2017年莆田市数学科中考质检试卷可编辑word版(含答案)

合集下载

2017福建中考数学试卷解析完整版

2017福建中考数学试卷解析完整版

A.-3
B. 1
C. 1
D.3
3
3
【分析】直 接 根 据 相 反 数 的 定 义 进 行 解 答 即 可 .
【答案】D. 解 : -3 的 相 反 数 是 : 3 ,故 选 D.
【关键词】相 反 数 .
2.(2017 福建,题号 2,分值 4)如图,由四个正方体组成的几何题的左视图是
(A)
(B)
B.1.36 105
C.136 103
D.1.36 106
【分析】科学记数法的表示形式为 a 10n 的形式,其中1 a 10 , n 为整数.确定 n 的 值时,要看把原数变成 a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同. 当原数绝对值>1 时, n 是正数;当原数的绝对值<1 时, n 是负数. 【答案】B. 解:136000 1.36 105 ,故选:B.
6.(2017
福建,题号
6,分值
4)不等式组:
x x

2 3

0 0
的解集是
A. 3 x 2
B. 3 x 2
C. x 2
D. x 3
【分析】根据解不等式组的方法可以求得原不等式组的解集.
【答案】A 解 x 2 0 x 3 0
解不等式①,得: x 2 , 解不等式②,得 x 3 , 由①②可得, 3 x 2 , 故原不等式组的解集是 3 x 2 ,故选 A.
2017 福建中考解析--福建数学团队出品
2017 年福建省中考数学试卷
满分:150 分 版本:人教(北师,华师大)
由宁德屏南张小锋,福安郑惠,福鼎雷少华,方光德,金良快共五位老师解析.

2017年福建省中考数学试卷及答案

2017年福建省中考数学试卷及答案

数学试卷 第1页(共18页) 数学试卷 第2页(共18页)绝密★启用前福建省2017年初中毕业和高中阶段学校招生考试数学 ...................................................... 1 福建2017年初中毕业和高中阶段学校招生考试数学答案解析. (4)福建省2017年初中毕业和高中阶段学校招生考试数学(本试卷满分150分,考试时间120分钟)第Ⅰ卷(选择题 共40分)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.3的相反数是( )A .3-B .13-C .13D .3 2.如图,由四个正方体组成的几何体的左视图是( )AB C D 3.用科学计数法表示136 000,其结果是( )A .60.13610⨯B .51.3610⨯C .313610⨯ D .613610⨯ 4.化简2(2)x 的结果是( )A .4xB .22xC .24x D .4x 5.下列关于图形对称性的命题,正确的是( )A .圆既是轴对称图形,又是中心对称图形B .正三角形既是轴对称图形,又是中心对称图形C .线段是轴对称图形,但不是中心对称图形D .菱形是中心对称图形,但不是轴对称图形6.不等式组20,30x x -⎧⎨+⎩≤>的解集是( )A .32x -<≤B .32x -≤<C .2x ≥D .3x <-7.某校举行“汉字听写比赛”,5个班级代表队的正确答题数如图.这5个正确答题数所组成的一组数据的中位数和众数分别是( )A .10,15B .13,15C .13,20D .15,158.如图,AB 是O 的直径,,C D 是O 上位于AB 异侧的两点.下列四个角中,一定与ACD ∠互余的角是( )A .ADC ∠B .ABD ∠C .BAC ∠D .BAD ∠9.若直线1y kx k =++经过点(,3)m n +和(1,21)m n +-,且02k <<,则n 的值可以是( )A .3B .4C .5D .610.如图,网格纸上正方形小格的边长为1.图中线段AB 和点P 绕着同一个点做相同的旋转,分别得到线段A B ''和点P ',则点P '所在的单位正方形区域是( )A .1区B .2区C .3区D .4区第Ⅱ卷(非选择题 共110分)毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共18页) 数学试卷 第4页(共18页)二、填空题(本大题共6小题,每小题4分,共24分.把答案填写在题中的横线上) 11.计算0|2|3--= .12.如图,ABC △中,,D E 分别是,AB AC 的中点,连线DE ,若3DE =,则线段BC 的长等于 .13.一个箱子装有除颜色外都相同的2个白球,2个黄球,1个红球.现添加同种型号的1个球,使得从中随机抽取1个球,这三种颜色的球被抽到的概率都是13,那么添加的球是 .14.已知,,A B C 是数轴上的三个点,且C 在B 的右侧.点,A B 表示的数分别是1,3,如图所示.若2BC AB =,则点C 表示的数是 . 15.两个完全相同的正五边形都有一边在直线l 上,且有一个公共顶点O ,其摆放方式如图所示,则AOB ∠等于 度. 16.已知矩形ABCD 的四个顶点均在反比例函数1y x=的图象上,且点A 的横坐标是2,则矩形ABCD 的面积为 .三、解答题(本大题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分8分)先化简,再求值:21(1)1aa a --,其中21a =-.18.(本小题满分8分)如图,点,,,B E C F 在一条直线上,,,AB DE AC DF BE CE ===.求证:A D =∠∠.19.(本小题满分8分)如图,ABC △中,90BAC =︒∠,AD BC ⊥,垂足为D .求作ABC ∠的平分线,分别交AD ,AC 于,P Q 两点;并证明AP AQ =.(要求:尺规作图,保留作图痕迹,不写作法)20.(本小题满分8分)我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足.问鸡兔各几何.”其大意是:“有若干只鸡和兔关在同一笼子里,它们一共有35个头,94条腿.问笼中的鸡和兔各有多少只.”试用列方程(组)解应用题的方法求出问题的解.21.(本小题满分8分)如图,四边形ABCD 内接于O ,AB 是O 的直径,点P 在CA 的延长线上,45CAD =︒∠.(1)若4AB =,求CD 的长;(2)若,BC AD AD AP ==,求证:PD 是O 的切线.数学试卷 第5页(共18页) 数学试卷 第6页(共18页)22.(本小题满分10分)小明在某次作业中得到如下结果:2222sin 7sin 830.12+0.99=0.9945︒+︒≈, 2222sin 22sin 680.37+0.93=1.0018︒+︒≈, 2222sin 29sin 610.48+0.87=0.9873︒+︒≈, 2222sin 37sin 530.60+0.80=1.0000︒+︒≈, 2222sin 45sin 45(+(=122︒+︒≈. 据此,小明猜想:对于任意锐角α:均有22sin sin (90)1αα+︒-=.(1)当30α=︒时,验证22sin sin (90)1αα+︒-=是否成立;(2)小明的猜想是否成立?若成立,请给予证明;若不成立,请举出一个反例.23.(本小题满分10分)自2016年国庆后,许多高校均投放了使用手机就可随取随用的共享单车.某运营商为提高其经营的A 品牌共享单车的市场占有率,准备对收费作如下调整:一天中,同一个人第一次使用的车费按0.5元收取,每增加一次,当次车费就比上次车费减少0.1元,第6同时,愿,(1)写出,a b 的值;(2)已知该校有5000名师生,且A 品牌共享单车投放该校一天的费用为5 800元.试估计:收费调整后,此运营商在该校投放A 品牌共享单车能否获利?说明理由.24.(本小题满分12分)如图,矩形ABCD 中,6,8AB AD ==,,P E 分别是线段,AC BC 上的点,且四边形PEFD 为矩形.(1)若PCD △是等腰三角形,求AP 的长; (2)若AP ,求CF 的长.25.(本小题满分14分)已知直线2y x m =+与抛物线2y ax ax b =++有一个公共点(1,0)M ,且a b <. (1)求抛物线顶点Q 的坐标(用含a 的代数式表示); (2)说明直线与抛物线有两个交点; (3)直线与抛物线的另一个交点记为N . (ⅰ)若112a -≤≤-,求线段MN 长度的取值范围; (ⅱ)求QMN △面积的最小值.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------。

2017年莆田市质检卷(终稿)

2017年莆田市质检卷(终稿)

★时间:2016年9月4日—9月5日 ★地点:杭州 ★主持人:习近平★主题:构建创新、活力、联动、包容的世界经济2017年莆田市初中毕业班质量检查试卷思想品德(考试时间:90分钟 考试形式:闭卷笔答)一、单项选择题(以下每小题中各有四个选项,其中只有一个最符合题意要求,请在答题卡上的规定位置上填涂所选答案的字母。

每小题2分,共50分)1.经中共中央国务院批准,自2016年起将每年4月24日设立为A. 烈士纪念日B. 国家公祭日C. 中国航天日D. 国家安全日2.2016年7月17日,在土耳其伊斯坦布尔的联合国教科文组织世界遗产委员会第四十一届大会上,我国被正式列入《世界遗产名录》的是A.湖北神农架B. 山西五台山C. 安徽黄山D. 山东泰山 3.右边方框内容所指的是 A.金砖国家领导人第八次会晤B.二十国集团(G20)领导人第十一次峰会C.上合组织成员国元首理事会第十六次会议D.亚太经合组织第二十四次领导人非正式会议 4.2016年9月13日,《中国学生发展核心素养》研究成果在北京发布。

学生发展核心素养以培养“全面发展的人”为核心,分为 A.文化基础、自主发展、社会参与 B. 人文底蕴、科学精神、学会学习 C.健康生活、责任担当、实践创新 D. 文化基础、自主发展、科学精神 5.2016年10月24日至27日,中共十八届六中全会在北京举行。

会议的主题是 A.全面深化改革 B.全面从严治党 C.全面推法治国 D.全面小康社会6. 2016年10月,我国《“健康中国2030”规划纲要》发布,它将建设“健康中国”上升为国家战略。

《纲要》指出,到2030年我国居民主要健康指标要进入A.中等收入国家行列B.发达国家行列C.高收入国家行列D.世界先进行列 7.2016年我国有一批科技成果受世界关注。

下列不属于...我国取得的重要科技成果的是 A.“神威·太湖之光”成为全球运行速度最快的超级计算机 B.我国成功将世界首颗量子科学实验卫星发射升空 C.人民币正式加入国际货币基金组织的特别提款权货币篮子 D.世界上最大的单口径巨型射电望远镜落成启用 8.李鸣:“路飞,今天数学作业这么多,怎么办?”路飞:“用‘小猿搜题’软件吧,一搜答案就出来,我都是这样,想都不用想。

福建省2017年中考数学真题试题(含扫描答案)

福建省2017年中考数学真题试题(含扫描答案)

24.如图,矩形 ABCD 中, AB 6, AD 8 , P, E 分别是线段 AC、BC 上的点,且四边形 PEFD 为矩形.
(Ⅰ)若 PCD 是等腰三角形时,求 AP 的长;
(Ⅱ)若 AP 2 ,求 CF 的长.
25.已知直线 y 2x m 与抛物线Y ax2 ax b 有一个公共点 M (1, 0) ,且 a b .
x 2 0
6. 不等式组:
的解集是( )
x 3 0
D.
D.136 106
A. 3 x 2
B. 3 x 2
C. x 2
D. x 3
7.某校举行“汉字听写比赛”,5 个班级代表队的正确答题数如图.这 5 个正确答题数所组成的一组数据的
中位数和众数分别是( )
A.10,15
B.13,15
A.3
B.4
C.5
D.6
10.如图,网格纸上正方形小格的边长为 1.图中线段 AB 和点 P 绕着同一个点做相同的旋转,分别得到线
段 AB 和点 P ,则点 P 所在的单位正方形区域是( )
A.1 区
B.2 区
C.3 区
D.4 区
第Ⅱ卷(共 90 分)
二、填空题:本题共6小题,每小题4分,共24分.
sin2 37o sin2 53o 0.602 0.802 1.0000 ,
sin2 45o sin2 45o ( 2 )2 ( 2 )2 1.
2
2
据此,小明猜想:对于任意锐角 ,均有 sin2 sin2 (90o ) 1.
(Ⅰ)当 30o 时,验证 sin2 sin2 (90o ) 1是否成立;
(Ⅱ)小明的猜想是否成立?若成立,若成立,请给予证明;若不成立,请举出一个反例.

2017福建省质检数学答案

2017福建省质检数学答案

(n 2)t , (*)
t ,解得 t 2 ; 0 ,此时 t R ;
(ⅰ)当 n 1 时,不等式(*)可化为 2 (ⅱ)当 n 2 时,不等式(*)可化为 0 (ⅲ)当 n
3 时,不等式(*)可化为 t 2n ,因为数列 2n 是递增数列,所以 t

8.
综上, t 的取值范围是 2 , · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 12 分 8 . ·
①-②,得 an 2an 2an1 ,即 an 2an1 ,所以 an 2n 1 . · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·3 分 由数列 bn 的前三项和为 3 ,得 3b2 3 ,所以 b2 1 . · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·4 分 设数列 bn 的公差为 d ,则 b3 1 d , b5 1 3d , · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·5 分 又因为 b32 b2b5 ,所以 (1 d )2 1 3d , 解得 d 1 或 d 0 (舍去) ,所以 bn n 1 .· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·6 分 (Ⅱ)由(Ⅰ) ,可知 an 2n 1 , bn n 1 ,从而 anbn (n 1) 2n1 , 令 Tn a1b1 a2b2 即 Tn 1 21 2 22

