β-Nicotinamide_mononucleotide_COA_21040_MedChemExpress

合集下载

生物化学课程作业

生物化学课程作业

绪论查找并了解5-8件与生物化学课程相关的诺贝尔生理医学奖工作及意义。

第一章核酸8/10/3[课后小结]熟悉核酸的分类和生物学功能、分子组成、化学结构特点。

掌握DNA一级结构、高级结构、核小体、核酸的变性、复性、分子杂交。

理解核酸(DNA与RNA)结构与功能的关系。

熟悉核酸重要的理化性质、变性和复性及其应用。

了解核酸酶的概念分类名词解释(英语解释)单核苷酸(mononucleotide) 3′,5′-磷酸二酯键(phosphodiester bonds)碱基互补规律(complementary base pairing) 核酸的变性与复性(denaturation、renaturation)退火(annealing)增色效应(hyper chromic effect)发夹结构(hairpin structure)DNA的熔解温度(melting temperature T m)分子杂交(molecular hybridization)环化核苷酸(cyclic nucleotide)DNA复性(退火)一般在低于其T m值约20℃的温度下进行的。

填空题1.DNA双螺旋结构模型是___于___年提出的。

2.核酸的基本结构单位是___。

3.脱氧核糖核酸在糖环___位置不带羟基。

4.两类核酸在细胞中的分布不同,DNA主要位于___中,RNA主要位于___中。

5.核酸分子中糖环与碱基之间的连键为___键。

核苷与核苷之间通过___键连接成多聚体。

6.核酸的特征元素___。

7.B型DNA双螺旋的两条多核苷酸连为___、___方向的螺旋,螺距为___,每匝螺旋有___对碱基,每对碱基的转角是___。

8.在DNA分子中,一般来说G-C含量高时,比重___,T m(熔解温度)则___,分子比较稳定。

9.在___条件下,互补的单股核苷酸序列将缔结成双链分子。

10.___RNA分子指导蛋白质合成,___RNA分子用作蛋白质合成中活化氨基酸的载体。

烟酰胺单核苷酸(NMN)的活性与化学制备的研究进展

烟酰胺单核苷酸(NMN)的活性与化学制备的研究进展

2020年12月Dec. 2020第6期Issue 6江西科技师范大学学报Journal of Jiangxi Science & Technology Normal University烟酰#单核&酸(NMN )的活性与化学制备的硏究进展李 旺A ,郭文彬A ,王晓季A"(1.江西科技师范大学生命科学学院,江西南昌330013;2.东莞理工学院化学工程与能源技术学院,广东东莞523830)摘要:烟酰胺单核/酸(NM N )作为生物体内烟酰胺腺瞟吟二核/酸(NAD+)补救合成途径中的关键前体,能够一定程度上延缓衰老与治疗由于衰老引起的老年退行性疾病、2型糖尿病等%本文综述了 NAD+的主要活性及其生物体内的生物合成方法,以及其前体NMN 的最新的化学合成方法。

关键词:烟酰胺腺瞟吟二核/酸(NAD+);烟酰胺单核/酸(NMN );抗衰老;化学合成中图分类号:06-1文献标识码:A 文章编号:2096-854X (2020)06-0112-04Progress of The Activity and Synthesis of NicotinamideMononucleotide (NMN )Li Wang 1, Guo Wenbin 1, Wang Xiaoji 1,2,*(1.School of Life Science, Jiangxi Science and Technology Normal University, Nanchang 330013,Jiangxi, P.R. China; 2.College of Chemical Engineering and Engergy Technology, DongguanUniversity of Technology, Dongguan 523830, Guangdong, P.R. China )Abstract : Nicotinamide mononucleotide (NMN ) is a key precursor of nicotinamide adenine dinucleotide (NAD+)salvage pathway, which can delay aging, treat senile degenerative diseases and type 2 diabetes that caused by aging. In this paper, the main activities of NAD+ and its biosynthesis methods, as well as the latest chemical synthesis methods of its precursor NMN were reviewed.Key words : Nicotinamide adenine dinucleotide (NAD +); Nicotinamide mononucleotide (NMN ); anti -aging;chemical synthesis—、前言烟酰胺腺8吟二核/酸(NAD+ "是一种存在于 所有活细胞中的辅酶。

215502053_酵母生物活性物质及其化妆品功效研究进展

215502053_酵母生物活性物质及其化妆品功效研究进展

生物技术进展 2023 年 第 13 卷 第 3 期 345 ~ 352Current Biotechnology ISSN 2095‑2341进展评述Reviews酵母生物活性物质及其化妆品功效研究进展鲍佳生 , 潘丙珍 , 乔栖梧 , 刘慧智 , 潘素华广州海关技术中心,广州 510623摘 要:随着《化妆品监督管理条例》及其配套文件的实施,对化妆品原料安全性和功效性都提出了更具体的要求。

酵母能够合成多种生物活性物质且安全性高,利用酵母来获取化妆品功效原料已成为化妆品行业的创新突破口。

概述了酵母作为细胞工厂生产活性糖类、多肽类、萜类、维生素、多酚类等天然产物方面的研究进展,梳理总结了酵母提取物以及酵母相关生物活性物质的美白、保湿、舒缓、防晒、抗皱等多种化妆品功效,并展望了酵母在化妆品原料领域的开发和应用前景。

关键词:酵母;生物活性物质;化妆品功效DOI :10.19586/j.2095­2341.2023.0013中图分类号:Q939.97, TS974 文献标志码:AAdvances in Yeast Bioactive Substances and Their Cosmetic EfficacyBAO Jiasheng , PAN Bingzhen , QIAO Qiwu , LIU Huizhi , PAN SuhuaGuangzhou Customs Technology Center , Guangzhou 510623, ChinaAbstract :With the implementation of Cosmetic Supervision and Adminstration Regulation and its supporting documents , there are more specific requirements for the safety and efficacy of cosmetics. Because yeast can synthesize various bioactive substances with high safety , using yeast to obtain effective raw materials for cosmetics has become an innovation breakthrough in the indus⁃try. In this review , the research progress of yeast as a cell factory to produce bioactive sugars , peptides , vitamins , terpenoidsand other natural products was summarized. The effects of yeast extract and bioactive substances in yeast on whitening , moisturiz⁃ing , sunscreen , anti -aging and other cosmetics were introduced. The development and application of yeast as raw material of cos⁃metics were also prospected.Key words :yeast ; bioactive substances ; cosmetic efficacy酵母中富含活性糖类、多肽、核苷酸、氨基酸、维生素等天然成分,广泛应用于生物医药、保健食品及化妆品等领域。

生物化学英语单词读音

生物化学英语单词读音

Chapter 2 Proteins 第二章 蛋白质
Alanine 丙氨酸 Amino acids 氨基酸 Arginine 精氨酸 Asparagine 天冬酰胺 Aspartic acid 天冬氨酸 Cysteine 半胱氨酸 Glutamic acid 谷氨酸 Glutamine 谷氨酰胺 Glutathione 谷胱甘肽 Glycine 甘氨酸 Hemoglobin 血红蛋白 Histidine 组氨酸 Isoleucine 异亮氨酸 Leucine 亮氨酸 Lysine 赖氨酸 Methionine 蛋氨酸 Myoglobin 肌红蛋白 Peptide 肽 Phenylalanine 苯丙氨酸 Primary structure 一级结构 Proline 脯氨酸 Proteome 蛋白质组 Proteomics 蛋白质组学 Quaternary structure 四级结构 Secondary structure 二级结构 Serine 丝氨酸 Tertiary structure 三级结构 Threonine 苏氨酸 Tryptophan 色氨酸 Tyrosine 酪氨酸 Valine 缬氨酸
Adenine 腺嘌呤 Adenosine 腺苷 Adenosine monophosphate 腺苷一磷酸 Chromatin 染色质 Cytosine 胞嘧啶 Cytidine 胞苷 Deoxyribonucleic acid 脱氧核糖核酸 Double helix 双螺旋 Genome 基因组 Genomics 基因组学 Guanine 鸟嘌呤 Guanosine 鸟苷 Messenger RNA 信使RNA Nucleoside triphosphate 核苷三磷酸 Nucleosome 核小体 Purine 嘌呤 Pyrimidine 嘧啶 Ribonucleic acid 核糖核酸 Ribosomal RNA 核糖体RNA Ribozyme 核酶 Transfer RNA 转运RNA Uracil 尿嘧啶 Uridine 尿苷

甘西鼠尾草中三个新的萜类化合物

甘西鼠尾草中三个新的萜类化合物

甘 西 鼠尾 草 为 常 用 中 药 丹 参 ( .mii ri g. 的 同属植 物 ,其 主 要 成 分 为 脂 溶 性 二 萜 醌 S lo h aB e ) tr z
类 和水溶 性 酚酸类 化合物 ’ .已报 道 的药理 活性 主要有 醛糖 还原 酶 抑制 活性 、抑制 超 氧 自由綦及抗 氧化 、 保护 心肌 缺血 及心 肌 缺 血再 灌 注 损 伤 、 炎 及 抑 菌 。 抗 等.本 课 题 组 在 对甘 两 鼠尾草 活性 部位 的筛选 中 , 证实 了甘西 鼠尾 草对 血清病 性 肾小球 肾炎模 型 大 鼠具有 较 好 的治疗 作用 , 可显 著降低 大 鼠尿蛋 白含量 、减轻 肾小 球 肿胀 ,还 可降 低 正 常大 鼠的血 液 黏 度 ,并 具有 显 著且 温和 的利尿 作用 , 以调整 肾脏 疾病 中的 电解 质紊 乱 ,对 于 治 疗 和 缓 解 肾脏 疾 病 的发 展 有 积 极 的 意 可 义.为 了进 一 步考察 其活性 物质 ,本文对 其活性 部位 的化 学 成分 进 行 了深 入研 究 ,从甘 西 鼠尾草 根 和 根茎 的 5 % 乙醇 提取 物 中分离鉴定 了 2个新 的二萜 化 合物 和 1个新 的单 萜苷 化 合物, 0
1 实验 部 分
1 1 试 剂 与仪器 .
柱色谱 硅胶 与薄层 色谱 硅 胶 板 为烟 台江 友 硅胶 开 发 公 司产 品 ;Sp a e 0凝 胶 为 P am c e hd xI 2 H hr ai a
公 司产 品 ; D I O S C 相硅胶 为 Me k公 司产 品 ; I e C P 0 8反 r c MC l H 2 P凝 胶 和 HP2 g - 0大孔 吸附树 脂 为 ■菱
杨 阳 ,吴志军’ ,杨颖博 ,来 威 ,孙连娜 ,陈万生

