2018年中考数学压轴题专题解析---几何动态探究问题—动点+动线
2018年中考数学压轴题专题汇编37动态几何之动点形成的等腰三角形存在性问题(压轴题)(解析版)
2.( 湖北省武汉市) 平面直角坐标系中,已知 A( 2, 2)、B( 4,0).若在坐标轴上取点 C,使△ ABC 为
等腰三角形,则满足条件的点 C 的个数是(
)
A.5 【答案】 A .
B.6
C. 7
D .8
【分析】由点 A、B 的坐标可得到 AB= 2 2 ,然后分类讨论:若 AC=AB;若 BC=AB;若 CA=CB,确定 C
分类讨论:当 0≤ x≤2 时,如图 1,易得 PD=BD =x,根据三角形面积公式得到
y= 1 x 2 ;当 2< x≤ 4 时,如 2
图 2,易得 PD =CD =4﹣ x,根据三角形面积公式得到
y= 1 x2 2 x ,于是可判断当 0≤ x≤ 2 时, y 与 x 的函 2
数关系的图象为开口向上的抛物线的一部分,当
AD=BD 得到∠ A=∠ ABD ,所以∠ ABC>∠ A,则对各 C、D
选项进行判断;根据大边对大角可对 A、 B 进行判断. 【解析】∵ AD =BD ,∴∠ A=∠ ABD,∴∠ ABC>∠ A,所以 C 选项和 D 选项错误;
∴ AC> BC,所以 A 选项正确; B 选项错误.
故选 A . 考点:等腰三角形的性质.
A.
B.
【答案】 A .
【分析】根据题意作出合适的辅助线,可以先证明△
从而可以得到哪个选项是正确的.
C.
D.
ADC 和△ AOB 的关系,即可建立 y 与 x 的函数关系,
考点:动点问题的函数图象.
二、填空题
8.( 广东省梅州市) 如图,抛物线 y x2 2 x 3 与 y 轴交于点 C,点 D( 0,1),点 P 是抛物线上的动
②当 AB=AP 时,以 A 点为圆心, AB 长度为半径做圆,与抛物线交于 C、 M 两点,;
2018年中考数学压轴题专题汇编41动态几何之动点形成的四边形存在性问题(解析版)
b> 4 时,由圆周角定理和三角形外角定理,知∠ ABO < 90°,所
以四边形 DEFB 不是矩形。
原创模拟预测题 5. 如图 , 在 Rt△ABC 中,∠ C= 90o, AC = 9, BC = 12,动点 P 从点 A 开始沿边 AC 向点 C
以每秒 1 个单位长度的速度运动,动点 Q 从点 C 开始沿边 CB 向点 B 以每秒 2 个单位长度的速度运动,过
综上所述:当 0< b≤4时,四边形 DEFB 是矩形,这时, t 4 16 b2 ,当 b>4 时,四边 形 DEFB 不是矩形。
【考点】 动点问题,三角形中位线定理,平行四边形的判定和性质,相似三角形的判定和性质,勾股定理,
矩形的判定和性质,直线与圆的位置关系,解一元二次方程,圆周角定理,三角形外角定理。
( 3)是否存在 t 的值,使四边形 PDBQ 为菱形?若存在,求出 t 的值;若不存在,说明理由 .并探究如何改
变点 Q 的速度(匀速运动) ,使四边形 PDBQ 在某一时刻成为菱形,求点 Q 的速度 .
4
18
16
【答案】 (1)QB=12-2t,PD= t (2)t= 秒,或 t=3.6 秒。( 3)t=5 秒, Q 的速度为 。
∴四边形 DEFB 是矩形。
此时 0< b≤4,可得△ AOB ∽△ OBC ,∴ OB OA ,即 OB2=OA?BC=8t 。 BC BO
在
Rt△OBC
中,
OB
2
=BC
2+
OC
2
=t
2+
b2。
∴ t2+ b2=8t,即 t2 -8t +b2=0,解得 t 8
64 4b2 =4
2
16 b2 。
②当直线 y=b 与⊙ E 相离即 b> 4 时,∠ ABO < 90°,∴四边形 DEFB 不是矩形。
2018年中考动点路径专题.docx
之动点线路的长度问题1. (2015•黄陂区校纟及模拟)如图,扇形AOD中,ZAOD=9L, OA=6,点P为弧AD上任意一点(不与点财口D重合),PQ丄0D于Q,点I为-OPQ的内心,过0, I和D三点的圆的半径为「则当点P在弧AD上运动时,r的值满足()A. 0<r<3 B・ r=3 C・3«3忑 D・I=3A/2【解答】解:如图,连01, PI, DI,•.•△OPH的内心为I,J.ZIOP=ZIOD, ZIPOZIPH,/.ZPI01800- ZIPO- ZIOP=180°-(ZHOP+ZOPH),而PH1OD,即ZPHO90%/.ZPIO=180°-- (ZHOP+ZOPH) =180。
一- (180°-90。
)=135%2 2在△OPI和厶。
】中,TO 二10« ZPOI^ZDPI〉.0D二OP.".AOPI^AODI (SAS),/.ZDIOZPIO135%所以点I在以0D为弦,并且所对的圆周角为135。
的一段劣弧上; 过D、I、O三点作OOS如團,连OD, 0 0, 在优弧DO取点F,连PD, PQ,■/ZDIO135%/.ZDP f O180°- 135°=45%/.ZDO r090% 而0D=6,.\OO r=DO f=3V2,・•』的值为3伍.故选:D.2、在平面直角坐标系中,点65昔着某条路径运动,以点励旋转中心,将点/1(0, 4)逆时针旋转90°到点3%, 1)・若_5冬於5,则点犯动的路径长为 __________________________________5>/2 ・【解析】试题分析:如图右在菸由上取gP(0, 1)彳厘游直线列幸地倂皿丄0吒片,^CNllTN,率造RtA Bcr^RtAACM, iWra, is 接虫苑则点C在ZBPO的平分缕E进而鶴出动枣在直逐动;再分啊情列団仑c的路径端点坐标:①当m=-5时,B (-5, 1) , PB二5,轴于皿ftcffi于N,同理可得△氐醛2\血呱.・・CM=CN, BN=AM,可设PN=PM=€N=CM=a, TP (0, 1) , A (0, 4),二AP=3, AM=BN=3+a, /.PB=a+3+a=5, /.a=l, /.C (-1, 0);②当ITF5时,B (5, 1),如图2中的B】,此时的动点、C杲图2中的C],同理可得C] (4, 5),・・・C的运动路径长就是CC1的长,由勾股定理可得,CC]二』4-(-1)丁+5, =5>/2 ・故答案为:5迈・3.如图,扇形如的圆心角的度数为120°,半径长为4,戲弧屈上的动点,P 肚OA, PNVOB,垂足 分别为駅N,堤△加的外心.当点/运动的过程中,点駅A 分别在半径上作相应运动,从点人离开 点印寸起,至U 点厢达点对止,点庞动的路径长为()当点M 与点。
2018届中考数学专题3 动点问题 (共30张PPT)
4
∴点 P 的坐标为 - 2 ,0 .
考点·梳理自清
考题·体验感悟
考点·梳理自清
考题·体验感悟
考法·互动研析
1
2
3
4
5
6
7
2
1.(2017· 山东枣庄)如图,直线y= 3 x+4与x轴,y轴分别交于点A和点B, 点C,D分别为线段AB,OB的中点,点P为OA上一动点,当PC+PD最小 时,点P的坐标为( C )
A.(-3,0)
B.(-6,0)
C.
3 - ,0 2
BD= BC2 + CD2 = 5,
由折叠知△A1DE≌△ADE, 所以A1D=AD=1.
由 A1B+A1D≥BD,得 A1B≥BD-A1D= 5-1. 故 A1B 长的最小值是 5-1.
考点·梳理自清
考题·体验感悟
考法·互动研析
类型一
类型二
类型三
类型二 几何图形中的动点问题 例2(2017· 山东泰安)如图,在△ABC中,∠C=90°,AB=10 cm,BC=8 cm,点P从点A沿AC向点C以1 cm/s的速度运动,同时点Q从点C沿CB 向点B以2 cm/s的速度运动(点Q运动到点B停止),在运动过程中,四 边形PABQ面积的最小值为( )
D.
5 - ,0 2
解析: 作点D关于x轴的对称点D',连接CD'交x轴于点P,此时PC+PD 值最小,如图所示.
令 令
2 y=3x+4 2 y=3x+4
中 x=0,则 y=4,∴点 B 的坐标为(0,4); 中 y=0,解得 x=-6,
考点·梳理自清
考题·体验感悟
中考数学压轴题专题07几何图形动点运动问题(学生版+解析版)
专题七几何图形动点运动问题【考题研究】几何动点运动问题,是以几何知识和具体的几何图形为背景,渗透运动变化的观点,通过点、线、形的运动,图形的平移、翻折、旋转等把图形的有关性质和图形之间的数量关系位置关系看作是在变化的、相互依存的状态之中,要求对运动变化过程伴随的数量关系的图形的位置关系等进行探究.对学生分析问题的能力,对图形的想象能力,动态思维能力的培养和提高有着积极的促进作用.动态问题,以运动中的几何图形为载体所构建成的综合题,它能把几何、三角、函数、方程等知识集于一身,题型新颖、灵活性强、有区分度,受到了人们的高度关注,同时也得到了命题者的青睐,动态几何问题,常常出现在各地的中考数学试卷中.【解题攻略】几何动点运动问题通常包括动点问题、动线问题、面动问题,在考查图形变换(含三角形的全等与相似)的同时常用到的不同几何图形的性质,以三角形四边形为主,主要运用方程、函数、数形结合、分类讨论等数学思想.【解题类型及其思路】动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。
)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。
利用动点(图形)位置进行分类,把运动问题分割成几个静态问题,然后运用转化的思想和方法将几何问题转化为函数和方程问题,利用函数与方程的思想和方法将所解决图形的性质(或所求图形面积)直接转化为函数或方程。
解题类型:几何动点运动问题常见有两种常见类型:(1)利用函数与方程的思想和方法将所解决图形的性质直接转化为函数或方程;(2)根据运动图形的位置分类,把动态问题分割成几个静态问题,再将几何问题转化为函数和方程问题【典例指引】类型一【探究动点运动过程中线段之间的数量关系】【典例指引1】在△ABC中,∠ACB=45°,点D为射线BC上一动点(与点B、C不重合),连接AD,以AD为一边在AD右侧作正方形ADEF.(1)如果AB=AC,如图1,且点D在线段BC上运动,判断∠BAD∠CAF(填“=”或“≠”),并证明:CF⊥BD(2)如果AB≠AC,且点D在线段BC的延长线上运动,请在图2中画出相应的示意图,此时(1)中的结论是否成立?请说明理由;(3)设正方形ADEF的边DE所在直线与直线CF相交于点P,若AC=42,CD=2,求线段CP的长.【举一反三】如图1,点C在线段AB上,(点C不与A、B重合),分别以AC、BC为边在AB同侧作等边三角形ACD和等边三角形BCE,连接AE、BD交于点P(1)观察猜想:①线段AE与BD的数量关系为_________;②∠APC的度数为_______________(2)数学思考:如图2,当点C在线段AB外时,(1)中的结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明(3)拓展应用:如图3,分别以AC、BC为边在AB同侧作等腰直角三角形ACD和等腰直角三角形BCE,其中∠ACD=∠BCE=90°,CA=CD,CB=CE,连接AE=BD交于点P,则线段AE与BD的关系为________________类型二【确定动点运动过程中的运动时间】【典例指引2】已知:如图,在平面直角坐标系中,长方形OABC的项点B的坐标是(6,4).(1)直接写出A点坐标(______,______),C点坐标(______,______);P m,且四边形OADP的面积是(2)如图,D为OC中点.连接BD,AD,如果在第二象限内有一点(),1∆面积的2倍,求满足条件的点P的坐标;ABC(3)如图,动点M从点C出发,以每钞1个单位的速度沿线段CB运动,同时动点N从点A出发.以每秒2t>,在M,个单位的連度沿线段AO运动,当N到达O点时,M,N同时停止运动,运动时间是t秒()0N运动过程中.当5MN=时,直接写出时间t的值.【举一反三】如图,▱ABCD 的对角线AC 、BD 相交于点O ,AB ⊥AC ,AB =3,BC =5,点P 从点A 出发,沿AD 以每秒1个单位的速度向终点D 运动.