2017年福建省莆田市中考数学练习试卷

2017年福建省莆田市中考数学练习试卷

2017年福建省莆田市中考数学练习试卷2017年福建省莆田市中考数学练习试卷考生在中考数学考试中想要得到高分要对中考数学练习试题进行多次练习,为了帮助各位考生,以下是小编精心整理的2017年福建省莆田市中考数学练习试题,希望能帮到大家!2017年福建省莆田市中考数学练习试题一、选择题(共10小题,每小题3分,计30分,每小题只有一个选项是符合题意的)1.( )﹣1×3=()A. B.﹣6 C. D.62.,下面几何体由四个大小相同的小立方块组成,则它的左视图是( )A. B. C. D.3.下列计算正确的是( )A.a2+a2=a4B.a8÷a2=a4C.(﹣a)2﹣a2=0D.a2•a3=a64.,AB∥CD,CD⊥EF,若∠1=124°,则∠2=()A.56°B.66°C.24°D.34°5.若正比例函数为y=3x,则此正比例函数过(m,6),则m的值为( )A.﹣2B.2C.D.6.,在△ABC中,∠BAC=56°,∠ABC=74°,BP、CP分别平分∠ABC和∠ACB,则∠BPC=()A.102°B.112°C.115°D.118°7.已知一函数y=kx+3和y=﹣kx+2.则两个一次函数图象的交点在( )A.第一、二象限B.第二、三象限C.三、四象限D.一、四象限8.,在矩形ABCD中,点O为对角线AC、BD的交点,点E为BC 上一点,连接EO,并延长交AD于点F,则图中全等三角形共有( )A.3对B.4对C.5对D.6对9.,AB为⊙O的直径,弦DC垂直AB于点E,∠DCB=30°,EB=3,则弦AC的长度为( )A.3B.C.D.10.若二次函数y=x2+bx+c的图象与x轴交于两点,与y轴的正半轴交于一点,且对称轴为x=1,则下列说法正确的是( )A.二次函数的图象与x轴的交点位于y轴的两侧B.二次函数的图象与x轴的交点位于y轴的右侧C.其中二次函数中的c>1D.二次函数的图象与x轴的一个交于位于x=2的右侧二、填空题(共5小题,每小题3分,计12分)11.不等式﹣ x+2>0的最大正整数解是.12.正十二边形每个内角的度数为.13.运用科学计算器计算:2 cos72°=.(结果精确到0.1)14.,△AOB与反比例函数交于C、D,△AOB的面积为6,若AC:CB=1:3,则反比例函数的表达式为.15.,在平行四边形ABCD中,AB=4,BC=5,∠ABC=60°,平行四边形ABCD的对角线AC、BD交于点O,过点O作OE⊥AD,则OE= .三、解答题(共11小题,计78分.解答应写出过程)16.计算: +(2﹣π)0﹣|1﹣ |17.解分式方程: .18.,已知△ABC,请用尺规作△ABC的中位线EF,使EF∥BC.19.2016年12月至1月期间由于空气污染严重,天空中被浓浓的雾霾笼罩着,大多数中小学校为了学生的健康,都不得不停课.针对这一情况有关部门对停课在家的学生家长进行了抽样调查.现将学生家长对这一事件态度的调查结果分为四个等级:“A﹣﹣非常不同意”、“B﹣﹣比校同意”、“C﹣﹣不太同意”、“D﹣﹣非常同意”,并将统计结果绘制成如下两幅不完整的统计图.请根据以上信息,解答下列问题:(1)补全上面的条形统计图和扇形统计图;(2)所抽样调查学生家长的人数为人;(3)若所调查学生家长的人数为1600人,非常不同意停课的人数为多少人?20.,在△AOB中,OA=OB,∠AOB=50°,将△AOB绕O点顺时针旋转30°,得到△COD,OC交AB于点F,CD分别交AB、OB于点E、H.求证:EF=EH.21.某学校的学生为了对小雁塔有基本的认识,在老师的带领下对小雁塔进行了测量.测量方法如下:,间接测得小雁塔地部点D到地面上一点E的距离为115.2米,小雁塔的顶端为点B,且BD⊥DE,在点E处竖直放一个木棒,其顶端为C,CE=1.72米,在DE的延长线上找一点A,使A、C、B三点在同一直线上,测得AE=4.8米.求小雁塔的高度.22.移动营业厅推出两种移动电话计费方式:方案一,月租费用15元/元,本地通话费用0.2元/分钟,方案二,月租费用0元/元,本地通话费用0.3元/分钟.(1)以x表示每个月的通话时间(单位:分钟),y表示每个月的电话费用(单位:元),分别表示出两种电话计费方式的函数表达式;(2)问当每个月的通话时间为300分钟时,采用那种电话计费方式比较合算?23.某学校要举办一次演讲比赛,每班只能选一人参加比赛.但八年级一班共有甲、乙两人的演讲水平相不相上下,现要在他们两人中选一人去参加全校的演讲比赛,经班主任与全班同学协商决定用摸小球的游戏来确定谁去参赛(胜者参赛).游戏规则如下:在两个不透明的盒子中,一个盒子里放着两个红球,一个白球;另一个盒子里放着三个白球,一个红球,从两个盒子中各摸一个球,若摸得的两个球都是红球,甲胜;摸得的两个球都是白球,乙胜,否则,视为平局.若为平局,继续上述游戏,直至分出胜负为止.根据上述规则回答下列问题:(1)从两个盒子各摸出一个球,一个球为白球,一个球为红球的概率是多少?(2)该游戏公平吗?请用列表或树状图等方法说明理由.24.,BC为⊙O的直径,A为圆上一点,点F为的中点,延长AB、AC,与过F点的切线交于D、E两点.(1)求证:BC∥DE;(2)若BC:DF=4:3,求tan∠ABC的值.25.,抛物线y=ax2+bx+1过A(1,0)、B,(5,0)两点.(1)求:抛物线的函数表达式;(2)求:抛物线与y轴的交点C的坐标及其对称轴(3)若抛物线对称轴上有一点P,使△COA∽△APB,求点P的坐标.26.(1)1,在AB直线一侧C、D两点,在AB上找一点P,使C、D、P三点组成的三角形的周长最短,找出此点并说明理由.(2)2,在∠AOB内部有一点P,是否在OA、OB上分别存在点E、F,使得E、F、P三点组成的三角形的周长最短,找出E、F两点,并说明理由.(3)3,在∠AOB内部有两点M、N,是否在OA、OB上分别存在点E、F,使得E、F、M、N,四点组成的四边形的周长最短,找出E、F两点,并说明理由.2017年福建省莆田市中考数学练习试题答案一、选择题(共10小题,每小题3分,计30分,每小题只有一个选项是符合题意的)1.( )﹣1×3=()A. B.﹣6 C. D.6【考点】负整数指数幂.【分析】根据负整数指数幂与正整数指数幂互为倒数,可得答案.【解答】解:原式=2×3=6,故选:D.2.,下面几何体由四个大小相同的小立方块组成,则它的左视图是( )A. B. C. D.【考点】简单组合体的三视图.【分析】先细心观察原立体图形中正方体的位置关系,结合四个选项选出答案.【解答】解:它的左视图有两层,下面有两个小正方形,上面左侧有一个小正方形,故选:B.3.下列计算正确的是( )A.a2+a2=a4B.a8÷a2=a4C.(﹣a)2﹣a2=0D.a2•a3=a6【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】分别利用合并同类项法则以及结合同底数幂的乘除法运算法则分别化简求出答案.【解答】解:A、a2+a2=2a2,故此选项错误;B、a8÷a2=a6,故此选项错误;C、(﹣a)2﹣a2=0,正确;D、a2•a3=a5,故此选项错误;故选:C.4.,AB∥CD,CD⊥EF,若∠1=124°,则∠2=()A.56°B.66°C.24°D.34°【考点】平行线的性质;垂线.【分析】先根据平行线的性质,得出∠CEH=124°,再根据CD⊥EF,即可得出∠2的度数.【解答】解:∵AB∥CD,∠1=124°,∴∠CEH=124°,∴∠CEG=56°,又∵CD⊥EF,∴∠2=90°﹣∠CEG=34°.故选:D.5.若正比例函数为y=3x,则此正比例函数过(m,6),则m的值为( )A.﹣2B.2C.D.【考点】一次函数图象上点的坐标特征.【分析】直接把点(m,6)代入正比例函数为y=3x,求出m的值即可.【解答】解:∵点(m,6)在正比例函数为y=3x的图象上,∴3m=6,解得m=2.故选B.6.,在△ABC中,∠BAC=56°,∠ABC=74°,BP、CP分别平分∠ABC和∠ACB,则∠BPC=()A.102°B.112°C.115°D.118°【考点】三角形内角和定理.【分析】先根据三角形内角和定理,求得∠ACB度数,再根据角平分线的定义,得出∠PBC=37°,∠PCB=25°,最后根据三角形内角和定理,求得∠P的度数.【解答】解:∵在△ABC中,∠BAC=56°,∠ABC=74°,∴∠ACB=180°﹣∠BAC﹣∠ABC=50°,∵BP、CP分别平分∠ABC和∠ACB,∴∠PBC=37°,∠PCB=25°,∴△BCP中,∠P=180°﹣∠PBC﹣∠PCB=118°,故选:D.7.已知一函数y=kx+3和y=﹣kx+2.则两个一次函数图象的交点在( )A.第一、二象限B.第二、三象限C.三、四象限D.一、四象限【考点】两条直线相交或平行问题.【分析】联立方程组求得,再分k>0和k<0分别讨论可得.【解答】解:由可得,当k>0时,交点的横坐标为负,纵坐标为正,即交点在第二象限;当k<0时,交点的横坐标为正,纵坐标为正,即交点在第一象限;故选:A.8.,在矩形ABCD中,点O为对角线AC、BD的交点,点E为BC 上一点,连接EO,并延长交AD于点F,则图中全等三角形共有( )A.3对B.4对C.5对D.6对【考点】矩形的性质;全等三角形的判定.【分析】根据已知及全等三角形的判定方法进行分析,从而得到答案.【解答】解:∵四边形ABCD为矩形,其矩形的对角线相等且相互平分,∴AB=CD,AD=BC,AO=CO,BO=DO,EO=FO,∠DAO=∠BCO,又∠AOB=∠COD,∠AOD=∠COB,∠AOE=∠COF,∴△AOB≌△COD(SSS),△AOD≌△COB(SSS),△AOE≌△COF(ASA),△DOE≌△BOF(ASA),△ABC≌△CDA(SSS),△ABD≌△CDB(SSS).故图中的全等三角形共有6对.故选D9.,AB为⊙O的直径,弦DC垂直AB于点E,∠DCB=30°,EB=3,则弦AC的长度为( )A.3B.C.D.【考点】垂径定理.【分析】连结OC,AC,先根据直角的性质得到∠ABC的度数,再圆周角定理得到∠AOC的度数,根据等边三角形的性质和垂径定理得到⊙O的半径和直径,再解直角三角形即可求解.【解答】解:连结OC,AC,∵弦DC垂直AB于点E,∠DCB=30°,∴∠ABC=60°,∴△BOC是等边三角形,∵EB=3,∴OB=6,∴AB=12,AB为⊙O的直径,∴∠ACB=90°,在Rt△ACB,AC=12× =6 .故选:D.10.若二次函数y=x2+bx+c的图象与x轴交于两点,与y轴的正半轴交于一点,且对称轴为x=1,则下列说法正确的是( )A.二次函数的图象与x轴的交点位于y轴的两侧B.二次函数的图象与x轴的交点位于y轴的右侧C.其中二次函数中的c>1D.二次函数的图象与x轴的一个交于位于x=2的右侧【考点】抛物线与x轴的交点.【分析】根据题意可以得到a的正负、b的值和c的取值范围,从而可以确定二次函数与x轴的交点所在的位置,本题得以解决.【解答】解:∵y=x2+bx+c的图象与x轴交于两点,与y轴的正半轴交于一点,且对称轴为x=1,∴a=1>0,c>0,﹣,得b=﹣2,∴△=(﹣2)2﹣4×1×c>0,得c<1,故选项C错误,∴0∴二次函数的图象与x轴的交点位于y轴右侧,且与x轴的交点一个在0到1之间,一个在1到2之间,故选项B正确,选项A和D错误,故选B.二、填空题(共5小题,每小题3分,计12分)11.不等式﹣ x+2>0的最大正整数解是 5 .【考点】一元一次不等式的整数解.【分析】先求出不等式的解集,在取值范围内可以找到最大正整数解.【解答】解:﹣ x+2>0,移项,得:﹣ x>﹣2,系数化为1,得:x<6,故不等式﹣ x+2>0的最大正整数解是5.故答案为:5.12.正十二边形每个内角的度数为150°.【考点】多边形内角与外角.【分析】首先求得每个外角的度数,然后根据外角与相邻的内角互为邻补角即可求解.【解答】解:正十二边形的每个外角的度数是:=30°,则每一个内角的度数是:180°﹣30°=150°.故答案为:150°.13.运用科学计算器计算:2 cos72°= 1.1 .(结果精确到0.1)【考点】计算器—三角函数;近似数和有效数字;计算器—数的开方.【分析】将 =1.732和cos72°=0.309代入计算即可.【解答】解:2 cos72°=2×1.732×0.309≈1.1,故答案为:1.1.14.,△AOB与反比例函数交于C、D,△AOB的面积为6,若AC:CB=1:3,则反比例函数的表达式为y= .【考点】待定系数法求反比例函数解析式;反比例函数系数k的几何意义.【分析】根据题意S△AOC= ,进而根据反比例函数系数k的几何意义可得k的值,可得反比例函数的关系式.【解答】解:连接OC,。

福建省2017年中考数学真题试题(精品解析)

福建省2017年中考数学真题试题(精品解析)