β-烟酰胺单核苷酸功能与合成研究进展

β-烟酰胺单核苷酸功能与合成研究进展

生物资源 2021,43(2 ): 127〜132Biotic ResourcesDOI : 10. 14188/j. ajsh. 2021. 02. 004分-烟酰胺单核苷酸功能与合成研究进展任丽梅,王晓茹,祁永浩,韩广欣,韩天淼,桂阳,张森,李小兵* (石家庄学院化工学院,河北省高校微生物制药应用技术研发中心,河北石家庄050035)摘要:f烟酰胺单核苷酸(nicotinamide mononucleotide,NMN)是辅酶 I-NAD+(nicotinamide adenine dinucleotide)合成的关键中间体,存在于各种生物体内。

NAD+广泛参与体内多种反应,对人体健康起着非常重要的作用。

服用烟酰胺单核苷酸 后可以快速提升体内NAD+水平,从而在体内起到多种关键功能。

近年来,研究NMN为年龄相关性功能衰退和疾病的发病机制提供了许多重要的见解。

研究发现NMN具有多种功能作用,例如抗衰老,促进心脑健康等。

NM N已经成为保健品、食品原 料等领域研究的热点,其市场容量增长迅速,目前已有多种以NMN为主要成分的保健品上市销售。

基于NMN持续火热的研究态势以及未来巨大的市场预期,本文较为系统地综述了 NM N的研究背景、作用机理、保健功能、全球品牌产品、主要的化学 方法与生物学方法的合成路线等,旨在为普及以及推动NMN在人类健康领域的研究和应用提供参考。

关键词:斤烟酰胺单核苷酸;烟酰胺磷酸核糖转移酶;烟酰胺核糖激酶;酶法合成;抗衰老中图分类号:Q-1 文献标志码:A 文章编号:2096-3491(2021)02-0127-06Research progress on function and synthesis of j?-nicotinamide mononucleotideREN Limei, WANG Xiaoru, QI Yonghao, HAN Guangxin, HAN Tianmiao, GUI Yang,ZHANG Miao, LI Xiaobing*(Research and Development Center of Microbial Fharmaceutical Application Technology,School of Chemical Engineering,Shijiazhuang University, Shijiazhuang 050035, Hebei, China)Abstract:々-nicotinamide mononucleotide (NM N) is the key intermediate of coenzyme I—NAD (nicotinamide ade­nine dinucleotide)synthesis, and is present in various organisms. NAD^ is widely involved in a variety of reactions in the body and plays a very important role in human health. After taking N M N, the level of N A D+in the body can be rapidly increased. Research on the biology of NMN has been providing many critical insights into the pathogenesis of age-associ­ated functional decline and diseases over the past several years. Studies have found that NMN has a variety of functions, such as anti-aging, promoting heart and brain health. NMN has become a research hotspot in the fields of health products and raw food materials and its market capacity is growing rapidly. At present, a variety of health products with NMN as the main component have been put on the market. Based on the continuous hot research situation of NMN and the huge market expectation in the future, this paper systematically reviews the research background, mechanism, health care func­tion, global brand products, main chemical and biological synthesis routes of NMN , in order to provide reference for popu­larizing and promoting the research and application of NMN in the field of human health.Key w ords:y9~nicotinamide mononucleotide(NMN) ;nicotinamide phosphoribosyl transferase(N A M PT) ;nicotin­amide riboside kinase(N R K);enzymatic synthesis;anti-aging收稿日期:2020-12-22 修回日期:2021-01-06 接受日期:202卜04-07作者简介:任丽梅(1984-),高级工程师,博士,研究方向:合成生物学,绿色生物制造,生物催化,生物制药E-maihaliceren0102@*通讯联系人:李小兵(1969-),高级工程师,博士,研究方向:微生物制药。