连结PO 并延长交BC 于点Q .设点P 的运动时间为t 秒. (1)求BQ 的长,(用含t 的代数式表示)(2)当四边形ABQP 是平行四边形时,求t 的值(3)当点O 在线段AP 的垂直平分线上时,直接写出t 的值.类型三 【探究动点运动过程中图形的形状或图形之间的关系】【典例指引3】已知矩形ABCD 中,10cm AB =,20cm BC =,现有两只蚂蚁P 和Q 同时分别从A 、B 出发,沿AB BC CD DA =--方向前进,蚂蚁P 每秒走1cm ,蚂蚁Q 每秒走2cm .问:(1)蚂蚁出发后△PBQ 第一次是等腰三角形需要爬行几秒?(2)P 、Q 两只蚂蚁最快爬行几秒后,直线PQ 与边AB 平行?如图,平面直角坐标系中,直线l分别交x轴、y轴于A、B两点(AO<AB)且AO、AB的长分别是一元二次方程x2-3x+2=0的两个根,点C在x轴负半轴上,且AB:AC=1:2.(1)求A、C两点的坐标;(2)若点M从C点出发,以每秒1个单位的速度沿射线CB运动,连接AM,设△ABM的面积为S,点M的运动时间为t,写出S关于t的函数关系式,并写出自变量的取值范围;(3)点P是y轴上的点,在坐标平面内是否存在点Q,使以A、B、P、Q为顶点的四边形是菱形?若存在,请直接写出Q点的坐标;若不存在,请说明理由.类型四【探究动点运动过程中图形的最值问题】【典例指引4】如图,抛物线y=ax2﹣34x+c与x轴相交于点A(﹣2,0)、B(4,0),与y轴相交于点C,连接AC,BC,以线段BC为直径作⊙M,过点C作直线CE∥AB,与抛物线和⊙M分别交于点D,E,点P 在BC下方的抛物线上运动.(1)求该抛物线的解析式;(2)当△PDE是以DE为底边的等腰三角形时,求点P的坐标;(3)当四边形ACPB的面积最大时,求点P的坐标并求出最大值.已知:如图.在△ABC中.AB=AC=5cm,BC=6cm.点P由B出发,沿BC方向匀速运动.速度为1cm/s.同时,点Q从点A出发,沿AC方向匀速运动.速度为1cm/s,过点P作PM⊥BC交AB于点M,过点Q作QN⊥BC,垂足为点N,连接MQ,若设运动时间为t(s)(0<t<3),解答下列问题:(1)当t为何值时,点M是边AB中点?(2)设四边形PNQM的面积为y(cm2),求出y与t之间的函数关系式;(3)是否存在某一时刻t,使S四边形PNQM:S△ABC=4:9?若存在,求出此时t的值;若不存在,说明理由;(4)是否存在某一时刻t,使四边形PNQM为正方形?若存在,求出此时t的值;若不存在,请说明理由.【新题训练】1.如图①,△ABC是等边三角形,点P是BC上一动点(点P与点B、C不重合),过点P作PM∥AC交AB于M,PN∥AB交AC于N,连接BN、CM.(1)求证:PM+PN=BC;(2)在点P的位置变化过程中,BN=CM是否成立?试证明你的结论;(3)如图②,作ND∥BC交AB于D,则图②成轴对称图形,类似地,请你在图③中添加一条或几条线段,使图③成轴对称图形(画出一种情形即可).2.如图,在矩形ABCD中,AB=18,AD=12,点M是边AB的中点,连结DM,DM与AC交于点G,点E,F分别是CD与DG上的点,连结EF,(1)求证:CG=2AG.(2)若DE=6,当以E,F,D为顶点的三角形与△CDG相似时,求EF的长.(3)若点E从点D出发,以每秒2个单位的速度向点C运动,点F从点G出发,以每秒1个单位的速度向点D运动.当一个点到达,另一个随即停止运动.在整个运动过程中,求四边形CEFG的面积的最小值.3.知识链接:将两个含30°角的全等三角尺放在一起,让两个30°角合在一起成60°,经过拼凑、观察、思考,探究出结论“直角三角形中,30°角所对的直角边等于斜边的一半”.如图,等边三角形ABC的边长为4cm,点D从点C出发沿CA向A运动,点E从B出发沿AB的延长线BF 向右运动,已知点D、E都以每秒0.5cm的速度同时开始运动,运动过程中DE与BC相交于点P,设运动时间为x秒.(1)请直接写出AD长.(用x的代数式表示)(2)当△ADE为直角三角形时,运动时间为几秒?(3)求证:在运动过程中,点P始终为线段DE的中点.4.如图所示,已知抛物线2(0)y ax a =≠与一次函数y kx b =+的图象相交于(1,1)A --,(2,4)-B 两点,点P 是抛物线上不与A ,B 重合的一个动点.(1)请求出a ,k ,b 的值;(2)当点P 在直线AB 上方时,过点P 作y 轴的平行线交直线AB 于点C ,设点P 的横坐标为m ,PC 的长度为L ,求出L 关于m 的解析式;(3)在(2)的基础上,设PAB ∆面积为S ,求出S 关于m 的解析式,并求出当m 取何值时,S 取最大值,最大值是多少?5.已知:如图,在矩形ABCD 中,AC 是对角线,AB =6cm ,BC =8cm .点P 从点D 出发,沿DC 方向匀速运动,速度为1cm /s ,同时,点Q 从点C 出发,沿CB 方向匀速运动,速度为2cm /s ,过点Q 作QM ∥AB 交AC 于点M ,连接PM ,设运动时间为t (s )(0<t <4).解答下列问题:(1)当t 为何值时,∠CPM =90°;(2)是否存在某一时刻t ,使S 四边形MQCP =ABCD 1532S 矩形?若存在,求出t 的值;若不存在,请说明理由; (3)当t 为何值时,点P 在∠CAD 的角平分线上.6.在等边三角形ABC中,点D是BC的中点,点E、F分别是边AB、AC(含线段AB、AC的端点)上的动点,且∠EDF=120°,小明和小慧对这个图形展开如下研究:问题初探:(1)如图1,小明发现:当∠DEB=90°时,BE+CF=nAB,则n的值为;问题再探:(2)如图2,在点E、F的运动过程中,小慧发现两个有趣的结论:①DE始终等于DF;②BE与CF的和始终不变;请你选择其中一个结论加以证明.成果运用:(3)若边长AB=8,在点E、F的运动过程中,记四边形DEAF的周长为L,L=DE+EA+AF+FD,则周长L取最大值和最小值时E点的位置?7.如图,在矩形ABCD中,AB=8cm,BC=16cm,点P从点D出发向点A运动,运动到点A停止,同时,点Q从点B出发向点C运动,运动到点C即停止,点P、Q的速度都是1cm/s.连接PQ、AQ、CP.设点P、Q运动的时间为ts.(1)当t为何值时,四边形ABQP是矩形;(2)当t为何值时,四边形AQCP是菱形;(3)分别求出(2)中菱形AQCP的周长和面积.8.如图,O为菱形ABCD对角线的交点,M是射线CA上的一个动点(点M与点C、O、A都不重合),过点A、C分别向直线BM作垂线段,垂足分别为E、F,连接OE,OF.(1)①依据题意补全图形;②猜想OE与OF的数量关系为_________________.(2)小东通过观察、实验发现点M在射线CA上运动时,(1)中的猜想始终成立.小东把这个发现与同学们进行交流,通过讨论,形成了证明(1)中猜想的几种想法:想法1:由已知条件和菱形对角线互相平分,可以构造与△OAE全等的三角形,从而得到相等的线段,再依据直角三角形斜边中线的性质,即可证明猜想;想法2:由已知条件和菱形对角线互相垂直,能找到两组共斜边的直角三角形,例如其中的一组△OAB和△EAB,再依据直角三角形斜边中线的性质,菱形四边相等,可以构造一对以OE和OF为对应边的全等三角形,即可证明猜想.……请你参考上面的想法,帮助小东证明(1)中的猜想(一种方法即可).(3)当∠ADC=120°时,请直接写出线段CF,AE,EF之间的数量关系是_________________.9.(1)(问题情境)小明遇到这样一个问题:如图①,已知ABC ∆是等边三角形,点D 为BC 边上中点,60ADE ∠=︒,DE 交等边三角形外角平分线CE 所在的直线于点E ,试探究AD 与DE 的数量关系.小明发现:过D 作//DF AC ,交AB 于F ,构造全等三角形,经推理论证问题得到解决.请直接写出AD 与DE 的数量关系,并说明理由. (2)(类比探究)如图②,当D 是线段BC 上(除,B C 外)任意一点时(其他条件不变)试猜想AD 与DE 的数量关系并证明你的结论. (3)(拓展应用)当D 是线段BC 上延长线上,且满足CD BC =(其他条件不变)时,请判断ADE ∆的形状,并说明理由.10.如图,直线y =﹣23x +4与x 轴交于点C ,与y 轴交于点B ,抛物线y =ax 2+103x +c 经过B 、C 两点. (1)求抛物线的解析式;(2)如图,点E 是直线BC 上方抛物线上的一动点,当△BEC 面积最大时,请求出点E 的坐标; (3)在(2)的结论下,过点E 作y 轴的平行线交直线BC 于点M ,连接AM ,点Q 是抛物线对称轴上的动点,在抛物线上是否存在点P ,使得以P 、Q 、A 、M 为顶点的四边形是平行四边形?如果存在,请直接写出点P 的坐标;如果不存在,请说明理由.11.如图,边长为4的正方形ABCD 中,点P 是边CD 上一动点,作直线BP ,过A 、C 、D 三点分别作直线BP 的垂线段,垂足分别是E 、F 、G .(1)如图(a )所示,当CP =3时,求线段EG 的长;(2)如图(b )所示,当∠PBC =30°时,四边形ABCF 的面积;(3)如图(c )所示,点P 在CD 上运动的过程中,四边形AECG 的面积S 是否存在最大值?如果存在,请求出∠PBC 为多少度时,S 有最大值,最大值是多少?如果不存在,请说明理由.12.已知:如图,在四边形ABCD 中,//AB CD ,90ACB ∠=︒,10cm AB =,8cm BC =,OD 垂直平分A C .点P 从点B 出发,沿BA 方向匀速运动,速度为1cm/s ;同时,点Q 从点D 出发,沿DC 方向匀速运动,速度为1cm/s ;当一个点停止运动,另一个点也停止运动.过点P 作PE AB ⊥,交BC 于点E ,过点O 作//QF AC ,分别交AD ,OD 于点F ,G .连接OP ,EG .设运动时间为()t s ()05t <<,解答下列问题:(1)当t 为何值时,点E 在BAC ∠的平分线上? (2)设四边形PEGO 的面积为()2mS c ,求S 与t 的函数关系式.(3)连接OE ,OQ ,在运动过程中,是否存在某一时刻t ,使OE OQ ⊥?若存在,求出t 的值;若不存在,请说明理由.13.已知:如图1,矩形OABC 的两个顶点A ,C 分别在x 轴,y 轴上,点B 的坐标是(8,2),点P 是边BC 上的一个动点,连接AP ,以AP 为一边朝点B 方向作正方形P ADE ,连接OP 并延长与DE 交于点M ,设CP =a (a >0).(1)请用含a 的代数式表示点P ,E 的坐标.(2)连接OE ,并把OE 绕点E 逆时针方向旋转90°得EF .如图2,若点F 恰好落在x 轴的正半轴上,求a 与EMDM的值. (3)①如图1,当点M 为DE 的中点时,求a 的值.②在①的前提下,并且当a >4时,OP 的延长线上存在点Q ,使得EQ +22PQ 有最小值,请直接写出EQ +22PQ 的最小值.14.如图,边长为6的正方形ABCD 中,,E F 分别是,AD AB 上的点,AP BE ⊥,P 为垂足. (1)如图①, AF =BF ,AE =23,点T 是射线PF 上的一个动点,则当△ABT 为直角三角形时,求AT 的长;(2)如图②,若AE AF =,连接CP ,求证:CP FP ⊥.15.边长相等的两个正方形ABCO 、ADEF 如图摆放,正方形ABCO 的边OA 、OC 在坐标轴上,ED 交线段OC 于点G ,ED 的延长线交线段BC 于点P ,连AG ,已知OA 长为3. (1)求证:AOG ADG ∆≅∆;(2)若12∠=∠,AG =2,求点G 的坐标;(3)在(2)条件下,在直线PE 上找点M ,使以M 、A 、G 为顶点的三角形是等腰三角形,求出点M 的坐标.16.定义:有一组邻角相等的凸四边形叫做“梦想四边形”。
2018年中考数学压轴题专题汇编36动点综合问题
点.
( 1)求抛物线的解析式及点 C 的坐标;
( 2)求证:△ ABC 是直角三角形;
( 3)若点 N 为 x 轴上的一个动点,过点 N 作 MN ⊥x 轴与抛物线交于点 M ,则是否存在以 O, M , N 为顶
)
A.
B.
C.
D.