福建省2017年中考数学真题试题第Ⅰ卷一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.3的相反数是( ) A .-3 B .13- C .13D .3 【答案】A【解析】只有符号不同的两个数互为相反数,因此3的相反数是-3;故选A. 2.如图,由四个正方体组成的几何体的左视图是( )A .B .C .D .【答案】B【解析】从左边看可以看到两个小正方形摞在一起,故选B. 3.用科学计数法表示136 000,其结果是( )A .60.13610⨯B .51.3610⨯C .313610⨯D .613610⨯ 【答案】B【解析】13600=1.36×105,故选B. 4.化简2(2)x 的结果是( )A .4xB .22xC . 24x D .4x 【答案】C【解析】(2x )2=4x 2;故选C.5.下列关于图形对称性的命题,正确的是( ) A .圆既是轴对称性图形,又是中心对称图形 B .正三角形既是轴对称图形,又是中心对称图形C .线段是轴对称图形,但不是中心对称图形D .菱形是中心对称图形,但不是轴对称图形 【答案】A点睛:本题主要考查中心对称图形与轴对称图形的知识,能正确地区分是解题的关键. 6. 不等式组:⎩⎨⎧>+≤-0302x x 的解集是( )A .32x -<≤B .32x -≤<C . 2x ≥D .3x <- 【答案】A【解析】由①得x ≤2,由②得x>-3,所以解集为:-3<x ≤2,故选A.7.某校举行“汉字听写比赛”,5个班级代表队的正确答题数如图.这5个正确答题数所组成的一组数据的中位数和众数分别是( )A .10,15B .13,15C .13,20D .15,15 【答案】D【解析】将这五个答题数排序为:10,13,15,15,20,由此可得中位数是15,众数是15,故选D. 8.如图,AB 是O e 的直径,,C D 是O e 上位于AB 异侧的两点.下列四个角中,一定与ACD ∠互余的角是( )A .ADC ∠B .ABD ∠C . BAC ∠D .BAD ∠ 【答案】D【解析】∵AB 是直径,∴∠ADB=90°,∴∠BAD+∠B=90°,∵∠ACD=∠B ,∴∠BAD+∠ACD=90°,故选D.9.若直线1y kx k =++经过点(,3)m n +和(1,21)m n +-,且02k <<,则n 的值可以是( ) A .3 B .4 C .5 D .6 【答案】C10.如图,网格纸上正方形小格的边长为1.图中线段AB 和点P 绕着同一个点做相同的旋转,分别得到线段A B ''和点P ',则点P '所在的单位正方形区域是( )A .1区B .2区C .3区D .4区 【答案】D【解析】如图,根据题意可得旋转中心O ,旋转角是90°,旋转方向为逆时针,因此可知点P 的对应点落在了4区,故选D.点睛:本题主要考查图形的旋转,能根据题意正确地确定旋转中心、旋转方向、旋转角是解题的关键.第Ⅱ卷(共90分)二、填空题:本题共6小题,每小题4分,共24分.11.计算023--= . 【答案】1【解析】原式=2-1=1.12. 如图,ABC ∆中,,D E 分别是,AB AC 的中点,连线DE ,若3DE =,则线段BC 的长等于 .【答案】6【解析】∵E 、F 分别是AB 、AC 的中点,∴BC=2EF=6.13.一个箱子装有除颜色外都相同的2个白球,2个黄球,1个红球.现添加同种型号的1个球,使得从中随机抽取1个球,这三种颜色的球被抽到的概率都是13,那么添加的球是 . 【答案】红球(或红色的)14.已知,,A B C 是数轴上的三个点,且C 在B 的右侧.点,A B 表示的数分别是1,3,如图所示.若2BC AB =,则点C 表示的数是 .【答案】7【解析】∵AB=2,BC=2AB ,∴BC=4,3+4=7,故点C 表示的数是7.15.两个完全相同的正五边形都有一边在直线l 上,且有一个公共顶点O ,其摆放方式如图所示,则AOB ∠等于 度.【答案】108【解析】∵五边形是正五边形,∴每一个内角都是108°,∴∠OCD=∠ODC=180°-108°=72°,∴∠COD=36°,DC【答案】1a+1 . 【解析】试题分析:先通分计算括号内的,然后再利用分式的乘除法进行计算,最后代入求值即可. 试题解析:原式=()()11111a a a a a a -=+-+ ,当时,原式.18. 如图,点,,,B E C F 在一条直线上,,,AB DE AC DF BE CF ===.求证: A D ∠=∠.【答案】证明见解析. 【解析】19.如图,ABC ∆中,90,BAC AD BC ∠=⊥o ,垂足为D .求作ABC ∠的平分线,分别交,AD AD 于P ,Q 两点;并证明AP AQ =.(要求:尺规作图,保留作图痕迹,不写作法)【答案】作图见解析;证明见解析. 【解析】试题分析:按作图方法作出角平分线BQ ,然后通过利用互为余角以及等角的余角相等得到∠APQ=∠ AQP,从而证得AP=AQ.试题解析:作图如下,BQ 就是所求作的∠ABC 的平分线,P 、Q 就是所求作的点.证明如下:∵AD ⊥BC ,∴∠ADB=90°,∴∠BPD+∠PBD=90°,∵∠BAC=90°,∴∠AQP+∠ABQ=90°,∵∠ABQ=∠PBD ,∴∠BPD=∠AQP ,∵∠BPD=∠APQ ,∴∠APQ=∠ AQP,∴AP=AQ.20.我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足.问鸡兔各几何.”其大意是:“有若干只鸡和兔关在同一笼子里,它们一共有35个头,94条腿.问笼中的鸡和兔各有多少只?”试用列方程(组)解应用题的方法求出问题的解. 【答案】鸡有23只,兔有12只. 【解析】21.如图,四边形ABCD 内接于O e ,AB 是O e 的直径,点P 在CA 的延长线上,45CAD ∠=o.(Ⅰ)若4AB =,求弧CD 的长;(Ⅱ)若弧BC =弧AD ,AD AP =,求证:PD 是O e 的切线. 【答案】(Ⅰ)CD 的长 =π;(Ⅱ)证明见解析. 【解析】试题分析:(Ⅰ)连接OC ,OD ,由圆周角定理可得∠COD=90°,然后利用弧长公式即可得;(Ⅱ)由BC =AD ,可得∠BOC=∠AOD ,从而可得∠AOD=45°,再由三角形内角和从而可得∠ODA=67.5°,由AD=AP 可得∠ADP=∠APD ,由∠CAD=∠ADP+∠APD ,∠CAD=45°可得∠ADP=22.5°,继而可得∠ODP=90°,从而得 PD 是⊙O 的切线.试题解析:(Ⅰ)连接OC ,OD ,∵∠COD=2∠CAD ,∠CAD=45°,∴∠COD=90°,∵AB=4,∴OC=12AB=2,∴CD 的长=902180π⨯⨯ =π;22.小明在某次作业中得到如下结果:2222sin 7sin 830.120.990.9945+≈+=o o , 2222sin 22sin 680.370.93 1.0018+≈+=o o , 2222sin 29sin 610.480.870.9873+≈+=o o , 2222sin 37sin 530.600.80 1.0000+≈+=o o ,2222sin 45sin 451+≈+=o o . 据此,小明猜想:对于任意锐角α,均有22sin sin (90)1αα+-=o .(Ⅰ)当30α=o时,验证22sin sin (90)1αα+-=o是否成立;(Ⅱ)小明的猜想是否成立?若成立,若成立,请给予证明;若不成立,请举出一个反例. 【答案】(Ⅰ)成立,证明见解析;(Ⅱ)成立,证明见解析. 【解析】试题分析:(Ⅰ)成立,当30α=o时,将30°与60°的正弦值代入计算即可得证;(Ⅱ)成立,如图,△ABC 中,∠C=90°,设∠A=α,则∠B=90°-α,正确地表示这两个角的正弦并利用勾股定理即可得证.试题解析:(Ⅰ)当30α=o时, 22sin sin (90)αα+-o =sin 230°+sin 260°=2212⎛⎫+⎪⎝⎭⎝⎭=1344+ =1,所以22sin sin (90)1αα+-=o 成立; (Ⅱ)小明的猜想成立.证明如下:如图,△ABC 中,∠C=90°,设∠A=α,则∠B=90°-α,sin 2α+sin 2(90°-α)=2222222BC AC BC AC AB AB AB AB AB +⎛⎫⎛⎫+== ⎪ ⎪⎝⎭⎝⎭=123.自2016年国庆后,许多高校均投放了使用手机就可随用的共享单车.某运营商为提高其经营的A 品牌共享单车的市场占有率,准备对收费作如下调整:一天中,同一个人第一次使用的车费按0.5元收取,每增加一次,当次车费就比上次车费减少0.1元,第6次开始,当次用车免费.具体收费标准如下:同时,就此收费方案随机调查了某高校100名师生在一天中使用A 品牌共享单车的意愿,得到如下数据:(Ⅰ)写出,a b 的值;(Ⅱ)已知该校有5000名师生,且A 品牌共享单车投放该校一天的费用为5800元.试估计:收费调整后,此运营商在该校投放A 品牌共享单车能否获利? 说明理由. 【答案】(Ⅰ)a=1.2,b=1.4;(Ⅱ)不能获利,理由见解析; 【解析】试题分析:(Ⅰ)根据调整后的收费歀:一天中,同一个人第一次使用的车费按0.5元收取,每增加一次,当次车费就比上次车费减少0.1元,第6次开始,当次用车免费通过计算即可得a=1.2,b=1.4;(Ⅱ)根据用车意愿调查结果,抽取的100名师生每人每天使用A 品牌共享单车的平均车费 为:1100×(0×5+0.5×15+0.9×10+1.2×30+1.4×25+1.1×15)=1.1(元), 所以估计该校5000名师生一天使用A 品牌共享单车的总车费为:5000×1.1=5500(元), 因为5500<5800,故收费调整后,此运营商在该校投放A 品牌共享单车不能获利.24.如图,矩形ABCD 中,6,8AB AD ==,,P E 分别是线段AC 、BC 上的点,且四边形PEFD 为矩形.(Ⅰ)若PCD ∆是等腰三角形时,求AP 的长;(Ⅱ)若AP =,求CF 的长.【答案】(Ⅰ)AP 的长为4或5或145;(Ⅱ)CF=4【解析】试题分析:(Ⅰ)分情况CP=CD 、PD=PC 、DP=DC 讨论即可得;(Ⅱ)连结PF 、DE ,记PF 与DE 的交点为O ,连结OC ,通过证明△ADP ∽△CDF ,从而得34CF CD AP AD == ,由,从而可得CF=4.试题解析:(Ⅰ)在矩形ABCD 中,AB=6,AD=8,∠ADC=90°,∴DC=AB=6,;要使△PCD 是等腰三角形,有如下三种情况: (1)当CP=CD 时,CP=6,∴AP=AC-CP=4 ;(2)当PD=PC 时,∠PDC=∠PCD ,∵∠PCD+∠PAD =∠PDC+∠PDA=90°,∴∠PAD=∠PDA ,∴PD=PA ,∴PA=PC ,∴AP=2AC,即AP=5;(3)当DP=DC 时,过D 作DQ ⊥AC 于Q ,则PQ=CQ ,∵S △ADC =12 AD ·DC=12AC ·DQ ,∴DQ=245AD DC AC = ,185= ,∴PC=2CQ =365 ,∴AP=AC-PC=145.综上所述,若△PCD 是等腰三角形,AP 的长为4或5或145;(Ⅱ)连结PF 、DE ,记PF 与DE 的交点为O ,连结OC ,点睛:本题主要考查矩形的性质、等腰三角形的判定与性质,相似三角形的判定与性质等,能正确地分情况进行讨论是判定△PCD 要等腰三角形的关键.25.已知直线m x y +=2与抛物线2y ax ax b =++有一个公共点(1,0)M ,且a b <.(Ⅰ)求抛物线顶点Q 的坐标(用含a 的代数式表示);(Ⅱ)说明直线与抛物线有两个交点; (Ⅲ)直线与抛物线的另一个交点记为N .(ⅰ)若211-≤≤-a ,求线段MN 长度的取值范围; (ⅱ)求QMN ∆面积的最小值. 【答案】(Ⅰ)抛物线顶点Q 的坐标为(-12,-94a );(Ⅱ)理由见解析;(Ⅲ)(i )MN ≤(ii )△QMN 面积的最小值为274+【解析】试题分析:(Ⅰ)由抛物线过点M (1,0),可得b=-2a ,将解析式y=ax 2+ax+b=ax 2+ax-2a 配方得y=a(x+12)2- 94a ,从而可得抛物线顶点Q 的坐标为(- 12,- 94a).(Ⅱ)由直线y=2x+m 经过点M (1,0),可得m=-2.由y=2x-2、y=ax 2+ax-2a ,可得ax 2+(a-2)x-2a+2=0,(*),由根的判别式可得方程(*)有两个不相等的实数根,从而可得直线与抛物线有两个交点.(ii )作直线x=-12 交直线y=2x-2于点E ,得 E (-12,-3), 从而可得△QMN 的面积S=S △QEN +S △QEM =2732748a a -- ,即27a 2+(8S-54)a+24=0,(*)因为关于a 的方程(*)有实数根, 从而可和S ≥2742+,继而得到面积的最小值. 试题解析:(Ⅰ)因为抛物线过点M (1,0),所以a+a+b=0,即b=-2a ,所以y=ax 2+ax+b=ax 2+ax-2a=a(x+12)2-94a,所以抛物线顶点Q 的坐标为(-12,-94a). (Ⅱ)因为直线y=2x+m 经过点M (1,0),所以0=2×1+m ,解得m=-2.把y=2x-2代入y=ax 2+ax-2a ,得ax 2+(a-2)x-2a+2=0,(*),所以△=(a-2)2-4a(-2a+2)=9a 2-12a+4由(Ⅰ)知b=-2a ,又a<b ,所以a<0,b>0,所以△>0,所以方程(*)有两个不相等的实数根,故直线与抛物线有两个交点.(ii )作直线x=-12 交直线y=2x-2于点E ,把x=-12代入y=2x-2得,y=-3,即E (-12,-3), 又因为M (1,0),N (2a -2,4a-6),且由(Ⅱ)知a<0,所以△QMN 的面积S=S △QEN +S △QEM =()12921324a a ⎛⎫----- ⎪⎝⎭=2732748a a -- , 即27a 2+(8S-54)a+24=0,(*)因为关于a 的方程(*)有实数根,所以△=(8S-54)2-4×27×24≥0,即(8S-54)2≥()2,又因为a<0,所以S=2732748a a -- >274,所以8S-54>0,所以8S-54>0,所以8S-54≥S ≥2742+,当S=274*)可得满足题意.故当a=-3,b =3时,△QMN 面积的最小值为2742+.点睛:本题考查的二次函数的综合问题,能正确地应用待定系数法、一元二次方程根的判别式、二次函数的性质等是解决本题的关键.。

福建省莆田市中考数学试卷及答案(Word解析版)

福建省莆田市中考数学试卷及答案(Word解析版)