生物化学专业英语单词

生物化学专业英语单词

单词表第一章Prokaryote 原核生物Eukaryote 真核生物fractionation 分级、分馏biomolecule 生物分子organism 生物体、有机体membrane 膜nucleus 细胞核cocci 球菌bacilli 杆菌spirilla 螺旋菌Eubacteria 真细菌Archaebacteria 原细菌Gram—positive 革兰氏阳性菌Gram negative bacteria 革兰氏阴性菌Cyanobacteria 蓝细菌Plasma 细胞浆Mesosome 间体Nuleoid 拟核Sytosol 细胞质、原生质Bilayer 双分子层(膜)Protein 蛋白质Lipid 脂类Carbohydrate 糖类、碳水化合物osmotic pressure 渗透压Peptidoglycan 肽聚糖Subcellular 亚细胞的Ganelle 细胞器Genetic 遗传的Chromosome 染色体ribosomal ribonucleic acid rRNA Endoplasmic reticulum 内质网Phospholipid 磷脂Detoxification 解毒Golgi apparatus 高尔基体Refresh 更新Mitochondria 线粒体oxidative phosphorylation 氧化磷酸化fatty acid 脂肪酸degradation 降解Chloroplasts 叶绿体thylakoid vesicles 类囊体photosynthesis 光合作用Lysosomes 溶酶体Macromolecule 大分子Enzyme 酶Cytoskeleton 细胞支架Metabolic 新陈代谢的Centrifugation 离心Isolate 分离Equilibrium 平衡Density 密度Friction 摩擦力Velocity 速率Supernatant 上清夜Pellet 沉淀第二章Amino acid 氨基酸Enantiomers 对映体Tetrahedral 正四面体的Hydrophobic 疏水的、憎水的Aliphatic 脂肪族的Aromatic 芳香族的Polar 极性的Charged 带电荷的Glycine Gly,甘氨酸alanine Ala,丙氨酸valine Val,缬氨酸leucine Leu,亮氨酸isoleucine Ile,异亮氨酸methionine Met,甲硫氨酸proline Pro,脯氨酸cystine Cys,半胱氨酸Phenylalanine Phe,苯丙氨酸Tyrosine Tyr,酪氨酸Tryptophan Trp,色氨酸Asparagines Asn, 天冬酰胺Glutamine Gln,谷氨酰胺Serine Ser,丝氨酸Threonine Thr,苏氨酸Varginine Arg, 精氨酸Lysine Lys,赖氨酸Histidine His,组氨酸aspartic acid Asp,天冬氨酸glutamic acid Glu,谷氨酸base 碱carboxyl 羧基isoelectric point 等电点positive 正的、阳性的negative 负的、阴性的buffering 缓冲physiological 生理的Primary structure 一级结构Secondary structure 二级结构Tertiary structure 三级结构Quaternary structure 四级结构peptide bond 肽键sequence 顺序、序列covalent Bond 共价键polypeptide 多肽terminal 末端carbonyl 羰基resonance structures 共振结构rigid 刚性的rotate 旋转trans configuration 顺式构象disulfide bonds 二硫键α-helix α—落选hydrogen bond 氢键β-pleated sheet β—折叠片parallel 平行的antiparallel 反平行的random coil 无规卷曲unique 唯一的spatial 空间的arrangement 排列、安排linear sequence 线性序列residue 残基Hydrophobic interaction疏水相互作用Interior 内部的Electrostatic force 静电力salt bridge 盐桥、盐键van der Waals force 范德华力subunit 亚基 allosteric effect 变构效应 Noncovalent interactions 非共价相互作用 protein stability 蛋白质的稳定 dimensional 空间的、维的 proton 质子donor 供体、赠与者 lone pair of electrons 孤对电子 collinear 在同一直线上 Hydrophobic force 疏水力 Nonpolar 非极性 Minimize 最小化 protein folding 蛋白质折叠 Accessory protein 辅助蛋白质molecular chaperones 分子伴侣Myoglobin 肌红蛋白Hemoglobin 血红蛋白prosthetic group 辅基 essential 必需的 heme 血红素 crevice 缝隙 protoporphyrin 原卟啉 porphyrin 卟啉 ferrous 含铁的 proximal 最接近的 cooperative 协同的 noncooperative 非协同的 dissociation curve 解离曲线 sigmoidal S 形曲线 hyperbolic 双曲线affinity 亲和性 blood capillaries 血管Bohr effect 波尔效应2,3—biphosphoglycerate 2,3—二磷酸甘油酸Mechanism 机制Relaxed state 松弛状态tense state 紧张状态hemoglobinopathies 血红蛋白分子病Sickle—cell anemia 镰刀形细胞贫血症Erythrocyte 红血球sticky patch 粘性小区therapeutic 治疗的Collagen 胶原蛋白Skin 皮肤Bone 骨骼Tendon 腱Cartilage 软骨blood vessel 血管mammal 哺乳动物fibrous 纤维状的tripeptide 三肽的triple—helical 三股螺旋的cross—linke 交联Allysine 醛基赖氨酸Antibodie 抗体immune system 免疫系统pathogen 病原体trigger 引发、触发response 响应、应答antigen 抗原antigenic determine 抗原决定簇epitope 抗原决定簇Immunolocalization 免疫定位Antibody 抗体Enzyme-linked immunosorbent assayELISA酶联免疫吸附测定purification 提纯、纯化Homogenization 匀浆solubilization 溶解Ammonium sulfate 硫酸铵Precipitation 沉淀Dialysis 透析Chromatographic techniques 层析技术gel filtration 凝胶过滤affinity chromatography 亲和层析Electrophoretic techniques 电泳技术isoelectric focusing 等电聚焦SDS polyacrylamide gel eletrophoresis SDS聚丙烯酰胺凝胶电泳semi—permeable 半透性ligand 配基inert 惰性的matrix 基质elute 洗出、流出lectin 外源凝集素glycoprotein 糖蛋白molecular sieve 分子筛polyampholytes 聚两性电解质gradient 梯度migrate 迁移、移动chymotrypsin 胰凝乳蛋白酶sequencing 测序2—mercaptoethanol 2-巯基乙醇ninhydrin 茚三酮fluorescamine 荧光胺fluorodinitrobenzene 二硝基氟苯dansyl chloride 丹磺酰氯phenyl isothiocyanate PITC苯异硫氰酸酯fragment 片断、碎片encoding 编码decipher 解读、破译anchor 锚定第三章biocatalyst 生物催化剂active site 活性中心substrate 底物The induced –fit model 诱导契合学说Stereospecificity 立体异构专一性Specificity 专一性Trypsin 胰蛋白酶Elastase 弹性蛋白酶Oxidoreductase 氧化还原酶Transferase 转移酶Hydrolase 水解酶Lyase 裂合酶Isomerase 异构酶Ligase 连接酶Ribozyme 核酶Abzyme 抗体酶catalytic antibody 抗体酶analog 类似物assay 化验、测定optimal 最佳的Coenzyme 辅酶Cofactor 辅因子apoenzyme 脱辅酶holoenzyme 全酶acetylcholinesterase 乙酰胆碱酯酶Nicotinamide 烟酰胺Adenine 腺嘌呤Dinucleotide 二核苷酸Phosphate 磷酸Oxidation 氧化reduction 还原Flavin 黄素Mononucleotide 单核苷酸Acyl 酰基thiamine pyrophosphate 焦磷酸硫胺素decarboxylase 脱羧酶Pyridoxal 吡哆醛Pyridoxamine 吡哆胺Pyridoxine 吡哆醇Ubiquinone 泛醌Isoenzymes 同功酶Kinetic 动力学lactate dehydrogenase 乳酸脱氢酶proportional 成比例的saturate 使饱和thermal 热的denaturation 变性optimum 最适宜的diversity 多样性Michaelis—Menten equation 米氏方程double—reciprocal plot 双倒数作图法inhibition 抑制Inhibitor 抑制剂Metabolite 代谢物Irreversible 不可逆的Reversible 可逆的Competitive 竞争性的Noncompetitive 非竞争性的Probe 探测Clinically 临床上Regulation 调节committed step 关键步骤activator 激活剂Adjust 调节Feedback 反馈Sequential 连续的Branched 分支的Conformational 构象的homotropic effect 同促效应heterotropic effect 异促效应Phosphofructokinase 磷酸果糖激酶Citrate 柠檬酸盐Fructose 2,6 bisphosphate 2,6-二磷酸果糖phosphorylation 磷酸化dephosphorylation 去磷酸化hydroxyl 羟基hormone 激素Glycogen phosphorylase 糖原磷酸化酶Phosphorylate 使磷酸化glycogen synthase 糖原合酶unphosphorylate 使去磷酸化proteolytic 蛋白质水解的proenzymes 酶原zymogen 酶原hydrolysis 水解pancreatic 胰腺的pancreas 胰腺small intestine 小肠blood clotting 血液凝固amplification 扩大cascade 级联第四章boundary 边界compartments 小室Mechanical 机械的signaling 发信号insoluble 不可溶的glycerophospholipids 甘油磷脂类sphingolipids 鞘脂类sterols 固醇类glycerol 甘油sphingosine 鞘氨醇sphingomyelins 鞘磷脂cholesterol 胆固醇steroid 类固醇Amphipathic 两性的Hydrophilic 亲水的Bulky 体积大的self-assemble 自组装的fluidity 流动性rotational 转动的lateral 侧向的Fluid mosaic model 流体镶嵌模型Integral 整体的、内在的Flip 翻跟头integral membrane proteins 内在膜蛋白peripheral membrane proteins外周膜蛋白asymmetry 不对称asymmetrically 不对称地membrane—spaning protein 跨膜蛋白Multiple 多重的Lipid-anchored proteins 脂锚定蛋白Heterokaryon 异核体Fusion 融合Reconstitution 重建Reincorporated 重新合并Extracellular 细胞外的Intercellular 细胞内的Passive transport 被动运输active transport 主动运输concentration 浓度diffusion 扩散saturable 可饱和的facilitated 协助的、推动的symport 同向运送antiport 逆向运送epithelial cells 上皮细胞exocytosis 分泌作用endocytosis 内吞作用phagocytosis 吞噬作用pinocytosis 胞饮作用Receptor mediated endocytosis fusion受体介导的内吞作用debris 碎片transduction 转导Lipophilic 亲脂性的Receptors 受体second messengers 第二信使第五章Nucleic acid 核酸Replication 复制Nucleotide 核苷酸Pyrimidine 嘧啶Guanine 鸟嘌呤Thymine 胸腺嘧啶Cytosine 胞嘧啶Nucleoside 核苷Deoxyribonucleoside 脱氧核糖核苷ribonucleoside 核糖核苷deoxyribonucleotide 脱氧核糖核苷酸genes 基因complementarily 互补地nucleosome 核小体loop 突环rosette 玫瑰花结semi-conservative 半保留的polymerase 聚合酶template 模板primer 引物fork 叉Bidirectional 双向的Okazaki fragments 冈崎片段semi—discontinuous 半不连续的strand 链、一股hybridization 杂交melting temperature 熔融温度renaturation 复性labeled 标记的fluorescent 荧光的tag 标记、标签annealing 退火amplify 增强、扩大The central dogma 中心法则Transcription 转录initiation 起始Elongation 延伸termination 终止promoters 启动子palindrome 回文结构processing 加工splicing 拼接reverse transcription 逆转录第六章genetic code 遗传密码intermediate 中间的、媒介codons 密码子unambiguous 明确的correspond 相应、符合degenerate 简并的mutation 变异incorporation 合并nonoverlapping 不相重叠的reading frames 阅读框aminoacyl—tRNA 氨酰—tRNA peptidyl-tRNA 肽酰-tRNA stem 茎、干、臂anticodon 反密码子translocation 移位第七章metabolism 代谢Saccharides 糖类monosaccharides 单糖aldehyde group 醛基ketone group 酮基Stereoisomers 立体异构体Oligosaccharides 寡糖Glycosidic bond 糖苷键Polysaccharides 多糖Starch 淀粉Cellulose 纤维素Dextran 葡聚糖Amylose 直链淀粉amylopectin 支链淀粉Glycolysis 糖酵解Cytoplasm 细胞质Glucose 葡萄糖Galactose 半乳糖Mannose 甘露糖Sucrose 蔗糖Trehalose 海藻糖Lactose 乳糖Hexokinase 己糖激酶Fructose 果糖Phosphoglucoisomerase 磷酸葡萄糖变位酶Bisphosphate 二磷酸glyceraldehydes 甘油醛dihydroxyacetone 二羟丙酮aldolase 醛缩酶triose 丙糖1,3-bisphosphoglycerate 1,3 二磷酸甘油酸dehydrogenase 脱氢酶3—phosphoglycerate 3—磷酸甘油酸kinase 激酶mutase 变位酶phosphoenolpyruvate 磷酸烯醇式丙酮酸enolase 烯醇化酶pyruvate 丙酮酸Gluconeogenesis 糖异生Noncarbhydrate 非糖的Liver 肝脏skeletal muscle 骨骼肌phosphorylase 磷酸化酶Phosphorolysis 磷酸化pyrophosphorylase 焦磷酸化酶glucosyl 葡萄糖基nonreducing end 非还原端Epinephrine 肾上腺素glucagon 胰高血糖素Insulin 胰岛素第八章fatty acid 脂肪酸hydrocarbon 烃、碳氢化合物carboxylic acid 羧酸Unsaturated 不饱和的Triacylglycerol 三酰甘油Acetyl 乙酰基Thioester 硫酯Carnitine 肉(毒)碱Hydration 水合作用Thiolysis 硫解Consume 消耗ketone bodies 酮体acetoacetate 乙酰乙酸D—3-hydroxybutyrate D-3-羟基丁酸Acetone 丙酮diabetes 糖尿病toxic 有毒的lethal 致命的multifunctional 多功能的malonyl 丙二酰基carboxylation 羧化condensation 缩合acetoacetyl 乙酰乙酰基hydroxybutyryl 羟丁酰基crotonyl 丁烯酰基butyryl 丁酰基hydrolyzation 水解作用palmitoyl 软脂酰基palmitate 软脂酸lipoproteins 脂蛋白globular 球状的micelle 胶束、微囊第九章Respiration 呼吸作用citric acid cycle 柠檬酸循环、三羧酸循环concomitant 伴随的isocitrate 异柠檬酸酸盐α-ketoglutarate α—酮戊二酸succinate 琥珀酸盐succinyl 琥珀酰基fumarate 延胡索酸盐malate 苹果酸盐oxaloacetate 草酰乙酸盐cytochrome 细胞色素oxidase 氧化酶reductase 还原酶Rotatory 旋转的engine 发动机第十章Nitrogen 氮Diet 常吃的食物Erythrose 赤藓糖Ribose 核糖Transamination 转氨基作用Deamination 脱氨基作用Transdeamination 联合脱氨基作用Ammonia 氨Excrete 排泄Aquatic 水生uric acid 尿酸terrestrial 陆生的reptile 爬行动物urea 尿素vertebrates 脊椎动物ornithine 鸟氨酸arginine 精氨酸citrullin 瓜氨酸permanently 不变地。

