Johnson-Nyquist noise in narrow wires
Thermodynamic Validity of Noise Models for Nonlinear Resistive Devices
John L. Wyatt and Geo rey J. Coram
shot-noise amplitude for a class of nonlinear resistances. The noise behavior for equilibrium and nonequilibrium bias conditions is uniquely speci ed by the voltage-current relation and thermodynamic constraints. Secondly, we show that the Gaussian model cannot be applied to any nonlinear device. While the Gaussian model can be a useful approximation, it cannot be physically correct.
0
Poisson Device Models
where Nf and Nr are the homogeneous forward and reverse counting processes, and fT (v) and rT (v) the temperature-dependent forward and reverse rates, respectively. The average current is then ? ? i(t) = e fT v(t) ? rT v(t) ; which gives the constitutive relation for the device (i.e., the v ? i curve). Under dc bias conditions with constant v, the current random process i(t) becomes stationary and hence has a power spectral density. The spectrum is white 1] with magnitude Sii (!) = e2 fT (v) + rT (v)] ; 8!: (3) The analytical simplicity of this model comes from the three very strong assumptions that 1) the electron arrival is instantaneous and can therefore be modeled as a -function, 2) the system is memoryless, and 3) the expected rate changes instantaneously with v. Since the noise statistics are determined by the sum of the average currents while the constitutive relation is determined by the di erence, the development so far does not imply any unique relation between the constitutive relation and the noise. We will show that with the thermodynamic constraints a unique noise amplitude does exist for each operating voltage v.
ornstein-uhlenbeck noise 原理 -回复
ornstein-uhlenbeck noise 原理 -回复Ornstein-Uhlenbeck noise (OU noise) is a stochastic process that is widely used in various fields, including physics, biology, and finance. This noise process is named after physicists Leonard Ornstein and George Eugene Uhlenbeck, who first introduced it in 1930 as a model for the velocity of a Brownian particle subject to friction.To understand the principles behind Ornstein-Uhlenbeck noise, let us first explore the basics of stochastic processes. In mathematics and st atistics, astochastic process is a collection of random variables indexed by a timeparameter. These random variables can represent the behavior of a system over time, where the value of the variable at a given time is uncertain.One common example of a stochastic process is Brownian motion. Brownian motion describes the random movement of particles suspended in a fluid, such as the movement of pollen grains in water. The particle's position changes randomly over time due to the continuous bombardment of water molecules.Ornstein-Uhlenbeck noise, on the other hand, models a system with some level of mean reversion or tendency to return to a central value. This characteristic isoften observed in real-world phenomena, such as the behavior of stock prices or the motion of a pendulum subject to damping.The Ornstein-Uhlenbeck process can be mathematically defined as a stochastic differential equation (SDE). The SDE representing Ornstein-Uhlenbeck noise is as follows:dX(t) = θ(μ- X(t))dt + σdW(t)In this equation, dX(t) represents the infinitesimal change in the value of the variable X at time t. The first term θ(μ- X(t))dt models the mean reversion behavior, where θrepresents the strength of mean reversion and μis themean or central value that the pr ocess tends to move towards. The second term σdW(t) captures the instantaneous random fluctuations, where dW(t) is an increment of standard Wiener process or Brownian motion, and σrepresents the intensity of these fluctuations.By solving the SDE, we can generate sample paths of the Ornstein-Uhlenbeck process. These sample paths exhibit a characteristic behavior where the process tends to revert to its mean value while still allowing for random fluctuations around it. The rate of mean reversion and the in tensity of fluctuations can be adjusted by changing the parameters θand σ.In practical applications,Ornstein-Uhlenbeck noise is often used as a tool for generating synthetic time series data that resemble certainreal-world phenomena. For example, in finance, the motion of stock prices is often modeled as a stochastic process with mean reversion to capture the observed tendency of prices to revert to their long-term average. Ornstein-Uhlenbeck noise provides a useful framework for simulating such proces ses. Similarly, in physics, this noise process has been used to model the motion of charged particles subject to random forces.Furthermore, Ornstein-Uhlenbeck noiseis used as a regularization technique in machine learning and optimization problems. By a dding this noise to the gradient updates during training, it introduces a form of randomness that can help prevent the model from getting stuck in local optima and improve its generalization performance.。
物理英文词汇
A a.c. generator 交流发电机aberration 光行差,像差absolute index of refraction 绝对折射率absolute refractive index 绝对折射率absolute temperature scale 绝对温标absolute zero 绝对零度absorber 吸收体absorbing power 吸收能力,吸收本领absorptance 吸收比absorption 吸收absorption coefficient 吸收系数absorption line 吸收谱线? absorption spectrum 吸收光谱,吸收谱accelerate 加速acceleration 加速度acceleration due to gravity 重力加速度acceleration-time graph 加速度—时间关系线图accelerator 加速器acceptor 接受体acceptor doping 受体掺杂acceptor impurity 受体杂质accommodation 调节,视觉调节accumulator 蓄电池accuracy 准确度acetate strip 醋酸酯条片achromatic 消色差的achromatic aberration 消色差achromatic condenser 消色差聚光透镜achromatic light 消色差光,白光acoustic blur 声响模糊acoustic board 吸音板,吸声板acoustic navigation 声响导航acoustic pressure 声压acoustics 声学act on 施于action 作用量,作用,作用力action of point 尖端作用activation 激活,活化activation energy 激活能,活化能active nucleus 活性核,放射性核activity 放射强度,放射性adapter 接合器adder 加法器adhesion 附着力,附着,黏附adhesive force 附着力adiabatic 绝热的adiabatic expansion 绝热膨胀adiabatic process 绝热过程aerial 天线? aerial induction 天线调谐电感aerial network 天线网络aerodynamic force 气动力,空气动力aerodynamics 气体动力学,空气动力学aerofoil 机翼agent 剂air blower 吹风器air column 空气柱,气柱air cushion 气垫air damping 空气阻尼air film 气膜air track 气垫导航air wedge 气楔alignment 对准,校整alpha decay α衰变alpha pa rticle α粒子alpha particle scattering analogue α粒子放射模拟alternating current 交流电alternating voltage 交变电压,交流电压alternator 交流发电机altimeter 高度计,测高仪americium ?? ammeter 安培计amorphous 非结晶的,无定形的ampere 安培,安ampere-hour 安培小时,安时amplification 放大,放大率amplifier 放大器amplify 放大amplitude 振幅amplitude modulation 调幅,振幅调剂amyl acetate 醋酸戊酯anaemia 贫血analogue 模拟analogue experiment 模拟实验analogue signal 仿真讯号,非数字讯号analogue-to-digital conversion 模拟转换analyser 检偏振器AND gate 「与」门anemometer 风速计aneroid barometer 无液气压计,空盒气压计angle of contact 接触角angle of deviation 偏向角angle of diffraction 衍射角,绕射角angle of dip 倾角angle of elevation 仰角angle of emergence 出射角angle of incidence 入射角angle of inclination 倾角angle of minimum deviation 最小偏向角angle of projection 投射角angle of reflection 反射角angle of refraction 折射角angle of twist 扭转角angstrom 埃angular acceleration 角加速度angular aperture 孔径张角angular displacement 角位移angular frequency 角频率angular impulse 角冲量angular magnification 角度放大,角放大率angular momentum 角动量,动量矩angular motion 角向运动,角运动angular seed 角速率angular velocity 角速度angular width 角宽度annealing 退火,韧化anode 阳极,正极anomalous expansion 反常膨胀antenna 天线? anticlockwise moment 逆时针力矩antifreeze 防冻剂antinodal line 腹线? antinode 波腹antiparticle 反粒子antiphase 反相,逆相aperture 孔径,口径,孔apparent depth 视深apparent expansion 表观膨胀,视膨胀apparent frequency 表观频率,视频率apparent loss in weight 表观失重apparent weight 表观重量Appleton layer 阿普顿层,F电离层aqueous layer 水层Archimedes? principle 阿基米得原理area 面积argon 氩armature 电枢artificial disintegration 人工蜕变artificial radioactivity 人工放射astable 非稳态的astable circuit 非稳态电路astable multivibrator 非态多谐振荡器astigmatism 像散,散光astronomical telescope 天文望远镜at infinity 在无穷远处at rest 静止atmosphere 大气,大气层,大气压atmospheric pressure 大气压强atom 原子atomic bomb 原子弹atomicbond 原子键atomic density 原子密度atomic diameter 原子直径atomic energy 原子能atomic mass 原子质量atomic mass unit 原子质量单位atomic model 原子模型atomic nucleus 原子核atomic number 原子序数atomic radius 原子半径atomic separation 原子间距atomic spacing 原子间距atomic structure 原子结构atomic theory 原子论atomizer 喷雾器attenuation 衰减attraction 吸引attractive force 吸力audible frequency range 听频范围audible signal 可听讯号audio frequency 声频autofocus 自动聚焦,自动对焦avalanche 电子雪崩average acceleration 平均加速度average power 平均功率average speed 平均速率average velocity 平均速度Avogadro constant 阿佛加德罗常数,阿佛加德罗常量Avogadro number 阿佛加德罗数Avogadro?s law 阿佛加德罗定律axial 轴向的,沿轴的axial field 轴向场axial search coil 轴向探察线图axis 轴axis of rotation 转轴B back e.m.f. 反电动势background radiation 本底辐射Bainbridge mass spectrometer 班布里奇质谱仪balance 天平,秤,平衡balance arm 秤杆,平衡臂balance point 平衡点balance bridge 平衡电桥balanced force 平衡力ball bearing 球轴承,滚珠轴承ballistic galvanometer 冲击电流计,冲击检流计ballistic pendulum 冲击摆Balmer series 巴耳末系,巴耳末光谱band spectrum 带状光谱,带状谱bandwidth 带宽bar code 条形码bar magnet 磁棒bare wire 裸线? barium 钡barometer 气压计barrier 障碍物barrier layer 阻档层,耗尽层barrier potential difference 阻档层电势差,阻档层电位差Barton?s pendulums 巴尔通摆base 基极base current 基极电流battery 电池组battery charger 电池充电器battery holder 电池座beaker 烧杯beam splitter 分束器,射束分离器beat 拍beat frequency 拍频becquerel 贝克勒耳,贝克bel 贝尔,贝bell jar 钟形罩bench mat 实验台垫Bernoulli?s theorem 伯努利定律beryllium 铍beta decay β衰变beta particle β粒子biasing circuit 偏压电路biasing voltage 偏压biconcave lens 双凹透镜biconvex lens 双凸透镜bicycle dynamo 自行车发电机,脚踏车发电机bifilar pendulum 双线摆bifocal lens 双焦距透镜big bang model 大爆炸模型bimetallic strip 双层金属片,双金属片binary adder 二进加法器binary system 二进制binding 结合binding energy 结合能binoculars 双筒望远镜Biot-Savart law 毕奥—萨伐尔定律bipolar 双极的birefraction 双折射bistable 双稳态的,双稳器bistable circuit 双稳电路bistable multivibrator 双稳态多谐振荡器bit 二进制制,位black body radiation 黑体辐射block and tackle 滑轮组block diagram 方框图blocking capacitor 隔直流电器容blooming 敷霜,表面加膜Bohr atom 玻尔原子Bohr radius 玻尔半径Bohr theory 玻尔理论boil 沸腾,煮沸boiler 锅炉boiling point 沸点bolometer 辐射热计Boltzmann constant 玻耳兹曼常数,玻耳兹曼常量bombardment 轰击bond energy 键能bonding 键合Bourdon gauge 布尔登气压计bow wave 弓形波,舷波Boyle?s law 博伊尔定律Brackett series 布喇开系,布喇开光谱Bragg angle 布喇格角Bragg diffraction 布喇格衍射,布喇格绕射Bragg plane 布喇格平面Bragg?s law 布喇格定律brake 制动器breakdown potential 击穿电势,击穿电位breaking point 断点breaking strength 抗断强度breaking stress 致断应力breeder reactor 增殖反应堆bremsstrahlung 轫致辐射Brewster?s law 布鲁斯特定律bridge circuit 桥式电路bridge rectifier 桥式整流器bright fringe 亮纹brightness 亮度brittle 脆的,易碎的bromine 溴Brownian movement 布朗运动brush 电刷bubble chamber 气泡室bubble raft model 泡筏模型buffer 缓冲器buffer circuit 缓冲电路bulk modulus 体积弹性模量Bunsen burner 本生灯buoyancy 浮力burette 滴定管burette stand 滴定管架burglar alarm 防盗警报器,防盗警钟buzzer 蜂鸣器by-pass 旁路byte 二进制组,字节C cable 电缆cadmium