事先给定的精确度ε,总有自然数n,使得121-n ≤ε.所以,只需将区间D 等分n 次就可以达到事先给定的精确度ε.所以,一般情况下,不需尽可能多地将区间D 等分.10.设函数f(x)=-x 2-3x-2.(1)若g(x)=2-[f(x)]2,求g(x)的解析式; (2)借助计算器或计算机,画出函数g(x)的图象; (3)求出函数g(x)的零点(精确到0.1).解:(1)由题设有g(x)=2-[f(x)]2=2-(x 2+3x+2)2=-x 4-6x 3-13x 2-12x-2. (2)函数图象如下图所示.(3)由图象可知,函数g(x)分别在区间(-3,-2)和区间(-1,0)内各有一个零点. 取区间(-3,-2)的中点x 1=-2.5,用计算器可算得g(-2.5)=0.187 5. 因为g(-3)·g(-2.5)<0, 所以x 0∈(-3,-2.5).再取(-3,-2.5)的中点x 2=-2.75,用计算器可算得g(-2.75)≈0.28. 因为g(-3)·g(-2.75)<0, 所以x 0∈(-3,-2.75).同理可得x 0∈(-2.875,-2.75),x 0∈(-2.812 5,-2.75). 由于|-2.75-(-2.812 5)|=0.062 5<0.1,此时区间(-2.812 5,-2.75)的两个端点精确到0.1的近似值都是-2.8,所以函数在区间(-4,-3)内精确到0.1的零点约为-3.5.同样可求得函数在区间(-1,0)内精确到0.1的零点约为-0.2.所以函数g(x)精确到0.1的零点约为-3.5或-0.2.。
高中数学 第二章 函数 2.4.2 求函数零点近似解的一种计算方法——二分法学案 新人教B版必修1
2.4.2 求函数零点近似解的一种计算方法——二分法[学习目标] 1.了解函数变号零点与不变号零点的概念,会判断函数变号零点的存在.2.会用二分法求函数变号零点的近似值,并能对二分法的过程作出程序化的步骤.[知识链接]现有一款手机,目前知道它的价格在500~1 000元之间,你能在最短的时间内猜出与它最近的价格吗?(误差不超过20元),猜价格方案:(1)随机;(2)每次增加20元;(3)每次取价格范围内的中间价,采取哪一种方案好呢? [预习导引] 1.二分法的概念对于在区间[a ,b ]上连续不断且f (a )f (b )<0的函数y =f (x ),通过不断地把函数f (x )的零点所在的区间一分为二,使区间的两个端点逐步逼近为零点,进而得到零点近似值的方法叫做二分法.由函数的零点与相应的方程根的关系,可用二分法来求方程的近似解. 2.用二分法求函数f (x )零点近似值的步骤(1)在D 内取一个闭区间[a 0,b 0]⊆D ,使f (a 0)与f (b 0)异号,即f (a 0)·f (b 0)<0.零点位于区间[a 0,b 0]中.(2)取区间[a 0,b 0]的中点(如图),则此中点对应的坐标为x 0=a 0+12(b 0-a 0)=12(a 0+b 0).计算f (x 0)和f (a 0),并判断:①如果f (x 0)=0,则x 0就是f (x )的零点,计算终止;②如果f (a 0)·f (x 0)<0,则零点位于区间[a 0,x 0]中,令a 1=a 0,b 1=x 0; ③如果f (a 0)·f (x 0)>0,则零点位于区间[x 0,b 0]中,令a 1=x 0,b 1=b 0.(3)取区间[a 1,b 1]的中点,则此中点对应的坐标为x 1=a 1+12(b 1-a 1)=12(a 1+b 1).计算f (x 1)和f (a 1),并判断:①如果f (x 1)=0,则x 1就是f (x )的零点,计算终止;②如果f (a 1)·f (x 1)<0,则零点位于区间[a 1,x 1]上,令a 2=a 1,b 2=x 1; ③如果f (a 1)·f (x 1)>0,则零点位于区间[x 1,b 1]上,令a 2=x 1,b 2=b 1.(4)继续实施上述步骤,直到区间[a n ,b n ],函数的零点总位于区间[a n ,b n ]上,当a n 和b n 按照给定的精确度所取的近似值相同时,这个相同的近似值就是函数y =f (x )的近似零点,计算终止.