COVER SHEET

COVER SHEET

COVER SHEETThis is a manuscript version of this paper. The paper was first published as:Agranovski, Victoria and Ristovski, Zoran D. (2005) Real-time monitoring of viable bioaerosols: capability of the UVAPS to predict the amount of individual microorganisms in aerosol particles. Journal of Aerosol Science 36(5-6):pp. 665-676.Copyright 2005 ElsevierAccessed from .auReal-time monitoring of viable bioaerosols: capability of the UVAPS to predict the amount of individual microorganisms in aerosol particlesVictoria Agranovski and Zoran D. Ristovski*International Laboratory for Air Quality and Health, Queensland University ofTechnology, Brisbane, QLD, Australia;Keywords: Viable bioaerosols; Real-time monitoring; Fluorescence; Linearity *: z.ristovski@.au (Z. Ristovski).ABSTRACTThe Ultraviolet Aerodynamic Particle Sizer (UVAPS) is a novel aerosol monitor for enumerating and sizing microbial aerosols. To explore the capability of the method to estimate the number of microorganisms (bacteria) in aerosol particles, and thus to provide information on the concentration of airborne microorganisms, in addition to the total number of microbe carrying particles, a linearity of the UVAPS fluorescent signals with respect to the concentration of the fluorophores was investigated. As the amount of intrinsic fluorophores in bacteria may vary depending on viability status of the cells, the linearity was initially investigated for the non-microbial aerosols (NADH, NADPH, or riboflavin), with preset concentrations of fluorescent material in aerosol particles. The succeeding tests were performed with bacterial aerosols containing carefully washed Bacillus subtilis or Micrococcus luteus vegetative cells. To correlate the fluorescence intensity with particle size, which determines the amount of fluorophores (or cells) in the aerosol particles, the UVAPS data were analysed for each of 64 size-channels individually. The fluorescence intensity was linear with respect to the particle volume at the fluorophore concentrations characteristic to bacterial cells (correlation factors were typically greater than 0.9) and became curvilinear at higher concentrations. As the linearity of the UVAPS signals was confirmed for bacterial aerosols, it was concluded that the UVAPS can be used to estimate the concentration of airborne viable bacterial cells in artificially generated bioaerosols. The predicted concentrations of viable cells in the M. luteus aerosols compared favourably with the results of the AGI-30 sampling for culturable cells.Agranovski, Victoria and Ristovski, Zoran (2005) Real-time monitoring of viable bioaerosols: capability of the UVAPS to predict the amount of individual microorganisms in aerosol particles. Journal of Aerosol Science (In Press 2005)Copyright Elsevier1. IntroductionThe Ultraviolet Aerodynamic Particle Sizer (UVAPS, Model 3312, TSI Inc., St. Paul, MN) is a novel aerosol counter for the real-time detection of airborne microorganisms. The operating principles of this method to measure bioaerosols are based on the properties of microorganisms to contain numerous naturally occurring (or intrinsic) fluorescent compounds, which emit photons following excitation in the ultraviolet region (Cantor et al., 1980).The UVAPS is a modified Aerodynamic Particle Sizer (APS) manufactured by the TSI Inc. It consists of a UV laser that provides for the particle fluorescence, in addition to the information on the size distribution and concentration of airborne particles within a size range of 0.5-15 µm. The fluorescence is produced by exciting particles with a pulsed ultraviolet laser beam at an excitation wavelength of 355 nm, followed by detection in the range from 420 nm to 575 nm. Under such conditions, the measured microbial fluorescence is largely determined by the reduced pyridine nucleotides (namely, nicotinamide adenine dinucleotide, NADH, and nicotinamide adenine dinucleotide phosphate, NADPH) and flavins (e.g., riboflavin, flavin mononucleotide, FMN, and flavin adenine dinucleotide, FAD). A detailed description of the UVAPS has been published previously (Hairston et al, 1997; Brosseau et al, 2000; Agranovski et al., 2003a).The UVAPS (also known as FLAPS) was originally developed as part of the Canadian Integrated Biochemical Agent Detection System (CIBADS) for the real-time detection of aerosol particles that contain microorganisms (Ho et al. 1995; Boulet et al., 1996). As part of the CIBADS, the instrument was intended to be used as an alarm system and thus designed to detect sudden increases (i.e., relative changes) in the concentration of the fluorescent aerosol particles above the typical background levels, indicating dissemination of microbial aerosols upwind of the spectrometer. Accordingly, in addition to the laboratory-based feasibility studies (Hairston et al, 1997; Brosseau et al, 2000), the FLAPS/UVAPS was mainly evaluated for the capability to follow changes in the total concentration of fluorescent particles present in ambient air (Ho et al., 1995; Boulet et al., 1996; Ho et al., 1999).In order to understand the full capability of the UVAPS in characterising bioaerosols in various research settings, an experimental program aimed towards the systematic evaluation of the instrument performance has been initiated in our laboratory. Previous studies were concerned with the primary parameters of the spectrometer to measure microbial aerosols such as counting efficiency, selectivity, sensitivity, and detection limits (Agranovski et al., 2003a; Agranovski et al., 2004) as well as the correlation of the UVAPS signals with the viability status (namely, the metabolic state) of airborne bacteria (Agranovski et al., 2003b). The research presented in this paper was focussed on the linearity of the fluorescent signals of the UVAPS, the effect of particle size on its performance, and exploring the capability of the spectrometer to estimate the amount of individual organisms (bacterial cells) in aerosol particles. The linearity of the fluorescent signals was initially investigated for non-biological aerosols containing one of the three major fluorophores (NADH, NADPH, or riboflavin) responsible for the UVAPS fluorescence signals while measuring microbial aerosols. The following tests were conducted with bacterial aerosols containing Bacillus subtilis or Micrococcus luteus vegetative cells. To investigate the UVAPS response for the cells in various metabolic states, the bacteriawere harvested at both exponential and stationary growth phase. In addition, the M. luteus samples were subjected to heat-stress.2. Materials and methodsapproach2.1. ResearchThe main objective of the tests was exploring the capability of the UVAPS to estimate the number of individual bacterial cells in an aerosol particle. To achieve this, it was necessary to derive a relationship between the intensity of fluorescence measured by the spectrometer and the amount of fluorophores in the aerosol particles.In accordance with the Beer’s law, in the absence of quenching, fluorescence intensity should be directly proportional (linear) to the concentration of fluorophores. The linearity of a sample may, however, be related to many factors, including the chemical composition of the aerosol particles and the path-length traversed by the light (e. g, the particle diameter). Once the UVAPS linearity is established, it would be possible to estimate from the particle size and fluorescence intensity the amount of individual organisms within a single fluorescent particle.aerosols2.2. TestedSome preliminary experiments were conducted with non-bacterial aerosol particles containing predefined amounts of NADH, NADPH, or riboflavin. These aerosols were selected for the study as, under operating conditions of the UVAPS, these three compounds are the primary microbial intrinsic fluorophores responsible for the measured fluorescence. The procedure for preparing these aerosols has been described in detail previously (Agranovski et al., 2004). Briefly, the non-bacterial aerosols were generated with a 6-jet Collison nebuliser from solutions having fluorophore concentrations from 0.005 to 0.1 mg/ml.The bacterial aerosols were generated using washed B. subtilis or M. luteus vegetative cells, following the procedure described by Agranovski et al. (2003b). To investigate the UVAPS response for the cells in various metabolic states, the bacteria were harvested at the exponential (or log) and stationary growth phases. In addition, the M. luteus samples were subjected to heat-stress as described previously (Agranovski et al., 2003b).2.3.Experimental set-up and proceduresA detailed description of the experimental set-up and procedures has been reported previously (Agranovski et al., 2003a-b; Agranovski et al., 2004). In brief, the aerosols were continuously generated with the Collison nebulizer (BGI Inc., Waltham, MA, USA), neutralized (10-mCi 85Kr, model 3012, TSI Inc., St. Paul, MN), and then mixed with the drying air stream at the flow rates providing the total particle concentration at an arbitrary level of approximately 20 cm-3 (typically, 30-40 L/min). Adjusting the particle concentration at a certain level was important as accuracy of the UVAPS in measuring the fluorescent particles varies with concentration (Agranovski et al., 2003a). Thus, to eliminate the effect of particle concentration on the results, while investigating the UVAPS responses on other aerosol parameters (such as the particle size and nature) maintaining the total concentration of the aerosols relatively constant was critical. To restrain possible fluctuations in aerosol concentration, theaerosols were introduced into a mixing chamber, which was also used as a manifold for simultaneous sampling by the UVAPS and the AGI-30 impingers.By employing the Collison nebulizer it was possible to generate aerosols with aerodynamic diameters up to 2.5 µm. In order to investigate larger particles a second series of the experiments was conducted with aerosols generated with commercially available nasal sprayers (PS1823; Douglas Pharmaceuticals Ltd, Auckland, New Zealand). The glass bottles of the sprayers were carefully washed with distilled water, to remove the organic residues which could affect the results, and then sterilised by autoclaving. The plastic tops were thoroughly washed with sterilised distilled water (SDW) and then sanitised with alcohol. Before filling the sprayers with the suspensions used to generate test aerosols, the controlled tests (for contamination) were performed with the SDW. The washing was considered satisfactory when the UVAPS fluorescent signals were detected in up to the third channel (background fluorescence).Unlike the Collison nebuliser, the sprayers generated aerosols in pulses, which made it difficult to maintain the particle concentration constant. To avoid this problem, the aerosols generated with the nasal sprayers were introduced into the chamber directly, without mixing with the dilution air. The chamber used in this series of experiments was a stirred-settling type of volume 160 L. The pulses were initiated every 60 seconds over the duration of the experiment, with the UVAPS measuring the aerosols continuously (with a sampling time of 3 s). In this manner, it was possible to collect a statistically sufficient number of samples with a total particle concentration of approximately 20 cm-3. More frequent pulses (< 60 s) produced aerosols with greater particle concentrations than was required. The experiments for a given aerosol were repeated at least three times.2.4. The UVAPS data analysisThe fluorescence emitted by an individual particle is registered by the UVAPS in one of 64 channels, depending on the intensity of the signal. The increasing channel numbers represent gradually increased fluorescence intensity. The UVAPS does not provide the nominal values for the fluorescence intensity of the particles in arbitrary units such as relative fluorescence units (rfu), as is typically reported by the spectrophotometers. Instead, the intensity of the signals is reported on a scale from 1 to 64, corresponding to the channel numbers. Specifically, non-fluorescing particles are registered in the first channel and the closer the particle signal is to the 64th channel the higher its fluorescence intensity. To investigate a correlation between the intensity of the signals and the amount of the fluorophores within the aerosol particles, the UVAPS data were analysed for each fluorescence channel individually. The information on particle size distribution was used to determine the count median diameter (CMD) of particles detected in a particular fluorescence channel, for each of the 64 channels. The particle CMD values were subsequently used to calculate the particle volumes and the amount of the fluorophores within the particles, taking into account the concentration of the solutions which were used to generate the aerosols. A detailed procedure for calculating the amount of fluorophores in the aerosol particles has been reported previously (Agranovski et al., 2004). The calculated volumes and the amount of fluorophores were then plotted against the number of the fluorescent channels.2.5. The number of individual bacterial cells in aerosol particlesThe number of individual cells which may occur within the generated droplets depends on several factors, including the droplet size, the size of bacterial cells, the concentration of bacterial cells in the nebulised suspension, and the distribution (mixing) of cells in the suspension. The number of cells inside the droplets may therefore vary considerably within the two extreme values, namely from a single bacterial cell to the maximum possible number. Apparently, a probability of that that the number of cells within the droplets approaches the maximum increases with the increase of cell concentrations in the nebulised suspension. The maximum number of cells which may occur within the droplets depends on droplet size and cell size as well as the type of cell packing (packing degree or density) in the droplets.Similar to the droplets, the packing of aerosol particles from evaporating droplets can vary considerably affecting the number of cells in aggregates forming the particles. The ability to objectively examine aggregation of cells requires a quantitative measure of the closeness (density) of cells. Nevertheless, it was possible to estimate the density of aggregated cells, and thus the number of cells, in the particles measured by the UVAPS based on the geometrical principals of sphere packing theory.Under assumption that the volume of a particle is completely filled with cells and