sulphide 硫化镉caesium 铯calcite 方解石calibrate 校准,标上刻度calipers 测径器,卡钳calorie 卡路里,卡calorimeter 量热器camera 照相机cancer cell 癌细胞candela 坎德拉cantilever 悬臂capacitance 电容capacitance substitution box 换值电容箱capacitive circuit 电容电路capacitive component 电容性分量capacitive coupling 电容耦合capacitive discharge 电容性放电capacitive reactance 容抗capacitor 电容器capacitor-input filter 电容输入滤波器capacity 容量,载量capillarity 毛细现象,毛细作用capillary depression 毛细下降capillary rise 毛细上升capillary tube 毛细管capsule 囊capture 俘获carbon 碳carbon granule 碳颗粒carbon paper disc 圆形碳纸carbon-14 dating 碳14年代测定法carburettor 化油器,汽化器carrier wave 载波carry 进位castor oil 蓖麻油cataract 白内障cathode 阴极,负极cathode ray 阴极射线? cathode ray deflection tube 阴极射线偏转管cathode-ray oscilloscope 阴极射线示波器,示波器cathode-ray tube 阴极射线管cavity resonator 空腔共振器celestial telescope 天体望远镜cell 电池,细胞Celsius temperature scale 摄氏温标centimetre 厘米centralized low voltage power supply unit 中央控制低压电源箱centre of curvature 曲率中心centre of gravity 重心centre of mass 质心centre of oscillation 振荡中心centre-tapped transformer 中心抽头变压器centrifugal force 离心力centrifuge 离心机centripetal acceleration 向心加速度centripetal force 向心力Chadwick 查德威克chain reaction 连锁反应change of state 物态变化change-over switch 换向开关characteristic 特性,特征characteristic curve 特性曲线? characteristic line 特征线,特征谱? characteristic spectrum 特征光谱,特征谱charge 电荷,充电,起电charge carrier 载荷子charge conservation 电荷守恒charge density 电荷密度charge distribution 电荷分布charge to mass ratio 荷质比charged particle 带电粒子charging by contact 接触起电charging by friction 摩擦生电charging by induction 感应起电charging by sharing 授受起电charging time constant 充电时间常数,充电时间常量Charles?s law 查理定律choke 扼流,抗流,扼流圈,抗流圈choke circuit 扼流电路,抗流电路chromatic aberration 色差chromatic dispersion 色散cinefilm soundtrack 电影胶片声迹circle of least confusion 最少模糊圈,明晰圈circuit 电路circuit board 电路板circuit breaker 断路器circuit symbol 电路符号circular coil 环形线圈circular motion 圆周运动circular orbit 圆周轨道circular pulse 圆形脉冲circular wave 圆形波circular wavefront 圆形波阵面,圆形波前clamp 夹钳,夹紧clap-echo method 「拍掌—回声」法cleave 裂开clinical thermometer 体温计clip 夹子clockwise moment 顺时针力矩closed circuit 闭合电路closed pipe 闭管closed tube 闭管closed-loop control system 死循环控制系统closed-loop gain 死循环增益closed-loop voltage gain 死循环电压增益closely packed 密堆积的cloud chamber 云室cloud chamber track 云室径迹coaxial 共轴,同轴coaxial cable 同轴电缆,同轴? cobalt 钴code 编码coder 编码器coefficient of dynamic friction 动摩擦系数coefficient of friction 摩擦系数coefficient of restitution 恢复系数coefficient of static friction 静摩擦系数coefficient of viscosity 黏滞系数coherent 相干的cohesion 内聚力,内聚cohesive force 内聚力coil 线圈collector 集电极,集极collector current 集电极电流,集极电流collimator 准直管,准直仪collision 碰撞colour 颜色colour code 色码,色标combinational logic 组合逻辑common emitter 共发射极common-mode voltage 共模电压commutator 换向器compass 指南针,罗盘complete circuit 完整电路component 组件,分量,组分component of force 分力compound microscope 复式显微镜compound pendulum 复摆compressed gas 压缩气体compressibility 可压缩性,压缩系数,压缩率compressible fluid 可压缩性流体compression 密部,压缩compression spring balance 压缩弹簧天平concave 凹concave lens 凹透镜concave mirror 凹镜,凹面镜concentric capacitor 同心电容器condensation 凝结,凝聚condensation nucleus 凝结核,凝聚核condensation point 凝点,凝结点condenser 聚光器,电容器,冷凝器conductance 电导conductivity 传导性,传导率conductor 导体conical pendulum 锥摆conjugate foci 共轭焦点conservation of angular momentum 角动量守恒conversation of charge 电荷守恒conservation of energy 能量守恒conservation of mechanical energy 机械能守恒conservation of momentum 动量守恒conservative force 守恒力,保守力conserved 守恒constant acceleration 恒加速度constant angular acceleration 恒角加速度constant angular velocity 恒角速度constant force 恒力constant motion 恒速运动constant pressure 定压constant speed 恒速率constant temperature 定温constant velocity 恒速度constant volume 定容constant volume gas thermometer 定容气体温度计constantan 康铜constriction 颈缩constructive interference 相长干涉contact angle 接触角contact area 接触面积contact force 接触力continuity equation 连续性方程continuous spectrum 连续光谱,连续谱continuous wave 连续波contract 收缩control experiment 对照实验,比对实验control grid 控制栅极control rod 控制棒control system 控制系统convection 对流converge 会聚converging lens 会聚透镜converging mirror 会聚镜convex 凸convex lens 凸透镜convex mirror 凸镜,凸面镜coolant 冷却剂cooling by evaporation 蒸发致冷cooling correction 冷却修正cooling curve 冷却曲线? cooling effect 冷却效应cooling system 冷却系统,散热系统coplanar forces 共面力core 心,核心Coriolis force 科里奥利力corkscrew rule 螺旋法则cornea 角膜corona discharge 电晕放电corpuscular theory of light 光的微粒学说correction 矫正,修正cosmic radiation 宇宙辐射coulomb 库伦Coulomb?s law 库伦定律count rate 计数率counter 计数器counter weight 平衡锤,配重couple 力偶coupled oscillation 耦合振荡coupling 耦合covalent bond 共价键crane magnet 起重磁铁creep 蠕变crest 波峰critical angle 临界角critical damping 临界阻尼critical mass 临界质量critical point 临界点critical temperature 临界温度critical velocity 临界速度crocodile clip 鳄鱼夹cross hairs 十字丝,叉丝cross-sectional area 截面积Crova?s disc 克罗瓦盘crystal 晶体crystal diffraction 晶体衍射,晶体绕射crystal lattice 晶体点阵,晶体格子,晶格crystal planes 晶面crystalline 结晶的crystallization 结晶crystallography 晶体学cubical expansivity 体积膨胀系数,体积膨胀率curie 居里current 电流current amplification 电流放大current amplification factor 电流放大因素current amplifier 电流放大器current balance 电流天平current density 电流密度current gain 电流增益current intensity 电流强度current pulse 电流脉冲current sensitivity 电流灵敏度current stabilizer 稳流器current transfer characteristic 电流转移特性current-carrying conductor 载电流导体current-voltage characteristic curve 电流—电压特性曲线? curved mirror 曲面镜cyclotron 回旋加速器cylindrical concave lens 柱面凹透镜cylindrical concave mirror 柱面凹镜cylindrical convex lens 柱面凸透镜cylindrical convex mirror 柱面凸镜cylindrical lens 柱面透镜cylindrical mirror 柱面镜D d.c. generator 直流发电机 d.c. motor 直流电动机Dalton?s law of partial pressures 道尔顿分压定律damped harmonic motion 阻尼谐动damped harmonic oscillation 阻尼谐振damped oscillation 阻尼振荡damping 阻尼damping force 阻尼力dark fringe 暗纹data 数据dating 年代测定daughter nucleus 子核daughter nuclide 子核素de Broglie relation 德布罗意关系式de Broglie wave 德布罗意波dead time 失效时间decade capacitance box 十进电容箱decade resistance box 十进电阻箱decay 衰变decay analogue 衰变模拟decay constant 衰变常数,衰变常量decay curve 衰变曲线? decay law衰变定律decay product 衰变产物decelerate 减速deceleration 减速度decibel 分贝decode 译码,解码decoder 译码器,译码器deflection 偏转deflection plate 偏转板deflection system 偏转系统deflection tube 偏转管deformation 形变degradation of energy 能量退降,能量递降degree 度degree Celsius 摄氏度degree of freedom 自由度demagnetization 去磁,退磁demonstration diode 演示用二极管demonstration meter 演示用电表density 密度depletion layer 耗尽层,阻挡层depth of field 景深derived quantity 导出量derived unit 导出单位destructive interference 相消干涉detection 探测detector 探测器detector of radiation 辐射探测器deuterium 氘,重氢deuteron 氘核,重氢核deviation 偏向,偏差device 装置,设计,器件diamagnetism 抗磁性diaphragm 光阑,膜片diatomic molecule 双原子分子dielectric 电介质,介电的dielectric constant 介电常数,介电常量,电容率dielectric polarization 电介质极化dielectric strength 电介质强度differential equation 微分方程differential input voltage 差动输入电压diffracted ray 衍射线,绕射线? diffraction 衍射,绕射diffraction grating 衍射光栅,绕射光栅diffuse reflection 漫反射diffusion 扩散,漫射diffusion cloud chamber 扩散云室digital 数字的digital display 数字显示digital signal 数字讯号digital-to-analogue conversion 数模转换dimension 量纲,因次,维,大小dimensional analysis 量纲分析,因次分析diminished 缩小diode 二极管diode probe 二极管微波探测器dioptre 屈光度,焦度dipole 偶极子direct current 直流电direction 方向,方位direction of propagation 传播方向directly heated cathode 直热式阴极discharge 放电disintegration 蜕变dislocation 位错dispersion 色散dispersive power 色散能力,色散本领,色散率displacement 位移,排量displacement can 排水罐displacement-time graph 位移—时间关系线图dissipative force 耗散力distance 距离distance-time graph 距离—时间关系线图distortion 失真,扭曲,畸变disturbance 干扰diverge 发散diverging lens 发散透镜diverging mirror 发散镜division of amplitude 振幅分割division of wavefront 波阵面分割,波前分割domain 畴,域domestic circuit 家居电路donor 给予体doped semiconductor 掺杂半导体doping 掺杂Doppler broadening 多普勒谱线增宽Doppler effect 多普勒效应Doppler shift 多普勒频移dosage 剂量dose 剂量dose rate 剂量率double pulley 双滑轮double refraction 双折射double slit 双缝double-pole-double-throw switch 双刀双掷开关doublet 双重线? drag force 阻力,曳力drift velocity 漂移速度driver circuit 驱动电路driver frequency 驱动频率driving cell 驱动电池driving force 驱动力driving mirror 行车后视镜dry battery 干电池组dry cell 干电池dual trace oscilloscope 双迹示波器ductile 延性的Dulong-Petit law 杜隆—珀替定律dynamic equilibrium 动态平衡dynamic friction 动摩擦dynamic resistance 动态电阻dynamics 动力学dynamo 发电机E earth 接地,地线? earthquake waves 地震波ebonite 硬橡胶,硬质胶ebonite rod 硬橡胶棒,硬质胶棒echo 回声,回波eddy current 涡电流,涡流eddy current damping 涡流阻尼eddy current loss 涡流损耗effective mass 有效质量efficiency 效率effort 施力Einstein?s mass-energy relation 爱因斯坦质能关系式elastic collision 弹性碰撞elastic constant 弹性常数,弹性常量elastic deformation 弹性形变elastic hysteresis 弹性滞后elastic limit 弹性极限elastic strain energy 弹性应变能elasticity 弹性electric bell 电铃electric charge 电荷electric current 电流electric field 电场electric field intensity 电场强度electric field pattern 电场图形electric fire 电暖炉electric line of force 电力线? electric motor 电动机electric potential 电势,电位electric power 电功率electric shock 电震electrical appliance 电器electrical conductivity 导电率electrical energy 电能electrical oscillation 电振荡electrical potential energy 电势能,电位能electrical resonance 电共振electricity 电,电学electrode 电极electrolysis 电解electrolyte 电解质electrolytic 电解质的,电解的electrolytic capacitor 电解质电容器electromagnet 电磁铁,电磁体electromagnetic coil 电磁感应圈electromagnetic contact 电磁触点electromagnetic force 电磁力electromagnetic induction 电磁感应electromagnetic moment 电磁矩electromagnetic oscillation 电磁振荡electromagnetic radiation 电磁辐射electromagnetic spectrum 电磁波谱electromagnetic wave 电磁波electromagnetism 电磁学electrometer 静电计electromotive force 电动势electron 电子electron beam 电子束electron cloud 电子云electron diffraction 电子衍射,电子绕射electron drift 电子漂移electron energy level 电子能级electron gun 电子枪electron transition 电子跃迁electron tube 电子管electron-volt 电子伏特,电子伏electronics 电子学electrophorus 起电盘electroscope 验电器electrostatic bond 静电键electrostatic field apparatus 静电场仪器electrostatic precipitation 静电沉淀法electrostatics 静电学element 元素,组件elliptic orbit 椭圆轨道elongation 伸长度emergent ray 出射线? emission 发射emission line 发射谱线? emission spectrum 发射光谱,发射谱emissivity 发射率,比辐射率emit 发射emitter 发射极,射极emitter current 发射极电流,射极电流enamelled wire 漆包线? encode 编码encoder 编码器end-correction 端部修正,管口校正量end-on collision 同向碰撞,尾追碰撞energetic particle 高能粒子energy 能量,能energy band 能带energy conversion 能量转换energy conversion efficiency 能量转换效率energy input 能量输入energy level 能级energy output 能量输出energy transfer 能量转移enriched uranium 浓缩铀equation of continuity 连续性方程equation of state 物态方程equation of uniformly accelerated motion 匀加速运动方程equatorial orbit 赤道轨道equilibrium 平衡equilibrium condition 平衡条件equilibrium spacing 平衡间距equipartition of energy 能量均分equipotential 等势的,等位的equipotential line 等势线,等位线? equipotential surface 等势面,等位面equivalent capacitance 等效电容equivalent inductance 等效电感equivalent resistance 等效电阻erect 正立escape velocity 逃逸速度ether 以太,醚evacuation 抽成真空evaporation 蒸发excess pressure 超压,逾电压excitation 激发excitation energy 激发能excitation potential 激发电势,激发电位excitation voltage 激发电压excited 