这时函数y =f (x )的近似零点满足给定的精确度.要点一 函数零点类型的判断 例1 判断下列函数是否有变号零点; (1)y =x 2-5x -14;(2)y =x 2+x +1; (3)y =4x 2+4x +1.解 (1)∵y =x 2-5x -14=(x +2)(x -7), ∴有两个零点-2,7.由二次函数的图象知,-2,7都是变号零点. (2)∵y =x 2+x +1=(x +12)2+34>0恒成立,∴此函数没有零点.(3)∵y =4x 2+4x +1=(2x +1)2, ∴有一个零点-12,但它是不变号零点.规律方法 函数的零点分为变号零点和不变号零点,若函数零点左右两侧函数值符号相反,则此零点为函数的变号零点;从图象来看,若图象穿过x 轴,则此零点为变号零点,否则为不变号零点.二分法只能求函数的变号零点.跟踪演练1 已知函数y =f (x )的图象如图所示.下列结论正确的序号是( )①该函数有三个变号零点; ②所有零点之和为0;③当x <-12时,恰有一个零点;④当0<x <1时,恰有一个零点. A.①② B.①②④ C.②③ D.①②③答案 D解析 函数y =f (x )的三个变号零点分别是-1,0,1.所以①②③正确. 要点二 二分法求函数零点近似解例2 求函数f (x )=x 3+2x 2-3x -6的一个为正数的零点(精确到0.1). 解 由于f (1)=-6<0,f (2)=4>0,可取区间[1,2]作为计算的初始区间. 用二分法逐次计算,列表如下:1.7就是所求函数零点精确到0.1的实数解,即为函数的一个正数零点.规律方法 1.在选择区间[a,b]时要使其长度尽可能小,以减少运算次数.在没有特别要求的情况下,为了便于计算和操作,可以尝试取相邻的两个整数作为初始值区间的端点. 2.切记最后分得的区间两端点共同的近似值才是零点的近似值,若无共同近似值则需继续运算,直到符合要求为止.跟踪演练2 求函数f(x)=x3-x-1在区间[1,1.5]内的一个零点(精确到0.1).解由于f(1)=1-1-1=-1<0,f(1.5)=3.375-1.5-1=0.875>0,∴f(x)在区间[1,1.5]内存在零点,取区间[1,1.5]作为计算的初始区间,用二分法逐次计算列表如下:0.1的近似零点为1.3.1.设函数f(x)用二分法求方程f(x)=0在x∈(1,2)内近似解的过程中得f(1)<0,f(1.5)>0,f(1.25)<0,则方程的根落在区间( )A.(1,1.25)B.(1.25,1.5)C.(1.5,2)D.不能确定答案 B解析∵f(1.5)·f(1.25)<0,∴方程的根落在区间(1.25,1.5).2.函数f(x)的图象如图所示,则函数f(x)的变号零点的个数为( )A.0B.1C.2D.3答案 D解析函数f(x)的图象通过零点时穿过x轴,则必存在变号零点,根据图象得函数f(x)有3个变号零点.3.在用二分法求函数f(x)的一个正实数零点时,经计算,f(0.64)<0,f(0.72)>0,f(0.68)<0,则函数的一个精确到0.1的正实数零点的近似值为( )A.0.68B.0.72C.0.7D.0.6答案 C解析已知f(0.64)<0,f(0.72)>0,则函数f(x)的零点的初始区间为[0.64,0.72],又0.68=(0.64+0.72)/2,且f(0.68)<0,所以零点在区间[0.68,0.72]上,且该区间的左、右端点精确到0.1所取的近似值都是0.7,因此0.7就是所求函数的一个正实数零点的近似值.4.下列函数图象均与x轴有交点,其中能用二分法求函数零点的是________(填序号).答案③解析图①②④中所示函数的零点都不是变号零点,因此不能用二分法求解;图③中所示函数的零点是变号零点,能用二分法求解.5.用二分法求方程x3-2x-5=0在区间[2,3]内的实根,取区间中点x0=2.5,那么下一个有根区间是________.