contains no intercellular space, the number of cells in a particle would be given by the ratio (R) of the total volume of the particle (V particle) to the volume of a single bacterial cell (V cell):R = V particle / V cell(1)To account for intercellular space, this ratio (R) should be multiplied by the fraction of the total volume occupied by cells, or the packing density (P). The number of cells in a particle is therefore given byN = RP (2)It is known that for spheres P may vary between 0.5235 and 0.7405, depending on a particular type of packaging (Conway and Sloane, 1993; Martin et al., 1997; Zong and Talbot, 1999). For the densest possible packing of spherical cells, such as face-centered cubic packing or hexagonal packing, P = 0.7405 (Arnold and Lacy, 1977; Conway and Sloane, 1993; Zong and Talbot, 1999; Arnold, 2000). On the other hand, in case of simple cubic packing, known to have the lowest packing degree between the individual spheres, P = 0.5235 (Conway and Sloane, 1993; Martin et al., 1997).The upper and lower levels for the number of spherical cells (i.e., cocci such as M. luteus) in an aggregate/particle can therefore be estimated by using a method proposed by Martin et al. (1997). Namely, the number of cocci in the aerosol particles can be estimated as0.5235R < cell number <0.7405R (3)For the purposes of this study, however, the calculations of the number of cells in the particles were performed under assumption of randomly packed cells as the most likely scenario for the formation of cell aggregates in aerosol particles.The packing density of the random densely packed spheres is known to be 0.64 (Seife, 2000; Berzukov et al., 2001; Donev et al., 2004). Accordingly, thenumber of individual M. luteus in the agglomerates forming the aerosol particles was calculated asN cocci = 0.64R= 0.64 D3particle / D3cell (4) where D particle is the count median diameter of the fluorescent particles detected in a particular channel and D cell is the aerodynamic diameter of the bacterial cell.In regard to bacilli, such as B. subtilis cells, the number of individual cells inthe particles can be calculated in accordance with the theory of dense packing of ellipsoids (Coelho et al., 1997; Schurmann, 2002; Donev et al., 2004). Taking into account that ellipsoids can randomly pack with P = 0.68-0.71 (Donev et al., 2004), the number of B. subtilis cells in the aerosol particles measured by the UVAPS was estimated assuming the average number of cells in each aggregate to beN bacilli = 0.695R= 0.695 D3particle / D3cell (5) 2.6. Microbiological analysisThe Spread-Plate Count technique (Greenberg et al., 1992) was used to enumerate viable bacteria in the samples collected with the AGI-30 impingers. The concentrationof airborne viable bacteria was determined by converting number of colony forming units (CFU) into an aerosol concentration in accordance with the procedure described previously (Agranovski et al., 2003b). The proportion of viable bacteria (further referred to as culturable fraction) in the total population of aerosol particles was determined by dividing the total aerosol count measured by the UVAPS to viable aerosol count measured by plate technique. The culturable fractions were subsequently compared with the fluorescent aerosol fractions, which were determinedby dividing the total aerosol count to the fluorescent count measured by the UVAPS.2.7. Statistical analysisStatistical analysis was conducted on the complete data set using the Student’s t-test. Statistical significance was accepted at the P<0.1 level of probability.3. Results and Discussion3.1.Non-bacterial aerosolsIt has been shown previously that the amount of intrinsic fluorophores in bacteria mayvary depending on the viability status of the cells (Agranovski et al., 2003b). In orderto control the concentration of fluorescent material in the aerosol particles, the initial tests were performed with non-bacterial fluorophores. To correlate the fluorescence intensity with the particle size, which determines the amount of fluorophores withinthe aerosol particles, the CMD’s (and then the volumes) of particles detected in eachof 64 fluorescent channels were calculated. The CMD of each fluorescent channel was then plotted against the channel number. Thus, the results are presented in terms ofthe average size of particles with the same fluorescence. To test for linearity, the measurements were obtained for the aerosols generated from the serially diluted solutions.The fluorescence intensity was linearly proportional to particle volume (correlation factors were typically greater than 0.88) for all three non-microbial aerosols (NADH, NADPH, and riboflavin). The results for the NADH aerosols generated from the 0.1 mg/ml, 0.05 mg/ml, and 0.025 mg/ml solutions are presented in Fig.1, where each data point is the mean value of the five replicate measurements. The slope of the lines decreased by the same factor as the dilution (within the limits of the experimental error) demonstrating the linearity of the signals. Similar results, in terms of linearity, were obtained for the NADPH and riboflavin aerosols. To demonstrate variability of the data, the results (both mean values and standard distributions) for the NADPH aerosols generated from the 0.1 mg/ml solution are shown independently in Fig. 2.Comparative analysis of the NADH and the NADPH results, for the aerosols generated from the solutions of the same concentration, showed that the NADH particles produced approximately four to six times higher fluorescence signals than the NADPH particles of the same volume (Figs. 1 and 2). These results are consistent with the results of the previous study (Agranovski et al., 2004), where NADH was found to be a stronger fluorophore than NADPH. Similarly, the fluorescence intensity of the riboflavin particles was found to be significantly higher than that for the particles having the same amount of NADH.3.2.Bacterial aerosolsAs with the non-biological aerosols, the fluorescence intensity was found to vary linearly with the particle volume of bacterial aerosols (Figs. 3-4). Comparative analysis of the data for the cells in various metabolic states showed, however, that fluorescence intensity of the particles containing cells harvested during the stationary growth phase (further referred as “stationary-phase particles”) was higher than the fluorescence intensity of the log-phase cells. For example, inspection of the data for the B. subtilis aerosols (Fig. 3) showed that the stationary-phase particles (open squares and the linear fit presented with a solid line) of the same size as the log-phase particles (filled diamonds and a dashed line) typically produced stronger fluorescence, corresponding to higher channel numbers. In addition, while the fluorescent signals for the log-phase aerosols were recorded only in the first 15 channels, the stationary-phase aerosols were detected in up to the 33rd channel. Similar tendencies were also observed for the M. luteus aerosols, generated with the cells harvested at different growth phases. These results are consistent with the results of the previous study (Agranovski et al., 2003b) where, due to their greater susceptibility to the aerosolization stress, the log-phase particles were shown to contain less fluorescent material than the stationary-phase particles.In relation to the heat-stressed M. luteus log-phase cells, the stressed cells produced less fluorescence than the cells not subjected to heat treatment, or the so- called “healthy” cells (Fig. 4). Although both aerosols produced signals in the first 34 channels, the comparison of the dependence of the fluorescence signals for the particles of the same size showed that the amount of fluorophores in the heat-stressed bacteria was smaller (P< 0.1) than in the healthy bacteria. Namely, intensity (which corresponds to the channel number) of aerosol particles of the same size containing healthy M. luteus cells that were untreated by heat was higher than for the particlescontaining the heat-stressed cells (Fig.4). These results are consistent with the results by Agranovski et al (2003b), where the UVAPS data were compared with both the amount of injured and healthy culturable bacteria and where cell injury was first demonstrated to affect the amount of the intrinsic fluorophores compared with the intact bacterial cells.In terms of particle concentration, the percent fluorescence (e.g., the percentage of the aerosol particles that produced a fluorescent signal above a threshold) was found to be 34.5 ± 0.1 % and 23.6 ± 0.1% for the healthy and the heat-stressed M. luteus samples, respectively.3.3. Effect of particle size on the UVAPS performanceAlthough the fluorescence intensity was generally directly proportional to the amount of the fluorophores in the aerosol particles, closer inspection of the graphs showed that the linearity was slightly affected by the particle size (Figs. 1-2). Specifically, the slope, although constant at smaller sizes, was observed to decrease at larger particle sizes. These results may be explained by the reduced capability of the UV light to penetrate larger or more concentrated (in terms of fluorescent material) particles. When the amount of the fluorophores inside the particle increases, the light either cannot penetrate the entire volume, to cause excitation, or the surface portion of the particle nearest to the beam absorbs the majority of the light, leaving little available for the rest of the particle. This will subsequently decrease the intensity of the bigger (and more concentrated) particles and affect the slope of the line. Nevertheless, at smaller fluorophore concentrations, particularly at the concentrations characteristic to the bacterial cells, the linearity of UVAPS fluorescent signals was apparent over the range of particle sizes (Figs. 3 - 4).3.4. Number of bacterial cells in the particlesDue to the apparent linearity of the UVAPS signals for bacterial aerosols, it was possible to estimate the number of individual microorganisms within the aerosol particles. The relationships between the intensity of the fluorescent signals and the amount of individual microorganisms in aerosol particles are presented graphically in Fig. 5 and 6. The numbers of bacterial cells inside the particles were calculated in accordance with equations (4) and (5), as discussed earlier in the Methods. In this series of the experiments, in order to produce bacterial clumps, the B. subtilis aerosols were generated by means of the nasal sprayer. Unlike B. subtilis aerosols, it was possible to produce M. luteus clumps with the Collison nebulizer (Agranovski et al., 2003b).Due to the specificity of the UVAPS results, which were analysed for each of the 64 channels, the calculated values cannot be directly verified experimentally with conventional bioaerosol methods. Comparison of the experimental data with the calculated values is, however, possible for the whole set of the UVAPS data, for a particular sample. In other words, rather than analysing the UVAPS data for each channel individually, the results should be analysed for the total concentration of fluorescent particles, i.e., for the sum of the fluorescent particles detected through channels 2 to 64. In this manner, the number of individual microorganisms may be related to the number of fluorescent particles measured for a specific bacterial aerosol. For example, in the case of the M. luteus aerosols comprised of heat-stressed cells (corresponding to the results presented in Figs. 4 and 6), the total concentration of thefluorescent particles (N particles) was approximately 4.7 particles/ cm3 and the CMD of the fluorescent particles was 1.55 µm. Considering the aerodynamic diameter of M. luteus cells (D cells), which was approximately 1.22 µm, the estimated concentration of individual microorganisms (N cells) contained in the aerosol particles will be approximately 6.1 cells/cm3 (N cells = N particles× 0.64 x D3particle/ D3cell = 4.7 particles/cm3× 0.64 x1.553µm /1.223µm). Whereas the results for M. luteus aerosols comprised of the healthy cells were as follows: N particles =6.9 particles/ cm3, CMD = 1.58 µm, and D cells = 1.26 µm, that corresponded to the concentration of the individual organisms of approximately 8.7 cells/cm3. These calculated values for the M. luteus aerosols compared favourably with the results of the AGI-30 sampling, which were reported previously (Agranovski et al., 2003b). Namely, the concentrations of culturable organisms were 5.1 CFU/cm3 and 7.4 CFU/cm3 for the stressed and healthy cells, respectively. The calculated values for the number of M. luteus cells in the aerosols measured by the UVAPS were therefore approximately 18 - 19 % higher than the number of culturable organisms detected with the AGI-30. As the AGI-30 impingers are known to break the microbial clumps and, therefore, to provide data for the amount of airborne microorganisms rather than airborne microbial particles, it was appropriate to compare the AGI-30 results with the calculated values based on the UVAPS data.4. ConclusionsThe results of the present study have demonstrated that the UVAPS data on the fluorescence intensity and the size distribution of fluorescent particles can be used to estimate the concentration of airborne microorganisms. However, it has to be noted that the capability of the UVAPS in this regard is limited to aerosols generated under controlled laboratory conditions. In the case of ambient aerosols, which may contain a number of different microorganisms, as well as other biological and non-biological fluorescent materials, the interpretation of the UVAPS data in terms of numbers of individual microorganisms will be extremely complicated.ReferencesAgranovski, V., Ristovski, Z., Ayoko, G., and Morawska, L. (2004). Performance evaluation of the UVAPS in measuring biological aerosols: fluorescence spectra from NAD(P)H coenzymes and riboflavin. Aerosol Science and Technology,38: 354-364.Agranovski, V., Ristovski, Z., Hargreaves, M., Blackall, P. J., and Morawska, L.(2003a). Real-time measurement of bacterial aerosols with the UVAPS: performance evaluation. Journal of Aerosol Science, 34: 301-317. Agranovski, V., Ristovski, Z., Hargreaves, M., Blackall, P. J., and Morawska, L.(2003b). Performance evaluation of the UVAPS: influence of physiological age of airborne bacteria and bacterial stress. Journal of Aerosol Science, 34: 1711-1727.Arnold, W. N. (2000). From cannon balls to yeast cells. Science, 288:55.Arnold, W. N., and Lacy, J. S. (1977). Permeability of the cell envelope and osmotic behavior in Saccharomyces cerevisiae. Journal of Bacteriology, 131: 564-571.。

《AgingCell》期刊第11页49条数据

《AgingCell》期刊第11页49条数据

《AgingCell》期刊第11页49条数据《Aging Cell》期刊第11页49条数据https:///doc/28418b64ce7931b765ce0508763231126edb77fc.html aging-cell1.《Deficiency in the anti‐aging gene Klotho promotes aortic valve fibrosis through AMPKα‐mediated activation of RUNX2》原⽂链接:https:///doc/28418b64ce7931b765ce0508763231126edb77fc.html /academic-journal-foreign-pmc_aging-cell_thesis/040005030416.html2.《Chemical activation of a food deprivation signal extends lifespan》原⽂链接:https:///doc/28418b64ce7931b765ce0508763231126edb77fc.html /academic-journal-foreign-pmc_aging-cell_thesis/040005030886.html3.《Reduced cell cohesiveness of outgrowths from eccrine sweat glands delays wound closure in elderly skin》原⽂链接:https:///doc/28418b64ce7931b765ce0508763231126edb77fc.html /academic-journal-foreign-pmc_aging-cell_thesis/040005031429.html4.《Age‐dependent expression of DNMT1 and DNMT3B in PBMCs from a large European population enrolled in the MARK‐AGE study》原⽂链接:https:///doc/28418b64ce7931b765ce0508763231126edb77fc.html /academic-journal-foreign-pmc_aging-cell_thesis/040005032028.html5.《Deterioration of autonomic neuronal receptor signaling and mechanisms intrinsic to heart pacemaker cells contribute to age‐associated alterations in heart rate variability in vivo》原⽂链接:https:///doc/28418b64ce7931b765ce0508763231126edb77fc.html /academic-journal-foreign-pmc_aging-cell_thesis/040005032073.html6.《Comparative idiosyncrasies in life extension by reduced mTOR signalling and its distinctiveness from dietary restriction》原⽂链接:https:///doc/28418b64ce7931b765ce0508763231126edb77fc.html /academic-journal-foreign-pmc_aging-cell_thesis/040005032828.html7.《Issue Information》原⽂链接:https:///doc/28418b64ce7931b765ce0508763231126edb77fc.html /academic-journal-foreign-pmc_aging-cell_thesis/040005032844.html8.《Announcement》原⽂链接:https:///doc/28418b64ce7931b765ce0508763231126edb77fc.html /academic-journal-foreign-pmc_aging-cell_thesis/040005032845.html9.《Circulating ceramides are inversely associated with cardiorespiratory fitness in participants aged 54–96 years from the Baltimore Longitudinal Study of Aging》原⽂链接:https:///doc/28418b64ce7931b765ce0508763231126edb77fc.html /academic-journal-foreign-pmc_aging-cell_thesis/040005032856.html 10.《Age‐as sociated vascular inflammation promotes monocytosis during atherogenesis》原⽂链接:https:///doc/28418b64ce7931b765ce0508763231126edb77fc.html /academic-journal-foreign-pmc_aging-cell_thesis/040005032857.html11.《Deregulation of XBP1 expression contributes to myocardial vascular endothelial growth factor‐A expression and angiogenesis during cardiac hypertrophy in vivo》原⽂链接:https:///doc/28418b64ce7931b765ce0508763231126edb77fc.html /academic-journal-foreign-pmc_aging-cell_thesis/040005032867.html 12.《Dysfunctional telomeres induce p53‐dependent and independent apoptosis to compromise cellular proliferation and inhibit tumor formation》pmc_aging-cell_thesis/040005033425.html 13.《Does skeletal muscle have an ‘epi’‐memory? The role of epigenetics in nutritional programming, metabolic disease, aging and exercise》原⽂链接:https:///doc/28418b64ce7931b765ce0508763231126edb77fc.html /academic-journal-foreign-pmc_aging-cell_thesis/040005033547.html 14.《Maintenance of somatic tissue regeneration with age in short‐ and long‐lived species of sea urchins》原⽂链接:https:///doc/28418b64ce7931b765ce0508763231126edb77fc.html /academic-journal-foreign-pmc_aging-cell_thesis/040005033792.html 15.《Reduced Nrf2 expression mediates the decline in neural stem cell function during a critical middle‐age period》原⽂链接:https:///doc/28418b64ce7931b765ce0508763231126edb77fc.html /academic-journal-foreign-pmc_aging-cell_thesis/040005033793.html 16.《Ultrastructure of the liver microcirculation influences hepatic and systemic insulin activity and provides a mechanism for age‐related insulin resistance》原⽂链接:https:///doc/28418b64ce7931b765ce0508763231126edb77fc.html /academic-journal-foreign-pmc_aging-cell_thesis/040005033794.html 17.《Acute systemic DNA damage in youth does not impair immune defense with aging》原⽂链接:https:///doc/28418b64ce7931b765ce0508763231126edb77fc.html /academic-journal-foreign-pmc_aging-cell_thesis/040005034094.html 18.《The FoxO3 gene and cause‐specific mortality》原⽂链接:https:///doc/28418b64ce7931b765ce0508763231126edb77fc.html /academic-journal-foreign-pmc_aging-cell_thesis/040005034095.html 19.《NGF controls APP cleavage by downregulating APP phosphorylation at Thr668: relevance for Alzheimer's disease》原⽂链接:https:///doc/28418b64ce7931b765ce0508763231126edb77fc.html /academic-journal-foreign-pmc_aging-cell_thesis/040005034096.html 20.《Age‐associated de‐repression of retrotransposons in the Drosophila fat body, its potential cause and consequence》原⽂链接:https:///doc/28418b64ce7931b765ce0508763231126edb77fc.html /academic-journal-foreign-pmc_aging-cell_thesis/040005034142.html 21.《Characterization of the direct targets of FOXO transcription factors throughout evolution》原⽂链接:https:///doc/28418b64ce7931b765ce0508763231126edb77fc.html /academic-journal-foreign-pmc_aging-cell_thesis/040005034194.html22.《Mitochondrial‐targeted catalase is good for the old mouse proteome, but not for the young: ‘reverse’ antagonistic pleiotropy?》原⽂链接:https:///doc/28418b64ce7931b765ce0508763231126edb77fc.html /academic-journal-foreign-pmc_aging-cell_thesis/040005034195.html 23.《Aging: progressive decline in fitness due to the rising deleteriome adjusted by genetic, environmental, and stochastic processes》原⽂链接:https:///doc/28418b64ce7931b765ce0508763231126edb77fc.html /academic-journal-foreign-pmc_aging-cell_thesis/040005034272.html 24.《A chromatin modifier integrates insulin/IGF‐1 signalling and dietary restriction to regulate longevity》原⽂链接:https:///doc/28418b64ce7931b765ce0508763231126edb77fc.html /academic-journal-foreign-pmc_aging-cell_thesis/040005034375.html 25.《Lack of evidence for GDF11 as a rejuvenator of aged skeletal muscle satellite cells》原⽂链接:https:///doc/28418b64ce7931b765ce0508763231126edb77fc.html /academic-journal-foreign-pmc_aging-cell_thesis/040005034855.html 26.《Reduced DNA methylation patterning and transcriptional connectivity define human skin aging》原⽂链接:https:///doc/28418b64ce7931b765ce0508763231126edb77fc.html /academic-journal-foreign-pmc_aging-cell_thesis/040005035026.html 27.《Immunochip analysis identifies association of the RAD50/IL13 region with human longevity》原⽂链接:https:///doc/28418b64ce7931b765ce0508763231126edb77fc.html /academic-journal-foreign-pmc_aging-cell_thesis/040005035070.html 28.《Identification of a novel senolytic agent, navitoclax, targeting the Bcl‐2 family of anti‐apoptotic factors》pmc_aging-cell_thesis/040005035237.html 29.《Metformin‐mediated increase in DICER1 regulates microRNA expression and cellular senescence》原⽂链接:https:///doc/28418b64ce7931b765ce0508763231126edb77fc.html /academic-journal-foreign-pmc_aging-cell_thesis/040005035351.html 30.《Long‐lived hypopituitary Ames dwarf mice are resistant to the detrimental effect s of high‐fat diet on metabolic function and energy expenditure》原⽂链接:https:///doc/28418b64ce7931b765ce0508763231126edb77fc.html /academic-journal-foreign-pmc_aging-cell_thesis/040005035353.html 31.《Developing criteria for evaluation of geroprotectors as a key stage toward translation to the clinic》原⽂链接:https:///doc/28418b64ce7931b765ce0508763231126edb77fc.html /academic-journal-foreign-pmc_aging-cell_thesis/040005035666.html 32.《Nicotinamide mononucleotide supplementation reverses vascular dysfunction and oxidative stress with aging in mice》原⽂链接:https:///doc/28418b64ce7931b765ce0508763231126edb77fc.html /academic-journal-foreign-pmc_aging-cell_thesis/040005035667.html33.《P66SHC deletion improves fertility and progeric phenotype of late‐generation TE RC‐deficient mice but not their short lifespan》原⽂链接:https:///doc/28418b64ce7931b765ce0508763231126edb77fc.html /academic-journal-foreign-pmc_aging-cell_thesis/040005035707.html 34.《Issue Information》原⽂链接:https:///doc/28418b64ce7931b765ce0508763231126edb77fc.html /academic-journal-foreign-pmc_aging-cell_thesis/040005035961.html 35.《Announcement》原⽂链接:https:///doc/28418b64ce7931b765ce0508763231126edb77fc.html /academic-journal-foreign-pmc_aging-cell_thesis/040005035962.html 36.《17β‐estradiol ameliorates age‐associated loss of fibroblast function by attenuating IFN‐γ/STAT1‐dependent miR‐7 upregulation》原⽂链接:https:///doc/28418b64ce7931b765ce0508763231126edb77fc.html /academic-journal-foreign-pmc_aging-cell_thesis/040005036273.html 37.《Acetylation reduces SOX9 nuclear entry and ACAN gene transactivation in human chondrocytes》原⽂链接:https:///doc/28418b64ce7931b765ce0508763231126edb77fc.html /academic-journal-foreign-pmc_aging-cell_thesis/040005036821.html 38.《Cellular senescence impact on immune cell fate and function》原⽂链接:https:///doc/28418b64ce7931b765ce0508763231126edb77fc.html /academic-journal-foreign-pmc_aging-cell_thesis/040005036822.html 39.《The dark side of circulating nucleic acids》原⽂链接:https:///doc/28418b64ce7931b765ce0508763231126edb77fc.html /academic-journal-foreign-pmc_aging-cell_thesis/040005036823.html 40.《Calpain inhibition rescues troponin T3 fragmentation, increases Cav1.1, and enhances skeletal muscle force in aging sedentary mice》原⽂链接:https:///doc/28418b64ce7931b765ce0508763231126edb77fc.html /academic-journal-foreign-pmc_aging-cell_thesis/040005036884.html 41.《AMPK activation protects cells from oxidative stress‐induced senescence via autophagic flux restoration and intracellular NAD+ elevation》原⽂链接:https:///doc/28418b64ce7931b765ce0508763231126edb77fc.html /academic-journal-foreign-pmc_aging-cell_thesis/040005036931.html 42.《AGEs in human lens capsule promote the TGFβ2‐mediated EMT of lens epithelial cells: implications for age‐associated fibrosis》原⽂链接:https:///doc/28418b64ce7931b765ce0508763231126edb77fc.html /academic-journal-foreign-pmc_aging-cell_thesis/040005037404.html 43.《Dietary fat composition influences glomerular and proximal convoluted tubule cell structure and autophagic processes in kidneys from calorie‐restricted mice》原⽂链接:https:///doc/28418b64ce7931b765ce0508763231126edb77fc.html /academic-journal-foreign-pmc_aging-cell_thesis/040005037405.html44.《O‐GlcNAcylation of protein kinase A catalytic subunits enhances its activity:a mechanism linked to learning and memory deficits in Alzheimer's disease》原⽂链接:https:///doc/28418b64ce7931b765ce0508763231126edb77fc.html /academic-journal-foreign-45.《miR‐204 downregulates EphB2 in aging mouse hippocampal neurons》原⽂链接:https:///doc/28418b64ce7931b765ce0508763231126edb77fc.html /academic-journal-foreign-pmc_aging-cell_thesis/040005038759.html 46.《Activation of TRAIL‐DR5 pathway promotes sen sorineural degeneration in the inner ear》原⽂链接:https:///doc/28418b64ce7931b765ce0508763231126edb77fc.html /academic-journal-foreign-pmc_aging-cell_thesis/040005038902.html 47.《High dietary advanced glycation end products are associated with poorer spatial learning and accelerated Aβ deposition in an Alzheimer mouse model》原⽂链接:https:///doc/28418b64ce7931b765ce0508763231126edb77fc.html /academic-journal-foreign-pmc_aging-cell_thesis/040005038963.html 48.《Issue Information》原⽂链接:https:///doc/28418b64ce7931b765ce0508763231126edb77fc.html /academic-journal-foreign-pmc_aging-cell_thesis/040005038977.html 49.《Aneuploidy shortens replicative lifespan in Saccharomyces cerevisiae》原⽂链接:https:///doc/28418b64ce7931b765ce0508763231126edb77fc.html /academic-journal-foreign-pmc_aging-cell_thesis/040005039483.html。

生物化学习题-维生素

生物化学习题-维生素

什么是发动机的压缩比
压缩比:压缩前气缸中气体的最大容积与压缩后的最小容积之比,国标以ε表示,也等于气缸总容积与燃烧室容积的比值。

汽油机在运转时,吸进的是汽油与空气混合气,压缩比越大,压缩终了的混合气的压力和温度就越高,混合气中的汽油分子就能气化得更完全,燃烧也更迅速更充分,因而发动机发出的功率越大,经济性越好,排气质量也能相应得到改善。

反过来说,低压缩比的发动机燃烧时间相对延长,增加了能量消耗从而降低动力输出。

压缩比越大,通常伴随着的是发动机工作时抖振会明显增大(现在的发动机大都经过专门的调校,因而不是很明显),压缩比过大不仅不能进一步改善燃烧情况,反而会出现“爆燃”和“表面点火”等不正常燃烧现象。

爆燃会引起发动机过热,功率下降,油耗增加,甚至损毁发动机。

表面点火也会增加发动机的负荷,使其寿命降低。

另外,压缩比的提高还受到排气污染法规的限制。

通常的低压缩比指的是压缩比在10以下,数值在10以上的就算是高压缩比发动机了。

压缩比的高低对发动机使用汽油等级的要求有很大影响,一般来说,压缩比越大,要求使用的汽油标号越高。

如果使用了低于建议标号的汽油,可能会产生“敲缸”、发动机振动加剧、不匀速行驶等问题,还会损害发动机性能,缩短使用寿命。

通常,压缩比低于7.5可使用90号汽油,压缩比在7.5~8.0应选用90或93号汽油;压缩比在8.0~10.0应选93或95号汽油;压缩比在10.0以上的应选用97号汽油。

生物化学习题及答案_酶

生物化学习题及答案_酶

酶(一)名词解释1.米氏常数(K m值)2.底物专一性(substrate specificity)3.辅基(prosthetic group)4.单体酶(monomeric enzyme)5.寡聚酶(oligomeric enzyme)6.多酶体系(multienzyme system)7.激活剂(activator)8.抑制剂(inhibitor inhibiton)9.变构酶(allosteric enzyme)10.同工酶(isozyme)11.诱导酶(induced enzyme)12.酶原(zymogen)13.酶的比活力(enzymatic compare energy)14.活性中心(active center)(二)英文缩写符号1.NAD+(nicotinamide adenine dinucleotide)2.FAD(flavin adenine dinucleotide)3.THFA(tetrahydrofolic acid)4.NADP+(nicotinamide adenine dinucleotide phosphate)5.FMN(flavin mononucleotide)6.CoA(coenzyme A)7.ACP(acyl carrier protein)8.BCCP(biotin carboxyl carrier protein)9.PLP(pyridoxal phosphate)(三)填空题1.酶是产生的,具有催化活性的。

2.酶具有、、和等催化特点。

3.影响酶促反应速度的因素有、、、、和。

4.胰凝乳蛋白酶的活性中心主要含有、、和基,三者构成一个氢键体系,使其中的上的成为强烈的亲核基团,此系统称为系统或。

5.与酶催化的高效率有关的因素有、、、、等。

6.丙二酸和戊二酸都是琥珀酸脱氢酶的抑制剂。

7.变构酶的特点是:(1),(2),它不符合一般的,当以V对[S]作图时,它表现出型曲线,而非曲线。

Vitamins_and_Minerals

Vitamins_and_Minerals

Chemical structure of α-tocopherol
Biochemical functions and deficiency
anti-oxidation
Vitamin E: antioxidant
ROO· RH
ROOH R·
(Peroxide free radical )(polyunsaturated fatty acids )(organic peroxide )(organic free radical)
Chemical nature and properties:
﹡ types: VitD2(Ergocalciferol) VitD3(Cholecalciferol )
﹡ pro-VitD2: Ergosterol →VitD2 Pro-VitD3: cholesterol →7-hydro-cholesterol →VitD3
Vit B
A, D, E, K
B1, B2, B6, B12, PP, pantothenic acid, folic acid,biotin ,lipoic acid
Section 1
Fat-soluble vitamins
Common features of fat-soluble vitamins
Chapter 4
Vitamins
The early history of vitamins can be traced to observations that certain diets produced disease that could be cured by a supplement of another foodstuff. For example , the ancient Arab physicians used liver to cure night blindness. The British Navy provided lemon juice for its sailors to prevent scurvy.

211087456_抗衰老的饮食营养干预研究进展

211087456_抗衰老的饮食营养干预研究进展

抗衰老的饮食营养干预研究进展董长勇,车虹昌,张 欣,于伟厚*(大连双迪科技股份有限公司,辽宁大连 116635)摘 要:衰老是一个渐进的生物过程,它会逐渐破坏生物体的正常功能。

针对衰老相关疾病的研究旨在延缓衰老过程。

衰老与饮食习惯有关,营养干预在减缓衰老过程中发挥着重要作用。

热量限制的饮食模式和含有多酚类、核苷酸和维生素等膳食补充剂的健康食品通过调节氧化和炎症途径、抑制端粒缩短或DNA损伤等方式来减缓衰老。

然而,还需要更多研究来进一步阐明营养和饮食成分影响衰老和疾病进展的潜在机制。

本文综述了衰老的表现与机制,重点介绍了饮食营养干预在延缓衰老中的重要性,并展望了未来发展前景。

关键词:抗衰老;营养干预;饮食模式Research Progress of Anti-Aging Diet and NutritionInterventionDONG Changyong, CHE Hongchang, ZHANG Xin, YU Weihou*(Dalian Shuangdi Technology Co., Ltd., Dalian 116635, China)Abstract: Aging is a progressive biological process, which will gradually disrupt the normal functions of organisms. Research on aging related diseases aims to delay the aging process. Aging is related to dietary habits, and nutritional intervention plays an important role in slowing down aging. The calorie-restricted diets and healthy foods containing dietary anti-supplements such as polyphenols, nucleotides and vitamins can slow down aging by regulating oxidation and inflammation pathways, inhibiting telomere shortening or DNA damage. However, more research is needed to better clarify the potential mechanisms by which nutrition and dietary components influence aging and disease progression. This article reviews the manifestations and mechanisms of aging, focuses on the importance of dietary nutritional interventions for delaying aging, and gives an outlook on future developments.Keywords: anti-aging; nutritional intervention; dietary pattern衰老是个体基因组成和环境因素之间持续相互作用的结果,其特征是终身性损伤的积累和组织器官功能的渐进性丧失,表现为应对慢性疾病的脆弱性和死亡的可能性增加,分为健康衰老和非健康衰老两种,前者包括避免或延迟心血管疾病及其他器官特异性疾病病理的发生,并在整个生命周期中保持理想的认知、身体功能和社会活动;后者则表现为65岁以后患上一种或多种衰老相关疾病(Aging-Related Disease,ARD)[1]。