2.( 山东省烟台市) 如图, ○ O 的半径为 1,AD ,BC 是⊙ O 的两条互相垂直的直径, 点 P 从点 O 出发( P
点与 O 点不重合),沿 O→ C→ D 的路线运动, 设 AP=x,sin∠APB=y,那么 y 与 x 之间的关系图象大致是 ( )
A.
B.
C. 3.( 广东省)如图,在正方形
< x< 90),优弧 ABC 的弧长与劣弧 AC 的弧长的差设为 y(单位:厘米) ,图 2 表示 y 与 x 的函数关系,则
α=
度.
9.( 浙江省舟山市)如图,在直角坐标系中,点
A,B 分别在 x 轴, y 轴上,点 A 的坐标为(﹣ 1, 0),
∠ ABO =30°,线段 PQ 的端点 P 从点 O 出发,沿△ OBA 的边按 O→ B→ A→O 运动一周,同时另一端点 Q
? 解读考点
知识点
动点问 题中的
等腰三角形与直角三角形
特殊图 形
相似问题
动点问 题中的 计算问
题
动点问题的最值与定值问题 动点问题的面积问题
动点问 题的函 数图象
问题
一次函数或二次函数的图象
名师点晴 利用等腰三角形或直角三角形的特殊性质求解动点问题 利用相似三角形的对应边成比例、对应角相等求解动点问题 理解最值或定值问题的求法 结合面积的计算方法来解决动点问题
1 .( 山东省青岛市)已知:如图,在矩形 ABCD 中, Ab= cm,BC=8cm,对角线 AC,BD 交于点 0.点
2018年中考数学压轴题专题37 动态几何之动点形成的等腰三角形存在性问题(预测题) )
《中考压轴题全揭秘》第二辑原创模拟预测题专题37:动态几何之动点形成的等腰三角形存在性问题数学因运动而充满活力,数学因变化而精彩纷呈.动态题是近年来中考的的一个热点问题,以运动的观点探究几何图形的变化规律问题,称之为动态几何问题,随之产生的动态几何试题就是研究在几何图形的运动中,伴随着出现一定的图形位置、数量关系的“变”与“不变”性的试题,就其运动对象而言,有点动、线动、面动三大类,就其运动形式而言,有轴对称(翻折)、平移、旋转(中心对称、滚动)等,就问题类型而言,有函数关系和图象问题、面积问题、最值问题、和差问题、定值问题和存在性问题等.解这类题目要“以静制动”,即把动态问题,变为静态问题来解,而静态问题又是动态问题的特殊情况.以动态几何问题为基架而精心设计的考题,可谓璀璨夺目、精彩四射.动态几何形成的存在性问题是动态几何中的基本类型,包括等腰(边)三角形存在问题;直角三角形存在问题;平行四边形存在问题;矩形、菱形、正方形存在问题;梯形存在问题;全等三角形存在问题;相似三角形存在问题;其它存在问题等.本专题原创编写动点形成的等腰三角形存在性问题模拟题. 在中考压轴题中,动点形成的等腰三角形存在性问题的重点和难点在于应用分类思想和数形结合的思想准确地进行分类.原创模拟预测题1.如图,在平面直角坐标系xOy 中,二次函数24y ax bx =+-(0a ≠)的图象与x 轴交于A (﹣2,0)、B (8,0)两点,与y 轴交于点B ,其对称轴与x 轴交于点D .(1)求该二次函数的解析式;(2)如图1,连结BC ,在线段BC 上是否存在点E ,使得△CDE 为等腰三角形?若存在,求出所有符合条件的点E 的坐标;若不存在,请说明理由;(3)如图2,若点P (m ,n )是该二次函数图象上的一个动点(其中m >0,n <0),连结PB ,PD ,BD ,求△BDP 面积的最大值及此时点P 的坐标.原创模拟预测题2.如图,在边长为2的正方形ABCD 中,G 是AD 延长线时的一点,且DG =AD ,动点M 从A 点出发,以每秒1个单位的速度沿着A →C →G 的路线向G 点匀速运动(M 不与A ,G 重合),设运动时间为t 秒,连接BM 并延长AG 于N .(1)是否存在点M ,使△ABM 为等腰三角形?若存在,分析点M 的位置;若不存在,请说明理由;(2)当点N 在AD 边上时,若BN ⊥HN ,NH 交∠CDG 的平分线于H ,求证:BN =HN ;(3)过点M 分别作AB ,AD 的垂线,垂足分别为E ,F ,矩形AEMF 与△ACG 重叠部分的面积为S ,求S 的最大值.原创模拟预测题3.如图,已知抛物线2y ax bx c =++经过A (﹣2,0),B (4,0),C (0,3)三点.(1)求该抛物线的解析式;(2)在y 轴上是否存在点M ,使△ACM 为等腰三角形?若存在,请直接写出所有满足要求的点M 的坐标;若不存在,请说明理由;(3)若点P (t ,0)为线段AB 上一动点(不与A ,B 重合),过P 作y 轴的平行线,记该直线右侧与△ABC 围成的图形面积为S ,试确定S 与t 的函数关系式.原创模拟预测题4.如图,在平面直角坐标系中,抛物线c bx ax y ++=2与⊙M 相交于A 、B 、C 、D 四点,其中A 、B 两点的坐标分别为(﹣1,0),(0,﹣2),点D 在x 轴上且AD 为⊙M 的直径.点E 是⊙M 与y 轴的另一个交点,过劣弧ED 上的点F 作FH ⊥AD 于点H ,且FH =1.5.(1)求点D 的坐标及该抛物线的表达式;(2)若点P 是x 轴上的一个动点,试求出△PEF 的周长最小时点P 的坐标;(3)在抛物线的对称轴上是否存在点Q ,使△QCM 是等腰三角形?如果存在,请直接写出点Q 的坐标;如果不存在,请说明理由.原创模拟预测题5.如图,已知Rt △ABC 中,∠C =90°,AC =8,BC =6,点P 以每秒1个单位的速度从A 向C 运动,同时点Q 以每秒2个单位的速度从A →B →C 方向运动,它们到C 点后都停止运动,设点P ,Q 运动的时间为t 秒.(1)在运动过程中,求P ,Q 两点间距离的最大值;(2)经过t 秒的运动,求△ABC 被直线PQ 扫过的面积S 与时间t 的函数关系式;(3)P ,Q 两点在运动过程中,是否存在时间t ,使得△PQC 为等腰三角形?若存在,求出此时的t 值;若不存在,请说明理由(5≈2.24,结果保留一位小数).原创模拟预测题6.如图,在四边形ABCD中,DC∥AB,DA⊥AB,AD=4cm,DC=5cm,AB=8cm.如果点P由B点出发沿BC方向向点C匀速运动,同时点Q由A点出发沿AB方向向点B匀速运动,它们的速度均为1cm/s,当P点到达C点时,两点同时停止运动,连接PQ,设运动时间为t s,解答下列问题:(1)当t为何值时,P,Q两点同时停止运动?(2)设△PQB的面积为S,当t为何值时,S取得最大值,并求出最大值;(3)当△PQB为等腰三角形时,求t的值.。
中考数学重难考点突破—动态题型分类解析(动点、动线、动面)
中考数学重难考点突破—动态题型分类解析解决动态几何间题的关键是要善于运用运动与变化的眼光去观察和研究图形,把握图形运动与变化的全过程,抓住变化中的不变,以不变应万变从结论入手,分析结论要成立需具备的典型特征条件是什么?然后利用函数与方程的思想和方法将这个需具备的典型特征条件(或所求图形面积)直接转化为函数或方程。
类型一点动型动态题1.如图1,在△ABC中,∠B=90°,AB=12 mm,BC=24 mm,动点P从点A开始沿边AB向B以2 mm/s的速度移动(不与点B重合),动点Q从点B开始沿边BC向C以4 mm/s 的速度移动(不与点C重合).如果P、Q分别从A、B同时出发,那么经过___3__秒,四边形APQC的面积最小.图1解:设经过x秒四边形APQCD面积最小由题意得:AP=2x,BQ=4x,则PB=12—2x,△PBQ的面积=1/2×BQ×PB=1/2×4x×(12—2x)=—4(x—3)2+36当x=3时,△PBQ的面积的最大值是36mm2,此时四边形APQC的面积最小。
点评:本题中由于四边形APQC在动点运动中,无法确定其形态,也就无法应用面积公式。
而P、B、Q三点,根据题意始终组成一个直角三角形△PBQ,故从求直角三角形面积入手便可解决问题。
2.如图2,已知△ABC中,AB=AC=10厘米,BC=8厘米,点D为AB的中点.(1)如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA 上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD 与△CQP全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在哪条边上相遇?图2解:(1)①∵t=1秒,∴BP=CQ=3×1=3(厘米).∵AB=10厘米,点D为AB的中点,∴BD=5厘米.又∵PC=BC-BP,BC=8厘米,∴PC=8-3=5(厘米),∴PC=BD.又∵AB=AC,∴∠B=∠C,∴△BPD≌△CQP.②∵v P ≠v Q ,∴BP ≠CQ .又∵△BPD 与△CQP 全等,∠B =∠C ,则BP =PC =4,CQ =BD =5, ∴点P ,点Q 运动的时间t =BP 3=43(秒), ∴v Q =CQ t =543=154(厘米/秒).(2)设经过x 秒后点P 与点Q 第一次相遇,由题意,得154x =3x +2×10,解得x =803(秒). ∴点P 共运动了803×3=80(厘米).∵80=2×28+24,∴点P 、Q 在AB 边上相遇, ∴经过803 秒点P 与点Q 第一次在边AB 上相遇. 类型二 线动型动态题3.已知二次函数y =x 2-(2m +2)x +(m 2+4m -3)中,m 为不小于0的整数,它的图象与x 轴交于点A 和点B ,点A 在原点左边,点B 在原点右边.(1)求这个二次函数的解析式;(2)点C 是抛物线与y 轴的交点,已知AD =AC (D 在线段AB 上),有一动点P 从点A 出发,沿线段AB 以每秒1个单位长度的速度移动,同时,另一动点Q 从点C 出发,以某一速度沿线段CB 移动,经过t 秒的移动,线段PQ 被CD 垂直平分,求t 的值.图3解:(1)∵二次函数的图象与x轴有两个交点,∴Δ=[]-2m+22-4(m2+4m-3)=-8m+16>0,∴m<2.∵m为不小于0的整数,∴m取0、1.当m=1时,y=x2-4x+2,图象与x轴的两个交点在原点的同侧,不合题意,舍去;当m=0时,y=x2-2x-3,符合题意.∴二次函数的解析式为y=x2-2x-3.(2)∵AC=AD,∴∠ADC=∠ACD.∵CD垂直平分PQ,∴DP=DQ,∴∠ADC=∠CDQ.∴∠ACD=∠CDQ,∴DQ∥AC,∴△BDQ∽△BAC,∴DQAC=BDAB.∵AC=10,BD=4-10,AB=4.∴DQ=10-52,∴PD=10-52.∴AP=AD-PD=52,∴t=52÷1=52.类型三面动型动态题4.如图4,四边形ABCD是边长为1的正方形,四边形EFGH是边长为2的正方形,点D 与点F重合,点B,D(F),H在同一条直线上,将正方形ABCD沿F→H方向平移至点B与点H 重合时停止,设点D、F之间的距离为x,正方形ABCD与正方形EFGH重叠部分的面积为y,则能大致反映y与x之间函数关系的图象是( B)图4解析:正方形ABCD与正方形EFGH重叠部分主要分为3个部分,是个分段函数,分别对应三种情况中的对应函数求出来即可得到正确答案。
2018年中考数学挑战压轴题(含答案)