答案[2,2.5]解析令f(x)=x3-2x-5,f(x)图象在[2,3]上连续不断,∵f(2)=-1<0,f(3)=16>0,f(x0)=f(2.5)=5.625>0,∴f(2)·f(2.5)<0,故下一个有根区间是[2,2.5].1.判断一个函数能否用二分法求其零点的依据是:其图象在零点附近是连续不断的,且该零点为变号零点.因此,用二分法求函数的零点近似值的方法仅对函数的变号零点适合,对函数的不变号零点不适用.2.二分法的实质是通过“取中点”,不断缩小零点所在区间的范围.当区间的两个端点的值按照给定的精确度所取的近似值相同时,这个相同的近似值就是函数的近似零点.。
高中数学 第二章 函数 2.4.2 求函数零点近似解的一种计算方法——二分法学案 新人教B版必修1
2.4.2 求函数零点近似解的一种计算方法——二分法[学习目标] 1.了解函数变号零点与不变号零点的概念,会判断函数变号零点的存在.2.会用二分法求函数变号零点的近似值,并能对二分法的过程作出程序化的步骤.[知识链接]现有一款手机,目前知道它的价格在500~1 000元之间,你能在最短的时间内猜出与它最近的价格吗?(误差不超过20元),猜价格方案:(1)随机;(2)每次增加20元;(3)每次取价格范围内的中间价,采取哪一种方案好呢? [预习导引] 1.二分法的概念对于在区间[a ,b ]上连续不断且f (a )f (b )<0的函数y =f (x ),通过不断地把函数f (x )的零点所在的区间一分为二,使区间的两个端点逐步逼近为零点,进而得到零点近似值的方法叫做二分法.由函数的零点与相应的方程根的关系,可用二分法来求方程的近似解. 2.用二分法求函数f (x )零点近似值的步骤(1)在D 内取一个闭区间[a 0,b 0]⊆D ,使f (a 0)与f (b 0)异号,即f (a 0)·f (b 0)<0.零点位于区间[a 0,b 0]中.(2)取区间[a 0,b 0]的中点(如图),则此中点对应的坐标为x 0=a 0+12(b 0-a 0)=12(a 0+b 0).计算f (x 0)和f (a 0),并判断:①如果f (x 0)=0,则x 0就是f (x )的零点,计算终止;②如果f (a 0)·f (x 0)<0,则零点位于区间[a 0,x 0]中,令a 1=a 0,b 1=x 0; ③如果f (a 0)·f (x 0)>0,则零点位于区间[x 0,b 0]中,令a 1=x 0,b 1=b 0.(3)取区间[a 1,b 1]的中点,则此中点对应的坐标为x 1=a 1+12(b 1-a 1)=12(a 1+b 1).计算f (x 1)和f (a 1),并判断:①如果f (x 1)=0,则x 1就是f (x )的零点,计算终止;②如果f (a 1)·f (x 1)<0,则零点位于区间[a 1,x 1]上,令a 2=a 1,b 2=x 1; ③如果f (a 1)·f (x 1)>0,则零点位于区间[x 1,b 1]上,令a 2=x 1,b 2=b 1.(4)继续实施上述步骤,直到区间[a n ,b n ],函数的零点总位于区间[a n ,b n ]上,当a n 和b n 按照给定的精确度所取的近似值相同时,这个相同的近似值就是函数y =f (x )的近似零点,计算终止.这时函数y =f (x )的近似零点满足给定的精确度.要点一 函数零点类型的判断 例1 判断下列函数是否有变号零点; (1)y =x 2-5x -14;(2)y =x 2+x +1; (3)y =4x 2+4x +1.解 (1)∵y =x 2-5x -14=(x +2)(x -7), ∴有两个零点-2,7.由二次函数的图象知,-2,7都是变号零点. (2)∵y =x 2+x +1=(x +12)2+34>0恒成立,∴此函数没有零点.(3)∵y =4x 2+4x +1=(2x +1)2, ∴有一个零点-12,但它是不变号零点.规律方法 函数的零点分为变号零点和不变号零点,若函数零点左右两侧函数值符号相反,则此零点为函数的变号零点;从图象来看,若图象穿过x 轴,则此零点为变号零点,否则为不变号零点.