受激excited energy level 受激能级excited state 受激态expansion 膨胀expansivity 膨胀系数,膨胀率exponential change 指数式改变exponential decay 指数式衰变exposure 曝光量,照射extension 伸长external force 外力external work 外功extra high tension 超高电压extra-nuclear structure 核外结构extraordinary ray 非常光线? extrapolation 外推,外推法extrinsic semiconductor 含杂质半导体eyepiece 接目镜,目镜F f-number f数,光圈数f-stop f制光圈far point 远点farad 法拉Faraday constant 法拉第常数,法拉第常量Faraday?s law of electromagnetic induction 法拉第电磁感应定律fast breeder reactor 快中子增殖反应堆feedback 反馈feedback amplifier 反馈放大器feedback resistance 反馈电阻ferromagnetic substance 铁磁性物质ferromagnetism 铁磁性fictitious force 假力,伪力fidelity 保真性,保真度field coil 场线圈field effect transistor 场效应晶体管field intensity 场强field lines 场力线? field magnet 场磁铁,场磁体field of view 视场,视野field strength 场强figure of merit 优值,灵敏值filament 灯丝,丝极filter capacitor 滤波电容器filter circuit 滤波电路filter pump 滤泵final state 终态,末态final velocity 末速度fine-adjustment 微调,细调fire alarm 火警警报器,火警钟first law of thermodynamics 热力学第一定律first order spectrum 第一级光谱,第一级谱fission 裂变fission reactor 裂变反应堆fixed point 定点fixed pulley 定滑轮fixed resistor 定值电阻器flat coil 扁平线圈flat solenoid 扁平螺线管flat-bottomed flask 平底烧瓶Fleming?s left hand rule 弗林明左手定则Fleming?s right hand rule 弗林明右手定则floating body 浮体fluid 流体fluid dynamics 流体动力学fluorescence 荧光fluorescent screen 荧光屏,荧光幕flux 通量flux density 通量密度fly-back 回扫flywheel 飞轮focal length 焦距focal plane 焦平面focus 焦点,聚焦,对焦focus control 聚焦控制follower circuit 跟随电路foot pump 脚踏泵force 力force constant 力常数,力常量force polygon 力多边形force resolution 力的分解force triangle 力三角形force-extension curve 施力—伸长关系曲线? forced oscillation 受迫振荡former 框forward biased 正向偏压forward current 正向电流fossil fuel 化石燃料Foucault?s rotating mirror method 傅科旋转镜法frame of reference 参考坐标系,参考系Franck-Hertz experiment 弗兰克—赫兹实验Fraunhofer diffraction 夫琅和费衍射,夫琅和费绕射Fraunhofer lines 夫琅和费谱线? free electron 自由电子free fall 自由下坠,自由下落free falling body 自由落体free oscillation 自由振荡free path 自由程free space 自由空间freeze 凝固freezing point 凝固点freon 氟利昂,二氯二氟甲烷frequency 频率frequency modulation 调频,频率调制frequency response 频率响应Fresnel diffraction 菲涅耳衍射,菲涅耳绕射Fresnel?s biprism 菲涅耳双棱镜friction 摩擦,摩擦力friction compensated 补偿摩擦作用frictionless motion 无摩擦运动fringe 条纹fringe pattern 条纹图形fuel rod 燃料棒fulcrum 支点full adder 全加法器full-scale deflection 满标偏转full-wave rectification 全波整流full-wave rectifier 全波整流器fundamental frequency 基频fundamental mode of vibration 基谐振动模式fundamental note 基音fundamental quantity 基本量fundamental unit 基本单位fuse 保险丝fuse rating 保险丝额定值fusion 熔解,聚变fusion point 熔点fusion reactor 聚变反应堆G G - clamp G-形钳gain 增益gain control 增益控制galaxy 星系Galilean telescope 伽利略望远镜Galileo?s thought experiment 伽利略假想实验galvanometer 电流计,检流计gamma radiation 伽玛辐射gamma ray 伽玛射线? gap 隙gas 气,气体gas pressure 气体强压,气压gaseous phase 气相gaseous state 气态gauge 规,计Gauss theorem 高斯定理Geiger counter 盖革计数器Geiger-Marsden scattering experiment 盖革—马斯登散射实验Geiger-Muller counter 盖革—弥勒计数器Geiger-Muller tube 盖革—弥勒管general gas equation 普适气体方程general gas law 普适气体定律generator 发电机genetic effect 遗传效应geometrical optics 几何光学germanium 锗ghost effect 迭影效应glancing angle 掠射角glass fibre 玻璃纤维glycerine 甘油gold foil 金箔fold leaf electroscope 金箔验电器gradient 斜率,梯度graduated cylinder 量筒Graham?s law of diffusion 格拉哈姆散定律grain 粒,晶粒gramophone record 唱片,唱碟graph 图,线图,图表graphical method 图解法grating 光栅grating spectrometer 光栅光谱仪,光栅分光计gravitational acceleration 重力加速度gravitational attraction 引力,重力gravitational constant 引力常数,引力常量gravitational field 引力场,重力场gravitational force 引力,重力gravitational mass 引力质量gravitational potential 引力势,重力势gravitational potential difference 引力势差,重力势差gravitational potential energy 引力势能,重力势能gravity 重力grazing incidence 掠入射,切入射greenhouse effect 温室效应grid 栅极grid control 栅极控制grid system 电力网groove 纹道,针槽,开槽ground 接地ground state 基态guinea and feather experiment 「硬币与羽毛」实验H hair spring 游丝half adder 半加法器half-life 半衰期half-silvered mirror 半镀银镜half-wave rectification 半波整流half-wave rectifier 半波整流器Hall effect 霍耳效应Hall probe 霍耳探测器Hall voltage 霍耳电压hand stroboscope 手动式频闪观测器harmonic 谐音harmonic motion 谐运动harmonic oscillation 谐振荡head-on collision 对正碰撞,正碰heat 热,热量,加热,热学heat absorbent 吸热剂heat absorber 吸热器heat absorption 吸热,热吸收heat capacity 热容量heat conduction 热传导heat exchange 热交换heat flow 热流heat gain 热增益,得热heat insulation 热绝缘,隔热heat loss 热损耗,失热heat proof 耐热的,隔热的heat pump 热泵heat radiation 热辐射heat reservoir 热库,储热器heat sink 热壑heat transfer 热传递,热转移heater 发热器,加热器heating effect 热效应heating element 发热组件Helmholtz coils 亥姆霍兹线圈henry 亨利,亨hertz 赫兹,赫high dispersion prism 高色散棱镜high tension 高电压hole 空穴,空子hollow plastic lens 空心塑料透镜hollow plastic prism 空心塑料棱镜hologram 全息图holography 全息术,全息学Hooke?s law 虎克定律horizontal 水平horizontal component 水平分量horizontal deflection 水平偏转horseshoe magnet 蹄形磁铁hot cathode 热阴极hour 小时Huygens? principle 惠更斯原理hydraulic press 水压机hydroelectric power 水力发电hydrogen bomb 氢弹hygrometer 湿度计hyperbolic orbit 双曲线轨道hypodermic needle 皮下注射针头hypodermic syringe 皮下注射针筒hypothesis 假说,假设hysteresis 滞后现象I ideal gas 理想气体ideal gas equation 理想气体方程ideal gas temperature scale 理想气体温标ideal machine 理想机械illuminate 照明,照亮image 像image distance 像距immerse 浸没immersion heater 浸没式电热器impact 碰撞impedance 阻抗impulse 冲量impurity 杂质in focus 焦点对准in parallel 并联in phase 同相in series 串联incident ray 入射线? incident wavefront 入射波阵面,入射波前inclined plane 斜面incoherent 不相干的incompressible fluid 非压缩性流体indicator 指示器indirectly heated cathode 旁热式阴极induced charge 感生电荷induced current 感生电流induced e.m.f. 感生电动势induced voltage 感生电压? inducing charge 施感电荷inducing current 施感电流inductance 电感inductance capacitance coupled circuit 感容耦合电路inductance coil 电感线圈induction 感应induction heating 感应生热inductive circuit 电感电路inductive component 电感性分量inductive reactance 感抗inductor 电感器,感应器inelastic collision 非弹性碰撞inert gas 惰性气体inertia 惯性,惯量inertia balance 惯性秤inertial frame 惯性坐标系,惯性系inertial mass 惯性质量infra-red detector 红外线探测器infra-red radiation 红外辐射infra-red ray 红外线? initial state 初态initial velocity 初速度input 输入input bias current 输入偏压电流input characteristic 输入特性input current 输入电流input offset current 输入补偿电流input power 输入功率input resistance 输入电阻input voltage 输入电压input-output voltage characteristic 输入—输出电压特性instantaneous acceleration 瞬时加速度instantaneous angular velocity 瞬时角速度instantaneous current 瞬时电流instantaneous power 瞬时功率instantaneous speed 瞬时速率instantaneous velocity 瞬时速度instantaneous voltage 瞬时电压insulation 绝缘insulator 绝缘体integrated circuit 集成电路intensity 强度intensity control 强度控制intensity of current 电流强度interaction 相互作用interatomic force 原子间力interatomic potential 原子间势,原子间位interatomic separation 原子间距intercept 截距,截段interconversion 互换interference 干涉interference pattern 干涉图形internal energy 内能internal force 内力internal resistance 内电阻internal work 内功international system of units 国际单位制,公制,十进制interval 间隔intrinsic semiconductor 纯半导体,本征半导体inverse-square law 平方反比定律inverted 倒立的inverter 反相器,倒换器inverting input 反相输入ion 离子ion-pair 离子偶,离子对ionic bond 离子键ionic structure 离子结构ionization 电离作用ionization chamber 电离室ionization current 电离电流ionization energy 电离能ionization potential 电离电势,电离电位ionization voltage 电离电压ionize 电离ionized atom 离子ionized layer 电离层ionizing power 致电离能力,致电离本领ionizing radiation 致电离辐射ionosphere 电离层iris 虹膜,可变光阑iron core 铁心iron filings 铁粉irreversible process 不可逆过程isobar 等压线,同质异序素isobaric expansion 等压膨胀isobaric process 等压过程isochronous oscillation 等时振荡isotherm 等温线? isothermal process 等温过程isotope 同位素isovolumetric process 等容过程J Jaegers method 耶格法jet propulsion 喷气推进jockey 滑动触头joule 焦耳joulemeter 焦耳计junction 连接,接头junction diode 面结型二极管junction transistor 面结型晶体管K Kaleidoscope 万花筒Kelvin 开尔文,开Kelvin temperature scale 开氏温标Kepler?s law 开普勒定律key 电键kilogram 千克kilowatt 千瓦特,千瓦kilowatt-hour 千瓦小时,千瓦时kilowatt-hour meter 电表,千瓦时计kinematics 运动学kinetic energy 动能kinetic friction 动摩擦kinetic theory 分子运动论kinetic theory model 分子运动模型kinetic theory of gases 气体分子运动论Kirchhoff?s law 基尔霍夫定律kit 套件knife-edge 刃形支承,刀刃,刀边kryton 氪Kundt?s tube 孔脱管L lagging 保温套laminar flow 层流laminated 分层的,迭片的laser 激光,激光器laser beam 激光束laser material 激光材料latch 闩锁latent heat 潜热lateral 横向,侧向,旁向lateral inversion 横向倒置lateral magnification 横向放大,横向放大率lateral search coil 横向探察线圈lattice 点阵,晶格lattice spacing 点阵间隔,点阵间距law 定律law of conservation of momentum 动量守恒定律law of reflection 反射定律law of refraction 折射定律lead 导线,铅lead-acid accumulator 铅酸蓄电池leakage current 漏泄电流least distance of distinct vision 最小明视距离Leclanche cell 勒克朗谢电池length 长度lens 透镜,晶体,晶状体lens formula 透镜公式lens holder 透镜座lens marker?s formula 透镜制造者公式Lenz?s law 楞次定律leukaemia 白血病lever 杠杆light 光,光学light beam 光束,光柱light dependent resistor 光敏电阻器light emitting diode 发光二极管light guide 光导light pipe 光导管light ray 光线? light sensitive resistor 光敏电阻器light source 光源lightning 闪电lightning conductor 避雷针limiting angle 极限角limiting friction 极限摩擦line of action 作用线? line of force 力线? line spectrum 线状光谱,线状谱linear air track 线性气垫导航linear electronics 线性电子学linear expansivity 线性膨胀系数,线性胀率linear flow 线流linear momentum 线动量linear voltage amplification 线性电压放大率linearly polarized wave 线偏振波liquefaction 液化liquid 液体liquid crystal 液晶体liquid phase 液相liquid pressure 液体压强liquid-in-glass thermometer 玻管液体温度计Lissajous figure 利萨如图形live 载电,活线,火线Lloyd?s mirror 洛埃镜load 负荷lodestone 磁石logic gate 逻辑门logic level 逻辑电平,逻辑级logic level indicator 逻辑电平指示器,逻辑级指示器logic value 逻辑值long sight 远视long wave 长波longitudinal magnification 纵向放大,纵向放大率longitudinal wave 纵波loop 回路,圈Lorentz force 洛兰兹力Lorentz rotating disc 洛兰兹旋转盘loudness 响度loudspeaker 扬声器low frequency a.c. generator 低频交流发电机low voltage 低电压low voltage immersion heater 低压浸没式电热器lower limit 下限lycopodium powder 石松粉Lyman series 赖曼系,赖曼光谱M Mach number 马赫数machine 机械macroscopic 宏观的magnadur magnet 玛格纳多尔磁铁magnet 磁铁,磁体magnet keeper 永久磁铁衔铁magnetic domain磁畴,磁域magnetic effect 磁效应magnetic field 磁场magnetic field board 磁场板magnetic field intensity 磁场强度magnetic field strength 磁场强度magnetic flux 磁通量magnetic flux density 磁通量密度magnetic flux linkage 磁链,磁键,磁通匝数magnetic force 磁力magnetic hysteresis 磁滞magnetic induction 磁感应强度,磁感应magnetic line of force 磁力线? magnetic material 磁性材料magnetic meridian 磁子午线? magnetic moment 磁矩magnetic north pole 磁北极magnetic permeability 磁导率magnetic pole 磁极magnetic screen 磁屏magnetic shield 磁屏magnetic south pole 磁南极magnetic susceptibility 磁化率magnetic tape 磁带magnetic tape recorder 磁带录音机magnetic torque 磁矩magnetic track 磁迹magnetism 磁学,磁性magnetization 起磁,磁化作用magnetize 磁化magnetizing current 磁化电流magnification 放大,放大率magnified 放大的magnifying glass 放大镜magnifying power 放大率magnitude 量,量值mains frequency 市电频率mains immersion heater 市电浸没式热器mains supply 市电电源majority carriers 多数载流子malleable 展性的,韧性的Maltese cross tube 马尔塔十字管manometer 流体压强计mass 质量mass defect 质量亏损mass number 质量数mass spectrometer 质谱仪mass-energy relation 质能关系matter wave 物质波maximum error 最大误差mean free path 平均自由程measurement 测量mechanical advantage 机械利益mechanical efficiency 机械效率mechanical energy 机械能mechanical oscillation 