福建省莆田市中考数学试卷一、精心选一选:本大题共8小题,每小题4分,共32分。

每小题给出的四个选项中有且只有一个选项是符合题目要求的,答对的得4分,答错、不答或答案超过一个的一律得0分。

1.(4分)(•莆田)的相反数是()A.B.﹣C.D.﹣考点:相反数.分析:直接根据相反数的定义求解.解答:解:的相反数为﹣.故选B.点评:本题考查了相反数:a的相反数为﹣a.2.(4分)(•莆田)下列运算正确的是()A.(a+b)2=a2+b2B.3a2﹣2a2=a2C.﹣2(a﹣1)=﹣2a﹣1D.a6÷a3=a2考点:完全平方公式;合并同类项;去括号与添括号;同底数幂的除法.专题:计算题分析:A、原式利用完全平方公式化简得到结果,即可作出判断;B、原式合并得到结果,即可作出判断;C、原式去括号得到结果,即可作出判断;D、原式利用同底数幂的除法法则计算得到结果,即可作出判断.解答:解:A、原式=a2+2ab+b2,本选项错误;B、3a2﹣2a2=a2,本选项正确;C、﹣2(a﹣1)=﹣2a+2,本选项错误;D、a6÷a3=a3,本选项错误,故选B点评:此题考查了完全平方公式,合并同类项,去括号与添括号,以及同底数幂的除法,熟练掌握公式及法则是解本题的关键.3.(4分)(•莆田)对于一组统计数据:2,4,4,5,6,9.下列说法错误的是()A.众数是4 B.中位数是5 C.极差是7 D.平均数是5考点:极差;加权平均数;中位数;众数分析:根据平均数、众数、中位数和极差的定义分别进行计算,即可求出答案.解答:解:4出现了2次,出现的次数最多,则众数是4;共有6个数,中位数是第3,4个数的平均数,则中位数是(4+5)÷2=4.5;极差是9﹣2=7;平均数是:(2+4+4+5+6+9)÷6=5;故选B.点评:此题考查了平均数、众数、中位数和极差,求极差的方法是用一组数据中的最大值减去最小值,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),众数是一组数据中出现次数最多的数.4.(4分)(•莆田)如图,一次函数y=(m﹣2)x﹣1的图象经过二、三、四象限,则m 的取值范围是()A.m>0 B.m<0 C.m>2 D.m<2考点:一次函数图象与系数的关系.分析:根据一次函数图象所在的象限得到不等式m﹣2<0,据此可以求得m的取值范围.解答:解:如图,∵一次函数y=(m﹣2)x﹣1的图象经过二、三、四象限,∴m﹣2<0,解得,m<2.故选D.点评:本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.5.(4分)(•莆田)如图是一个圆柱和一个长方体的几何体,圆柱的下底面紧贴在长方体的上底面上,那么这个几何体的俯视图可能是()A.B.C.D.考点:简单组合体的三视图.分析:找到从上面看所得到的图形即可.解答:解:从上面可看到一个长方形里有一个圆.故选C.点评:本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.6.(4分)(•莆田)如图,将Rt△ABC(其中∠B=35°,∠C=90°)绕点A按顺时针方向旋转到△AB1C1的位置,使得点C、A、B1在同一条直线上,那么旋转角等于()A.55°B.70°C.125°D.145°考点:旋转的性质.分析:根据直角三角形两锐角互余求出∠BAC,然后求出∠BAB′,再根据旋转的性质对应边的夹角∠BAB′即为旋转角.解答:解:∵∠B=35°,∠C=90°,∴∠BAC=90°﹣∠B=90°﹣35°=55°,∵点C、A、B1在同一条直线上,∴∠BAB′=180°﹣∠BAC=180°﹣55°=125°,∴旋转角等于125°.故选C.点评:本题考查了旋转的性质,直角三角形两锐角互余的性质,熟练掌握旋转的性质,明确对应边的夹角即为旋转角是解题的关键.7.(4分)(•莆田)如图,△ABC内接于⊙O,∠A=50°,则∠OBC的度数为()A.40°B.50°C.80°D.100°考点:圆周角定理.分析:连接OC,利用圆周角定理即可求得∠BOC的度数,然后利用等腰三角形的性质即可求得.解答:解:连接OC.则∠BOC=2∠A=100°,∵OB=OC,∴∠OBC=∠OCB==40°.故选A.点评:本题考查了圆周角定理以及等腰三角形的性质定理,正确理解定理是关键.8.(4分)(•莆田)下列四组图形中,一定相似的是()A.正方形与矩形B.正方形与菱形C.菱形与菱形D.正五边形与正五边形考点:相似图形.分析:根据相似图形的定义和图形的性质对每一项进行分析,即可得出一定相似的图形.解答:解:A、正方形与矩形,对应角相等,对应边不一定成比例,故不符合题意;B、正方形与菱形,对应边成比例,对应角不一定相等,不符合相似的定义,故不符合题意;C、菱形与菱形,对应边不值相等,但是对应角不一定相等,故不符合题意;D、正五边形与正五边形,对应角相等,对应边一定成比例,符合相似的定义,故符合题意.故选:D.点评:本题考查了相似形的定义,熟悉各种图形的性质和相似图形的定义是解题的关键.二、细心填一填:本大题共8小题,每小题4分,共32分)9.(4分)(•莆田)不等式2x﹣4<0的解集是x<2.考点:解一元一次不等式.专题:计算题.分析:利用不等式的基本性质,将两边不等式同时加4再除以2,不等号的方向不变.解答:解:不等式2x﹣4<0移项得,2x<4,系数化1得,x<2.点评:本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.10.(4分)(•莆田)小明同学在“百度”搜索引擎中输入“中国梦”,搜索到相关的结果个数约为8650000,将这个数用科学记数法表示为8.65×106.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:8 650 000=8.65×106,故答案为:8.65×106.点评:此题主要考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.11.(4分)(•莆田)如图,点B、E、C、F在一条直线上,AB∥DE,BE=CF,请添加一个条件AB=DE,使△ABC≌△DEF.考点:全等三角形的判定.专题:开放型.分析:可选择利用AAS或SAS进行全等的判定,答案不唯一,写出一个符合条件的即可.解答:解:添加AB=DE.∵BE=CF,∴BC=EF,∵AB∥DE,∴∠B=∠DEF,∵在△ABC和△DEF中,,∴△ABC≌△DEF(SAS).故答案可为:AB=DE.点评:本题考查了全等三角形的判定,解答本题的关键是熟练掌握全等三角形的几种判定定理.12.(4分)(•莆田)已知在Rt△ABC中,∠C=90°,sinA=,则tanB的值为.考点:互余两角三角函数的关系.分析:根据题意作出直角△ABC,然后根据sinA=,设一条直角边BC为5,斜边AB为13,根据勾股定理求出另一条直角边AC的长度,然后根据三角函数的定义可求出tnaB.解答:解:∵sinA=,∴设BC=5,AB=13,则AC==12,故tanB==.故答案为:.点评:本题考查了互余两角三角函数的关系,属于基础题,解题的关键是掌握三角函数的定义和勾股定理的运用.13.(4分)(•莆田)如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A、B、C、D的面积分别为2,5,1,2.则最大的正方形E的面积是10.考点:勾股定理.分析:根据正方形的面积公式,结合勾股定理,能够导出正方形A,B,C,D的面积和即为最大正方形的面积.解答:解:根据勾股定理的几何意义,可得A、B的面积和为S1,C、D的面积和为S2,S1+S2=S3,于是S3=S1+S2,即S3=2+5+1+2=10.故答案是:10.点本题考查了勾股定理的应用.能够发现正方形A,B,C,D的边长正好是两个直角评:三角形的四条直角边,根据勾股定理最终能够证明正方形A,B,C,D的面积和即是最大正方形的面积.14.(4分)(•莆田)经过某个路口的汽车,它可能继续直行或向右转,若两种可能性大小相同,则两辆汽车经过该路口全部继续直行的概率为.考点:可能性的大小.分析:列举出所有情况,看两辆汽车经过这个十字路口全部继续直行的情况占总情况的多少即可.解答:解:画树状图得出:∴一共有4种情况,两辆汽车经过这个十字路口全部继续直行的有一种,∴两辆汽车经过这个十字路口全部继续直行的概率是:.故答案为:.点评:本题主要考查用列表法与树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比.15.(4分)(•莆田)如图,正方形ABCD的边长为4,点P在DC边上且DP=1,点Q 是AC上一动点,则DQ+PQ的最小值为5.考点:轴对称-最短路线问题;正方形的性质.分析:要求DQ+PQ的最小值,DQ,PQ不能直接求,可考虑通过作辅助线转化DQ,PQ 的值,从而找出其最小值求解.解答:解:如图,连接BP,∵点B和点D关于直线AC对称,∴QB=QD,则BP就是DQ+PQ的最小值,∵正方形ABCD的边长是4,DP=1,∴CP=3,∴BP==5,∴DQ+PQ的最小值是5.故答案为:5.点评:此题考查了正方形的性质和轴对称及勾股定理等知识的综合应用,得出DQ+PQ的最小时Q点位置是解题关键.16.(4分)(•莆田)统计学规定:某次测量得到n个结果x1,x2,…,x n.当函数y=++…+取最小值时,对应x的值称为这次测量的“最佳近似值”.若某次测量得到5个结果9.8,10.1,10.5,10.3,9.8.则这次测量的“最佳近似值”为10.1.考点:方差.专题:新定义.分析:根据题意可知“量佳近似值”x是与其他近似值比较,根据均值不等式求平方和的最小值知这些数的底数要尽可能的接近,求出x是所有数字的平均数即可.解答:解:根据题意得:x=(9.8+10.1+10.5+10.3+9.8)÷5=10.1;故答案为:10.1.点评:此题考查了一组数据的方差、平均数,掌握新定义的概念和平均数的平方和最小时要满足的条件是解题的关键.三、耐心做一做:本大题共9小题,共86分。

2017年福建省中考数学试卷含答案

2017年福建省中考数学试卷含答案

2017年福建省中考数学试卷含答案福建省2017年初中毕业和高中阶段学校招生考试数学试卷第Ⅰ卷(选择题共40分)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.3的相反数是()A. 3B. 1C.1/33D.32.如图,由四个正方体组成的几何体的左视图是()3.用科学计数法表示136 000,其结果是()A.0.136×106B.1.36×105C.136×103D.136×1064.化简(2x)2的结果是()A.x4B.2x2C.4x2D.4x5.下列关于图形对称性的命题,正确的是()A.圆既是轴对称图形,又是中心对称图形B.正三角形既是轴对称图形,又是中心对称图形C.线段是轴对称图形,但不是中心对称图形D.菱形是中心对称图形,但不是轴对称图形6.不等式组x2≤0。

的解集是()x3>A.3<x≤2B.3≤x<2C.x≥2D.x<-37.某校举行“汉字听写比赛”,5个班级代表队的正确答题数如图.这5个正确答题数所组成的一组数据的中位数和众数分别是()A.10,15B.13,15C.13,20D.15,158.如图,AB是O的直径,C,D是O上位于AB异侧的两点.下列四个角中,一定与∠ACD互余的角是()A.∠ADCBB.∠ABDC.∠BACD.∠BAD删除无效段落)福建省2017年初中毕业和高中阶段学校招生考试数学试卷第Ⅰ卷(选择题共40分)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.求3的相反数。

A. 3B. 1C.1/33D.32.如图,由四个正方体组成的几何体的左视图是哪个?图片无法显示,无法改写)3.用科学计数法表示136 000.A.0.136×106B.1.36×105C.136×103D.136×1064.化简(2x)2.A.x4B.2x2C.4x2D.4x5.下列关于图形对称性的命题,正确的是哪个?A.圆既是轴对称图形,又是中心对称图形B.正三角形既是轴对称图形,又是中心对称图形C.线段是轴对称图形,但不是中心对称图形D.菱形是中心对称图形,但不是轴对称图形6.求不等式组的解集。

2017年市质检卷(参考答案+评分细则)

2017年市质检卷(参考答案+评分细则)

2017年莆田市初中毕业班质量检查试卷思想品德学科评分细则二、非选择题26.【学法维权防范校园欺凌】(1)社会保护或社会(2分)※评分细则说明:其他答案不得分。

(2)请你连线:下列校园欺凌行为分别侵犯了受害者什么权利?(6分)①给同学取侮辱性绰号 A生命健康权②对同学拳打脚踢 B名誉权③故意损坏同学书本 C人身自由权④将同学关押3个小时 D财产所有权※评分细则说明:以“权利”为准,如果出现两个同时连一项,其中有一个是正确答案可得1分;出现两个以上....同时连一个,该项不得分。

(3)①要保持冷静,机智应对;②事后及时告诉老师或家长;③必要时拿起法律武器维护自身的合法权益。

(其它言之有理亦可,4分)※评分细则说明:①若答“冷静判断、镇静应对”可给2分;若答“保持高度的警惕”或答出面对歹徒行凶的具体应对方法(如呼救法,周旋法,写得再多也只得1分);②若答“向学校(保卫科)报告”也可得2分;③若答“及时拨打“110”报警电话”,或“向人民法院起诉”亦可得2分。

若答“生命健康权”和“人格尊严权”受侵害时的解决办法,一个方面只能得1分。

27. 【学会感恩收获人生感悟】(1)自信(2分)※评分细则说明:若写出自尊自信也可得2分,写出自信和其他品质,两个的得1分,写出三个以上的不得分。

(2)①父母不仅赋予我们生命,而且含辛茹苦地哺育我们成长,教我们做人,父母为家庭作出了贡献,为我们付出了很多,他们理应得到爱的回报,理应受到我们的孝敬;②孝敬父母是中华民族的优良传统;③孝敬父母是子女应尽的道德义务和法律义务。

(6分)※评分细则说明:①“赋予生命”、“哺育成长”、“教我们做人”、“为家庭作出了贡献”答出两个关键词,表述通顺,即可得2分;②围绕孝敬父母是“优良传统”这一关键词进行表述,即可得2分;③围绕“道德义务”和“法律义务”这一关键词进行表述,即可得2分。

(3)①应体现“双赢”原则,要相互促进、共同提高;②处理好与同学的关系,学会欣赏、帮助同学,虚心向同学学习;③发扬团队精神。

2017年莆田市仙游县中考数学模拟试卷含答案解析 (1)

2017年莆田市仙游县中考数学模拟试卷含答案解析 (1)