二分法只能求函数的变号零点.跟踪演练1 已知函数y =f (x )的图象如图所示.下列结论正确的序号是( )①该函数有三个变号零点; ②所有零点之和为0;③当x <-12时,恰有一个零点;④当0<x <1时,恰有一个零点. A.①② B.①②④ C.②③ D.①②③答案 D解析 函数y =f (x )的三个变号零点分别是-1,0,1.所以①②③正确. 要点二 二分法求函数零点近似解例2 求函数f (x )=x 3+2x 2-3x -6的一个为正数的零点(精确到0.1). 解 由于f (1)=-6<0,f (2)=4>0,可取区间[1,2]作为计算的初始区间. 用二分法逐次计算,列表如下:1.7就是所求函数零点精确到0.1的实数解,即为函数的一个正数零点.规律方法 1.在选择区间[a,b]时要使其长度尽可能小,以减少运算次数.在没有特别要求的情况下,为了便于计算和操作,可以尝试取相邻的两个整数作为初始值区间的端点. 2.切记最后分得的区间两端点共同的近似值才是零点的近似值,若无共同近似值则需继续运算,直到符合要求为止.跟踪演练2 求函数f(x)=x3-x-1在区间[1,1.5]内的一个零点(精确到0.1).解由于f(1)=1-1-1=-1<0,f(1.5)=3.375-1.5-1=0.875>0,∴f(x)在区间[1,1.5]内存在零点,取区间[1,1.5]作为计算的初始区间,用二分法逐次计算列表如下:0.1的近似零点为1.3.1.设函数f(x)用二分法求方程f(x)=0在x∈(1,2)内近似解的过程中得f(1)<0,f(1.5)>0,f(1.25)<0,则方程的根落在区间( )A.(1,1.25)B.(1.25,1.5)C.(1.5,2)D.不能确定答案 B解析∵f(1.5)·f(1.25)<0,∴方程的根落在区间(1.25,1.5).2.函数f(x)的图象如图所示,则函数f(x)的变号零点的个数为( )A.0B.1C.2D.3答案 D解析函数f(x)的图象通过零点时穿过x轴,则必存在变号零点,根据图象得函数f(x)有3个变号零点.3.在用二分法求函数f(x)的一个正实数零点时,经计算,f(0.64)<0,f(0.72)>0,f(0.68)<0,则函数的一个精确到0.1的正实数零点的近似值为( )A.0.68B.0.72C.0.7D.0.6答案 C解析已知f(0.64)<0,f(0.72)>0,则函数f(x)的零点的初始区间为[0.64,0.72],又0.68=(0.64+0.72)/2,且f(0.68)<0,所以零点在区间[0.68,0.72]上,且该区间的左、右端点精确到0.1所取的近似值都是0.7,因此0.7就是所求函数的一个正实数零点的近似值.4.下列函数图象均与x轴有交点,其中能用二分法求函数零点的是________(填序号).答案③解析图①②④中所示函数的零点都不是变号零点,因此不能用二分法求解;图③中所示函数的零点是变号零点,能用二分法求解.5.用二分法求方程x3-2x-5=0在区间[2,3]内的实根,取区间中点x0=2.5,那么下一个有根区间是________.答案[2,2.5]解析令f(x)=x3-2x-5,f(x)图象在[2,3]上连续不断,∵f(2)=-1<0,f(3)=16>0,f(x0)=f(2.5)=5.625>0,∴f(2)·f(2.5)<0,故下一个有根区间是[2,2.5].1.判断一个函数能否用二分法求其零点的依据是:其图象在零点附近是连续不断的,且该零点为变号零点.因此,用二分法求函数的零点近似值的方法仅对函数的变号零点适合,对函数的不变号零点不适用.2.二分法的实质是通过“取中点”,不断缩小零点所在区间的范围.当区间的两个端点的值按照给定的精确度所取的近似值相同时,这个相同的近似值就是函数的近似零点.。
高中数学第二章函数2.4函数与方程2.4.2求函数零点近似解的一种计算方法——二分法bb高一数学
C.有唯一的实数根
D.没有实数根
解析:C ∵f(x)是[-1,1]上的增函数,f-12·f12<0,可知
f(x)=0 有唯一的实数根,故选 C.