2017挑战压轴题中考数学精讲解读篇因动点产生的相似三角形问题1. 如图,在平面直角坐标系xOy中,将抛物线y=x2的对称轴绕着点P( 0,2)顺时针旋转45°后与该抛物线交于A、B两点,点Q是该抛物线上一点.(1)求直线AB的函数表达式;(2)如图①,若点Q在直线AB的下方,求点Q到直线AB的距离的最大值;(3)如图②,若点Q在y轴左侧,且点T (0,t) (t V2)是射线PO上一点, 当以P、B、Q为顶点的三角形与△ PAT相似时,求所有满足条件的t的值.图①图②备用图2. 如图,已知BC是半圆O的直径,BC=8过线段BO上一动点D,作AD丄BC 交半圆O于点A,联结AO,过点B作BH丄AO,垂足为点H,BH的延长线交半圆O于点F.(1)求证:AH=BD(2)设BD=x, BE?BF=y求y关于x的函数关系式;(3)如图2,若联结FA并延长交CB的延长线于点G,当厶卩人丘与厶FBG相似时,求BD的长度.3•如图,在平面直角坐标系xOy中,直线AB过点A (3, 0)、B (0, m) (m>0), tan / BAO=2(1)求直线AB的表达式;(2)反比例函数y= 的图象与直线AB交于第一象限内的C、D两点(BD v BC),x当AD=2DB时,求&的值;(3)设线段AB的中点为E,过点E作x轴的垂线,垂足为点M,交反比例函数y的图象于点F,分别联结OE OF,当厶OE2A OBE时,请直接写出满足条x4. 如图,在Rt A ABC中,/ ACB=90, AC=1, BC=7,点D是边CA延长线的一点,AE丄BD,垂足为点E, AE的延长线交CA的平行线BF于点F,连结CE交AB于点G.(1)当点E是BD的中点时,求tan / AFB的值;(2)CE?AF的值是否随线段AD长度的改变而变化?如果不变,求出CE?AF的值; 如果变化,请说明理由;(3)当△BGE和△ BAF相似时,求线段AF的长.5. 如图,平面直角坐标系xOy中,已知B (- 1, 0), —次函数y=-x+5的图象与x 轴、y轴分别交于点A、C两点,二次函数y=-x2+bx+c的图象经过点A、点B.(1)求这个二次函数的解析式;(2)点P是该二次函数图象的顶点,求△ APC的面积;(3)如果点Q在线段AC上,且△ ABC与厶AOQ相似,求点Q的坐标.6 .已知:半圆O的直径AB=6,点C在半圆O上,且tan / ABC=2匚,点D为弧AC 上一点,联结DC (如图)(1)求BC的长;(2)若射线DC交射线AB于点M,且△ MBC与厶MOC相似,求CD的长;(3)联结OD,当OD// BC时,作/ DOB的平分线交线段DC于点N,求ON的长.7•如图,已知二次函数y=«+bx+c(b, c为常数)的图象经过点A (3,- 1), 点C (0,- 4),顶点为点M,过点A作AB// x轴,交y轴与点D,交该二次函数图象于点B,连结BC.(1)求该二次函数的解析式及点M的坐标;(2)若将该二次函数图象向上平移m (m > 0)个单位,使平移后得到的二次函数图象的顶点落在△ ABC的内部(不包含厶ABC的边界),求m的取值范围;(3)点P时直线AC上的动点,若点P,点C,点M所构成的三角形与△ BCD相似,请直接写出所有点P的坐标(直接写出结果,不必写解答过程)•备用医I因动点产生的等腰三角形问题8 .如图1,在厶ABC中,/ ACB=90, / BAC=60,点E是/BAC角平分线上一点,过点E作AE的垂线,过点A作AB的垂线,两垂线交于点D,连接DB,点F是BD的中点,DH丄AC,垂足为H,连接EF, HF.(1)如图1,若点H是AC的中点,AC=2「,求AB, BD的长;(2)如图1,求证:HF=EF(3)如图2,连接CF, CE猜想:△ CEF是否是等边三角形?若是,请证明;若不是,说明理由.9 •已知,一条抛物线的顶点为E (- 1,4),且过点A (-3, 0),与y轴交于点C,点D是这条抛物线上一点,它的横坐标为m,且-3v m v- 1,过点D作DK 丄x轴,垂足为K, DK分别交线段AE、AC于点G、H.(1) 求这条抛物线的解析式;(2) 求证:GH=HK10.如图,已知在Rt A ABC中,/ ACB=90, AB=5, si nA丄,点P是边BC上的5一点,PEI AB,垂足为E,以点P为圆心,PC为半径的圆与射线PE相交于点Q, 线段CQ与边AB交于点D.(1) 求AD的长;(2) 设CP=x △ PCQ的面积为y,求y关于x的函数解析式,并写出定义域;(3) 过点C作CF丄AB,垂足为F,联结PF、QF,如果△ PQF是以PF为腰的等腰三角形,求CP的长.C C11 •如图(1),直线y=- x+n交x轴于点A,交y轴于点(0,4),抛物线y=「x2+bx+c3 3经过点A,交y轴于点B (0,-2).点P为抛物线上一个动点,过点P作x轴的垂线PD,过点B作BD丄PD于点D,连接PB,设点P的横坐标为m.(1)求抛物线的解析式;(2)当厶BDP为等腰直角三角形时,求线段PD的长;(3)如图(2),将厶BDP绕点B逆时针旋转,得到△ BD P'当旋转角/ PBP = / OAC且点P的对应点P落在坐标轴上时,请直接写出点P的坐标.12 •综合与探究如图,在平面直角坐标系中,已知抛物线y=ax2+bx - 8与x轴交于A,B两点,与y轴交于点C,直线I经过坐标原点0,与抛物线的一个交点为D,与抛物线的对称轴交于点E,连接CE已知点A,D的坐标分别为(-2, 0),(6,- 8).(1)求抛物线的函数表达式,并分别求出点B和点E的坐标;(2)试探究抛物线上是否存在点F,使厶FOE^A FCE若存在,请直接写出点F 的坐标;若不存在,请说明理由;(3)若点P是y轴负半轴上的一个动点,设其坐标为(0, m),直线PB与直线是等腰三角形.因动点产生的直角三角形问题13. 已知,如图1,在梯形ABCD中,AD// BC,/ BCD=90, BC=11, CD=6, tan / ABC=2点E在AD边上,且AE=3ED EF// AB交BC于点F,点M、N分别在射线FE和线段CD上.(1)求线段CF的长;(2)如图2,当点M在线段FE上,且AM丄MN,设FM?cos/ EFC=x CN=y求y关于x的函数解析式,并写出它的定义域;(3)如果△ AMN为等腰直角三角形,求线段FM的长.C C14. 如图,在矩形ABCD中,点0为坐标原点,点B的坐标为(4, 3),点A、C 在坐标轴上,点P在BC边上,直线h:y=2x+3,直线12:y=2x-3.(1)分别求直线l1与x轴,直线12与AB的交点坐标;(2)已知点M在第一象限,且是直线12上的点,若△ APM是等腰直角三角形,求点M的坐标;(3)我们把直线h和直线12上的点所组成的图形为图形F.已知矩形ANPQ的顶点N在图形F上,Q是坐标平面内的点,且N点的横坐标为x,请直接写出x的取值范围(不用说明理由).因动点产生的平行四边形问题15. 如图,在平面直角坐标系xOy 中,抛物线y=ax - 2ax -3a (a v 0)与x 轴交 于A , B 两点(点A 在点B 的左侧),经过点A 的直线I : y=kx+b 与y 轴交于点C , 与抛物线的另一个交点为D ,且CD=4AC(1) 直接写出点A 的坐标,并求直线I 的函数表达式(其中k , b 用含a 的式子 表示);(2) 点E 是直线I 上方的抛物线上的一点,若△ ACE 的面积的最大值为「,求a4的值;(3) 设P 是抛物线对称轴上的一点,点 Q 在抛物线上,以点A ,D ,P ,Q 为顶OA=5, AB=4,点D 为边AB 上一点,将△ BCD 沿直 线CD 折叠,使点B 恰好落在OA 边上的点E 处,分别以OC, OA 所在的直线为x 轴,y 轴建立平面直角坐标系.(1) 求点E 坐标及经过O , D , C 三点的抛物线的解析式;(2) 一动点P 从点C 出发,沿CB 以每秒2个单位长的速度向点B 运动,同时 动点Q 从E 点出发,沿EC 以每秒1个单位长的速度向点C 运动,当点P 到达点 B 时,两点同时停止运动.设运动时间为 t 秒,当t 为何值时,DP=DQ(3) 若点N 在(2)中的抛物线的对称轴上,点 M 在抛物线上,是否存在这样 的点M 与点N ,使得以M , N , C, E 为顶点的四边形是平行四边形?若存在, 请求出M 点的坐标;若不存在,请说明理由.16.如图,在矩形OABC 中, 请说明理由.17•如图,抛物线y=-X123+2X+3与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,点D和点C关于抛物线的对称轴对称,直线AD与y轴交于点E.1 求直线AD的解析式;2 如图1,直线AD上方的抛物线上有一点F,过点F作FG丄AD于点G,作FH平行于X轴交直线AD于点巴求厶FGH周长的最大值;3 点M是抛物线的顶点,点P是y轴上一点,点Q是坐标平面内一点,以A, M , P, Q为顶点的四边形是以AM为边的矩形•若点T和点Q关于AM所在直线对称,求点T 的坐标.18•如图,点A和动点P在直线I上,点P关于点A的对称点为Q,以AQ为边作Rt A ABQ,使/ BAQ=90 , AQ: AB=3: 4,作厶ABQ的外接圆0.点C在点P 右侧,PC=4过点C作直线m丄I,过点O作OD丄m于点D,交AB右侧的圆弧于点E.在射线CD上取点F,使DF冷CD,以DE, DF为邻边作矩形DEGF设AQ=3x.(1)用关于X的代数式表示BQ, DF.(2)当点P在点A右侧时,若矩形DEGF勺面积等于90,求AP的长.(3)在点P的整个运动过程中,①当AP为何值时,矩形DEGF是正方形?②作直线BG交。
2018年中考数学压轴题专题解析---几何动态探究问题—动点+动面
第1题图 (1)在整个运动过程中,当点 G在线段 AE上时,求 t 的值; (2)在整个运动过程中,是否存在点 P,使△ APQ是等腰三角形?若存在,求出 t 的值; 若不存在,说明理由; (3)在整个运动过程中,设△ GMN与△ AEF重叠部分的面积为 S.请直接写出 S 与 t 之间的 函数关系式以及自变量 t 的取值范围 ; (4) 在运动过程中,是否存在某一时刻 t , 使得 S: S△GMN=1:2? 若存在,求出 t 的值,若不存在, 请说明理由 .
2018 年中考数学压轴题专题解析 --- 几何动态探究问题—动点 +动面
1. 已知在矩形 ABCD中, E 为 BC边上一点, AE⊥DE, AB=12, BE=16, F 为线段 BE上一点, EF= 7,连接 AF.如图①,现有一张硬质纸片△ GMN,∠ NGM= 90°, NG= 6,MG= 8,斜边 MN 与边 BC在同一直线上,点 N与点 E 重合,点 G在线段 DE上.如图②,△ GMN从图①的位置 出发,以每秒 1 个单位的速度沿 EB向点 B 匀速移动,同时点 P 从 A点出发,以每秒 1 个单 位的速度沿 AD向点 D匀速移动,点 Q为直线 GN与线段 AE的交点,连接 PQ.当点 N到达终 点 B 时,△ GMN和点 P同时停止运动.设运动时间为 t 秒,解答下列问题:
AB与 QR在同一直线 l 上,开始时点 Q与点 A 重合,让△ PQR以 1cm/ s 的速度在直线 l 上运 动,同时 M点从点 Q出发以 1cm/ s 沿 QP运动,直至点 Q与点 B 重合时,都停止运动,设运
动的时间为
t ( s),四边形
PMBN的面积为
S(
2
cm
).