2017年福建省莆田市仙游县中考数学模拟试卷一、精心选一选:本大题共10小题,每小题4分,共40分.1.9的相反数是()A.﹣9 B.9 C.±9 D.2.下列各式计算正确的是()A.a2+2a3=3a5B.(2b2)3=6b5C.(3xy)2÷(xy)=3xy D.2x•3x5=6x63.下列几何体中,俯视图相同的是()A.①② B.①③ C.②③ D.②④4.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.5.如图,一次函数y=(m﹣2)x﹣1的图象经过二、三、四象限,则m的取值范围是()A.m>0 B.m<0 C.m>2 D.m<26.某校在“校园十佳歌手”比赛上,六位评委给1号选手的评分如下:90,96,91,96,95,94.那么,这组数据的众数和中位数分别是()A.96,94.5 B.96,95 C.95,94.5 D.95,957.如图,PA、PB分别切⊙O于A、B两点,点C在优弧上,∠P=80°,则∠C的度数为()A.50° B.60° C.70° D.80°8.如图,菱形纸片ABCD中,∠A=60°,折叠菱形纸片ABCD,使点C落在DP(P为AB中点)所在的直线上,得到经过点D的折痕DE.则∠DEC的大小为()A.78° B.75° C.60° D.45°9.在下列命题中,正确的是()A.一组对边平行的四边形是平行四边形B.有一个角是直角的四边形是矩形C.有一组邻边相等的平行四边形是菱形D.对角线互相垂直平分的四边形是正方形10.如果三角形满足一个角是另一个角的3倍,那么我们称这个三角形为“智慧三角形”.下列各组数据中,能作为一个智慧三角形三边长的一组是()A.1,2,3 B.1,1,C.1,1,D.1,2,二、细心填一填:本大题共6小题,每小题4分,共24分.11.科学家测量到某种细菌的直径为0.00001917mm,将这个数据用科学记数法表示为.12.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是.13.从大小形状完全相同标有1、2、3数字的三张卡片中随机抽取两张,和为偶数的概率为.14.若一圆锥的轴截面是等边三角形,则其侧面展开图的圆心角是.15.如图,在等边△ABC中,点D、E分别在BC、AC边上,且∠ADE=60°,AB=3,BD=1,则EC= .16.如图,以扇形OAB的顶点O为原点,半径OB所在的直线为x轴,建立平面直角坐标系,点B的坐标为(2,0),若抛物线y=x2+k与扇形OAB的边界总有两个公共点,则实数k的取值范围是.三、耐心做一做:本大题共9小题,共86分.17.计算:.18.解不等式组,并将不等式组的解集在数轴上表示出来.19.如图,在△ABC中,BC的垂直平分线交BC于点D,交AB延长线于点E,连接CE.求证:∠BCE=∠A+∠ACB.20.甲、乙两名队员参加射击训练,成绩分别被制成下列两个统计图:根据以上信息,整理分析数据如下:(1)写出表格中a ,b ,c 的值;(2)分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员?21.在⊙O 中,AB 是直径,AC 是切线且AC=AB ,联结BC 交⊙O于点D ,试仅用无刻度直尺,作以D 为切点的⊙O 的切线DT .22.小明在某一次实验中,测得两个变量之间的关系如下表所示:请你根据表格回答下列问题:①这两个变量之间可能是怎样的函数关系?你是怎样作出判断的?请你简要说明理由; ②请你写出这个函数的解析式;③表格中空缺的数值可能是多少?请你给出合理的数值.23.如图,AB 为⊙O 的直径,C 为⊙O 上一点,过点C 作⊙O 的切线,交BA 的延长线交于点D,过点B作BE⊥BA,交DC延长线于点E,连接OE,交⊙O于点F,交BC于点H,连接AC.(1)求证:∠ECB=∠EBC;(2)连接BF,CF,若CF=6,sin∠FCB=,求AC的长.24.在矩形ABCD中,AB=4,AD=6,M是AD边的中点,P是射线AB上的一个动点(不与A,B重合),MN⊥PM交射线BC于N点.(1)如图1,当点N与点C重合时,求AP的长;(2)如图2,在点N的运动过程中,求证:为定值;(3)在射线AB上,是否存在点P,使得△DCN∽△PMN?若存在,求此时AP的长;若不存在,请说明理由.25.定义:若某抛物线上有两点A、B关于原点对称,则称该抛物线为“完美抛物线”.已知二次函数y=ax2﹣2mx+c(a,m,c均为常数且ac≠0)是“完美抛物线”:(1)试判断ac的符号;(2)若c=﹣1,该二次函数图象与y轴交于点C,且S△ABC=1.①求a的值;②当该二次函数图象与端点为M(﹣1,1)、N(3,4)的线段有且只有一个交点时,求m的取值范围.2017年福建省莆田市仙游县第六片区中考数学模拟试卷参考答案与试题解析一、精心选一选:本大题共10小题,每小题4分,共40分.1.9的相反数是()A.﹣9 B.9 C.±9 D.【考点】14:相反数.【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:9的相反数是﹣9,故选:A.2.下列各式计算正确的是()A.a2+2a3=3a5B.(2b2)3=6b5C.(3xy)2÷(xy)=3xy D.2x•3x5=6x6【考点】4H:整式的除法;35:合并同类项;47:幂的乘方与积的乘方;49:单项式乘单项式.【分析】根据积的乘方的性质、单项式除法和单项式乘法运算法则利用排除法求解.【解答】解:A、a2与2a3不是同类项的不能合并,故本选项错误;B、应为(2b2)3=8b6,故本选项错误;C、应为(3xy)2÷(xy)=9xy,故本选项错误;D、2x•3x5=6x6,正确;故选D.3.下列几何体中,俯视图相同的是()A.①② B.①③ C.②③ D.②④【考点】U1:简单几何体的三视图.【分析】根据简单和几何体的三视图判断方法,判断圆柱、圆锥、圆柱与圆锥组合体、圆台的俯视图,得出满足题意的几何体即可.【解答】解:①的三视图中俯视图是圆,但无圆心;②的俯视图是圆,有圆心;③的俯视图也都是圆,有圆心;④的俯视图都是圆环.故②③的俯视图是相同的;故选:C.4.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【考点】R5:中心对称图形;P3:轴对称图形.【分析】根据轴对称图形和中心对称图形对各选项分析判断即可得解.【解答】解:A、不是轴对称图形,是中心对称图形,故本选项错误;B、是轴对称图形,不是中心对称图形,故本选项错误;C、既是轴对称图形,又是中心对称图形,故本选项正确;D、是轴对称图形,不是中心对称图形,故本选项错误.故选C.5.如图,一次函数y=(m﹣2)x﹣1的图象经过二、三、四象限,则m的取值范围是()A.m>0 B.m<0 C.m>2 D.m<2【考点】F7:一次函数图象与系数的关系.【分析】根据一次函数图象所在的象限得到不等式m﹣2<0,据此可以求得m的取值范围.【解答】解:如图,∵一次函数y=(m﹣2)x﹣1的图象经过二、三、四象限,∴m﹣2<0,解得,m<2.故选:D.6.某校在“校园十佳歌手”比赛上,六位评委给1号选手的评分如下:90,96,91,96,95,94.那么,这组数据的众数和中位数分别是()A.96,94.5 B.96,95 C.95,94.5 D.95,95【考点】W5:众数;W4:中位数.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【解答】解:在这一组数据中96是出现次数最多的,故众数是96;而将这组数据从小到大的顺序排列(90,91,94,95,96,96),处于中间位置的那个数是94、95,那么由中位数的定义可知,这组数据的中位数是(94+95)÷2=94.5.故这组数据的众数和中位数分别是96,94.5.故选:A.7.如图,PA、PB分别切⊙O于A、B两点,点C在优弧上,∠P=80°,则∠C的度数为()A.50° B.60° C.70° D.80°【考点】MC:切线的性质;M5:圆周角定理.【分析】连接OA,OB根据切线的性质定理,切线垂直于过切点的半径,即可求得∠OAP,∠OBP的度数,根据四边形的内角和定理即可求的∠AOB的度数,然后根据圆周角定理即可求解.【解答】解:∵PA是圆的切线.∴∠OAP=90°,同理∠OBP=90°,根据四边形内角和定理可得:∠AOB=360°﹣∠OAP﹣∠OBP﹣∠P=360°﹣90°﹣90°﹣80°=100°,∴∠C=∠AOB=50°.故选A.8.如图,菱形纸片ABCD中,∠A=60°,折叠菱形纸片ABCD,使点C落在DP(P为AB中点)所在的直线上,得到经过点D的折痕DE.则∠DEC的大小为()A.78° B.75° C.60° D.45°【考点】PB:翻折变换(折叠问题);L8:菱形的性质.【分析】连接BD,由菱形的性质及∠A=60°,得到三角形ABD为等边三角形,P为AB的中点,利用三线合一得到DP为角平分线,得到∠ADP=30°,∠ADC=120°,∠C=60°,进而求出∠PDC=90°,由折叠的性质得到∠CDE=∠PDE=45°,利用三角形的内角和定理即可求出所求角的度数.【解答】解:连接BD,∵四边形ABCD为菱形,∠A=60°,∴△ABD为等边三角形,∠ADC=120°,∠C=60°,∵P为AB的中点,∴DP为∠ADB的平分线,即∠ADP=∠BDP=30°,∴∠PDC=90°,∴由折叠的性质得到∠CDE=∠PDE=45°,在△DEC中,∠DEC=180°﹣(∠CDE+∠C)=75°.故选:B.9.在下列命题中,正确的是()A.一组对边平行的四边形是平行四边形B.有一个角是直角的四边形是矩形C.有一组邻边相等的平行四边形是菱形D.对角线互相垂直平分的四边形是正方形【考点】O1:命题与定理.【分析】要找出正确命题,可运用相关基础知识分析找出正确选项,也可以通过举反例排除不正确选项,从而得出正确选项.两组对边平行的四边形是平行四边形;有一个角是直角的四边形是矩形、直角梯形、总之,只要有一个角是直角即可;有一组邻边相等的平行四边形是菱形;对角线互相垂直平分且相等的四边形是正方形.【解答】解:A、应为两组对边平行的四边形是平行四边形;B、有一个角是直角的四边形是矩形、直角梯形、总之,只要有一个角是直角即可;C、符合菱形定义;D、应为对角线互相垂直平分且相等的四边形是正方形.故选:C.10.如果三角形满足一个角是另一个角的3倍,那么我们称这个三角形为“智慧三角形”.下列各组数据中,能作为一个智慧三角形三边长的一组是()A.1,2,3 B.1,1,C.1,1,D.1,2,【考点】T7:解直角三角形.【分析】A、根据三角形三边关系可知,不能构成三角形,依此即可作出判定;B、根据勾股定理的逆定理可知是等腰直角三角形,依此即可作出判定;C、解直角三角形可知是顶角120°,底角30°的等腰三角形,依此即可作出判定;D、解直角三角形可知是三个角分别是90°,60°,30°的直角三角形,依此即可作出判定.【解答】解:A、∵1+2=3,不能构成三角形,故选项错误;B、∵12+12=()2,是等腰直角三角形,故选项错误;C、底边上的高是=,可知是顶角120°,底角30°的等腰三角形,故选项错误;D、解直角三角形可知是三个角分别是90°,60°,30°的直角三角形,其中90°÷30°=3,符合“智慧三角形”的定义,故选项正确.故选:D.二、细心填一填:本大题共6小题,每小题4分,共24分.11.科学家测量到某种细菌的直径为0.00001917mm,将这个数据用科学记数法表示为1.917×10﹣5.【考点】1J:科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00001917用科学记数法表示为1.917×10 ﹣5,故答案为:1.917×10 ﹣5.12.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是25°.【考点】JA:平行线的性质.【分析】根据两直线平行,内错角相等求出∠1的内错角,再根据三角板的度数求差即可得解.【解答】解:∵直尺的对边平行,∠1=20°,∴∠3=∠1=20°,∴∠2=45°﹣∠3=45°﹣20°=25°.故答案为:25°.13.