机械振荡mechanical wave 机械波mechanism 机制,机理medium 介质medium wave 中波Melde?s experiment 迈尔德实验melt 熔化melting point 熔点meniscus 弯液面,弯月面meniscus lens 凹凸透镜,弯月形透镜mercury 汞,水银metal fatigue 金属疲劳fetal grid 金属珊metallic bond 金属键metastable 亚稳态的,介稳态的method of dimensions 维量法,因次法method of no-parallax 无视差法metre 米metre bridge 滑线电桥,米尺电桥metre rule 米尺mica 云母mica capacitor 云母电容器microammeter 微安培计,微安计microelectronics 微电子学micrometer 测微计micrometer screw gauge 螺旋测微计microphone 微音器,传声器microscope 显微镜microscopic 微观的microwave 微波microwave apparatus 微波仪器microwave receiver 微波接收器microwave transmitter 微波发送器milliammeter 毫安计,毫安计Millikan experiment 密立根实验millimetre 毫米minimum deviation 最小偏向minority carrier 少数载流子minute 分,分钟mirage 海市蜃楼,蜃景mirror 镜mirror formula 球面镜公式mobility 动性,迁移率mode 模式model eye 眼球模型model power line 输电线模型moderator 减速剂,缓和剂modulation 调制,调节module 组件modulus of elasticity 弹性模量modulus of rigidity 刚性模量molar gas constant 摩尔气体常数,摩尔气体常量molar heat capacity 摩尔热容量molar volume 摩尔体积mole 摩尔molecular bombardment 分子撞击molecular force 分子力molecular motion 分子运动molecular polarization 分子极化molecular separation 分子间距molecular structure 分子结构molecule 分子moment 矩moment arm 矩臂,力臂moment of couple 力偶矩moment of dipole 偶极矩moment of force 力矩moment of inertia 转动惯量moment of momentum 动量矩momentum 动量monatomic molecule 单原子分子monochromatic light 单色光motion 运动motor 电动机motor rule 电动机法则movable pulley 动滑轮moving-coil galvanometer 动圈式电流计,动圈式检流计moving-coil loudspeaker 动圈式扬声器moving-coil meter 动圈式电表multiflash photography 多闪照相法multimeter 万用电表,多用电表multiple image 复像multiple reflection 多次反射multiplication process 倍增过程multiplier 倍加器multivibrator 多谐振荡器musical instrument 乐器mutation 突变multiple-slit interference 多缝干涉mutual inductance 互感mutual induction 互感应mutually perpendicular 互相垂直的。
实用英语词汇系列:广电术语中英对照_Part3
MIDI Musical Instrument Digital Interface 乐器数字接口MMDS Multi-Channel Microwave Distribution System 微波多点分配系统MODEM Modulator And Demodulator 调制解调器MOL Maximum Output Level 最大输出电平MON Monitor 监视器,监听器。
MPC Multimedia Personal Computer 多媒体个人计算机MPEG Moving Picture Experts Group 活动图像专家组MPO Maximum Power Output 最大功率输出Music Power Output 音乐功率输出MR Memory Read 存储器读出MSC Main service Channel 主业务信道MT Microwave Transmission 微波传输Magnetic Tape 磁带MTS Modem Termination System 调制解调器终接系统MTSC Mobile Telephone Switching Center 移动电话交换中心MTU Maximum Transfer Unit 最大输出单元MTV Music Television 音乐电视MVDS Multimedia Video On Demand System 多媒体视频点播系统MVL Master Video Library 主视频数据库MWS Microwave Station 微波站NAB National Association 0f Broadcasters (美国)全国广播工作者协会NAOD Near Audio-On-Demand 准点播音频NBC National Broadcasting Company (美国)全国广播公司NC Network Computer 网络计算机News Cutter 新闻编辑系统Noise Criterion 噪声尺度NDB Network DataBase 网络数据库NEB Noise Equivalent Bandwidth 噪声等效带宽NHK Nippon Hoso Kyokai 日本广播协会NI Noise Index 噪声指数NII National Information Infrastructure (美国)国家信息基础设施NIM Network Interface Module 网络接口模块N-ISDN Narrow Band-ISDN 窄带综合业务数据网NLE Non-Linear Editing 非线性编辑NLES Non-Linear Editing System 非线性编辑系统NMT Network Management Terminal 网络管理终端NNI Network-Network Interface 网络一网络接口Network-Node Interface 网络节点接口NO Network Operator 网络运营者NT Network Terminal 网络终端NTE Network Termination Equipment 网络终接设备NTSC National Television System Committee (美国)国家电视系统(制式)委员会NVOD Near Video On Demand 准视频点播OAB One-to-All Broadcast 单向广播OAN Optical Access Network 光纤接入网OAW On-Air Workstation 播出工作站OB Outside Broadcast 实况广(转)播ODN Optical Distribution Node 光分配节点OFC Optical Fiber Cable 光缆ONU Optical Network Unit 光网络装置OO Object Oriented 面向对象OOP Object-Oriented Programming 面向对象编程OS Operation System 操作系统OSS Optimal Stereo Signal 最佳立体声信号OTDM Optical Time Division Multiplexing 光时分复用OTT Optical Transmission Technology 光传输技术OWA One-Way Addressable 单向寻址PA Power Amplifier 功率放大器PAM Pulse Amplitude Modulation 脉冲幅度调制PAS Public Address System 扩声系统PBX Private Branch Exchange 专用小交换机PC Perceptual Coding 感知编码Picture Coding 图像编码PCI Peripheral Component Interconnect 外围部件互连(总线)pixel 像素PCL Play Control List 播放控制表PCM Pulse Code Modulation 脉码调制PDA Pulse Distribution Amplifier 脉冲分配放大器PDH Pseudo-synchronous Digital Hierarchy 准同步数字系列PDN Public Data Network 公用数据网PE Phase Encoding 相位编码PFM Pulse Frequency Modulation 脉冲频率调制PIO Parallel Input Output 并行输入输出PL Private Lines 专用线路PM Phase Modulation 相位调制P-PSN Public Packet Switched Network 公共包交换网络PS Power Supply 电源Packet Switch 数据包交换机Program Stream 节目码流PSC Program Switching Center 节目切换中心PSE Packet-Switched Exchanger 分组交换机PSN Public Switching Network 公共交换网PSTN Public Switching Telecommunication Network 公共交换电信网PTV Pay Television 付费电视Projection Television 投影电视PW Pulse Width 脉宽QAM Quadrature Amplitude Modulation 正交调幅QCIF Quarter Common Intermediate Format 四分之一通用中间格式QOS Quality-of-Service 业务质量QSIF Quarter Standard Intermediate Format 四分之一标准中间格式RAID Redundant Array of Inexpensive Disc 廉价磁盘冗余阵列RAM RBDS Random Access Memory 随机存取存储器RBW Radio Broadcast Data System 无线广播数据系统RCC Reference Bandwidth 参考带宽RDS Route Control Center 路由控制中心RF Radio Data System 广播数据系统RFA Radio Frequency 射频RIU Raman Fiber Amplifier 拉曼光纤放大器RMS Remote Interface Unit 远端用户单元ROM Root Mean Square 均方根值,有效值RP Read-only Memory 只读存储器Radio Paging 广播寻呼RT Record Pointer 记录指针RTA Radio Text 广播文本RTCA Real Time Analyzer 实时分析(仪),频谱分析(仪)RTS Real Time Control Area 实时控制区Real Time Simulator 实时模拟RTV Real Time System 实时系统RVC Real Time Video 实时视频RVS Remote Video Conference 远程视频会议RZ Remote Video Surveillance 遥控视频监视Return to Zero 归零(码),复零SA Source Address 源地址SAN Small Area Network 小区网络Storage Area Network 存储区域网络SARFT State Administration of Radio Film and TV (中国)国家广播电影电视总局SAW Surface Acoustic Wave 声表面波SAWF Surface Acoustic Wave Filter 声表面波滤波器S-CDMA Synchronous-Code Division Multiple Access 同步码分多址方式SCE Single Channel Encoder 单信道编码器SCMS Serial Copy Management System 成套复制管理系统SCN Space Cable Network (通信)卫星CATV节目传送网络SDB Switched Digital Data Interconnect 交换数字广播SDH Synchronous Digital Hierarchy 同步数字系列SDI Serial Digital Interface 串行数字接口Standard Data Interface 标准数据接口SDMA Space Division Multiple Access 空分多址SDN Synchronous Digital Transmission Network 同步数字传输网络SDTV Standard Definition Television 标准清晰度电视SE Sound Effect 音响效果SEA Sound Effect Amplifier 音响效果放大器Special Effect Amplifier 特技放大器SEG Special Effect Generator 特技发生器SI Service Information (数字电视)业务信息SIO Serial Input /Output 串行输入/输出SLA Semi-conductor Laser Amplifier 半导体激光放大器SMF Single Mode Fiber 单模光纤SMS Subscriber Management System 用户管理系统SNG Satellite News Gathering 卫星新闻采集系统SNR Signal to Noise Ratio 信噪比SONET Synchronous Optical Network 同步光纤网SPG Sync-Pulse Generator 同步脉冲发生器SPI Synchronous Parallel Interface 同步并行接口SPOT Satellite Positioning and Tracking 卫星定位与跟踪SS Small Scale Integrated Circuit 小规模集成电路ST Studio 演播室STC Satellite Tracking Center 卫星跟踪中心STM Synchronous Transfer Mode 同步转移模式STS Satellite Transmission System 卫星传输系统SW Short Wave 短波TA Terminal Adapter 终端适配器Traffic Announcement 交通广播Trunk Amplifier 干线放大器TAD Trunk Adapter 干线适配器TBC Time Base Corrector 时基校正器TC Temperature Coefficient 温度系数Time Code 时间码Transfer Control 传输控制TCC Television Control Center 电视控制中心TDA Trunk Distribution Amplifier 干线分配放大器TD-CDMA Time Division-Code Division Multiple Access 时分-码分多址TDM Time Division Multiplexing 时分复用THD Total Harmonic Distortion 总谐波失真TOS Tape Operating System 磁带操作系统TP Test Point 测试点TPS Tracking Pilot Signal 跟踪导频信号TS Transport Stream 传送码流TSC Television Standard Converter 电视制式转换器TVM Television Monitor 电视监视器TVS Television Studio 电视演播室TVT television translator 电视转发器(差转机)UA User Agent 用户代理UDP User Data Protocol 用户数据协议UDTV Ultra High Definition TV 特高清晰度电视UHF Ultra-High Frequency 特高频ULF Ultra-Low Frequency 超低频UNI User Network Interface 用户网接口UP User Plane 用户平面UPI User Premises Interface 用户室内接口USS United States Standard 美国标准USSB United States Satellite Broadcasting 美国卫星广播(公司)UV Ultra Violet 紫外(线)UW Ultrasonic Wave 超声波V AM Video Access Module 视频接入模块V AN value Added Network 增值网络V AS value Added Service 增值业务VB Video Animation System 视频动画系统Virtual Bench 虚拟装置VCA V oltage Controlled Amplifier 压控放大器VCD Variable Capacitance Diode 变容二极管Video CD 数字激光视盘VCP Video Cassette Player 盒式放像机VCR Video Cassette Recorder 盒式录像机VD Vertical Drive 场驱动VDA Video Distribution Amplifier 视分放大器VDT Video Display Terminal 视频显示终端VE Video Engineer 视频工程师VEQ Video Equalizer 视频均衡器VES Virtual Editing System 虚拟编辑设备VESA Video Electronics Standard Association (美国)视频电子标准协会VF Video Frequency 视频VG Video Graphics 视频图形VGA Video Graphics Array 视频图形阵列(显示卡)VHF Very High Frequency 甚高频VHS Video Home System 家用视频系统VIP Visual Image Processor 视频图像处理器VITC Vertical Interval Time Code 场消隐期时间码VITS Vertical Interval Test Signal 场消隐期测试信号VLC Variable Length Coder 可变长度编码器VLSI Very Large Scale Integrated Circuit 超大规模集成电路VOD Video-On-Demand 视频点播。
001 (ISSCC tutorial)Noise Analysis in Switched-Capacitor Circuits
© 2011 IEEE
IEEE International Solid-State Circuits Conference
© 2011 IEEE
Thermal Noise Power
• Nyquist showed that
PSD ( f ) = 4kT
• The total average noise power of a resistor in a certain frequency band is therefore
– Examples: Audio systems, wireless transceivers, sensor interfaces
• Electronic noise directly trades with power dissipation and speed • Electronic noise is a major concern in modern technologies with reduced VDD
• The noise of a MOSFET operating in the triode region is approximately equal to that of a resistor • In the saturation region, the thermal noise can be modeled using a drain current source with power spectral density
• We can model the noise using an equivalent voltage or current generator
2 vn
= Pn ⋅ R = 4kT ⋅ R ⋅ Δf
SQUID based resistance bridge for shot noise measurement on low impedance samples