第 2 题图
(1)当 t =1s 时,求 S 的值;
2018中考数学动点动态问题 精品
绝密☆启用前1、已知四边形ABCD是正方形,O为正方形对角线的交点,一动点P从B开始,沿射线BC运到,连结DP,作CN⊥DP于点M,且交直线AB于点N,连结OP,ON。
(当P在线段BC上时,如图9:当P在BC的延长线上时,如图10)(1)请从图9,图10中任选一图证明下面结论:①BN=CP:②OP=ON,且OP⊥ON(2) 设AB=4,BP=x,试确定以O、P、B、N为顶点的四边形的面积y与x的函数关系。
2.(2018,江苏盐城)(本题满分10分)如图①所示,已知A 、B 为直线l 上两点,点C 为直线l 上方一动点,连接AC 、BC ,分别以AC 、BC 为边向ABC ∆外作正方形CADF 和正方形CBEG ,过点D 作1DD l ⊥于点1D ,过点E 作1EE l ⊥于点1E .(1)如图②,当点E 恰好在直线l 上时(此时1E 与E 重合),试说明1DD AB =; (2)在图①中,当D 、E 两点都在直线l 的上方时,试探求三条线段1DD 、1EE 、AB 之间的数量关系,并说明理由;(3)如图③,当点E 在直线l 的下方时,请直接写出三条线段1DD 、1EE 、AB 之间的数量关系.(不需要证明) 图②图①第2题图l (E 1)AB CDFGE D 1 图③lE 1 ABC DFG ED 1 lE 1ABCD FG E D 13. (2018,四川乐山)如图13.1,△ABC 是等腰直角三角形,四边形ADEF 是正方形,D 、F 分别在AB 、AC 边上,此时BD =CF ,BD ⊥C F 成立.(1)当正方形ADEF 绕点A 逆时针旋转θ(090θ<<)时,如图13.2,BD =CF 成立吗?若成立,请证明;若不成立,请说明理由.(2)当正方形ADEF 绕点A 逆时针旋转45°时,如图13.3,延长BD 交CF 于点G .① 求证:BD ⊥CF ;② 当AB =4,AD =2时,求线段BG 的长.图13.3图13.2图13.1A 45°θG ABCDEFFEDCBF E D CBA4.(2018金华市)在锐角△ABC中,AB=4,BC=5,∠ACB=45°,将△ABC绕点B按逆时针方向旋转,得到△A1BC1.(1)如图1,当点C1在线段CA的延长线上时,求∠CC1A1的度数;(2)如图2,连接AA1,CC1.若△ABA1的面积为4,求△CBC1的面积;(3)如图3,点E为线段AB中点,点P是线段AC上的动点,在△ABC绕点B按逆时针方向旋转过程中,点P的对应点是点P1,求线段EP1长度的最大值与最小值.。
2018年中考数学压轴题专题解析---几何动态探究问题—动点+动线
∴EQ= 2 ,
5
如解图,过 B 作 BM⊥CD 交 CD 于 M,过 P 作 PN⊥EF 交 EF 于 N, ∵BC=BD,BM⊥CD,CD=4cm, ∴CM= 1 CD=2cm,
2
∴BM= 102 22 100 4 96 4 6 cm, ∵EF//CD, ∴∠BQF=∠BDC,∠BFG=∠BCD, 又∵BD=BC, ∴∠BDC=∠BCD, ∴∠BQF=∠BFG, ∵ED//BC, ∴∠DEQ=∠QFB, 又∵∠EQD=∠BQF, ∴∠DEQ=∠DQE, ∴DE=DQ, ∴ED=DQ=BP =t, ∴PQ=10−2t. 又∵△PNQ∽△BMD ,
第 3 题图 解:(1)如解图①中,连接 DF,
第 3 题解图① ∵AB=AC=5,BC=6,AD⊥BC, ∴BD=CD=3 , 在 Rt△ABD 中 ,AD= 52 - 32 =4, ∵EF//BC, ∴△AEF∽△ABC, ∴ EF AQ ,
BC AD
∴ EF 4 t ,
64
∴EF= 3 (4−t),
∵DE=BP=t,PD=BF=10−t,∠PDE=∠FBP,
∴△PDE≌△FBP(SAS). ∴S 五边形 PFCDE=S△PDE+S 四边形 PFCD=S△FBP+S 四边形 PFCD=S△BCD=8 6 , ∴在运动过程中,五边形 PFCDE 的面积不变.
3.如图.在△ABC 中.AB=AC=5 cm,BC=6 cm,AD 是 BC 边上的高.点 P 由 C 出发沿 CA 方向匀速运动.速度为 1 cm/s.同时,直线 EF 由 BC 出发沿 DA 方向匀速运动,速度为 1 cm/s,EF//BC,并且 EF 分别交 AB、AD、AC 于点 E,Q,F,连接 PQ.若设运动时间为 t(s)(0<t<4),解答下列问题: (1)当 t 为何值时,四边形 BDFE 是平行四边形? (2)设四边形 QDCP 的面积为 y(cm2),求出 y 与 t 之间的函数 关系式; (3)是否存在某一时刻 t,使 S 四边形 QDCP:S△ABC=9:20?若存 在,求出此时 t 的值;若不存在,说明理由; (4)是否存在某一时刻 t,使点 Q 在线段 AP 的垂直平分 线上?若 存在,求出此时点 F 到直线 PQ 的距离 h;若不存在,请说明理 由.
中考数学压轴题动点问题专题讲解
中考动点专题所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.关键:动中求静.数学思想:分类思想函数思想方程思想数形结合思想转化思想注重对几何图形运动变化能力的考查从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。
选择基本的几何图形,让学生经历探索的过程,以能力立意,考查学生的自主探究能力,促进培养学生解决问题的能力.图形在动点的运动过程中观察图形的变化情况,需要理解图形在不同位置的情况,才能做好计算推理的过程。
在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。
二期课改后数学卷中的数学压轴性题正逐步转向数形结合、动态几何、动手操作、实验探究等方向发展.这些压轴题题型繁多、题意创新,目的是考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等.从数学思想的层面上讲:(1)运动观点;(2)方程思想;(3)数形结合思想;(4)分类思想;(5)转化思想等.研究历年来各区的压轴性试题,就能找到今年中考数学试题的热点的形成和命题的动向,它有利于我们教师在教学中研究对策,把握方向.只的这样,才能更好的培养学生解题素养,在素质教育的背景下更明确地体现课程标准的导向.本文拟就压轴题的题型背景和区分度测量点的存在性和区分度小题处理手法提出自己的观点.函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.那么,我们怎样建立这种函数解析式呢?下面结合中考试题举例分析. 一、应用勾股定理建立函数解析式例1(2000年·上海)如图1,在半径为6,圆心角为90°的扇形OAB 的弧AB 上,有一个动点P,PH ⊥OA,垂足为H,△OPH 的重心为G.(1)当点P 在弧AB 上运动时,线段GO 、GP 、GH 中,有无长度保持不变的线段?如果有,请指出这样的线段,并求出相应的长度.(2)设PH x =,GP y =,求y 关于x 的函数解析式,并写出函数的定义域(即自变量x 的取值范围).(3)如果△PGH 是等腰三角形,试求出线段PH 的长.解:(1)当点P 在弧AB 上运动时,OP 保持不变,于是线段GO 、GP 、GH中,有长度保持不变的线段,这条线段是GH=32NH=2132⋅OP=2.(2)在Rt △POH 中, 22236x PH OP OH -=-=, ∴2362121x OH MH -==. 在Rt △MPH 中,.∴y =GP=32MP=233631x + (0<x <6). (3)△PGH 是等腰三角形有三种可能情况:①GP=PH 时,x x =+233631,解得6=x . 经检验, 6=x 是原方程的根,且符合题意. ②GP=GH 时, 2336312=+x ,解得0=x . 经检验, 0=x 是原方程的根,但不符合题意.③PH=GH 时,2=x .综上所述,如果△PGH 是等腰三角形,那么线段PH 的长为6或2.二、应用比例式建立函数解析式例2(2006年·山东)如图2,在△ABC 中,AB=AC=1,点D,E 在直线BC 上运动.设BD=,x CE=y . (1)如果∠BAC=30°,∠DAE=105°,试确定y 与x 之间的函数解析式;(2)如果∠BAC 的度数为α,∠DAE 的度数为β,当α,β满足怎样的关系式时,(1)中y 与x 之间的函数解析式还成立?试说明理由.解:(1)在△ABC 中,∵AB=AC,∠BAC=30°,∴∠ABC=∠ACB=75°, ∴∠ABD=∠ACE=105°.∵∠BAC=30°,∠DAE=105°, ∴∠DAB+∠CAE=75°, 又∠DAB+∠ADB=∠ABC=75°, ∴∠CAE=∠ADB,∴△ADB ∽△EAC, ∴ACBD CE AB =,∴11x y =, ∴xy 1=. 2222233621419x x x MH PH MP +=-+=+= AEDCB 图2HM NGPOAB图1x y(2)由于∠DAB+∠CAE=αβ-,又∠DAB+∠ADB=∠ABC=290α-︒,且函数关系式成立, ∴290α-︒=αβ-, 整理得=-2αβ︒90. 当=-2αβ︒90时,函数解析式xy 1=成立. 例3(2005年·上海)如图3(1),在△ABC 中,∠ABC=90°,AB=4,BC=3. 点O 是边AC 上的一个动点,以点O 为圆心作半圆,与边AB 相切于点D,交线段OC 于点E.作EP ⊥ED,交射线AB 于点P,交射线CB 于点F.(1)求证: △ADE ∽△AEP.(2)设OA=x ,AP=y ,求y 关于x 的函数解析式,并写出它的定义域.(3)当BF=1时,求线段AP 的长. 解:(1)连结OD.根据题意,得OD ⊥AB,∴∠ODA=90°,∠ODA=∠DEP.又由OD=OE,得∠ODE=∠OED.∴∠ADE=∠AEP, ∴△ADE ∽△AEP.(2)∵∠ABC=90°,AB=4,BC=3, ∴AC=5. ∵∠ABC=∠ADO=90°, ∴OD ∥BC, ∴53x OD =,54xAD =,∴OD=x 53,AD=x 54. ∴AE=x x 53+=x 58. ∵△ADE ∽△AEP, ∴AE AD AP AE =, ∴x x yx 585458=. ∴x y 516= (8250≤<x ). (3)当BF=1时,①若EP 交线段CB 的延长线于点F,如图3(1),则CF=4.∵∠ADE=∠AEP, ∴∠PDE=∠PEC. ∵∠FBP=∠DEP=90°, ∠FPB=∠DPE, ∴∠F=∠PDE, ∴∠F=∠FEC, ∴CF=CE. ∴5-x 58=4,得85=x .可求得2=y ,即AP=2. ②若EP 交线段CB 于点F,如图3(2), 则CF=2. 类似①,可得CF=CE. ∴5-x 58=2,得815=x . 可求得6=y ,即AP=6.综上所述, 当BF=1时,线段AP 的长为2或6.三、应用求图形面积的方法建立函数关系式例4(2004年·上海)如图,在△ABC 中,∠BAC=90°,AB=AC=22,⊙A 的半径为1.若点O 在BC 边上运动(与点B 、C 不重合),设BO=x ,△AOC 的面积为y .(1)求y 关于x 的函数解析式,并写出函数的定义域.A3(2)3(1)ABCC(2)以点O 为圆心,BO 长为半径作圆O,求当⊙O 与⊙A 相切时, △AOC 的面积.解:(1)过点A 作AH ⊥BC,垂足为H.∵∠BAC=90°,AB=AC=22, ∴BC=4,AH=21BC=2. ∴OC=4-x . ∵AH OC S AOC ⋅=∆21, ∴4+-=x y (40<<x ). (2)①当⊙O 与⊙A 外切时,在Rt △AOH 中,OA=1+x ,OH=x -2, ∴222)2(2)1(x x -+=+. 解得67=x . 此时,△AOC 的面积y =617674=-. ②当⊙O 与⊙A 内切时,在Rt △AOH 中,OA=1-x ,OH=2-x , ∴222)2(2)1(-+=-x x . 解得27=x . 此时,△AOC 的面积y =21274=-. 综上所述,当⊙O 与⊙A 相切时,△AOC 的面积为617或21.动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。
中考数学压轴专题训练——动态(动点)几何问题的解题技巧(含答案)
(2)连接PQ,在运动过程中,不论t取何值时,总有线段PQ与线段AB平行.为什么?
(3)当t为何值时,△EDQ为直角三角形.
答案:
1、解:1)PD=PE。以图②为例,连接PC
∵△ABC是等腰直角三角形,P为斜边AB的中点,
∴PC=PB,CP⊥AB,∠DCP=∠B=45°,
(3)如图3,BD是正方形ABCD的对角线,L在BD上,且BL=BC,连结CL,点E是CL上任一点,EF⊥BD于点F,EG⊥BC于点G,猜想EF、EG、BD之间具有怎样的数量关系,直接写出你的猜想;
3.在 中,AC=BC, ,点D为AC的中点.
(1)如图1,E为线段DC上任意一点,将线段DE绕点D逆时针旋转90°得到线段DF,连结CF,过点F作 ,交直线AB于点H.判断FH与FC的数量关系并加以证明.
动态几何问题的解题技巧
解这类问题的基本策略是:
1.动中觅静:这里的“静”就是问题中的不变量、不变关系,动中觅静就是在运动变化中探索问题中的不变性.
2.动静互化:“静”只是“动”的瞬间,是运动的一种特殊形式,动静互化就是抓住“静”的瞬间,使一般情形转化为特殊问题,从而找到“动”与“静”的关系.
3.以动制动:以动制动就是建立图形中两个变量的函数关系,通过研究运动函数,用联系发展的观点来研究变动元素的关系.