从大小形状完全相同标有1、2、3数字的三张卡片中随机抽取两张,和为偶数的概率为.【考点】X6:列表法与树状图法.【分析】根据题意画出树状图,然后根据概率公式解答.【解答】解:画出树状图得:∵和为偶数的情况有两种,所有可能的情况有6种,∴P(和为偶数)==.故答案为.14.若一圆锥的轴截面是等边三角形,则其侧面展开图的圆心角是180°.【考点】MP:圆锥的计算;I9:截一个几何体;KK:等边三角形的性质;MN:弧长的计算.【分析】利用圆锥的底面周长等于圆锥的侧面展开图的弧长,利用弧长半径圆心角的公式求解即可.【解答】解:由题意圆锥的母线为:2r,底面半径为:r,圆锥的底面周长为2πr,它的侧面展开图的弧长为:2πr,所以它的侧面展开图的圆心角:故答案为:180°15.如图,在等边△ABC中,点D、E分别在BC、AC边上,且∠ADE=60°,AB=3,BD=1,则EC= .【考点】S9:相似三角形的判定与性质;KK:等边三角形的性质.【分析】由∠ADE=60°,可证得△ABD∽△DCE;根据题意表示出DC的长,进而根据相似三角形的对应边成比例,求得EC的长.【解答】解:∵∠ADC=∠B+∠BAD,∠ADC=∠ADE+∠EDC,∠B=∠ADE=60°,∴60°+∠CDE=60°+∠BAD,∴∠CDE=∠BAD,又∵∠B=∠C=60°,∴△ABD∽△DCE,∴=,即==,解得:EC=.故答案为:.16.如图,以扇形OAB的顶点O为原点,半径OB所在的直线为x轴,建立平面直角坐标系,点B的坐标为(2,0),若抛物线y=x2+k与扇形OAB的边界总有两个公共点,则实数k的取值范围是﹣2<k<.【考点】H3:二次函数的性质.【分析】根据∠AOB=45°求出直线OA的解析式,然后与抛物线解析式联立求出有一个公共点时的k值,即为一个交点时的最大值,再求出抛物线经过点B时的k的值,即为一个交点时的最小值,然后写出k的取值范围即可.【解答】解:由图可知,∠AOB=45°,∴直线OA的解析式为y=x,联立消掉y得,x2﹣2x+2k=0,△=b2﹣4ac=(﹣2)2﹣4×1×2k=0,即k=时,抛物线与OA有一个交点,此交点的横坐标为1,∵点B的坐标为(2,0),∴OA=2,∴点A的坐标为(,),∴交点在线段AO上;当抛物线经过点B(2,0)时,×4+k=0,解得k=﹣2,∴要使抛物线y=x2+k与扇形OAB的边界总有两个公共点,实数k的取值范围是﹣2<k<.故答案为:﹣2<k<.三、耐心做一做:本大题共9小题,共86分.17.计算:.【考点】2C:实数的运算;6E:零指数幂;T5:特殊角的三角函数值.【分析】先根据0指数幂、绝对值的性质及特殊角的三角函数值计算出各数,再根据实数混合运算的法则进行计算即可.【解答】解:原式=1+(2﹣)+=1+2﹣+=3.18.解不等式组,并将不等式组的解集在数轴上表示出来.【考点】CB:解一元一次不等式组;C4:在数轴上表示不等式的解集.【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可.【解答】解:由2(x+2)≤3x+3,可得:x≥1,由<,可得:x<3,则不等式组的解为:1≤x<3,不等式组的解集在数轴上表示如图所示:19.如图,在△ABC中,BC的垂直平分线交BC于点D,交AB延长线于点E,连接CE.求证:∠BCE=∠A+∠ACB.【考点】KG:线段垂直平分线的性质.【分析】根据线段垂直平分线的想知道的CE=BE,根据等腰三角形的性质得到∠ECB=∠EBC,根据三角形的外角的性质即可得到结论.【解答】证明:∵BC的垂直平分线交BC于点D,交AB延长线于点E,∴CE=BE,∴∠ECB=∠EBC,∵∠EBC=∠A+∠ACB,∴∠BCE=∠A+∠ACB.20.甲、乙两名队员参加射击训练,成绩分别被制成下列两个统计图:根据以上信息,整理分析数据如下:(1)写出表格中a ,b ,c 的值;(2)分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员?【考点】W7:方差;VC :条形统计图;VD :折线统计图;W4:中位数;W5:众数. 【分析】(1)利用平均数的计算公式直接计算平均分即可;将乙的成绩从小到大重新排列,用中位数的定义直接写出中位数即可;根据乙的平均数利用方差的公式计算即可; (2)结合平均数和中位数、众数、方差三方面的特点进行分析. 【解答】解:(1)甲的平均成绩a==7(环),∵乙射击的成绩从小到大重新排列为:3、4、6、7、7、8、8、8、9、10, ∴乙射击成绩的中位数b==7.5(环),其方差c=×[(3﹣7)2+(4﹣7)2+(6﹣7)2+2×(7﹣7)2+3×(8﹣7)2+(9﹣7)2+(10﹣7)2] =×(16+9+1+3+4+9)=4.2;(2)从平均成绩看甲、乙二人的成绩相等均为7环,从中位数看甲射中7环以上的次数小于乙,从众数看甲射中7环的次数最多而乙射中8环的次数最多,从方差看甲的成绩比乙的成绩稳定;综合以上各因素,若选派一名队员参加比赛的话,可选择乙参赛,因为乙获得高分的可能更大.21.在⊙O中,AB是直径,AC是切线且AC=AB,联结BC交⊙O于点D,试仅用无刻度直尺,作以D为切点的⊙O的切线DT.【考点】N3:作图—复杂作图;MC:切线的性质.【分析】先连接AD,CO,交于点F,则点F为△ABC的重心,连接BF并延长,交AC于E,则E是AC的中点,BE是△ABC的中线,过点D,E作直线DT,连接OD,则直线DT即为所求.【解答】解:如图所示,连接CO、AD交于点F,连接BF并延长交AC于点E,过点D,E作直线DT,连接OD,则直线DT即为所求.∵AB是⊙O的直径,AC是⊙O的切线,∴AC⊥AB,又∵AC=AB,∴△ABC是等腰直角三角形,连接AD,CO,交于点F,则AD⊥BC,∴点D是BC的中点,又∵O是AB的中点,∴点F是△ABC的重心,连接BF并延长,交AC于E,则E是AC的中点,∴BE是△ABC的中线,由题意知,△ABD、△ACD都是等腰直角三角形,∴OD⊥AB,DE⊥AC,又∵AB⊥AC,∴∠ODE=90°,∴DE是⊙O的切线.22.小明在某一次实验中,测得两个变量之间的关系如下表所示:请你根据表格回答下列问题:①这两个变量之间可能是怎样的函数关系?你是怎样作出判断的?请你简要说明理由;②请你写出这个函数的解析式;③表格中空缺的数值可能是多少?请你给出合理的数值.【考点】GA:反比例函数的应用.【分析】(1)根据反比例函数的性质可知两变量之间为反比例函数;(2)根据两变量的乘积为一个定数得到表达式;(3)将x=3和y=1.99分别代入表达式中求值即可.【解答】解:(1)由表中自变量x和因变量y的数值可知:自变量x和因变量y的乘积都大约等于12,且随着自变量x值的逐渐增加,因变量y的值逐渐减少,故两个变量x和y之间可能是反比例函数关系.(2)∵两自变量的乘积等于12,且两自变量为反比例函数关系,∴;(3)将x=3代入得:y=4;将y=1.99代入得:x≈6.故表格中x的空值填6,y的空值填4.23.如图,AB为⊙O的直径,C为⊙O上一点,过点C作⊙O的切线,交BA的延长线交于点D,过点B作BE⊥BA,交DC延长线于点E,连接OE,交⊙O于点F,交BC于点H,连接AC.(1)求证:∠ECB=∠EBC;(2)连接BF,CF,若CF=6,sin∠FCB=,求AC的长.【考点】MC:切线的性质;T7:解直角三角形.【分析】(1)只要证明EB是⊙O的切线,利用切线长定理可知EC=EB,即可解决问题.(2)连接CF、CO、AC.在Rt△CFH中,由CF=6,sin∠FCH=,推出FH=CF•sin∠FCH=,CH==,设OC=OF=x,在Rt△COH中,由OC2=CH2+OH2,可得x2=()2+(x﹣)2,解得x=5,推出OH=,再利用三角形中位线定理证明AC=2OH即可解决问题.【解答】(1)证明:∵BE⊥OB,∴BE是⊙O的切线,∵EC是⊙O的切线,∴EC=EB,∴∠ECB=∠EBC.(2)解:连接CF、CO、AC.∵EB=EC,OC=OB,∴EO⊥BC,∴∠CHF=∠CHO=90°,在Rt△CFH中,∵CF=6,sin∠FCH=,∴FH=CF•sin∠FCH=,CH==,设OC=OF=x,在Rt△COH中,∵OC2=CH2+OH2,∴x2=()2+(x﹣)2,∴x=5,∴OH=,∵OH⊥BC,∴CH=HB,∵OA=OB,∴AC=2OH=.24.在矩形ABCD中,AB=4,AD=6,M是AD边的中点,P是射线AB上的一个动点(不与A,B重合),MN⊥PM交射线BC于N点.(1)如图1,当点N与点C重合时,求AP的长;(2)如图2,在点N的运动过程中,求证:为定值;(3)在射线AB上,是否存在点P,使得△DCN∽△PMN?若存在,求此时AP的长;若不存在,请说明理由.【考点】SO:相似形综合题.【分析】(1)先判断出∠APM=∠DMC即可得出△APM∽△DMC,即=,再求出AM=MD=3,CD=4代入即可;(2)分两种情况①判断出,△APM∽△DMG,和△APM∽△CNG用得出的比例式化简即可得出结论;②同①的方法即可得出结论;(3)先求出CN,再用△MDH∽△NCH求出DH,CH,最后用△APM∽△MDH即可求出结论.【解答】(1)∵矩形ABCD,∴∠A=∠D=90°,∵MN⊥PM,∴∠APM=90°﹣∠AMP=∠DMC,∴△APM∽△DMC,∴=,∵点M是AD的中点,∴MD=AM=AD=3,∵CD=AB=4,∴=,∴AP=;(2)证明:①当点P在线段AB上时,如图2,延长MN交DC的延长线于G,同(1)的方法得出,△APM∽△DMG,∴=,∴==,∴+=+,∵AD∥CN,∴∠CNG=∠DMG=∠APM,∵∠PAM=∠NCG=90°,∴△APM∽△CNG,∴,∴=,∴=,∴=;②当点P在AB的延长线上时,如图,同①的方法得出,△APM∽△DMH,∴,∴,∴,∴,∴,同①的方法得出,△APM∽△CNH,∴,∴,∴=;即:是定值.(3)存在点P,使得△DCN∽△PMN,解:由(2)知=,△DCN∽△PMN时,∴=,∴=,∴CN=4,易得,△MDH∽△NCH,∴==,∵CD=AB=4,∴DH=,CH=,由(2)②知,△APM∽△MDH,∴=,∴=,∴AP=.25.定义:若某抛物线上有两点A、B关于原点对称,则称该抛物线为“完美抛物线”.已知二次函数y=ax2﹣2mx+c(a,m,c均为常数且ac≠0)是“完美抛物线”:(1)试判断ac的符号;(2)若c=﹣1,该二次函数图象与y轴交于点C,且S△ABC=1.①求a的值;②当该二次函数图象与端点为M(﹣1,1)、N(3,4)的线段有且只有一个交点时,求m的取值范围.【考点】HF:二次函数综合题.【分析】(1)设A (p,q).则B (﹣p,﹣q),把A、B坐标代入解析式可得方程组即可得到结论;(2)由c=﹣1,得到,a>0,且C(0,﹣1),求得,①根据三角形的面积公式列方程即可得到结果;②由①可知:抛物线解析式为y=x2﹣2mx﹣1,根据M(﹣1,1)、N(3,4).得到这些MN的解析式(﹣1≤x≤3),联立方程组得到x2﹣2mx﹣1=x+,故问题转化为:方程x2﹣(2m+)x﹣=0在﹣1≤x≤3内只有一个解,建立新的二次函数:y=x2﹣(2m+)x﹣,根据题意得到(Ⅰ)若﹣1≤x1<3且x2>3,(Ⅱ)若x1<﹣1且﹣1<x2≤3:列方程组即可得到结论.【解答】解:(1)设A (p,q).则B (﹣p,﹣q),把A、B坐标代入解析式可得:,∴2ap2+2c=0.即,∴,∵ac≠0,∴,∴ac<0;(2)∵c=﹣1,∴,a>0,且C(0,﹣1),∴,①S△ABC=×2×1=1,∴a=1;②由①可知:抛物线解析式为y=x2﹣2mx﹣1,∵M(﹣1,1)、N(3,4).∴MN:(﹣1≤x≤3),依题,只需联立在﹣1≤x≤3内只有一个解即可,∴x2﹣2mx﹣1=x+,故问题转化为:方程x2﹣(2m+)x﹣=0在﹣1≤x≤3内只有一个解,建立新的二次函数:y=x2﹣(2m+)x﹣,∵△=(2m+)2+11>0且c=﹣<0,∴抛物线与x轴有两个交点,且交y轴于负半轴.不妨设方程的两根分别为x1,x2.(x1<x2)则∵方程在﹣1≤x≤3内只有一个解.故分两种情况讨论:(Ⅰ)若﹣1≤x1<3且x2>3:则.即:,可得:.(Ⅱ)若x1<﹣1且﹣1<x2≤3:则.即:,可得:,综上所述,或.。

2017年全国中考数学真题福建年中考数学试题(解析版-精品文档)

2017年全国中考数学真题福建年中考数学试题(解析版-精品文档)

2017年福建省中考试卷满分:150分版本:第Ⅰ卷(选择题共40分)一、选择题(共10小题,每小题4分,合计40分)1.(2017福建,1,4分)3的相反数是()A.-3 B.13C.13D.3答案:A,解析:只有符号不同的两个数互为相反数,故3的相反数是-3.2.(2017福建,2,4分)如图,由四个正方体组成的几何体的左视图是()A. B. C. D.答案:B,解析:左视图即为从左边看几何体得到的平面图形,从左边看该几何体,显然是上下两个小正方形组成的平面图形,即选项B中的图形.3.(2017福建,3,4分)用科学记数法表示136 000,其结果是()A.0.136×106 B.1.36×105 C.136×103 D.1.36×106答案:B,解析:科学记数法的记数形式为a×10n(1≤|a|<10);136 000=1.36×105.4.(2017福建,4,4分)化简(2x)2的结果是()A.x4 B.2x2 C.4x2 D.4x答案:C,解析:(2x)2=22·x2=4x2.5.(2017福建,5,4分)下列关于图形对称性的命题,正确的是()A.圆既是轴对称性图形,又是中心对称图形B.正三角形既是轴对称图形,又是中心对称图形C.线段是轴对称图形,但不是中心对称图形D.菱形是中心对称图形,但不是轴对称图形答案:A,解析:圆既是轴对称性图形,又是中心对称图形,A正确;正三角形是轴对称图形,但不是中心对称图形,B错误;线段既是轴对称性图形,又是中心对称图形,对称中心是它的中点,C错误;菱形是中心对称图形,也是轴对称图形,两条对角线所在的直线就是它的对称轴,D错误.6.(2017福建,6,4分)不等式组:⎩⎨⎧>+≤-03,02x x 的解集是( )A .-3<x ≤2B .-3≤x <2C .x ≥2D .x <-3答案:A ,解析:解不等式x -2≤0,得x ≤2;解不等式x +3>0,得x >-3,所以原不等式组的解为-3<x ≤2.7.(2017福建,7,4分)某校举行“汉字听写比赛”,5个班级代表队的正确答题数如图.这5个正确答题数所组成的一组数据的中位数和众数分别是( )A .10,15B .13,15C .13,20D .15,15答案:D ,解析:数据总数为15+10+13+20+15=73,按大小顺序排列后处于第37个数据即为该组数据的中位数,小于15的数有10+13=23个,等于15的数有15+15=30个,所以处于中间的数据为15,即该组数据的中位数是15;这些数据出现次数最多的是15,出现了30次,故该组数据的众数是15.8.(2017福建,8,4分)如图,AB 是⊙O 的直径,C ,D 是⊙O 上位于AB 异侧的两点.下列四个角中,一定与∠ACD 互余的角是( )A .∠ADCB .∠ABDC .∠BACD .∠BAD答案:D ,解析:∵AB 是⊙O 的直径,∴∠ADB =90°,∴∠B +∠BAD =90°.又∵∠B =∠ACD ,∴∠ACD +∠BAD =90°.即∠ACD 与∠BAD 互余.9.(2017福建,9,4分)若直线y =kx +k +1经过点(m ,n +3)和(m +1,2n -1),且0<k <2,则n 的值可以是( )A .3B .4C .5D .6答案:C ,解析:把点(m ,n +3)和(m +1,2n -1)分别代入y =kx +k +1,得n +3= km +k +1①,2n -1=km +2k +1②,②-①,得n =k +4,即k =n -4.∵0<k <2,∴0<n -4<2,解得4<n<6.所给的四个数中5在符合条件的范围内,应选C.10.(2017福建,10,4分)如图,网格纸上正方形小格的边长为1.图中线段AB和点P绕着同一个点做相同的旋转,分别得到线段A′B′和点P′,则点P′所在的单位正方形区域是()A.1区 B.2区 C.3区 D.4区答案:D,解析:方法1:如图1,连接AA′,BB′,分别作它们的垂直平分线交于点O,则点O即为旋转中心.连接AO,A′O,由网格特征可知旋转角∠AOA′=90°.再在网格中作∠POP′=90°,且OP= OP′,即确定点P′的位置.图1 图2方法2:如图2,连接PA,根据旋转的性质,可知旋转后∠PAB大小不变,根据图中逆时针的旋转方向,作∠P′A′B′=∠PAB,且P′A′=∠PA,即可确定点P′的位置.第Ⅱ卷(共90分)二、填空题(共6小题,每小题4分,合计24分)11.(2017福建,11,4分)计算|-2|-30= .答案:1,解析:|-2|-30=2-1=1.12.(2017福建,12,4分)如图,△ABC中,D,E分别是AB,AC的中点,连结DE,若DE=3,则线段BC的长等于.OP′答案:6,解析:∵D,E分别是AB,AC的中点,所以DE是△ABC的中位线,∴BC=2DE=6.13.(2017福建,13,4分)一个箱子装有除颜色外都相同的2个白球,2个黄球,1个红球.现添加同种型号的1个球,使得从中随机抽取1个球,这三种颜色的球被抽到的概率都是13,那么添加的球是.答案:红色(或红色的),解析:三种颜色的球被抽到的概率相同,则三种颜色的球个数相同,故需再添加一个同种型号的红色的球.14.(2017福建,14,4分)已知A,B,C是数轴上的三个点,且C在B的右侧.点A,B表示的数分别是1,3,如图所示.若BC=2AB,则点C表示的数是.答案:7,解析:由数轴可知AB=3-1=2,则BC=2AB=4,又C在B的右侧,故点C表示的数是7.15.(2017福建,15,4分)两个完全相同的正五边形都有一边在直线l上,且有一个公共顶点O,其摆放方式如图所示,则∠AOB等于度.答案:108,解析:正五边形的内角大小为(5-2)×180°÷5=108°.如图,∠OCD=180°-108°=72°,∠COD=180°-72°×2=36°.∴∠AOB=360°-108°×2-36°=108°.16.(2017福建,16,4分)已知矩形ABCD的四个顶点均在反比例函数y=x1的图象上,且点A的横坐标是2,则矩形ABCD的面积为.-01234A BDC答案:215,解析:如图所示,根据矩形与双曲线的轴对称性与中心对称性,可知A (2,21),B(21,2).构建正方形OMFE ,则BF =AF =23.于是S △AOB =S 正方形OMFE -S △EOB -S △AOM -S △ABF =4-21-21-21×23×23=×815,所以矩形ABCD 的面积为4S △AOB =4×815=215.三、解答题(本大题共9个小题,满分86分)17.(2017福建,17,8分)(本小题满分8分)先化简,再求值:1)11(2-⋅-a a a ,其中a =2-1.思路分析:分式化简时,可先算括号里的减法,再进行分式乘法运算,也可利用乘法分配律进行计算.最后把a 的取值代入化简后的式子即得其值.解:原式=aa 1-·)1)(1(-+a a a =11+a . 当a =2-1时,原式=1121+-=22. 18.(2017福建,18,8分)(本小题满分8分)如图,点B ,E ,C ,F 在一条直线上,AB =DE ,AC =DF ,BE =CF .求证:∠A =∠D .思路分析:由BE =CF ,可得BC =EF ,进而利用全等三角形的判定条件“SSS ”可证△ABC ≌△DEF ,即得∠A =∠D .证明:∵BE =CF ,∴BE +EC =CF +EC ,即BC =EF .在△ABC 和△DEF 中,x yAOM EF B C D⎪⎩⎪⎨⎧===,,,EFBCDFACDEAB∴△ABC≌△DEF,∴∠A=∠D.19.(2017福建,19,8分)(本小题满分8分)如图,△ABC中,∠BAC=90°,AD⊥BC,垂足为D.求作∠ABC的平分线,分别交AD,AC于P,Q两点;并证明AP=AQ.(要求:尺规作图,保留作图痕迹,不写作法)思路分析:先按尺规作角平分线的方法步骤作出∠ABC的平分线,然后通过证∠APQ=∠AQP,得AP=AQ.这可由角的等量代换与直角三角形的两锐角互余的性质得到.解:BQ就是所求作的∠ABC的平分线,P,Q就是所求作的点.证明如下:∵AD⊥BC,∴∠ADB=90°,∴∠BPD+∠PBD=90°.∵∠BAC=90°,∴∠AQP+∠ABQ=90°.∵∠ABQ=∠PBD,∴∠BPD=∠AQP.∵∠BPD=∠APQ,∴∠APQ=∠AQP,∴AP=AQ.20.(2017福建,20,8分)(本小题满分8分)我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足.问鸡兔各几何.”其大意是:“有若干只鸡和兔关在同一笼子里,它们一共有35个头,94条腿.问笼中的鸡和兔各有多少只?”试用列方程(组)解应用题的方法求出问题的解.思路分析:本题蕴含的等量关系是:鸡的只数+兔的只数=35;鸡的腿数+兔的腿数=94.由此构建列方程(组)求解即可.AB D C解:设鸡有x 只,兔有y 只.依题意,得⎩⎨⎧=+=+,9442,35y x y x 解得⎩⎨⎧==.12,23y x 答:鸡有23只,兔有12只.21.(2017福建,21,8分)(本小题满分8分)如图,四边形ABCD 内接于⊙O ,AB 是⊙O 的直径,点P 在CA 的延长线上,∠CAD =45°.(Ⅰ)若AB =4,求CD ︵的长;(Ⅱ)若BC ︵=AD ︵,AD =AP ,求证:PD 是⊙O 的切线.思路分析:(Ⅰ)连结OC ,OD ,易知∠COD =90°.又圆的半径为2,利用弧长公式可计算CD ︵的长;(Ⅱ)由于点D 在圆上,故要证PD 是⊙O 的切线,只需证∠ODP =90°.易求∠ADP =22.5°,因此可再求∠ODA =67.5°.再由已知条件计算等腰△OAD 的顶角大小,易求∠ODA . 解:(Ⅰ)连结OC ,OD .∵∠COD =2∠CAD ,∠CAD =45°,∴∠COD =90°.∵AB =4,∴OC =21AB =2. ∴CD ︵的长=18090×π×2=π. (Ⅱ)∵BC ︵=AD ︵,∴∠BOC =∠AOD .∵∠COD =90°,∴∠AOD =21(180°-∠COD )=45°. ∵OA =OD ,∴∠ODA =∠OAD .∵∠AOD +∠ODA +∠OAD =180°,∴∠ODA =21(180°-∠AOD )=67.5°. ∵AD =AP ,∴∠ADP =∠APD .∵∠CAD =∠ADP +∠APD ,∠CAD =45°,∴∠ADP =21∠CAD =22.5°. ∴∠ODP =∠ODA +∠ADP =90°.又∵OD 是半径,∴PD 是⊙O 的切线.22.(2017福建,22,10分)(本小题满分10分)小明在某次作业中得到如下结果: sin 27°+sin 283°≈0.122+0.992=0.9945,sin 222°+sin 268°≈0.372+0.932=1.0018,sin 229+sin 261°≈0.482+0.872=0.9873,sin 237°+sin 253°≈0.602+0.802=1.0000,sin 245°+sin 245°≈(22)2+(22)2=1. 据此,小明猜想:对于任意锐角α,均有sin 2α+sin 2(90°-α)=1.(Ⅰ)当α=30°时,验证sin 2α+sin 2(90°-α)=1是否成立;(Ⅱ)小明的猜想是否成立?若成立,若成立,请给予证明;若不成立,请举出一个反例.思路分析:(Ⅰ)利用30°与60°的正弦值通过计算可验证该等式成立与否;(Ⅱ)把锐角α放置于一个直角三角形中,利用锐角三角函数的定义与勾股定理计算得sin 2α+sin 2(90°-α)=1.解:(Ⅰ)当α=30°时,sin 2α+sin 2(90°-α)= sin 230°+sin 260° (21)2+(23)2=4341 =1. 所以sin 2α+sin 2(90°-α)=1成立.(Ⅱ)小明的猜想成立.证明如下:如图,在△ABC 中,∠C =90°,设∠A =α,则∠B =90°-α.sin 2α+sin 2(90°-α)=(AB BC )2+(ABAC )2 =222AB AC BC =22ABAB =1.23.(2017福建,23,10分)(本小题满分10分)自2016年国庆后,许多高校均投放了使用手机就可随取随用的共享单车.某运营商为提高其经营的A 品牌共享单车的市场占有率,准备对收费作如下调整:一天中,同一个人第一次使用的车费按0.5元收取,每增加一次,当次车费就比上次车费减少0.1元,第6次开始,当次用车免费.具体收费标准如下:A 品牌共享单车的意愿,得到如下数据:(Ⅱ)已知该校有5000名师生,且A 品牌共享单车投放该校一天的费用为5800元.试估计:收费调整后,此运营商在该校投放A 品牌共享单车能否获利? 说明理由. 思路分析:(Ⅰ)a 即为0.5+0.4+0.3的和,a 即为0.5+0.4+0.3+0.2的和;(Ⅱ)先计算出抽取的100名师生每人每天使用A 品牌共享单车的平均车费,然后再据此估计该校5000名师生一天使用A 品牌共享单车的总车费,与运营成本5800元作比较,即可判断能否获利.ABC解:(Ⅰ)a =1.2,b =1.4.(Ⅱ)根据用车意愿调查结果,抽取的100名师生每人每天使用A 品牌共享单车的平均车费为:1001(0×5+0.5×15+0.9×10+1.2×30+1.4×25+1.5×15)=1.1(元). 所以估计该校5000名师生一天使用A 品牌共享单车的总车费为:5000×1.1=5500(元).因为5500<5800,故收费调整后,此运营商在该校投放A 品牌共享单车不能获利.24.(2017福建,24,12分)(本小题满分12分)如图,矩形ABCD 中,AB =6,AD =8,P ,E 分别是线段AC 、BC 上的点,且四边形PEFD 为矩形.(Ⅰ)若△PCD 是等腰三角形,求AP 的长;(Ⅱ)若AP =2,求CF 的长.思路分析:(Ⅰ)△PCD 是等腰三角形,有三种情况:①CP =CD ,此时AP 的长为AC 与CD 的差;②PD =PC ,此时易求PD =PA ,进而可知AP 的长为AC 的一半;③DP =DC ,此时可作DQ ⊥AC 于Q ,先在△ADC 中利用面积法求得高DQ 的值,再利用勾股定理计算CQ 的长,从而易求AP 的长;(Ⅱ)连结PF ,DE 交于点O ,连结OC ,利用矩形性质得OC =OP =OF ,故有∠PCF =90°,进而可证∠PAD =∠FCD ,则易知△ADP ∽△CDF ,利用对应边成比例构建方程计算CF 的长. 解:(Ⅰ)在矩形ABCD 中,AB =6,AD =8,∠ADC =90°,∴DC =AB =6,∴AC =22DC AD =10.要使△PCD 是等腰三角形,有如下三种情况:(1)当CP =CD 时,CP =6,∴AP =AC -CP =4.(2)当PD =PC 时,∠PDC =∠PCD ,AB C E D PF∵∠PCD +∠PAD =∠PDC +∠PDA =90°,∴∠PAD =∠PDA ,∴PD =PA ,∴PA =PC ,∴AP =2AC ,即AP =5.(3)当DP =DC 时,过D 作DQ ⊥AC 于Q ,则PQ =CQ .∵S △ADC =21AD ·DC =21AC ·DQ , ∴DQ =AC DC AD ⋅=524,∴CQ =22DQ DC -=518, ∴PC =2CQ =536,∴AP =AC -PC =514.综上所述,若△PCD 是等腰三角形,AP =4,或AP =5,或AP =514. (Ⅱ)连结PF ,DE ,记PF 与DE 的交点为O ,连结OC .AB C E D PF AB C E D P FOA BC E DPF Q∵四边形ABCD 和PEFD 都是矩形,∴∠ADC =∠PDF =90°,即∠ADP +∠PDC =∠PDC +∠CDF ,∴∠ADP =∠CDF .∵∠BCD =90°,OE =OD ,∴OC =21ED . 在矩形PEFD 中,PF =DE ,∴OC =21PF . ∵OP =OF =21PF ,∴OC =OP =OF , ∴∠OCF =∠OFC ,∠OCP =∠OPC ,又∵∠OPC +∠OFC +∠PCF =180°,∴2∠OCP +2∠OCF =180°,∴∠PCF =90°,即∠PCD +∠FCD =90°.在Rt △ADC 中,∠PCD +∠PAD =90°,∴∠PAD =∠FCD .∴△ADP ∽△CDF ,∴43==AD CD AP CF . ∵AP =2,∴CF =423.25.(2017福建,25,14分)(本小题满分14分)已知直线y =2x +m 与抛物线y =ax 2+ax +b 有一个公共点M (1,0),且a <b .(Ⅰ)求抛物线顶点Q 的坐标(用含a 的代数式表示);(Ⅱ)说明直线与抛物线有两个交点;(Ⅲ)直线与抛物线的另一个交点记为N .(ⅰ)若-1≤a ≤-21,求线段MN 长度的取值范围; (ⅱ)求△QMN 面积的最小值.思路分析:(Ⅰ)把点M (1,0),代入y =ax 2+ax +b ,用含a 的代数式表示b ,然后通过配方或公式法求抛物线顶点Q 的坐标;(Ⅱ)利用点M 的坐标求得m 的值,然后由联立两解析式得含字母系数a 的关于x 的一元二次方程,最后利用判别式判断该方程有两个不相等的实数根,即可证明直线与抛物线有两个交点;(Ⅲ)(ⅰ)根据两解析式先求点N 的坐标(用含a 的代数式表示),然后利用M 、N 的坐标通过勾股定理计算MN 2的值,根据a 的取值范围与反比例函数的性质确定a 1的取值范围,进而通过开方求线段MN 长度的取值范围;(ⅱ)作出抛物线的对称轴,求得它与直线MN 的交点E 的坐标,利用△QMN 的面积S =S △QEN + S △QEM 构建含S 的关于a 的一元二次方程,再通过判别式构建关于S 的不等式,最终获取△QMN 面积的最小值.解:(Ⅰ)因为抛物线过点M (1,0),所以a +a +b =0,即b =-2a .所以y =ax 2+ax +b =ax 2+ax -2a =a (x +21)2-49a , 所以抛物线顶点Q 的坐标为(-21,-49a ). (Ⅱ)因为直线y =2x +m 经过点M (1,0),所以0=2×1+m ,解得m =-2.把y =2x -2代入y =ax 2+ax -2a ,得ax 2+(a -2)x -2a +2=0,(*)所以△=(a -2) 2-4a (-2a +2)=9a 2-12a +4,由(Ⅰ)知b =-2a ,又a <b ,所以a <0,b >0.所以△>0,所以方程(*)有两个不相等的实数根,故直线与抛物线有两个交点.(Ⅲ)把y =2x -2代入y =ax 2+ax -2a ,得ax 2+(a -2)x -2a +2=0,即x 2+(1-a 2)x -2+a2=0,所以[x +(21-a 1)]2=(a 1-23)2,解得x 1=1,x 2=a 2-2, 所以N (a 2-2,a4-6). (ⅰ)根据勾股定理得,MN 2=[x +(a 2-2)-1]2+(a 4-6)2 =220a -a 60+45=20(a 1-23)2, 因为-1≤a ≤-21,由反比例函数性质知-2≤a 1≤-1,所以a 1-23<0, 所以MN =25(23-a1)=35-a 52, 所以55≤MN ≤75.(ⅱ)作直线x =21-交直线y =2x -2于点E . 把x =21-代入y =2x -2得,y =-3,即E (21-,-3). 又因为M (1,0),N (a 2-2,a4-6),且由(Ⅱ)知a <0, 所以△QMN 的面积S =S △QEN + S △QEM =21|(a 2-2)-1|·|-49a -(-3)|=427-a 3-827a . 即27a 2+(8S -54)a +24=0,(*) 因为关于a 的方程(*)有实数根,所以△=(8S -54)2-4×27×24≥0,即(8S -54)2≥(362)2, 又因为a <0,所以S =427-a 3-827a >427,所以8S -54>0, 所以8S -54≥362,即S ≥427+229, 当S =427+229时,由方程(*)可得a =322-满足题意. 故当a =322-,b =324时,△QMN 面积的最小值为427+229.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年莆田市初中毕业班质量检查试卷数学(满分:150分;考试时间:120分钟)注意:本试卷分为“试题”和“答题卡”两部分,答题时请按答题卡中的“注意事项”认真作答,答案写在答题卡上的相应位置.一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.8的立方根是A.2B.-2C.4D.-42.x7可以表示为A.x3+x4 B.x3·x4 C.x14÷x2 D.(x3)43.下面几何体的左视图是4.下列图形中,内角和为540°的多边形是A B C D5.下列图形中对称轴最多的是A.线段B.等边三角形C.等腰三角形D.正方形6.关于x的方程x²+2x+c=0有两个相等的实数根,则c的值是A.1B.-1C.2 D.-27.平行四边形一边长12cm,那么它的两条对角线的长度可以是A.8cm和16cm B.10cm和16cm C.8cm和14cm D.8cm和12cm 8.一组数据:a-1,a,a,a+1,若添加一个数据a,下列说法错误的是A.平均数不变B.中位数不变C.众数不变D.方差不变9.如图,一块飞镖游戏板由大小相等的小正方形网格构成.向游戏板随机投中一枚飞镖,击中黑色区域的概率是A .12B .38C .14D .1310.如图,在平面直角坐标系中,点A 在函数x y 3=(x >0)的图象上,点B 在函数ky x=(x<0)的图象上,AB ⊥y 轴于点C .若AC =3BC ,则k 的值为 A .-1 B .1C .-2D .2二、填空题(本大题共6小题,每小题4分,共24分.把答案填在答题卡上的相应位置) 11.分解因式:x ²-2x +1= .12.在平面直角坐标系中,O 为坐标原点,点A 的坐标为(-3,1),将OA 绕点O 顺时针旋转90°得到OA ′,则点A ′的坐标为 .13.如图,已知AB ∥CD ,∠A =49°,∠C =29°,则∠E 的度数为 °.14.如图,在直角三角尺ABC 中,∠C =90°,把直角三角尺ABC 放置在圆上,AB 经过圆心O , AC 与⊙O 相交于D ,E 两点,点C ,D ,E 的刻度分别是0cm ,2cm ,5cm ,BC 与⊙O 相切于F 点,那么⊙O 的半径是 cm . 15.已知y 是x 的二次函数, y 与x 的部分对应值如下表:该二次函数图象向左平移______个单位,图象经过原点.16.甲、乙、丙三位同学被问到是否参加A ,B ,C 三个志愿者活动, 甲说:“我参加的活动比乙多,但没参加过B 活动.” 乙说:“我没参加过C 活动.”丙说:“我们三人参加过同一个活动.”由此可判断乙参加的活动为 .(填“A ”,“B ”或“C ”)三、解答题(本大题共9小题,共86分.解答应写出必要的文字说明、证明过程、正确作图或演算步骤)17.(8分)计算:4130sin 211--+⎪⎭⎫⎝⎛- .18.(8分)解方程:22221=-+--xx x .19.(8分)如图,在四边形ABCD 中,AD ∥BC ,点E ,F 在对角线AC 上,且AE =CF ,∠ADE =∠CBF .不添加字母及辅助线,写出图中两对全等三角形,并选一对进行证明.20.(8分)为了响应市政府“创建文明城市,建设美丽莆田”的号召,某街道决定从备选的五种树中选购一种进行栽种.工作人员在街道辖区范围内随机抽取了部分居民,进行“我最喜欢的一种树”的调查活动(每人限选其中一种树),并将调查结果整理后,绘制成如图两个不完整的统计图: 请根据所给信息解答以下问题:(1)这次参与调查的居民人数为 人;(2)扇形统计图中“枫树”所在扇形的圆心角度数为 ;(3)已知该街道辖区内现有居民3万人,请你估计这3万人中喜欢玉兰树的有多少人?21.(8分)如图,在△ABC 中,∠ C =90°,AC =5,BC =12,D 是BC 边的中点. (1)尺规作图:过点D 作DE ⊥AB 于点E ;(保留作图痕迹,不写做法) (2)求DE 的长.22.(10分)如图,在Rt △ABC 中,∠ABC =90°,AB 是⊙O 的直径,连接OC ,过点A 作AD ∥OC 交⊙O 于点D ,连接CD . (1)求证:CD 是⊙O 的切线; (2)延长CD ,BA 交于点E ,若43DE AE ,求tan ∠ACB 的值.23.(10分)小明和小红同时从学校出发骑自行车到公园后返回,他们与学校的距离y (千米)与离开学校的时间x (分钟)之间的关系如图. 请根据图象回答:(1) 如果小明两次经过途中某一地点的时间间隔为15分钟,求该地离学校的距离; (2) 若小红出发35分钟后两人相遇,求小红从公园回到学校所用的时间.24.(12分)如图,在矩形ABCD中,AB=10,AD=6,E是AB边上的一个动点,点F在射线EC上,点H在AD边上,四边形EFGH是正方形,过G作GM⊥射线AD于M点,连接CG,DG.(1)求证:AH=GM;(2)设AE=x,△CDG的面积为S,求S与x的函数关系式,并写出x的取值范围.25.(14分)已知抛物线C:y1=a(x-h)²-1,直线l:y2=kx-kh-1.(1)求证:直线l恒过抛物线C的顶点;(2)当a=-1,m≤x≤2时,y1≥x-3恒成立,求m的最小值;(3)当0<a≤2,k>0时,若在直线l下方的抛物线C上至少存在两个横坐标为整数的点,求k的取值范围.2017年莆田市初中毕业班质量检查试卷数学参考答案与评分标准说明:(一)考生的解法与“参考答案”不同时,可参考“答案的评分标准”的精神进行评分.(二)如果解答的某一步计算出现错误,这一错误没有改变后续部分的考察目的,可酌情给分,但原则上不超过后面得分数的二分之一;如果属严重的概念性错误,就不给分.(三)以下解答各行右端所注分数表示正确做完该步骤应得的累计分数. (四)评分的最小单位1分,得分和扣分都不能出现小数点.一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.A 2.B 3.C 4.C 5.D 6.A 7.B 8.D 9.B 10.A 二、填空题(本大题共6小题,每小题4分,共24分.把答案填在答题卡上的相应位置) 11.(x -1)² 12.(1,3) 13.20 14.3.5 15.3 16.A三、解答题(本大题共9小题,共86分.解答应写出必要的文字说明、证明过程、正确作图或演算步骤)17.解:原式=2212-+┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄6分=21┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄8分19.解:去分母,得:)2(221-=--x x ,┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄2分 解得:1=x ,┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄5分 经检验1=x 是原方程的解,┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄8分 所以,原分式方程的解为1=x .19.解:△AED ≌△CFB ;△ABF ≌△CDE ;△ABC ≌△CDA ;(共4分,每写出一对得2分)①△AED ≌△CFB ,证明如下: ∵AD ∥BC ,∴∠EAD =∠FCB ,┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄6分又∵∠CBF =∠ADE ,且AE =CF ,∴△AED ≌△CFB ;┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄8分 ②△ABF ≌△CDE ,证明如下:由①得:△AED ≌△CFB ,┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄6分 ∴DE =BF ,∠AED =∠CFB , ∴∠DEC =∠BFA , 又∵AE =CF , ∴AF =CE ,∴△ABF ≌△CDE ;┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄8分 ③△ABC ≌△ACD ,证明如下:由①得:△AED ≌△CFB ,┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄6分 ∴AD =BC ,∠EAD =∠FCB , 又∵AC =AC ,∴△ABC ≌△CDA .┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄8分 20.解:(1) 200;┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄2分 (2) 36°;┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄5分 (3)2005075252030.45200----⨯=┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄8分答:估计这3万人中最喜欢玉兰树的约有0.45万人.21.解:(1)以D 为圆心,作弧交AB 于两点┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄2分 作出垂线上另一点┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄4分(2)∵点D 为BC 中点, ∴DB =12BC =12×12=6,┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄5分 又∵在Rt △ACB 中,∠C =90°,AC =5,BC =12,∴AB 13=,┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄6分 又∵∠C =∠DEB =90°,∠B =∠B ,∴△ACB ∽△DEB ,┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄7分∴DE AC DB AB =,5613DE =, 即DE =3013.┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄8分22.证明:(1)连接OD . ∵OA =OD ,∴∠OAD =∠ODA ,┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄1分 ∵OC ∥AD ,∴∠OAD =∠BOC ,∠ADO =∠DOC ,∴∠DOC =∠BOC ,┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄2分 又∵OD =OB ,OC =OC ,∴△OBC ≌△ODC ,┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄3分 ∴∠ODC =∠OBC =90°,┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄4分 ∴CD 是⊙O 的切线;┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄5分(2)∵AD ∥OC , ∴43==ED EA DC OA ,┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄6分 设OA =3a ,DC =4a , ∵△OBC ≌△ODC ,∴BC =DC =4a ,┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄7分 又∵AB =2OA =6a ,┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄8分∴tan ∠ACB =2346==a a BC AB .┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄10分23.解:(1)设OA 的函数解析式为y =kx ,由题意得:4=20k ,解得:k =51,即y =51x (0≤x <20);┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄1分设BC 的函数解析式为y =kx +b ,由题意得:⎩⎨⎧+=+=,,b k b k 600304解得:⎪⎩⎪⎨⎧=-=,,8152b k即y =152-x +8(30≤x <60);┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄2分 设小明第一次经过某地的时间为t 分钟,则依题意得:8)15(15251++-=t t ,解得:t =18,┄┄┄┄┄┄┄┄┄┄4分所以该地离学校的距离为y =51×18=518(千米);┄┄┄┄┄┄┄┄┄┄┄┄5分(2)当x E =35时,y E =152-×35+8=310,┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄6分所以设OE 的函数解析式为y =kx ,由题意得:310=35k ,解得:k =212,即y =212x ,┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄7分当y D =4时,x D =42,┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄8分 所以小红从公园回到学校所用的时间为60-42=18(分钟).┄┄┄┄┄┄10分 24.解:(1)∵四边形ABCD 是矩形,AD GM ⊥于M 点,∴︒=∠=∠90GMH A ,┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄1分 ∵四边形EFGH 是正方形, ∴GH EH =, 90=∠EHG ,∴GHM HGM ∠-=∠︒90,GHM EHA ∠-=∠ 90,∴EHA HGM ∠=∠,┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄2分 ∴HAE ∆≌GMH ∆,┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄3分 ∴GM AH =;┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄4分(2)如图2,由EAH ∆∽CBE ∆得:BCAEBE AH =, ∴610xx AH =-,6)10(x x AH -=, ┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄5分由EAH ∆≌HMG ∆得:x AE HM ==, 当点G 落在边CD 上时,66)10(=+-x x x , 解得:728,72821+=-=x x (不合题意,舍去),┄┄┄┄┄┄┄┄┄6分 ①当7280-<<x 时,点G 落在矩形ABCD 之内,┄┄┄┄┄┄┄┄┄7分 如图2,过G 作CD GN ⊥于点N , ∴x x x MH AH DM GN ---=--==6)10(66, 即)3616(612+-=x x GN ,┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄8分 ∴3034065212+-=⋅=x x GN CD S ;┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄9分 ②当10728≤<-x 时,点G 落在矩形ABCD 之外,┄┄┄┄┄┄┄┄┄10分 如图3,过G 作CD GN ⊥于点N ,∵66)10(-+-=-+==x x x AD HM AH DM GN )3616(612-+-=x x ,┄┄┄┄┄┄┄┄┄11分∴3034065212-+-=⋅=x x GN CD S .┄┄12分 25.解:(1)抛物线C 的顶点坐标为)1,(-h ,┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄2分 当h x =时,112-=--=kh kh y ,┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄4分 所以直线l 恒过抛物线C 的顶点;(2)当1-=a 时,抛物线C 解析式为1)(21---=h x y ,不妨令33-=x y ,如图1,抛物线C 的顶点在直线1-=y 上移动,当m ≤x ≤2时,y 1≥x -3恒成立,则可知抛物线C 的为顶点)1,2(-,┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄7分 设抛物线C 与直线33-=x y 除顶点外的另一交点为M ,此时点M 的横坐标即为m 的最小值,由⎩⎨⎧-=---=,,31)2(2x y x y 解得:11=x ,22=x ,┄┄┄┄┄┄┄┄┄┄┄┄┄8分 所以m 的最小值为1.┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄9分(3)法一:如图2,由(1)可知:抛物线C 与直线l 都过点A )1,(-h ,当20≤<a ,0>k 时,在直线l 下方的抛物线C 上至少存在两个横坐标为整数 的点,即当2+=h x 时,12y y >恒成立┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄11分 所以1)2(1)2(2--+>--+h h a kh h k ,整理得:a k 2>,┄┄┄┄┄┄┄13分 又因为20≤<a ,所以420≤<a ,所以4>k .┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄14分法二:由⎩⎨⎧--=--=,,11)(2kh kx y h x a y 解得:h x =1,a k h x +=2,┄┄┄┄┄┄┄┄11分 如图2,A ,B 为抛物线C 与直线l 的交点,过点B 作⊥BC 直线1-=y 于点C , 所以AC =ak h a k h x x =-+=-12, 当20≤<a ,0>k 时,欲使得在直线l 下方的抛物线C 上至少存在两个横坐标为整数的点, 只要2>ak 即可,所以a k 2>,┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄13分 又因为20≤<a ,所以420≤<a ,所以4>k .┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄14分。

相关文档
最新文档