arXiv:co n d -m a t /9901090v 2 [c o n d -m a t .m e s -h a l l ] 10 M a r 1999SQUID based resistance bridge for shot noise measurement on low impedance samplesX.Jehl,P.Payet-Burin,C.Baraduc,R.Calemczuk and M.Sanquer.DSM-DRFMC-SPSMS,CEA-Grenoble,38054Grenoble cedex 9,France.We present a resistance bridge which uses a Superconducting Quantum Interference Device (SQUID)to measure the shot noise in low impedance samples (<1Ω).The experimental requirements are high DC bias currents (<∼10mA ),in order to obtain sufficiently high bias voltages,together with high AC sensitivity (≈pA/√Hz )our system is dominated by the thermal noise of the resistorscomposing the bridge (≈24pA/√Hz range,so a verygood resolution is required.A classical method of apply-ing a bias voltage at low temperature consists in a refer-ence resistance of value much smaller than R x placed in parallel with the latter and thus creating a low impedance voltage source [10].This scheme is not applicable in our case as most of the current flows through the small resis-tance and the 10mA required in the sample would impose excessively high total currents not compatible with low noise sources.We have designed a new experiment based on a resistance bridge to obtain a high sensitivity while supplying high dc bias currents.The low temperature part of the circuit consists in the resistance bridge and the SQUID in a calorimeter (Figure 1).It is composed with a reference resistance R ref and the sample R x both connected with 4wires.The sample is connected with short gold wires which give an addi-tionnal resistance r much smaller than R ref and R x .The input coil of the SQUID is connected in series with the voltage leads by means of superconducting wires.The aim is to apply a high bias current that is not measured by the SQUID,so that the SQUID electronics can be set to a high sensitivity in order to detect small currents.configuration.The noise current I nxof the sample is related to the output measured voltage noise by equation[3].At4.2K, R ref=0.177Ω,r=4mΩand0.25Ω<R x<0.3Ω.The currentsources i nref ,i nxand i nrare the equivalent noise current gen-erators for R ref,R x and r.The noise current generator i nsetup represents the total noise of the experimental setup expressed as a current in the input coil.It is mainly due to the Voltage Controlled Current Source(VCCS)and the SQUID electronics.A DC current I ref injected through R ref sets the volt-age V bias=R ref I ref.The bridge is balanced with a DC feedback current I x injected in R x so that i squid=0. The equation which rules the DC balance is:V bias=R ref I ref=R x I x(2)As i squid is then null in the DC limit,the SQUID can measure with a high gain the AC variations of i squid arising from the noise of the resistances composing thebridge.The noise voltage V nout measured by the spec-trum analyzer at the output of the SQUID electronics is:V2nout =1ΣR 2 (R ref i n ref)2+(ri n r)2+(R dynxi nx)2 +i n setup2 (3)whereΣR=r+R ref+R dynxand G is the overall gain of the SQUID electronics G=i squid∂I I x.The second term in equation[3]is the sum of the noise contributions of the three resistances and the non fundamental noise arising from the experimental setup expressed as a current inthe input coil and noted i nsetup .This equation is simplyderived from the expression of i squid using current divi-sion of each equivalent noise current in its own source resistance and the rest of the circuit(see Figure[1]).rIrefVoutloop. The low noise Voltage Controlled Current Source(VCCS)is driven by the squid electronics through a regulation program.It provides the DC current I x which counterbalances I ref so that V bias is ap-plied on the sample R x.The wiring and the temperature control are very sim-ilar to those used in reference[11].The SQUID and the reference resistance(made of constantan,R ref=0.177Ω) are kept at helium temperature by copper rods ending in the helium bath.The sample holder allows very precise temperature control.Special attention is paid to RFfil-tering to reduce the noise on the SQUID.We also use magnetic shielding with superconducting materials.The twisted superconducting wires connected to the SQUID are shielded with superconducting tinned tubes.Ther-malization pads and reference resistance are placed in soldered lead box.Finally the whole calorimeter is sur-rounded by two layers of magnetic shielding tape[12] and a thick soldered lead foil.Flux jumps are totally suppressed and the SQUID can be operated with DC currents.III.FEEDBACK SCHEMESWe use a Quantum Design[13]DC-SQUID and an elec-tronics designed and built in our laboratory.It works as a Flux Locked Loop(FLL)system with modulation at 500kHz.The FLL operation is realized on the modula-tion/feedback coil.A practical experiment includes two different stages.First the desired bias current is reached. The second stage is devoted to the noise measurement with the spectrum analyzer(SR785).During thefirst stage the current I ref delivered by a floating battery is increased manually and the feedback current I x is fed through R x in order to satisfy equa-tion2.Figure2shows this”DC feedback”loop.At this point the SQUID electronics has a low gain correspond-ing to≈100Φ0/V i.e.G≈20µA/V.The dynamics of the system are then substantial enough to inject rel-atively high currents.A Labview program running on a PC regulates V out to keep it null while I ref is manually in-creased.First a voltmeter(Keithley2000)reads V out;theprogram then drives a voltage source(HP3245A)which output isfiltered by afirst order RC low passfilter with a long time constant.This DC feedback voltagefinally drives a purposely designed low noise Voltage Controlled Current Source(VCCS).The transconductance of this VCCS is1mA/V.Its output feedback current I x is rein-jected through R x.The high value of the transconduc-tance makes it necessary tofilter dramatically the noises generated by the electronics before the VCCS.Indeed in-put voltage noises of a few nV/√Hz at the output of the VCCS.That is why a RC low passfil-ter with4.7s time constant is inserted before the VCCS. Therefore the only white noise generated by the DC feed-back loop is the intrinsic noise of the VCCS.The VCCS is supplied with two lead batteries(±12V)and is placed with the other lead battery providing I ref in aµ−metal tube closed at one end.This results in spectra showing strictly no peaks(Fig.5)and helps to obtain a very high stability of the SQUID electronics.When the desired bias current is reached and the bridge is balanced according to equation2,i squid becomes zero in the DC limit,then the gain of the SQUID electronics can be increased continuously to1Φ0/V,i.e.G=184nA/V. At this stage corresponding to Figure1the FFT ana-lyzer can measure the noise spectrum of interest.The FFT is typically computed in the[16Hz−12.8kHz]range with800FFT lines.The dispersion on the spectra is ≈0.4pA/√Hz)is due to the VCCS and the SQUID system.The low frequency excess noise is due to the amplifiers composing the VCCS.Equation3gives the total output noise which is mea-sured.At zero bias current it is the sum of the thermal noise generated by the resistance bridge and the equiva-lent noise i2nsetupof the whole electronics in the input coil .As there is no shot noise at zero bias,the contribution from the three resistances is simply the thermal noise of each,given for a resistance of value R at temperature T by the Johnson-Nyquist relation i2n=4k B T/R.There-fore i nsetupcan be obtained from the raw datas at zero bias using equation3:i nsetup2=(GV nout)2−4k BHz.This noise comes from the VCCS and the SQUID setup.It is in very good agree-ment with noise simulations of the VCCS using SPICE modelling and with measurements of the SQUID system noise.The VCCS is composed with two ultra low noise(LT1028 and LT1128)operationnal amplifiers and4matched re-sistances.A noise level of4.5pA/√Hz (i.e.13µΦ0/√the Johnson Nyquist relation(Figure 4).a0.22Ωagree-not0.25Ωsum8kHz it√[1]M.J.M.De Jong and C.W.J.Beenakker,in MesoscopicElectron Transport,p.225-258edited by L.L.Sohn et al.,Kluwer Academic Publishers,1997.[2]M.Reznikov,R.De Picciotto,M.Heiblum,D.C.Glat-tli,A.Kumar and L.Saminadayar,Superlattices and Mi-crostructures,23,3/4,901(1998).[3]Th.Martin,in Coulomb and Interference Effects in SmallElectronic Structures,Proceedings of the XXIXth Ren-contres de Moriond,edited by D.C.Glattli and M.San-quer(Editions Frontieres,France,1994).[4]A.Kumar,L.Saminadayar,D.C.Glattli,Y.Jin and B.Etienne,Phys.Rev.Lett.76,15,2778(1996).[5]M.J.M.De Jong and C.W.J.Beenakker,Phys.Rev.B49,22,16070(1994).[6]Th.Martin,Phys.Lett.A,220,137(1996).[7]D.C.Glattli,P.Jacques,A.Kumar,P.Pari and L.Sam-inadayar,J.Appl.Phys.81,11,7350(1997).[8]T.Hoss,C.Strunk,T.Nussbaumer,R.Huber,U.Stauferand C.Sch¨o nenberger,Cond.Mat/9901129.[9]P.Dieleman,H.G.Bukkems,T.M.Klapwijk,M.Schickeand K.H.Gundlach,Phys.Rev.Lett.79,18,3486(1997).[10]A.H.Steinbach,J.M.Martinis and M.H.Devoret,Phys.Rev.Lett.76,20,3806(1996).[11]X.Jehl,P.Payet-Burin,D.Braithwaite and R.Calem-czuk,Jour.of Low Temp.Phys.,113,31(1998).[12]Vitrovac tape,Vacuumschmelze gmbh,postfach2253,D-63412Hanau.[13]Quantum Design(model50),11578Sorrento Valley Road,suite30,San Diego,California,USA92121-1311.[14]X.Jehl,C.Baraduc,R.Calemczuk and M.Sanquer,tobe published.。
Narrowband stationary noise characterization and modelling for power line communication
Narrowband Stationary Noise Characterization and Modelling for Power Line CommunicationHéla Gassara, Fatma Rouissi, Adel GhazelGRESCOM LabEcole Supérieure des Communications (Sup’Com), University of CarthageTunis, Tunisiagassara.hela@supcom.rnu.tn, fatma.rouissi@supcom.rnu.tn, adel.ghazel@supcom.rnu.tnAbstract—This paper presents an appropriate model for the narrowband stationary noise observed on the Power Line Communication (PLC) channels. Extensive measurements were carried out in the indoor low-voltage (LV) power line network in order to investigate the stationary noise characterization and modelling in the low frequency range. A parametric model is proposed for the noise power spectral density (PSD) in the CENELEC/FCC/ARIB bands and the model parameters are statistically studied. This statistical model is useful for generating stationary noises at low frequencies in order to assess the performance of communication chains and to improve the designof narrowband PLC systems.Keywords-Power Line Communication; narrowband stationary noise; background noise; narrowband interferences; characterization; modelling; statistical distributionsI.I NTRODUCTIONThe Power Line Communication (PLC) is a promising technology for data transmission over the omnipresent electric network, providing low installation and maintenance cost with the possibility of reliable communication services deployment.In the last decades, broadband systems operating in high frequency bands (from 2 to 30 MHz) have emerged offering data rates up to 200 Mbps for home area networks and high- speed internet access [1]-[3]. In the last few years, narrowbandor low frequency PLC systems have appeared operating eitherin the CENELEC bands (3-148.5 kHz) or in the FCC/ARIB bands (up to ~500 kHz) and delivering up to 500 kbps. Industry interest has grown around the ‘high data rate’ narrowband PLC for Smart Grid applications such as automatic meter reading (AMR), advanced metering infrastructure (AMI), demand response (DR) and in-home environment [4].However, the PLC channel suffers from several kinds of disturbances, especially the stationary noise and the impulsive noise. The impulsive noise is usually defined as a set of single pulses or bursts with short durations from microseconds to