又∵∠DPC+∠CPE=90°,∠CPE+∠EPB=90°
∴∠DPC=∠EPB
∴△DPC≌△EPB(AAS)
∴PD=PE
2)能,①当EP=EB时,CE= BC=1
②当EP=PB时,点E在BC上,则点E和C重合,CE=0
③当BE=BP时,若点E在BC上,则CE=
江苏省2018年中考数学选择填空压轴题:函数的动点问题(含解析)
函数的动点问题例1.如图①,在平行四边形ABCD中,AD=9cm,动点P从A点出发,以1cm/s的速度沿着A→B→C→A的方向移动,直到点P到达点A后才停止.已知△PAD的面积y(单位:cm 2)与点P移动的时间x(单位:s)之间的函数关系如图②所示,图②中a与b的和为___________.同类题型1.1如图,已知正方形ABCD的边长为4,E是BC边上的一个动点,AE⊥EF,EF交DC于点F,设BE=x,FC=y,则当点E从点B运动到点C时,y关于x的函数图象是()A.B.C.D.同类题型1.2如图,在矩形ABCD中,AB=2,AD=3,点E是BC边上靠近点B的三等分点,动点P从点A 出发,沿路径A→D→C→E运动,则△APE的面积y与点P经过的路径长x之间的函数关系用图象表示大致是()A.B.C.D.同类题型1.3如图,菱形ABCD的边长为2,∠A=60°,一个以点B为顶点的60°角绕点B旋转,这个角的两边分别与线段AD的延长线及CD的延长线交于点P、Q,设DP=x,DQ=y,则能大致反映y与x的函数关系的图象是()A.B.C.D.例2.如图,等边△ABC的边长为2cm,点P从点A出发,以1cm/s的速度沿AC向点C运动,到达点C停止;同时点Q从点A出发,以2cm/s的速度沿AB-BC向点C运动,到达点C停止,设△APQ的面积为y(cm2),运动时间为x(s),则下列最能反映y与x之间函数关系的图象是()A.B.C.D.同类题型2.1如图1,E为矩形ABCD边AD上的一点,点P从点B沿折线BE-ED-DC运动到点C时停止,点Q从点B沿BC运动到点C时停止,它们运动的速度都是2cm/s.若P、Q同时开始运动,设运动时间为t(s),△BPQ的面积为y(cm2),已知y与t的函数关系图象如图2,则下列结论错误的是()A.AE=12cm B.sin∠EBC=74C.当0<t≤8时,y=72t2D.当t=9s时,△PBQ是等腰三角形同类题型2.2矩形ABCD中,AB=6,BC=8,动点P从点B出发以每秒2个单位长的速度沿BA-AD-DCD 的方向运动到C点停止,动点Q以每秒1个单位的速度沿BC方向运动到C点停止,假设P、两点同时出发,运动时间是t秒,y=S△PBQ,则y与t的函数图象大致是()A.B.C.D.同类题型2.3如图,矩形ABCD中,AB=8cm,AD=12cm,AC与BD交于点O,M是BC的中点.P、Q两点沿着B→C→D方向分别从点B、点M同时出发,并都以1cm/s的速度运动,当点Q到达D点时,两点同时停止运动.在P、Q两点运动的过程中,与△OPQ的面积随时间t变化的图象最接近的是()A.B.C.D.例3.如图,正六边形ABCDEF的边长为6cm,P是对角线BE上一动点,过点P作直线l与BE垂直,动点P从B点出发且以1cm/s的速度匀速平移至E点.设直线l扫过正六边形ABCDEF区域的面积为S(cm 2),点P的运动时间为t(s),下列能反映S与t之间函数关系的大致图象是()A.B.C.D.同类题型3.1如图,在平面直角坐标系中,四边形OBCD是边长为4的正方形,平行于对角线BD的直线l 从O出发,沿x轴正方向以每秒1个单位长度的速度运动,运动到直线l与正方形没有交点为止.设直线l扫过正方形OBCD的面积为S,直线l运动的时间为t(秒),下列能反映S与t之间函数关系的图象是()。
#中考数学压轴题动态几何题型精选解析
2018中考数学压轴题动态几何题型精选解读<三)例题如图1,在直角坐标系中,已知点A<0,2)、点B<﹣2,0),过点B和线段OA地中点C作直线BC,以线段BC为边向上作正方形BCDE.<1)填空:点D地坐标为,点E地坐标为.<2)若抛物线y=ax2+bx+c<a≠0)经过A、D、E三点,求该抛物线地解读式.<3)若正方形和抛物线均以每秒个单位长度地速度沿射线BC同时向上平移,直至正方形地顶点E落在y轴上时,正方形和抛物线均停止运动.①在运动过程中,设正方形落在y轴右侧部分地面积为s,求s关于平移时间t<秒)地函数关系式,并写出相应自变量t地取值范围.②运动停止时,求抛物线地顶点坐标.思路分析:<1)构造全等三角形,由全等三角形对应线段之间地相等关系,求出点D、点E地坐标;<2)利用待定系数法求出抛物线地解读式;<3)本问非常复杂,须小心思考与计算:①为求s地表达式,需要识别正方形<与抛物线)地运动过程.正方形地平移,从开始到结束,总共历时秒,期间可以划分成三个阶段:当0<t≤时,对应图<3)a;当<t≤1时,对应图<3)b;当1<t≤时,对应图<3)c.每个阶段地表达式不同,请对照图形认真思考;②当运动停止时,点E到达y轴,点E<﹣3,2)运动到点E′<0,),可知整条抛物线向右平移了3个单位,向上平移了个单位.由此得到平移之后地抛物线解读式,进而求出其顶点坐标.解:<1)由题意可知:OB=2,OC=1.如图<1)所示,过D点作DH⊥y轴于H,过E点作EG⊥x轴于G.易证△CDH≌△BCO,∴DH=OC=1,CH=OB=2,∴D<﹣1,3);同理△EBG≌△BCO,∴BG=OC=1,EG=OB=2,∴E<﹣3,2).∴D<﹣1,3)、E<﹣3,2).<2)抛物线经过<0,2)、<﹣1,3)、<﹣3,2),则解得∴.<3)①当点D运动到y轴上时,t=.当0<t≤时,如图<3)a所示.设D′C′交y轴于点F∵tan∠BCO==2,又∵∠BCO=∠FCC′∴tan∠FCC′=2,即=2∵CC′=5t,∴FC′=25t.∴S△CC′F=CC′•FC′=t×t=5t2当点B运动到点C时,t=1.当<t≤1时,如图<3)b所示.设D′E′交y轴于点G,过G作GH⊥B′C′于H.在Rt△BOC中,BC=∴GH=,∴CH=GH=∵CC′=t,∴HC′=t﹣,∴GD′=t﹣∴S梯形CC′D′G=<t﹣+t)=5t﹣当点E运动到y轴上时,t=.当1<t≤时,如图<3)c所示设D′E′、E′B′分别交y轴于点M、N∵CC′=t,B′C′=,∴CB′=t﹣,B′N=2CB′=t﹣∵B′E′=,∴E′N=B′E′﹣B′N=﹣t∴E′M=E′N=<﹣t)∴S△MNE′=<﹣t)•<﹣t)=5t2﹣15t+∴S 五边形B′C′D′MN=S正方形B′C′D′E′﹣S△MNE′=<5t2﹣15t+)=﹣5t2+15t﹣综上所述,S与x地函数关系式为:当0<t≤时,S=5t2当<t≤1时,S=5t当1<t≤时,S=﹣5t2+15t②当点E运动到点E′时,运动停止.如图<3)d所示∵∠CB′E′=∠BOC=90°,∠BCO=∠B′CE′∴△BOC∽△E′B′C∴∵OB=2,B′E′=BC=∴∴CE′=∴OE′=OC+CE′=1+=∴E′<0,)由点E<﹣3,2)运动到点E′<0,),可知整条抛物线向右平移了3个单位,向上平移了个单位.∵=∴原抛物线顶点坐标为<,)∴运动停止时,抛物线地顶点坐标为<,).点评:本题是非常典型地动面型综合题,全面考查了初中数学代数几何地多个重要知识点,包括:二次函数地图象与性质、待定系数法求解读式、抛物线与几何变换<平移)、相似三角形地判定与性质、全等三角形地判定与性质、正方形地性质等.难点在于第<3)问,识别正方形和抛物线平移过程地不同阶段是关键所在.作为中考压轴题,本题涉及考点众多,计算复杂,因而难度很大,对考生综合能力要求很高,具有很好地区分度.。
初中数学动态动点探究中考压轴
这种题型包括有动点问题,动线问题和动圆问题三类。
主要是考查学生对几何元素的运动变换的性质,它主要揭示“运动”与“静止”,“一般”与“特殊”的内在联系,以及在一定条件下可以相互转化的唯物辨证关系。
解决此类问题的关键是将运动的几何元素当作静止来加以解答,即“化动为静”的思路;并能在从相对静止的瞬间清晰地发现图形变换前后各种量与量之间的关系,通过归纳得岀规律和结论,并加以论证。
中考题中的动态型试题是考查学生创新意识的重要题型之一。
(一)动点型动态探究题例1.如图,在直角坐标系中,0是原点,A、B、C三点的坐标分别为A (18, 0 ),B (18, 6),C (8,6),四边形OABC是梯形,点P、Q同时从原点出发,分别作匀速运动,其中点P沿0A向终点A运动,速度为每秒1个单位,点Q沿OC、CB向终点B运动,当这两点有一点到达自己的终点时,另一点也停止运动。
(1)求出直线0C的解析式及经过0、A、C三点的抛物线的解析式。
(2)试在(1)中的抛物线上找一点D,使得以0、A、D为顶点的三角形与△ A0C全等,请直接写出点D的坐标。
(3)设从出发起运动了t秒,如果点Q的速度为每秒2个单位,试写出点Q的坐标,并写出此时t的取值范围。
(4)设从出发起,运动了t秒钟,当P、Q两点运动的路程之和恰好等于梯形0ABC周长的一半,这时,直线PQ能否把梯形的面积也分成相等的两部分,如有可能,请求出t分析:(1)较简单,利用待定系数法可解决。
(2)要想△ A0D与厶0AC全等,且点D也在抛物线上,则易知点D与点C应恰好关于抛物线对称轴对称,从而写岀点D的坐标。
(3)应注意点Q在线段0C上和线段CB上两种情形,再根据坐标与线段特征关系,可确定点Q的坐标。
(4)要想准确探求是否存在直线PQ将梯形0ABC周长和面积等分,可先从等分周长入手,找出与之相关的时间t (秒)的关系式,再分别计算相应两部分的面积,可获得正确结论。
解:(1 )T0、C两点的坐标分别为0 (0,0 ),C (8,6)3 36 8k, k —直线0C的解析式为y — x•••设0C的解析式为y = kx 4 4•••抛物线过0 (0,0),A (18,0),C (8,6)三点•设抛物线解析式为y= a (x —0) (x —18)再将C (8,6)代入6= a (8-0) (8- 18)3 3 2 27a y x x40 40 20(2)要使△ AOD ◎△ AOC ,且点D 在抛物线上,则点D 与点C 关于抛物线对称轴对称由(1易知抛物线的对称轴为 x = 9.由点C (8, 6)知点D 坐标为(10, 6) ••• CQ = 2t — 10.•.点Q 的横坐标为 2t — 10+ 8= 2t — 2• Q (2t — 2, 6) (5<t w 10)(4)由条件知:梯形 OABC 的周长为44当Q 点在OC 上时,P 点运动的路程为t ,贝U Q 点运动的路程为(22 — t )3△ OPQ 中,OP 边上的高为:(22 t) 3513s OPQ 2t(22 t) 51S梯形OABC2(1810) 6 84依题意有:1 3 1 t(22 t) 84252整理得:t 2— 22t + 140= 0222 4 140 0•这样的t 不存在当Q 在BC 上, Q 走过的路程为(22 — t )CQ 22 t 1012 t1 1 S 梯形 OCQP6(22 t 10 t) 36 84 -22•这样的t 值也不存在(3)当Q 在OC 上运动时,设 Q(m , 3 m) 4 2m依题意有:32 2肆(2t)8t Q(8t , -t)(0 t 5)5 5 5当Q 在CB 上时,点•/ OC = 10•不存在t值,使得P、Q两点同时平分梯形的周长和面积。
初中中考数学压轴题型研究—动态问题
中考数学压轴题型研究——动向问题动向几何问题是近几年北京市中考数学和各区模拟考试中压轴题的一大热点和难点,察看的知识点特别多,几乎涉及到代数和几何的各个知识点,如坐标系中的计算,一次函数和二次函数的图象和性质,全等三角形,相似三角形,平移、翻折、旋转三种几何变换等等。
对学生对知识的熟练运用以及弄清本质下进行迁移和转变的能力要求特别高,同时,对函数与方程、分类谈论和数形结合三大数学思想的察看也是必考的内容。
因为这类问题既侧重对常有知识点的察看又能表现学生思想和能力上的差异,所以一般都在压轴题的地址出现。
很多同学也对这类问题比较头疼,感觉很难掌握要领,真切获取打破。
新年光数学教研组的各位老师经过长远的深入研究,发现了其内在的规律,最后我们给出这类问题的一套解决方案,从而帮助很多初三同学完整战胜了这类难题。
这套方案的内容可以这么表述:一个目标,两种思想,三个重点点。
一个目标就是“以静制动” ,无论题目中是点在动还是线在动甚至是一个几何图形在动,每个问题的解决都是某种静态的情况,只要把这类情况解析清楚,做出相应图形,利用自己掌握的代数和几何的知识进行求解就行了。