天然药物化学第六章萜类化合物

天然药物化学第六章萜类化合物

三、萜类化合物的理化性质(二)化学性质
萜类,特别是双环萜在发生加成、消除或 亲核性取代反应时,常常发生碳架的改变,产 生Wagner-Meerwein重排。
目前工业上由α-蒎烯合成樟脑的过程, 就是应用Wagner-Meerwein重排再氧化制得。
本章内容
一、萜类化合物的含义 二、结构分类 三、理化性质
H
H
O
OH
O CO CH3
O CO
巴 卡 亭 III 去 乙 酰 基 巴 卡 亭 III
R= Ac R= H
为紫杉醇的前体 物,是半合成品的 母体。
在红豆杉的针叶 和小枝中含0.1%。
二、结构分类
(五)二倍半萜(sesterterpenoids)
该类化合物数量少,约有6种类型30余种化合
物。
H
22
(三)质谱
由于萜的基本母核多,且无稳定的芳香环、芳 杂环及脂杂环结构系统,大多缺乏“定向”裂解基 团,因而在电子轰击下能够裂解的化学键较多,重 排屡屡发生,裂解方式复杂。
但大多数萜类还是有一些可供参考的规律。
五、波谱法在结构鉴定中的应用
(四)核磁共振 萜类化合物类型多、骨架复杂、结构庞杂,大
多是根据文献收集的氢谱、碳谱数据,对样品进行 对照比较进行解析。
(强峰为羰基的特征吸收峰。)
五、波谱法在结构鉴定中的应用
(二)红外光谱
在饱和内酯环中,随着内酯环碳原子数的减少, 环的张力增大,吸收波长向高波数移动:
六元环内酯羰基——νmax1735cm-1 五元环 ″ ——νmax1770cm-1 四元环 ″ ——νmax1840cm-1
五、波谱法在结构鉴定中的应用
O
HO
O
属双环二萜类化合物

烟酰胺腺嘌呤二核苷酸

烟酰胺腺嘌呤二核苷酸

Β-烟酰胺腺嘌呤二核苷酸(β-Nicotinamide adenine dinucleotide,NAD)烟酰胺腺嘌呤二核苷酸基本信息介绍也称为二磷酸吡啶核苷酸(DPN),或辅脱氢酶(codehydrogenase)I或辅酶I,是一种转递质子(更准确说是氢离子)的辅酶,它出现在细胞很多代谢反应中。

NADH(更准确写法:NADH + H+)是其还原形式。

CAS:53-84-9 分子式:C21H27N7O14P2EINECS:200-184-4 分子量:663.425 g·mol−1-34.8° (1%,水);比旋光度:[α]23DNAD极易吸湿,储存温度-20℃。

其固体在干燥器内0℃或室温时稳定;在中性或微酸性溶液(pH3~7)中,0℃时可稳定2周以上;在碱性溶液中极易变质;加热易分解。

NAD溶于水(50mg/mL),不溶于丙酮等有机溶剂;pH7.5时最大吸收波长259nm(ε 17800),最小吸收波长230nm(ε 8000)。

NAD+是脱氢酶的辅酶,如乙醇脱氢酶(ADH),在糖酵解、糖异生、三羧酸循环及呼吸链中发挥着不可替代的作用。

中间产物会将脱下的氢递给NAD,使之成为NADH + H+。

而NADH + H+则会作为氢的载体,在呼吸链中通过化学渗透偶联的方式,合成ATP。

NAD的氧化和还原NAD的吸光曲线在吸光方面,NADH+H+在260nm和340nm处各有一吸收峰,而NAD+则只有260nm一处吸收峰,这是区别两者的重要属性。

这同时也是很多代谢试验中,测量代谢率的物理依据。

NAD在260nm的吸光系数为1.78*104 L /(mol*cm),而NADH在340nm的吸光系数为6.2*10³ L/(mol*cm)。

制备方法目前工业中大量的烟酰胺腺嘌呤二核苷酸产品主要为从酵母中提取分离获得。

该过程虽然工艺成熟,但是耗费能源和材料巨大,产品昂贵,限制了的生产和其后续应用过程的开发。

咪唑异烟酸结构

咪唑异烟酸结构

咪唑异烟酸结构
咪唑异烟酸(Nicotinamide)的结构式为C6H6N2O,它是一种维生素B3的衍生物,也被称为烟酰胺。

它的化学结构包括一个咪唑环和一个吡啶环,咪唑环上附着有一个甲酰胺基团。

这个结构使得咪唑异烟酸在人体内具有多种生物活性,并参与许多重要的代谢过程。

其化学结构特点如下:
1. 咪唑异烟酸是由一个咪唑环和一个吡啶环组成的,中间通过一个碳链相连。

2. 它含有两个氮原子,一个位于咪唑环上,另一个位于吡啶环上。

3. 咪唑异烟酸分子中还存在一个羰基(C=O)和一个氨基(NH2)。

咪唑异烟酸在生物体内具有多种重要的生理功能和意义,包括:
1. 作为辅酶的组成部分:咪唑异烟酸是辅酶NAD(烟酰胺腺嘌呤二核苷酸)的前体之一。

NAD在许多生化反应中起着关键的催化作用,参与能量代谢、氧化还原反应、DNA修复等多个生物过程。

2. 能量代谢调节:咪唑异烟酸可以通过参与NAD/NADH的生成,调节体内葡萄糖、脂肪和蛋白质的代谢,维持能量平衡。

3. 抗氧化作用:咪唑异烟酸具有一定的抗氧化活性,可以中和自由基,减轻氧化应激对细胞和组织的损伤,保护细胞免受氧化应激的侵害。

4. 皮肤保健:咪唑异烟酸在某些皮肤病治疗中被广泛应用,包括治疗炎症性皮肤病、减轻痤疮炎症、改善色素沉着等。

它具有保湿、抗炎、抗氧化等作用,可以促进皮肤的修复和保护。

咪唑异烟酸在机体内发挥着重要的生理功能,对于维持正常的能量代谢、抗氧化防御和皮肤健康具有积极的意义。

生化缩写

生化缩写

1.NAD+ (nicotinamide adenine dinucleotide):烟酰胺腺嘌呤二核苷酸;辅酶Ⅰ。

2.FAD(flavin adenine dinucleotide):黄素腺嘌呤二核苷酸。

3.THFA(tetrahydrofolic acid):四氢叶酸。

4.NADP+(nicotinamide adenine dinucleotide phosphate):烟酰胺腺嘌呤二核苷酸磷酸;辅酶Ⅱ。

5.FMN(flavin mononucleotide):黄素单核苷酸。

6.CoA(coenzyme A):辅酶A。

7.ACP(acyl carrier protein):酰基载体蛋白。

8.BCCP(biotin carboxyl carrier protein):生物素羧基载体蛋白。

9.PLP(pyridoxal phosphate):磷酸吡哆醛。

10.UDPG:尿苷二磷酸葡萄糖,是合成蔗糖时葡萄糖的供体。

11.ADPG:腺苷二磷酸葡萄糖,是合成淀粉时葡萄糖的供体。

12.F-D-P:1,6-二磷酸果糖,由磷酸果糖激酶催化果糖-1-磷酸生成,属于高能磷酸化合物,在糖酵解过程生成。

13.F-1-P:果糖-1-磷酸,由果糖激酶催化果糖生成,不含高能磷酸键。

14.G-1-P:葡萄糖-1-磷酸。

由葡萄糖激酶催化葡萄糖生成,不含高能键。

15.PEP:磷酸烯醇式丙酮酸,含高能磷酸键,属于高能磷酸化合物,在糖酵解过程生成。

16.GOT(Glutamate-oxaloacetate transaminase):谷草转氨酶,17.GPT(Glutamate-pyruvate transaminase):谷丙转氨酶18.APS(Adenosine phosphosulfate):腺苷酰硫酸19.PAL(Pheny-lalanine ammonia lyase):苯丙氨酸解氨酶20.PRPP(Phosphoribosyl pyrophosate):5-磷酸核糖焦磷酸21.SAM (S-adenoymethionine):S-腺苷蛋氨酸22.GDH (Glutamate drhyddrogenase):谷氨酸脱氢酶23.IMP(Inosinic acid):次黄嘌呤核苷酸24. CAP(Catabolic gene activator protein):降解物基因活化蛋白25. PKA(Protein kinase):蛋白激酶A26. CaM(Calmkdulin):钙调蛋白27. ORF(Open reading frame):开放阅读框架28.IF(initiation factor):原核生物蛋白质合成的起始因子。

nmn20000的功效与作用,nmn的功效与作用是什么,进一步说明!

nmn20000的功效与作用,nmn的功效与作用是什么,进一步说明!

nmn20000的功效与作用,nmn的功效与作用是什么,进一步说明!nmn20000的功效与作用,nmn的功效与作用是什么,日本W+NMN端粒塔进一步说明!nmn20000的功效与作用,nmn的功效与作用是什么,通过上期内容,我们和大家分享了很多关于NMN体内研究的功效。

本期我们将继续阐述NMN的功效及安荃性研究进展。

nmn20000的功效与作用,nmn的功效与作用是什么,W+NMN25000研究报道的功能保护月干脏研究发现,NMN能够通过下调肝脏星状细胞纤维原基茵的表达,抑至纤维原蛋白及氧化还原酶的分泌,减少胞外基质的积累,防止肝脏纤维化[22]。

另有研究证明,NMN(W+NMN25000)可促琎酒精代谢,并增强人体对酒精的耐受性[37]。

研究结果显示,NMN治療增加了肝脏NAD+水平,防止了乙醇诱导的血浆ALT和AST的升高,并且,受乙醇代谢调节的基茵,百分之25表达被改变了。

这些基茵与许多通路相关,包括MAP K通路。

分析显示,NMN处理使Erk1/2信号正常化,并防止诱导Atf3过表达。

这些发现揭示了前所未宥的机制,通过补充NMN改变肝脏基茵表达和蛋白质途径,影响酒精性脑白质ALD早期小鼠模型的肝毒性。

总的来说,NMN不仅对肝脏没有蝳性,还对酒精肝有明显的恢复作用[43]。

减重孕妇营养过剩对其子女的生长有长期的不粮影响。

锻炼仅可改膳部分不粮影响,因此可增加NAD+水平从而改进粒线体的功能。

之前工作也已证实补充NMN 可逆转高脂肪膳食的不粮作用。

结果显示:NMN 比体育活动可更宥效地改膳肝代谢功能[25]。

nmn20000的功效与作用,nmn的功效与作用是什么,日本的一项人体临床研究再次证明了NMN对人体的益处,研究团队通过人体临床试验正明静脉注射NMN对人体是安荃的,不仅可以显著提高血液NAD+水平,而且可在不损害血细胞的情况下显著降低血液中的甘由三酯水平。

受试者在接受NMN注射半小时后,甘由三酯水平下降明显,一直到5小时后,虽有轻微的恢复趋势,但这种显著差异依然存在。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档