milliseconds. Nevertheless, the stationary noise varies slowly over time from seconds to even hours. It is basically regarded as the superposition of background noise and narrowband interferences [1]. The stationary noise is characterized by a low power spectral density (PSD) in high frequencies, but it considerably increases toward lower frequencies especially below 500 kHz. So, it can damage the data transmission for narrowband PLC systems. Different models have been defined, in literature, for the stationary noise especially the background noise, in the high frequency range above 1 MHz [5]-[9]. But a lack of studies is observed for the characterization and the modelling of the stationary noise in the low frequency range below 500 kHz. The almost only model of narrowband background PSD noise is proposed for the outdoor LV power line network as a decreasing function of frequency in the band of interest from 9 to 95 kHz [10].In this paper, the authors propose a suitable parametric model for the stationary noise present in the indoor LV PLC channels in the frequency range from 9 to 500 kHz, based on extensive measurements. This model is characterized by a limited number of parameters which have been considered as random variables approximated by their corresponding statistical distributions.The paper is organized as follows. In section II, the experimental setup used for measuring the stationary noise is presented, as well as the different measurement configurations. Section III deals with the characterization of the power line stationary noise at frequencies up to 500 kHz. Section IV outlines the modelling and the statistical study of the model parameters for the background noise and the narrowband interferences. Then, we present the proposed narrowband stationary noise model with example of generated noise in the low frequency band.II.S TATIONARY N OISE M EASUREMENT C AMPAIGNA.Stationary Noise Measurement SetupThe stationary noise present on the electrical network was measured using an Agilent E4404B spectrum analyzer via a coupling circuit plugged in the wall outlet. Measurements were undertaken in the LV indoor power lines into the frequency band between 9 and 500 kHz using the measurement setup illustrated in Fig. 1.The coupling circuit enables to connect the measurement instrument to the grid which has a mains voltage of 220 V. It is a second-order pass band filter equipped with appropriate protective circuitry and compliant with electromagnetic compatibility (EMC) immunity requirements [11]-[13]. The2013 13th International Symposium on Communications and Information Technologies (ISCIT)coupling circuit effect was properly compensated from the collected noise measurements.Figure 1. Experimental setup used for stationary noise measurementsB. Stationary Noise Measurements A total of 172 measurements was carried out inside several buildings of an academic campus. These experiments wereundertaken in the CENELEC/FCC/ARIB bands for a multitudeof electrical outlets, at diverse times of the day and withdifferent types of lamps and various loads connected to the grid(motors, home appliances, PCs, air-conditioners, heaters, electrical devices...).Stationary noise was measured using a spectrum analyzer configured as shown in Table I. Measurements were taken with a resolution bandwidth of 3 kHz, and a sweeping time of 81.91 ms on the total band between 9 and 500 kHz. The total numberof points for an observation window is equal to 8192 points.TABLE I. S TATIONARY N OISE M EASUREMENTS C ONFIGURATION ConfigurationFrequency band9 kHz – 500 kHz Resolution bandwidth 3 kHz Points number 8192 Sweeping time 81.91 ms Center frequency254.5 kHzIII. S TATIONARY N OISE C HARACTERIZATION A TF REQUENCIES U P TO 500 K H Z Fig. 2 represents an example of the measured stationary noise power spectral density (PSD) in frequency domain. It was found to be a decreasing function of frequency with the presence of narrowband disturbances. A background noise is smoothly distributed at a level decreasing from -90 to -125 dBm/Hz at frequencies from 9 to 500 kHz. Narrowband interferences are observed at different individual frequencies with levels ranging approximately from -70 to -120 dBm/Hz and random bandwiths. These narrowband disturbances are particularly caused by switched power supplies. In addition, ingress of long-wave signals from broadcasting radio stations can be the source of narrowband disturbances which are radiated into the power line network.Frequency (kHz)P o w e r (d B m /H z )Figure 2. Power spectral density of an example of measured stationary noise It is then clear that the narrowband stationary noise present in the indoor LV power line network is a colored noise with ahighly frequency variant spectrum. It significantly increases toward the very low frequencies and varies slowly over time.The stationary noise is regarded as the superposition of the background noise and the narrowband interferences, which is the basis of the following modelling. For the frequency band from 1 to 100 MHz, according to reference [9], the backgound noise exists at a level between -155 and -145 dBm/Hz which is 15 to 25 dB above the thermalnoise floor of about -170 dBm/Hz. In addition, radio stationingress noise can be 30 to 40 dB above the background noise with narrow bandwidths and high intensities varying depending on time of the day. It is then clear that the stationary noise is much higher in low frequencies which can make severeproblems for narrowband PLC communication systems.IV. N ARROWBAND S TATIONARY N OISE M ODELLING A. Background Noise ModelThe background noise PSD exhibits a decreasing shape as frequency increases, and it can be modelled in dBm/Hz as a power function of frequency f .c aff S bBN nn +=)( (1)where a , b and c are constants depending on measurement conditions, such that 0>a , 0<b and 0<c . These constant values can be obtained by curve fitting.Fig. 3 illustrates the corresponding fitting (bold curve) of the measured background noise example with 2659=a , 43.0−=b and 5.133−=c . The curve trend proves to be in agreement with the measurement result.Frequency (kHz)P o w e r (d B m /H z )Figure 3. Background noise modelBased on the undertaken noise measurement campaign, we have investigated the statistical behaviour of the three model parameters.Starting with the parameter a , it follows a lognormal distribution with a mean a μequal to 12.95 and a standard deviation a σ equal to 4.42. Fig. 4 shows the cumulative distribution function (CDF) of the parameter a with a test probability value (p-value) of 0.98 when applying the Kolmogorov-Smirnov test to verify that the parameter a and the lognormal fit data sets come from the same distribution.10101010101010Parameter aC u m u l a t i v eD i s t r i b u t i o n F u n c t i o nFigure 4. Cumulative distribution function of parameter aThe absolute value of parameter b is well fitted by a normal distribution with a mean b μ and a standard deviationb σ equal to 0.94 and 0.49, respectively. The CDFs of theparameter b absolute value and the corresponding normal fitting are illustrated in Fig. 5 with a p-value of 0.98 when verifying that the two data sets come from the same distribution by the Kolmogorov-Smirnov test application.101010101010Parameter |b|C u m u l a t i v eD i s t r i b u t i o n F u n c t i o nFigure 5. Cumulative distribution function of absolute value of parameter bThe absolute value of parameter c is also approximated by normal distributions at three different intervals with means and standard deviations shown in Table II. We report in Fig. 6 the CDFs of the absolute value of c determined from measuremets and their corresponding normal fittings with p-values higher than 0.85 when applying the two-sample Kolmogorov-Smirnov test.TABLE II.P ARAMETERS VALUES OF N ORMAL D ISTRIBUTIONF UNCTIONS OF c101010104Parameter |c|C u m u l a t i v eD i s t r i b u t i o n F u n c t i o nFigure 6. Cumulative distribution functions of absolute value of parameter cB. Narrowband Interferences ModelThe narrowband interferences PSD superposed to the background noise PSD can be modelled in dBm/Hz by a summation of parametric Gaussian functions as explained by the following expression.²2)²(exp()(1i i Ni i NInn f f a f S σ−−=∑= (2)where N is the number of narrowband interferences, i a and i f are respectively the amplitude and the center frequency of each interference and i σrepresents the Gaussian function standard deviation which controls the bandwidth of the narrowband interference.The extraction of interferences parameters is based on the difference between the measured stationary noise PSD and the approximated background noise PSD using expression (1), then using curve fitting to determine the model parameters. Table III represents the amplitude, the center frequency and the standard deviation of the detected narrowband interferences particularly at frequencies from 9 to 100 kHz, for the measurement example of Fig. 2.TABLE III. P ARAMETERS OF N ARROWBAND I NTERFERENCES A T F REQUENCIES B ELOW 100 K H ZAmplitude i a (dBm/Hz) Center frequency i f(kHz) Standard deviation i σ(kHz)37.331=a 02.251=f 37.31=σ 67.292=a 30.342=f 46.32=σ 05.103=a 64.663=f 47.13=σ 38.164=a25.884=f79.04=σWe have also investigated the statistical distributions of themodel parameters based on the collected indoor noise measurements. It was shown that the number N of narrowband interferences is well described by a Poisson distribution with parameter N λ equal to 23.5. The CDF of this parameter and the corresponding Poisson fitting are illustrated in Fig. 7 with a two-sample Kolmogorov-Smirnov test p-valueof 0.99.We report in Fig. 8 the CDF of the narrowbandinterferences amplitude i a which follows a Gamma distribution with shape parameter ai κ equal to 2.79 and scale parameter ai θ equal to 5.34. The test of Kolmogorov-Smirnov shows a high p-value of 0.90 which confirms the goodness of fit.Parameter NC u m u l a t i v eD i s t r i b u t i o n F u n c t i o nFigure 7. Cumulative distribution function of narrowband interferencesnumber N per measurment windowParameter a i (dBm/Hz)C u m u l a t i v eD i s t r i b u t i o n F u n c t i o nFigure 8. Cumulative distribution function of narrowband interferencesamplitude i aIn Fig. 9, we show the CDFs of the narrowband interferences center frequency i f which is normally distributed at the different studied intervals with charcateristic values illustrated in Table IV. TABLE IV. PARAMETERS VALUES OF N ORMAL D ISTRIBUTION F UNCTIONS OF i f Mean (kHz) Standard deviation(kHz)Probability of occurrencekHz f kHz i 1009≤≤90.551=f μ 11.221=f σ 27.01=f p kHz f kHz i 200100≤< 1442=f μ 89.242=f σ 20.02=f p kHz f kHz i 300200≤< 61.2583=f μ 75.293=f σ 21.03=f p kHz f kHz i 400300≤< 74.3464=f μ 81.264=f σ 18.04=f p kHz f kHz i 500400≤<15.4535=f μ18.305=f σ14.05=f pParameter f i (kHz)C u m u l a t i v eD i s t r i b u t i o n F u n c t i o nFigure 9. Cumulative distribution functions of narrowband interferencescenter frequency i fThe standard deviation i σ controlling the narrowband interferences bandwidth is approximated by a Gammadistribution with shape parameter i σκ and scale parameter i σθequal to 1.98 and 937.63, respectively. Fig. 10 represents theCDF of i σvalues deduced from measurements and the corresponding Gamma distribution CDF with p-value of 0.96 when applying the Kolmogorov-Smirnov test.Parameter σi (kHz)C u m u l a t i v eD i s t r i b u t i o n F u n c t i o nFigure 10. Cumulative distribution function of narrowband interferencesstandard deviation i σC. Stationary Noise ModelAs the background noise PSD and the narrowband interferences PSD are modelled in the low frequency range, we propose to model the narrowband stationary noise as a superposition of the power function defined in expression (1) and the Gaussian functions sum explained in expression (2).)