两种思想是分类谈论思想和函数与方程的思想,先说分类谈论,在动向问题中一般有两种分类的种类,一种是存在性问题,此时要依照几何图形自己的性质和特色进行分类,比方等腰三角形就按哪个是顶角分成三类,平行四边形按谁和谁是对边进行分类;一种是函数关系类问题,一般依照运动的不同样阶段进行分类,常有的是求某个图形的面积和变量之间的函数关系。
再说函数与方程的思想,动向题的本质就是含字母的计算题,只要找到跟要求目标相关的等量关系尔后写出方程(组)进行求解即可。
三个重点点是:审题(看清问题中运动的初步地址,何时结束,是在直线上还是线段上运动等)、作图(每一种情况都要分别作图)、标图(把题目中的基本数量和各种地址关系标清楚,特别是特其他角度和特其他数量和地址关系)其他,作为综合题,一般会分成好几问,掌握好特别和一般情况之间的联系和差异也是解题中特别要注意的地方。
2018年二次函数压轴题解题技巧
专业资料整理分享图1图2二次函数压轴题解题技巧引言:解数学压轴题一般可以分为三个步骤:认真审题,理解题意、探究解题思路、正确解答。
审题要全面审视题目的所有条件和答题要求,在整体上把握试题的特点、结构,以利于解题方法的选择和解题步骤的设计。
解数学压轴题要善于总结解数学压轴题中所隐含的重要数学思想,如转化思想、数形结合思想、分类讨论思想及方程的思想等。
认识条件和结论之间的关系、图形的几何特征与数、式的数量、结构特征的关系,确定解题的思路和方法.当思维受阻时,要及时调整思路和方法,并重新审视题意,注意挖掘隐蔽的条件和内在联系,既要防止钻牛角尖,又要防止轻易放弃。
一、动态:动点、动线1.如图,抛物线与x 轴交于A (x 1,0)、B (x 2,0)两点,且x 1>x 2,与y 轴交于点C (0,4),其中x 1、x 2是方程x 2-2x -8=0的两个根.(1)求这条抛物线的解析式; (2)点P 是线段AB 上的动点,过点P 作PE ∥AC ,交BC 于点E ,连接CP ,当△CPE 的面积最大时,求点P 的坐标;(3)探究:若点Q 是抛物线对称轴上的点,是否存在这样的点Q ,使△QBC 成为等腰三角形?若存在,请直接写出所有符合条件的点Q二、圆2.如图1,在平面直角坐标系xOy ,二次函数y =ax 2+bx y 轴交于点C ,与x 轴交于点A 、B ,点A 在原点的左侧,点B 的坐标为(3,0),OB =OC ,tan ∠ACO = 13.(1)求这个二次函数的解析式;(2)若平行于x 轴的直线与该抛物线交于点M 、N ,且以MN 为直径的圆与x 轴相切,求该圆的半径长度;(3)如图2,若点G (2,y )是该抛物线上一点,点P 是直线AG 下方的抛物线上的一动点,当点P 运动到什么位置时,△AGP 的面积最大?求此时点P 的坐标和△AGP 的最大面积.三、比例比值取值范围3.如图是二次函数k m x y ++=2)(的图象,其顶点坐标为M(1,-4).(1)求出图象与x 轴的交点A,B 的坐标; (2)在二次函数的图象上是否存在点P ,使MAB PAB S S ∆∆=45,若存在,求出P 点的坐标;若不存在,请说明理由;(3)将二次函数的图象在x 轴下方的部分沿x 轴翻折,图象的其余部分保持不变,得到一个新的图象,请你结合这个新的图象回答:当直线)1(<+=b b x y 与此图象有两个公共点时,b 的取值范围.四、探究型4. 如图,直线33+=x y 交x 轴于A 点,交y 轴于B 点,过A 、B 两点的抛物线交x 轴于另一点C (3,0).⑴ 求抛物线的解析式;⑵ 在抛物线的对称轴上是否存在点Q ,使△ABQ若存在,求出符合条件的Q 点坐标;若不存在,请说明理由.五、最值类5.如图,在平面直角坐标系中,二次函数c bx x y ++=2的图象与x 轴交于A 、B 两点,A 点在原点的左侧,B 点的坐标为(3,0),与y 轴交于C (0,-3)点,点P 是直线BC下方的抛物线上一动点.(1)求这个二次函数的表达式.(2)连结PO 、PC ,并把△POC 沿CO 翻折,得到四边形POP /C , 那么是否存在点P ,使四边形POP /C 为菱形?若存在,请求出此时点P 的坐标;若不存在请说明理由. (3)当点P 运动到什么位置时,四边形 ABPC 的面积最大并求出此时P 点的坐标和四边形ABPC 的最大面积.课后作业1.在平面直角坐标系中,已知A (-4,0),B (1,0),且以AB 为直径的圆交y 轴的正半轴于点C ,过点C 作圆的切线交x 轴于点D .(1)求点C 的坐标和过A ,B ,C 三点的抛物线的解析式; (2)求点D 的坐标; (3)设平行于x 轴的直线交抛物线于E ,F 两点,问:是否存在以线段EF 为直径的圆,恰好与x2.已知:如图,在平面直角坐标系xOy 中,矩形OABC 的边OA 在y 轴的正半轴上,OC 在x 轴的正半轴上,OA =2,OC =3.过原点O 作∠AOC 的平分线交AB 于点D ,连接DC ,过点D 作DE ⊥DC ,交OA 于点E . (1)求过点E 、D 、C 的抛物线的解析式;(2)将∠EDC 绕点D 按顺时针方向旋转后,角的一边与y 轴的正半轴交于点F ,另一边与线段OC 交于点G .如果DF 与(1)中的抛物线交于另一点M ,点M 的横坐标为56,那么EF =2GO 是否成立?若成立,请给予证明;若不成立,请说明理由;(3)对于(2)中的点G ,在位于第一象限内的该抛物线上是否存在点Q ,使得直线GQ 与AB 的交点P 与点C 、G 构成的△PCG 是等腰三角形?若存在,请求出点Q 的坐标;若不存在,请说明理由.3.如图,抛物线y =ax 2+bx +c (a ≠0)与x 轴交于A (-3,0)、B 两点,与y 轴相交于点C (0,3).当x =-4和x =2时,二次函数y =ax 2+bx +c (a ≠0)的函数值y 相等,连结AC 、BC . (1)求实数a ,b ,c 的值;(2)若点M 、N 同时从B 点出发,均以每秒1个单位长度的速度分别沿BA 、BC 边运动,其中一个点到达终点时,另一点也随之停止运动.当运动时间为t 秒时,连结MN ,将△BMN 沿MN 翻折,B 点恰好落在AC 边上的P 处,求t 的值及点P 的坐标;1x2+bx-2与x轴交于A、B两点,与y轴交于C点,且A(一1,4. 如图,抛物线y=20).⑴求抛物线的解析式及顶点D的坐标;⑵判断△ABC的形状,证明你的结论;⑶点M(m,0)是x轴上的一个动点,当CM+DM的值最小时,求m的值.面积最大5、如图,在平面直角坐标系中,点A、C的坐标分别为(-1,0)、(0,3-),点B在x轴上.已知某二次函数的图象经过A、B、C三点,且它的对称轴为直线x=1,点P为直线BC下方的二次函数图象上的一个动点(点P与B、C不重合),过点P作y轴的平行线交BC于点F.(1)求该二次函数的解析式;(2)若设点P的横坐标为m,试用含m的代数式表示线段PF的长;(3)求△PBC面积的最大值,并求此时点P的坐标.6、在平面直角坐标系中,已知抛物线经过A (-4,0),B (0,-4),C (2,0)三点. (1)求抛物线的解析式;(2)若点M 为第三象限内抛物线上一动点,点M 的横坐标为m ,△AMB 的面积为S .求S 关于m 的函数关系式,并求出S 的最大值.(3)若点P 是抛物线上的动点,点Q 是直线y =-x 上的动点,判断有几个位置能够使得点P 、Q 、B 、O 为顶点的四边形为平行四边形,直接写出相应的点Q讨论等腰7、如图,已知抛物线y =21x2+bx +c 与y 轴相交于C ,与x 轴相交于A 、B ,点A 的坐标为(2,0),点C 的坐标为(0,-1). (1)求抛物线的解析式;(2)点E 是线段AC 上一动点,过点E 作DE ⊥x 轴于点D ,连结DC ,当△DCE 的面积最大时,求点D 的坐标;(3)在直线BC 上是否存在一点P ,使△ACP 为等腰三角形,若存在,求点P 的坐标,备用图8、(武汉市中考)如图,已知抛物线y =x2+bx +3与x 轴交于点B (3,0),与y 轴交于点A ,P 是抛物线上的一个动点,点P 的横坐标为m (m >3),过点P 作y 轴的平行线PM ,交直线AB 于点M . (1)求抛物线的解析式;(2)若以AB 为直径的⊙N 与直线PM 相切,求此时点M 的坐标; (3)在点P 的运动过程中,△APM 能否为等腰三角形?若能,求出点M 的坐标;若不能,请说明理由.论直角三角形9、如已知:如图一次函数y =21x +1的图象与x 轴交于点A ,与y 轴交于点B ;二次函数y =21x2+bx +c 的图象与一次函数y =21x +1的图象交于B 、C 两点,与x 轴交于D 、E两点且D 点坐标为(1,0) (1)求二次函数的解析式;(2)求四边形BDEC 的面积S ; (3)在x 轴上是否存在点P ,使得△PBC 是以P 为直角顶点的直角三角形?若存在,求出所有的点P ,若不存在,请说明理由.10、(九市联考)如图,抛物线与x 轴交于A (-1,0)、B (3,0)两点,与y 轴交于点C(0,-3),设抛物线的顶点为D . (1)求该抛物线的解析式与顶点D 的坐标; (2)以B 、C 、D 为顶点的三角形是直角三角形吗?为什么?(3)探究坐标轴上是否存在点P ,使得以P 、A 、C 为顶点的三角形与△BCD 相似?若存在,请指出符合条件的点P 的位置,并直接写出点P 的坐标;若不存在,请说明理由.讨论四边形11、二次函数y =x2+px +q (p <0)图象与x 轴交于A 、B 两点,与y 轴交于点C (0,-1),△ABC 的面积为45.(1)求该二次函数的关系式;(2)过y 轴上的一点M (0,m )作y 轴的垂线,若该垂线与△ABC 的外接圆有公共点,求m 的取值范围;(3)在该二次函数的图象上是否存在点D ,使四边形ACBD 为直角梯形?若存在,求出点D 的坐标;若不存在,请说明理由.2017中考二次函数压轴题专题分类训练题型一:面积问题【例1】如图2,抛物线顶点坐标为点C (1,4),交x 轴于点A (3,0),交y 轴于点B . (1)求抛物线和直线AB 的解析式; (2)求△CAB 的铅垂高CD 及S △CAB ;(3)设点P 是抛物线(在第一象限内)上的一个动点,是否存在一点P ,使S △PAB =89S △CAB ,若存在,求出P 点的坐标;若不存在,请说明理由.【变式练习】1.如图,在直角坐标系中,点A 的坐标为(-2,0),连结OA ,将线段OA 绕原点O 顺时针旋转120°,得到线段OB .(1)求点B 的坐标; (2)求经过A 、O 、B 三点的抛物线的解析式;(3)在(2)中抛物线的对称轴上是否存在点C ,使△BOC 的周长最小?若存在,求出点C 的坐标;若不存在,请说明理由.(4)如果点P 是(2)中的抛物线上的动点,且在x 轴的下方,那么△PAB 是否有最大面积?若有,求出此时P 点的坐标及△PAB 的最大面积;若没有,请说明理由.2.如图,抛物线y = ax 2 + bx + 4与x 轴的两个交点分别为A (-4,0)、B (2,0),与y 轴交于点C ,顶点为D .E (1,2)为线段BC 的中点,BC 的垂直平分线与x 轴、y 轴分别交于F 、G . (1)求抛物线的函数解析式,并写出顶点D(2)在直线EF 上求一点H ,使△CDH (3)若点K 在x 轴上方的抛物线上运动,当K 运动到什么位置时, △EFK 的面积最大?并求出最大面积.3.如图,已知:直线3+-=x y 交x 轴于点A ,交y 轴于点B ,抛物线y=ax 2+bx+c 经过A 、B 、C (1,0)三点. (1)求抛物线的解析式; (2)若点D 的坐标为(-1,0),在直线3+-=x y 上有一点P,使ΔABO 与ΔADP 相似,求出点P 的坐标;(3)在(2)的条件下,在x 轴下方的抛物线上,是否存在点E ,使ΔADE 的面积等于四边形APCE 的面积?如果存在,请求出点E 的坐标;如果不存在,请说明理由.题型二:构造直角三角形【例2】如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为x=1,且抛物线经过A(-1,0)、C(0,-3)两点,与x轴交于另一点B.(1)求这条抛物线所对应的函数关系式;(2)在抛物线的对称轴x=1上求一点M,使点M到点A的距离与到点C的距离之和最小,并求此时点M的坐标;(3)设点P为抛物线的对称轴x=1上的一动点,求使∠PCB=90º的点P的坐标.E【变式练习】1.如图,抛物线y=与x轴交于A、B两点(点A在点B的左侧),与y 轴交于点C.(1)求点A、B的坐标;(2)设D为已知抛物线的对称轴上的任意一点,当△ACD的面积等于△ACB的面积时,求点D的坐标;(3)若直线l过点E(4,0),M为直线l上的动点,当以A、B、M为顶点所作的直角三角形有且只有三个时,求直线l的解析式.3.在平面直角坐标系内,反比例函数和二次函数y=k (x 2+x ﹣1)的图象交于点A (1,k )和点B (﹣1,﹣k ).(1)当k=﹣2时,求反比例函数的解析式;(2)要使反比例函数和二次函数都是y 随着x 的增大而增大,求k 应满足的条件以及x 的取值范围;(3)设二次函数的图象的顶点为Q ,当△ABQ 是以AB 为斜边的直角三角形时,求k 的值4.如图(1),抛物线42y x x =+-与y 轴交于点A ,E (0,b )为y 轴上一动点,过点E的直线y x b =+与抛物线交于点B 、C .(1)求点A 的坐标;4>-时,上述关BOC 是以b ;若题型三:构造等腰三角形【例3】如图,已知抛物线32+y(a≠0)与x轴交于点A(1,0)和点B (-3,ax+=bx0),与y轴交于点C.(1)求抛物线的解析式;(2)在x轴上是否存在一点Q使得△ACQ为等腰三角形?若存在,请直接写出所有符合条件的点Q的坐标;若不存在,请说明理由;(3)设抛物线的对称轴与x轴交于点M ,问在对称轴上是否存在点P,使△CMP为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.Array 2.如图,抛物线254=-+经过ABCy ax ax∥轴,点A在x轴△的三个顶点,已知BC x上,点C在y轴上,且AC=BC.(1)写出A,B,C三点的坐标并求抛物线的解析式;△是等腰三角(2)探究:若点P是抛物线对称轴上且在x轴下方的动点,是否存在PAB形.若存在,求出所有符合条件的点P坐标;不存在,请说明理由.题型四:构造相似三角形【例4】如图,已知抛物线经过A(﹣2,0),B(﹣3,3)及原点O,顶点为C.(1)求抛物线的解析式;(2)若点D在抛物线上,点E在抛物线的对称轴上,且A、O、D、E为顶点的四边形是平行四边形,求点D的坐标;(3)P是抛物线上的第一象限内的动点,过点P作PM⊥x轴,垂足为M,是否存在点P,使得以P、M、A为顶点的三角形△BOC相似?若存在,求出点P的坐标;若不存在,请说明理由.【变式练习】1.如图,已知抛物线经过A(4,0),B(1,0),C(0,-2)三点.(1)求该抛物线的解析式;(2)在直线AC上方的该抛物线上是否存在一点D,使得△DCA的面积最大?若存在,求出点D的坐标及△DCA面积的最大值;若不存在,请说明理由.(3)P是直线x=1右侧的该抛物线上一动点,过P作PM⊥x轴,垂足为M,是否存在P 点,使得以A、P、M为顶点的三角形与△OAC相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.2. 如图,二次函数的图象经过点D(0,397),且顶点C 的横坐标为4,该图象在x 轴上截得的线段AB 的长为6. (1)求二次函数的解析式;(2)在该抛物线的对称轴上找一点P ,使PA+PD 最小,求出点P 的坐标;(3)在抛物线上是否存在点Q ,使△QAB 与△ABC 相似?如果存在,求出点Q 的坐标;如果不存在,请说明理由.3.如图,二次函数y =ax 2+bx +c 的图象交x 轴于A (﹣1,0),B (2,0),交y 轴于C (0,﹣2),过A ,C 画直线.(1)求二次函数的解析式; (2)点P 在x 轴正半轴上,且PA =PC ,求OP 的长; (3)点M 在二次函数图象上,以M 为圆心的圆与直线AC 相切,切点为H . ①若M 在y 轴右侧,且△CHM ∽△AOC (点C 与点A 对应),求点M 的坐标;②若⊙M的半径为,求点M的坐标.题型六:构造平行四边形【例7】如图,在平面直角坐标系中,抛物线经过A(—1,0),B(3,0),C(0,—1)三点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学压轴题专题解析---几何动态探究问题—动点+动线如图,在△ABC 中,AB=AC=10cm ,BD ⊥AC 于点D ,且BD=8cm .点M 从点A 出发,沿AC 的方向匀速运动,速度为2cm/s ;同时直线PQ 由点B 出发,沿BA 的方向匀速运动,速度为1cm/s ,运动过程中始终保持PQ//AC ,直线PQ 交AB 于点P 、交BC 于点Q 、交BD 于点F .连接PM ,设运动时间为t (0<t <5).(1)当t 为何值时,PM//BC ?(2)设四边形PQCM 的面积为y cm 2,求y 与t 之间的函数关系式;(3)已知某一时刻t ,有S 四边形PQCM =43S △ABC 成立,请你求出此时t的值.[来源学科网ZXXK]第1题图解:(1)∵当PM//BC 时,△APM ∽△ABC ,∴AP =AM ,∴10-t =2t ,∴t =310;(2)∵四边形PQCM 为梯形,y =21(PQ +MC )DF ,∵PQ =PB =t ,MC =10-2t ,BF :BD =BP :AB,∴BF =54108t t ,∴DF =8-t 54,∴y =21(t +10-2t)·(8-t 54)=252t -8t +40;(3)由(2)知,252t -8t +40=40×43,解得t =10±53,又∵0<t<5,∴当t =10-53s 时,使S 四边形PQCM =43S △ABC 成立. 2.如图,在四边形ABCD 中,AD//BC ,AD =6cm ,CD =4cm ,BC =BD =10cm ,点P 由B 出发沿BD 方向匀速运动,速度为1cm/s ;同时,线段EF 由DC 出发沿DA 方向匀速运动,速度为1cm/s ,交BD 于Q ,连接PE .若设运动时间为t (s )(0<t <5).解答下列问题:(1)当t 为何值时,PE//AB ;(2)设△PEQ 的面积为y (cm 2),求y 与t 之间的函数关系式;(3)是否存在某一时刻t ,使S △PEQ =252S △BCD ?若存在,求出此时t的值;若不存在,说明理由;(4)连接PF ,在上述运动过程中,五边形PFCDE 的面积是否发生变化?说明理由.第2题图解:(1)当PE//AB 时,∴DBDPDADE .而DE =t ,DP =10-t ,∴10106tt ,∴t =415,∴当t =415s 时,PE//AB ;(2)∵AD//BC,线段EF 由DC 出发沿DA 方向匀速运动,∴EF//CD ,∴四边形CDEF 是平行四边形, ∴∠DEQ =∠C ,∠DQE =∠BDC .∵BC =BD =10,∴△DEQ ∽△BCD,∴CD EQ BCDE ,410EQt,∴EQ =52t,如解图,过B 作BM ⊥CD 交CD 于M ,过P 作PN ⊥EF 交EF 于N ,∵BC =BD ,BM ⊥CD ,CD =4cm ,∴CM =21CD =2cm ,∴BM =6496410021022cm ,∵EF//CD ,∴∠BQF =∠BDC ,∠BFG =∠BCD ,又∵BD =BC ,∴∠BDC =∠BCD ,∴∠BQF =∠BFG ,∵ED//BC ,∴∠DEQ =∠QFB ,又∵∠EQD =∠BQF ,∴∠DEQ =∠DQE ,∴DE =DQ ,∴ED =DQ =BP =t ,∴PQ =10-2t .又∵△PNQ ∽△BMD ,∴BM PN BDPQ ,∴6410210PN t ,∴PN =46(1)5t,∴S △PEQ =21EQ ·PN =t 522146(1)5t=24646255tt ;第2题解图(3)存在.此时t 的值为1s 或4s .S △BCD =21CD ·BM =21×4×46=86,若S △PEQ =252S △BCD ,则有24646255tt =252×86,解得t 1=1,t 2=4,[来源:学科网]∴当t=1或4时,S △PEQ =252S △BCD ;(4)五边形PFCDE 的面积不发生变化.理由如下:[来源学科网ZXXK][来源:]在△PDE 和△FBP 中,∵DE =BP =t ,PD =BF =10-t ,∠PDE =∠FBP ,∴△PDE ≌△FBP (SAS ).∴S 五边形PFCDE=S △PDE +S 四边形PFCD=S △FBP +S 四边形PFCD=S △BCD =86,∴在运动过程中,五边形PFCDE 的面积不变.3.如图.在△ABC中.AB=AC=5cm,BC=6cm,AD是BC边上的高.点P由C出发沿CA方向匀速运动.速度为1cm/s.同时,直线EF由BC出发沿DA方向匀速运动,速度为1cm/s,EF//BC,并且EF分别交AB、AD、AC于点E,Q,F,连接PQ.若设运动时间为t(s)(0<t<4),解答下列问题:(1)当t为何值时,四边形BDFE是平行四边形?(2)设四边形QDCP的面积为y(cm2),求出y与t之间的函数关系式;(3)是否存在某一时刻t,使S四边形QDCP:S△ABC=9:20?若存在,求出此时t的值;若不存在,说明理由;(4)是否存在某一时刻t,使点Q在线段AP的垂直平分线上?若存在,求出此时点F到直线PQ的距离h;若不存在,请说明理由.第3题图解:(1)如解图①中,连接DF,第3题解图①∵AB =AC =5,BC=6,AD ⊥BC ,∴BD =CD =3,在Rt △ABD 中,AD =223-5=4,∵EF//BC ,∴△AEF ∽△ABC ,∴AD AQBC EF ,∴446tEF ,∴EF =23(4-t ),∵EF//BD ,∴EF =BD 时,四边形EFDB 是平行四边形,∴23(4-t )=3,∴t =2,∴t =2s 时,四边形EFDB 是平行四边形;(2)如解图②中,作PN ⊥AD 于N ,第3题解图②∵PN//DC ,∴ACAP DCPN ,∴553tPN ,∴PN =53(5-t ),∴y =21DC ·AD-21AQ ·PN =6-21(4-t )·53(5-t )=6-(t t10271032+6)=t t 10271032(0<t <4);(3)存在.理由:由题意(t t10271032):12=9:20,解得t =3或6(舍去);∴当t =3s 时,S 四边形QDCP:S △ABC =9:20;(4)存在.理由如下:如解图③,作QN ⊥AC 于N ,作FH ⊥PQ 于H .第3题解图③∵QA =QP ,QN ⊥AP ,∴AN =NP =21AP =21(5-t ),由题意cos ∠CAD =AQAN CA AD ,∴544521tt ,∴t =37,∴t =37s 时,点Q 在线段AP 的垂直平分线上.∵sin ∠FPH =53PFFH,∵PA =5-37=38,AF =AQ122554,∴PF =127,∴FH =207.∴点F 到直线PQ 的距离h =207.4./math/report/detail/fd6c3060-1058-48bc-830c-f3675b0cba1b已知,如图,在△ABC 中,已知AB=AC=5 cm ,BC=6cm .点P 从点B 出发,沿BA 方向匀速运动,速度为1cm/s ;同时,直线QD 从点C 出发,沿CB 方向匀速运动,速度为1cm/s ,且QD ⊥BC ,与AC ,BC 分别交于点D ,Q ;当直线QD 停止运动时,点P 也停止运动.连接PQ ,设运动时间为t (0<t <3)s .解答下列问题:(1)当t 为何值时,PQ//AC ?(2)设四边形APQD 的面积为y (cm 2),求y 与t 之间的函数关系式;(3)是否存在某一时刻t ,使S 四边形APQD :S △ABC =23:45?若存在,求出t 的值;若不存在,请说明理由.第4题图解:(1)当t s 时,PQ//AC ,∵点P 从点B 出发,沿BA 方向匀速运动,速度为1 cm/s ;同时,直线QD 从点C 出发,沿CB 方向匀速运动,速度为1cm/s ,∴BP =t ,BQ =6-t .∵PQ//AC ,∴△BPQ ∽△BAC ,第4题解图∴C B Q B BA BP ,即665t t,解得t =1130s .∴当t 为1130s 时,PQ//AC ;(2)过点A 、P 作AN ⊥BC ,PM ⊥BC 于点N 、M ,∵AB =AC =5cm ,BC =6cm ,∴BN =CN =3cm ,∴AN =222235BNAB=4cm .∵AN ⊥BC ,PM ⊥BC ,∴△BPM ∽△BAN ,。