2021/12/9
第十七页,共三十一页。Fra bibliotek二、填空题 7.已知函数 y=f(x)是 R 上的奇函数,其零点为 x1,x2,…, x2 017,则 x1+x2+…+x2 017=__________. 解析:f(x)是定义在 R 上的奇函数,∴f(0)=0, ∴0 是 f(x)的零点.又∵f(x)为奇函数, ∴除 0 之外的 2 016 个零点关于原点对称, ∴x1+x2+…+x2 017=0. 答案:0
2021/12/9
第十九页,共三十一页。
9.用二分法求方程 f(x)=0 在[0,4]上的近似解时,最多经过 ________次计算精确度可以达到 0.001.
解析:由题可知 4×21n<0.001,即2n1-2<1 0100,∴n≥12 时, 不等式成立,故最多经过 12 次计算.
答案:12
2021/12/9
∴f(x)一定存在零点的区间是(2,3).
2021/12/9
第十四页,共三十一页。
4.函数 f(x)的图象如图所示,函数 f(x)的变号零点个数为 ()
A.1 C.3 答案:C
2021/12/9
B.2 D.4
第十五页,共三十一页。
5.用二分法求函数的零点,函数的零点总位于区间(an,bn) 内,当|an-bn|<ε 时,函数的近似零点与真正的零点的误差不超 过( )
2021/12/9
第二十九页,共三十一页。
2021/12/9
第三十页,共三十一页。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.4.2 求函数零点近似解的一种计算方法——二分法
【选题明细表】
1.用二分法求如图所示函数f(x)的零点时,不可能求出的零点是( C )
(A)x1 (B)x2 (C)x3 (D)x4
解析:由题图知x1,x2,x4是变号零点,可用二分法求出,x3不是变号零点,不能用二分法求出.
2.若函数f(x)的图象在R上连续不断,且满足f(0)<0,f(1)>0,f(2)>0,则下列说法正确的是( C )
(A)f(x)在区间(0,1)上一定有零点,在区间(1,2)上一定没有零点
(B)f(x)在区间(0,1)上一定没有零点,在区间(1,2)上一定有零点
(C)f(x)在区间(0,1)上一定有零点,在区间(1,2)上可能有零点
(D)f(x)在区间(0,1)上可能有零点,在区间(1,2)上一定有零点
解析:根据零点存在性定理,
由于f(0)·f(1)<0,f(1)·f(2)>0,
所以f(x)在区间(0,1)上一定有零点,
在区间(1,2)上无法确定,可能有,也可能没有,如图所示.
故选C.
3.函数f(x)=x3-2x2+3x-6在区间[-2,4]上的零点必定属于( D )
(A)[-2,1] (B)[2.5,4]
(C)[1,1.75] (D)[1.75,2.5]
解析:因为f(-2)=-28<0,f(4)=38>0,f(1)=-4<0,f(2.5)=4.625>0, f(1.75)=-1.515625<0. 所以f(x)在[-2,4]上的零点必定属于[1.75,2.5].故选D.
4.在用二分法求方程x3-2x-1=0的一个近似解时,现在已经将一根锁定在区间(1,2)内,则下一步可断定该根所在的区间为( D )
(A)(1.4,2) (B)(1.1,4)
(C)(1,) (D)(,2)
解析:设f(x)=x3-2x-1,
则f(1)=-2<0,f(2)=23-2×2-1>0,
F()=()3-2×-1=-<0,
所以f()·f(2)<0,
所以该根应在区间(,2)内.故选D.
5.(2018·河南中原名校联考)函数y=x3与y=x+3图象交点的横坐标所在的区间是( A )
(A)[1,2] (B)[0,1]
(C)[-1,0] (D)[2,3]
解析:设f(x)=x3-x-3,当x=1时,y=-3,
当x=2时,y=3,f(1)f(2)<0,
所以函数的零点必在区间[1,2],故选A.
2
(A)(-3,-1)和(2,4) (B)(-3,-1)和(-1,1)
(C)(-1,1)和(1,2) (D)(-∞,-3)和(4,+∞)
解析:因为f(-3)·f(-1)<0,f(2)·f(4)<0.故选A.
7.若函数y=f(x)在区间(-2,2)上的图象是连续的,且方程f(x)=0在(-2,2)上仅有一实根0,则f(-1)·f(1)的值( D )
(A)大于0 (B)小于0
(C)等于0 (D)无法判断
解析:如图,根据连续函数零点的性质,若f(-1)·f(1)<0,则f(x)在(-1,1)内必有零点,即方程f(x)=0在(-1,1)内有实根;反之,若方程f(x)=0在(-2,2)内有实根,不一定有f(-1)·f(1)<0,也可能有f(-1)·f(1)>0.故选D.
8.下面是函数f(x)在区间[1,2]上的一些点的函数值.
由此可判断:方程f(x)=0在[1,2]上解的个数( A )
(A)至少5个(B)5个
(C)至多5个 (D)4个
解析:由所给的函数值的表格可以看出,在x=1.25与x=1.375这两个数对应的函数值的符号
不同,
即f(1.25)·f(1.375)<0,
所以函数的一个零点在(1.25,1.375)上,
同理:函数的一个零点在(1.375,1.406 5)上,
函数的一个零点在(1.406 5,1.438)上,
函数的一个零点在(1.5,1.61)上,
函数的一个零点在(1.61,1.875)上.
故函数至少有5个零点,
即方程f(x)=0在[1,2]上至少有5个解.
解析:令F(x)=f(x)-g(x),
因为F(-1)=f(-1)-g(-1)=-0.677-(-0.530)<0,
F(0)=f(0)-g(0)=3.011-3.451<0,
F(1)=f(1)-g(1)=5.432-4.890>0,
于是F(0)·F(1)<0,
故使f(x)=g(x)有实数解的区间是(0,1),
又因为F(2)>0,F(3)>0,故只有区间(0,1).
答案:(0,1)
10.(2018·广西四校期中联考)已知函数f(x)=x3-x2+1.
(1)证明方程f(x)=0在区间(0,2)内有实数解;
(2)请使用二分法,取区间的中点二次,指出方程f(x)=0,x∈[0,2]的实数解x0在哪个较小的区间内.
(1)证明:因为f(0)=1>0,f(2)=-<0,
所以f(0)·f(2)=-<0,
函数f(x)=x3-x2+1是连续函数,由函数的零点存在性定理可得方程f(x)=0在区间(0,2)内有实数解.
(2)解:取x1=(0+2)=1,得f(1)=>0,
由此可得f(1)·f(2)=-<0,
下一个有解区间为(1,2),
再x2=(1+2)=,
得f()=-<0,
由f(1)·f()=-<0,
则下一个有解区间为(1,),
综合上述所求实数解x0在较小区间(1,)内.
11.已知二次函数f(x)=ax2+bx+c.
(1)a>b>c,且f(1)=0,试证明:f(x)必有两个零点;
(2)设x1,x2∈R,x1<x2,且f(x1)≠f(x2),若方程f(x)=[f(x1)+f(x2)]有两个不等实根,试证明
必有一个实根属于区间(x1,x2).
证明:(1)因为f(1)=0,所以a+b+c=0.
又因为a>b>c,
所以a>0,c<0,即ac<0.
所以Δ=b2-4ac≥-4ac>0.
所以方程ax2+bx+c=0必有两个不相等的实根,
所以f(x)必有两个零点.
(2)令g(x)=f(x)-[f(x1)+f(x2)],
则g(x1)=f(x1)-[f(x1)+f(x2)]
=[f(x1)-f(x2)].
g(x2)=f(x2)-[f(x1)+f(x2)]=[f(x2)-f(x1)].
因为g(x1)g(x2)=-[f(x1)-f(x2)]2,
且f(x1)≠f(x2),所以g(x1)g(x2)<0.
所以g(x)=0在(x1,x2)内必有一实根.
所以方程f(x)=[f(x1)+f(x2)]必有一实根属于区间(x1,x2).。