²2)²(exp()()()(1i i Ni i bNInn BN nn SN nn f f a c aff S f S f S σ−−++=+=∑=(3)Frequency (kHz)P o w e r (d B m /H z )Figure 11. Stationary noise modelFig. 11 shows in bold curve the stationary noise model following expression (3) and corresponding to themeasurement example. It is shown that the proposed model isin good agreement with the measured PSD. The generation of power lines stationary noises at low frequencies becomes then allowed by exploiting the parametric model of expression (3) and the statistical distributions of parameters studied above. We report in Fig. 12an example of generated stationary noise at frequencies up to500 kHz. We can see the decreasing trend of the background noise with increasing frequencies and the presence of narrowband interferences with higher levels in the very lowfrequency range.Frequency (kHz)P o w e r (d B m /H z )Figure 12. Example of generated stationary noiseV.C ONCLUSIONThe paper contribution is the characterization and the modelling of the stationary noise measured in the indoor LV power line network at frequencies up to 500 kHz. The background noise PSD is described by a power function whose parameter a is lognormally distributed and parameters b and c are normally distributed in absolute value. The narrowband interferences PSD is considered as a summation of Gaussian functions where the interferences number has a Poisson distribution, the interferences amplitude and standard deviation are Gamma distributed and the interferences center frequency is well fitted by normal distributions at different intervals. The narrowband stationary noise PSD model which is considered as the sum of these two parametric models is then deduced with a limited set of parameters characterized by their statistical distributions.It becomes then promising to generate stationary noises at the CENELEC/FCC/ARIB low frequency bands. This noise generation is helpful to assess the performance of communication chains and to design efficient and reliable narrowband PLC systems. The modelling of impulsive noise is also an important task which is the goal of future works.R EFERENCES[1]K. Dostert, “Power Line Communications,” Upper Saddle River, NJ:Prentice Hall, 2001.[2] A. Ghazel, F. Rouissi, “Efficient low-cost DSP-based hardwarearchitecture for Power Line Communications,” IEEE Intern. Symp. on Power Line Commun. and Its Appl. (ISPLC), Malmö, Sweden, Apr.2001. [3] F. Rouissi, A. Ghazel, F. Tlili, “Optimised fully programmable DSP-based broadband Power Line Communication modem,” IEEE Intern.Symp. on Power Line Commun. and Its Appl. (ISPLC), Zaragoza, Spain, Mar. 2004.[4]S. Galli, A. Scaglione and Z. Wang, “Power Line Communications andthe Smart Grid,” IEEE Intern. Conf. on Smart Grid Commun.(SmartGridComm), Gaithersburg, MD, Oct. 2010.[5]H. Philips, “Performance measurements of powerline channels at highfrequencies,” IEEE Intern. Symp. on Power Line Commun. and Its Appl.(ISPLC), Tokyo, Japan, 1998.[6]T. Esmailian, P. G. Gulak and F. R. Kschischang, “A discrete multitonepower line communications system,” IEEE Intern. Conf. on Acous., Spe.and Sign. Proces., Istanbul, Turkey, Jun. 2000.[7] D. Benyoucef, “A new statistical model of the noise power densityspectrum for power line communication,” IEEE Intern. Symp. on Power Line Commun. and Its Appl. (ISPLC), Vancouver, Canada, 2003.[8]H. Meng, Y. Guan and S. Chen, “Modeling and analysis of noise effectson broadband power-line communications,” IEEE Trans. On Pow. Del.vol. 20, no. 2, pp. 630-637, Apr. 2005.[9] F.P.7 Theme 3 ICT-213311 OMEGA, ‘PLC Channel Characterizationand Modelling’, Deliverable 3.2, Dec. 2008.[10]O. G. Hooijen, “A channel model for the residential power circuit usedas a digital communications medium,” IEEE Trans. Electromagn.Comp., vol. 40, no. 4, Nov. 1998.[11]H. Gassara, M. C. Bali, F. Duval, F. Rouissi and A. Ghazel, “Couplinginterface circuit design for experimental characterization of the narrowband power line communication channel,” IEEE Intern. Symp. on Electromagn. Comp. (EMC), Pittsburgh, USA, Aug. 2012.[12]H. Gassara, F. Rouissi, F. Duval and A. Ghazel, “Conducted immunityrequirements tests for power line communication coupling interface circuit,” IEEE Intern. Conf. on Electr. Engin. and Soft. Appl. (ICEESA), Hammamet, Tunisia, Mar. 2013.[13]H. Gassara, F. Rouissi and A. Ghazel, “On the characterization of theindoor low-voltage PLC channel at frequencies up to 500 kHz,” IEEE Intern. Symp. on Power Line Commun. and Its Appl. (ISPLC), Johannesburg, South Africa, Mar. 2013.。
数字信号处理奈奎斯特简介
1
AT&T公司工作,后转入贝尔电话实验室工作。
作为贝尔电话实验室的工程师,在热噪声(Johnson-
Nyquist noise)和反馈放大器稳定性方面做出了很大的贡献。他早期
的理论性工作是关于确定传输信息的需满足的带宽要求,在《贝尔系
统技术》期刊上发表了《影响电报速度传输速度的因素》文章,为后
来香农的信息论奠定了基础。
1927年,奈奎斯特确定了如果对某一带宽的有限时间连续信号
(模拟信号)进行抽样,且在抽样率达到一定数值为不使原波形产生“半波损失”,
采样率至少应为信号最高频率的两倍,这就是著名的奈奎斯特采样定
理。奈奎斯特1928年发表了《电报传输理论的一定论题》。
1954年,他从贝尔实验室退休。
奈奎斯特与奈奎斯特采样定理
奈奎斯特(Harry Nyquist(1889-1976)) 奈奎
斯特,美国物理学家,1889年出生在瑞典。
1976年在德克萨斯逝世。奈奎斯特对信息论做出
了重大的贡献。奈奎斯特1907年移民到美国并于
1912年进入北达克塔大学学习。1917年在耶鲁
大学获得物理学博士学位。1917年~1934年在
适用于轴承故障诊断的数据增强算法
2021577轴承故障诊断在制造业的故障预测和健康管理中起着十分重要的作用。
除了传统的故障诊断方法以外,学者们将改进过的机器学习[1-4]和深度学习算法[5-8]应用于故障诊断领域,其诊断效率与准确率得到了较大的提高。
在大部分应用中,这些算法有两个共同点[9]:第一、根据经验风险最小化原则(Empirical Risk Minimization,ERM)[10]训练故障诊断模型。
第二、使用此原则训练的诊断模型的性能优劣主要取决于所使用的训练样本的数量和质量。
但在工业应用中,数据集中正负样本的比例不平衡:故障数据包含着区分类别的有用信息,但是所占比例较少。
此外由于机器的载荷、转轴转速等工况的不同,所记录的数据并不服从ERM原则中的独立同分布假设。
这两点使得ERM原则不适用于训练工业实际场景中的故障诊断模型,并且文献[11]表明使用ERM原则训练的模型无法拥有较好的泛化性能。
数据增强算法是邻域风险最小化原则[12](Vicinal Risk Minimization,VRM)的实现方式之一,能够缓解ERM原则所带来的问题。
在VRM中通过先验知识来构建每个训练样本周围的领域区域,然后可从训练样本的领域分布中获取额外的模拟样本来扩充数据集。
例如,对于图像分类来说,通过将一个图片的领域定义为其经过平移、旋转、翻转、裁剪等变化之后的集合。
但与机器学习/深度学习中的数据不同,故障诊断中的数据(例如轴承故障诊断中的振动信号)具有明显的物理意义和机理特征,适用于机器视觉的数据增强方法可能导致物理意义的改变。
因此,本文从信号处理和信号分析的角度出发,设计了一种适用于轴承故障诊断中振动信号的数据增强方法。
适用于轴承故障诊断的数据增强算法林荣来,汤冰影,陈明同济大学机械与能源工程学院,上海201804摘要:针对在轴承故障诊断中存在的故障数据较少、数据所属工况较多的问题,提出了一种基于阶次跟踪的数据增强算法。
该算法利用阶次跟踪中的角域不变性,对原始振动信号进行时域重采样从而生成模拟信号,随后重新计算信号的幅值来抵消时域重采样以及环境噪声对原始信号能量的影响,最后使用随机零填充来保证信号在变化过程中采样长度不变。
奈奎斯特采样定理英文表达
奈奎斯特采样定理英文表达
English: The Nyquist sampling theorem, also known as the Nyquist-Shannon sampling theorem, states that in order to accurately reconstruct a signal, it must be sampled at a rate of at least twice the highest frequency present in that signal. This means that in order to avoid aliasing, where high frequencies are misinterpreted as lower frequencies, the sampling rate must be sufficiently high. Essentially, the theorem provides a guideline for how to accurately sample and reconstruct a signal without losing information or introducing distortions.
中文翻译:奈奎斯特采样定理,也称为奈奎斯特-香农采样定理,指出为了准确重建信号,采样率必须至少是信号中存在的最高频率的两倍。
这意味着为了避免混叠,即高频被错误地解释为低频,采样率必须足够高。
基本上,这个定理提供了一个指导原则,如何能够准确地采样和重建信号,而不会丢失信息或引入失真。
噪声 书籍介绍英文作文
噪声书籍介绍英文作文英文:Noise is a common problem in our daily lives. It can come from many sources such as traffic, construction, loud music, and even conversations in public places. The constant exposure to noise can be harmful to our health and well-being.First of all, noise can be a major cause of stress. It can disrupt our sleep, increase our heart rate, and even cause headaches. Studies have shown that people who live in noisy environments have a higher risk of developing cardiovascular diseases and hypertension.Secondly, noise can also affect our ability to concentrate and perform tasks. For example, if you are trying to study or work in a noisy environment, it can be difficult to focus and retain information. This can lead to decreased productivity and frustration.Lastly, noise can also have a negative impact on our social lives. It can make it difficult to communicate with others and enjoy social activities. For example, if you are trying to have a conversation in a loud restaurant, it can be hard to hear what the other person is saying and enjoy the meal.Overall, noise pollution is a serious issue that needs to be addressed. We can take steps to reduce noise levels by using earplugs, soundproofing our homes, and advocating for quieter public spaces.中文:噪声是我们日常生活中常见的问题。
Lecture_3_Noise
BlackBlack-body Radiation Law
f2 hf J S ( f ) = 8π 3 hf , m 3 f c e kT − 1 Planck’s Radiation Spectral Density
1 .10
18
Equivalent noise temperature of a terminated lossy transmission line at physical temperature TS.
Since the system is in thermal equilibrium the right resistor must receive as much noise power as it delivers (zero net power flow). Since the delivered noise power has 2 contributors the left resistor and the transmission line⇒
R Thot (290 K) G Te=? R Tcold (77 K) B Power Meter
Y-factor noise measurement
Phot = k BThot BG + k BTe BG
77
Pcold = k BTcold BG + k BTe BG
Co ld K ( Load bo N ) iling
Rayleigh-Jeans approximation for hf / kT << 1
ex = 1+ x +
x x hf hf / kT + L , when << 1 ⇒ e 2! 3! kT
专业英语-optical
DWDM Dense wavelength division multiplexing CWDM Coarse Wavelength Division Multiplexing Protocol standard for optical transmission in long-haul communication Sonet (synchronous optical network) OTDR Optical Time Domain Reflectometer
At present, the bandwidth available to fiber systems is not fully utilized but modulation at several gigahertz over a hundred kilometers and hundreds of megahertz over three hundred kilometer without intervening electronics (repeaters) is possible.
The baseline on a spectrum analyzer display Noise floor Diode detector Envelope detector image frequency
纤芯
包层
保护套
jacket
core
coating
A number less than one that indicates the range of angles of light that can be introduced to a fiber for transmission
东北财经大学工商管理专业学位英语试题详解
东北财经大学--工商管理专业学位外语考试参考试卷一、语音题(每空1分,共10分)01、notice['nəutis]A. stomachs['stʌməks]B. houses ['hauziz]C. mouths[mauθ]D. reasonable ['ri:zənəbl]02、winkle ['wiŋkl]A. windy ['windi]B. drink[driŋk]C. footprint ['futprint]D. interesting [ˈɪntrɪstɪŋ]03、shook [ʃuk]A. shoot [ʃu:t]B. food [fu:d]C. shoe [ʃu:]D. wood[wud]04、occasionally [ə'keiʒənəli]A. population[pɔpju'leiʃən]B. Russian['rʌʃən]C. question['kwestʃən]D. television['teli,viʒən]05、pressure ['preʃə]A. directly['direkli]B. oxygen 'ɔksidʒən]C. absence ['æbsəns]D. camera ['kæmərə]06、float [fləut]A. flower ['flauə]B. brown [braun]C. hometown ['həʊmtaʊn]D. bellows['beləuz]07、bulletin ['bulitin]A. bury ['beri]B. Prussian ['prʌʃən]C. bullet['bulit]D. punishment['pʌniʃmənt]08、breach [bri:tʃ]A. break [breik]B. theatre ['θiətə]C. meadow['medəu]D. least[li:st]09、opposite A. companion B. balloon C. stroll D. historic['ɔpəzit] [kəm'pænjən] [bə'lu:n] [strəul] [his'tɔrik] 10、scatter A. laboratory B. separate C. gravity D. various['skætə] [lə'bɔrətəri] ['sepərit] ['ɡræviti] ['vεəriəs] 11、essay A. holiday B. says C. away D. mayor[e'sei]['hɔlədi][sez][ə'wei]['mεə]12、singer A. anger B. tongue C. eager D. single['siŋə]['æŋɡə][tʌŋ]['i:ɡə]['siŋɡl]13、splendid A. watched B. refused C. wretched D. impressed['splendid][wɔtʃd][ri'fju:z ]['retʃid]['impres ]14、owner A. powerful B. brown C. narrow D. power ['əunə]['pauəful][braun]['nærəu][pauə]15、latent A. squirrel B. centigrade C. level D. mend['leitənt]['skwə:rəl]['sentiɡreid]['levəl][mend]16、flood A. loose B. blood C. moon D. noon[flʌd][lu:s][blʌd][mu:n][nu:n]17、mud A. music B. human C. huge D. lung[mʌd]['mju:zik]['hju:mən][hju:dʒ][lʌŋ]18、creature A. effect B. energy C. reduce D. belief['kri:tʃə] [i'fekt] ['enədʒi] [ri'dju:s] [bi'li:f]19、mountain A. explain B. remain C. campaign D. captain ['mauntin][ik'splein][ri'mein][kæm'pein]['kæptin]20、cookie A. frog B. oxygen C. wolf D. obvious['kuki] [frɔɡ] ['ɔksidʒən] [wulf] ['ɔbviəs]21、period A. request B. perseverance C. RecognizeD. require['piəriəd][ri'kwest][pə:si:'viərəns]['rekəɡnaiz][ri'kwaiə]22、geographyA. regretB. envy C. remark D. deck[dʒi'ɔɡrəfi] [ri'ɡret] ['envi] [ri'mɑ:k] [dek]23、replied A. entered B. askedC. stepped D. added [ri'plaid]['entəd][æskt] [stept]['ædid]24、counterA. country B. south C. tough D. enough ['kauntə]['kʌntri][sauð][tʌf][i'nʌf]25、eyebrow A. town B. followC. slow D. fellow['aibrau] [taun] ['fɔləu] [sləu] ['feləu]26、schoolyard A. coo B. cook C. poor D. childhood['sku:ljɑ:d] [ku:] [kuk] [pɔ:] ['tʃaildhud] 27、master A. Alsace B. tiresome C. impress D. unable['mæstə] ['a:əθas] ['taiəsəm] ['impres] [ʌn'eibl]28、twinkle A. windy B. drink C. footprint D. interesting['twiŋkl] ['windi] [driŋk] ['futprint] [ˈɪntrɪstɪŋ]二、单选题(每空1.5分,共30分)01、Since your supervisor has __specified___ the time for a talk, you must make sure that you will be there on time.因为你的上司有特定的时间谈谈,你必须保证你会准时到那儿的。
奈奎斯特,香农定理,采样原理分析及ADC的选择
奈奎斯特,香农定理,采样原理分析及ADC的选择奈奎斯特,香农定理,久采样原理分析及ADC的选择欠采样或奈奎斯特(Nyquist)准则是 ADC 应用上经常使用的一种技术。
射频(RF)通信和诸如示波器等高性能测试设备就是其中的一些实例。
在这个“灰色”地带中经常出现一些困惑,如是否有必要服从 Nyquist 准则,以获取一个信号的内容。
对于 Nyquist 和 Shannon 定理的检验将证明:ADC 采样频率的选择与最大输入信号频率对输入信号带宽的比率有很强的相关性。
奈奎斯特(Nyquist)原理分析Nyquist 定理被表达成各种各样的形式,它的原意是:如果要从相等时间间隔取得的采样点中,毫无失真地重建模拟信号波形,则采样频率必须大于或等于模拟信号中最高频率成份的两倍。
因而对于一个最大信号频率为 fMAX的模拟信号fa,其最小采样频率 fs 必须大于或等于2×fMAX 。
fs ? 2 fMAX最简单的模拟信号形式是正弦波,此时所有的信号能量都集中在一个频率上。
现实中,模拟信号通常具有复杂的信号波形,并带有众多频率成份或谐波。
例如,一个方波除了它的基频之外,还包含有无穷多的奇次谐波。
因此,根据 Nyquist 定理,要从时间交叉的采样中完整地重建一个方波,采样频率必须远远高于方波的基频。
请注意:当以采样率fs对模拟信号fa进行采样时,实际上产生了两个混叠成份,一个位于fs+fa,另一个位于fs,fa。
它的频率域显示在图 1中。
较高频的混叠成份基本上不会引起问题,因为它位于Nyquist 带宽(fs/2)以外。
较低频的混叠成份则可能产生问题,因为它可能落在Nyquist 带宽之内,破坏所需要的信号。
鉴于采样系统的混叠现象,Nyquist 准则要求采样率fs > fa,以避免混叠成份覆盖到第一Nyquist 区。
为防止有害的干扰, 任何落在感兴趣的带宽之外的信号(无论是寄生信号或是随机噪声)都应该在抽样之前进行过滤。
单层薄板在共振频率区隔声性能的有限元分析
文章编号:1006-1355(2006)04-0055-03单层薄板在共振频率区隔声性能的有限元分析王英敏,胡 碰,朱蓓丽(上海交通大学振动、冲击、噪声国家重点实验室,上海200030) 摘 要:用有限元分析方法计算了圆形薄板在夹持和自由放置等情况下的振动模态,揭示了单层板在共振区隔声量下降的机制,并计算出试样在共振区的隔声量,与实验结果符合良好。
最后提出了声管隔声量测试中低频段应注意的若干问题。
关键词:声学;有限元方法;隔声量;振动模态中图分类号:O241.82 文献标识码:AFEM Analysis of Single 2Layer Circular Plate ′s Sound T ransmissionLoss in R esonance R egionW A N G Yi ng 2m i n ,HU Peng ,ZHU Bei 2li(State Key Laboratory of Vibration ,Shock &Noise ,Shanghai Jiao Tong University ,Shanghai 200030,China ) Abstract :The vibration modes of circular plates under clamped edges and free edges had been studied with FEM.FEM calculated the sound transmission loss and revealed the reasons that the sound transmission loss had dropped in resonance region.It agrees well with the experiment.In the end ,some aspects that should be considered when measuring the sound transmission loss were presented.K ey w ords :acoustics ;FEM ;sound transmission loss ;vibrationmode 图1 4mm 厚薄片在驻波管中测得的隔声量曲线收稿日期:2006201216作者简介:王英敏(1979-),女,河北沧州人,在读硕士生,主要从事声学测试研究。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
<|
φ312d (ω )
|2>=
2kT
16π2σL ǫ2∞S
neutral liquids, the noise becomes frequency-dependent above the “Thouless” frtant and L is the distance between points). The
<| φ12(ω) |2>=
qx
sin2(qxa) qx2 a2
qy
sin2 (qy a) qy2a2
dqz
4sin2(
qz L 2
)
<|
φ(q, ω)
|2>
.
(4)
The Johnson-Nyquist noise in a three-dimensional conductor (2) can be easily calculated, because the dominant contribution to the sums and the integral comes from “zero modes” (qx, qy, qz → 0):
1
as ω− 2 . This result is contrasted with the noise spectra in neutral and charged liquids.
PACS numbers: 72.70.+m, 72.30.+q, 05.40.Ca
It is interesting to compare properties of charged and
<| φiqn,ωd
|2>=
(u1(q))2 ǫ2∞
<| δρq,ω
|2>,
<|
φiqn,ωd
|2>=
2kT ǫ2∞
ω2
+
σ1q2
(2ln
1 qa
)2
D2(1
+
a2 2πǫ∞
λ2D
ln
1 qa
)2q4
.
(1)
We can compare Eqn. (1) with the spectral density of
<|
φ(qn,ω)
|2>=
<|
δρq,ω χ20
|2>
=
2T χ20
D|χ0|q2 ω2 + (Dq2)2
.
(3)
We can now use the spectral densities (Eqns. 1-3) to calculate the experimentally measured differential noise between the two ends of the sample, averaged over transverse modes:
Coulomb
potential
φiqn,ωd
=
u3 (q) ǫ∞
ρq,ω
=
4π ǫ∞q2
ρq,ω
.
Follow-
ing the above simple derivation, we get the expression
1
for voltage fluctuations (it is sufficient for our purposes
to consider only longitudinal fluctuations) in a threedimensional conductor3:
<|
φqin,ωd(3d)
|2>=
32π2kT ǫ2∞ q 2
ω2
+
(Dq2
σ +
4πσ/ǫ∞)2 .
(2)
In the case of a neutral liquid, there is no long-range induced potential; therefore, we get the standard densitydensity response function and potential fluctuations describing diffusion:
ρq,ω
(Coulomb’s
law).
Since
we
consider
a
conductor
with transverse dimensions a smaller than the screening
length
λD ,
u1(q)
=
2ln
1 qa
is
a
one-dimensional
Coulomb
potential (q is a wave vector along a one-dimensional con-
depending on the dimensionality.
The noise spectrum is quite different in charged and neutral liquids. The equilibrium Johnson-Nyquist noise1
in an electrical conductor (with a screening length smaller
∂ρ ∂t
+
div(j)
=
0;
j = σEtot − D∇ρ.
For self-consistency, we need to account for the poten-
tial induced by the fluctuation of charge density: φiqn,ωd =
u1 (q) ǫ∞
difference is due to screening in charged liquids and de-
pends on the dimensionality of the conductor. I show
here that for electrical wires having a transverse size a
(February 1, 2008)
The Johnson-Nyquist noise in narrow semiconducting wires having a transverse size smaller than the screening length is shown to be white up to frequency D/L2 and to decay at higher frequencies
neutral systems. The role of the Coulomb interaction
crucially depends on the effective dimensionality of the
charged system. For instance, due to the long-range na-
one- and two-dimensional systems plasmons remain gap-
less. Here I examine the noise spectrum as another as-
pect of the singular role of Coulomb interaction critically
arXiv:cond-mat/9908298v1 [cond-mat.mes-hall] 20 Aug 1999
Johnson-Nyquist noise in narrow wires
Misha Turlakov Department of Physics, University of Illinois, 1110 W. Green Street, Urbana, IL 61801
potential fluctuations in bulk three-dimensional charged
and neutral liquids. In the case of a three-dimensional
charged liquid, we need to use the three-dimensional
tential, we need to relate it to the coupled fluctuations
of charge density and currents. We start by writing the
continuity equation and the current equation valid in the hydrodynamic limit2:
χq,ω
≡
− −iω
+
Dq2(1
Dχ0a2q2 + (2a2χ0/ǫ∞)ln(1/qa))
.
We can now apply the fluctuation dissipation theorem (FDT) to calculate the density fluctuation spectrum (assuming classical fluctuations, h¯ω ≪ kT ):
<|
δρq,ω
|2>=
h¯ I
mχq,ω
coth(
¯hω 2kT
)
∼=
2kT ω
I mχq,ω .
The static charge compressibility χ0 is simply re-
lated to the Debye screening (or Thomas-Fermi) length: 1/λ2D = 4πχ0. The induced potential fluctuations can be expressed through the charge density fluctuations: